
NVIDIA Fabric Manager
Release 2.3

NVIDIA Corporation

May 06, 2025

Contents

1 Overview 1
1.1 NVSwitch-Based Systems . 1
1.2 Terminology . 2
1.3 NVSwitch Core Software Stack . 3
1.3.1 Systems Using NVSwitches that are Earlier than the Fourth Generation NVSwitches 3
1.3.2 Systems Using Fourth Generation NVSwitches . 3

1.4 What is Fabric Manager? . 4
1.5 What is NVLink Subnet Manager? . 5
1.6 GPU Baseboard Topologies . 5
1.6.1 The HGX-2 GPU Baseboard . 5
1.6.2 The NVIDIA HGX A100 GPU Baseboard . 6
1.6.3 The NVIDIA HGX H100 GPU Baseboard . 7
1.6.4 NVIDIA HGX B200/B100 GPU Baseboard . 8

2 Getting Started with Fabric Manager 11
2.1 Basic Components . 11
2.1.1 The Fabric Manager Service . 11
2.1.2 Software Development Kit . 11

2.2 Supported Platforms . 11
2.2.1 Hardware Architectures . 11
2.2.2 NVIDIA Server Architectures . 12
2.2.3 OS Environment . 12

2.3 Supported Deployment Models . 13
2.4 Other NVIDIA Software Packages . 13
2.5 Installation . 13
2.6 Managing the Fabric Manager Service . 13
2.6.1 Starting Fabric Manager . 14
2.6.2 Stopping Fabric Manager . 14
2.6.3 Checking the Fabric Manager Status . 14
2.6.4 Enabling the Fabric Manager Service to Auto Start at Boot 14
2.6.5 Disabling the Fabric Manager Service Auto Start at Boot 14
2.6.6 Checking the Fabric Manager System Log Messages . 14

2.7 Fabric Manager Startup Options . 14
2.8 Fabric Manager Service File . 15
2.8.1 Linux-Based Systems . 15

2.9 Running Fabric Manager as a Non-Root User . 19
2.10 Fabric Manager Config Options . 21
2.10.1 Logging Related Config Items . 21
2.10.1.1 Setting the Log File Location and Name . 21
2.10.1.2 Setting the Log Level . 21
2.10.1.3 Setting the Log File Append Behavior . 22
2.10.1.4 Setting the Log File Size . 22
2.10.1.5 Redirecting the Logs to Syslog . 22

i

2.10.1.6 Rotation Settings . 22
2.10.2 Operating Mode-Related Config Items . 23
2.10.2.1 Fabric Manager Operating Mode . 23
2.10.2.2 The Fabric Manager Restart Mode . 23
2.10.2.3 The Fabric Manager API Interface . 24
2.10.2.4 The Fabric Manager API TCP Port . 24
2.10.2.5 The Fabric Manager Domain Socket Interface . 24
2.10.2.6 The Fabric Manager State . 24

2.10.3 Miscellaneous Config Items . 25
2.10.3.1 Preventing Fabric Manager from Daemonizing . 25
2.10.3.2 Fabric Manager Communication Socket Interface 25
2.10.3.3 Fabric Manager Communication TCP Port . 25
2.10.3.4 Unix Domain Socket for Fabric Manager Communication 26
2.10.3.5 Socket for Fabric Manager and Subnet Manager Communication 26
2.10.3.6 Management Port GUID for Control Traffic . 26
2.10.3.7 Fabric Manager System Topology File Location . 27

2.10.4 High Availability Mode-Related Config Items . 27
2.10.4.1 Control Fabric Manager Behavior with An Initialization Failure 27
2.10.4.2 GPU Access NVLink Failure Mode . 27
2.10.4.3 NVSwitch Trunk NVLink Failure Mode . 28
2.10.4.4 NVSwitch Failure Mode . 28
2.10.4.5 CUDA Jobs When the Fabric Manager Service is Stopped or is Terminated . . . 28

3 Getting Started with NVLink Subnet Manager 30
3.1 NVLink Subnet Manager Configuration . 30
3.1.1 Configuring the NVLink Subnet Manager Port . 31
3.1.2 Configuring the NVLink Subnet Manager Daemon Mode 31
3.1.3 Configuring NVLink Subnet Manager to Load the Fabric Manager GRPC Plugin . . . 31
3.1.4 Configuring GRPC Plugin Properties . 31
3.1.4.1 Setting the Log File Location and Name . 32
3.1.4.2 Setting a Log Level . 32
3.1.4.3 Redirecting the Logs to the Syslog . 32
3.1.4.4 Setting the Log File Append Behavior . 33

4 Bare Metal Mode 34
4.1 Fabric Manager Packages . 34
4.2 Installing Fabric Manager . 34
4.2.1 On NVSwitch-Based DGX Server Systems . 34
4.2.2 On NVSwitch-Based NVIDIA HGX Server Systems . 34
4.2.3 Systems Using NVSwitches that are Earlier than the Fourth-Generation NVSwitches 35
4.2.4 Systems Using Fourth Generation NVSwitches . 35
4.2.5 Minimum NVIDIA Driver/Fabric Manager Version . 36

4.3 Initializing NVSwitch and NVLink . 36
4.4 Runtime NVSwitch and GPU Errors . 37
4.4.1 NVSwitch SXid Errors . 38
4.4.1.1 Non-Fatal SXid Errors . 38
4.4.1.2 Fatal SXid Errors . 38

4.4.2 NVSwitch Errors On DGX B200 and NVIDIA HGX B200 Systems 39
4.4.3 GPU Xid Errors . 39

4.5 Interoperability With Multi-Instance GPUs . 39

5 Virtualization Models 41
5.1 Supported Virtualization Models . 41

6 Fabric Manager SDK 43

ii

6.1 Data Structures . 43
6.2 Initializing the Fabric Manager API interface . 46
6.3 Shutting Down the Fabric Manager API interface . 46
6.4 Connecting to the Running Fabric Manager Instance . 47
6.5 Disconnecting from the Fabric Manager Instance . 47
6.6 Getting a List of Supported Partitions . 48
6.7 Activating a GPU Partition . 48
6.8 Activating a GPU Partition with Virtual Functions . 49
6.9 Deactivating a GPU Partition . 50
6.10 Setting an Activated Partition List After Restarting Fabric Manager 50
6.11 Getting a List of Devices with Failed NVLinks . 51
6.12 Getting a List of Unsupported Partitions . 52

7 Full Passthrough Virtualization Model 53
7.1 Supported Virtual Machine Configurations . 54
7.2 Virtual Machines with 16 GPUs . 55
7.3 Virtual Machines with Eight GPUS . 55
7.4 Virtual Machines with Four GPUS . 56
7.5 Virtual Machines with Two GPUs . 56
7.6 Virtual Machine with One GPU . 56
7.7 Other Requirements . 56
7.8 Hypervisor Sequences . 57
7.9 Additional Steps for NVIDIA HGX B200 Systems . 57
7.10 Monitoring Errors . 58
7.11 Limitations . 58

8 Shared NVSwitch Virtualization Model 59
8.1 Software Stack . 59
8.2 Guest VM to Service VM Interaction . 60
8.3 Preparing the Service Virtual Machine . 60
8.3.1 The OS Image . 60
8.3.2 Resource Requirements . 60
8.3.3 NVIDIA Software Packages . 61
8.3.4 Fabric Manager Config File Modifications . 61
8.3.5 Fabric Manager Multicast (NVLink Sharp) Resource allocation 62
8.3.6 Other NVIDIA Software Packages . 62

8.4 Fabric Manager Shared Library and APIs . 62
8.4.1 Sample Code . 62

8.5 Fabric Manager Resiliency . 65
8.6 Service Virtual Machine Life Cycle Management . 65
8.6.1 GPU Partitions . 65
8.6.2 Building GPUs to Partition Mapping . 66
8.6.3 Booting the Service Virtual Machine . 66
8.6.4 Restarting the Service Virtual Machine . 66
8.6.5 Shutting Down the Service Virtual Machine . 66

8.7 Guest Virtual Machine Life Cycle Management . 67
8.7.1 Guest Virtual Machine NVIDIA Driver Package . 67
8.7.2 Starting a Guest Virtual Machine . 67
8.7.3 Shutting Down a Guest Virtual Machine . 68
8.7.4 Rebooting a Guest Virtual Machine . 68
8.7.5 Verifying GPU Routing . 68

8.8 Error Handling . 69
8.8.1 Guest Virtual Machine GPU Errors . 69
8.8.2 Handling a Service Virtual Machine Crash . 70

iii

8.9 Interoperability With a Multi-Instance GPU . 70
8.9.1 Initializing Service Virtual Machine . 70
8.9.2 Activating the Guest Virtual Machine . 70

9 vGPU Virtualization Model 71
9.1 Software Stack . 71
9.2 Preparing the vGPU Host . 71
9.2.1 OS Image . 71
9.2.2 NVIDIA Software Packages . 72
9.2.3 Fabric Manager Config File Modifications . 72

9.3 Fabric Manager-Shared Library and APIs . 73
9.4 Fabric Manager Resiliency . 73
9.5 vGPU Partitions . 73
9.6 Guest Virtual Machine Life Cycle Management . 73
9.6.1 Activating the Partition and Starting the Virtual Machine 73
9.6.2 Deactivating the Partition . 74
9.6.3 Migrating Virtual Machines . 74
9.6.4 Verifying GPU Routing . 74

9.7 Error Handling . 74
9.7.1 Guest Virtual Machine GPU Errors . 74

9.8 GPU Reset . 75
9.9 Interoperability with MIG . 75
9.9.1 Enabling MIG before Starting the Fabric Manager Service 75
9.9.2 Enabling MIG After Starting the Fabric Manager Service 75

10 Supported High Availability Modes 76
10.1 Common Terms . 76
10.2 GPU Access NVLink Failure . 77
10.2.1 Fabric Manager Config Item . 77
10.2.2 Bare Metal Behavior . 77
10.2.3 Shared NVSwitch and vGPU Virtualization Behavior . 77

10.3 Trunk NVLink Failure . 78
10.3.1 Fabric Manager Config Item . 78
10.3.2 Bare Metal Behavior . 78
10.3.3 Shared NVSwitch and vGPU Virtualization Behavior . 79

10.4 NVSwitch Failure . 79
10.4.1 Fabric Manager Config Item . 79
10.4.2 Bare Metal Behavior . 79
10.4.3 Shared NVSwitch and vGPU Virtualization Behavior . 80

10.5 GPU Failure . 80
10.5.1 Bare Metal Behavior . 81
10.5.2 Shared NVSwitch and vGPU Virtualization Behavior . 81

10.6 Manual Degradation . 81
10.6.1 GPU Exclusion . 81
10.6.1.1 GPU Exclusion Flow . 82
10.6.1.2 Running Application Error Handling . 82
10.6.1.3 Diagnosing GPU Failures . 82
10.6.1.4 In-Band GPU Exclude Mechanism . 83
10.6.1.5 Kernel Module Parameters . 83
10.6.1.6 Adding/Removing a GPU from the Exclude Candidate List 83
10.6.1.7 Listing Excluded GPUs . 84
10.6.1.8 nvidia-smi . 84
10.6.1.9 Procfs . 84
10.6.1.10 Out-of-Band . 84

iv

10.6.1.11 Running GPU Exclusion Scripts . 84
10.6.1.12 Bare Metal and vGPU Configurations . 84
10.6.1.13 Full Passthrough Virtualized Configurations . 85
10.6.1.14 Shared NVSwitch Virtualization Configurations . 85
10.6.1.15 Supported High Availability Modes . 86

10.6.2 NVSwitch Exclusion . 86
10.6.2.1 In-Band NVSwitch Exclusion . 86
10.6.2.2 Kernel Module Parameters . 87
10.6.2.3 Out-of-Band NVSwitch Exclusion . 87

11 NVLink Topology 88
11.1 The NVIDIA HGX-2 GPU Baseboard . 88
11.2 The NVIDIA HGX A100 GPU Baseboard . 90
11.3 The NVIDIA HGX H100 GPU Baseboard . 91
11.4 The NVIDIA HGX H800 GPU Baseboard . 93
11.5 The NVIDIA HGX B200 GPU Baseboard . 94

12 GPU Partitions 95
12.1 DGX-2 and NVIDIA HGX-2 . 95
12.1.1 Default GPU Partitions . 96
12.1.2 Supported GPU Partitions . 97

12.2 DGX H100 and NVIDA HGX H100 . 97
12.2.1 Default GPU Partitions . 98
12.2.2 Supported GPU Partitions . 98
12.2.3 Default GPU Partitions . 98
12.2.4 Supported GPU Partitions . 99
12.2.5 Custom Shared NVSwitch Partitions . 99

13 Resiliency 102

14 Error Handling 104
14.1 Fabric Manager Initialization Errors . 104
14.2 Partition Life Cycle Errors . 105
14.3 Runtime NVSwitch Errors . 106
14.4 Non-Fatal NVSwitch SXid Errors . 107
14.5 Fatal NVSwitch SXid Errors . 108
14.6 Always Fatal NVSwitch SXid Errors . 110
14.7 Other Notable NVSwitch SXid Errors . 111
14.8 High Availability Mode Comparison . 112
14.8.1 DGX A100/HGX A100 . 112
14.8.1.1 A100 Bare Metal Configuration or Full Virtualization Passthrough 112
14.8.1.2 A100 Shared NVSwitch or vGPU-based Multitenancy 112

14.8.2 DGX H100/HGX H100 . 113
14.9 GPU VM System Reset Capabilities and Limitations . 113
14.9.1 Direct NVLink Connect . 113
14.9.2 Ampere and NVSwitch . 114
14.9.3 Hopper and NVSwitch . 114

v

Chapter 1. Overview

As deep learning neural networks become more sophisticated, their size and complexity continues to
expand. The result is an exponential demand in the computing capacity that is required to train these
networks during a reasonable period. To meet this challenge, applications have turned into multi-GPU
implementations.

NVIDIA® NVLink™, which was introduced to connect multiple GPUs, is a direct GPU-to-GPU intercon-
nect that scales multi-GPU input/output (IO) in the server. To additionally scale the performance and
connect multiple GPUs, NVIDIA introduced NVIDIA NVSwitch™, which connects multiple NVLinks to
provide all-to-all GPU communication at the total NVLink speed.

This document provides guidelines for setting up FabricManager, different virtualizationmodels, high-
availability modes and other details for NVSwitch-based single-node HGX and DGX systems.

1.1. NVSwitch-Based Systems
Over the years, NVIDIA introduced four generations of NVSwitches and the associated NVIDIA DGX™
and NVIDIA HGX™ server systems.

NVIDIADGX-2™andNVIDIAHGX-2 systems consist of two identical GPUbaseboardswith eightNVIDIA
V100 GPUs and six first generation NVSwitches on each baseboard. Each V100 GPU has one NVLink
connection to each NVSwitch on the same GPU baseboard, and the two GPU baseboards are con-
nected to build a 16-GPU system. Between the two GPU baseboards, the only NVLink connections are
between NVSwitches, and each NVSwitch from a GPU baseboard is connected to one NVSwitch on
the second GPU baseboard for a total of eight NVLink connections.

The DGX A100 and NVIDIA HGX A100 8-GPU systems consist of a GPU baseboard, with eight NVIDIA
A100 GPUs, and six second generation NVSwitches. The GPU baseboard NVLink topology is like the
first-generation version, where each A100 GPU has two NVLink connections to each NVSwitch on the
same GPU baseboard. This generation supports connecting two GPU baseboards for a total of sixteen
NVLink connections between the baseboards.

Third-generation NVSwitches are used in DGX H100 and NVIDIA HGX H100 8-GPU server systems.
This server variant consists of one GPU baseboardwith eight NVIDIA H100GPUs and four NVSwitches.
The corresponding NVLink topology is different from the previous generation because every GPU has
four NVLinks that connect to two of the NVSwitches, and five NVLinks that connect to the remaining
two NVSwitches. This generation does not support the ability to connect two GPU baseboard using
NVLink.

The DGX B200, NVIDIA HGX B200 8-GPU, and NVIDIA HGX B100 8-GPU systems use the fourth-
generation NVSwitches and the B200 and B100 GPUs. The corresponding GPU baseboard NVLink
topology has two NVSwitch ASICs and eight B200/B100 GPUs with nine NVLinks from each GPU is

1

NVIDIA Fabric Manager, Release 2.3

connected to an NVSwitch. Like the DGX H100 and HGX H100 generation, this baseboard does not
support connecting two GPU baseboard using NVLink.

1.2. Terminology

Table 1.1 Terminology

Abbreviations Definitions

FM Fabric Manager.

MMIO Memory Mapped IO.

VM Virtual machine.

GPU register A location in the GPU MMIO space.

SBR Secondary Bus Reset.

DCGM NVIDIA Data Center GPU manager.

NVML NVIDIA Management Library.

Service VM A privileged VM where NVIDIA NVSwitch software stack runs.

Access NVLink NVLink between a GPU and an NVSwitch.

Trunk NVLink NVLink between two GPU baseboards.

SMBPBI NVIDIA SMBus Post-Box Interface.

vGPU NVIDIA GRID Virtual GPU.

MIG Multi-Instance GPU.

SR-IOV Single-Root IO Virtualization.

PF Physical Function.

LPF Limited Physical Function

VF Virtual Function.

GFID GPU Function Identification.

Partition A collection of GPUs that are allowed to perform NVLink Peer-to-Peer Communication.

ALI Autonomous Link Initialization.

OFED Open Fabrics Enterprise Distribution Driver.

MOFED Mellanox/Nvidia version of OFED Driver package.

NVLSM NVLink Subnet Manager

NVSDM NVLink Switch Device Manager

1.2. Terminology 2

NVIDIA Fabric Manager, Release 2.3

1.3. NVSwitch Core Software Stack
This section provides information about the NVSwitch core software stack.

1.3.1. Systems Using NVSwitches that are Earlier than the
Fourth Generation NVSwitches

The core software stack for NVSwitch management consists of an NVSwitch kernel driver and a privi-
leged process called NVIDIA Fabric Manager (FM). The kernel driver performs low-level hardware man-
agement in response to FM requests. The software stack also provides in-band and out-of-band mon-
itoring solutions to report NVSwitch and GPU errors and status information.

Figure 1.1 shows an NVSwitch core software stack.

Figure 1.1: NVSwitch Core Software Stack

1.3.2. Systems Using Fourth Generation NVSwitches
With the fourth generation of NVSwitches, NVIDIA has implemented a unified architecture that spans
across NVLink, InfiniBand, and Ethernet switches. This architectural coherence ensures that fourth
generation NVSwitches share a common IP blockwith our InfiniBand (IB) switches, with themain focus
on the link layer and control plane aspects. As a result of this integration, a new control plane entity
called NVLink SubnetManager (NVLSM) is introduced with FM. The SM service originates fromNVIDIA
IB Switches and has the necessary modifications to effectively manage NVSwitches.The NVLSM ser-
vice originates from NVIDIA IB Switches and has the necessary modifications to effectively manage
NVSwitches.

At a higher level, the NVLSM service is responsible for configuring NVSwitch routing tables, while FM
handles GPU-side routing, NVLink configuration, and provides APIs for partition management. The

1.3. NVSwitch Core Software Stack 3

NVIDIA Fabric Manager, Release 2.3

interaction between FM and NVLSM is facilitated through an Inter-Process Communication (IPC) in-
terface. This communication channel is essential to initialize and configure the fabric, which ensures
seamless coordination between the FM and NVLSM.

Note

The DGX B200, NVIDIA HGX B200 8-GPU, and NVIDIA HGX B100 8-GPU systems use the fourth
generation NVSwitches.

Figure 1.2 illustrates the systems that use the fourth generation NVSwitches.

Figure 1.2: Fourth Generation NVSwitch Based Systems

1.4. What is Fabric Manager?
FM configures the NVSwitchmemory fabrics to form onememory fabric among all participating GPUs
and monitors the NVLinks that support the fabric. At a high level, FM completes the following tasks:

▶ Configures routing (earlier than the fourth generation NVSwitch) among NVSwitch ports.

▶ Sets up GPU routing and port map if applicable.

▶ Coordinates with the GPU driver to initialize GPUs.

▶ Monitors the fabric for NVLink and NVSwitch errors.

▶ On systems that are not capable of Autonomous Link Initialization (ALI)-based NVLink training
(first and second generation NVSwitch-based systems), FM complets the following tasks:

▶ Coordinates with the NVSwitch driver to initialize and train NVSwitch-to-NVSwitch NVLink inter-
connects.

1.4. What is Fabric Manager? 4

NVIDIA Fabric Manager, Release 2.3

▶ Coordinates with the GPU driver to initialize and train NVSwitch-to-GPU NVLink interconnects.

This user’s guide provides an overview of FM features and is intended for system administrators and
NVSwitch-based server system users.

1.5. What is NVLink Subnet Manager?
NVLink Subnet manager (NVLSM) originated from the IB networking and contains additional logic to
program NVSwitches and NVLinks. At a high level, the NVLSM provides the following functionality to
NVSwitch-based systems:

▶ Discovers the NVLink network topology.

▶ Assigns a local identifier (LID) to all the GPU and NVSwitch NVLink ports.

▶ Calculates and programs switch forwarding tables.

▶ Programs the Partition Key (PKEY) for NVLink partitions.

▶ Monitors changes in the NVLink fabric.

1.6. GPU Baseboard Topologies
The following section provides information about different baseboard PCIe topologies, with a focus on
GPU and NVSwitches, and how the topologies will appear on a host system.

1.6.1. The HGX-2 GPU Baseboard
Figure 1.3 shows a simplified HGX-2 GPU baseboard.

The HGX-2 baseboard contains eight V100 GPUs and six corresponding first generation NVSwitches.
From a PCIe tree perspective, the eight GPUs and six NVSwitches will appear on the PCIe tree as PCIe
devices on the host system.

Here is an example:

$ lspci | grep -i nvidia
34:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
36:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
39:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
3b:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
57:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
59:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
5c:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)
5e:00.0 3D controller: NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB] (rev
↪→a1)

(continues on next page)

1.5. What is NVLink Subnet Manager? 5

NVIDIA Fabric Manager, Release 2.3

Figure 1.3: Simplified HGX-2 Baseboard

(continued from previous page)

61:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)
62:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)
63:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)
65:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)
66:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)
67:00.0 Bridge: NVIDIA Corporation Device 1ac2 (rev a1)

1.6.2. The NVIDIA HGX A100 GPU Baseboard
Figure 1.4 shows a simplified NVIDIA HGX A100 baseboard diagram.

The NVIDIA HGX A100 baseboard PCIe topology is like an HGX-2 baseboard with eight A100 GPUs and
six corresponding second-generation NVSwitches. The eight GPUs and six NVSwitches will appear on
the PCIe tree as PCIe devices on the host system.

Here is an example:

$ lspci | grep -i nvidia
36:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
3b:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
41:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
45:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
59:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
5d:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)

(continues on next page)

1.6. GPU Baseboard Topologies 6

NVIDIA Fabric Manager, Release 2.3

Figure 1.4: Simplified HGX A100 Baseboard

(continued from previous page)

63:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
67:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)
6d:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)
6e:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)
6f:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)
70:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)
71:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)
72:00.0 Bridge: NVIDIA Corporation Device 1af1 (rev a1)

1.6.3. The NVIDIA HGX H100 GPU Baseboard
Figure 1.5 shows an NVIDIA HGX H100 GPU baseboard.

The NVIDIA HGXH100 baseboard PCIe topology has eight GPUs and four NVSwitches on the PCIe tree
as PCIe devices on the host system.

Here is an example:

$ lspci | grep -i nvidia
07:00.0 Bridge: NVIDIA Corporation Device 22a3 (rev a1)
08:00.0 Bridge: NVIDIA Corporation Device 22a3 (rev a1)
09:00.0 Bridge: NVIDIA Corporation Device 22a3 (rev a1)
0a:00.0 Bridge: NVIDIA Corporation Device 22a3 (rev a1)
1b:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)

(continues on next page)

1.6. GPU Baseboard Topologies 7

NVIDIA Fabric Manager, Release 2.3

Figure 1.5: A Simplified Simple NVIDIA HGX H100 Baseboard Diagram

(continued from previous page)

43:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
52:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
61:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
9d:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
c3:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
d1:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)
df:00.0 3D controller: NVIDIA Corporation Device 2330 (rev a1)

1.6.4. NVIDIA HGX B200/B100 GPU Baseboard
Figure 1.6 shows a simplified NVIDIA HGX B200/B100 baseboard diagram.

In the NVIDIA HGX B200/B100 baseboard PCIe topology, NVSwitches are not recognized as PCIe de-
vices on the host system. To manage NVLinks, the NVSwitches are connected to a CX7 Bridge device.
The host stack and control plane access are routed through this CX7 bridge device and use the corre-
sponding in-box OFED or the MOFED driver driver.

The CX7 bridge device is integrated into the GPU baseboard, which includes two physical ports. Each
port exposes one physical function (FC PF) and one Limited physical function (LPF) to the host system,
which totals four PFs. The PFs are categorized into the following PFs:

▶ Limited PFs (LPF) are designated for specific tasks in the system.

They are used by the FM and the NVLSM to configure and set up NVSwitches, GPU, and NVLink routing

1.6. GPU Baseboard Topologies 8

NVIDIA Fabric Manager, Release 2.3

Figure 1.6: A Simplified NVIDIA HGX B200/B100 Baseboard Diagram

1.6. GPU Baseboard Topologies 9

NVIDIA Fabric Manager, Release 2.3

information. LPFs are also used by telemetry agents, such as NVIBDM and DCGM, to monitor and
collect data. Resetting this PF with FLR also resets the corresponding NVSwitch device.

▶ Full Capabilities PF (FC PF) provides device administration level functionalities, such as issuing
NVSwitch device resets and enabling or disabling links between NVSwitches.

