
vR550 |

CUDA Compatibility

CUDA Compatibility vR550 | ii

Table of Contents

Chapter 1. Why CUDA Compatibility..1

Chapter 2. Minor Version Compatibility..4
2.1. CUDA 11 and Later Defaults to Minor Version Compatibility...4

2.2. Application Considerations for Minor Version Compatibility.. 6

2.3. Deployment Considerations for Minor Version Compatibility...6

Chapter 3. Forward Compatibility..8
3.1. Forward Compatibility Support Across Major Toolkit Versions.. 8

3.2. Installing the Forward Compatibility Package...9

3.2.1. From Network Repositories or Local Installers... 9

3.2.2. Manually Installing from Runfile... 11

3.3. Deployment Considerations for Forward Compatibility..11

3.3.1. Use the Right Compat Package..11

3.3.2. Feature Exceptions... 12

3.3.3. Check for Compatibility Support..13

3.4. Deployment Model for Forward Compatibility..13

Chapter 4. Conclusion..15

Chapter 5. Frequently Asked Questions.. 16

CUDA Compatibility vR550 | iii

List of Figures

Figure 1. Components of CUDA.. 2

Figure 2. CUDA Upgrade Path.. 3

Figure 3. NVRTC supports minor version compatibility from CUDA 11.3 onwards....................7

Figure 4. Forward Compatibility Upgrade Path...9

CUDA Compatibility vR550 | iv

List of Tables

Table 1. Example CUDA Toolkit 11.x Minimum Required Driver Versions (Refer to CUDA
Release Notes)..4

Table 2. CUDA Toolkit 10.x Minimum Required Driver Versions.. 5

Table 3. CUDA Application Compatibility Support Matrix... 12

Table 4. Forward-Compatible Feature-Driver Support Matrix... 13

CUDA Compatibility vR550 | 1

Chapter 1. Why CUDA Compatibility

The NVIDIA
®
 CUDA

®
 Toolkit enables developers to build NVIDIA GPU accelerated compute

applications for desktop computers, enterprise, and data centers to hyperscalers. It
consists of the CUDA compiler toolchain including the CUDA runtime (cudart) and
various CUDA libraries and tools. To build an application, a developer has to install only
the CUDA Toolkit and necessary libraries required for linking.

In order to run a CUDA application, the system should have a CUDA enabled GPU and an
NVIDIA display driver that is compatible with the CUDA Toolkit that was used to build the
application itself. If the application relies on dynamic linking for libraries, then the system
should have the right version of such libraries as well.

Why CUDA Compatibility

CUDA Compatibility vR550 | 2

Figure 1. Components of CUDA

Every CUDA toolkit also ships with an NVIDIA display driver package for convenience.
This driver supports all the features introduced in that version of the CUDA Toolkit.
Please check the toolkit and driver version mapping in the release notes. The driver
package includes both the user mode CUDA driver (libcuda.so) and kernel mode
components necessary to run the application.

Typically, upgrading a CUDA Toolkit involves upgrading both the toolkit and the driver to
get the bleeding edge toolkit and driver capabilities.

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Why CUDA Compatibility

CUDA Compatibility vR550 | 3

Figure 2. CUDA Upgrade Path

But this is not always required. CUDA Compatibility guarantees allow for upgrading only
certain components and that will be the focus of the rest of this document. We will see
how the upgrade to a new CUDA Toolkit can be simplified to not always require a full
system upgrade.

CUDA Compatibility vR550 | 4

Chapter 2. Minor Version
Compatibility

2.1. CUDA 11 and Later Defaults to
Minor Version Compatibility

From CUDA 11 onwards, applications compiled with a CUDA Toolkit release from within a
CUDA major release family can run, with limited feature-set, on systems having at least
the minimum required driver version as indicated below. This minimum required driver can
be different from the driver packaged with the CUDA Toolkit but should belong to the
same major release.

Refer to the CUDA Toolkit Release Notes for the complete table.

Table 1. Example CUDA Toolkit 11.x Minimum Required Driver
Versions (Refer to CUDA Release Notes)

CUDA Toolkit Linux x86_64 Minimum
Required Driver Version

Windows Minimum Required
Driver Version

CUDA 12.x >=525.60.13 >=527.41

CUDA 11.x >= 450.80.02* >=452.39*

* CUDA 11.0 was released with an earlier driver version, but by upgrading to Tesla
Recommended Drivers 450.80.02 (Linux) / 452.39 (Windows) as indicated, minor version
compatibility is possible across the CUDA 11.x family of toolkits.

