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Chapter 1.
MAXWELL TUNING GUIDE

1.1. NVIDIA Maxwell Compute Architecture
Maxwell is NVIDIA's next-generation architecture for CUDA compute applications.
Maxwell retains and extends the same CUDA programming model as in previous
NVIDIA architectures such as Fermi and Kepler, and applications that follow the
best practices for those architectures should typically see speedups on the Maxwell
architecture without any code changes. This guide summarizes the ways that an
application can be fine-tuned to gain additional speedups by leveraging Maxwell
architectural features.1

Maxwell introduces an all-new design for the Streaming Multiprocessor (SM) that
dramatically improves energy efficiency. Although the Kepler SMX design was
extremely efficient for its generation, through its development, NVIDIA's GPU architects
saw an opportunity for another big leap forward in architectural efficiency; the Maxwell
SM is the realization of that vision. Improvements to control logic partitioning, workload
balancing, clock-gating granularity, compiler-based scheduling, number of instructions
issued per clock cycle, and many other enhancements allow the Maxwell SM (also called
SMM) to far exceed Kepler SMX efficiency.

The first Maxwell-based GPU is codenamed GM107 and is designed for use in power-
limited environments like notebooks and small form factor (SFF) PCs. GM107 is
described in a whitepaper entitled NVIDIA GeForce GTX 750 Ti: Featuring First-
Generation Maxwell GPU Technology, Designed for Extreme Performance per Watt.2

The first GPU using the second-generation Maxwell architecture is codenamed GM204.
Second-generation Maxwell GPUs retain the power efficiency of the earlier generation
while delivering significantly higher performance. GM204 is described in a whitepaper
entitled NVIDIA GeForce GTX 980: Featuring Maxwell, The Most Advanced GPU Ever Made.

1 Throughout this guide, Fermi refers to devices of compute capability 2.x, Kepler refers to devices of compute capability
3.x, and Maxwell refers to devices of compute capability 5.x.

2 The features of GM108 are similar to those of GM107.

http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf
http://international.download.nvidia.com/geforce-com/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
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Compute programming features of GM204 are similar to those of GM107, except where
explicitly noted in this guide. For details on the programming features discussed in this
guide, please refer to the CUDA C++ Programming Guide.

1.2. CUDA Best Practices
The performance guidelines and best practices described in the CUDA C++
Programming Guide and the CUDA C++ Best Practices Guide apply to all CUDA-
capable GPU architectures. Programmers must primarily focus on following those
recommendations to achieve the best performance.

The high-priority recommendations from those guides are as follows:

‣ Find ways to parallelize sequential code,
‣ Minimize data transfers between the host and the device,
‣ Adjust kernel launch configuration to maximize device utilization,
‣ Ensure global memory accesses are coalesced,
‣ Minimize redundant accesses to global memory whenever possible,
‣ Avoid long sequences of diverged execution by threads within the same warp.

1.3. Application Compatibility
Before addressing specific performance tuning issues covered in this guide, refer to the
Maxwell Compatibility Guide for CUDA Applications to ensure that your application is
compiled in a way that is compatible with Maxwell.

1.4. Maxwell Tuning

1.4.1. SMM
The Maxwell Streaming Multiprocessor, SMM, is similar in many respects to the Kepler
architecture's SMX. The key enhancements of SMM over SMX are geared toward
improving efficiency without requiring significant increases in available parallelism per
SM from the application.

1.4.1.1. Occupancy
The maximum number of concurrent warps per SMM remains the same as in SMX (i.e.,
64), and factors influencing warp occupancy remain similar or improved over SMX:

‣ The register file size (64k 32-bit registers) is the same as that of SMX.
‣ The maximum registers per thread, 255, matches that of Kepler GK110. As with

Kepler, experimentation should be used to determine the optimum balance of
register spilling vs. occupancy, however.

‣ The maximum number of thread blocks per SM has been increased from 16 to 32.
This should result in an automatic occupancy improvement for kernels with small

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
http://docs.nvidia.com/cuda/maxwell-compatibility-guide/
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
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thread blocks of 64 or fewer threads (shared memory and register file resource
requirements permitting). Such kernels would have tended to under-utilize SMX,
but less so SMM.

