
DU-10617-001 _v1.5 | March 2023

NVIDIA AI Enterprise

User Guide

NVIDIA AI Enterprise DU-10617-001 _v1.5 | ii

Table of Contents

Chapter 1. Introduction to NVIDIA AI Enterprise..1
1.1. NVIDIA AI Enterprise Software Architecture.. 1

1.2. Prerequisites for Using NVIDIA AI Enterprise...2

Chapter 2. Installing and Configuring NVIDIA Virtual GPU Manager..................................4
2.1. About NVIDIA Virtual GPUs... 4

2.1.1. NVIDIA vGPU Architecture...4

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture...5

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture..6

2.1.2. About Virtual GPU Types..7

2.1.3. Valid Virtual GPU Configurations on a Single GPU.. 8

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU................................ 8

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU............................... 9

2.2. Switching the Mode of a GPU that Supports Multiple Display Modes..................................9

2.3. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere......10

2.3.1. Installing the NVIDIA Virtual GPU Manager Package for vSphere.................................11

2.3.2. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere............ 12

2.3.3. Configuring VMware vMotion with vGPU for VMware vSphere......................................12

2.3.4. Changing the Default Graphics Type in VMware vSphere...14

2.3.5. Configuring a GPU for MIG-Backed vGPUs.. 18

2.3.5.1. Enabling MIG Mode for a GPU... 18

2.3.5.2. Disabling MIG Mode for One or More GPUs..19

2.3.6. Configuring a vSphere VM with NVIDIA vGPU..21

2.3.7. Setting vGPU Plugin Parameters on VMware vSphere... 23

2.4. Disabling and Enabling ECC Memory.. 23

2.4.1. Disabling ECC Memory... 24

2.4.2. Enabling ECC Memory...26

Chapter 3. Installing and Licensing NVIDIA AI Enterprise Components Required in
a Guest VM..28
3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes................. 28

3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using
NVIDIA GPU Operator...28

3.1.2. Transforming Container Images for AI and Data Science Applications and
Frameworks into Kubernetes Pods... 29

3.2. Install NVIDIA AI Enterprise Software Components by Using Docker................................. 29

3.2.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver Natively.......29

NVIDIA AI Enterprise DU-10617-001 _v1.5 | iii

3.2.2. Installing AI and Data Science Applications and Frameworks by Using Docker..... 29

3.3. Installing and Licensing NVIDIA AI Enterprise Components Natively.................................. 30

3.3.1. Installing the NVIDIA AI Enterprise Graphics Driver on Linux from a Debian
Package..31

3.3.2. Prerequisites for Configuring a Licensed Client of NVIDIA License System.............31

3.3.2.1. Configuring a Licensed Client on Linux... 32

3.3.2.2. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client............ 34

3.3.3. Installing NVIDIA Container Toolkit...35

3.3.4. Verifying the Installation of NVIDIA Container Toolkit.. 36

3.3.5. Installing Software Distributed as Container Images..36

3.3.6. Running ResNet-50 with TensorRT...37

3.3.7. Running ResNet-50 with TensorFlow...38

3.3.8. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU...................... 38

Chapter 4. Configuring Multinode Scaling..40
4.1. Hardware and VM Configuration Requirements for Multinode Scaling.............................. 40

4.1.1. Hardware Requirements for Multinode Scaling... 40

4.1.2. VM Requirements for Multinode Scaling...41

4.2. Configuring NUMA Affinity for the VMs..41

4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two
NICs Across Both NUMA Nodes... 42

4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on
a Single NUMA Node..44

4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch...45

4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections... 46

4.5. Installing the Mellanox OFED Driver.. 47

4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM.. 48

4.7. Building and Installing the NVIDIA Peer Memory Driver.. 49

Chapter 5. Modifying a VM's NVIDIA vGPU Configuration...50
5.1. Removing a VM’s NVIDIA vGPU Configuration..50

5.1.1. Removing a vSphere VM’s vGPU Configuration... 50

5.2. Modifying GPU Allocation Policy.. 50

5.2.1. Modifying GPU Allocation Policy on VMware vSphere.. 51

5.3. Migrating a VM Configured with vGPU...54

5.3.1. Migrating a VM Configured with vGPU on VMware vSphere... 55

5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere...... 57

5.4. Modifying a MIG-Backed vGPU's Configuration... 57

5.5. Enabling Unified Memory for a vGPU..60

5.5.1. Enabling Unified Memory for a vGPU on VMware vSphere.. 60

NVIDIA AI Enterprise DU-10617-001 _v1.5 | iv

5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU.................................. 61

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU...61

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU.. 62

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features...62

5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers
Are Enabled... 62

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU....62

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM.. 63

Chapter 6. Monitoring GPU Performance... 64
6.1. NVIDIA System Management Interface nvidia-smi.. 64

6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor......................................64

6.2.1. Getting a Summary of all Physical GPUs in the System..65

6.2.2. Getting a Summary of all vGPUs in the System..66

6.2.3. Getting vGPU Details...66

6.2.4. Monitoring vGPU engine usage..67

6.2.5. Monitoring vGPU engine usage by applications.. 68

6.2.6. Monitoring Encoder Sessions... 69

6.2.7. Listing Supported vGPU Types...70

6.2.8. Listing the vGPU Types that Can Currently Be Created.. 71

6.3. Monitoring GPU Performance from a Guest VM...72

6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM................................72

Chapter 7. Changing Scheduling Behavior for Time-Sliced vGPUs.................................. 73
7.1. Scheduling Policies for Time-Sliced vGPUs.. 73

7.2. Scheduler Time Slice for Time-Sliced vGPUs.. 74

7.3. RmPVMRL Registry Key..74

7.4. Getting the Current Time-Sliced vGPU Scheduling Behavior for All GPUs........................76

7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs.....................................76

7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs.............................77

7.7. Restoring Default Time-Sliced vGPU Scheduler Settings... 78

Chapter 8. Troubleshooting... 80
8.1. Known issues... 80

8.2. Troubleshooting steps...80

8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded... 80

8.2.2. Verifying that nvidia-smi works..80

8.2.3. Examining NVIDIA kernel driver output..81

8.2.4. Examining NVIDIA Virtual GPU Manager Messages...81

8.2.4.1. Examining VMware vSphere vGPU Manager Messages...81

8.3. Capturing configuration data by running nvidia-bug-report.sh..82

NVIDIA AI Enterprise DU-10617-001 _v1.5 | v

Chapter 9. Additional Information..83

Appendix A. Virtual GPU Types for Supported GPUs... 84
A.1. NVIDIA A100 PCIe 40GB Virtual GPU Types..84

A.2. NVIDIA A100 HGX 40GB Virtual GPU Types.. 85

A.3. NVIDIA A100 PCIe 80GB Virtual GPU Types..87

A.4. NVIDIA A100 HGX 80GB Virtual GPU Types.. 88

A.5. NVIDIA A40 Virtual GPU Types...89

A.6. NVIDIA A30 Virtual GPU Types...90

A.7. NVIDIA A16 Virtual GPU Types...91

A.8. NVIDIA A10 Virtual GPU Types...92

A.9. NVIDIA RTX A6000 Virtual GPU Types..92

A.10. NVIDIA RTX A5000 Virtual GPU Types...93

A.11. Tesla T4 Virtual GPU Types..94

NVIDIA AI Enterprise DU-10617-001 _v1.5 | vi

List of Figures

Figure 1. NVIDIA vGPU System Architecture.. 5

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture..6

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture...7

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100 PCIe 40GB..................... 9

Figure 5. Shared default graphics type...15

Figure 6. Host graphics settings for vGPU... 16

Figure 7. Shared graphics type... 17

Figure 8. Graphics device settings for a physical GPU... 17

Figure 9. Shared direct graphics type..18

Figure 10. VM settings for vGPU... 22

Figure 11. Breadth-first allocation scheme setting for vGPU-enabled VMs................................ 52

Figure 12. Host graphics settings for vGPU.. 53

Figure 13. Depth-first allocation scheme setting for vGPU-enabled VMs....................................54

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 1

Chapter 1. Introduction to NVIDIA AI
Enterprise

NVIDIA® AI Enterprise is a software suite that enables rapid deployment, management,
and scaling of AI workloads in the modern hybrid cloud. It provides AI and data science
applications and frameworks that are optimized and exclusively certified by NVIDIA to run
on VMware vSphere with NVIDIA-Certified Systems.

1.1. NVIDIA AI Enterprise Software
Architecture

The software in the NVIDIA AI Enterprise suite is organized into separate layers for
infrastructure optimization software, cloud native deployment software, and AI and data
science frameworks.