While applications built against any of the older CUDA Toolkits always continued to
function on newer drivers due to binary backward compatibility, before CUDA 11,
applications built against newer CUDA Toolkit releases were not supported on older
drivers without forward compatibility package (see Forward Compatibility Support
Across Major Toolkit Versions).

If you are using a new CUDA 10.x minor release, then the minimum required driver
version is the same as the driver that’s packaged as part of that toolkit release.
Consequently, the minimum required driver version changed for every new CUDA Toolkit

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Minor Version Compatibility

CUDA Compatibility vR550 | 5

minor release until CUDA 11.1. Therefore, system administrators always have to upgrade
drivers in order to support applications built against CUDA Toolkits from 10.x releases.

Table 2. CUDA Toolkit 10.x Minimum Required Driver Versions

CUDA Toolkit Linux x86_64 Minimum
Required Driver Version

Windows MinimumRequired
Driver Version

CUDA 10.2 >= 440.33 >=441.22

CUDA 10.1 >= 418.39 >=418.96

CUDA 10.0 >= 410.48 >=411.31

With minor version compatibility, upgrading to CUDA 11.1 is now possible on older
drivers from within the same major release family such as 450.80.02 that was shipped
with CUDA 11.0, as shown below:
$ nvidia-smi

 +---+
| NVIDIA-SMI 450.80.02 Driver Version: 450.80.02 CUDA Version:

 11.0 |
|-------------------------------+----------------------

+----------------------+

...<snip>...

$ samples/bin/x86_64/linux/release/deviceQuery
 samples/bin/x86_64/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
CUDA Driver Version / Runtime Version 11.0 / 11.1

 CUDA Capability Major/Minor version number: 7.5

...<snip>...

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 11.0, CUDA
 Runtime Version = 11.1, NumDevs = 1

Result = PASS

Minimum required driver version guidance can be found in the release notes. Note that
if the minimum required driver version is not installed in the system, applications will
return an error as shown below.
$ samples/bin/x86_64/linux/release/deviceQuery

samples/bin/x86_64/linux/release/deviceQuery Starting...

CUDA Device Query (Runtime API) version (CUDART static linking)

cudaGetDeviceCount returned 3
 -> initialization error

Result = FAIL

https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Minor Version Compatibility

CUDA Compatibility vR550 | 6

2.2. Application Considerations for
Minor Version Compatibility

Developers and system admins should note two important caveats when relying on
minor version compatibility. If either of these caveats are limiting, then a new CUDA
driver from the same minor version of the toolkit that the application was built with or
later is required.

‣ Limited feature set

Sometimes features introduced in a CUDA Toolkit version may actually span both the
toolkit and the driver. In such cases an application that relies on features introduced
in a newer version of the toolkit and driver may return the following error on older
drivers: cudaErrorCallRequiresNewerDriver. As mentioned earlier, admins should
then upgrade the installed driver also.

Application developers can avoid running into this problem by having the application
explicitly check for the availability of features. Refer to the CUDA Compatibility
Developers Guide for more details.

‣ Applications using PTX will see runtime issues

Applications that compile device code to PTX will not work on older drivers. If the
application requires PTX then admins have to upgrade the installed driver.

PTX Developers should refer to the CUDA Compatibility Developers Guide and
PTX programming guide in the CUDA C++ Programming Guide for details on this
limitation.

2.3. Deployment Considerations for
Minor Version Compatibility

As described, applications that directly rely only on the CUDA runtime can be deployed in
the following two scenarios:

1. CUDA driver that’s installed on the system is newer than the runtime.
2. CUDA runtime is newer than the CUDA driver on the system but they are from the

same major release of CUDA Toolkit.

In scenario 2, system admins should be aware of the aforementioned limitations and
should be able to tell why an application may be failing if they run into any issues.

Minor version compatibility has another benefit that offers flexibility in the use and
deployment of libraries. Applications that use libraries that support minor version
compatibility can be deployed on systems with a different version of the toolkit and
libraries without recompiling the application for the difference in the library version. This
holds true for both older and newer versions of the libraries provided they are all from
the same major release family. Note that libraries themselves have interdependencies

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-developer-s-guide
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-developer-s-guide
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#binary-compatibility

Minor Version Compatibility

CUDA Compatibility vR550 | 7

that should be considered. For example, each cuDNN version requires a certain version of
cuBLAS.