‣ Shared memory capacity is increased (see Shared Memory Capacity).

As such, developers can expect similar or improved occupancy on SMM without
changes to their application. At the same time, warp occupancy requirements (i.e.,
available parallelism) for maximum device utilization are similar to or less than those of
SMX (see Instruction Latencies).

1.4.1.2. Instruction Scheduling
The number of CUDA Cores per SM has been reduced to a power of two, however with
Maxwell's improved execution efficiency, performance per SM is usually within 10% of
Kepler performance, and the improved area efficiency of SMM means CUDA Cores per
GPU will be substantially higher vs. comparable Fermi or Kepler chips. SMM retains
the same number of instruction issue slots per clock and reduces arithmetic latencies
compared to the Kepler design.

As with SMX, each SMM has four warp schedulers. Unlike SMX, however, all SMM
core functional units are assigned to a particular scheduler, with no shared units. Along
with the selection of a power-of-two number of CUDA Cores per SM, which simplifies
scheduling and reduces stall cycles, this partitioning of SM computational resources in
SMM is a major component of the streamlined efficiency of SMM.

The power-of-two number of CUDA Cores per partition simplifies scheduling, as each
of SMM's warp schedulers issue to a dedicated set of CUDA Cores equal to the warp
width. Each warp scheduler still has the flexibility to dual-issue (such as issuing a math
operation to a CUDA Core in the same cycle as a memory operation to a load/store unit),
but single-issue is now sufficient to fully utilize all CUDA Cores.

1.4.1.3. Instruction Latencies
Another major improvement of SMM is that dependent math latencies have been
significantly reduced; a consequence of this is a further reduction of stall cycles, as the
available warp-level parallelism (i.e., occupancy) on SMM should be equal to or greater
than that of SMX (see Occupancy), while at the same time each math operation takes less
time to complete, improving utilization and throughput.

1.4.1.4. Instruction Throughput
The most significant changes to peak instruction throughputs in SMM are as follows:

‣ The change in number of CUDA Cores per SM brings with it a corresponding
change in peak single-precision floating point operations per clock per SM.
However, since the number of SMs is typically increased, the result is an increase in
aggregate peak throughput; furthermore, the scheduling and latency improvements
also discussed above make this peak easier to approach.

‣ The throughput of many integer operations including multiply, logical operations
and shift is improved. In addition, there are now specialized integer instructions



Maxwell Tuning Guide

www.nvidia.com
Tuning CUDA Applications for Maxwell DA-07173-001_v11.0 | 4

that can accelerate pointer arithmetic. These instructions are most efficient when
data structures are a power of two in size.

As was already the recommended best practice, signed arithmetic should be
preferred over unsigned arithmetic wherever possible for best throughput on SMM.
The C language standard places more restrictions on overflow behavior for unsigned
math, limiting compiler optimization opportunities.

1.4.2. Memory Throughput

1.4.2.1. Unified L1/Texture Cache
Maxwell combines the functionality of the L1 and texture caches into a single unit.

As with Kepler, global loads in Maxwell are cached in L2 only, unless using the LDG
read-only data cache mechanism introduced in Kepler.

In a manner similar to Kepler GK110B, GM204 retains this behavior by default but also
allows applications to opt-in to caching of global loads in its unified L1/Texture cache.
The opt-in mechanism is the same as with GK110B: pass the -Xptxas -dlcm=ca flag to
nvcc at compile time.

Local loads also are cached in L2 only, which could increase the cost of register spilling
if L1 local load hit rates were high with Kepler. The balance of occupancy versus
spilling should therefore be reevaluated to ensure best performance. Especially given
the improvements to arithmetic latencies, code built for Maxwell may benefit from
somewhat lower occupancy (due to increased registers per thread) in exchange for lower
spilling.

The unified L1/texture cache acts as a coalescing buffer for memory accesses, gathering
up the data requested by the threads of a warp prior to delivery of that data to the warp.
This function previously was served by the separate L1 cache in Fermi and Kepler.