FC PFs are valuable for partial pass-through virtualization scenarios, where subsets of GPUs and
NVSwitches are allocated to Tenant VMs. However, this PF type does not support NVLink control
plane entities, such as FM and NVLSM, and communication with telemetry agents.

From a hardware perspective, the CX7 Bridge device for NVLinkmanagement and traditional CX7 NICs
share identical hardware. The PCIe Vital Product Data (VPD) information, which is programmed during
production, differentiates the CX7 device for NVLink Management:

▶ On Linux-based systems, VPD information can be accessed using standard tools such as vpdde-
code or lspci commands.

▶ On Windows-based host systems, to query VPD information, run the mstreg command.

To differentiate between LPFs and FC PFs, the LPF VPD information includes a vendor-specific field
called SMDL, with a non-zero value defined as SW_MNG. For bare-metal, full pass-through, and shared
NVSwitch deployments, the prelaunch script in the FM service unit file will run and query the available
CX7 devices for this VPD information. The file populates the required FM and NVLSM configuration
values so that these communication entities can access the relevant devices.

However, for partial pass-through deployments, additional steps are required at the hypervisor level
to identify the pair of PFs that belong to a CX7 bridge device port. Refer to Virtualization Models for
more information.

The NVIDIA HGX B200/B100 baseboard PCIe topology will display eight GPUs and four CX7 devices on
the PCIe tree as PCIe devices on the host system.

Here is an example:

$ lspci | grep -i -E 'nvidia|mella'
05:00.0 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-
↪→7]
05:00.1 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-
↪→7]
05:00.2 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-
↪→7]
05:00.3 Infiniband controller: Mellanox Technologies MT2910 Family [ConnectX-
↪→7]
1b:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
43:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
52:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
61:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
9d:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
c3:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
d1:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)
df:00.0 3D controller: NVIDIA Corporation Device 29bc (rev a1)

The GPU and NVSwitch PCIe Device ID, Product ID information in the lspci command output above
is only provided as a sample. Actual values might vary depending on the specific product and GPU
variations in the system configuration.

1.6. GPU Baseboard Topologies 10

Chapter 2. Getting Started with Fabric
Manager

2.1. Basic Components
This section provides information about the basic components in FM.

2.1.1. The Fabric Manager Service
The core component of FM is implemented as a standalone executable file that runs as a UNIX daemon
process. The FM installation package installs the required core components and registers the daemon
as the nvidia-fabricmanager system service.

On DGX-B200, NVIDIA HGX-B200, NVIDIA HGX-B100 systems and later, the FM package needs an
additional NVLSM dependency to get the SM package for proper operation. The FM service unit file
is also updated to start the NVLSM process if applicable. In this case, the FM systemd service status
indicates the process status for FM and NVLSM, and operations such as systemd start, stop, and so
on will operate on both processes.

2.1.2. Software Development Kit
FM also provides a shared library, a set of C/C++ APIs (SDK), and the corresponding header files. These
APIs are used to interface with the FM service to query/activate/deactivate GPU partitions when FM
is running in shared NVSwitch and vGPU multi-tenancy modes. These SDK components are installed
through a separate development package (refer to Shared NVSwitch Virtualization Model and vGPU
Virtualization Model).

2.2. Supported Platforms
This section provides information about the products and environments that FM currently supports.

2.2.1. Hardware Architectures
Here is a list of the hardware architectures:

▶ x86_64

11

NVIDIA Fabric Manager, Release 2.3

▶ aarch64

2.2.2. NVIDIA Server Architectures
Here is a list of the server architectures:

▶ DGX-2 and NVIDIA HGX-2 systems that use V100 GPUs and first-generation NVSwitches.

▶ DGX A100 and NVIDIA HGX A100 systems that use A100 GPUs and second-generation
NVSwitches.

▶ NVIDIA HGX A800 systems that use A800 GPUs and second-generation NVSwitches.

▶ DGX H100 and NVIDIA HGX H100 systems that use H100 GPUs and third-generation
NVSwitches.

▶ NVIDIA HGX H800 systems that use H800 GPUs and third-generation NVSwitches.

▶ DGX H200 and NVIDIA HGX H200 systems that use H200 GPUs and third-generation
NVSwitches.

▶ NVIDIA HGX H20 systems that use H20 GPUs and third-generation NVSwitches.

▶ DGX B200 and NVIDIA HGX B200 systems that use B200 GPUs and fourth generation
NVSwitches.

▶ NVIDIA HGX B100 systems that use B100 GPUs and fourth generation NVSwitches.

Note

Unless specified, the steps for NVIDIA HGX A800 is same as the steps for NVIDIA HGX A100. The
only difference is that the number of GPU NVLinks will defer depending on the actual platform.

Note

Unless specified, the steps for NVIDIA HGX H800, DGX H200, NVIDIA HGX H200, NVIDIA HGX H20
are the same as the steps for NVIDIA HGX H100. The only difference is that the number of GPU
NVLinks might be different depending on the actual platform.

Note

Unless specified, the steps for NVIDIA HGX B100 are the same as the steps for NVIDIA HGX B200.
The only difference is that the platform uses B100 GPU variant.

2.2.3. OS Environment
FM is supported on the following major Linux OS distributions:

▶ RHEL/CentOS 7.x, RHEL/CentOS 8.x and RHEL/CentOS 9.x

▶ Ubuntu18.04.x, Ubuntu 20.04.x, Ubuntu 22.04.x and Ubuntu 24.0x

2.2. Supported Platforms 12

NVIDIA Fabric Manager, Release 2.3

Note

DGXB200, NVIDIA HGXB200, and NVIDIA HGXB100 systems use B200/B100 GPUs, and the fourth
generation NVSwitches requires the v5.17 or later Linux kernel. If your kernel version is older than
the supported version, NVIDIA provides a list of kernel patches that need to be backported.

2.3. Supported Deployment Models
NVSwitch-based systems can be deployed as bare metal servers or in a virtualized (full passthrough,
Shared NVSwitch, or vGPU) multi-tenant environment. FM supports these deployment models. Refer
to the following sections for more information:

▶ Bare Metal Mode

▶ Full Passthrough Virtualized Configurations

▶ Shared NVSwitch Virtualization Configurations

▶ Bare Metal and vGPU Configurations

2.4. Other NVIDIA Software Packages
To run the FM service, the target systemmust include a compatible driver, starting with version R450,
for the NVIDIA Data Center GPUs.

On DGX B200, NVIDIA HGX B200, and NVIDIA HGX B100 systems, an OFED or a MOFED driver is re-
quired. In addition, the system needs to be installed with libibumad3 and infiniband-diags pack-
ages. For example, here are the packages on an Ubuntu system:

▶ apt-get install libibumad3

▶ apt-get install infiniband-diag

Note

During initialization, the FM service checks the currently loaded kernel driver stack version for com-
patibility, and if the loaded driver stack version is not compatible, aborts the process.

2.5. Installation
Refer to <project:#Bare Metal Mode> for more information about installing and configuring FM for
DGX and NVIDIA HGX NVSwitch-based systems.

2.6. Managing the Fabric Manager Service
This section provides information about managing the FM service.

2.3. Supported Deployment Models 13

NVIDIA Fabric Manager, Release 2.3

2.6.1. Starting Fabric Manager
To start FM, for Linux based OS distributions, run the following command:

sudo systemctl start nvidia-fabricmanager

2.6.2. Stopping Fabric Manager
To stop FM, for Linux based OS distributions, run the following command:

sudo systemctl stop nvidia-fabricmanager

2.6.3. Checking the Fabric Manager Status
To check FM, for Linux based OS distributions, run the following command:

sudo systemctl status nvidia-fabricmanager

2.6.4. Enabling the Fabric Manager Service to Auto Start
at Boot

To enable FM, for Linux based OS distributions, run the following command:

sudo systemctl enable nvidia-fabricmanager

2.6.5. Disabling the Fabric Manager Service Auto Start at
Boot

To prevent FM from starting at boot, for Linux based OS distributions, run the following command:

sudo systemctl disable nvidia-fabricmanager

2.6.6. Checking the Fabric Manager System Log Messages
To view FM log messages, for Linux based OS distributions, run the following command:

sudo journalctl -u nvidia-fabricmanager

2.7. Fabric Manager Startup Options
FM supports the following command-line options:

$ nv-fabricmanager -h
NVIDIA Fabric Manager
Runs as a background process to configure the NVSwitches to form
a single memory fabric among all participating GPUs.
Usage: nv-fabricmanager [options]

(continues on next page)

2.7. Fabric Manager Startup Options 14

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

Options include:
[-h | --help]: Displays help information
[-v | --version]: Displays the Fabric Manager version and exit.
[-c | --config]: Provides Fabric Manager config file path∕name

↪→which controls all the config options.
[-r | --restart]: Restart Fabric Manager after exit. Applicable

↪→to Shared NVSwitch and vGPU multitenancy modes.
[-g | --fm-sm-mgmt-port-guid]: Fabric Manager and NVLink Subnet Manager

↪→management port GUID for Control Traffic.
[-d | --database]: Provides Fabric Manager database engine

Most of the FM configurable parameters and options are specified through a text config file. The FM
installation copies a default config file to a predefined location, and the file will be used by default. To
use a different config file location, use the [-c | --config] command-line argument.

Note

On Linux-based installations, the default FM config file will be in the ∕usr∕share∕nvidia∕
nvswitch∕fabricmanager.cfg directory. If the default config file on the system is modified,
to manage the existing config file, an FM package update will provide the merge/keep/overwrite
options. The [-d --database] option is not applicable and should not be used for single-node
HGX/DGX systems.

2.8. Fabric Manager Service File
This section provides information about the FM service file.

2.8.1. Linux-Based Systems
On Linux-based systems, depending on the underlying GPU baseboard variants, the FM service unit
file comprises logic to start the FM and NVLSM daemon processes. The installation package registers
the FM service using the systemd service unit file. To change the FM service start-up options, modify
this file in the ∕lib∕systemd∕system∕nvidia-fabricmanager.service directory.

Here is an example of the system file:

[Unit]
Description=NVIDIA fabric manager service
After=network-online.target
Requires=network-online.target
After=multi-user.target

[Service]
User=root
PrivateTmp=false
Type=forking
TimeoutStartSec=720

Environment="FM_CONFIG_FILE=∕usr∕share∕nvidia∕nvswitch∕fabricmanager.cfg"
(continues on next page)

2.8. Fabric Manager Service File 15

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

Environment="FM_PID_FILE=∕var∕run∕nvidia-fabricmanager∕nv-fabricmanager.pid"
Environment="NVLSM_CONFIG_FILE=∕usr∕share∕nvidia∕nvlsm∕nvlsm.conf"
Environment="NVLSM_PID_FILE=∕var∕run∕nvidia-fabricmanager∕nvlsm.pid"
Environment="NVLSM_LOG_FILE=∕var∕log∕nvlsm.log"

PIDFile=∕var∕run∕nvidia-fabricmanager∕nv-fabricmanager.pid

ExecStart=∕usr∕bin∕nvidia-fabricmanager-start.sh $FM_CONFIG_FILE $FM_PID_FILE
↪→$NVLSM_CONFIG_FILE $NVLSM_PID_FILE $NVLSM_LOG_FILE
ExecStop=∕bin∕sh -c '\

sed -i "∕^FM_SM_MGMT_PORT_GUID=0x[a-fA-F0-9]\\+$∕d" "$FM_CONFIG_FILE"; \
if [-f "$NVLSM_CONFIG_FILE"]; then \

sed -i "∕^guid 0x[a-fA-F0-9]\\+$∕d" "$NVLSM_CONFIG_FILE"; \
fi; \
if [-f "$FM_PID_FILE"] && [-s "$FM_PID_FILE"]; then \

kill "$(cat "$FM_PID_FILE")"; \
fi; \
if [-f "$NVLSM_PID_FILE"] && [-s "$NVLSM_PID_FILE"]; then \

kill "$(cat "$NVLSM_PID_FILE")"; \
fi'

LimitCORE=infinity

[Install]
WantedBy=multi-user.target

The contents of the nv-fabricmanager-start.sh script that is used above to selectively start FM
and NVLSM process depends on the underlaying platform:

#!∕bin∕sh

flag to capture valid port_guids
capture_flag=false

flag to indicate pre∕post nvl5 generation
post_nvl5=false

Temp input file
input_file="∕tmp∕nvl_fmsm_ibstat_input.txt"

FM config file: ∕usr∕share∕nvidia∕nvswitch∕fabricmanager.cfg
fm_config_file=$1

FM pid file: ∕var∕run∕nvidia-fabricmanager∕nvidia-fabricmanager.pid
fm_pid_file=$2

NVLSM config file: ∕usr∕share∕nvidia∕nvlsm∕nvlsm.cfg
nvlsm_config_file=$3

NVLSM pid file: ∕var∕run∕nvidia-fabricmanager∕nvlsm.pid
nvlsm_pid_file=$4

NVLSM log file: ∕var∕log∕nvlsm.log
(continues on next page)

2.8. Fabric Manager Service File 16

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

nvlsm_log_file=$5

ibstat output capture in input_file for further processing
launch_ibstat() {

ibstat $1 > $input_file
}

launch_fm_proc() {
∕usr∕bin∕nv-fabricmanager -c $fm_config_file

}

remove_cruft_files() {
rm $input_file

}

Use -J pidfile and -B daemonize option in config file
launch_nvlsm_proc() {

∕opt∕nvidia∕nvlsm∕sbin∕nvlsm -F $nvlsm_config_file -B --pid_file $nvlsm_
↪→pid_file -f $nvlsm_log_file
}

clear_guid_entries() {
sed -i "∕^FM_SM_MGMT_PORT_GUID=0x[a-fA-F0-9]\\+$∕d" $fm_config_file && sed

↪→-i "∕^guid 0x[a-fA-F0-9]\\+$∕d" $nvlsm_config_file
}

process input_file to find port_guids that have has_smi bit set
capture_portguids() {

Clear any GUID entries if any present
clear_guid_entries

Parse input file line by line
while IFS= read -r line; do

For each line, check if it contains "Capability mask"
if echo "$line" | grep -q "Capability mask:"; then

Isolate mask value
hex_value=$(echo "$line" | sed -En 's∕.*Capability mask: 0x([a-fA-

↪→F0-9]+).*∕\1∕p')
prefix_hex_value="0x$hex_value"

Check if isSMDisabled bit is unset. Bit position starts at 0
bit_position=10
mask=$((1<<bit_position))
if [$((prefix_hex_value & mask)) -eq 0]; then

Set flag to true to parse and grab next
occurence of port_guid
capture_flag=true

fi
elif echo "$line" | grep -q "Port GUID:" && ["$capture_flag" = true

↪→]; then
Extract port guid from the line
port_guid=$(echo "$line" | sed -En 's∕.*Port GUID: 0x([a-fA-F0-

(continues on next page)

2.8. Fabric Manager Service File 17

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

↪→9]+).*∕\1∕p')
prefix_port_guid="0x$port_guid"
echo "FM_SM_MGMT_PORT_GUID=$prefix_port_guid" >> "$fm_config_file"
echo "guid $prefix_port_guid" >> "$nvlsm_config_file"
return 0

fi
done < "$input_file"

}

Loop through each Infiniband device directory
for dir in ∕sys∕class∕infiniband∕*∕device; do

Define the path to the VPD file
vpd_file="$dir∕vpd"

Check if the VPD file exists
if [-f "$vpd_file"]; then

Search for 'SW_MNG' in the VPD file
if grep -q "SW_MNG" "$vpd_file"; then

Extract the Infiniband device name using parameter expansion
device_name="${dir%∕device}" # Removes '∕device' from the end of

↪→$dir
device_name="${device_name##*∕}" # Extracts the part after the

↪→last '∕'
launch_ibstat $device_name
capture_portguids
post_nvl5=true
if port guid was captured, return since we are only grabbing

↪→first GUID
if ["$capture_flag" = "true"]; then

break
fi

fi
fi

done

if ["$post_nvl5" = "true"]; then
launch_nvlsm_proc
SM takes few mins to start the GRPC service, hence lets wait before

↪→starting FM
sleep 5
launch_fm_proc

else
launch_fm_proc

fi
if [-f "$input_file"]; then

remove_cruft_files
fi

Note

The systemd and nv-fabricmanager-start.sh scripts assumes default installation path for the

2.8. Fabric Manager Service File 18

NVIDIA Fabric Manager, Release 2.3

PID file, the binaries, and the config file location. If these default paths/files are modified, this
change must be made to these files and to the start up script.

2.9. Running Fabric Manager as a Non-Root User
On Linux-based systems, by default, the FM and NVLSM service requires administrative (root) privi-
leges to configure the GPU NVLinks and NVSwitches and support a memory fabric. However, system
administrators and advanced users can complete the following steps to run FM and NVLSM from a
non-root account:

1. If the FM service is running, stop it.

2. Provide FM the required access to the following directories and files by adjusting the correspond-
ing directory/file access to the desired user/user group.

▶ ∕var∕run∕nvidia-fabricmanager

This option provides a fixed location to save the runtime information.

▶ ∕var∕log∕

This option provides a configurable location to save the FM log file.

▶ ∕usr∕share∕nvidia∕nvswitch

This option provides a configurable location for the fabric topology files.

This configurable directory/file information is based on default FM config file options. If the default
configuration values are changed, adjust the directory/file information accordingly.

3. Provide the following directory and file access for the following platforms:

▶ NVIDIA HGX-2/NVIDIA HGX-A100/NVIDIA HGX-H100

The NVIDIA driver will create the following proc entry with default permission to root, and you
need to change its read/write access to the desired user/user group.

∕proc∕driver∕nvidia-nvlink∕capabilities∕fabric-mgmt

▶ FM also requires access to the following device node files:

▶ ∕dev∕nvidia-nvlink

▶ ∕dev∕nvidia-nvswitchctl

▶ ∕dev∕nvidia-nvswitchX (one for each NVSwitch device)

▶ ∕dev∕nvidiactl

▶ ∕dev∕nvidiaX (one for each GPU device)

By default, these device node files are created by the nvidia-modprobe utility, which is installed
as part of NVIDIA Driver package for Data Center GPUs, and includes access permission for
all users. If these device node files are created manually or outside nvidia-modprobe, assign
read/write access to the user/user group.

▶ NVIDIA HGX-B200

▶ ∕dev∕infiniband∕umadX (one for each CX7 bridge device port)

▶ ∕dev∕infiniband∕issmX (one for each CX7 bridge device port)

2.9. Running Fabric Manager as a Non-Root User 19

NVIDIA Fabric Manager, Release 2.3

▶ ∕sys∕class∕infiniband∕mlx5_X∕device∕vpd

Read perm for a non-root user to read the vpd file that is required by the systemctl service.

4. (For NVIDIA HGX-B200 systems only) Provide access for the following NVLSM directories and
files access.

▶ ∕var∕log∕

The default location for for the NVLSM temporary file store, and the following files are created:

▶ nvlsm-subnet.lst

▶ nvlsm.fdbs

▶ nvlsm.mcfdbs

▶ nvlsm-smdb.dump.tmp

▶ nvlsm-virtualization.dump.tmp

▶ nvlsm-routers.dump

▶ nvlsm.log

▶ nvlsm-activity.dump

▶ nvlsm-unhealthy-ports.dump

▶ nvlsm-perflog.json

▶ nvlsm-perflog.backup.json

▶ ∕var∕cache∕nvlsm

The is the default directory where NVLSM stores state information so that it can reload and
ensure that subsequent runs are consistent. This directory includes the guid2lid file.

▶ ∕usr∕share∕nvidia∕nvlsm

▶ nvlsm.cfg

This option provides a location to save the NVLSM configuration information. To send and receive
management datagrams, the systemd service edits the nvlsm.cfg file to point to the cx port
guid that is used by the nvidia-fabricmanager service.

5. The NVIDIA driver creates/recreates the above ∕proc entry during driver load, so repeat steps
1-6 on every driver reload or system boot.

▶ When FM and NVLSM are configured as systemd services, the system administrator must edit
the FM service unit file to instruct systemd to run FM, NVLSM, and the FM Startup script from a
specific user/group.

This user/group can be specified through the User= and Group= directive in the [Service]
section of FM service unit file.

▶ The system administrator must ensure that the proc entry and associated file node permissions
are changed to the user/user group before the FM service starts at system boot time.

▶ When FM and NVLSM are configured to run from a specific user/user group, the
nvswitch-audit command-line utility should be started from the same user/user group ac-
count.

2.9. Running Fabric Manager as a Non-Root User 20

NVIDIA Fabric Manager, Release 2.3

Note

System administrators can set up the necessary udev rules to automate the process of changing
these proc entry permissions.

2.10. Fabric Manager Config Options
The configurable parameters and options used by FM are specified through a text config file. This
section provides information about the currently supported configurable parameters and options.

Note

The FM config file is read as part of FM service startup. If you changed any options, for the new
settings to take effect, restart the FM service.

2.10.1. Logging Related Config Items
This section provides information about logging-related configuration items.

2.10.1.1 Setting the Log File Location and Name

Here are the components to set the log file location and name:

▶ Config Item

LOG_FILE_NAME=<value>

▶ Supported/Possible Values

The complete path/filename string, with a maximum length of 255, for the log.

▶ Default Value

LOG_FILE_NAME=∕var∕log∕fabricmanager.log

2.10.1.2 Setting the Log Level

Here are the components to set a log level:

▶ Config Item

LOG_LEVEL=<value>

▶ Supported/Possible Values

▶ 0: All the logging is disabled.

▶ 1: Set log level to CRITICAL and above.

▶ 2: Set log level to ERROR and above.

▶ 3: Set log level to WARNING and above.

▶ 4: Set log level to INFO and above.

▶ Default Value

2.10. Fabric Manager Config Options 21

NVIDIA Fabric Manager, Release 2.3

LOG_LEVEL=4

2.10.1.3 Setting the Log File Append Behavior

▶ Config Item

LOG_APPEND_TO_LOG=<value>

▶ Supported/Possible Values

▶ 0: No, do not append to the existing log file. Overwrite the existing log file.

▶ 1: Yes, append to the existing log file every time the FM service is started.

▶ Default Value

LOG_APPEND_TO_LOG=1

2.10.1.4 Setting the Log File Size

▶ Config Item

LOG_FILE_MAX_SIZE=<value>

▶ Supported/Possible Values

▶ The maximum log file size you want in MBs.

▶ After the specified size is reached, FM will skip additional logging to the specified log file.

▶ Default Value

LOG_FILE_MAX_SIZE=1024

2.10.1.5 Redirecting the Logs to Syslog

▶ Config Item

LOG_USE_SYSLOG=<value>

▶ Supported/Possible Values

▶ 0: Use the specified log file to store the FM logs.

▶ 1: Redirect the FM logs to syslog instead of file-based logging.

▶ Default Value

LOG_USE_SYSLOG=0

2.10.1.6 Rotation Settings

▶ Config Item

LOG_MAX_ROTATE_COUNT=<value>

▶ Supported/Possible Values

▶ 0: The log is not rotated.

Logging is stopped until the logfile reaches the size specified in theLOG_FILE_MAX_SIZE option.

▶ Non-zero: Rotate the current log file after it reaches the individual log file size.

The combined FM log size is LOG_FILE_MAX_SIZE multiplied by LOG_MAX_ROTATE_COUNT + 1.
After this threshold is reached, the oldest log file will be purged.

2.10. Fabric Manager Config Options 22

NVIDIA Fabric Manager, Release 2.3

▶ Default Value

LOG_MAX_ROTATE_COUNT=3

Note

The FM log is in a clear-text format and, to troubleshoot field issues, NVIDIA recommends that you
run the FM service with logging enabled at the INFO level.

2.10.2. Operating Mode-Related Config Items
This section applies only to the Shared NVSwitch and vGPU Multitenancy deployment.

2.10.2.1 Fabric Manager Operating Mode

▶ Config Item

FABRIC_MODE=<value>

▶ Supported/Possible Values

▶ 0: Start FM in bare metal or full passthrough virtualization mode.

▶ 1: Start FM in Shared NVSwitch multi-tenancy mode.

Refer to <project:#Shared NVSwitch Virtualization Configurations> for more information.

▶ 2: Start FM in vGPU multitenancy mode.

Refer to <project:#vgpu virtualization model> for more information.

▶ Default Value

FABRIC_MODE=0

Note

Although SHARED_FABRIC_MODE is still supported, we recommend you use FABRIC_MODE instead.

2.10.2.2 The Fabric Manager Restart Mode

▶ Config Item

FABRIC_MODE_RESTART=<value>

▶ Supported/Possible Values

▶ 0: Start FM and complete the initialization sequence.

▶ 1: Start FM and follow the Shared NVSwitch or vGPU multitenancy mode resiliency/restart se-
quence.

This option is equal to the –restart command-line argument and enables the Shared NVSwitch or
vGPU multitenancy mode resiliency without modifying command-line arguments to the FM process.
Refer to Fabric Manager Resiliency for more information on the FM resiliency flow.

▶ Default Value

2.10. Fabric Manager Config Options 23

NVIDIA Fabric Manager, Release 2.3

FABRIC_MODE_RESTART=0

Note

Although the SHARED_FABRIC_MODE_RESTART configuration item is still supported, we recom-
mend that you use FABRIC_MODE_RESTART instead.

2.10.2.3 The Fabric Manager API Interface

▶ Config Item

FM_CMD_BIND_INTERFACE =<value>

▶ Supported/Possible Values

For the shared NVSwitch and vGPUmultitenancy operations, the network interface that allows the FM
SDK/API that is used to listen and for the hypervisor to communicate with the running FM instance.