The content of these layers is as follows:

‣ Infrastructure optimization software:

‣ NVIDIA virtual GPU (vGPU) software

‣ NVIDIA CUDA Toolkit

‣ NVIDIA Magnum IO™ software stack for accelerated data centers

‣ Cloud native deployment software:

‣ NVIDIA GPU Operator

‣ NVIDIA Network Operator

‣ AI and data science frameworks:

‣ TensorFlow

‣ PyTorch

‣ NVIDIA Triton Inference Server

‣ NVIDIA TensorRT

‣ RAPIDS

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 2

The AI and data science frameworks are delivered as container images. Containerized
software can be run directly with a tool such as Docker.

Note: VMware Tanzu support with NVIDIA AI Enterprise coming soon.

1.2. Prerequisites for Using NVIDIA AI
Enterprise

Before proceeding, ensure that these prerequisites are met:

‣ You have a system that meets the requirements in NVIDIA AI Enterprise Release Notes.

‣ One or more supported NVIDIA GPUs are installed in your system.

‣ If you are using an NVIDIA A100 GPU, the following BIOS settings are enabled on your
system:

‣ Single Root I/O Virtualization (SR-IOV)

‣ VT-d/IOMMU - Enabled

‣ The following software is installed according to the instructions in the VMware
documentation:

http://docs.nvidia.com/ai-enterprise/1.0/pdf/nvidia-ai-enterprise-release-notes.pdf

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 3

‣ VMware vSphere Hypervisor ESXi

‣ VMware vCenter Server

‣ A VM to be enabled with NVIDIA vGPU is created with the virtual hardware resources
in the following table.

Resource Requirements

vCPUs 16

RAM 64 GB

Storage 500 GB thin provisioned virtual disk

NIC VMXNet3 NIC connected to network

‣ A supported guest OS is installed in the VM.

For optimum performance, set options in your server configuration as follows:

‣ Enable the following options:

‣ Hyperthreading

‣ Memory Mapped I/O above 4 GB (if applicable)

‣ Set the Power Setting or System Profile option to High Performance.

‣ If applicable, set CPU Performance to Enterprise or High Throughput.

Note: If NVIDIA card detection does not include all the installed GPUs, set this option to
Enabled.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 4

Chapter 2. Installing and Configuring
NVIDIA Virtual GPU
Manager

The process for installing and configuring NVIDIA Virtual GPU Manager depends on the
hypervisor that you are using. After you complete this process, you can install the display
drivers for your guest OS and license any NVIDIA AI Enterprise licensed products that you
are using.

2.1. About NVIDIA Virtual GPUs

2.1.1. NVIDIA vGPU Architecture
The high-level architecture of NVIDIA vGPU is illustrated in Figure 1. Under the control of
the NVIDIA Virtual GPU Manager running under the hypervisor, NVIDIA physical GPUs are
capable of supporting multiple virtual GPU devices (vGPUs) that can be assigned directly
to guest VMs.

Guest VMs use NVIDIA vGPUs in the same manner as a physical GPU that has been
passed through by the hypervisor: an NVIDIA driver loaded in the guest VM provides
direct access to the GPU for performance-critical fast paths, and a paravirtualized
interface to the NVIDIA Virtual GPU Manager is used for non-performant management
operations.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 5

Figure 1. NVIDIA vGPU System Architecture

Each NVIDIA vGPU is analogous to a conventional GPU, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU’s framebuffer
is allocated out of the physical GPU’s framebuffer at the time the vGPU is created, and
the vGPU retains exclusive use of that framebuffer until it is destroyed.

Depending on the physical GPU, different types of vGPU can be created on the vGPU:

‣ On all GPUs that support NVIDIA AI Enterprise, time-sliced vGPUs can be created.

‣ Additionally, on GPUs that support the Multi-Instance GPU (MIG) feature, MIG-backed
vGPUs can be created. The MIG feature is introduced on GPUs that are based on the
NVIDIA Ampere GPU architecture.

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
A time-sliced vGPU is a vGPU that resides on a physical GPU that is not partitioned into
multiple GPU instances. All time-sliced vGPUs resident on a GPU share access to the
GPU’s engines including the graphics (3D), video decode, and video encode engines.

In a time-sliced vGPU, processes that run on the vGPU are scheduled to run in series.
Each vGPU waits while other processes run on other vGPUs. While processes are running
on a vGPU, the vGPU has exclusive use of the GPU's engines. You can change the default
scheduling behavior as explained in Changing Scheduling Behavior for Time-Sliced vGPUs.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 6

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture
A MIG-backed vGPU is a vGPU that resides on a GPU instance in a MIG-capable physical
GPU. Each MIG-backed vGPU resident on a GPU has exclusive access to the GPU
instance’s engines, including the compute and video decode engines.

In a MIG-backed vGPU, processes that run on the vGPU run in parallel with processes
running on other vGPUs on the GPU. Process run on all vGPUs resident on a physical GPU
simultaneously.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 7

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture

2.1.2. About Virtual GPU Types
The number of physical GPUs that a board has depends on the board. Each physical
GPU can support several different types of virtual GPU (vGPU). vGPU types have a fixed
amount of frame buffer, number of supported display heads, and maximum resolutions.
They are grouped into different series according to the different classes of workload
for which they are optimized. Each series is identified by the last letter of the vGPU type
name.

Series Optimal Workload

C-series Compute-intensive server workloads, such as artificial intelligence (AI), deep

learning, or high-performance computing (HPC)1, 2

1 C-series vGPU types are NVIDIA Virtual Compute Server vGPU types, which are optimized for compute-intensive
workloads. As a result, they support only a single display head and do not provide Quadro graphics acceleration.

2 The maximum number of NVIDIA Virtual Compute Server vGPUs is limited to eight vGPUs per physical GPU, irrespective
of the available hardware resources of the physical GPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 8

The number after the board type in the vGPU type name denotes the amount of frame
buffer that is allocated to a vGPU of that type. For example, a vGPU of type A16-4C is
allocated 4096 Mbytes of frame buffer on an NVIDIA A16 board.

Due to their differing resource requirements, the maximum number of vGPUs that can be
created simultaneously on a physical GPU varies according to the vGPU type. For example,
an NVDIA A16 board can support up to 4 A16-4C vGPUs on each of its two physical GPUs,
for a total of 16 vGPUs, but only 2 A16-8C vGPUs, for a total of 8 vGPUs.

When enabled, the frame-rate limiter (FRL) limits the maximum frame rate in frames per
second (FPS) for C-series vGPUs to 60 FPS.

By default, the FRL is enabled for all GPUs. The FRL is disabled when the vGPU scheduling
behavior is changed from the default best-effort scheduler on GPUs that support
alternative vGPU schedulers. For details, see Changing Scheduling Behavior for Time-
Sliced vGPUs. On vGPUs that use the best-effort scheduler, the FRL can be disabled
as explained in the release notes for your chosen hypervisor at NVIDIA AI Enterprise
Documentation.

Note: NVIDIA vGPU is a licensed product on all supported GPU boards. An NVIDIA AI
Enterprise software license is required to enable all vGPU features within the guest VM.

For details of the virtual GPU types available from each supported GPU, see Virtual GPU
Types for Supported GPUs.

2.1.3. Valid Virtual GPU Configurations on a
Single GPU

Valid vGPU configurations on a single GPU depend on whether the vGPUs are time sliced
or, on GPUs that support MIG, are MIG-backed.

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on
a Single GPU

This release of NVIDIA vGPU supports only homogeneous time-sliced virtual GPUs. At any
given time, the virtual GPUs resident on a single physical GPU must be all of the same
type.

However, this restriction doesn’t extend across physical GPUs on the same card. Different
physical GPUs on the same card may host different types of virtual GPU at the same time,
provided that the vGPU types on any one physical GPU are the same.

For example, an NVIDIA A16 card has four physical GPUs, and can support several types
of virtual GPU.

‣ A configuration with A16-16C vGPUs on GPU 0 and GPU 1, A16-8C vGPUs on GPU 2,
and A16-4C vGPUs on GPU3 is valid.

‣ A configuration with a mixture of A16-8C vGPUs and A16-4C vGPUs on GPU0 is
invalid.

https://docs.nvidia.com/ai-enterprise/1.5/
https://docs.nvidia.com/ai-enterprise/1.5/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 9

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on
a Single GPU

This release of NVIDIA vGPU supports both homogeneous and mixed MIG-backed virtual
GPUs based on the underlying GPU instance configuration.

For example, an NVIDIA A100 PCIe 40GB card has one physical GPU, and can support
several types of virtual GPU. Figure 4 shows the following examples of valid homogeneous
and mixed MIG-backed virtual GPU configurations on NVIDIA A100 PCIe 40GB.

‣ A valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU
instances

‣ A valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU
instances

‣ A valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance,
1 A100-2-10C vGPU on a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a
MIG.1g.5b instance

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100
PCIe 40GB

2.2. Switching the Mode of a GPU that
Supports Multiple Display Modes

Some GPUs support displayless and display-enabled modes but must be used in NVIDIA
AI Enterprise deployments in displayless mode.