Two new device attributes were added in CUDA Toolkit 6.0:
globalL1CacheSupported and localL1CacheSupported. Developers who wish to
have separately-tuned paths for various architecture generations can use these fields to
simplify the path selection process.

Enabling caching of globals in GM204 can affect occupancy. If per-thread-block
SM resource usage would result in zero occupancy with caching enabled, the CUDA
driver will override the caching selection to allow the kernel launch to succeed. This
situation is reported by the profiler.

1.4.3. Shared Memory

1.4.3.1. Shared Memory Capacity
With Fermi and Kepler, shared memory and the L1 cache shared the same on-chip
storage. Maxwell, by contrast, provides dedicated space to the shared memory of each
SMM, since the functionality of the L1 and texture caches have been merged in SMM.
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This increases the shared memory space available per SMM as compared to SMX:
GM107 provides 64 KB shared memory per SMM, and GM204 further increases this to
96 KB shared memory per SMM.

This presents several benefits to application developers:

‣ Algorithms with significant shared memory capacity requirements (e.g., radix sort)
see an automatic 33% to 100% boost in capacity per SM on top of the aggregate boost
from higher SM count.

‣ Applications no longer need to select a preference of the L1/shared split for
optimal performance. For purposes of backward compatibility with Fermi and
Kepler, applications may optionally continue to specify such a preference, but the
preference will be ignored on Maxwell, with the full 64 KB per SMM always going
to shared memory.

While the per-SM shared memory capacity is increased in SMM, the per-thread-
block limit remains 48 KB. For maximum flexibility on possible future GPUs, NVIDIA
recommends that applications use at most 32 KB of shared memory in any one thread
block, which would for example allow at least two such thread blocks to fit per SMM.

1.4.3.2. Shared Memory Bandwidth
Kepler SMX introduced an optional 8-byte shared memory banking mode, which had
the potential to increase shared memory bandwidth per SM over Fermi for shared
memory accesses of 8 or 16 bytes. However, applications could only benefit from this
when storing these larger elements in shared memory (i.e., integers and fp32 values saw
no benefit), and only when the developer explicitly opted into the 8-byte bank mode via
the API.

To simplify this, Maxwell returns to the Fermi style of shared memory banking, where
banks are always four bytes wide. Aggregate shared memory bandwidth across the chip
remains comparable to that of corresponding Kepler chips, given increased SM count.
In this way, all applications using shared memory can now benefit from the higher
bandwidth, even when storing only four-byte items into shared memory and without
specifying any particular preference via the API.

1.4.3.3. Fast Shared Memory Atomics
Kepler introduced a dramatically higher throughput for atomic operations to global
memory as compared to Fermi. However, atomic operations to shared memory remained
essentially unchanged: both architectures implemented shared memory atomics using
a lock/update/unlock pattern that could be expensive in the case of high contention for
updates to particular locations in shared memory.

Maxwell improves upon this by implementing native shared memory atomic operations
for 32-bit integers and native shared memory 32-bit and 64-bit compare-and-swap
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(CAS), which can be used to implement other atomic functions with reduced overhead
compared to the Fermi and Kepler methods.

Refer to the CUDA C++ Programming Guide for an example implementation of an fp64
atomicAdd() using atomicCAS().

1.4.4. Dynamic Parallelism
GK110 introduced a new architectural feature called Dynamic Parallelism, which allows
the GPU to create additional work for itself. A programming model enhancement
leveraging this feature was introduced in CUDA 5.0 to enable kernels running on GK110
to launch additional kernels onto the same GPU.

SMM brings Dynamic Parallelism into the mainstream by supporting it across
the product line, even in lower-power chips such as GM107. This will benefit
developers, as it means that applications will no longer need special-case algorithm
implementations for high-end GPUs that differ from those usable in more power-
constrained environments.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
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Appendix A.
REVISION HISTORY

Version 1.0

‣ Initial Public Release

Version 1.1

‣ Updated for second-generation Maxwell (compute capability 5.2).

Version 1.2

‣ Updated references to the CUDA C++ Programming Guide and CUDA C++ Best
Practices Guide.
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