Figure 3. NVRTC supports minor version compatibility from CUDA
11.3 onwards

However, if an application is unable to leverage the minor version compatibility due to
any of the aforementioned reasons, then the Forward Compatibility model can be used
as an alternative even though Forward Compatibility is mainly intended for compatibility
across major toolkit versions.

CUDA Compatibility vR550 | 8

Chapter 3. Forward Compatibility

3.1. Forward Compatibility Support
Across Major Toolkit Versions

Increasingly, data centers and enterprises may not want to update the NVIDIA GPU
Driver across major release versions due to the rigorous testing and validation that
happens before any system level driver installations are done.

To support such scenarios, CUDA introduced a Forward Compatibility Upgrade path in
CUDA 10.0.

Forward Compatibility

CUDA Compatibility vR550 | 9

Figure 4. Forward Compatibility Upgrade Path

Forward Compatibility is applicable only for systems with NVIDIA Data Center GPUs or
select NGC Server Ready SKUs of RTX cards. It’s mainly intended to support applications
built on newer CUDA Toolkits to run on systems installed with an older NVIDIA Linux GPU
driver from different major release families. This new forward-compatible upgrade path
requires the use of a special package called “CUDA compat package”.

3.2. Installing the Forward Compatibility
Package

3.2.1. From Network Repositories or Local
Installers

The CUDA compat package is available in the local installers or the CUDA network
repositories provided by NVIDIA as cuda-compat-12.1.

Install the package on the system using the package installer.

https://docs.nvidia.com/ngc/ngc-deploy-on-premises/ngc-ready-systems/index.html

Forward Compatibility

CUDA Compatibility vR550 | 10

On Ubuntu, for example:
$ sudo apt-get install -y cuda-compat-12-1

The compat package will then be installed to the versioned toolkit location typically
found in the toolkit directory. For example, for 11.8 it will be found in /usr/local/
cuda-12.1/.

The cuda-compat package consists of the following files:

‣ libcuda.so.* - the CUDA Driver

‣ libnvidia-nvvm.so.* - JIT LTO (CUDA 11.5 and later only)

‣ libnvidia-ptxjitcompiler.so.* - the JIT (just-in-time) compiler for PTX files

‣ libcudadebugger.so.* -GPU debugging support for CUDA Driver (CUDA 11.8 and
later only)

These files should be kept together as the CUDA driver is dependent on the libnvidia-
ptxjitcompiler.so.* of the same version.

Note: This package only provides the files, and does not configure the system.

Example:

CUDA Compatibility is installed and the application can now run successfully as shown
below. In this example, the user sets LD_LIBRARY_PATH to include the files installed by the
cuda-compat-12-1 package.
$ sudo apt-get install -y cuda-compat-12-1
 Selecting previously unselected package cuda-compat-12-1.
 (Reading database ... 339974 files and directories currently installed.)
 Preparing to unpack .../cuda-compat-12-0_530.30-1_amd64.deb ...
 Unpacking cuda-compat-12-1 (530.30-1) ...
 Setting up cuda-compat-12-1 (530.30-1) ...
 Processing triggers for libc-bin (2.31-0ubuntu9.2) ...

Check the files installed under /usr/local/cuda/compat:
$ ls -l /usr/local/cuda/compat
 total 145676
 lrwxrwxrwx 1 root root 12 Jun 3 00:45 libcuda.so -> libcuda.so.1
 lrwxrwxrwx 1 root root 17 Jun 3 00:45 libcuda.so.1 -> libcuda.so.530.30

-rw-r--r-- 1 root root 26255520 Jun 2 20:55 libcuda.so.530.30
 lrwxrwxrwx 1 root root 25 Jun 3 00:45 libcudadebugger.so.1 ->

 libcudadebugger.so.530.30
-rw-r--r-- 1 root root 10938424 May 27 20:49 libcudadebugger.so.530.30

lrwxrwxrwx 1 root root 19 Jun 3 00:45 libnvidia-nvvm.so -> libnvidia-nvvm.so.4
lrwxrwxrwx 1 root root 24 Jun 3 00:45 libnvidia-nvvm.so.4 -> libnvidia-
nvvm.so.530.30