▶ Default Value

FM_CMD_BIND_INTERFACE=127.0.0.1

2.10.2.4 The Fabric Manager API TCP Port

▶ Config Item

FM_CMD_PORT_NUMBER=<value>

▶ Supported/Possible Values

For the sharedNVSwitch and vGPUmulti-tenancy operations, the TCPport number for the FMSDK/API
for hypervisor to communicate with the running FM instance.

▶ Default Value

FM_CMD_PORT_NUMBER=6666

2.10.2.5 The Fabric Manager Domain Socket Interface

▶ Config Item

FM_CMD_UNIX_SOCKET_PATH=<value>

▶ Supported/Possible Values

For the shared NVSwitch and vGPU multi-tenancy operations, instead of the TCP/IP socket, this is
the UNIX domain socket path for the FM SDK/API to listen and to communicate with the running FM
instance.

▶ Default Value

FM_CMD_UNIX_SOCKET_PATH=<empty value>

2.10.2.6 The Fabric Manager State

▶ Config Item

STATE_FILE_NAME=<value>

▶ Supported/Possible Values

2.10. Fabric Manager Config Options 24

NVIDIA Fabric Manager, Release 2.3

Specifies the filename that will be used to save the FM states and restart FM after a crash or a suc-
cessful exit. This is only valid when the shared NVSwitch or vGPU multitenancy mode is enabled.

▶ Default Value

STATE_FILE_NAME =∕tmp∕fabricmanager.state

Note

This value is only effective on DGX A100, HGX A100, DGX H100, HGX H100 NVSwitch-based sys-
tems.

2.10.3. Miscellaneous Config Items
This section provides information about miscellaneous config items.

2.10.3.1 Preventing Fabric Manager from Daemonizing

▶ Config Item

DAEMONIZE=<value>

▶ Supported/Possible Values

▶ 0: Do not daemonize and run FM as a normal process.

▶ 1: Run the FM process as a UNIX daemon.

▶ Default Value

DAEMONIZE=1

2.10.3.2 Fabric Manager Communication Socket Interface

▶ Config Item

BIND_INTERFACE_IP=<value>

▶ Supported/Possible Values

The network interface to listen for the FM internal communication/IPC. This value should be a valid
IPv4 address.

▶ Default Value

BIND_INTERFACE_IP=127.0.0.1

Note

This is only effective onDGXA100, HGXA100, DGXH100, andHGXH100NVSwitch-based systems.

2.10.3.3 Fabric Manager Communication TCP Port

▶ Config Item

STARTING_TCP_PORT=<value>

▶ Supported/Possible Values

2.10. Fabric Manager Config Options 25

NVIDIA Fabric Manager, Release 2.3

Starting TCP port number for the FM internal communication/IPC, and this value should be between
0 and 65535.

▶ Default Value

STARTING_TCP_PORT=16000

Note

This is only effective on DGX A100, HGX A100, DGX H100, HGX H100 NVSwitch based systems.

2.10.3.4 Unix Domain Socket for Fabric Manager Communication

▶ Config Item

UNIX_SOCKET_PATH=<value>

▶ Supported/Possible Values

Use the Unix Domain socket instead of the TCP/IP socket for FM internal communication/IPC. An
empty value means that the Unix domain socket is not used.

▶ Default Value

UNIX_SOCKET_PATH=<empty value>

Note

This is only effective on DGX A100, HGX A100, DGX H100, HGX H100 NVSwitch based systems.

2.10.3.5 Socket for Fabric Manager and Subnet Manager Communication

▶ Config Item

FM_SM_IPC_INTERFACE=<value>

▶ Supported/Possible Values

▶ Ipv4: address:port

▶ IPv6: address:port

▶ Unix: ∕∕absolute_path to socket file

▶ Default Value

FM_SM_IPC_INTERFACE=∕var∕run∕nvidia-fabricmanager∕fm_sm_ipc.socket

2.10.3.6 Management Port GUID for Control Traffic

▶ Config Item

FM_SM_MGMT_PORT_GUID=<value>

▶ Supported/Possible Values

AU64bit number queried from theCXdevice to allowFMto communicatewith underlyingNVSwitches.
If the underlying system is HGX B200 and a CX bridge device for NVLink fabric management is found,
this information will be populated by the FM service startup script. If the command line to the FM

2.10. Fabric Manager Config Options 26

NVIDIA Fabric Manager, Release 2.3

binary and config option using the fabricmanager.cfg file are provided, the command line will take
precedence.

▶ Default Value

FM_SM_MGMT_PORT_GUID=0x0

2.10.3.7 Fabric Manager System Topology File Location

▶ Config Item

TOPOLOGY_FILE_PATH =<value>

▶ Supported/Possible Values

Configuration option to specify the FM topology files directory path information.

▶ Default Value

TOPOLOGY_FILE_PATH=∕usr∕share∕nvidia∕nvswitch

Note

This topology file config option is not applicable to DGX B200 and NVIDIA HGX B200 and later
NVSwitch-based systems.

2.10.4. High Availability Mode-Related Config Items
This section provides information about high availability mode-related config items.

2.10.4.1 Control Fabric Manager Behavior with An Initialization Failure

▶ Config Item

FM_STAY_RESIDENT_ON_FAILURES=<value>

▶ Supported/Possible Values

▶ 0: The FM service will terminate on NVSwitch and a GPU config failures, typical software errors,
and so on.

▶ 1: The FM service will stay running on NVSwitch and GPU config failures, typical software errors,
and so on.

However, the system will be uninitialized, and the CUDA application launch will fail.

▶ Default Value

FM_STAY_RESIDENT_ON_FAILURES=0

2.10.4.2 GPU Access NVLink Failure Mode

▶ Config Item

ACCESS_LINK_FAILURE_MODE=<value>

▶ Supported/Possible Values

2.10. Fabric Manager Config Options 27

NVIDIA Fabric Manager, Release 2.3

The available high-availability options when there is an Access NVLink Failure (GPU to NVSwitch
NVLink). Refer to Supported High Availability Modes for more information about supported values and
behavior.

▶ Default Value

ACCESS_LINK_FAILURE_MODE=0

2.10.4.3 NVSwitch Trunk NVLink Failure Mode

▶ Config Item

TRUNK_LINK_FAILURE_MODE=<value>

▶ Supported/Possible Values

The available high-availability options when there is a Trunk Link failure (NVSwitch to NVSwitch con-
nection between GPU baseboards). Refer to Supported High Availability Modes for more information
about supported values and behavior.

▶ Default Value

TRUNK_LINK_FAILURE_MODE=0

2.10.4.4 NVSwitch Failure Mode

▶ Config Item

NVSWITCH_FAILURE_MODE=<value>

▶ Supported/Possible Values

The available high-availability options when there is an NVSwitch failure. Refer to SupportedHigh Avail-
ability Modes for more information about supported values and behavior.

▶ Default Value

NVSWITCH_FAILURE_MODE=0

2.10.4.5 CUDA Jobs When the Fabric Manager Service is Stopped or is Terminated

▶ Config Item

ABORT_CUDA_JOBS_ON_FM_EXIT=<value>

▶ Supported/Possible Values

▶ 0: Do not abort running CUDA jobs when the FM service is stopped or exits.

A new CUDA job launch will fail with a cudaErrorSystemNotReady error.

▶ 1: Abort all running CUDA jobs when the FM service is stopped or exits.

A new CUDA job launch will fail with a cudaErrorSystemNotReady error.

Note

Here is some important information about this config method: It is not effective on DGX H100
and NVIDIA HGX H100 and later NVSwitch-based systems. It applies to only bare metal and full
passthrough virtualization models.

▶ Default Value

2.10. Fabric Manager Config Options 28

NVIDIA Fabric Manager, Release 2.3

ABORT_CUDA_JOBS_ON_FM_EXIT=1

2.10. Fabric Manager Config Options 29

Chapter 3. Getting Started with NVLink
Subnet Manager

This chapter provides information about NVLSM.

3.1. NVLink Subnet Manager Configuration
The NVLink Subnet Manager (NVLSM) configuration options and parameters are specified in the
nvlsm.conf file, and by default, this file will be loaded from the ∕usr∕share∕nvidia∕nvswitch∕
directory.

Here is some additional information:

▶ You can override the contents of nvlsm.conf, but an incorrect override will result a fabric man-
agement failure.

▶ If a configuration option is not specified in SM configuration file, SM will use the default value.

▶ The options discussed below are additions to the configuration file that allow users to control
certain operational aspects of nvlink subnet manager.

Ensure that you retain the original configuration file content when you configure the file with the
options below.

To use a different configuration file, run NVLSM with [-F <path> | --config <path>] command-
line argument, and the configuration file format is <key> <value>.

For example, to bindNVLSM to the IB port with port GUID 0x0001, theNVLSMconfiguration file should
contain the following line:

guid 0x0001

Note

The NVLSM config file is read as part of NVLSM service startup. If you changed any configuration
options, for the new settings to take effect, restart the FM service. This process restarts FM and
NVLSM.

30

NVIDIA Fabric Manager, Release 2.3

3.1.1. Configuring the NVLink Subnet Manager Port
This option controls the port to which NVLSM binds by setting the value to the port’s GUID. This infor-
mation will be populated by the FM service launch script that runs as part of the FM systemd service.

▶ Config Item

guid <value>

▶ Supported/Possible Values

IB port GUID.

3.1.2. Configuring the NVLink Subnet Manager Daemon
Mode

This option controls nvlsm to run in daemon mode.

▶ Config Item

daemon <value>

▶ Supported/Possible Values

▶ True

If set to True, NVLSM will be started in the daemon process mode.

▶ False

If set to False, NVLSM will start in the foreground process mode

▶ Default Value

daemon false

3.1.3. Configuring NVLink Subnet Manager to Load the
Fabric Manager GRPC Plugin

To configure NVLSM to load the plugin for NVLSM->FM communication, use the following plug-in
configuration.

▶ Config item

plugin_name grpc_mgr

3.1.4. Configuring GRPC Plugin Properties
The NVLSM GRPC plugin configuration settings are completed by passing parameters using the
NVLSM’s plugin_options parameter by specifying the plugin name, the plugin parameters, and their
values.

▶ Config item

Plugin_optoin [<plugin name> <plugin parameter> <value>]

▶ To configure the GRPC plugin listening address, set the GRPC plugin’s grpc_server_address
parameter.

3.1. NVLink Subnet Manager Configuration 31

NVIDIA Fabric Manager, Release 2.3

▶ The following example configures the GRPC plugin to listen to the ∕var∕run∕
nvidia-fabricmanager∕fm_sm_ipc.socket UNIX domain socket file path.

plugin_options grpc_mgr --grpc_server_address unix:∕var∕run∕
nvidia-fabricmanager∕fm_sm_ipc.socket

3.1.4.1 Setting the Log File Location and Name

This option controls the NVLSM log file location.

▶ Config Item

log_file <value>

▶ Supported/Possible Values

The complete path/filename string, with a maximum length of 256, for the log.

▶ Default Value

log_file ∕var∕log∕opensm.log

3.1.4.2 Setting a Log Level

This option is a flags field that control log verbosity level.

▶ Config Item

log_flags <value>

▶ Supported/Possible bit flags

▶ 0x01: ERROR (error messages)

▶ 0x02: INFO (basic messages, low volume)

▶ 0x04: VERBOSE (additional informative messages, moderate volume)

▶ 0x08: DEBUG (diagnostic, high volume)

▶ 0x10: FUNCS (function entry/exit, very high volume)

▶ 0x20: FRAMES (dumps all SMP and GMP frames)

▶ 0x40: ROUTING (dump FDB routing information)

▶ 0x80: SYS (syslog at LOG_INFO level in addition to NVLSM logging)

▶ Default Value

log_flags 0x3

3.1.4.3 Redirecting the Logs to the Syslog

This option is a flag that controls the verbosity level of messages to write to Syslog.

▶ Config Item

syslog_log_flags <value>

▶ Supported/Possible bit flags

▶ 0x01: ERROR (error messages)

▶ 0x02: INFO (basic messages, low volume)

▶ 0x04: VERBOSE (additional informative messages, moderate volume)

3.1. NVLink Subnet Manager Configuration 32

NVIDIA Fabric Manager, Release 2.3

▶ 0x08: DEBUG (diagnostic, high volume)

▶ 0x10: FUNCS (function entry/exit, very high volume)

▶ Default Value

syslog_log_flags 0x0

3.1.4.4 Setting the Log File Append Behavior

This option determines whether to append the NVLSM log over multiple NVLSM sessions or to trun-
cate the existing log file at startup.

▶ Config Item

accum_log_file <value>

▶ Supported/Possible Values

▶ TRUE: Accumulated log files.

▶ FALSE: Truncate the log file when NVLSM starts up.

▶ Default Value

accum_log_file TRUE

3.1. NVLink Subnet Manager Configuration 33

Chapter 4. Bare Metal Mode

TheNVSwitch-basedDGXandNVIDIAHGX server systems’ default software configuration is to run the
systems as bare-metal machines for workloads such as AI, machine learning, and so on. This chapter
provides information about the FM installation requirements to support a bare-metal configuration.

4.1. Fabric Manager Packages
Each FM release comprises the following packages:

▶ Core Fabric Manager (nvidia-fabricmanager-<version>)

This package includes the essential components such as the core standalone FM service process, the
service unit file, and the topology files. For bare metal, you can install just this package.

▶ Fabric Manager SDK and Libaray (nvidia-fabricmanager-devel-<version>)

The devel package includes the FM shared library and its associated header files. This package is
important when you implement the Shared NVSwitch and vGPU multi-tenancy virtualization models.

4.2. Installing Fabric Manager
This section provides information about installing FM.

4.2.1. On NVSwitch-Based DGX Server Systems
As part of the supported DGX OS package installation, the FM service is preinstalled in all the
NVSwitch-based DGX systems. The service is enabled and started when the OS boots, and the de-
fault installation configuration is to support bare metal mode.

4.2.2. On NVSwitch-Based NVIDIA HGX Server Systems
On NVSwitch-based NVIDIA HGX systems, to configure the NVLinks and NVSwitch memory fabrics to
support onememory fabric, the FM service needs to bemanually installed. The FMpackage is available
through the NVIDIA CUDA network repository.

34

NVIDIA Fabric Manager, Release 2.3

4.2.3. Systems Using NVSwitches that are Earlier than the
Fourth-Generation NVSwitches

For systems that use NVSwitches earlier than the fourth generation, use the following installation
instructions. These systems are defined as a generation before the the DGX B200, NVIDIA HGX B200
8-GPU, and NVIDIA HGX B100 8-GPU systems. Refer to NVIDIA Driver Installation Quickstart Guide for
more information about setting up your system’s package manager and download packages from the
desired CUDA network repositories.

▶ For Debian and Ubuntu-based OS distributions:

sudo apt-get install cuda-drivers-fabricmanager-<driver-branch>

▶ For Red Hat Enterprise Linux 8 and 9-based OS distributions:

sudo dnf module install nvidia-driver:<driver-branch>∕fm

▶ SUSE Linux-based OS distributions:

sudo zypper install cuda-drivers-fabricmanager-<driver-branch>

Note

In the commands above, <driver-branch> should be substituted with the required NVIDIA driver
branch number for qualified datacenter drivers (for example, 450).

4.2.4. Systems Using Fourth Generation NVSwitches
▶ The DGX B200, NVIDIA HGX B200 8-GPU, and NVIDIA HGX B100 8-GPU systems use the fourth

generation NVSwitches (based on NVIDIA NVLink5 protocol) and require an additional NVLSM
service to configure the NVLinks and NVSwitches.

As a result, to get the required components, a different package installation is needed. Refer to NVIDIA
Driver InstallationQuickstart Guide formore information about setting up your system’s packageman-
ager and download packages from the desired CUDA network repositories.

▶ For Debian and Ubuntu-based OS distributions:

sudo apt-get install -V nvidia-open-<driver-branch>
sudo apt-get install -V nvlink5-<driver-branch>

For example:

sudo apt-get install -V nvidia-open-570
sudo apt-get install -V nvlink5-570

▶ For Red Hat Enterprise Linux 8 and 9-based OS distributions:

sudo dnf module install nvidia-driver-<driver-branch>-open
sudo dnf install nvlink-<driver-branch>`

For example:

sudo dnf module install nvidia-driver-570-open
sudo dnf install nvlink-570

4.2. Installing Fabric Manager 35

https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html
https://docs.nvidia.com/datacenter/tesla/tesla-installation-notes/index.html

NVIDIA Fabric Manager, Release 2.3

Note

On NVSwitch-based NVIDIA HGX systems, if you are using individual packages instead of a meta
package-based installation, before you install FM, install the compatibleDriver forNVIDIADataCen-
ter GPUs. As part of the installation, the FM service unit file (nvidia-fabricmanager.service)
will be copied to systemd. However, the system administrator must manually enable and start the
FM service.

4.2.5. Minimum NVIDIA Driver/Fabric Manager Version
Here are the NVIDIA Data Center GPUs driver package minimum versions for the different platform:

▶ NVIDIA HGX-2 and NVIDIA HGX A100 systems: version 450.xx.

▶ NVIDIA HGX H100 systems: version 525.xx.

▶ NVIDIA HGX B200 and NVIDIA HGX B100 systems: version 570.xx.

The FM default installation mode and configuration file options support bare-metal mode.

4.3. Initializing NVSwitch and NVLink
NVIDIA GPUs and NVSwitch memory fabrics are PCIe endpoint devices that require an NVIDIA kernel
driver to be used. On DGX-2, NVIDIA HGX-2, DGX A100, and NVIDIA HGX A100 systems that do not
have ALI support, after the system boots, the NVLink connections are enabled after the NVIDIA ker-
nel driver is loaded, and the FM configures these connections. CUDA initialization will fail with the
cudaErrorSystemNotReady error if the application is launched before FM completely initializes the
system or when FM fails to initialize the system.

On DGX H100 and NVIDIA HGX H100 and later systems that support ALI-based NVLink training, the
NVLinks are trained at the GPU and NVSwitch hardware levels without FM. To enable NVLink peer-
to-peer support, the GPUs must register with the NVLink fabric. If a GPU fails to register with the
fabric, it will lose its NVLink peer-to-peer capability and be available for non-peer-to-peer use cases.
The CUDA initialization process will start after the GPUs complete their registration process with the
NVLink fabric.

GPU fabric registration status is exposed through the NVML APIs, and as part of nvidia-smi -q
command. Refer the following nvidia-smi command output for more information.

Here is the Fabric state output when the GPU is being registered:

nvidia-smi -q -i 0 | grep -i -A 2 Fabric
Fabric

State : In Progress
Status : N∕A

Here is the Fabric state output after the GPU has been successfully registered:

nvidia-smi -q -i 0 | grep -i -A 2 Fabric
Fabric

State : Completed
Status : Success

4.3. Initializing NVSwitch and NVLink 36

NVIDIA Fabric Manager, Release 2.3

FM and NVLSM play critical roles in the NVSwitch-based system functionality that is typically initiated
during a system boot or a workload activation. Restarting the service intermittently is unnecessary,
but if a restart is necessary because of workflow requirements or as part of a GPU reset operation,
complete the following steps:

For DGX H100 and NVIDIA HGX H100 systems and later systems, to ensure the system returns to a
coherent state:

1. Stop all CUDA applications and GPU-related services.

▶ Halt all runningCUDAapplications and services (for example, DCGM) that are actively usingGPUs.

▶ You can leave the nvidia-persistenced service running.

2. Stop the FM service.

3. To reset the GPU, run the nvidia-smi -r command.

4. Restart the FM service and restore its functionality.

5. Resume the stopped services that were halted in step 1.

6. Launch the CUDA applications.

7. After completing these steps, launch your CUDA applications as needed.

Note

System administrators can set their GPU application launcher services, such as SSHD, Docker, and
so on to start after the FM service is started. Refer to your Linux distribution’s manual for more
information about setting up service dependencies and the service start order. Using infiniband
tools over CX interface is not supported.

4.4. Runtime NVSwitch and GPU Errors
When an NVSwitch port or GPU generates a runtime error, the corresponding information will be
logged into the operating system’s kernel log or event log. An error report from NVSwitch will be
logged with the SXid prefix, and a GPU error report will be logged with the Xid prefix by the NVIDIA
driver.

The NVSwitch SXids errors use the following reporting convention:

<nvidia-nvswitchX: SXid (PCI:<switch_pci_bdf>): <SXid_Value>, <Fatal or Non-
↪→Fatal>, <Link No> < Error Description>
<raw error information for additional troubleshooting>

The following is an example of a SXid error log

[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Non-fatal, Link 46 MC
↪→TS crumbstore MCTO (First)
[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Severity 0 Engine
↪→instance 46 Sub-engine instance 00
[...] nvidia-nvswitch3: SXid (PCI:0000:c1:00.0): 28006, Data {0x00140004,

(continues on next page)

4.4. Runtime NVSwitch and GPU Errors 37

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

↪→0x00100000, 0x00140004, 0x00000000, 0x00000000, 0x00000000, 0x00000000,
↪→0x00000000}

The GPU Xids errors use the following reporting convention:

NVRM: GPU at PCI:<gpu_pci_bdf>: <gpu_uuid>
NVRM: GPU Board Serial Number: <gpu_serial_number>
NVRM: Xid (PCI:<gpu_pci_bdf>): <Xid_Value>, <raw error information>

The following is an example of a Xid error log
[...] NVRM: GPU at PCI:0000:34:00: GPU-c43f0536-e751-7211-d7a7-78c95249ee7d
[...] NVRM: GPU Board Serial Number: 0323618040756
[...] NVRM: Xid (PCI:0000:34:00): 45, Ch 00000010

Depending on the severity (fatal versus non-fatal) and the impacted port, the SXid and Xid errors can
abort existing CUDA jobs and prevent new CUDA job launches. The next section provides information
about the potential impact of SXid and Xid errors and the corresponding recovery procedure.

4.4.1. NVSwitch SXid Errors
This section provides information about the NVSwitch SXid errors.

4.4.1.1 Non-Fatal SXid Errors

Non-fatal SXids are for informational purposes only, and FM will not terminate CUDA jobs that are
running or prevent new CUDA job launches. The existing CUDA jobs should resume, but depending
on the error, CUDA jobs might experience issues such as a performance drop, no forward progress for
brief time, and so on.

4.4.1.2 Fatal SXid Errors

When a fatal SXid error is reported on a NVSwitch port that connects a GPU and an NVSwitch, the
corresponding error will be propagated to the GPU. The CUDA jobs that are running on that GPUwill be
aborted, and the GPUmight report Xid 74 and Xid 45 errors. The FM service will log the corresponding
GPU index and PCI bus information in its log file and syslog. The system administrator must use the
following recovery procedure to clear the error state before using the GPU for an additional CUDA
workload.

1. Reset the specified GPU and all the participating GPUs in the affected workload by using the
NVIDIA System Management Interface (nvidia-smi) command-line utility.

Refer to the -r or the --gpu-reset options in nvidia-smi and the individual GPU reset operation
for more information. If the problem persists, reboot or power cycle the system.

When a fatal SXid error is reported on a NVSwitch port that connects two GPU baseboards, FM will
abort all the running CUDA jobs and prevent new CUDA job launches. The GPU will also report an Xid
45 error as part of aborting CUDA jobs. The FM service will log the corresponding error information in
its log file and syslog.

2. To clear the error state and subsequent successful CUDA job launch, the system administrator
must complete the following recovery procedure:

3. Reset all the GPUs and NVSwitches.

4.4. Runtime NVSwitch and GPU Errors 38

NVIDIA Fabric Manager, Release 2.3

4. Stop the FM service.

5. Stop all the applications that are using the GPU.

6. Reset all the GPU and NVSwitches using the nvidia-smi command line utility with the -r or
the --gpu-reset option.

Do not use the -i or the –id options.

7. After the reset operation is complete, start the FM service again.

8. If the problem persists, reboot or power cycle the system.

Note

The NVSwitch Driver SXid fatal and non-fatal based error reporting does not apply on DGX B200
and NVIDIA HGX B200 systems.

4.4.2. NVSwitch Errors On DGX B200 and NVIDIA HGX
B200 Systems

NVSwitch SXID errors are no longer applicable to DGX B200 and NVIDIA HGX B200 systems. DCGM
now interfaces with a library called NVIDIA Switch Device Manager (NVSDM) to fetch errors related to
NVSwitch. The following telemetry counters are retrieved from the NVSwitch:

▶ Port counters

▶ ASIC counters

Refer to NVOnline: 1115699 for more information.

4.4.3. GPU Xid Errors
GPU Xid messages indicate that a general GPU error occurred, and the messages can indicate one of
the following issue types:

▶ A hardware problem

▶ An NVIDIA software problem

▶ A user application problem

When a GPU experiences an Xid error, the CUDA jobs that are running on that GPU will typically be
aborted. Complete the GPU reset procedure in “NVSwitch SXid Errors” on page for more information.

On DGXH100 and NVIDIA HGXH100 systems, FM no longermonitors and logs GPU errors. The NVIDIA
driver will continue to monitor and log GPU errors in the syslog.

4.5. Interoperability With Multi-Instance GPUs
Multi-Instance GPUs (MIGs) partition an NVIDIA A100, an H100, and a B200 GPU into many inde-
pendent GPU instances. These instances run simultaneously, each with its own memory, cache and
streaming, multiprocessors. However, when you enable the MIG mode, the GPU NVLinks will be dis-
abled (or not used) and the GPU will lose its NVLink peer-to-peer (P2P) capability. After the MIG mode

4.5. Interoperability With Multi-Instance GPUs 39

NVIDIA Fabric Manager, Release 2.3

is successfully disabled, the GPU NVLinks will be enabled again, and the GPU NVLink P2P capability
will be restored.