The GPUs listed in the following table support multiple display modes. As shown in the
table, some GPUs are supplied from the factory in displayless mode, but other GPUs are
supplied in a display-enabled mode.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 10

GPU Mode as Supplied from the Factory

NVIDIA A40 Displayless

NVIDIA RTX A5000 Display enabled

NVIDIA RTX A6000 Display enabled

A GPU that is supplied from the factory in displayless mode, such as the NVIDIA A40 GPU,
might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the
displaymodeselector tool, which you can request from the NVIDIA Display Mode
Selector Tool page on the NVIDIA Developer website.

Note:

Only the following GPUs support the displaymodeselector tool:

‣ NVIDIA A40

‣ NVIDIA RTX A5000

‣ NVIDIA RTX A6000

Other GPUs that support NVIDIA AI Enterprise do not support the displaymodeselector
tool and, unless otherwise stated, do not require display mode switching.

2.3. Installing and Configuring the
NVIDIA Virtual GPU Manager for
VMware vSphere

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware
vSphere VM to use NVIDIA vGPU or VMware vSGA. The vGPU Manager vSphere
Installation Bundles (VIBs) for VMware vSphere 6.5 and later provide vSGA and vGPU
functionality in a single VIB. For VMware vSphere 6.0, vSGA and vGPU functionality are
provided in separate vGPU Manager VIBs.

Note:

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV
SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware
vSphere on such a server, you must ensure that the SR-IOV SBIOS setting is enabled on
the server.

However, with any server hardware, do not enable SR-IOV in VMware vCenter Server
for the Tesla T4 GPU. If SR-IOV is enabled in VMware vCenter Server for T4, VMware
vCenter Server lists the status of the GPU as needing a reboot. You can ignore this status
message.

https://developer.nvidia.com/displaymodeselector
https://developer.nvidia.com/displaymodeselector

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 11

Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed
Resource Scheduler (DRS) cluster. However, you must ensure that the automation level of
the cluster supports VMs configured with NVIDIA vGPU:

‣ For any supported VMware vSphere release, set the automation level to Manual.

‣ For VMware vSphere 6.7 Update 1 or later, set the automation level to Partially
Automated or Manual.

For more information about these settings, see Edit Cluster Settings in the VMware
documentation.

2.3.1. Installing the NVIDIA Virtual GPU Manager
Package for vSphere

To install the vGPU Manager package you need to access the ESXi host via the ESXi Shell
or SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.
Before you begin, ensure that the following prerequisites are met:

‣ The ZIP archive that contains NVIDIA AI Enterprise has been downloaded from the
NVIDIA Licensing Portal.

‣ The NVIDIA Virtual GPU Manager package has been extracted from the downloaded
ZIP archive.

 1. Copy the NVIDIA Virtual GPU Manager package file to the ESXi host.
 2. Put the ESXi host into maintenance mode.

$ esxcli system maintenanceMode set –-enable true

 3. Use the esxcli command to install the vGPU Manager package.
For more information about the esxcli command, see esxcli software Commands in
the VMware vSphere documentation.
[root@esxi:~] esxcli software vib install -d /vmfs/volumes/datastore/software-
component.zip

datastore
The name of the VMFS datastore to which you copied the software component.

software-component
The name of the file that contains the NVIDIA Virtual GPU Manager package
in the form of a software component. Ensure that you specify the file that
was extracted from the downloaded ZIP archive. For example, for VMware
vSphere 7.0.2, software-component is NVD.NVIDIA_bootbank_NVIDIA-
VMware_470.182.02-1OEM.702.0.0.8169922-offline_bundle-build-number.

 4. Exit maintenance mode.
$ esxcli system maintenanceMode set –-enable false

 5. Reboot the ESXi host.
$ reboot

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-755AB944-F3D0-43DD-82CD-8CDDDF8674E8.html
https://code.vmware.com/docs/11743/esxi-7-0-esxcli-command-reference/namespace/esxcli_software.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 12

2.3.2. Verifying the Installation of the NVIDIA AI
Enterprise Package for vSphere

After the ESXi host has rebooted, verify the installation of the NVIDIA AI Enterprise
package for vSphere.

 1. Verify that the NVIDIA AI Enterprise package installed and loaded correctly by
checking for the NVIDIA kernel driver in the list of kernel loaded modules.
[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the NVIDIA driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

 3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
[root@esxi:~] nvidia-smi
Fri Apr 14 17:56:22 2023
+--+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 00000000:05:00.0 Off | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your system,
see Troubleshooting for troubleshooting steps.

2.3.3. Configuring VMware vMotion with vGPU
for VMware vSphere

NVIDIA AI Enterprise supports vGPU migration, which includes VMware vMotion and
suspend-resume, for VMs that are configured with vGPU. To enable VMware vMotion with

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 13

vGPU, an advanced vCenter Server setting must be enabled. However, suspend-resume
for VMs that are configured with vGPU is enabled by default.

Before configuring VMware vMotion with vGPU for an ESXi host, ensure that the current
NVIDIA Virtual GPU Manager for VMware vSphere package is installed on the host.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the Hosts and Clusters view, select the vCenter Server instance.

Note: Ensure that you select the vCenter Server instance, not the vCenter Server VM.

 3. Click the Configure tab.
 4. In the Settings section, select Advanced Settings and click Edit.
 5. In the Edit Advanced vCenter Server Settings window that opens, type vGPU in the

search field.
 6. When the vgpu.hotmigrate.enabled setting appears, set the Enabled option and click

OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 14

2.3.4. Changing the Default Graphics Type in
VMware vSphere

The vGPU Manager VIBs for VMware vSphere provide vSGA and vGPU functionality in a
single VIB. After this VIB is installed, the default graphics type is Shared, which provides
vSGA functionality. To enable vGPU support for VMs in VMware vSphere, you must
change the default graphics type to Shared Direct. If you do not change the default
graphics type, VMs to which a vGPU is assigned fail to start and the following error
message is displayed:
The amount of graphics resource available in the parent resource pool is
 insufficient for the operation.

Note:

Change the default graphics type before configuring vGPU. Output from the VM console
in the VMware vSphere Web Client is not available for VMs that are running vGPU.

Before changing the default graphics type, ensure that the ESXi host is running and that
all VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 15

Figure 5. Shared default graphics type

 5. In the Edit Host Graphics Settings dialog box that opens, select Shared Direct and
click OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 16

Figure 6. Host graphics settings for vGPU

Note: In this dialog box, you can also change the allocation scheme for vGPU-enabled
VMs. For more information, see Modifying GPU Allocation Policy on VMware vSphere.

After you click OK, the default graphics type changes to Shared Direct.
 6. Click the Graphics Devices tab to verify the configured type of each physical GPU on

which you want to configure vGPU.
The configured type of each physical GPU must be Shared Direct. For any physical
GPU for which the configured type is Shared, change the configured type as follows:
 a). On the Graphics Devices tab, select the physical GPU and click the Edit icon.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 17

Figure 7. Shared graphics type

 b). In the Edit Graphics Device Settings dialog box that opens, select Shared Direct
and click OK.

Figure 8. Graphics device settings for a physical GPU

 7. Restart the ESXi host or stop and restart nv-hostengine on the ESXi host.

To stop and restart nv-hostengine, perform these steps:
 a). Stop nv-hostengine.

[root@esxi:~] nv-hostengine -t

 b). Wait for 1 second to allow nv-hostengine to stop.
 c). Start nv-hostengine.

[root@esxi:~] nv-hostengine -d

 8. In the Graphics Devices tab of the VMware vCenter Web UI, confirm that the active
type and the configured type of each physical GPU are Shared Direct.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 18

Figure 9. Shared direct graphics type

After changing the default graphics type, configure vGPU as explained in Configuring a
vSphere VM with NVIDIA vGPU.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

2.3.5. Configuring a GPU for MIG-Backed vGPUs
To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG
mode enabled and GPU instances must be created and configured on the physical
GPU. Optionally, you can create compute instances within the GPU instances. If you
don't create compute instances within the GPU instances, they can be added later for
individual vGPUs from within the guest VMs.

Ensure that the following prerequisites are met:

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

‣ You have determined which GPU instances correspond to the vGPU types of the MIG-
backed vGPUs that you will create.

To get this information, consult the table of MIG-backed vGPUs for your GPU in Virtual
GPU Types for Supported GPUs.

‣ The GPU is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

After configuring a GPU for MIG-backed vGPUs, create the vGPUs that you need and add
them to their VMs.

2.3.5.1. Enabling MIG Mode for a GPU
Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 19

On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Determine whether MIG mode is enabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled.

This example shows that MIG mode is disabled on GPU 0.

Note: In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to
as A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB On	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

 3. If MIG mode is disabled, enable it.
$ nvidia-smi -i [gpu-ids] -mig 1
gpu-ids

A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the
GPUs on which you want to enable MIG mode. If gpu-ids is omitted, MIG mode is
enabled on all GPUs on the system.