-rw-r--r-- 1 root root 92017376 Jun 2 21:21 libnvidia-nvvm.so.530.30
 lrwxrwxrwx 1 root root 34 Jun 3 00:45 libnvidia-ptxjitcompiler.so.1 ->
 libnvidia-ptxjitcompiler.so.530.30

-rw-r--r-- 1 root root 19951576 Jun 2 20:38 libnvidia-ptxjitcompiler.so.530.30

The user can set LD_LIBRARY_PATH to include the files installed before running the CUDA
12.1 application:
$ LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH samples/bin/x86_64/linux/
release/deviceQuery
 samples/bin/x86_64/linux/release/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Forward Compatibility

CUDA Compatibility vR550 | 11

 Detected 1 CUDA Capable device(s)

 Device 0: "Tesla T4"
CUDA Driver Version / Runtime Version 12.1 / 12.1 CUDA Capability

 Major/Minor version number: 9.0
...<snip>...

 deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 12.1, CUDA Runtime
 Version = 12.1, NumDevs = 1
 Result = PASS

3.2.2. Manually Installing from Runfile
The cuda-compat package files can also be extracted from the appropriate datacenter
driver ‘runfile’ installers (.run) available in NVIDIA driver downloads. To do this:

1. Download the latest NVIDIA Data Center GPU driver , and extract the .run file using
option -x.

2. Copy the four CUDA compatibility upgrade files, listed at the start of this section,
into a user- or root-created directory.

3. Follow your system’s guidelines for making sure that the system linker picks up the
new libraries.

Note: Symlinks under /usr/local/cuda/compat need to be created manually when using
the runfile installer.

3.3. Deployment Considerations for
Forward Compatibility

3.3.1. Use the Right Compat Package
CUDA forward compat packages should be used only in the following situations when
forward compatibility is required across major releases.

The CUDA compat package is named after the highest toolkit that it can support. If
you are on the R470 driver but require 12.4 application support, please install the cuda-
compat package for 12.4. But when performing a full system upgrade, when choosing to
install both the toolkit and the driver, remove any forward compatible packages present
in the system.

For example, if you are upgrading the driver to 525.60.13 which is the minimum required
driver version for the 12.x toolkits, then the cuda-compat package is not required in
most cases. 11.x and 12.x applications will be supported due to backward compatibility
and future 12.x applications will be supported due to minor-version compatibility.

But there are feature restrictions that may make this option less desirable for your
scenario - for example: Applications requiring PTX JIT compilation support. Unlike the
minor-version compatibility that is defined between CUDA runtime and CUDA driver,
forward compatibility is defined between the kernel driver and the CUDA driver, and

https://www.nvidia.com/Download/index.aspx?lang=en-us

Forward Compatibility

CUDA Compatibility vR550 | 12

hence such restrictions do not apply. In order to circumvent the limitation, a forward
compatibility package may be used in such scenarios as well.

Table 3. CUDA Application Compatibility Support Matrix

NVIDIA Kernel Mode Driver - Production Branch

CUDA Forward
Compatible
Upgrade

470.57.02+

(CUDA 11.4)

530.30.02+

(CUDA 12.1)

535.54.03+

(CUDA 12.2)

545.23.06+

(CUDA 12.3)

550.54.14+

(CUDA 12.4)

12-4 C C Not required

12-3 C C X

12-2 C Not required X

12-1 C X X

12-0 C X X

11-8 C X X

11-7 C X X

11-6 C X X

11-5 C X X

11-4 Not required

X

X

X

X

‣ C - Compatible

‣ X – Not compatible

‣ Branches R525, R515, R510, R465, R460, R455, R450, R440, R418, R410, R396, R390
are end of life and are not supported targets for compatibility.

‣ New Feature Branches (such as 495.xx) are not supported targets for CUDA Forward
Compatibility.

Examples of how to read this table:

‣ The CUDA 12-4 compat package is "C"ompatible with driver versions 470, 535. It is
"Not required" for 550, as 12.4 was paired with 550 and therefore no extra packages
are needed.

‣ The CUDA “12-3” release is not-compatible (“X”) with driver version 550 as it was
released prior to the driver. Binaries created in 12.3 are still subject to the backwards
compatibility guarantees described in this document.

3.3.2. Feature Exceptions
There are specific features in the CUDA driver that require kernel-mode support and will
only work with a newer kernel mode driver. A few features depend on other user-mode
components and are therefore also unsupported.