On NVSwitch-based DGX and NVIDIA HGX systems, the FM service interoperates with GPU MIG in-
stances. To successfully restore GPU NVLink peer-to-peer capability after the MIG mode is disabled
on these systems, the FM service must be running. On DGX A100 and NVIDIA HGX A100 systems, the
corresponding GPU NVLinks and NVSwitch side NVLinks are trained off when MIG mode is enabled
and are retrained when MIG mode is disabled. However, on DGX H100, NVIDIA HGX H100, and later
systems, GPU NVLinks will stay active during MIG mode.

4.5. Interoperability With Multi-Instance GPUs 40

Chapter 5. Virtualization Models

NVSwitch-based systems support multiple models to isolate NVLink interconnects in a multi-tenant
environment. In virtualized environments, VMworkloads often cannot be trusted andmust be isolated
from each other and from the host or hypervisor. The switches used to maintain this isolation cannot
be directly controlled by untrusted VMs and must be controlled by the trusted software.

This chapter provides a high-level overview of supported virtualization models.

5.1. Supported Virtualization Models
The NVSwitch-based systems support the following virtualization models:

▶ Full Passthrough

▶ GPUs and NVSwitch memory fabrics are passed to the guest OS.

▶ Easy to deploy and requires minimal changes to the hypervisor/host OS.

▶ Reduced NVLink bandwidth for two and four GPU VMs.

▶ For DGX H100, NVIDIA HGX H100, DGX H200, NVIDIA HGX H200, and NVIDIA HGX H20 sys-
tems, 4x GPU VMswill experience asymmetric GPUNVLink bandwidth due to the underlying
physical NVLink topology.

▶ For DGX B200 and NVIDIA HGX B200 systems, only two 2x GPU VMs are possible because
the system has only two NVSwitches.

▶ For 1x, 2x, or 4x GPU VMs, additional hypervisor configuration is required to disable GPU
NVLinks that connect to other subsets of NVSwitches.

▶ Shared NVSwitch Multitenancy Mode

▶ Only GPUs passed through to the guests.

▶ NVSwitch memory fabrics are managed by a dedicated trusted VM called Service VM.

▶ NVSwitch memory fabrics are shared by the guest VMs, but the fabrics are not visible to
guests.

▶ Requires the tightest integration with the hypervisor.

▶ Complete bandwidth for two and four GPU VMs.

▶ No need for direct communication between the guest VM and the Service VM.

▶ The recommendedoption, as thismodel supports 1x, 2x, 4x, and8xGPUVMswith consistent
NVLink capabilities across all generations of HGX and DGX systems.

▶ vGPU Multitenancy Mode

41

NVIDIA Fabric Manager, Release 2.3

▶ Only SR-IOV GPU VFs are passed through to the guests.

▶ GPU PFs and NVSwitch memory fabrics are managed by the vGPU host.

▶ NVSwitch memory fabrics are shared by all the guest VMs, but the fabrics are not visible to
guests.

▶ Complete bandwidth for two and four GPU VMs.

▶ This mode is tightly coupled with the vGPU software stack.

5.1. Supported Virtualization Models 42

Chapter 6. Fabric Manager SDK

FM provides a shared library, a set of C/C++ APIs (SDK), and the corresponding header files. The library
and APIs are used to interface with FM when FM runs in the shared NVSwitch and vGPU multi-tenant
modes to query, activate, and deactivate GPU partitions.

All FM interface API definitions, libraries, sample code, and associated data structure definitions are
delivered as a separate development package (RPM/Debian). To compile the sample code in this user
guide, install this package.

6.1. Data Structures
Here are the data structures:

∕∕ max number of GPU∕fabric partitions supported by FM
#define FM_MAX_FABRIC_PARTITIONS 64

∕∕ max number of GPUs supported by FM
#define FM_MAX_NUM_GPUS 16

∕∕ Max number of ports per NVLink device supported by FM
#define FM_MAX_NUM_NVLINK_PORTS 64

∕∕ connection options for fmConnect()
typedef struct
{

unsigned int version;
char addressInfo[FM_MAX_STR_LENGTH];
unsigned int timeoutMs;
unsigned int addressIsUnixSocket;

} fmConnectParams_v1;

typedef fmConnectParams_v1 fmConnectParams_t;
∕∕ VF PCI Device Information
typedef struct
{

unsigned int domain;
(continues on next page)

43

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

unsigned int bus;
unsigned int device;
unsigned int function;

} fmPciDevice_t;∕∕ structure to store information about a GPU belonging to
↪→fabric partition
typedef struct
{

unsigned int physicalId;
char uuid[FM_UUID_BUFFER_SIZE];
char pciBusId[FM_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
unsigned int numNvLinksAvailable;
unsigned int maxNumNvLinks;
unsigned int nvlinkLineRateMBps;

} fmFabricPartitionGpuInfo_t;

∕∕ structure to store information about a fabric partition
typedef struct
{

fmFabricPartitionId_t partitionId;
unsigned int isActive;
unsigned int numGpus;
fmFabricPartitionGpuInfo_t gpuInfo[FM_MAX_NUM_GPUS];

} fmFabricPartitionInfo_t;

∕∕ structure to store information about all the supported fabric partitions
typedef struct
{

unsigned int version;
unsigned int numPartitions;
unsigned int maxNumPartitions;
fmFabricPartitionInfo_t partitionInfo[FM_MAX_FABRIC_PARTITIONS];

} fmFabricPartitionList_v2;

typedef fmFabricPartitionList_v2 fmFabricPartitionList_t;

∕∕ structure to store information about all the activated fabric partitionIds
typedef struct
{

unsigned int version;
unsigned int numPartitions;
fmFabricPartitionId_t partitionIds[FM_MAX_FABRIC_PARTITIONS];

} fmActivatedFabricPartitionList_v1;

typedef fmActivatedFabricPartitionList_v1 fmActivatedFabricPartitionList_t;

∕∕ Structure to store information about a NVSwitch or GPU with failed NVLinks
(continues on next page)

6.1. Data Structures 44

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

typedef struct
{

char uuid[FM_UUID_BUFFER_SIZE];
char pciBusId[FM_DEVICE_PCI_BUS_ID_BUFFER_SIZE];
unsigned int numPorts;
unsigned int portNum[FM_MAX_NUM_NVLINK_PORTS];

} fmNvlinkFailedDeviceInfo_t;

∕∕ Structure to store a list of NVSwitches and GPUs with failed NVLinks
typedef struct
{

unsigned int version;
unsigned int numGpus;
unsigned int numSwitches;
fmNvlinkFailedDeviceInfo_t gpuInfo[FM_MAX_NUM_GPUS];
fmNvlinkFailedDeviceInfo_t switchInfo[FM_MAX_NUM_NVSWITCHES];

} fmNvlinkFailedDevices_v1;

typedef fmNvlinkFailedDevices_v1 fmNvlinkFailedDevices_t;

∕**
* Structure to store information about a unsupported fabric partition
*∕

typedef struct
{

fmFabricPartitionId_t partitionId; ∕∕!< a unique id assigned to reference
↪→this partition

unsigned int numGpus; ∕∕!< number of GPUs in this partition
unsigned int gpuPhysicalIds[FM_MAX_NUM_GPUS]; ∕∕!< physicalId of each

↪→GPU assigned to this partition.
} fmUnsupportedFabricPartitionInfo_t;
∕**
* Structure to store information about all the unsupported fabric partitions
*∕

typedef struct
{

unsigned int version; ∕∕!< version number. Use
↪→fmFabricPartitionList_version

unsigned int numPartitions; ∕∕!< total number of unsupported partitions
fmUnsupportedFabricPartitionInfo_t partitionInfo[FM_MAX_FABRIC_

↪→PARTITIONS]; ∕*!< detailed information of each

↪→ unsupported partition*∕
} fmUnsupportedFabricPartitionList_v1;
typedef fmUnsupportedFabricPartitionList_v1 fmUnsupportedFabricPartitionList_
↪→t;
#define fmUnsupportedFabricPartitionList_version1 MAKE_FM_PARAM_
↪→VERSION(fmUnsupportedFabricPartitionList_v1, 1)
#define fmUnsupportedFabricPartitionList_version

(continues on next page)

6.1. Data Structures 45

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

↪→fmUnsupportedFabricPartitionList_version1

Note

On DGX H100, NVIDIA HGX H100, and later systems, the GPU physical ID information has the same
value as the GPU Module ID information that is returned by the nvidia-smi-q output. When re-
porting partition information, GPU information such as UUID, PCI Device (BDF) will be empty. To
correlate between GPUs in the partition, the hypervisor stack should use GPU Physical ID informa-
tion, and the GPUs needs to be assigned to corresponding partition’s guest VM.

6.2. Initializing the Fabric Manager API interface
To initialize the FM API interface library, run the following command:

fmReturn_t fmLibInit(void)
Parameters
None
Return Values

FM_ST_SUCCESS - if FM API interface library has been properly
↪→initialized
FM_ST_IN_USE - FM API interface library is already in initialized state.
FM_ST_GENERIC_ERROR - A generic, unspecified error occurred

6.3. Shutting Down the Fabric Manager API
interface

To shut down the FM API interface library and the remote connections that were established through
fmConnect(), run the following command.

fmReturn_t fmLibShutdown(void)

Parameters
None
Return Values

FM_ST_SUCCESS - if FM API interface library has been properly shut
↪→down
FM_ST_UNINITIALIZED - interface library was not in initialized state.

6.2. Initializing the Fabric Manager API interface 46

NVIDIA Fabric Manager, Release 2.3

6.4. Connecting to the Running Fabric Manager
Instance

To connect to a running instance of FM, the instance is started as part of system service or manually
by the system administrator. This connection will be used by the APIs to exchange information to the
running FM instance.

fmReturn_t fmConnect(fmConnectParams_t *connectParams, fmHandle_t *pFmHandle)

Parameters
connectParams
Valid IP address for the remote host engine to connect to. If ipAddress
is specified as x.x.x.x it will attempt to connect to the default port
specified by FM_CMD_PORT_NUMBER.If ipAddress is specified as x.x.x.x:yyyy
it will attempt to connect to the port specified by yyyy. To connect to
an FM instance that was started with unix domain socket fill the socket
path in addressInfo member and set addressIsUnixSocket flag.
pfmHandle

Fabric Manager API interface abstracted handle for subsequent API
↪→calls
Return Values

FM_ST_SUCCESS - successfully connected to the FM instance
FM_ST_CONNECTION_NOT_VALID - if the FM instance could not be reached
FM_ST_UNINITIALIZED - FM interface library has not been initialized
FM_ST_BADPARAM - pFmHandle is NULL or IP Address∕format is invalid
FM_ST_VERSION_MISMATCH - provided versions of params do not match

6.5. Disconnecting from the Fabric Manager
Instance

To disconnect from an FM instance, run the following command.

fmReturn_t fmDisconnect(fmHandle_t pFmHandle)

Parameters
pfmHandle

Handle that came from fmConnect
Return Values

FM_ST_SUCCESS - successfully disconnected from the FM instance
FM_ST_UNINITIALIZED - FM interface library has not been initialized
FM_ST_BADPARAM - if pFmHandle is not a valid handle
FM_ST_GENERIC_ERROR - an unspecified internal error occurred

6.4. Connecting to the Running Fabric Manager Instance 47

NVIDIA Fabric Manager, Release 2.3

6.6. Getting a List of Supported Partitions
To query the list of supported (static) GPU fabric partitions in an NVSwitch-based system, run the
following command.

fmReturn_t fmGetSupportedFabricPartitions(fmHandle_t pFmHandle,
↪→fmFabricPartitionList_t *pFmFabricPartition)

Parameters
pFmHandle

Handle returned by fmConnect()
pFmFabricPartition

Here is the pointer to the fmFabricPartitionList_t structure. When successful, the list of sup-
ported (static) partition information will be populated in this structure.

FM_ST_SUCCESS – successfully queried the list of supported partitions
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_VERSION_MISMATCH - provided versions of params do not match

6.7. Activating a GPU Partition
To activate a supported GPU fabric partition in an NVSwitch-based system, run the following com-
mand.

Note

This API is supported only in Shared NVSwitch multi-tenancy mode.

fmReturn_t fmActivateFabricPartition((fmHandle_t pFmHandle,
↪→fmFabricPartitionId_t partitionId)

Parameters
pFmHandle

Handle returned by fmConnect()
partitionId

The partition id to be activated.

Return Values
FM_ST_SUCCESS – successfully queried the list of supported partitions
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters or unsupported partition id

(continues on next page)

6.6. Getting a List of Supported Partitions 48

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_IN_USE - specified partition is already active or the GPUs are in use

↪→by other partitions.

6.8. Activating a GPU Partition with Virtual
Functions

In the vGPU Virtualization Mode, to activate an available GPU fabric partition with vGPU Virtual Func-
tions (VFs), run the following command.

fmReturn_t fmActivateFabricPartitionWithVFs((fmHandle_t pFmHandle,
↪→fmFabricPartitionId_t partitionId, fmPciDevice_t *vfList, unsigned int
↪→numVfs)

Parameters:
pFmHandle

Handle returned by fmConnect()
partitionId

The partition id to be activated.
*vfList

List of VFs associated with physical GPUs in the partition.
↪→The ordering of VFs passed to this call is significant, especially for
↪→migration∕suspend∕resume compatibility, the same ordering should be used
↪→each time the partition is activated.

numVfs
Number of VFs

Return Values:
FM_ST_SUCCESS – successfully queried the list of supported partitions
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters or unsupported partition id
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_IN_USE - specified partition is already active or the GPUs are in use

↪→by other partitions.

Note

Here is some important information: Before you start a vGPU VM, this API must be called, even if
there is only one vGPU partition. A multi-vGPU partition activation will fail if MIG mode is enabled
on the corresponding GPUs.

6.8. Activating a GPU Partition with Virtual Functions 49

NVIDIA Fabric Manager, Release 2.3

6.9. Deactivating a GPU Partition
To deactivate a previously activated GPU fabric partition in an NVSwitch-based system when FM is
running in Shared NVSwitch or vGPU multi-tenancy mode, run the following command.

fmReturn_t fmDeactivateFabricPartition((fmHandle_t pFmHandle,
↪→fmFabricPartitionId_t partitionId)

Parameters
pFmHandle

Handle returned by fmConnect()
partitionId

The partition id to be deactivated.

Return Values
FM_ST_SUCCESS – successfully queried the list of supported partitions
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters or unsupported partition id
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_UNINITIALIZED - specified partition is not activated

6.10. Setting an Activated Partition List After
Restarting Fabric Manager

To send a list of currently activated fabric partitions to FM after it has been restarted, run the following
command.

Note

If there are no active partitions when FM is restarted, this call must be made with the number of
partitions as zero.

fmReturn_t fmSetActivatedFabricPartitions(fmHandle_t pFmHandle,
↪→fmActivatedFabricPartitionList_t *pFmActivatedPartitionList)

Parameters
pFmHandle

Handle returned by fmConnect()
pFmActivatedPartitionList

List of currently activated fabric partitions.

Return Values
(continues on next page)

6.9. Deactivating a GPU Partition 50

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

FM_ST_SUCCESS – FM state is updated with active partition information
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled

6.11. Getting a List of Devices with Failed
NVLinks

To query all GPUs and NVSwitches with failed NVLinks as part of FM initialization, run the following
command.

Note

This API is not supported when FM is running in Shared NVSwitch or vGPUmulti-tenancy resiliency
restart (--restart) modes.

fmReturn_t fmGetNvlinkFailedDevices(fmHandle_t pFmHandle,
↪→fmNvlinkFailedDevices_t *pFmNvlinkFailedDevices)

Parameters
pFmHandle

Handle returned by fmConnect()
pFmNvlinkFailedDevices

List of GPU or NVSwitch devices that have failed NVLinks.

Return Values
FM_ST_SUCCESS – successfully queried list of devices with failed

↪→NVLinks
FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_VERSION_MISMATCH - provided versions of params do not match

Note

On DGX H100 ,NVIDIA HGX H100 and later systems, NVLinks are trained at GPU and NVSwitch
hardware level using ALI feature and without FM coordination. On these systems, FM will always
return FM_ST_SUCCESS with an empty list for this API.

6.11. Getting a List of Devices with Failed NVLinks 51

NVIDIA Fabric Manager, Release 2.3

6.12. Getting a List of Unsupported Partitions
To query all the unsupported fabric partitions when FM is running in Shared NVSwitch or vGPU multi-
tenancy modes, run the following command.

fmReturn_tfmGetUnsupportedFabricPartitions(fmHandle_t pFmHandle,
fmUnsupportedFabricPartitionList_t *pFmUnupportedFabricPartition)
Parameters
pFmHandle

Handle returned by fmConnect()
pFmUnupportedFabricPartition

List of unsupported fabric partitions on the system.
Return Values

FM_ST_SUCCESS – successfully queried list of devices with failed
↪→NVLinks

FM_ST_UNINITIALIZED - FM interface library has not been initialized.
FM_ST_BADPARAM – Invalid input parameters
FM_ST_GENERIC_ERROR – an unspecified internal error occurred
FM_ST_NOT_SUPPORTED - requested feature is not supported or enabled
FM_ST_NOT_CONFIGURED - Fabric Manager is initializing and no data
FM_ST_VERSION_MISMATCH - provided versions of params do not match

Note

On DGX H100, NVIDIA HGX H100 and later systems, this API will always return FM_ST_SUCCESS
with an empty list of unsupported partition.

6.12. Getting a List of Unsupported Partitions 52

Chapter 7. Full Passthrough
Virtualization Model

The first supported virtualization model for NVSwitch-based systems is passthrough device assign-
ment for GPUs and NVSwitch memory fabrics (switches). VMs with 16, eight, four, two, and one GPUs
are supported with predefined subsets of GPUs and NVSwitches for each VM size.

A subset of GPUs and NVSwitches is referred to as a system partition. Non-overlapping partitions can
be mixed and matched, which allows you to simultaneously support, for example, an eight-GPU VM, a
four-GPU VM, and two-GPU VMs on an NVSwitch-based system with two GPU baseboards. VMs with
16 and eight GPUs have no loss in bandwidth while in smaller VMs, there is some bandwidth tradeoff
for isolation by using dedicated switches.

Figure 7.1: Software Stack in a Two-GPU Virtual Machine (A Full Passthrough Model)

53

NVIDIA Fabric Manager, Release 2.3

7.1. Supported Virtual Machine Configurations
The tables in this section provide information about virtual machine configurations.

Table 7.1 DGX-2 and NVIDIA HGX-2 Systems Device Assignment

VM
GPUs

NVSwitches NVLinks
Per GPU

NVLinks
Per
NVSwitch

Constraints

16 12 6 of 6 16 of 18 None

8 6 6 of 6 8 of 18 One set of eight GPUs from each GPU Baseboard

4 3 3 of 6 4 of 18 Two sets of four GPUs from each GPU Baseboard

2 1 1 of 6 2 of 18 Four sets of two GPUs from each GPU Baseboard

1 0 0 of 6 0 of 18 None

Table 7.2 DGX A100 and NVIDIA HGX A100 Systems Device Assignment

VM
GPUs

NVSwitches NVLinks
Per GPU

NVLinks
Per
NVSwitch

Constraints

16 12 12 of 12 32 of 36 None

8 6 12 of 12 16 of 36 One set of eight GPUs from each GPU Baseboard.

4 3 6 of 12 6 of 36 Two sets of four GPUs from each GPU Baseboard.

2 1 2 of 12 4 of 36 Four sets of two GPUs from each GPU Baseboard.

1 0 0 of 12 0 of 36 None

Table 7.3 DGX H100 and NVIDIA HGX H100 Systems Device Assignment

VM
GPUs

NVSwitches NVLinks
Per GPU

NVLinks
Per
NVSwitch

Constraints

8 4 18 of 18 32 of
64 for two
NVSwitches.
40 of 64 for
other two
NVSwitches.

None

1 0 0 of 18 0 of 64 Need to disable GPU NVLinks.

7.1. Supported Virtual Machine Configurations 54

NVIDIA Fabric Manager, Release 2.3

Note

For DGX H200, NVIDIA HGX H200, and NVIDIA HGX H20 systems, the same H100 VM configura-
tion, NVLink topology, and NVSwitch assignment apply. For NVIDIA HGX H800 systems, the same
assignment applies, with a total of eight GPU NVLinks for 8x GPU VMs.

Table 7.4 DGX B200 and NVIDIA HGX B200 Systems Device Assignment

VM
GPUs

NVSwitches NVLinks
Per GPU

NVLinks
Per
NVSwitch

Constraints

8 2 (Indi-
rectly)
Actual
devices
passed
through is
CX7 bridge
devices

18 of 18 72 of 72 For DGX B200 and HGX B200, instead of the
NVSwitches being directly passed to the guest VM, the
CX7 bridge devices are passed. Refer to the following
sections for more information.

1 0 0 of 18 0 of 64 Need to disable GPU NVLinks.

7.2. Virtual Machines with 16 GPUs
Here are the requirements for VMs with 16 GPUs:

▶ The available GPUs and NVSwitches are assigned to the guest VM.

▶ There are no disabled NVLink interconnects on the NVSwitches or on the GPUs.

▶ To support 16 GPU partitions, the system must be populated with two GPU baseboards.

7.3. Virtual Machines with Eight GPUS
Here are the requirements for VMs with eight GPUs:

▶ Each VM has eight GPUs, and the NVSwitches on the same base board (six for DGX A100 and
NVIDIA HGX A100 and four for DGX H100 and NVIDIA HGX H100) must be assigned to the guest
VM.

▶ Each GPU has all the NVLink interconnects enabled.

▶ If the system has two GPU baseboards, two system partitions will be available where eight GPU
VMs can be created.

Otherwise only one partition will be available.

▶ All NVLink connections between the GPU baseboards are disabled.

7.2. Virtual Machines with 16 GPUs 55

NVIDIA Fabric Manager, Release 2.3

7.4. Virtual Machines with Four GPUS
Here are the requirements for VMs with four GPUs:

▶ If this configuration is supported, each VM gets four GPUs and three switches.

▶ As specified in Table 7.3, only a subset of NVLink interconnects per GPU are enabled.

▶ If the system is populated with two GPU baseboards, four partitions are available on the system.

▶ For single baseboard systems, two partitions are available.

▶ All NVLink connections between GPU baseboards are disabled.

7.5. Virtual Machines with Two GPUs
Here are the requirements for VMs with two GPUs:

▶ If this configuration is supported, each VM gets two GPUs and one NVSwitch.

▶ Also, a subset of GPU NVLink interconnects per GPU are enabled.

▶ If the system is populated with two GPU baseboards, eight partitions are available on the system.

▶ For single baseboard systems, four partitions are available.

▶ All NVLink connections between GPU baseboards are disabled.

7.6. Virtual Machine with One GPU
Here are the requirements for VMs with one GPU:

▶ Each VM has one GPU and no switches.

▶ If the system is populated with two GPU baseboards, 16 partitions are available on the system.

▶ For single baseboard systems, eight partitions are available.

▶ All NVLink connections between GPU baseboards are disabled.

7.7. Other Requirements
Here are some other requirements:

▶ The hypervisor needs to maintain the partition configuration, including which NVLink connec-
tions to block on each GPU and switch for each partition.

▶ The hypervisor needs to implement MMIO filtering for NVSwitch.

▶ The hypervisor needs to finely control IOMMU mappings that were configured for GPUs and
switches.

▶ Guest VMs with more than one GPU need to run the core NVSwitch software stack, which in-
cludes the NVIDIA Driver and FM to configure switches and NVLink connections.

7.4. Virtual Machines with Four GPUS 56

NVIDIA Fabric Manager, Release 2.3

7.8. Hypervisor Sequences
The hypervisor completes the following steps to launch, shutdown, and reboot guest VMs.

1. Start the guest VM.

1. Select an unused partition of GPUs and switches.

2. Reset the GPUs and switches in the partition.

3. Block the disabled NVLink connections on each GPU by performing the specifiedMMIO con-
figuration.

4. Block the disabled NVLink connections on each switch by configuring the MMIO intercept.

5. Avoid configuring IOMMU mappings between GPUs and switches.

6. Ensure that switches cannot be accessed by any other PCIe device that the guest VM con-
trols.

▶ This way, the switches cannot bypass the MMIO restrictions that are implemented for
the CPU.

▶ GPUs do not need to be accessible by any other GPUs or switches.

▶ GPUs need to be accessible by third-party devices to support NVIDIA GPUDirect™
RDMA.

7. Avoid additional GPU resets, start the guest VM.

2. Shut down the guest VM and reset the GPUs and switches that belong to the partition.

3. Reboot the guest VM.

4. Repeat steps 1a to 1f, but this time, the partition has already been selected.

7.9. Additional Steps for NVIDIA HGX B200
Systems

In NVIDIA HGXB200 systems, NVSwitches do not appear as PCIe devces. They are behind a CX7 bridge
device and the corresponding four CX7 device physical functions must be passed to the guest VM.
Through this CX7 Bridge device, the FM and NVLSM service will configure the underlying NVSwitches,
NVLinks, and GPUs.

To identify the desired CX7 bridge device with other traditional CX7 NIC devices, use one of the fol-
lowing mechanisms:

▶ Using a fixed PCIe BDF assignment: The CX7 bridge device is part of the GPU baseboard.

If the GPU baseboard PCIe resources are statically assigned, the four PF functions will be same all the
time.

▶ Query using VPD information: The CX7 bridge device will have different VPD information as
compared to other traditional CX7 device.

Query the VPD information using the lspci -vvs or vpddecode command and identify the four PF
functions you want.

7.8. Hypervisor Sequences 57

NVIDIA Fabric Manager, Release 2.3

7.10. Monitoring Errors
The NVSwitch, GPU and NVLink errors are visible to guest VMs. Use one of the following methods to
allow the hypervisor to monitor the same items,:

▶ In-band monitoring

Run NVIDIA Data Center GPU Manager (DCGM) on the guest VM or use the NVIDIA Management Li-
brary (NVML) APIs for GPU-specific monitoring.