This example enables MIG mode on GPU 0.
$ nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

Note: If the GPU is being used by another process, this command fails and displays a
warning message that MIG mode for the GPU is in the pending enable state. In this
situation, stop all processes that are using the GPU and retry the command.

 4. VMware vSphere ESXi only: Reboot the hypervisor host.
 5. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is

enabled.

This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated
values (CSV) format.
$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

2.3.5.2. Disabling MIG Mode for One or More GPUs
If a GPU that you want to use for time-sliced vGPUs or GPU pass through has previously
been configured for MIG-backed vGPUs, disable MIG mode on the GPU.

Ensure that the following prerequisites are met:

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 20

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

‣ The GPU is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.
You can use secure shell (SSH) for this purpose.

 2. Determine whether MIG mode is disabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled, but
might have previously been enabled.

This example shows that MIG mode is enabled on GPU 0.

Note: In the output from output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is
referred to as A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Enabled
+-------------------------------+----------------------+----------------------+

 3. If MIG mode is enabled, disable it.
$ nvidia-smi -i [gpu-ids] -mig 0
gpu-ids

A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the
GPUs on which you want to disable MIG mode. If gpu-ids is omitted, MIG mode is
disabled on all GPUs on the system.

This example disables MIG mode on GPU 0.
$ sudo nvidia-smi -i 0 -mig 0
Disabled MIG Mode for GPU 00000000:36:00.0
All done.

 4. Confirm that MIG mode was disabled.
Use the nvidia-smi command for this purpose.

This example shows that MIG mode is disabled on GPU 0.
$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 21

| | | Disabled |
+-------------------------------+----------------------+----------------------+

2.3.6. Configuring a vSphere VM with NVIDIA
vGPU

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

For details about which VMware vSphere versions and NVIDIA vGPUs support the
assignment of multiple vGPUs to a VM, see NVIDIA AI Enterprise Release Notes.

If you upgraded to VMware vSphere 6.7 Update 3 from an earlier version and are using
VMs that were created with that version, change the VM compatibility to vSphere
6.7 Update 2 and later. For details, see Virtual Machine Compatibility in the VMware
documentation.

If you are adding multiple vGPUs to a single VM, perform this task for each vGPU that you
want to add to the VM.

CAUTION: Output from the VM console in the VMware vSphere Web Client is not available
for VMs that are running vGPU. Make sure that you have installed an alternate means of
accessing the VM (such as VMware Horizon or a VNC server) before you configure vGPU.

VM console in vSphere Web Client will become active again once the vGPU parameters
are removed from the VM’s configuration.

Note: If you are configuring a VM to use VMware vSGA, omit this task.

 1. Open the vCenter Web UI.
 2. In the vCenter Web UI, right-click the VM and choose Edit Settings.
 3. Click the Virtual Hardware tab.
 4. In the New device list, select Shared PCI Device and click Add.

The PCI device field should be auto-populated with NVIDIA GRID vGPU.

http://docs.nvidia.com/ai-enterprise/1.0/pdf/nvidia-ai-enterprise-release-notes.pdf
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-64D4B1C9-CD5D-4C68-8B50-585F6A87EBA0.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 22

Figure 10. VM settings for vGPU

 5. From the GPU Profile drop-down menu, choose the type of vGPU you want to
configure and click OK.

 6. Ensure that VMs running vGPU have all their memory reserved:
 a). Select Edit virtual machine settings from the vCenter Web UI.
 b). Expand the Memory section and click Reserve all guest memory (All locked).

After you have configured a vSphere VM with a vGPU, start the VM. VM console in
vSphere Web Client is not supported in this vGPU release. Therefore, use VMware Horizon
or VNC to access the VM’s desktop.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 23

After the VM has booted, install the NVIDIA AI Enterprise graphics driver as explained in
Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM.

2.3.7. Setting vGPU Plugin Parameters on
VMware vSphere

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.
Ensure that the VM to which the vGPU is assigned is powered off.
For each vGPU for which you want to set plugin parameters, perform this task in the
vSphere Client. vGPU plugin parameters are PCI pass through configuration parameters
in advanced VM attributes.

 1. In the vSphere Client, browse to the VM to which the vGPU is assigned.
 2. Context-click the VM and choose Edit Settings.
 3. In the Edit Settings window, click the VM Options tab.
 4. From the Advanced drop-down list, select Edit Configuration.
 5. In the Configuration Parameters dialog box, click Add Row.
 6. In the Name field, type the parameter name pciPassthruvgpu-id.cfg.parameter, in

the Value field type the parameter value, and click OK.
vgpu-id

A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and
you are setting a plugin parameter for both vGPUs, set the following parameters:

‣ pciPassthru0.cfg.parameter

‣ pciPassthru1.cfg.parameter

parameter
The name of the vGPU plugin parameter that you want to set. For example, the
name of the vGPU plugin parameter for enabling unified memory is enable_uvm.

To enable unified memory for two vGPUs that are assigned to a VM, set
pciPassthru0.cfg.enable_uvm and pciPassthru1.cfg.enable_uvm to 1.

2.4. Disabling and Enabling ECC
Memory

Some GPUs that support NVIDIA AI Enterprise support error correcting code (ECC)
memory with NVIDIA vGPU. ECC memory improves data integrity by detecting and

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 24

handling double-bit errors. However, not all GPUs, vGPU types, and hypervisor software
versions support ECC memory with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-
series and Q-series vGPUs, but not with A-series and B-series vGPUs. Although A-series
and B-series vGPUs start on physical GPUs on which ECC memory is enabled, enabling
ECC with vGPUs that do not support it might incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is
usable by vGPUs is reduced. All types of vGPU are affected, not just vGPUs that support
ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:

‣ ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.

‣ In VMs that support ECC memory, ECC memory is enabled, with the option to disable
ECC in the VM.

‣ ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC
memory in a VM does not affect the amount of frame buffer that is usable by vGPUs.

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC
memory with NVIDIA vGPU. To determine whether ECC memory is enabled for a GPU, run
nvidia-smi -q for the GPU.

Tesla M60 and M6 GPUs support ECC memory when used without GPU virtualization, but
NVIDIA vGPU does not support ECC memory with these GPUs. In graphics mode, these
GPUs are supplied with ECC memory disabled by default.

Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.

If you are using a hypervisor software version or GPU that does not support ECC memory
with NVIDIA vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this
situation, you must ensure that ECC memory is disabled on all GPUs if you are using
NVIDIA vGPU.

2.4.1. Disabling ECC Memory
If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it.
You must also ensure that ECC memory is disabled on all GPUs if you are using NVIDIA
vGPU with a hypervisor software version or a GPU that does not support ECC memory
with NVIDIA vGPU. If your hypervisor software version or GPU does not support ECC
memory and ECC memory is enabled, NVIDIA vGPU fails to start.

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 25

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI
Enterprise graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as enabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Apr 17 18:36:45 2023
Driver Version : 470.182.02

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

 2. Change the ECC status to off for each GPU for which ECC is enabled.

‣ If you want to change the ECC status to off for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 0

‣ If you want to change the ECC status to off for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 0

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example disables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 0

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Apr 17 18:37:53 2023
Driver Version : 470.182.02

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

If you later need to enable ECC on your GPUs or vGPUs, follow the instructions in Enabling
ECC Memory.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 26

2.4.2. Enabling ECC Memory
If ECC memory is suitable for your workloads and is supported by your hypervisor
software and GPUs, but is disabled on your GPUs or vGPUs, enable it.

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI
Enterprise graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as disabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Apr 17 18:36:45 2023
Driver Version : 470.182.02

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

 2. Change the ECC status to on for each GPU or vGPU for which ECC is enabled.

‣ If you want to change the ECC status to on for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 1

‣ If you want to change the ECC status to on for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 1

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example enables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 1

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now enabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 27

Timestamp : Mon Apr 17 18:37:53 2023
Driver Version : 470.182.02

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

If you later need to disable ECC on your GPUs or vGPUs, follow the instructions in
Disabling ECC Memory.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 28

Chapter 3. Installing and Licensing
NVIDIA AI Enterprise
Components Required in a
Guest VM

3.1. Installing NVIDIA AI Enterprise
Software Components by Using
Kubernetes

Perform this task if you are using one of the following combinations of guest operating
system and container platform:

‣ Ubuntu with Kubernetes

Ensure that the following prerequisites are met:

 1. If you are using Kubernetes, ensure that:
 a). Kubernetes is installed in the VM.
 b). NVIDIA vGPU Manager is installed.
 c). NVIDIA vGPU License Server with licenses is installed.

 2. Helm is installed.
 3. You have generated your NGC API key for accessing the NVIDIA Enterprise Collection

at the URL provided to you by NVIDIA.