Forward Compatibility

CUDA Compatibility vR550 | 13

Table 4. Forward-Compatible Feature-Driver Support Matrix

CUDA Forward
Compatible Upgrade

CUDA – OpenGL/
Vulkan Interop POWER9 ATS

cuMemMap* set of
functionalities

System Base Installation: 525 (>=.60.04) Driver

12-x No Yes [2] Yes [1]

System Base Installation: 450 (>=.80.02) Driver

11-x No Yes [2] Yes [1]

[1] This relies on
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED and
CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED, which should be
queried if you intend to use the full range of this functionality.

[2] Supported on Red Hat Enterprise Linux operating system version 8.1 or higher.

3.3.3. Check for Compatibility Support
In addition to the CUDA driver and certain compiler components, there are other drivers
in the system installation stack (for example, OpenCL) that remain on the old version.
The forward-compatible upgrade path is for CUDA only.

A well-written application should use following error codes to determine if CUDA Forward
Compatible Upgrade is supported. System administrators should be aware of these error
codes to determine if there are errors in the deployment.

1. CUDA_ERROR_SYSTEM_DRIVER_MISMATCH = 803. This error indicates that there is a
mismatch between the versions of the display driver and the CUDA driver.

2. CUDA_ERROR_COMPAT_NOT_SUPPORTED_ON_DEVICE = 804. This error indicates that
the system was upgraded to run with forward compatibility but the visible hardware
detected by CUDA does not support this configuration.

3.4. Deployment Model for Forward
Compatibility

There are two models of deployment for the CUDA compat package. We recommend the
use of the ‘shared’ deployment mode.

‣ Shared deployment: Allows sharing the same compat package across installed
toolkits in the system. Download and extract the latest forward compatibility
package with the highest toolkit version in its name. Using RPATH, or through
LD_LIBRARY_PATH or through an automatic loader (for example. ld.so.conf), point
to that package. This is the most recommended choice.

The user can set LD_LIBRARY_PATH to include the files installed before running the
CUDA 11.1 application:

$ LD_LIBRARY_PATH=/usr/local/cuda/compat:$LD_LIBRARY_PATH

Forward Compatibility

CUDA Compatibility vR550 | 14

‣ Per-application deployment: Individual applications can choose a package of their
choice and place it as part of the Modules system tied to the toolkit and the libraries.
Using the Modules system, the admin, or the user, can set up ‘module’ scripts for
each version of each toolkit package, and then load the module script for the toolkit
as needed.

$ module load cuda/11.0

There is an important consideration to the per-application deployment approach.
Older forward compatibility packages are not supported on new driver versions.
Therefore the module load scripts should proactively query the system for whether
the compatibility package can be used before loading the files. This is especially
critical if there was a full system upgrade. In the cases where the module script
cannot use CUDA compatible upgrade, a fallback path to the default system’s
installed CUDA driver can provide a more consistent experience and this can be
achieved using RPATH.

http://modules.sourceforge.net/
http://modules.sourceforge.net/

CUDA Compatibility vR550 | 15

Chapter 4. Conclusion

The CUDA driver maintains backward compatibility to continue support of applications
built on older toolkits. Using a compatible minor driver version, applications build on
CUDA Toolkit 11 and newer are supported on any driver from within the corresponding
major release. Using the CUDA Forward Compatibility package, system administrators
can run applications built using a newer toolkit even when an older driver that does not
satisfy the minimum required driver version is installed on the system. This forward
compatibility allows the CUDA deployments in data centers and enterprises to benefit
from the faster release cadence and the latest features and performance of CUDA
Toolkit.

CUDA compatibility helps users by:

‣ Faster upgrades to the latest CUDA releases: Enterprises or data centers with NVIDIA
GPUs have complex workflows and require advance planning for NVIDIA driver
rollouts. Not having to update the driver for newer CUDA releases can mean that new
versions of the software can be made available faster to users without any delays.

‣ Faster upgrades of the CUDA libraries: Users can upgrade to the latest software
libraries and applications built on top of CUDA (for example, math libraries or deep
learning frameworks) without an upgrade to the entire CUDA Toolkit or driver. This is
possible as these libraries and frameworks do not have a direct dependency on the
CUDA runtime, compiler or driver.

CUDA Compatibility vR550 | 16

Chapter 5. Frequently Asked
Questions

This section includes some FAQs related to CUDA compatibility.

‣ What is the difference between CUDA forward compatible upgrade and CUDA minor
version compatibility? When should users use these features?