▶ Out-of-Band monitoring

Use the GPU and NVSwitch SMBus Post Box Interface (SMBPBI)-based OOB commands.

7.11. Limitations
Here are the limitations:

▶ NVSwitch errors are visible to the guest VMs.

▶ Windows is only supported for single GPU VMs.

7.10. Monitoring Errors 58

Chapter 8. Shared NVSwitch
Virtualization Model

The shared NVSwitch virtualization model additionally extends the GPU Passthrough model by man-
aging the switches from a Service VM that permanently runs. The GPUs are made accessible to the
Service VM for link training and are reassigned to the guest VMs.

Sharing switches among the guest VMs allows FM to enable more NVLink connections for two- and
four-GPU VMs that observe reduced bandwidth in GPU Passthrough model.

8.1. Software Stack
Figure 8.1 shows the software stack that is required for NVSwitch management and runs in a service
VM.

Figure 8.1: Shared NVSwitch Software Stack

NVSwitch units are always assigned as a PCIe passthrough device to the service VM. GPUs are hot-
plugged and hot-unplugged on-demand (as PCI passthrough) to the service VM.

At a high level, the service VM provides the following features:

▶ An interface to query the available GPU VM partitions (groupings) and corresponding GPU infor-
mation.

▶ An interface to activate GPU VM partitions, which involves the following:

▶ Training NVSwitch to NVSwitch NVLink interconnects (if required).

59

NVIDIA Fabric Manager, Release 2.3

▶ Training the corresponding GPU NVLink interfaces (if applicable).

▶ Programming NVSwitch to deny access to GPUs not assigned to the partition.

▶ An interface to deactivate GPU VM partitions, which involves the following:

▶ As applicable, untrain (power down) the NVSwitch to NVSwitch NVLink interconnects.

▶ As applicable, untrain (power down) the corresponding GPU NVLink interfaces.

▶ Disable the corresponding NVSwitch routing and GPU access.

▶ Report NVSwitch errors through in-band and out-of-band mechanisms.

8.2. Guest VM to Service VM Interaction
For NVIDIA HGX-2, NVIDIA HGX A100, and NVIDIA HGX A800 server systems, the GPU configurations
that are required to enable NVLink communication are established as part of the initial partition acti-
vation process, which occurs before transferring GPU control to the guest VM. Consequently, there is
no need for the guest VM to initiate communication with the service VM while workloads are running.

However, on NVIDIA HGX H100, NVIDIA HGX H800, and later systems, a different approach is required.
In these systems, the GPUs are not assigned to the service VM during partition activation. As a re-
sult, the configurations for GPU NVLink communication must be passed to the guest VM. Additionally,
the newly introduced NVLink Sharp feature in the H100 and H800 generations necessitates dynamic
adjustments to the NVSwitch configuration based on the workload requirements of the guest VM.

To facilitate these functionalities on NVIDIA HGX H100, NVIDIA HGX H800, and later systems, GPUs
in the guest VM communicate over NVLink by transmitting specialized packets to the FM that runs
on the service VM. To simplify integration efforts, communicating these requests over NVLink is the
optimal solution because it can be completely managed in NVIDIA’s software and firmware, without
requiring custom integrations for the customer. This communication protocol also is version agnostic,
which allows compatibility between different versions of NVIDIA Drivers on the guest and service VMs.

8.3. Preparing the Service Virtual Machine
This section provides information about preparing the service VM.

8.3.1. The OS Image
Internally, NVIDIA uses an Ubuntu distro as the Service VM OS image. However, there are no known
limitations with other major Linux OS distributions. Refer to OS Environment for more information.

8.3.2. Resource Requirements
Refer to the corresponding OS distributions minimum resource guidelines for more information about
the exact service VM resource requirements. In addition to the specified minimum guidelines, inter-
nally, NVIDIA uses the following hardware resources for the service VM:

8.2. Guest VM to Service VM Interaction 60

NVIDIA Fabric Manager, Release 2.3

Note

The resource requirements for the service VM might vary if it is used for additional functionali-
ties, such as conducting a GPU health check. The specific memory and vCPU demands might also
fluctuate depending on the Linux distribution you selected and the OS features you enabled. We
recommend that you make necessary adjustments to the allocated memory and vCPU resources
accordingly. DGX B200 and NVIDIA HGX B200/B100 systems that use B200 GPUs and the fourth-
generation NVSwitches requires a minimum v5.17 Linux kernel.

Table 8.1 Service VM Resources

Resource Quantity/Size

vCPU 2

System Memory 4 GB

8.3.3. NVIDIA Software Packages
The service VM image must have the following NVIDIA software packages installed:

▶ NVIDIA Data Center GPUDriver (version 450.xx and later for NVIDIA HGX-2 andNVIDIA HGXA100
systems).

▶ For NVIDIA HGX H100 systems, version 525.xx and later is required.

▶ For NVIDIA HGX B200 systems, OFED or MOFED package is required.

▶ NVIDIA Fabric Manager Package (same version as the Driver package).

8.3.4. Fabric Manager Config File Modifications
To support the Shared NVSwitch mode, start the FM service in Shared NVSwitch mode by setting the
FM config item FABRIC_MODE=1.

Note

NVSwitches and GPUs on NVIDIA HGX-2 and NVIDIA HGX A100 systems must bind to nvidia.ko
before FM service starts. If the GPUs and NVSwitches are not plugged into the service VM as
part of OS boot, start the FM service manually or the process directly by running the appropriate
command line options after the NVSwitches and GPUs are bound to nvidia.ko.

In Shared NVSwitch mode, FM supports a resiliency feature, which allows the non-stop forwarding of
NVLink traffic between GPUs on active guest VMs after FM gracefully or non-gracefully exits in the
service VM. To support this feature, FM uses ∕tmp∕fabricmanager.state to save certain meta-
data information. To use a different location/file to store this metadata information, modify the
STATE_FILE_NAME FM config file item with the path and file name.

FM uses TCP I/P loopback (127.0.0.1)-based socket interface for communication. To use UNIX domain
sockets instead, modify the FM FM_CMD_UNIX_SOCKET_PATH and UNIX_SOCKET_PATH config file op-
tions with the UNIX domain socket names.

8.3. Preparing the Service Virtual Machine 61

NVIDIA Fabric Manager, Release 2.3

In addition, to deploy NVIDIA HGX B200, change the FM and NVLSM communication default UNIX do-
main socket interface config itemFM_SM_IPC_INTERFACE config to the path youwant. Also, the same
path information should be used in the plugin_options grpc_mgr --grpc_server_address
NVLSM GRPC plug-in configuration item.

8.3.5. Fabric Manager Multicast (NVLink Sharp) Resource
allocation

The H100 and later generations of DGX and HGX NVSwitch systems support NVLink multicast traffic
and reduction operations. Refer to the CUDAMulticast Object Management APIs for more information
about allocating multicast objects, assigning GPUs to multicast objects, and related operations.

NVSwitches have a finite number ofmulticast resources (also called asMulticast Slots). In H100-based
DGX and HGX systems, these slots are independent of NVLink partitions, with each partition receiving
full dedicated set of supported multicast slots. However, in B200-generation systems, multicast slots
are shared across all NVLink partitions. Tomanage this, each partition is assigned a fixed upper limit of
multicast slots during partition creation. The allocation policy is static and determined by the number
of GPUs in the partition as follows:

▶ Eight-GPU partition: Receives all supported multicast slots.

▶ Four-GPU partition: Receives up to 50% of the supported multicast slots.

▶ Two-GPU partition: Receives up to 25% of the supported multicast slots.

▶ One-GPU partition: Receives zero slots, as a single-GPU partition cannot use multicast or reduc-
tion operations.

8.3.6. Other NVIDIA Software Packages
In the Shared NVSwitch mode, only the FM service should open and interact with GPUs while activat-
ing or deactivating the partition. The GPU health check applications must also be started after you
activate the partition and must be closed before you unbind the GPUs from nvidia.ko.

8.4. Fabric Manager Shared Library and APIs
Refer to FabricManager SDK for the list of the APIs thatmanage a shared NVSwitch partition life cycle.

8.4.1. Sample Code
The following code snippet shows you how to query supported partitions, activate, or deactivate par-
titions, and so on by using the FM APIs mentioned in “Fabric Manager SDK” on page .

#include <iostream>
#include <string.h>

#include "nv_fm_agent.h"

(continues on next page)

8.4. Fabric Manager Shared Library and APIs 62

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

int main(int argc, char **argv)
{

fmReturn_t fmReturn;
fmHandle_t fmHandle = NULL;
char hostIpAddress[16] = {0};
unsigned int operation = 0;
fmFabricPartitionId_t partitionId = 0;
fmFabricPartitionList_t partitionList = {0};

std::cout << "Select Shared Fabric Partition Operation:\n";
std::cout << "0 - List Supported Partition\n";
std::cout << "1 – Activate a Partition\n";
std::cout << "2 – Deactivate a Partition\n";
std::cin >> operation;
if (operation > 2) {

std::cout << "Invalid input.\n" << std::endl;
return FM_ST_BADPARAM;

}
std::cout << std::endl;

if (operation > 0) {
std::cout << "Input Shared Fabric Partition ID: \n";
std::cin >> partitionId;

if (partitionId >= FM_MAX_FABRIC_PARTITIONS) {
std::cout << "Invalid partition ID." << std::endl;
return FM_ST_BADPARAM;

}
}
std::cout << std::endl;

std::cout << "Please input an IP address to connect to. (Localhost = 127.
↪→0.0.1) \n";

std::string buffer;
std::cin >> buffer;
if (buffer.length() > sizeof(hostIpAddress) – 1){

std::cout << "Invalid IP address.\n" << std::endl;
return FM_ST_BADPARAM;

} else {
buffer += '\0';
strncpy(hostIpAddress, buffer.c_str(), 15);

}

∕* Initialize Fabric Manager API interface library *∕
fmReturn = fmLibInit();
if (FM_ST_SUCCESS != fmReturn) {

std::cout << "Failed to initialize Fabric Manager API interface
(continues on next page)

8.4. Fabric Manager Shared Library and APIs 63

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

↪→library." << std::endl;
return fmReturn;

}

∕* Connect to Fabric Manager instance *∕
fmConnectParams_t connectParams;
strncpy(connectParams.addressInfo, hostIpAddress, sizeof(hostIpAddress));
connectParams.timeoutMs = 1000; ∕∕ in milliseconds
connectParams.version = fmConnectParams_version;
connectParams.addressIsUnixSocket = 0;
fmReturn = fmConnect(&connectParams, &fmHandle);
if (fmReturn != FM_ST_SUCCESS){

std::cout << "Failed to connect to Fabric Manager instance." <<
↪→std::endl;

return fmReturn;
}

if (operation == 0) {
∕* List supported partitions *∕
partitionList.version = fmFabricPartitionList_version;
fmReturn = fmGetSupportedFabricPartitions(fmHandle, &partitionList);
if (fmReturn != FM_ST_SUCCESS) {

std::cout << "Failed to get partition list. fmReturn: " <<
↪→fmReturn << std::endl;

} else {
∕* Only printing number of partitions for brevity *∕
std::cout << "Total number of partitions supported: " <<

↪→partitionList.numPartitions << std::endl;
}

} else if (operation == 1) {
∕* Activate a partition *∕
fmReturn = fmActivateFabricPartition(fmHandle, partitionId);
if (fmReturn != FM_ST_SUCCESS) {

std::cout << "Failed to activate partition. fmReturn: " <<
↪→fmReturn << std::endl;

}

} else if (operation == 2) {
∕* Deactivate a partition *∕
fmReturn = fmDeactivateFabricPartition(fmHandle, partitionId);
if (fmReturn != FM_ST_SUCCESS) {

std::cout << "Failed to deactivate partition. fmReturn: " <<
↪→fmReturn << std::endl;

}

} else {
(continues on next page)

8.4. Fabric Manager Shared Library and APIs 64

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

std::cout << "Unknown operation." << std::endl;
}

∕* Clean up *∕
fmDisconnect(fmHandle);
fmLibShutdown();
return fmReturn;

}

Make file for the above sample assuming the source is saved into sampleCode.
↪→cpp
Note: Change the default include paths (∕usr∕include & ∕usr∕lib) based on FM
↪→API header files location.

IDIR := ∕usr∕include
CXXFLAGS = -I $(IDIR)

LDIR := ∕usr∕lib
LDFLAGS= -L$(LDIR) -lnvfm

sampleCode: sampleCode.o
$(CXX) -o $@ $< $(CXXFLAGS) $(LDFLAGS)

clean:
-@rm -f sameplCode.o
-@rm -f sampleCode

8.5. Fabric Manager Resiliency
Refer to Resiliency for more information about FM resiliency in the Shared Virtualization mode.

8.6. Service Virtual Machine Life Cycle
Management

This section provides information about managing the service VM’s life cycle.

8.6.1. GPU Partitions
Refer to GPU Partitions for the default and supported partitions in the shared NVSwitch virtualization
mode.

8.5. Fabric Manager Resiliency 65

NVIDIA Fabric Manager, Release 2.3

8.6.2. Building GPUs to Partition Mapping
The FM instance that runs on the service VM, and the hypervisor must use a common numbering
scheme (GPU Physical ID) to uniquely identify each GPU. In this release, the Physical ID numbering is
the same as in the Baseboard Pinout design collateral.

The hypervisor should maintain a list of GPU Physical IDs and corresponding PCI BDF mapping infor-
mation to identify each GPUs in the hypervisor. This information is required to identify GPUs that
belong to a partition and hot attach the GPUs to a service VM as part of guest VM activation.

8.6.3. Booting the Service Virtual Machine
As part of service VM boot, the hypervisor must do the following:

1. Assign/plug the available NVSwitches as PCI passthrough devices to the service VM without
MMIO filtering.

2. On NVIDIA HGX B200 systems, assign the four PF functions of the CX7 bridge devices as PCI
passthrough instead of NVSwitches.

To locate the CX7 bridge devices you want, refer to Additional Steps for NVIDIA HGX B200 Systems.

3. On NVIDIA HGX-2 and NVIDIA HGX A100 systems, assign/plug the available GPUs as PCI
passthrough devices to the service VM without MMIO filtering.

4. Start FM and wait for it to fully initialize the GPUs and switches.

The FM APIs will return FM_ST_NOT_CONFIGURED until the fabric is initialized and ready.

5. Query the list of currently supported VM partitions and build the available guest VM combina-
tions.

6. Deassign/unplug the GPUs from the service VM for the NVIDIA HGX-2 and NVIDIA HGX A100
systems.

8.6.4. Restarting the Service Virtual Machine
The NVSwitch kernel software stack is loaded and initializes the NVSwitches and GPUs as part of the
service VM booting, so restarting the service VM will affect currently activated GPU partitions. The
hypervisor must follow the same procedure and steps as described in “Booting the Service Virtual
Machine” on page .

8.6.5. Shutting Down the Service Virtual Machine
Currently activated VM partitions will not be affected as part of service VM shutdown because the
NVSwitch configuration is preserved. However, if the hypervisor or PCIe pass through driver issues a
Secondary Bus Reset (SBR) to the NVSwitch devices as part of service VM shutdown, the activated
partitions will be affected. Since FM is not running, and the driver is unloaded, there will be no active
error monitoring and corresponding remediation.

Note

Do not leave the guest VMs in this state for a longer period.

8.6. Service Virtual Machine Life Cycle Management 66

NVIDIA Fabric Manager, Release 2.3

8.7. Guest Virtual Machine Life Cycle
Management

This section provides information about managing the life cycle of the guest VM.

8.7.1. Guest Virtual Machine NVIDIA Driver Package
To use GPU NVLink interconnects, ensure that one of the following the driver packages for NVIDIA
Data Center GPUs is installed on the guest VM:

▶ Version 450.xx and later for NVIDIA HGX-2 and NVIDIA HGX A100 systems.

▶ Version 525.xx and later for NVIDIA HGX H100 systems.

8.7.2. Starting a Guest Virtual Machine
To start a guest VM, the hypervisor completes one of the following tasks:

Note

The sequences will be different depending on the NVSwitch generation used in the system. The
key difference is whether the GPU needs to be attached to service VM and bound to nvidia.ko.

▶ On NVIDIA HGX-2 and NVIDIA HGX A100 systems:

1. Select one of the supported GPU partitions based on the guest VM GPU demand.

2. Identify the corresponding GPUs by using the GPU Physical-ID-to-PCI-BDF mapping.

3. Reset (SBR) the selected GPUs.

4. Hot plug the selected GPUs to the service VM.

5. Ensure that the GPUs are bound to nvidia.ko.

6. Request FM to activate the requested GPU partition using the fmActivateFabricParti-
tion() API.

7. Unbind the GPUs from nvidia.ko.

8. Hot unplug the GPUs from service VM (if needed).

9. Start the guest VM without resetting the GPUs.

Note

If the GPUs get a PCIe reset as part of guest VM launch, the GPU NVLinks will be in an InActive
state on the guest VM. Also, starting the guest VMwithout aGPU resetmight require amodification
in your hypervisor VM launch sequence path.

▶ On NVIDIA HGX H100 and later systems:

1. Select one of the supported GPU partitions based on the guest VM GPU demand.

2. Identify the corresponding GPUs by using the GPU Physical ID-to-PCI-BDF mapping.

8.7. Guest Virtual Machine Life Cycle Management 67

NVIDIA Fabric Manager, Release 2.3

3. Request FM to activate the requested GPU partition using the fmActivateFabricParti-
tion() API.

4. Start the guest VM.

8.7.3. Shutting Down a Guest Virtual Machine
To shut down a guest VM, the hypervisor completes one of the following tasks:

Note

The sequences will be different depending on the NVSwitch generation used in the system.

▶ On NVIDIA HGX-2 and NVIDIA HGX A100 systems:

1. To avoid NVSwitch-related NVLink errors and GPU resets, shut down the guest VM.

2. Use the fmDeactivateFabricPartition() API and request FM to deactivate the GPU parti-
tion.

3. Reset the GPUs after the partition has been deactivated.

▶ On NVIDIA HGX H100 and later systems:

1. Shut down the guest VM.

2. Use the fmDeactivateFabricPartition() API and request FM to deactivate the GPU parti-
tion.

3. If the guest VM shutdown process does not complete an explicit GPU reset, reset the GPUs after
the partition has been deactivated.

8.7.4. Rebooting a Guest Virtual Machine
When rebooting a guest VM, if the GPUs get an SBR as part of the VM reboot, the hypervisor must
complete the steps in “Starting a Guest Virtual Machine” on page and “Shutting Down a Guest Virtual
Machine” on page .

8.7.5. Verifying GPU Routing
The nvswitch-audit command-line utility, which was installed as part of the FM package, can out-
put the number of NVLinks that the NVSwitches are programmed to handle for each GPU. The tool
reconstructs this information by reading and decoding the internal NVSwitch hardware routing ta-
ble information. We recommend that you periodically verify the GPU reachability matrix on each VM
partition activation and deactivation cycle by running this tool in the service VM.

The following options are supported by nvswitch-audit command-line utility.

$.∕nvswitch-audit -h
NVIDIA NVSwitch audit tool
Reads NVSwitch hardware tables and outputs the current number of
NVlink connections between each pair of GPUs

(continues on next page)

8.7. Guest Virtual Machine Life Cycle Management 68

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

Usage: nvswitch-audit [options]

Options include:
[-h | --help]: Displays help information
[-v | --verbose]: Verbose output including all Request and Response table
↪→entries
[-f | --full-matrix]: Display All possible GPUs including those with no
↪→connecting paths
[-c | --csv]: Output the GPU Reachability Matrix as Comma Separated Values
[-s | --src]: Source GPU for displaying number of unidirectional connections
[-d | --dst]: Destination GPU for displaying number of unidirectional
↪→connections

The following example output shows the maximum GPU NVLink connectivity when an eight-GPU VM
partition on an NVIDIA HGX A100 is activated.

$.∕nvswitch-audit
GPU Reachability Matrix
GPU 1 2 3 4 5 6 7 8

1 X 12 12 12 12 12 12 12
2 12 X 12 12 12 12 12 12
3 12 12 X 12 12 12 12 12
4 12 12 12 X 12 12 12 12
5 12 12 12 12 X 12 12 12
6 12 12 12 12 12 X 12 12
7 12 12 12 12 12 12 X 12
8 12 12 12 12 12 12 X 12

Note

The nvswitch-audit tool is not supported on DGX B200, NVIDIA HGX B200, and corresponding B100
system variants.

8.8. Error Handling
Refer to Error Handling for information about FM initialization, partition, and hardware specific errors
and their handling.

8.8.1. Guest Virtual Machine GPU Errors
When the guest VM is active, all GPU runtime errors will be logged in the guest VM syslog as Xid errors.
On NVIDIA HGX-2 and NVIDIA HGX A100 systems, the GPU NVLink errors that require retraining are
not supported in this environment, and to recover, must complete the steps in “Starting a Guest Virtual
Machine” on page and “Shutting Down a Guest Virtual Machine” on page .

8.8. Error Handling 69

NVIDIA Fabric Manager, Release 2.3

8.8.2. Handling a Service Virtual Machine Crash
When a service VM experiences a kernel crash, the remaining activated guest VMs will continue as
expected, but the VM partition activation and deactivation life cycle will be affected. To recover from
this state, you must restart or boot the service VM.

8.9. Interoperability With a Multi-Instance GPU
The Shared NVSwitch virtualization model can interoperate with the MIG feature that is supported on
A100, H100 and later GPUs. However, to expose a shared NVSwitch partition with MIG-enabled GPUs
to guest VMs, maintain one of the options in this section. NVLinks are not trained on H100 and later
GPUs when MIG is enabled, so these options do not apply to corresponding DGX and HGX systems.

8.9.1. Initializing Service Virtual Machine
When FM initializes on the service VM, without the --restart option for resiliency flow, the MIG
mode must be disabled for the available GPUs. If any GPUs have MIG mode enabled, the FM service
initialization will be aborted.

8.9.2. Activating the Guest Virtual Machine
The FM-shared NVSwitch partition activation and deactivation sequence can handle MIG-enabled
GPUs. However, GPUs in which MIG was enabled before the partition was activated, for example by
the VM before the VM reboot, will not have NVLinks trained as part of the partition activation. The
activation/deactivation flow works as expected.

8.9. Interoperability With a Multi-Instance GPU 70

Chapter 9. vGPU Virtualization Model

The vGPU virtualization model supports VF passthrough by enabling SR-IOV in the supported GPUs
and assigning a VF, or set of VFs, to the VM.

▶ GPU NVLinks are assigned to only one VF at a time.

▶ NVLink P2P between GPUs that belong to different VMs or partitions is not supported.

Refer to the Virtual GPU Software User Guide for more information about the supported vGPU func-
tionality, features, and configurations.

9.1. Software Stack
In the vGPU virtualization model:

▶ The NVSwitch Software Stack (FM and Switch Driver) runs in the vGPU host.

▶ Like the bare-metal mode, the physical GPUs and NVSwitches are owned and managed by the
vGPU host.

▶ The GPU and NVSwitch NVLinks are trained and configured as part of FM initialization.

▶ The switch routing table is initialized to prevent GPU-GPU communication.

Note

The vGPU-based deployment model is not supported on first generation-based NVSwitch systems
such as DGX-2 and NVIDIA HGX-2.

9.2. Preparing the vGPU Host
This section provides information about how to prepare the vGPU host.

9.2.1. OS Image
Refer to the Virtual GPU Software User Guide for the list of supported OSs, hypervisors, and for infor-
mation about installing and configuring the vGPU host driver software.

71

https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide

NVIDIA Fabric Manager, Release 2.3

Figure 9.1: The vGPU Software Stack

9.2.2. NVIDIA Software Packages
In addition to the NVIDIA vGPU host driver software, the vGPU host image must have the following
NVIDIA software packages installed:

▶ The FM package

▶ The FM SDK Package

Note

Both packages must be the same version as the Driver package.

9.2.3. Fabric Manager Config File Modifications
To support vGPU virtualization, start the FM service in vGPU virtualization mode by setting the FAB-
RIC_MODE=2 FM config item.

Note

NVSwitches must bind to nvidia.ko before the FM service starts. On DGX A100 and NVIDIA HGX
A100 systems, all GPUs must also be bound to nvidia.ko before the FM service starts.

In the vGPU virtualization mode, FM supports a resiliency feature that allows the continuous forward-
ing of NVLink traffic between GPUs on active guest VMs after FM exits gracefully or non-gracefully
on the vGPU host. To support this feature, FM uses the ∕tmp∕fabricmanager.state file to save
certain metadata information. To use a different location/file to store this information, modify the
STATE_FILE_NAME FM config file item with the new path and file name.

By default, FM uses TCP I/P loopback (127.0.0.1)-based socket interface for communication. To use
Unix domain sockets instead, modify the FM_CMD_UNIX_SOCKET_PATH and UNIX_SOCKET_PATH FM
config file options with the new Unix domain socket names.

9.2. Preparing the vGPU Host 72

NVIDIA Fabric Manager, Release 2.3

9.3. Fabric Manager-Shared Library and APIs
Refer to FabricManager SDK for a list of the APIs that are used tomanage the vGPU partition life cycle.

9.4. Fabric Manager Resiliency
Refer to Resiliency for more information about FM resiliency in the vGPU virtualization mode.

9.5. vGPU Partitions
Refer to GPU Partitions for the default supported partitions for the vGPU virtualization model.

9.6. Guest Virtual Machine Life Cycle
Management

Here is an overview of the guest VM life cycle:

1. The system powers on and starts.

2. The vGPU host driver loads.

3. SR-IOV is enabled.

4. FM initializes in the vGPU virtualization mode.

5. NVlinks are trained.

6. The partition is activated with the selected SR-IOV VFs.

7. The vGPU-enabled VM completes its life cycle with the VFs selected in step 2.

This life cycle can involve boot, reboot, shutdown, suspend, resume, and migrate activities.