3.1.1. Installing and Licensing the NVIDIA vGPU
Software Graphics Driver by Using NVIDIA
GPU Operator

Installation of the NVIDIA AI Enterprise GPU Operator is documented at:

https://docs.nvidia.com/datacenter/cloud-native/kubernetes/install-k8s.html#install-kubernetes
https://docs.nvidia.com/grid/latest/index.html
https://docs.nvidia.com/grid/ls/latest/grid-license-server-user-guide/index.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#install-helm
https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 29

https://docs.nvidia.com/datacenter/cloud-native/gpu-
operator/getting-started.html#nvidia-ai-enterprise

3.1.2. Transforming Container Images for AI and
Data Science Applications and Frameworks
into Kubernetes Pods

The AI and data science applications and frameworks are distributed as NGC container
images through the NGC private registry. If you are using Kubernetes or Red Hat
OpenShift, you must transform each image that you want to use into a Kubernetes pod.
Each container image contains the entire user-space software stack that is required
to run the application or framework, namely, the CUDA libraries, cuDNN, any required
Magnum IO components, TensorRT, and the framework.

3.2. Install NVIDIA AI Enterprise
Software Components by Using
Docker

Perform this task if you are using Ubuntu with Docker.

3.2.1. Installing and Licensing the NVIDIA vGPU
Software Graphics Driver Natively

Perform this task in the guest VM.

 1. Install the vGPU software graphics driver for Linux on the VM that you downloaded
from the NVIDIA Licensing Portal.

 2. License the NVIDIA vGPU.
 3. Install NVIDIA Container Toolkit.

3.2.2. Installing AI and Data Science Applications
and Frameworks by Using Docker

The AI and data science applications and frameworks are distributed as NGC container
images through the NGC private registry. Each container image contains the entire
user-space software stack that is required to run the application or framework, namely,
the CUDA libraries, cuDNN, any required Magnum IO components, TensorRT, and the
framework.

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.nvidia.com/grid/latest/grid-vgpu-user-guide/index.html#installing-vgpu-drivers-linux
https://docs.nvidia.com/grid/latest/grid-licensing-user-guide/index.html#licensing-grid-vgpu-linux-config-file
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/install-guide.html#installing-on-ubuntu-and-debian
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 30

‣ Accessing the NGC Container Registry

Perform this task in the guest VM.

For each AI or data science application that you are interested in, load the container
as explained in Uploading an NVIDIA Container Image onto Your System in NGC Private
Registry User Guide.

The following table lists the Docker pull command for downloading the container for
each application or framework.

Application or Framework Docker pull Command

NVIDIA TensorRT docker pull nvcr.io/nvaie/
tensorrt-1-5:21.08-lws1.0-py3

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3-sdk

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3-min

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3

PyTorch docker pull nvcr.io/nvaie/pytorch-1-5:21.08-
lws1.0-py3

RAPIDS docker pull nvcr.io/nvaie/nvidia-
rapids-1-5:21.08-lws1.0-cuda11.4-
ubuntu20.04-py3.8

TensorFlow 1 docker pull nvcr.io/nvaie/
tensorflow-1-5:21.08-lws1.0-tf1-py3

TensorFlow 2 docker pull nvcr.io/nvaie/
tensorflow-1-5:21.08-lws1.0-tf2-py3

The following table lists the Docker pull commands for downloading other software that
is distributed as NGC container images through the NGC private registry.

Other Software Docker pull Command

GPU Operator docker pull nvcr.io/nvaie/gpu-
operator-1-5:v22.9.2

Network Operator docker pull nvcr.io/nvaie/network-
operator-1-5:v23.1.0

vGPU Guest Driver, Ubuntu docker pull nvcr.io/nvaie/
vgpu_guest_driver_1_5:470.182.03-ubuntu20.04

3.3. Installing and Licensing NVIDIA AI
Enterprise Components Natively

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#loading-nvidia-docker-containers

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 31

3.3.1. Installing the NVIDIA AI Enterprise
Graphics Driver on Linux from a Debian
Package

The NVIDIA AI Enterprise graphics driver for Linux is distributed a Debian package file.
This task requires sudo privileges.

 1. Copy the NVIDIA AI Enterprise Linux driver package, for example nvidia-linux-
grid-470_470.161.03_amd64.deb, to the guest VM where you are installing the driver.

 2. Log in to the guest VM as a user with sudo privileges.
 3. Open a command shell and change to the directory that contains the NVIDIA AI

Enterprise Linux driver package.
 4. From the command shell, run the command to install the package.

$ sudo apt-get install ./nvidia-linux-grid-470_470.161.03_amd64.deb

 5. Verify that the NVIDIA driver is operational.
 a). Reboot the system and log in.
 b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device

in the output from the nvidia-smi command.
$ nvidia-smi

3.3.2. Prerequisites for Configuring a Licensed
Client of NVIDIA License System

A client with a network connection obtains a license by leasing it from a NVIDIA License
System service instance. The service instance serves the license to the client over the
network from a pool of floating licenses obtained from the NVIDIA Licensing Portal. The
license is returned to the service instance when the licensed client is shut down.

Before configuring a licensed client, ensure that the following prerequisites are met:

‣ The NVIDIA AI Enterprise graphics driver is installed on the client.

‣ The client configuration token that you want to deploy on the client has been created
from the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System
User Guide.

‣ The client configuration token that you want to deploy on the client has been created
from the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System
User Guide.

‣ Ports 443 and 80 in your firewall or proxy must be open to allow HTTPS traffic
between a service instance and its the licensed clients. These ports must be open for
both CLS instances and DLS instances.

Note: For DLS releases before DLS 1.1, ports 8081 and 8082 were also required to be
open to allow HTTPS traffic between a DLS instance and its licensed clients. Although
these ports are no longer required, they remain supported for backward compatibility.

http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 32

The graphics driver creates a default location in which to store the client configuration
token on the client. You can specify a custom location for the client configuration token
by adding a registry value on Windows or by setting a configuration parameter on Linux.
By specifying a shared network location that is mounted locally on the client, you can
simplify the deployment of the same client configuration token on multiple clients.
Instead of copying the client configuration token to each client individually, you can keep
only one copy in the shared network location.

The process for configuring a licensed client is the same for CLS and DLS instances but
depends on the OS that is running on the client.

3.3.2.1. Configuring a Licensed Client on Linux
Perform this task from the client.

 1. As root, open the file /etc/nvidia/gridd.conf in a plain-text editor, such as vi.
$ sudo vi /etc/nvidia/gridd.conf

Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied
template file /etc/nvidia/gridd.conf.template.

 2. Add the FeatureType configuration parameter to the file /etc/nvidia/gridd.conf
on a new line as FeatureType="value".

value depends on the type of the GPU assigned to the licensed client that you are
configuring.

GPU Type Value

NVIDIA vGPU 1. NVIDIA AI Enterprise automatically selects the
correct type of license based on the vGPU type.

Physical GPU The feature type of a GPU in pass-through mode or a
bare-metal deployment:

‣ 0: NVIDIA Virtual Applications

‣ 2: NVIDIA RTX Virtual Workstation

‣ 4: NVIDIA Virtual Compute Server

This example shows how to configure a licensed Linux client for NVIDIA Virtual
Compute Server.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
Description: Set Feature to be enabled
Data type: integer
Possible values:
0 => for unlicensed state
1 => for NVIDIA vGPU
2 => for NVIDIA RTX Virtual Workstation
4 => for NVIDIA Virtual Compute Server
FeatureType=4
...

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 33

 3. If a non-transparent proxy server is configured between your licensed client and a CLS
instance, provide the address and port number of the proxy server.

Note: Authenticated non-transparent proxy servers are not supported.

Provide this information by adding the following configuration parameters to the file /
etc/nvidia/gridd.conf on separate lines.
ProxyServerAddress=address
ProxyServerPort=port
address

The address of the proxy server. The address can be a fully qualified domain name
such as iproxy1.example.com, or an IP address such as 10.31.20.45.

port
The port number of the proxy server.

This example sets the address of a proxy server to 10.31.20.45 and the port number
to 3128.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
ProxyServerAddress=10.31.20.45
ProxyServerPort=3128
...

 4. Optional: If you want store the client configuration token in a custom location, add
the ClientConfigTokenPath configuration parameter to the file /etc/nvidia/
gridd.conf on a new line as ClientConfigTokenPath="path"
path

The full path to the directory in which you want to store the client configuration
token for the client. By default, the client searches for the client configuration
token in the /etc/nvidia/ClientConfigToken/ directory.

By specifying a shared network directory that is mounted locally on the client, you can
simplify the deployment of the same client configuration token on multiple clients.
Instead of copying the client configuration token to each client individually, you can
keep only one copy in the shared network directory.

This example shows how to configure a licensed Linux client to search for the client
configuration token in the /mnt/nvidia/ClientConfigToken/ directory. This directory
is a mount point on the client for a shared network directory.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
ClientConfigTokenPath=/mnt/nvidia/ClientConfigToken/
...