Area
CUDA Forward
Compatible Upgrade

CUDA Minor Version
Compatibility

Across older drivers from
different major release
versions of CUDA.

Across minor release versions
of CUDA only.

Compatibility

Between kernel driver and
user mode CUDA driver.

Between libraries or runtimes
that link to the CUDA driver.

When to use If you cannot upgrade the
kernel driver but need to use
the latest CUDA Toolkit.

If you want to support newer
applications on older drivers
within the same major
release family.

GPUs supported 11.4 UMD (User Mode Driver)
and later will extend forward
compatibility support to
select NGC Ready NVIDIA
RTX boards. Prior to that
forward compatibility will be
supported only on NVIDIA
Data Center cards.

All GPU products supported

OS distributions supported Linux only Windows, Linux

Features Supported Some features such as
(CUDA-GL interop, Power
9 ATS, cuMemMap APIs)
are not supported. These
features depend on a new
kernel mode driver and thus
are not supported.

These are explicitly called out
in the documentation.

All existing CUDA features
(from older minor releases)
work. Users may have to
incorporate checks in their
application when using new
features in the minor release
(that require a new driver) to
ensure graceful errors. More
information can be found
in the “Handling New CUDA
Features” section.

https://docs.nvidia.com/ngc/ngc-ready-systems/index.html
https://docs.nvidia.com/ngc/ngc-ready-systems/index.html

Frequently Asked Questions

CUDA Compatibility vR550 | 17

Area
CUDA Forward
Compatible Upgrade

CUDA Minor Version
Compatibility

CUDA Releases Supported All CUDA releases supported
through the lifetime of the
datacenter driver branch.
For example, R418 (CUDA
10.1) EOLs in March 2022 -
so all CUDA versions released
(including major releases)
during this timeframe are
supported.

Only works within a ‘major’
release family (e.g. 11.0
through 11.x).

Compatibility is not
supported across major
CUDA releases.

Application includes PTX or
uses NVRTC

No additional workflow
required.

Users should use the new
PTX static library to rebuild
binaries. Refer to the
workflow section for more
details.

Requires administrator
involvement

Depends on the deployment.
Users can also set up
LD_LIBRARY_PATH with the
new libraries from the cuda-
compat-* package.

Not required.

Note: For mobile compatibility information, see CUDA Upgradable Package for Jetson.
This applies to L4T only.

‣ Does CUDA forward compatible upgrades work intra-branch?

Users can upgrade the kernel mode driver within the same branch. Sometimes this
may require updating the cuda-compat* package. This use-case is supported only for
drivers on LLB and LTS branches of driver for select GPUs.

‣ Which GPUs are supported by the driver ?

The CUDA compatible upgrade is meant to ease the management of large production
systems for enterprise customers. 11.4 UMD (User Mode Driver) and later will extend
forward compatibility support to select NGC Ready NVIDIA RTX boards. Prior to that
forward compatibility will be supported only on NVIDIA Data Center cards.
It’s important to note that HW support is defined by the kernel mode driver and as
such, newer CUDA drivers on their own will not enable new HW support. Refer to the
following table to determine which hardware is supported by your system.

Driver

Hardware
Generation

Compute
Capability CTK Support

Latest
Forward
Comaptibility
Package
Support

Current
Minimum
Driver in
Support

Maximum
Driver
Supported*

Hopper 9.x 11.8 - current 450.36.06+ latest

NVIDIA
Ampere GPU
Arch.

8.x 11.0 - current

current

450.36.06+ latest

https://docs.nvidia.com/cuda-for-tegra-appnote/index.html#upgradable-package-for-jetson

Frequently Asked Questions

CUDA Compatibility vR550 | 18

Driver

Hardware
Generation

Compute
Capability CTK Support

Latest
Forward
Comaptibility
Package
Support

Current
Minimum
Driver in
Support

Maximum
Driver
Supported*

Turing 7.5 10.0 - current 450.36.06+ latest

Volta 7.x 9.0 - current 450.36.06+ latest

Pascal 6.x 8.0 - current 450.36.06+ latest

Maxwell 5.x 6.5 - current 450.36.06+ latest

* Refer to CUDA Driver Lifecycle to find the latest supported driver.

‣ What’s the minimum required driver version of a toolkit?

Refer to the Release notes.

‣ The developer is using PTX code in the application and seeing some errors or issues.
What should we do?