4. The partition deactivates.

These steps are explained in greater detail in the following sections.

9.6.1. Activating the Partition and Starting the Virtual
Machine

SR-IOV VFs must be enabled on the physical GPUs before you activate partitions and power on the
vGPU VMs.

When starting a guest VM, the hypervisor must do the following:

1. Select an available GPU partition that contains the required number of GPUs for the guest VM
and select the VFs that will be used on those GPUs.

2. Use the fmActivateFabricPartitionWithVFs()API and request FM to activate the GPU par-
tition, with the set of selected VFs.

9.3. Fabric Manager-Shared Library and APIs 73

NVIDIA Fabric Manager, Release 2.3

3. Start the guest VM with the selected VFs.

Note

Partition activation is always required before starting a vGPU VM, even for VMs that use only one
vGPU. The ordering of VFs used during partition activation and VM assignment must remain con-
sistent to ensure the correct suspend, resume, and migration operations.

Refer to the Installing and Configuring the NVIDIA GPU Manager for Red Hat Linux KVM for more
information about SR-IOV VF enablement and assigning VFs to VMs.

9.6.2. Deactivating the Partition
Do not deactivate partitions when VMs are executing on the GPUs in the partition.

To deactivate a partition:

1. Shut down the guest VM that is currently operating in the partition.

2. Use the fmDeactivateFabricPartition() API and request that FM deactivate the partition.

9.6.3. Migrating Virtual Machines
VMmigration is supported only between partitions with an identical number, type of GPU, and NvLink
topology.

Refer to Migrating a VM Configured with vGPU for more information.

9.6.4. Verifying GPU Routing
The nvswitch-audit command line utility referenced in “Verifying GPU Routing” on page can also be
used to verify NVSwitch routing information in the vGPU mode. We recommend that you periodically
run this tool to verify the GPU reachability matrix on each VM partition’s activation and deactivation
cycle.

9.7. Error Handling
Refer to Error Handling for information about FM initialization, partition, hardware specific errors, and
their handling.

9.7.1. Guest Virtual Machine GPU Errors
When the guest VM is active, GPU runtime errors will be logged in the vGPU host syslog like the Xid
errors. On DGX A100 and NVIDIA HGX A100 systems, GPU NVLink errors that require retraining are
not supported in this environment and must complete the guest VM shutdown and start sequence to
recover.

9.7. Error Handling 74

https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#red-hat-el-kvm-install-configure-vgpu
https://docs.nvidia.com/grid/11.0/grid-vgpu-user-guide/index.html#migrating-vm-with-vgpu

NVIDIA Fabric Manager, Release 2.3

9.8. GPU Reset
If the GPU generates a runtime error, or gets an Xid NVLink error, the system administrator can clear
the corresponding error state and recover the GPU using the GPU reset operation. The operationmust
be initiated from the vGPU host after a VM that is using the GPU is shut down and the correspond-
ing partition is deactivated. Refer to the nvidia-smi command-line utility documentation for more
information.

9.9. Interoperability with MIG
MIG-backed vGPUs on NVIDIA A100 and NVIDIA HGX A100 cannot use NVlink. The FM’s vGPU virtual-
ization mode still can interoperate with the MIG feature to support use cases where a subset of GPUs
are being used in MIG mode.

9.9.1. Enabling MIG before Starting the Fabric Manager
Service

When MIG is enabled on a GPU before FM is started, FM will remove the GPU partitions from its list
of available partitions that contain GPUs in MIG mode. These GPU partitions will not be available to
deploy VMs. To enable partitions after disabling MIG mode on a GPU, reboot the system.

9.9.2. Enabling MIG After Starting the Fabric Manager
Service

MIG functionality can be enabled on any GPU after starting the FM Service, but before a partition that
contained the GPU is activated.

Note

Activating a GPU partition will return success even if the GPU is in MIG mode.

On DGX A100 and NVIDIA HGX A100 systems, activating a multi-GPU partition will fail if a GPU in the
partition is in MIG mode. This process will succeed on the DGX H100 and NVIDIA HGX H100 systems.

9.8. GPU Reset 75

Chapter 10. Supported High Availability
Modes

FM provides several High Availability Mode (Degraded Mode) configurations that allow system admin-
istrators to set appropriate policies when there are hardware failures, such as GPU failures, NVSwitch
failures, NVLink connection failures, and so on, on NVSwitch-based systems. With this feature, system
administrators can keep a subset of available GPUs that can be used while waiting to replace failed
GPUs, baseboards, and so on.

DGX A100, NVIDIA HGX A100 and DGX H100, NVIDIA HGX H100 systems have different behaviors
(Refer to Error Handling for more information).

10.1. Common Terms
▶ GPU Access NVLink is an NVLink connection between a GPU and a NVSwitch.

▶ GPU Access NVLink failure is a failure that occurs in the connection between a GPU and an
NVSwitch.

Failures can be the result of a GPU/NVSwitch pin failure, a mechanical failure in the GPU baseboard, or
a similar failure.

▶ Trunk NVLink are the links that connect two GPU baseboards.

Trunk NVLinks only occur between NVSwitches and travel over the NVLink bridge PCBs and connec-
tors.

▶ Trunk NVLink failure is a trunk NVLink failure that traverses between the two GPU baseboard
trays.

This failure can be the result of a bad backplane connector pin or a similar issue.

▶ NVSwitch failure is a NVSwitch failure that is categorized as an internal failure of the NVSwitch.

This failure can be the result of the NVSwitch not being displayed on the PCIe bus, a DBE error, or a
similar issue.

▶ GPU failure is where the GPU has failed.

This failure can be the result of NVLink connectivity, a PCIe failure, or a similar issue.

Note

76

NVIDIA Fabric Manager, Release 2.3

These high availability modes and their corresponding dynamic reconfiguration of the NVSwitch-
based system are applied in response to errors that are detected during FM initialization. Runtime
errors that occur after the system is initialized, or when a GPU job is running, will not trigger these
high availability mode policies.

10.2. GPU Access NVLink Failure
This section provides information about the GPU access NVLink failure.

10.2.1. Fabric Manager Config Item
The GPU access NVLink failure mode is controlled the following item:

ACCESS_LINK_FAILURE_MODE=<value>

10.2.2. Bare Metal Behavior
▶ ACCESS_LINK_FAILURE_MODE=0

In this mode, FM removes the GPUs with an access NVLink failure from NVSwitch routing and config-
ures the rest of the GPUs to form one memory fabric. The GPUs with the access NVLink failure will
lose their NVLink P2P capability with other GPUs.

The failed GPUs are still visible to the NVIDIA software stack, such as CUDA, NVML, NVIDIA-SMI, and
so on and can be used for non-NVLink workloads.

▶ ACCESS_LINK_FAILURE_MODE=1

In this mode, if there are two GPU baseboards where the GPU Access NVLink is connected, FMwill dis-
able NVSwitch and its pair of Trunk NVLinks. This reduces the NVLink P2P bandwidth to 5/6 through-
out the fabric. If a GPU can access NVLink failures to more than one NVSwitch, this option will remove
the GPU from the NVSwitch routing configuration and disable its NVLink P2P capability.

▶ This process will leave the other GPUs with complete NVLink P2P bandwidth.

▶ If multiple GPU access NVLink failures point to the same NVSwitch, that NVSwitch will be dis-
abled.

▶ This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

10.2.3. Shared NVSwitch and vGPU Virtualization Behavior
▶ ACCESS_LINK_FAILURE_MODE=0

In this mode, FM removes the GPUs with access NVLink failures from the currently supported GPU
partition list. Figure 10.1 shows the effect of one GPU having an access NVLink failure in a two-GPU
baseboard system. The failed GPUs will be available for single GPU partitions.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

▶ ACCESS_LINK_FAILURE_MODE=1

10.2. GPU Access NVLink Failure 77

NVIDIA Fabric Manager, Release 2.3

Figure 10.1: Shared NVSwitch and vGPU Partitions When a GPU Access NVLink Fails

In the Shared NVSwitch mode, all GPU partitions will be available, but the partitions will reduce the
available bandwidth to 5/6 throughout the fabric. If multiple access NVLinks fail on one GPU, the GPU
will be removed, and the available GPU partitions will be adjusted asmentioned earlier. The failed GPUs
will be available for single GPU partitions.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

Note

Currently, the ACCESS_LINK_FAILURE_MODE=1 configuration is not supported in the vGPU Multi-
tenancy Mode.

10.3. Trunk NVLink Failure
This section provides information about the trunk NVLink failure.

10.3.1. Fabric Manager Config Item
The Trunk NVLink failure mode is controlled through the following FM config file item:

TRUNK_LINK_FAILURE_MODE=<value>

Note

This option applies only to systems with two GPU baseboards.

10.3.2. Bare Metal Behavior
▶ TRUNK_LINK_FAILURE_MODE=0

In this mode, FM aborts and leaves the system uninitialized when there is a trunk NVLink failure, and
all CUDA application launches will fail with the cudaErrorSystemNotReady status. However, when
FM_STAY_RESIDENT_ON_FAILURES =1, the continue with error config option is enabled, and
the FM service continues to run, and the CUDA application launches will fail with cudaErrorSystem-
NotReady status.

10.3. Trunk NVLink Failure 78

NVIDIA Fabric Manager, Release 2.3

This mode is effective only on the DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

▶ TRUNK_LINK_FAILURE_MODE=1

In this mode, if an NVSwitch has one or more trunk NVLink failures, the NVSwitch will be disabled
with its peer NVSwitch. This reduces the available bandwidth to 5/6 throughout the fabric. If mul-
tiple NVSwitches have trunk NVLink failures, FM will fall back to the TRUNK_LINK_FAILURE_MODE=0
behavior.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

10.3.3. Shared NVSwitch and vGPU Virtualization Behavior
▶ TRUNK_LINK_FAILURE_MODE=0

In this mode, FM removes GPU partitions by using trunk NVLinks from the currently supported GPU
partition list, so 16-GPU partitions and eight-GPU partitions across baseboards will be removed. The
remaining partitions will run with complete NVLink bandwidth. This option will support an unlimited
number of trunk NVLink failures on a connected pair of NVSwitches.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

▶ TRUNK_LINK_FAILURE_MODE=1

In the Shared NVSwitch mode, the GPU partitions will be available, but the partitions will reduce the
available bandwidth to 5/6 throughout the fabric. This option will be supported when multiple trunk
NVLink failures occur on the same NVSwitch pair. If multiple trunk NVLink failures affect different
NVSwitch pairs, FM will fall back to the TRUNK_LINK_FAILURE_MODE=0 behavior.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

Note

The TRUNK_LINK_FAILURE_MODE=1 configuration is currently not supported in the vGPUMultite-
nancy Mode.

10.4. NVSwitch Failure
This section provides information about NVSwitch failures.

10.4.1. Fabric Manager Config Item
The NVSwitch failure mode is controlled through this FM config file item:

NVSWITCH_FAILURE_MODE=<value>

10.4.2. Bare Metal Behavior
▶ NVSWITCH_FAILURE_MODE=0

In this mode, when there is an NVSwitch failure, FM aborts and leaves the system uninitialized, and
all CUDA application launches will fail with a cudaErrorSystemNotReady status. However, when
FM_STAY_RESIDENT_ON_FAILURES =1, the continue with error config option is enabled,

10.4. NVSwitch Failure 79

NVIDIA Fabric Manager, Release 2.3

the FM service continues to run, and CUDA application launches will fail with a cudaErrorSystem-
NotReady status.

▶ NVSWITCH_FAILURE_MODE =1

In this mode, when there is an NVSwitch failure, the NVSwitch will be disabled with its peer NVSwitch.
This will reduce the available bandwidth to 5/6 throughout the fabric. If multiple NVSwitch failures
occur, FM will fall back to the NVSWITCH_FAILURE_MODE=0.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

10.4.3. Shared NVSwitch and vGPU Virtualization Behavior
▶ NVSWITCH_FAILURE_MODE=0

In this mode, FM will remove multi-GPU partitions from the baseboard with the failing NVSwitch and
eight-GPU partitions across baseboards. In one baseboard system, only single GPU partitions will be
supported. Figure 10.2 shows the supported partitions when an NVSwitch has failed.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

Figure 10.2: Shared NVSwitch and vGPU Partitions when an NVSwitch has Failed

▶ NVSWITCH_FAILURE_MODE=1

In the Shared NVSwitch mode, all GPU partitions will be available, but the partitions will reduce the
available bandwidth to 5/6 throughout the fabric. If multiple NVSwitch failures happen, FM will fall
back to NVSWITCH_FAILURE_MODE =0 behavior.

This mode is effective only on DGX A100 and NVIDIA HGX A100 NVSwitch-based systems.

Note

Currently, the NVSWITCH_FAILURE_MODE=1 configuration is not supported in the vGPU Multite-
nancy Mode.

10.5. GPU Failure
This section provides information about GPU failures.

10.5. GPU Failure 80

NVIDIA Fabric Manager, Release 2.3

10.5.1. Bare Metal Behavior
FM will ignore GPUs that have failed to initialize, are not displayed on the PCI bus, and so on. FM will
set up routing and enable NVLink P2P among the available GPUs.

10.5.2. Shared NVSwitch and vGPU Virtualization Behavior
FM will continue initialization and adjust the currently supported partition list by excluding the failed
GPU partitions. Figure 10.3 shows the supported partitions when a GPU is missing or has failed to
initialize.

Figure 10.3: Shared NVSwitch and vGPU Partitions When a GPU is Missing or Has Failed

10.6. Manual Degradation
Manual degradation prevents a consistently failing GPU, NVSwitch, or baseboard from being enumer-
ated by the NVSwitch system software stack. Depending on the failing component, the system ad-
ministrator must configure appropriate action.

10.6.1. GPU Exclusion
Depending on the errors, certain GPUs might be candidates for exclusion from the system so that FM
can successfully initialize and configure the rest of the GPU subsets. Based on the failure analysis
data from previous generation GPUs, to exclude a GPU, here are the recommended error conditions:

▶ GPU double bit ECC errors.

▶ GPU falling off the PCIe bus.

▶ GPU failure to enumerate on the PCIe bus.

▶ GPU side NVLink training error.

▶ GPU side unexpected XID.

▶ This category can also be application induced.

For full passthrough virtualization, the administrator must identify the GPUs that should be excluded.
The hypervisor must ensure that VMs are not created on the GPUs that have been identified as can-
didates for exclusion.

10.6. Manual Degradation 81

NVIDIA Fabric Manager, Release 2.3

10.6.1.1 GPU Exclusion Flow

Here are the phases in the GPU exclusion flow:

1. Running application error handling.

2. Diagnosing GPU failures.

3. Remediating the error.

The steps for each of these phases can vary based on whether the system is running in bare metal or
in virtualized mode. The following sections describe the flow for bare metal and virtualized platforms.

10.6.1.2 Running Application Error Handling

Errors faced by the GPU during active execution, such as GPU ECC errors, GPU falling off the bus, and
so on, are reported through the following means:

▶ ∕var∕log∕syslog as an XID message

▶ DCGM

▶ NVIDIA Management Library (NVML)

▶ GPU SMBPBI-based OOB commands

▶ The FM log file.

Table 10.1 Error Conditions and Signatures

Error Condition Error signature on Running Application

GPU Double Bit Error XID 48 output by GPU driver

GPU falling off PCIe bus XID 79 output by GPU driver

GPU failing to enumerate on bus GPU does not appear to applications (CUDA applications or
nvidia-smi query)

GPU side NVLink training error Error output to ∕var∕log∕syslog by FM

GPU side errors Other XIDs output by GPU driver. This can also be application
induced.

GPU Double Bit Error XID 48 output by GPU driver

10.6.1.3 Diagnosing GPU Failures

System administrators can create their own GPUmonitoring/health check scripts to look for the error
traces. This process requires looking for at least one of the above-mentioned sources (syslog, NVML
APIs, and so on) to collect the necessary data.

DCGM includes an exclusion recommendation script that can be invoked by a system administrator
to collect the GPU error information. This script queries information from the passive monitoring
performed by DCGM to determine whether conditions that might require a GPU to be excluded have
occurred since the previous time the DCGM daemon was started. As part of the execution, the script
invokes a validation test that determines whether unexpected XIDs are being generated by the ex-
ecution of a known good application. Users can prevent the validation test from being run and only
monitor the passive information.

10.6. Manual Degradation 82

NVIDIA Fabric Manager, Release 2.3

Note

The DCGM exclusion recommendation script code is provided as a reference for system adminis-
trators to extend as appropriate or build their own monitoring/health check scripts. Refer to the
NVIDIA DCGM documentation for more information about the exclusion recommendation script
such as its location and supported options.

10.6.1.4 In-Band GPU Exclude Mechanism

The GPU kernel driver on NVSwitch-based systems can be configured to ignore a set of GPUs, even
if the GPUs were enumerated on the PCIe bus. The GPUs that will be excluded are identified by the
GPU’s unique identifier (GPU UUID) by using a kernel module parameter. After identifying whether
the GPU exclude candidates are in the system, the GPU kernel module driver will exclude the GPU
from being used by applications. If a GPU UUID is in the exclude candidate list, but the UUID was not
detected at runtime because the UUID belonged to a GPU that is not on the system or because the
PCIe enumeration of the GPU board failed, the GPU is not considered to have been excluded.

The list of exclude candidate GPUs can be persisted across reboots by specifying the module param-
eters by using a .conf file in the filesystem. The exclude mechanism is specific to a GPU rather than
a physical location on the baseboard. As a result, if a GPU is on the exclude candidate list, and is later
replaced by a new GPU, the new GPU will become visible to the system without updating the exclude
candidates. Conversely, if a GPU has been excluded on a system, placing it in different PCIe slots will
prevent the GPU from being visible to applications, unless the exclude candidate list is updated.

Updating the GPU excludes candidates requires manual intervention by the system administrator.

10.6.1.5 Kernel Module Parameters

The set of candidate GPUUUIDs that will be excluded are specified by using a kernel module parameter
that consists of a set of comma-separated GPU UUIDs.

▶ The kernel parameter can be specified when the kernel module loads nvidia.ko.

insmod nvidia.ko NVreg_ExcludedGpus=uuid1,uuid2…

▶ To make the GPU UUID persistent, the set of exclude candidate GPU UUIDs can also be specified
by using a nvidia.conf file in ∕etc∕modprobe.d.

options nvidia NVreg_ExcludedGpus=uuid1, uuid2…

Adding GPUs into the exclude candidate list is a manual step that must be completed by a system
administrator.

Note

The previously supported NVreg_GpuBlacklist module parameter option has been deprecated
and will be removed in a future release.

10.6.1.6 Adding/Removing a GPU from the Exclude Candidate List

To add a GPU from the exclude candidate list or to remove it from the list, the system administrator
must complete the following steps:

1. If a conf file does not exist, create a conf file for the NVIDIA kernel module parameters.

2. Complete one of the following tasks:

10.6. Manual Degradation 83

https://docs.nvidia.com/datacenter/dcgm/index.html

NVIDIA Fabric Manager, Release 2.3

3. Add the UUID of the excluded GPU into the .conf file.

4. Remove the UUID of the GPU from the list.

5. Restart the system to load the kernel driver with updated module parameters.

10.6.1.7 Listing Excluded GPUs

An excluded GPU is not visible in CUDA applications or in basic queries by using nvidia-smi -q or
through NVML. This section provides information about the options to identify when a GPU has been
excluded, for example, the GPU’s UUID was in the exclude candidate list, and the GPU was detected in
the system.

10.6.1.8 nvidia-smi

The new command, nvidia-smi -B or nvidia-smi --list-excluded-gpus can be used to get
a list of excluded GPUs.

10.6.1.9 Procfs

The procfs entry, ∕proc∕driver∕nvidia∕gpus∕<PCI_ID>∕information, can specify whether the
GPU has been excluded.

10.6.1.10 Out-of-Band

Refer to the NVIDIA GPU SMBus Post-Box Interface (SMBPBI) documentation for more information.

10.6.1.11 Running GPU Exclusion Scripts

The following section provides information about the recommended flow that a system administrator
should follow to run GPU monitoring health checks or the DCGM exclusion recommendation script on
various system configurations.

10.6.1.12 Bare Metal and vGPU Configurations

The system administrator will run the bare metal and vGPU virtualization configurations in the same
OS instance as the application programs.

Here is the general flow that a system administrator will follow:

1. Periodically run the health check script or the DCGM exclusion recommendation script for all the
GPUs and NVSwitches on the system.

2. (Optional) Monitor the system logs to trigger a run of the health check script or DCGM exclusion
recommendation script.

3. Based on the output of the health check or exclusion recommendation script, add the GPU UUID
to the exclude candidate list.

4. If you are using the DCGM exclusion recommendation script, update the periodic run of the ex-
clude recommendation script with the newly expected GPU count.

5. Reboot the system to load the kernel driver with updated module parameters.

10.6. Manual Degradation 84

NVIDIA Fabric Manager, Release 2.3

10.6.1.13 Full Passthrough Virtualized Configurations

The primary difference in virtualized configurations is that the GPU kernel driver is left to the guest
VMs. As a result, the execution of the GPU diagnosis and remediation phases must be performed by
the hypervisor with the VM provisioning mechanism.

Here is the general flow that a hypervisor will follow:

1. The guest VM finishes and returns controls of a set of GPUs and switches to the hypervisor.

2. The hypervisor invokes a special test VM, which is trusted by the hypervisor.

3. In test VM, there should be a complete instance of the NVIDIA NVSwitch core software stack,
including GPU drivers and FM.

4. On this test VM, run the health check script or DCGM exclusion recommendation script.

5. Based on the output of the health check or exclusion recommendation script, add the GPU UUID
to a hypervisor readable database.

6. The hypervisor shuts down the test VM.

7. To prevent that GPU from being assigned to future VM requests, the hypervisor reads the
database, identifies the candidates to exclude, and updates its resource allocation mechanisms.

After the GPU board has been replaced, to make the GPU available again, the hypervisor updates the
database.

10.6.1.14 Shared NVSwitch Virtualization Configurations

In a shared NVSwitch virtualization configuration, system administrators can run their GPU health
check script or DCGM exclusion recommendation script in a dedicated test VM or on DGX A100 and
NVIDIA HGX A100 systems, in the Service VM immediately after the GPU partition is activated.

To run GPU health on a special test VM:

1. The guest VM completes and returns control of the GPUs in the partition to the hypervisor.

2. After the shared NVSwitch guest VM shutdown procedure is complete, activate the same GPU
partition again.

3. The hypervisor schedules a special test VM, which is trusted on those GPUs.

4. On this test VM, run the health check script or DCGM exclusion recommendation script.

5. Based on the output of the health check or exclusion recommendation script, add the GPU UUID
into a hypervisor readable database.

6. If the partition activation/deactivation cycle is consistently failing, the hypervisor can consider
adding all the GPU UUID s of a partition to the database.

7. After the health check is complete, shut down the test VM.

8. The hypervisor reads the database to identify the candidates for exclusion and removes the cor-
responding GPU partitions from its currently supported partitions.

9. The hypervisor resource allocation mechanisms ensure that the affected GPU partitions will not
be activated.

10. When the service VM is rebooted, the hypervisor can choose not to bind the excluded GPUs to
the service VM.

This way, FM will adjust its currently supported GPU partitions.

10.6. Manual Degradation 85

NVIDIA Fabric Manager, Release 2.3

11. When the GPU board has been replaced, the hypervisor updates the database to make the GPU
available and restarts the service VM with all the GPUs to enable previously disabled GPU parti-
tions again.

To run GPU health on a service VM on DGX 100 and NVIDIA HGX 100 systems:

1. The fmActivateFabricPartition() call returned successfully in a Shared NVSwitch partition
activation flow.

2. Before the hypervisor detaches/unbinds the GPUs in the partition, run the required health check
script or DCGM exclusion recommendation script on those GPUs in the service VM.

3. Based on the output of the health check or exclusion recommendation script, add the GPU UUID
into a hypervisor readable database.

4. The hypervisor executes the partition deactivation flow using fmDeactivateFabricParti-
tion() when health check fails and corresponding guest VM launch is deferred.

5. If the partition activation/deactivation cycle is consistently failing, the hypervisor can consider
adding the GPU UUID s of a partition to the database.

6. The hypervisor reads the database to identify the candidates for exclusion and removes the cor-
responding GPU partitions from its currently supported partitions.

7. The hypervisor resource allocation mechanisms ensure that the affected GPU partitions will not
be activated.

8. After the service VM is rebooted, the hypervisor can choose not to bind the excluded GPUs to
the service VM.

This way, FM will adjust its currently supported GPU partitions.

10.6.1.15 Supported High Availability Modes

After the GPU board has been replaced, the hypervisor updates the database to make the GPU avail-
able and restarts the service VM with the GPUs to enable previously disabled GPU partitions again.

10.6.2. NVSwitch Exclusion
In DGX A100 and NVIDIA HGX A100 systems, if an NVSwitch is consistently failing, the system admin-
istrator can explicitly exclude the NVSwitch.

10.6.2.1 In-Band NVSwitch Exclusion

TheNVSwitch kernel driver onNVSwitch-based systems can be configured to ignore anNVSwitch even
when the systems were enumerated on the PCIe bus like the GPU exclusion feature. If the NVSwitch
exclusion candidates are in the system, the NVSwitch kernel module driver will exclude the NVSwitch
from being used by applications. If an NVSwitch UUID is in the exclusion candidate list, but the UUID is
not detected at runtime because the UUID belongs to aNVSwitch that is not on the system, or because
the PCIe enumeration of the NVSwitch fails, the NVSwitch is not considered to have been excluded.