 5. Save your changes to the /etc/nvidia/gridd.conf file and close the file.
 6. If you are storing the client configuration token in a custom location, create the

directory in which you want to store the client configuration token.

If the directory is a shared network directory, ensure that it is mounted locally on the
client at the path specified in the ClientConfigTokenPath configuration parameter.

If you are storing the client configuration token in the default location, omit this
step. The default directory in which the client configuration token is stored is created
automatically after the graphics driver is installed.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 34

 7. Copy the client configuration token to the directory in which you want to store the
client configuration token.
Ensure that this directory contains only the client configuration token that you want
to deploy on the client and no other files or directories. If the directory contains more
than one client configuration token, the client uses the newest client configuration
token in the directory.

‣ If you want to store the client configuration token in the default location, copy the
client configuration token to the /etc/nvidia/ClientConfigToken directory.

‣ If you want to store the client configuration token in a custom location, copy the
token to the directory that you created in the previous step.

 8. Ensure that the file access modes of the client configuration token allow the owner to
read, write, and execute the token, and the group and others only to read the token.
 a). Determine the current file access modes of the client configuration token.

ls -l client-configuration-token-directory

 b). If necessary, change the mode of the client configuration token to 744.
chmod 744 client-configuration-token-directory/client_configuration_token_*.tok

client-configuration-token-directory
The directory to which you copied the client configuration token in the previous
step.

 9. Restart the nvidia-gridd service.

The NVIDIA service on the client should now automatically obtain a license from the CLS
or DLS instance.

After a Linux licensed client has been configured, options for configuring licensing for a
network-based license server are no longer available in NVIDIA X Server Settings.

3.3.2.2. Verifying the NVIDIA AI Enterprise License
Status of a Licensed Client

After configuring a client with an NVIDIA AI Enterprise license, verify the license status by
displaying the licensed product name and status.

To verify the license status of a licensed client, run nvidia-smi with the –q or --query
option. If the product is licensed, the expiration date is shown in the license status.
nvidia-smi -q
==============NVSMI LOG==============

Timestamp : Wed Mar 31 01:49:28 2020
Driver Version : 440.88
CUDA Version : 10.0

Attached GPUs : 1
GPU 00000000:00:08.0
 Product Name : Tesla T4
 Product Brand : Grid
 Display Mode : Enabled
 Display Active : Disabled
 Persistence Mode : N/A
 Accounting Mode : Disabled
 Accounting Mode Buffer Size : 4000
 Driver Model

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 35

 Current : WDDM
 Pending : WDDM
 Serial Number : 0334018000638
 GPU UUID : GPU-ba2310b6-95d1-802b-f96f-5865410fe517
 Minor Number : N/A
 VBIOS Version : 90.04.21.00.01
 MultiGPU Board : No
 Board ID : 0x8
 GPU Part Number : 699-2G183-0200-100
 Inforom Version
 Image Version : G183.0200.00.02
 OEM Object : 1.1
 ECC Object : 5.0
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 GPU Virtualization Mode
 Virtualization mode : Pass-Through
 vGPU Software Licensed Product
 Product Name : NVIDIA Virtual Compute Server
 License Status : Licensed (Expiry: 2021-11-13 18:29:59 GMT)
 …
 …

3.3.3. Installing NVIDIA Container Toolkit
Use NVIDIA Container Toolkit to build and run GPU accelerated Docker containers. The
toolkit includes a container runtime library and utilities to configure containers to use
NVIDIA GPUs automatically.

Ensure that the following software is installed in the guest VM:

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 36

‣ Docker 20.10 for your Linux distribution. For instructions, refer to Install Docker
Engine on Ubuntu in the Docker product manuals.

‣ The NVIDIA AI Enterprise graphics driver. For instructions, refer to Installing the
NVIDIA AI Enterprise Graphics Driver on Linux from a Debian Package.

Note: You do not need to install NVIDIA CUDA Toolkit on the hypervisor host.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the
file /etc/apt/sources.list.d/nvidia-docker.list.
$ distribution=$(. /etc/os-release;echo IDVERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

 2. Download information from all configured sources about the latest versions of the
packages and install the nvidia-container-toolkit package.
$ sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

 3. Restart the Docker service.
$ sudo systemctl restart docker

3.3.4. Verifying the Installation of NVIDIA
Container Toolkit

 1. Run the nvidia-smi command contained in the latest official NVIDIA CUDA Toolkit
image.
$ docker run --gpus all nvidia/cuda:11.0-base nvidia-smi

 2. Start a GPU-enabled container on any two available GPUs.
$ docker run --gpus 2 nvidia/cuda:11.0-base nvidia-smi

 3. Start a GPU-enabled container on two specific GPUs identified by their index
numbers.
$ docker run --gpus '"device=1,2"' nvidia/cuda:10.0-base nvidia-smi

 4. Start a GPU-enabled container on two specific GPUs with one GPU identified by its
UUID and the other GPU identified by its index number.
$ docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:11.0-base nvidia-smi

 5. Specify a GPU capability for the container.
$ docker run --gpus all,capabilities=utility nvidia/cuda:11.0-base nvidia-smi

3.3.5. Installing Software Distributed as
Container Images

The NGC container images accessed through the NVIDIA Enterprise Catalog includes
the AI and data science applications, frameworks, and software in the infrastructure
optimization and cloud native deployment layers. Each container image for an AI and data
science application or framework contains the entire user-space software stack that is
required to run the application or framework; namely, the CUDA libraries, cuDNN, any
required Magnum IO components, TensorRT, and the framework.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 37

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

‣ Accessing the NGC Container Registry

Perform this task from the VM.

For each AI or data science application that you are interested in, load the container
as explained in Uploading an NVIDIA Container Image onto Your System in NGC Private
Registry User Guide.

The following table lists the Docker pull command for downloading the container for
each application or framework.

Application or Framework Docker pull Command

NVIDIA TensorRT docker pull nvcr.io/nvaie/
tensorrt-1-5:21.08-lws1.0-py3

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3-sdk

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3-min

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-1-5:21.08-lws1.0-py3

PyTorch docker pull nvcr.io/nvaie/pytorch-1-5:21.08-
lws1.0-py3

RAPIDS docker pull nvcr.io/nvaie/nvidia-
rapids-1-5:21.08-lws1.0-cuda11.4-
ubuntu20.04-py3.8

TensorFlow 1 docker pull nvcr.io/nvaie/
tensorflow-1-5:21.08-lws1.0-tf1-py3

TensorFlow 2 docker pull nvcr.io/nvaie/
tensorflow-1-5:21.08-lws1.0-tf2-py3

The following table lists the Docker pull commands for downloading other software that
is distributed as NGC container images through the NVIDIA Enterprise Catalog.

Other Software Docker pull Command

GPU Operator docker pull nvcr.io/nvaie/gpu-
operator-1-5:v22.9.2

Network Operator docker pull nvcr.io/nvaie/network-
operator-1-5:v23.1.0

vGPU Guest Driver, Ubuntu docker pull nvcr.io/nvaie/
vgpu_guest_driver_1_5:470.182.03-ubuntu20.04

3.3.6. Running ResNet-50 with TensorRT
 1. Launch the NVIDIA TensorRT container image on all vGPUs in interactive mode,

specifying that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm nvcr.io/nvaie/tensorrt:21.07-py3

 2. From within the container runtime, change to the directory that contains test data for
the ResNet-50 convolutional neural network.
cd /workspace/tensorrt/data/resnet50

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#loading-nvidia-docker-containers

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 38

 3. Run the ResNet-50 convolutional neural network with FP32, FP16, and INT8 precision
and confirm that each test is completed with the result PASSED.
 a). To run ResNet-50 with the default FP32 precision, run this command:

trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob

 b). To run ResNet-50 with FP16 precision, add the --fp16 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --fp16

 c). To run ResNet-50 with INT8 precision, add the --int8 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --int8

 4. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command
shell.

3.3.7. Running ResNet-50 with TensorFlow
 1. Launch the TensorFlow 1 container image on all vGPUs in interactive mode, specifying

that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm \
nvcr.io/nvaie/tensorflow:21.07-tf1-py3

 2. From within the container runtime, change to the directory that contains test data for
cnn example.
cd /workspace/nvidia-examples/cnn

 3. Run the ResNet-50 training test with FP16 precision.
python resnet.py --layers 50 -b 64 -i 200 -u batch --precision fp16

 4. Confirm that all operations on the application are performed correctly and that a set
of results is reported when the test is completed.

 5. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command
shell.