PTX and application compatibility information can be found in the CUDA
Compatibility Developer’s Guide CUDA C++ Programming Guide.

‣ If we build our CUDA application using CUDA 11.0, can it continue to be used with
newer NVIDIA drivers (e.g. CUDA 11.1/R455, 11.x etc.)? Or is it only the other way
around?

Drivers have always been backwards compatible with CUDA. This means that a CUDA
11.0 application will be compatible with R450 (11.0), R455 (11.1) and beyond. CUDA
applications typically statically include all the libraries (for example cudart, CUDA
math libraries such as cuBLAS, cuFFT) they need, so they should work on new drivers
or CUDA Toolkit installations.

In other words, since CUDA is backward compatible, existing CUDA applications can
continue to be used with newer CUDA versions.

‣ What is the minimum CUDA 11.x driver that supports the CUDA minor version
compatibility?

The minimum driver version required is 450.80.02.

‣ What about new features introduced in minor releases of CUDA? How does a
developer build an application using newer CUDA Toolkits (e.g. 11.x) work on a system
with a CUDA 11.0 driver (R450)?

By using new CUDA versions, users can benefit from new CUDA programming model
APIs, compiler optimizations and math library features.

‣ A subset of CUDA APIs don’t need a new driver and they can all be used without
any driver dependencies. For example, async copy APIs introduced in 11.1 do not
need a new driver.

‣ To use other CUDA APIs introduced in a minor release (that require a new driver),
one would have to implement fallbacks or fail gracefully. This situation is not
different from what is available today where developers use macros to compile

https://docs.nvidia.com/datacenter/tesla/drivers/index.html#cuda-drivers
https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-major-component-versions__table-cuda-toolkit-driver-versions
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#binary-compatibility
https://developer.nvidia.com/blog/controlling-data-movement-to-boost-performance-on-ampere-architecture/

Frequently Asked Questions

CUDA Compatibility vR550 | 19

out features based on CUDA versions. Users should refer to the CUDA headers
and documentation for new CUDA APIs introduced in a release.

There are some issues that admins can advise the application developers to
accommodate in their code. Please refer to the Best Practices Guide for further
information.

‣ Does CUDA compatibility work with containers?

Yes. CUDA minor version compatibility and CUDA forward compatible upgrade
both work when using either NGC Deep Learning Framework containers or using
containers that are based on the official CUDA base images. The images include the
CUDA compatible upgrade libraries and the NVIDIA Container Toolkit (nvidia-docker2)
has logic to correctly load the required libraries.

‣ I’m running an NGC container and see this error: “This container was built for NVIDIA
Driver Release 450.51 or later, but version 418.126.02 was detected and compatibility
mode is UNAVAILABLE.”. What could be wrong?

It is possible you are either running a wrong version of the NVIDIA driver on the
system or your system does not have an NVIDIA Data Center GPU.

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/deeplearning/frameworks/support-matrix/index.html
https://ngc.nvidia.com/catalog/containers/nvidia:cuda
https://github.com/NVIDIA/nvidia-docker

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the

respective companies with which they are associated.

Copyright

© 2007-2024 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no

representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA

shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment

to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by

authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA

product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA

product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or

applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It

is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and

perform the necessary testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA

product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which

may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-

party products or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party

under the patents or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations,

and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE

BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES

OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING

WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY

USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s

aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are trademarks owned by the Video Electronics

Standards Association in the United States and other countries.

HDMI
HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the Unites States and other countries. Other company and product names may be trademarks of the

respective companies with which they are associated.

Copyright

© 2007-2024 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Why CUDA Compatibility
	Minor Version Compatibility
	2.1. CUDA 11 and Later Defaults to Minor Version Compatibility
	2.2. Application Considerations for Minor Version Compatibility
	2.3. Deployment Considerations for Minor Version Compatibility

	Forward Compatibility
	3.1. Forward Compatibility Support Across Major Toolkit Versions
	3.2. Installing the Forward Compatibility Package
	3.2.1. From Network Repositories or Local Installers
	3.2.2. Manually Installing from Runfile

	3.3. Deployment Considerations for Forward Compatibility
	3.3.1. Use the Right Compat Package
	3.3.2. Feature Exceptions
	3.3.3. Check for Compatibility Support

	3.4. Deployment Model for Forward Compatibility

	Conclusion
	Frequently Asked Questions