On NVIDIA HGX A100 systems with two GPU baseboards, if an NVSwitch is explicitly excluded, FM will
manually exclude its peer NVSwitch across the Trunk NVLinks. This behavior can be configured using
the NVSWITCH_FAILURE_MODE high availability configuration file item.

10.6. Manual Degradation 86

NVIDIA Fabric Manager, Release 2.3

10.6.2.2 Kernel Module Parameters

▶ To specify a candidateNVSwitch UUID as a kernelmodule parameter, run the following command.

insmod nvidia.ko NvSwitchExcludelist=<NVSwitch_uuid>

▶ To make the NVSwitch UUID persistent, specify the UUID using an nvidia.conf file in ∕etc∕
modprobe.d.

options nvidia NvSwitchExcludelist=<NVSwitch_uuid>

The system administrator can get the NVSwitch UUID from the FM log file and add the UUID into the
excluded candidate list.

Note

The previously supported NvSwitchBlacklist module parameter option has been deprecated
and will be removed in a future release.

Note

On DGX B200 and NVIDIA HGX B200 systems, NVSwitches are not controlled by the kernel
NVSwitch driver module, so NVSwitches cannot be excluded by using kernel module parameters.

10.6.2.3 Out-of-Band NVSwitch Exclusion

Refer to SMBus Post Box Interface (SMBPBI) for more information about NVSwitch.

10.6. Manual Degradation 87

Chapter 11. NVLink Topology

This chapter provides information about the link IDs used by each GPU to connect to each NVSwitch
on different versions of NVIDIA HGX baseboards.

11.1. The NVIDIA HGX-2 GPU Baseboard
Every NVSwitch uses the 0/1, 2/3, 8/9 and 10/11 links for the inter-GPU baseboard connection, and
the links are not listed. Other NVLink connections, two per NVSwitch, are unused.

Table 11.1 GPUs and NVSwitch Links

GPU GPU link NVSwitch NVSwitch link

1 0 4 16

1 1 1 5

1 2 6 6

1 3 3 15

1 4 5 15

1 5 2 6

2 0 4 15

2 1 1 16

2 2 3 6

2 3 6 12

2 4 2 17

2 5 5 7

3 0 4 14

3 1 1 17

3 2 3 17

3 3 6 13

3 4 5 6

continues on next page

88

NVIDIA Fabric Manager, Release 2.3

Table 11.1 – continued from previous page

GPU GPU link NVSwitch NVSwitch link

3 5 2 4

4 0 4 17

4 1 1 4

4 2 3 7

4 3 6 7

4 4 2 7

4 5 5 17

5 0 4 13

5 1 1 13

5 2 5 13

5 3 3 13

5 4 6 14

5 5 2 16

6 0 4 5

6 1 1 14

6 2 6 5

6 3 3 4

6 4 2 12

6 5 5 14

7 0 4 12

7 1 1 15

7 2 5 5

7 3 3 5

7 4 2 13

7 5 6 17

8 0 4 4

8 1 1 12

8 2 6 15

8 3 5 12

8 4 3 14

8 5 2 5

11.1. The NVIDIA HGX-2 GPU Baseboard 89

NVIDIA Fabric Manager, Release 2.3

11.2. The NVIDIA HGX A100 GPU Baseboard
Every NVSwitch uses links 0 to 7 and 16 to 23 for the inter-GPU baseboard connection, and the links
are not listed. Other NVLink connections (four per NVSwitch) are unused.

The GPU numbering in Table 11.2 is the same numbering used in the HGX A100 Baseboard Pinout
design document.

Table 11.2 NVLink Topology of the NVIDIA HGX A100 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 0, 1 4 8, 9

1 2, 3 1 24, 25

1 4, 5 3 30, 31

1 6, 7 6 12, 13

1 8, 9 2 12, 13

1 10, 11 5 30, 31

2 0, 1 4 30, 31

2 2, 3 1 26, 27

2 4, 5 3 12, 13

2 6, 7 6 24, 25

2 8, 9 2 34, 35

2 10, 11 5 14, 15

3 0, 1 4 28, 29

3 2, 3 1 34, 35

3 4, 5 3 34, 35

3 6, 7 6 26, 27

3 8, 9 2 8, 9

3 10, 11 5 12, 13

4 0, 1 4 34, 35

4 2, 3 1 32, 33

4 4, 5 3 14, 15

4 6, 7 6 14, 15

4 8, 9 2 14, 15

4 10, 11 5 34, 35

5 0, 1 4 26, 27

5 2, 3 1 10, 11

5 4, 5 3 28, 29

continues on next page

11.2. The NVIDIA HGX A100 GPU Baseboard 90

NVIDIA Fabric Manager, Release 2.3

Table 11.2 – continued from previous page

GPU GPU link NVSwitch NVSwitch link

5 6, 7 6 28, 29

5 8, 9 2 10, 11

5 10, 11 5 26, 27

6 0, 1 4 10, 11

6 2, 3 1 28, 29

6 4, 5 3 8, 9

6 6, 7 6 10, 11

6 8, 9 2 24, 25

6 10, 11 5 28, 29

7 0, 1 4 24, 25

7 2, 3 1 30, 31

7 4, 5 3 26, 27

7 6, 7 6 30, 31

7 8, 9 2 26, 27

7 10, 11 5 10, 11

8 0, 1 4 32, 33

8 2, 3 1 8, 9

8 4, 5 3 10, 11

8 6, 7 6 34, 35

8 8, 9 2 32, 233

8 10, 11 5 24, 25

11.3. The NVIDIA HGX H100 GPU Baseboard
The GPU numbering in Table 11.3 is the same information that is returned through nvidia-smi as
the module ID, which is derived based on the GPIO connections on the baseboard.

Table 11.3 NVLink Topology of the NVIDIA HGX H100 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 2,3,12,13 1 40,41,44,45

1 0,1,11,16,17 2 36,37,40,46,47

1 15,14,10,6,7 3 42,43,45,62,63

continues on next page

11.3. The NVIDIA HGX H100 GPU Baseboard 91

NVIDIA Fabric Manager, Release 2.3

Table 11.3 – continued from previous page

GPU GPU link NVSwitch NVSwitch link

1 4,5,9,8 4 58,59,62,63

2 15,14,8,9 1 42,43,46,47

2 2,3,7,6,11 2 2,3,4,5,32

2 10,5,4,0,1 3 34,40,41,46,47

2 12,13,16,17 4 34,35,38,39

3 13,12,7,6 1 48,49,52,53

3 17,16,10,3,2 2 0,1,33,38,39

3 14,15,8,9,11 3 16,17,50,51,52

3 5,4,1,0 4 56,57,60,61

4 9,8,13,12 1 32,33,36,37

4 2,3,10,14,15 2 50,51,53,62,63

4 7,6,11,16,17 3 2,3,35,38,39

4 5,4,1,0 4 42,43,46,47

5 7,6,12,13 1 58,59,62,63

5 17,16,11,1,0 2 48,49,52,56,57

5 15,14,10,2,3 3 36,37,44,60,61

5 4,5,9,8 4 48,49,52,53

6 6,7,15,14 1 34,35,38,39

6 8,9,17,16,11 2 6,7,34,35,42

6 4,5,10,1,0 3 0,1,19,32,33

6 13,12,3,2 4 32,33,36,37

7 17,16,13,12 1 50,51,54,55

7 10,0,1,4,5 2 43,54,55,58,59

7 15,14,11,8,9 3 48,49,53,56,57

7 7,6,3,2 4 40,41,44,45

8 12,13,17,16 1 56,57,60,61

8 10,5,4,0,1 2 41,44,45,60,61

8 11,14,15,7,6 3 18,54,55,58,59

8 2,3,8,9 4 50,51,54,55

Note

The DGX H200, NVIDIA HGX H200 and NVIDIA HGX H20 NVLink topology is same as the H100
variant.

11.3. The NVIDIA HGX H100 GPU Baseboard 92

NVIDIA Fabric Manager, Release 2.3

11.4. The NVIDIA HGX H800 GPU Baseboard
On HGX H800, every GPU has two NVLinks to each of the four NVSwitches.

Table 11.4 NVLink Topology of the NVIDIA HGX H800 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 3,13 1 41, 45

1 1,17 2 37,47

1 15,6 3 42,62

1 5,8 4 59,63

2 15,8 1 42,46

2 3,6 2 3,5

2 5,1 3 40,47

2 13,17 4 35,39

3 13,6 1 48,53

3 17,3 2 0,38

3 15,8 3 17,50

3 5,1 4 56,60

4 8,13 1 33,36

4 3,15 2 51,63

4 6,17 3 3,39

4 5,1 4 42,46

5 6,13 1 59,63

5 17,1 2 48,56

5 15,3 3 36,61

5 5,8 4 49,53

6 6,15 1 34,38

6 8,17 2 6,34

6 5,1 3 1,32

6 13,3 4 32,36

7 17,13 1 50,54

7 1,5 2 55,59

7 15,8 3 48,56

7 6,3 4 41,44

8 13,17 1 57,60

continues on next page

11.4. The NVIDIA HGX H800 GPU Baseboard 93

NVIDIA Fabric Manager, Release 2.3

Table 11.4 – continued from previous page

GPU GPU link NVSwitch NVSwitch link

8 5,1 2 44,61

8 15,6 3 55,59

8 3,8 4 51,54

11.5. The NVIDIA HGX B200 GPU Baseboard
On HGX B200, every GPU has nine NVLinks to each of the two NVSwitches.

Table 11.5 NVLink Topology of the NVIDIA HGX B200 GPU Baseboard

GPU GPU link NVSwitch NVSwitch link

1 0,1,3,4,6,9,11,14,16 2 2,10,12,6,4,14,16,8,1

1 2,5,7,8,10,12,13,15,17 1 3,2,4,1,7,5,6,8,10

2 0,1,3,4,6,9,11,14,16 2 3,20,18,7,5,24,22,9,11

2 2,5,7,8,10,12,13,15,17 1 9,12,14,11,13,15,16,18,20

3 0,1,3,4,6,9,11,14,16 2 13,26,28,17,15,30,32,19,21

3 2,5,7,8,10,12,13,15,17 1 19,22,24,17,23,21,26,28,30

4 0,1,3,4,6,9,11,14,16 2 23,36,34,27,25,40,38,29,31

4 2,5,7,8,10,12,13,15,17 1 25,32,34,27,29,31,36,38,40

5 0,1,3,4,6,9,11,14,16 2 33,42,44,37,35,46,48,39,41

5 2,5,7,8,10,12,13,15,17 1 35,42,44,33,39,37,46,48,50

6 0,1,3,4,6,9,11,14,16 2 43,52,50,47,45,56,54,49,51

6 2,5,7,8,10,12,13,15,17 1 41,52,54,43,45,47,56,58,60

7 0,1,3,4,6,9,11,14,16 2 53,58,60,57,55,62,64,59,61

7 2,5,7,8,10,12,13,15,17 1 51,62,64,49,55,53,66,68,70

8 0,1,3,4,6,9,11,14,16 2 63,68,66,67,65,72,70,69,71

8 2,5,7,8,10,12,13,15,17 1 57,72,65,59,61,63,67,69,71

11.5. The NVIDIA HGX B200 GPU Baseboard 94

Chapter 12. GPU Partitions

This chapter provides information about the default Shared NVSwitch and vGPU partitions for various
GPU baseboards.

12.1. DGX-2 and NVIDIA HGX-2

Table 12.1 Default Shared NVSwitch Partitions for DGX-2 and NVIDIA HGX-2

Partition
ID

Number of
GPUs

GPU Physical ID Number of NVLink In-
terconnects per GPU

0 16 1 to 16 6

1 8 1 to 8 6

2 8 9 to 16 6

3 8 1,4,6,7 from base-
board1 9, 12,14, 15
from baseboard2

5

4 8 2,3,5,8 from base-
board1 10, 11, 13,16
from baseboard2

5

5 4 1,4,6,7 5

6 4 2,3,5,8 5

7 4 9,12,14,15 5

8 4 10,11,13,16 5

9 2 1,4 5

10 2 2,3 5

11 2 5,8 5

12 2 6,7 5

13 2 9,12 5

14 2 10,11 5

15 2 13,16 5

continues on next page

95

NVIDIA Fabric Manager, Release 2.3

Table 12.1 – continued from previous page

Partition
ID

Number of
GPUs

GPU Physical ID Number of NVLink In-
terconnects per GPU

16 2 14,15 5

17 to 32 1 Physical ID 1 for Parti-
tion ID 17, Physical ID 2
for Partition ID 18, and
so on.

0

In this generation of NVSwitch, the NVLink ports reset (even-odd pair of links) must be issued in pairs.
As a result, NVIDIA HGX-2 and DGX-2 only support a fixed mapping of Shared NVSwitch partitions,
and the four-GPU and two-GPU VMs can enable only five out of six NVLinks per GPU.

DGX A100 and NVIDIA HGX A100

This section provides information about DGX A100 and NVIDIA HGX A100.

12.1.1. Default GPU Partitions
Depending on the high availability mode configurations, when a GPU is unavailable because of failures,
backlisting, and so on, the corresponding partitions will be removed from the supported partition list.
However, the Partition ID and GPU Physical IDs will remain the same for the rest of the supported
partitions.

Note

The GPU Physical IDs are based on how the GPU baseboard NVSwitch GPIOs are strapped. If there
is only one baseboard, and the GPIOs are strapped for the bottom tray, the GPU Physical IDs range
is 1-8. If the baseboard is strapped for the top tray, the GPU Physical IDs range is 9-16.

Table 12.2 Default Shared NVSwitch and vGPU Partitions for DGX A100 and NVIDIA HGX A100

Partition
ID

Number of
GPUs

GPU Physical ID Number of NVLink In-
terconnects per GPU

0 16 1 to 16 12

1 8 1 to 8 12

2 8 9 to 16 12

3 8 1 to 4 & 9 to 12 12

4 8 5 to 8 & 13 to 16 12

5 8 1 to 4 & 13 to 16 12

6 8 5 to 8 & 9 to 12 12

7 4 1, 2, 3, 4 12

continues on next page

12.1. DGX-2 and NVIDIA HGX-2 96

NVIDIA Fabric Manager, Release 2.3

Table 12.2 – continued from previous page

Partition
ID

Number of
GPUs

GPU Physical ID Number of NVLink In-
terconnects per GPU

8 4 5, 6, 7, 8 12

9 4 9, 10, 11, 12 12

10 4 13, 14, 15, 16 12

11 2 1, 2 12

12 2 3, 4 12

13 2 5, 6 12

14 2 7, 8 12

15 2 9, 10 12

16 2 11, 12 12

17 2 13, 14 12

18 2 15, 16 12

19 1 1 0

20 to 34 1 Physical ID 2 for Parti-
tion ID 20, Physical ID 3
for Partition ID 21, etc.

0

12.1.2. Supported GPU Partitions
In DGX A100 and NVIDIA HGX A100 systems, the earlier generation of the even-odd pair NVSwitch
NVLink reset requirement is no longer applicable. So, if the default GPU partition mentioned above is
not optimal based on the system’s PCIe topology, the partition mapping can be changed. However,
NVIDIA has the following restrictions for partition definitions:

▶ The two-GPU NVLink partitions must be in the same GPU baseboard.

▶ The four-GPU NVLink partitions must be in the same GPU baseboard.

▶ For eight-GPU NVLink partitions, which span across two GPU baseboards, four GPUs must be
from each baseboard.

Note

NVIDIA will evaluate any custom partition definition requests and variations of the policy on a case-
by-case basis and will provide necessary information to configure/override the default GPU parti-
tions.

12.2. DGX H100 and NVIDA HGX H100
This section provides information about DGX H100 and NVIDIA H100.

12.2. DGX H100 and NVIDA HGX H100 97

NVIDIA Fabric Manager, Release 2.3

12.2.1. Default GPU Partitions

Table 12.3 Default Shared NVSwitch Partitions for DGX H100 and NVIDIA HGX H100

Partition
ID

Number of
GPUs

GPU Physical ID Mod-
ule ID

Number of NVLink In-
terconnects per GPU

0 8 1 to 8 18

1 4 1 to 4 18

2 4 5 to 8 18

3 2 1,3 18

4 2 2,4 18

5 2 5,7 18

6 2 6,8 18

7 1 1 0

8 1 2 0

9 1 3 0

10 1 4 0

11 1 5 0

12 1 6 0

13 1 7 0

14 1 8 0

Note

The DGX H200, NVIDIA HGX H200, NVIDIA HGX H800, and NVIDIA HGX H20 have the same default
NVLink partition as the H100 variant.

12.2.2. Supported GPU Partitions
In DGX H100 and NVIDIA HGX H100 systems, regardless of the GPU degradation states, the GPU
partitions above are returned in the get support partition API.

DGX B200 and NVIDIA HGX B200

This section provides information about DGX B200 and NVIDIA HGX B200.

12.2.3. Default GPU Partitions

12.2. DGX H100 and NVIDA HGX H100 98

NVIDIA Fabric Manager, Release 2.3

Table 12.4 Default Shared NVSwitch Partitions for DGX B200 and NVIDIA HGX B200

Partition
ID

Number of
GPUs

GPU Physical ID Mod-
ule ID

Number of NVLink In-
terconnects per GPU

1 8 1 to 8 18

2 4 1 to 4 18

3 4 5 to 8 18

4 2 1,2 18

5 2 3,4 18

6 2 5,6 18

7 2 7,8 18

8 1 1 0

9 1 2 0

10 1 3 0

11 1 4 0

12 1 5 0

13 1 6 0

14 1 7 0

15 1 8 0

12.2.4. Supported GPU Partitions
In DGX B200 and NVIDIA HGX B200 systems, regardless of the GPU degradation states, the GPU
partitions in Table 12.4 are returned in the get support partition API.

12.2.5. Custom Shared NVSwitch Partitions
Customized shared NVSwitch partitions can be defined to replace the default ones by adding the
SHARED_PARTITION_DEFINITION_FILE configuration in the fabricmanager.cfg configuration file.
The path to the file is SHARED_PARTITION_DEFINITION_FILE =∕usr∕share∕nvidia∕nvswitch∕
customPartition.json.

The custom partitions are defined in JSON format, but you need to save the file with the .json exten-
sion.

CustomPartition.json
{
"version" : 0,
"name": "customer shared fabric partition name",
"time": "Fri Oct 18 11:11:11 2023",
"partitionInfo": [
{
"partitionId": 1,

(continues on next page)

12.2. DGX H100 and NVIDA HGX H100 99

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

"gpuModuleIds": [1, 2, 3, 4, 5, 6, 7, 8],
},
{
"partitionId": 2,
"gpuModuleIds": [1, 2, 5, 6],
},
{
"partitionId": 3,
"gpuModuleIds": [3, 4, 7, 8],
},
{
"partitionId": 4,
"gpuModuleIds": [1, 3],
},
{
"partitionId": 5,
"gpuModuleIds": [2, 4],
}
{
"partitionId": 6,
"gpuModuleIds": [5, 7],
},
{
"partitionId": 7,
"gpuModuleIds": [6, 8],
},
{
"partitionId": 8,
"gpuModuleIds": [1],
},
{
"partitionId": 9,
"gpuModuleIds": [2],
},
{
"partitionId": 10,
"gpuModuleIds": [3],
},
{
"partitionId": 11,
"gpuModuleIds": [4],
},
{
"partitionId": 12,
"gpuModuleIds": [5],
},
{
"partitionId": 13,
"gpuModuleIds": [6],
},
{
"partitionId": 14,

(continues on next page)

12.2. DGX H100 and NVIDA HGX H100 100

NVIDIA Fabric Manager, Release 2.3

(continued from previous page)

"gpuModuleIds": [7],
},
{
"partitionId": 15,
"gpuModuleIds": [8],
},
]
}

12.2. DGX H100 and NVIDA HGX H100 101

Chapter 13. Resiliency

The FM resiliency feature in the Shared NVSwitch and vGPU Model allows system administrators to
resume normal operation after FM gracefully (or non-gracefully) exits in the service VM. With this fea-
ture, currently activated guest VMs will continue to forward NVLink traffic even when FM is not run-
ning. After FM is successfully restarted, FM will support the typical guest VM activation /deactivation
workflow.

The NVSwitch and GPU NVLink errors that were detected when FM is not running will be cached into
the NVSwitch Driver and be reported after FM has successfully restarted. Also, changing the FM
version when FM is not running is not supported.

High-Level Flow

1. After an FM crash or a graceful exit, to start FM and resume the operation, the hypervisor will
run the –restart option.

2. After restarting FM, in 60 seconds the hypervisor will use the fmSetActivatedFabricParti-
tions() API and provide a list of currently activated guest VM partitions.

This is because FM does not know about the guest VM changes when it is not running. If there are no
activated guest VM partitions running when FM is restarted, the hypervisor will call the fmSetActi-
vatedFabricPartitions() API with the number of partitions as zero.

3. To start FM with the typical process, or to reinitialize the software and hardware states, the
hypervisor will follow the typical service VM starting sequence without the --restart option.

Detailed Resiliency Flow

When FM is started in normal mode, after initializing all the NVLink devices and discovering the NVLink
connections, FM will save the required metadata information in the ∕tmp∕fabricmanger.state file.
However, this location can be changed by setting the new file location to the STATE_FILE_NAME FM
config file item. The saved state is a snapshot of detected GPU information (UUID, physical Id) and the
currently supported guest VM partition metadata.

Here is the workflow:

1. When FM is started with the –restart option, it will skip most of its NVLink and NVSwitch
initialization steps and populate the required information from the stored file.

2. FM will wait for the hypervisor to provide a list of currently activated guest VM partitions.

3. During this time, typical partition operations such as querying the list of supported guest VM
partitions, activating and deactivating guest VM partitions, and so on, will be rejected.

4. After the list of active guest VM partition information is received from hypervisor, FM will ensure
that routing is enabled only for those partitions.

5. FM will enable the typical guest VM partition activation and the deactivation workflow.

102

NVIDIA Fabric Manager, Release 2.3

6. If FMcannot resume from the current state or the hypervisor does not provide the list of currently
activated guest VM partitions before the timeout period, the restart operation will be aborted,
and FM will exit.

Figure 13.1 shows the high-level flow when FM is started with typical command-line options and the
–restart option.

Figure 13.1: Fabric Manager Flow: Typical and Restart Options

103

Chapter 14. Error Handling

This chapter provides information about error handling.

14.1. Fabric Manager Initialization Errors
The errors in Table 14.1 might occur during FM initialization and topology discovery and happen only
during Host boot time (vGPU mode) or service VM initialization (Shared NVSwitch mode).

Note

We assume no guest VMs are running.

Table 14.1 Errors During FM Initialization

Error Condition Error Impact Recovery

Access NVLink connec-
tion (GPU to NVSwitch)
training failure.

Depending on the AC-
CESS_LINK_FAILURE_MODE
configuration, FM will
disable partitions that
are using the Access
NVLink failed GPU or
disable the connected
NVSwitch (and its peer
NVSwitch) and support
the partitions with
reduced bandwidth.

Restart the FM service (vGPU mode) or the service VM
(SharedNVSwitchmode). If the error persists, RMA the
GPU.

Trunk NVLink con-
nection (NVSwitch to
NVSwitch) training
failure.

Depending on the
TRUNK_LINK_FAILURE_MODE
configuration, FM will
remove partitions
that are using Trunk
NVLinks or disable the
NVSwitch (and its peer
NVSwitch) and support
the partitions with
reduced bandwidth.

Restart the FM service (vGPU mode) or the service
VM (Shared NVSwitch mode). If the error persists, in-
spect/reseat the NVLink Trunk backplane connector.

continues on next page

104

NVIDIA Fabric Manager, Release 2.3

Table 14.1 – continued from previous page

Error Condition Error Impact Recovery

Any NVSwitch or
GPU program-
ming/configuration
failures and typical
software errors.

Treated as fatal error
and FM service will
abort. However, if the
FM_STAY_RESIDENT_ON_FAILURES
configuration option
is set, the FM ser-
vice will stay running,
but partition activa-
tion/deactivation flow
will not be supported.

Restart the host and FM service (vGPU mode) or the
service VM (NVSwitchmode) If the error persists, tech-
nical troubleshooting is required.

14.2. Partition Life Cycle Errors
Table 14.2 summarizes potential errors returned by FM SDK APIs when querying supported partitions
or activating/deactivating VM partitions.

Table 14.2 Virtual Machine Partition Life Cycle Errors

Return Code Error Condi-
tion/Impact

Recovery

FM_ST_BADPARAM The provided par-
tition ID or other
parameters to the
APIs are invalid.

Use only the partition IDs returned by fmGetSup-
portedFabricPartitions (). Ensure that pointer
arguments are not NULL.

FM_ST_NOT_SUPPORTED FM is not started
with required con-
fig options.

Ensure that the shared fabric mode is enabled
in the FM config file. If not, set the desired
value and restart FMservice. Shared NVSwitch
Mode: SHARED_FABRIC_MODE = 1 vGPU Mode:
SHARED_FABRIC_MODE = 2

FM_ST_NOT_CONFIGURED The FM APIs were
issued before
FM is completely
initialized.

Wait until the FM service is completely initialized.

FM_ST_UNINITIALIZED The FM interface li-
brary has not been
initialized.

Ensure that the FM interface library is initialized
with a call to fmLibInit().

continues on next page

14.2. Partition Life Cycle Errors 105

NVIDIA Fabric Manager, Release 2.3

Table 14.2 – continued from previous page

Return Code Error Condi-
tion/Impact

Recovery

FM_ST_IN_USE The provided par-
tition ID is already
activated or the
GPUs required
for the specified
partition are being
used on another
activated partition.

Provide a non-activated partition ID. Ensure that
the GPUs are not in use by other activated parti-
tions.