3.3.8. Optional: Updating NVIDIA Container
Toolkit for a MIG-Enabled vGPU

To run containers on a MIG-enabled vGPU, you must update the NVIDIA Container Toolkit.
This task requires sudo privileges.
Perform this task from the guest VM in which you want to run containers on a MIG-
enabled vGPU.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the
file /etc/apt/sources.list.d/nvidia-docker.list.
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
 && distribution=$(. /etc/os-release;echo IDVERSION_ID) \
 && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list
 | sudo tee /etc/apt/sources.list.d/nvidia-docker.list \
 && sudo apt-get update

 2. Install the NVIDIA Container Toolkit packages and the packages on which it depends,
and restart Docker.
$ sudo apt-get install -y nvidia-docker2 \
 && sudo systemctl restart docker

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 39

 3. Test the installation of the NVIDIA Container Toolkit on the VM.
sudo docker run –runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=mig-device nvidia/cuda
 nvidia-smi
mig-device

The ID of the MIG-enabled vGPU in one of the following formats:

‣ MIG-gpu-uuid/gpu-instance-id/compute-instance-id
gpu-uuid

The UUID of the physical GPU, for example, GPU-786035d5-1e85-11b2-9fec-
ac9c9a792daf.

gpu-instance-id
The index number the GPU instance on which the vGPU resides, for example,
0 for the first GPU instance.

compute-instance-id
The index number of the compute instance within the GPU instance, for
example, 0 for the first compute instance.

This example sets NVIDIA_VISIBLE_DEVICES for compute instance 0 on
a MIG-enabled vGPU on GPU instance 0 of the physical GPU with UUID
GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf.
NVIDIA_VISIBLE_DEVICES=MIG-GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf/0/0

‣ gpu-device-index:mig-device-index
gpu-device-index

The index number the physical GPU.
mig-device-index

The index number the GPU instance.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 40

Chapter 4. Configuring Multinode
Scaling

Multinode scaling improves the performance of applications and frameworks, such as
PyTorch and Tensorflow, that can run in a cluster of multiple hypervisor hosts.

Note:

Perform the tasks for configuring multinode scaling before performing the tasks in
Getting Started with NVIDIA AI Enterprise.

The procedures for configuring switches and NICs apply to NVIDIA Mellanox NICs and
switches. If you are using other makes of NICs and switches, consult the vendor's
documentation for the products that you are using.

You are free to choose how to run your training jobs in a cluster. For information about
the cluster architecture that can be used to run BERT training jobs, see Multi-node BERT
User Guide.

4.1. Hardware and VM Configuration
Requirements for Multinode
Scaling

If you are configuring multinode scaling, your hardware and VM configuration must meet
some specific requirements in addition to the requirements for a single node.

4.1.1. Hardware Requirements for Multinode
Scaling

In addition to the requirements for a single node, the hardware used for multinode scaling
must meet the following requirements:

‣ An Ethernet NIC that supports RoCE is required in each VM used for multinode
scaling. For best performance, NVIDIA recommends the NVIDIA® Mellanox®

ConnectX®-6 Dx.

https://docs.nvidia.com/ngc/multi-node-bert-user-guide/
https://docs.nvidia.com/ngc/multi-node-bert-user-guide/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 41

‣ The hypervisor hosts must be connected to a network switch that supports RoCE. For
best performance, NVIDIA recommends the NVIDIA Mellanox Spectrum switch.

‣ One GPU is required for each VM.

For best performance, NVIDIA recommends the NVIDIA A100 GPU.

‣ Each GPU on each hypervisor host must be paired with a NIC in the same NUMA node.

4.1.2. VM Requirements for Multinode Scaling
In addition to meeting the requirements for using C-Series vCS vGPUs, each VM used for
multinode scaling must be assigned an RoCE NIC PCIe device.

4.2. Configuring NUMA Affinity for the
VMs

To ensure that your multinode setup performs adequately, each GPU on each hypervisor
host must be paired with a NIC in the same NUMA node. If a GPU is not paired with
a NIC in the same NUMA node, reconfigure your server hardware to ensure that this
prerequisite is met.

Examples of how to configure NUMA affinity for the VMs in a two-socket server are
provided for the following configurations:.

‣ Whole-server VM with two GPUs and two NICs across both NUMA nodes

‣ Per-socket VM with one GPU and one NIC paired on a single NUMA node

The hardware configuration of the server is as follows:

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#vcompute-vgpu-bar-memory
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-BF2770C3-39ED-4BC5-A8EF-77D55EFE924C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-A80A6337-7B99-48C8-B024-EE47E2366C1B.html

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 42

4.2.1. Configuring NUMA Affinity for a Whole-
Server VM with Two GPUs and Two NICs
Across Both NUMA Nodes

The allocation of hardware resources to a VM that is assigned the whole server is as
follows:

Perform this task on each hypervisor host.

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes two GPUs. One GPU is attached to NUMA node 0 and
the other GPU is attached to NUMA node 1.
#GPU 1
0000:37:00.0
 Address: 0000:37:00.0
 Segment: 0x0000
 Bus: 0x37
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx0
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 43

 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 2
 Slot Description: PCI-E Slot 2
 Device Layer Bus Address: s00000002.00
 Passthru Capable: true
 Parent Device: PCI 0:54:0:0
 Dependent Device: PCI 0:55:0:0
 Reset Method: Bridge reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 0
 Extended Device Name:

#GPU 2
0000:86:00.0
 Address: 0000:86:00.0
 Segment: 0x0000
 Bus: 0x86
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx1
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 5
 Slot Description: PCI-E Slot 5
 Device Layer Bus Address: s00000005.00
 Passthru Capable: true
 Parent Device: PCI 0:133:0:0
 Dependent Device: PCI 0:134:0:0
 Reset Method: Bridge reset

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 44

 FPT Sharable: true
 NUMA Node: 1
 Extended Device ID: 0
 Extended Device Name:

 2. Set up vCPUs for the VM so that the VM has two sockets with the vCPU cores evenly
divided between the sockets.

 3. With two GPUs and NICs in the VM across NUMA nodes, set the NUMA affinity in the
VM configuration to include both NUMA nodes 0 and 1.
numa.nodeAffinity = 0,1

4.2.2. Configuring NUMA Affinity for a Per-
Socket VM with One GPU and One NIC on a
Single NUMA Node

The allocation of hardware resources to the VMs that are each assigned one socket in a
server is as follows:

Perform this task on each hypervisor host.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 45

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes a GPU that is attached to NUMA node 0.
0000:3b:02.3
 Address: 0000:3b:02.3
 Segment: 0x0000
 Bus: 0x3b
 Slot: 0x02
 Function: 0x3
 VMkernel Name: PF_0.59.0_VF_15
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner:
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x0000
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
PCI Pin: 0xff
 Spawned Bus: 0x00
 Flags: 0x0001
 Module ID: 54
 Module Name: nvidia
 Chassis: 0
 Physical Slot: -1
 Slot Description:
 Device Layer Bus Address: s00000001.00.vf15
 Passthru Capable: true
 Parent Device: PCI 0:58:0:0
 Dependent Device: PCI 0:59:2:3
 Reset Method: Function reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 65535
 Extended Device Name:

 2. For each GPU that you want to pair with a NIC, set the NUMA affinity in the VM
configuration to the NUMA node to which the NIC and the GPU in the pair belong.
numa.nodeAffinity = numa-node-value

4.3. Configuring RoCE on the NVIDIA
Mellanox Spectrum Switch

The NVIDIA Mellanox Spectrum switch must be able to run RDMA over Converged
Ethernet (RoCE) over a lossless network in DSCP-based QoS mode.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 46

Perform this task from a host computer that has an Ethernet LAN connection to the
switch.

 1. Use secure shell (SSH) to log in to the switch.
To obtain the username and password for logging in to the switch, consult the
documentation for the switch.

 2. Set the mode of the switch to RoCE.
switch (config) # roce

 3. Create an isolated vLAN.
switch (config) # interface vlan vlan-id

The vLAN context is entered automatically after the vLAN is created.

The following example creates a vLAN with the identifier 111.
switch (config) # interface vlan 111
switch (config vlan 111) #

 4. Exit the vLAN context.
switch (config vlan 111) # exit

 5. Place the NVIDIA ConnectX NICs into the created vLAN as access ports.
switch (config) # interface ethernet port-range switchport access vlan-id

This example puts four NVIDIA ConnectX NICs into the vLAN with the identifier 111 as
access ports 1/1 - 1/4.
switch (config) # interface ethernet 1/1-1/4 switchport access vlan 111

 6. Set the maximum transmission unit (MTU) frame size to 9216.
 a). Disable all the ports related to the interface.

switch (config) # interface ethernet port-range shutdown

 b). Set the MTU frame size for the NVIDIA ConnectX NICs in the created vLAN to
9216.
switch (config) # interface ethernet port-range mtu 9216

 c). Enable all the ports related to the interface.
switch (config) # interface ethernet port-range no shutdown

 7. If your switch is running Cumulus Linux, enable RoCE with Cumulus Linux.

4.4. Enabling GPUDirect Technology for
Peer-to-Peer Connections

Enabling GPUDirect® Technology for peer-to-peer connections involves enabling Address
Translation Services (ATS) in the VMware ESXi VMkernel and modifying Access Control
Services (ACS) settings for the VM.