FM_ST_UNINITIALIZED The provided par-
tition ID is already
deactivated.

Provide an activated partition ID.

FM_ST_GENERIC_ERROR A generic error oc-
curred when acti-
vating/deactivating
a VM partition.

Check the associated syslog for specific and de-
tailed error information.

FM_ST_TIMEOUT A GPU or NVSwitch
configuration
setting timed out.

Check the associated syslog for specific and de-
tailed error information.

FM_ST_ VERSION_MISMATCH The client applica-
tion using the FM
APIs might have
compiled/linked
with a different
version of FM
package that is
running on the
service VM.

Ensure that the client application is compiled and
linked with the same, or a compatible, FM package
that is installed on the Service VM.

14.3. Runtime NVSwitch Errors
NVSwitch runtime errors can be retrieved or monitored in one of the following ways:

▶ Through the Host or service VM syslog and Fabric Manager log file as SXid errors.

▶ Through the NVSwitch public API interface.

▶ Through the NVSwitch SMBPBI-based OOB commands.

When an NVSwitch port generates an SXid error, the corresponding error information and affected
GPU partition information will be logged into the host or service VM syslog.

Depending on the type of SXid errors and the impacted port, the GPUs on the corresponding guest
VM or all other guest VMs might be impacted. Generally, if the impact is local to a guest VM, the other
running guest VMs will not be affected and should function normally.

14.3. Runtime NVSwitch Errors 106

NVIDIA Fabric Manager, Release 2.3

14.4. Non-Fatal NVSwitch SXid Errors
Table 14.3 lists potential NVSwitch non-fatal SXid errors that might occur in the field and their impact.

Table 14.3 Potential Non-Fatal NVSwitch SXid Errors

SXid & Error String Guest VM Impact Guest VM Re-
covery

Other Guest
VM Impact

11004 (Ingress invalid
ACL) This SXid error
can happen only be-
cause of an incorrect
FM partition configu-
ration and is expected
not to occur in the field.

The corresponding GPUNVLink
traffic will be stalled, and the
subsequent GPU access will
hang. The GPU driver on the
guest VM will abort CUDA jobs
with Xid 45.

Validate the
GPU/NVSwitch
fabric partition
routing infor-
mation using
the NVSwitch-
audit tool.
Restart the
guest VM.

If the error is
observed on
a Trunk port,
the partitions
that are us-
ing NVSwitch
trunk ports will
be affected.

11012, 11021, 11022.
11023, 12021, 12023,
15008, 15011, 19049,
19055, 19057, 19059,
19062, 19065, 19068,
19071, 24001, 24002,
24003 (Single bit ECC
errors)

No guest VM impact because
the NVSwitch hardware will
auto correct the ECC errors.

Not Applicable. No Impact.

20001 (TX Replay Error) The NVLink packet needs to be
retransmitted. This error might
impact the NVLink throughput
of the specified port.

Not Applicable. If the error is
observed on
a Trunk port,
the partitions
that are us-
ing NVSwitch
trunk ports
might see a
throughput
impact.

12028 (egress non-
posted PRIV error)

The corresponding GPUNVLink
traffic will be stalled, and sub-
sequent GPU access will hang.
The GPU driver on the guest
VM will abort CUDA jobs with
Xid 45.

Restart the
guest VM

If the error is
observed on
a Trunk port,
the partitions
that are us-
ing NVSwitch
trunk ports will
be affected.

continues on next page

14.4. Non-Fatal NVSwitch SXid Errors 107

NVIDIA Fabric Manager, Release 2.3

Table 14.3 – continued from previous page

SXid & Error String Guest VM Impact Guest VM Re-
covery

Other Guest
VM Impact

19084(AN1 Heartbeat
Timeout Error)

This error is usually accompa-
nied by a fatal SXid error that
will affect the corresponding
GPU NVLink traffic.

Reset all
GPUs and
all NVSwitches
(refer to GPU
VM System Re-
set Capabilities
and Limitations
).

If the error is
observed on
a Trunk port,
the partitions
that are us-
ing NVSwitch
trunk ports will
be affected.

22013(Minion Link DL-
REQ interrupt

This SXid can be safely ignored. Not Applicable. No Impact.

20012 This error might occur as the
result of a broken/inconsistent
connection or uncoordinated
shutdown.

If this issue was
not due to an
uncoordinated
shutdown,
check the link
mechanical
connections.

No impact if er-
ror is confined
to one GPU.

14.5. Fatal NVSwitch SXid Errors
Table 14.4 lists potential NVSwitch fatal SXid errors that might occur in the field. The hypervisor must
track these SXid source ports (NVLink) to determine whether the error occurred on an NVSwitch trunk
port or NVSwitch access port. The fatal SXid will be propagated to the GPU as Xid 74 when applicable.
The following recommended actions apply to all SXids in Table 14.4 unless otherwise noted.

▶ If the error occurred on an NVSwitch access port, the impact will be limited to the corresponding
guest VM.

To recover, shut down the guest VM.

▶ If the errors occurred on an NVSwitch trunk port, to reset the trunk ports and recover, shut down
the guest VM partitions that are crossing the trunk port.

The partitions can be recreated. Currently, the partitions that are using NVSwitch trunk ports are the
16x GPU partition and the 8x GPU partitions with four GPUs per baseboard.

Table 14.4 Potential Fatal NVSwitch SXid Errors

SXid SXid Error String

11001 ingress invalid command

11009 ingress invalid VCSet

11013 ingress header DBE

11018 ingress RID DBE

continues on next page

14.5. Fatal NVSwitch SXid Errors 108

NVIDIA Fabric Manager, Release 2.3

Table 14.4 – continued from previous page

SXid SXid Error String

11019 ingress RLAN DBE

11020 ingress control parity

12001 egress crossbar overflow

12002 egress packet route

12022 egress input ECC DBE error

12024 egress output ECC DBE error

12025 egress credit overflow

12026 egress destination request ID error

12027 egress destination response ID error

12030 egress control parity error

12031 egress credit parity error

12032 egress flit type mismatch

14017 TS ATO timeout

15001 route buffer over/underflow

15006 route transdone over/underflow

15009 route GLT DBE

15010 route parity

15012 route incoming DBE

15013 route credit parity

19047 NCISOC HDR ECC DBE Error

19048 NCISOC DAT ECC DBE Error

19054 HDR RAM ECC DBE Error

19056 DAT0 RAM ECC DBE Error

19058 DAT1 RAM ECC DBE Error

19060 CREQ RAM HDR ECC DBE Error

19061 CREQ RAM DAT ECC DBE Error

19063 Response RAM HDR ECC DBE Error

19064 Response RAM DAT ECC DBE Error

19066 COM RAM HDR ECC DBE Error

19067 COM RAM DAT ECC DBE Error

19069 RSP1 RAM HDR ECC DBE Error

19070 RSP1 RAM DAT ECC DBE Error

continues on next page

14.5. Fatal NVSwitch SXid Errors 109

NVIDIA Fabric Manager, Release 2.3

Table 14.4 – continued from previous page

SXid SXid Error String

20034 LTSSM Fault Up Guest VM impact: This SXid is triggered when the associated link has
gone down from active. This interrupt is usually associated with other NVLink errors.
Guest VM recovery: In an A100 system, restart the VM. In an H100 system, reset the
GPU (refer to GPU VM System Reset Capabilities and Limitations). If the issue persists,
report the GPU issues. Other guest VM impact: No impact if error is confined to one
GPU.

22012 Minion Link NA interrupt

24004 sourcetrack TCEN0 crubmstore DBE

24005 sourcetrack TCEN0 TD crubmstore DBE

24006 sourcetrack TCEN1 crubmstore DBE

24007 sourcetrack timeout error

14.6. Always Fatal NVSwitch SXid Errors
Table 14.5 lists the potential NVSwitch fatal SXid errors that are always fatal to the entire fab-
ric/system. After an always fatal SXid error has occurred, the guest VM partitions need to be shut
down and one of the following tasks must occur:

▶ The host needs to be restarted.

▶ After the NVSwitches and GPUs are SBRed, restart the service VM.

Table 14.5 Always Fatal NVSwitch SXid Errors

SXid SXid Error String

12020 egress sequence ID error

22003 Minion Halt

22011 Minion exterror

23001 ingress SRC-VC buffer overflow

23002 ingress SRC-VC buffer underflow

23003 egress DST-VC credit overflow

23004 egress DST-VC credit underflow

23005 ingress packet burst error

23006 ingress packet sticky error

23007 possible bubbles at ingress

23008 ingress packet invalid dst error

23009 ingress packet parity error

continues on next page

14.6. Always Fatal NVSwitch SXid Errors 110

NVIDIA Fabric Manager, Release 2.3

Table 14.5 – continued from previous page

SXid SXid Error String

23010 ingress SRC-VC buffer overflow

23011 ingress SRC-VC buffer underflow

23012 egress DST-VC credit overflow

23013 egress DST-VC credit underflow

23014 ingress packet burst error

23015 ingress packet sticky error

23016 possible bubbles at ingress

23017 ingress credit parity error

14.7. Other Notable NVSwitch SXid Errors
Table 14.6 provides additional SXid errors that might affect the overall fabric/system.

Table 14.6 Other Notable NVSwitch SXid Errors

SXid SXid Error String Comments/Description

10001 Host_priv_error The errors are not fatal to the fabric/system, but they might be fol-
lowed by other fatal events.

10002 Host_priv_timeout The errors are not fatal to the fabric/system, but they might be fol-
lowed by other fatal events.

10003 Host_unhandled_interruptThis SXid error is never expected to occur. This error is fatal to the
fabric/system. To recover, reset all GPUs and NVSwitches (refer to GPU
VM System Reset Capabilities and Limitations). If the error is observed
on a Trunk port, the partitions that use the NVSwitch trunk ports will
be affected.

10004 Host_thermal_event_startRelated to thermal events, which are not directly fatal to the fab-
ric/system, but they indicate that system coolingmight be insufficient.
This errormight force the specifiedNVSwitch Links to enter power sav-
ing mode (Single Lane Mode) and impact over the NVLink throughput.

10005 Host_thermal_event_endRelated to thermal events, which are not directly fatal to the fab-
ric/system, but they do indicate that system cooling might be insuf-
ficient.

For the comprehensive list of other NVSwitch SXid errors, go to https://github.com/NVIDIA/
open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/
nvswitch/interface/ctrl_dev_nvswitch.h.

14.7. Other Notable NVSwitch SXid Errors 111

https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h
https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h
https://github.com/NVIDIA/open-gpu-kernel-modules/blob/4397463e738d2d90aa1164cc5948e723701f7b53/src/common/nvswitch/interface/ctrl_dev_nvswitch.h

NVIDIA Fabric Manager, Release 2.3

14.8. High Availability Mode Comparison
The following are high availability configuration options:

▶ TRUNK_LINK_FAILURE_MODE
High Availability Mode options when there is a Trunk Link Failure (NVSwitch to NVSwitch NVLink
failure).

▶ NVSWITCH_FAILURE_MODE
High Availability Mode options when there is a NVSwitch failure or an NVSwitch is excluded.

▶ ACCESS_LINK_FAILURE_MODE
High Availability Mode options when there is an Access Link (GPU to NVSwitch NVLink failure)
Failure

▶ ABORT_CUDA_JOBS_ON_FM_EXIT
Control running CUDA jobs behavior when FM service is stopped or terminated.

The behavior of each configuration option depends on the platform.

14.8.1. DGX A100/HGX A100
14.8.1.1 A100 Bare Metal Configuration or Full Virtualization Passthrough

TRUNK_LINK_FAILURE_MODE

▶ 0: Exit FM and leave the system/NVLinks uninitialized.

▶ 1: Disable the NVSwitch and its peer NVSwitch, which reduces NVLink P2P bandwidth.

NVSWITCH_FAILURE_MODE

▶ 0: Abort Fabric Manager.

▶ 1: Disable the NVSwitch and its peer NVSwitch, which reduces P2P bandwidth.

ACCESS_LINK_FAILURE_MODE

▶ 0: Remove the GPU with the Access NVLink failure from NVLink P2P capability.

▶ 1: Disable the NVSwitch and its peer NVSwitch, which reduces NVLink P2P bandwidth.

ABORT_CUDA_JOBS_ON_FM_EXIT

▶ 0: Do not abort running CUDA jobs when FM exits. However, new CUDA job launches will fail.

▶ 1: Abort all running CUDA jobs when Fabric Manager exits.

14.8.1.2 A100 Shared NVSwitch or vGPU-based Multitenancy

TRUNK_LINK_FAILURE_MODE

▶ 0: Remove partitions that are using the Trunk NVLinks.

▶ 1: Disable the NVSwitch and its peer NVSwitch. All partitions will be available but with reduced
NVLink P2P bandwidth.

NVSWITCH_FAILURE_MODE

▶ 0: Abort Fabric Manager.

▶ 1: Disable the NVSwitch and its peer NVSwitch, which reduces P2P bandwidth.

14.8. High Availability Mode Comparison 112

NVIDIA Fabric Manager, Release 2.3

ACCESS_LINK_FAILURE_MODE

▶ 0: Disable partitions that are using the Access Link failed GPU

▶ 1: Disable the NVSwitch and its peer NVSwitch.

ABORT_CUDA_JOBS_ON_FM_EXIT

▶ 0: Do not abort running CUDA jobs when FM exits. However, new CUDA job launches will fail.

▶ 1: Abort all running CUDA jobs when Fabric Manager exits.

14.8.2. DGX H100/HGX H100
TRUNK_LINK_FAILURE_MODE

▶ H100 systems ignore this setting. H100 systems don’t have NVLink trunk links.

NVSWITCH_FAILURE_MODE

▶ H100 systems ignore this setting. If an NVLink Switch is unavailable GPUs will fail to complete
registration with the NVLink fabirc and CUDA application launch fails.

ACCESS_LINK_FAILURE_MODE

▶ H100 systems ignore this setting. On access link failure nvidia-smi shows an inactive NVLink.

ABORT_CUDA_JOBS_ON_FM_EXIT

▶ H100 systems ignore this setting. Running CUDA jobs continue to run and new jobs fail to launch.
If persistence mode is enabled, new CUDA jobs will launch. After a GPU reset, CUDA job launches
will fail even if the GPUs have persistence mode enabled.

14.9. GPU VM System Reset Capabilities and
Limitations

Here is some information from the nvidia-smi manpage about reset capabilities:

▶ Used to trigger a reset of one or more GPUs.

▶ Can be used to clear the GPU hardware and software states in situations that requires a machine
reboot.

▶ Typically useful when a double-bit ECC error occurs.

▶ The -i option can be used to target one or more specific devices.

▶ Without this option, all GPUs are reset, and root is required.

▶ Applications, such as CUDA, graphics applications like X server, monitoring applications like
another instance of nvidia-smi) cannot use these devices.

14.9.1. Direct NVLink Connect
In bare metal deployments, a GPU can be individually reset, and all GPUs can be reset without speci-
fying a device.

GPU resets aren’t supported with full passthrough virtualization, with all GPUs in the same VM. The
VM must be restarted.

14.9. GPU VM System Reset Capabilities and Limitations 113

NVIDIA Fabric Manager, Release 2.3

14.9.2. Ampere and NVSwitch
If the FM state is Running:

▶ GPUs can be individually reset. NVSwitch links are automatically reset by FM.

▶ GPU resets aren’t supported with full passthrough virtualization, with all GPUs in the same VM.
The VM must be restarted.

▶ If the GPUs and NVSwitches are in different VMs restart the GPU and the service VM resets the
NVSwitch links.

If the FM state is Not Running:

▶ GPUs can’t be individually reset. Reset all GPUs and NVSwitches.

▶ GPU resets aren’t supported with full passthrough virtualization, with all GPUs in the same VM.
The VM must be restarted.

▶ If the GPUs and NVSwitches are in different VMs restart the GPU and the service VM resets the
NVSwitch links.

14.9.3. Hopper and NVSwitch
In bare metal deployments, a GPU can be individually reset. All GPUs and NVSwitches can be reset
without specifying a device.

Both full fassthrough and dhared virtualization environments reset depends on the hypervisor permis-
sions. A VM restart will restart the GPUs.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

14.9. GPU VM System Reset Capabilities and Limitations 114

NVIDIA Fabric Manager, Release 2.3

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE
BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources,
and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics
Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trade-
marks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, DGX, HGX, NVLink, and NVSwitch are trademarks and/or registered trade-
marks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright

© 2025 NVIDIA Corporation & Affiliates. All rights reserved.

14.9. GPU VM System Reset Capabilities and Limitations 115

NVIDIA Fabric Manager, Release 2.3

Copyright
©2024-2025, NVIDIA Corporation

14.9. GPU VM System Reset Capabilities and Limitations 116

	Overview
	NVSwitch-Based Systems
	Terminology
	NVSwitch Core Software Stack
	Systems Using NVSwitches that are Earlier than the Fourth Generation NVSwitches
	Systems Using Fourth Generation NVSwitches

	What is Fabric Manager?
	What is NVLink Subnet Manager?
	GPU Baseboard Topologies
	The HGX-2 GPU Baseboard
	The NVIDIA HGX A100 GPU Baseboard
	The NVIDIA HGX H100 GPU Baseboard
	NVIDIA HGX B200/B100 GPU Baseboard

	Getting Started with Fabric Manager
	Basic Components
	The Fabric Manager Service
	Software Development Kit

	Supported Platforms
	Hardware Architectures
	NVIDIA Server Architectures
	OS Environment

	Supported Deployment Models
	Other NVIDIA Software Packages
	Installation
	Managing the Fabric Manager Service
	Starting Fabric Manager
	Stopping Fabric Manager
	Checking the Fabric Manager Status
	Enabling the Fabric Manager Service to Auto Start at Boot
	Disabling the Fabric Manager Service Auto Start at Boot
	Checking the Fabric Manager System Log Messages

	Fabric Manager Startup Options
	Fabric Manager Service File
	Linux-Based Systems

	Running Fabric Manager as a Non-Root User
	Fabric Manager Config Options
	Logging Related Config Items
	Setting the Log File Location and Name
	Setting the Log Level
	Setting the Log File Append Behavior
	Setting the Log File Size
	Redirecting the Logs to Syslog
	Rotation Settings

	Operating Mode-Related Config Items
	Fabric Manager Operating Mode
	The Fabric Manager Restart Mode
	The Fabric Manager API Interface
	The Fabric Manager API TCP Port
	The Fabric Manager Domain Socket Interface
	The Fabric Manager State

	Miscellaneous Config Items
	Preventing Fabric Manager from Daemonizing
	Fabric Manager Communication Socket Interface
	Fabric Manager Communication TCP Port
	Unix Domain Socket for Fabric Manager Communication
	Socket for Fabric Manager and Subnet Manager Communication
	Management Port GUID for Control Traffic
	Fabric Manager System Topology File Location

	High Availability Mode-Related Config Items
	Control Fabric Manager Behavior with An Initialization Failure
	GPU Access NVLink Failure Mode
	NVSwitch Trunk NVLink Failure Mode
	NVSwitch Failure Mode
	CUDA Jobs When the Fabric Manager Service is Stopped or is Terminated

	Getting Started with NVLink Subnet Manager
	NVLink Subnet Manager Configuration
	Configuring the NVLink Subnet Manager Port
	Configuring the NVLink Subnet Manager Daemon Mode
	Configuring NVLink Subnet Manager to Load the Fabric Manager GRPC Plugin
	Configuring GRPC Plugin Properties
	Setting the Log File Location and Name
	Setting a Log Level
	Redirecting the Logs to the Syslog
	Setting the Log File Append Behavior

	Bare Metal Mode
	Fabric Manager Packages
	Installing Fabric Manager
	On NVSwitch-Based DGX Server Systems
	On NVSwitch-Based NVIDIA HGX Server Systems
	Systems Using NVSwitches that are Earlier than the Fourth-Generation NVSwitches
	Systems Using Fourth Generation NVSwitches
	Minimum NVIDIA Driver/Fabric Manager Version

	Initializing NVSwitch and NVLink
	Runtime NVSwitch and GPU Errors
	NVSwitch SXid Errors
	Non-Fatal SXid Errors
	Fatal SXid Errors

	NVSwitch Errors On DGX B200 and NVIDIA HGX B200 Systems
	GPU Xid Errors

	Interoperability With Multi-Instance GPUs

	Virtualization Models
	Supported Virtualization Models

	Fabric Manager SDK
	Data Structures
	Initializing the Fabric Manager API interface
	Shutting Down the Fabric Manager API interface
	Connecting to the Running Fabric Manager Instance
	Disconnecting from the Fabric Manager Instance
	Getting a List of Supported Partitions
	Activating a GPU Partition
	Activating a GPU Partition with Virtual Functions
	Deactivating a GPU Partition
	Setting an Activated Partition List After Restarting Fabric Manager
	Getting a List of Devices with Failed NVLinks
	Getting a List of Unsupported Partitions

	Full Passthrough Virtualization Model
	Supported Virtual Machine Configurations
	Virtual Machines with 16 GPUs
	Virtual Machines with Eight GPUS
	Virtual Machines with Four GPUS
	Virtual Machines with Two GPUs
	Virtual Machine with One GPU
	Other Requirements
	Hypervisor Sequences
	Additional Steps for NVIDIA HGX B200 Systems
	Monitoring Errors
	Limitations

	Shared NVSwitch Virtualization Model
	Software Stack
	Guest VM to Service VM Interaction
	Preparing the Service Virtual Machine
	The OS Image
	Resource Requirements
	NVIDIA Software Packages
	Fabric Manager Config File Modifications
	Fabric Manager Multicast (NVLink Sharp) Resource allocation
	Other NVIDIA Software Packages

	Fabric Manager Shared Library and APIs
	Sample Code

	Fabric Manager Resiliency
	Service Virtual Machine Life Cycle Management
	GPU Partitions
	Building GPUs to Partition Mapping
	Booting the Service Virtual Machine
	Restarting the Service Virtual Machine
	Shutting Down the Service Virtual Machine

	Guest Virtual Machine Life Cycle Management
	Guest Virtual Machine NVIDIA Driver Package
	Starting a Guest Virtual Machine
	Shutting Down a Guest Virtual Machine
	Rebooting a Guest Virtual Machine
	Verifying GPU Routing

	Error Handling
	Guest Virtual Machine GPU Errors
	Handling a Service Virtual Machine Crash

	Interoperability With a Multi-Instance GPU
	Initializing Service Virtual Machine
	Activating the Guest Virtual Machine

	vGPU Virtualization Model
	Software Stack
	Preparing the vGPU Host
	OS Image
	NVIDIA Software Packages
	Fabric Manager Config File Modifications

	Fabric Manager-Shared Library and APIs
	Fabric Manager Resiliency
	vGPU Partitions
	Guest Virtual Machine Life Cycle Management
	Activating the Partition and Starting the Virtual Machine
	Deactivating the Partition
	Migrating Virtual Machines
	Verifying GPU Routing

	Error Handling
	Guest Virtual Machine GPU Errors

	GPU Reset
	Interoperability with MIG
	Enabling MIG before Starting the Fabric Manager Service
	Enabling MIG After Starting the Fabric Manager Service

	Supported High Availability Modes
	Common Terms
	GPU Access NVLink Failure
	Fabric Manager Config Item
	Bare Metal Behavior
	Shared NVSwitch and vGPU Virtualization Behavior

	Trunk NVLink Failure
	Fabric Manager Config Item
	Bare Metal Behavior
	Shared NVSwitch and vGPU Virtualization Behavior

	NVSwitch Failure
	Fabric Manager Config Item
	Bare Metal Behavior
	Shared NVSwitch and vGPU Virtualization Behavior

	GPU Failure
	Bare Metal Behavior
	Shared NVSwitch and vGPU Virtualization Behavior

	Manual Degradation
	GPU Exclusion
	GPU Exclusion Flow
	Running Application Error Handling
	Diagnosing GPU Failures
	In-Band GPU Exclude Mechanism
	Kernel Module Parameters
	Adding/Removing a GPU from the Exclude Candidate List
	Listing Excluded GPUs
	nvidia-smi
	Procfs
	Out-of-Band
	Running GPU Exclusion Scripts
	Bare Metal and vGPU Configurations
	Full Passthrough Virtualized Configurations
	Shared NVSwitch Virtualization Configurations
	Supported High Availability Modes

	NVSwitch Exclusion
	In-Band NVSwitch Exclusion
	Kernel Module Parameters
	Out-of-Band NVSwitch Exclusion

	NVLink Topology
	The NVIDIA HGX-2 GPU Baseboard
	The NVIDIA HGX A100 GPU Baseboard
	The NVIDIA HGX H100 GPU Baseboard
	The NVIDIA HGX H800 GPU Baseboard
	The NVIDIA HGX B200 GPU Baseboard

	GPU Partitions
	DGX-2 and NVIDIA HGX-2
	Default GPU Partitions
	Supported GPU Partitions

	DGX H100 and NVIDA HGX H100
	Default GPU Partitions
	Supported GPU Partitions
	Default GPU Partitions
	Supported GPU Partitions
	Custom Shared NVSwitch Partitions

	Resiliency
	Error Handling
	Fabric Manager Initialization Errors
	Partition Life Cycle Errors
	Runtime NVSwitch Errors
	Non-Fatal NVSwitch SXid Errors
	Fatal NVSwitch SXid Errors
	Always Fatal NVSwitch SXid Errors
	Other Notable NVSwitch SXid Errors
	High Availability Mode Comparison
	DGX A100/HGX A100
	A100 Bare Metal Configuration or Full Virtualization Passthrough
	A100 Shared NVSwitch or vGPU-based Multitenancy

	DGX H100/HGX H100

	GPU VM System Reset Capabilities and Limitations
	Direct NVLink Connect
	Ampere and NVSwitch
	Hopper and NVSwitch