Perform this task from each hypervisor host in your multinode cluster.

 1. As root, log in to the hypervisor host.
 2. Update the VMkernel settings.

 a). Enable Address Translation Services (ATS) in the boot options.

https://docs.cumulusnetworks.com/cumulus-linux-42/Network-Solutions/RDMA-over-Converged-Ethernet-RoCE/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 47

[root@localhost:~] esxcli system settings kernel set -s atsSupport -v TRUE

 b). Reboot the hypervisor host.
 c). Confirm that ATS is enabled.

[root@localhost:~] esxcli system settings kernel list -o atsSupport
Name Type Configured Runtime Default Description
---------- ---- ---------- ------- ------- -----------
atsSupport Bool TRUE TRUE FALSE Enable Support for PCIe
 ATS.

 3. Update the VM configuration.
 a). Set the option to enable peer-to-peer connections.

pciPassthru.allowP2P=true

 b). Set the option to relax ACS settings for peer-to-peer connections.
pciPassthru.RelaxACSforP2P=true

When this option is set, VMware vSphere ESXi locates an ATS-capable pass-
through device, finds its parent switch or root port, and enables the ACS Direct
Translated bit.

4.5. Installing the Mellanox OFED Driver
Perform this task on each guest VM on each hypervisor host.

 1. Install the default version of python.
$ sudo apt install python

 2. Download the compressed tar archive that contains the driver.
$ wget \
https://content.mellanox.com/ofed/MLNX_OFED-5.2-2.2.0.0/\
MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 3. Extract the contents of the compressed tar archive that contains the driver.
$ tar xvf MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 4. Change to the MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64 directory.
$ cd MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64

 5. Run the script that installs the driver.
$ sudo ./mlnxofedinstall

During the installation process, OFED detects the ConnectX-6 NICs and updates the
firmware.

 6. When the installation is complete, confirm that the versions of OFED are correct.
 a). Determine the OFED version.

$ dpkg -l | grep mlnx-ofed

 b). Determine the firmware version.
$ cat /sys/class/infiniband/mlx5*/fw_ver

If the firmware is not updated, download the latest firmware, update the firmware
manually, and install the Mellanox OFED driver again.

 7. Load the installed driver.
$ sudo /etc/init.d/openibd restart

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 48

4.6. Enabling ATS on the NVIDIA
ConnectX-6 DX NICs in a VM

Perform this task on each guest VM on each hypervisor host.

 1. Change the ATS configuration to enabled on each guest VM on the hypervisor host.
 a). Start Mellanox software tools.

$ sudo mst start

 b). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

If the installed version of the firmware supports ATS, output similar to the
following example is displayed.
ATS_ENABLED False(0)

If no output is displayed, the installed version of the firmware does not support
ATS. In this situation, update to a version of the firmware that supports ATS.

 c). If ATS is disabled, enable it.
$sudo mlxconfig -d /dev/mst/mt4123_pciconf0 set ATS_ENABLED=true
Device #1:

Device type: ConnectX6
Name: MCX653105A-HDA_Ax
Description: ConnectX-6 VPI adapter card; HDR IB (200Gb/s) and 200GbE;
 single-port QSFP56; PCIe4.0 x16; tall bracket; ROHS R6
Device: /dev/mst/mt4123_pciconf0

Configurations: Next Boot New
ATS_ENABLED False(0) True(1)
Apply new Configuration? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

 2. After changing the ATS configuration to enabled on each guest VM on the node, turn
off the power to the VMware vSphere ESXi host and turn the power back on again.

Note:

To apply the changed ATS configuration setting, you must turn off the power to the
VMware vSphere ESXi host and turn the power back on again. Rebooting the host is
insufficient to apply this change.

 3. Start VMware vCenter Server on the hypervisor host.
 4. For each VM on the node, perform the following steps:

 a). Turn on the power to the VM.
 b). Start Mellanox software tools.

$ sudo mst start

 c). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 49

If the installed version of the firmware supports ATS, output similar to the
following example is displayed.
ATS_ENABLED True(1)

 d). Obtain detailed information about all PCI buses and devices in the VM and confirm
that the ATS capability of Mellanox ConnectX-6 device is shown as Enable+.
$ sudo lspci -vvv
...
 Capabilities: [480 v1] Address Translation Service (ATS)
 ATSCap: Invalidate Queue Depth: 00
 ATSCtl: Enable+, Smallest Translation Unit: 00
...

4.7. Building and Installing the NVIDIA
Peer Memory Driver

Perform this task on each guest VM on each hypervisor host.

 1. If necessary, install the latest stable upstream version of Git.
 a). Add the ppa:git-core/ppa repository to your list of package sources.

$ sudo add-apt-repository ppa:git-core/ppa

 b). Download information from all configured sources about the latest versions of the
packages.
$ sudo apt update

 c). Install the git package.
$ sudo apt install git

 2. Clone the Mellanox nv_peer_memory Git repository.
$ git clone https://github.com/Mellanox/nv_peer_memory.git

 3. Change to the nv_peer_memory directory.
$ cd nv_peer_memory/

 4. Build the NVIDIA peer memory driver software.
$./build_module.sh

 5. Change to the /tmp directory.
$ cd /tmp/

 6. Extract the NVIDIA peer memory driver software from the compressed tar archive
that the build process created.
$ tar xzf /tmp/nvidia-peer-memory_1.1.orig.tar.gz

 7. Change to the nvidia-peer-memory-1.1 directory.
$ cd nvidia-peer-memory-1.1/

 8. Build the NVIDIA peer memory driver package.
$ dpkg-buildpackage -us -uc

 9. Change to the parent of the current working directory.
$ cd ..

 10.Install the driver package that you built.
$ sudo dpkg -i nvidia-peer-memory_1.1-0_all.deb

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 50

Chapter 5. Modifying a VM's NVIDIA
vGPU Configuration

You can modify a VM's NVIDIA vGPU configuration by removing the NVIDIA vGPU
configuration from a VM or by modifying GPU allocation policy.

5.1. Removing a VM’s NVIDIA vGPU
Configuration

Remove a VM’s NVIDIA vGPU configuration when you no longer require the VM to use a
virtual GPU.

5.1.1. Removing a vSphere VM’s vGPU
Configuration

To remove a vSphere vGPU configuration from a VM:

 1. Select Edit settings after right-clicking on the VM in the vCenter Web UI.
 2. Select the Virtual Hardware tab.
 3. Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the (X) icon

to mark the device for removal.
 4. Click OK to remove the device and update the VM settings.

5.2. Modifying GPU Allocation Policy
VMware vSphere supports the breadth first and depth-first GPU allocation policies for
vGPU-enabled VMs.
breadth-first

The breadth-first allocation policy attempts to minimize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the fewest vGPUs already resident on it. This
policy generally leads to higher performance because it attempts to minimize sharing
of physical GPUs, but it may artificially limit the total number of vGPUs that can run.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 51

depth-first
The depth-first allocation policy attempts to maximize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the most vGPUs already resident on it. This policy
generally leads to higher density of vGPUs, particularly when different types of vGPUs
are being run, but may result in lower performance because it attempts to maximize
sharing of physical GPUs.

By default, VMware vSphere ESXi uses the breadth-first allocation policy.

If the default GPU allocation policy does not meet your requirements for performance or
density of vGPUs, you can change it.

5.2.1. Modifying GPU Allocation Policy on
VMware vSphere

Before using the vSphere Web Client to change the allocation scheme, ensure that the
ESXi host is running and that all VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 52

Figure 11. Breadth-first allocation scheme setting for vGPU-
enabled VMs

 5. In the Edit Host Graphics Settings dialog box that opens, select these options and
click OK.
 a). If not already selected, select Shared Direct.
 b). Select Group VMs on GPU until full.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 53

Figure 12. Host graphics settings for vGPU

After you click OK, the default graphics type changes to Shared Direct and the
allocation scheme for vGPU-enabled VMs is breadth-first.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 54

Figure 13. Depth-first allocation scheme setting for vGPU-enabled
VMs

 6. Restart the ESXi host or the Xorg service on the host.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

5.3. Migrating a VM Configured with
vGPU

On some hypervisors, NVIDIA AI Enterprise supports migration of VMs that are
configured with vGPU.

Before migrating a VM configured with vGPU, ensure that the following prerequisites are
met:

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 55

‣ The VM is configured with vGPU.

‣ The VM is running.

‣ The VM obtained a suitable vGPU license when it was booted.

‣ The destination host has a physical GPU of the same type as the GPU where the vGPU
currently resides.

‣ ECC memory configuration (enabled or disabled) on both the source and destination
hosts must be identical.

‣ The GPU topologies (including NVLink widths) on both the source and destination
hosts must be identical.

Note: vGPU migration is disabled for a VM for which any of the following NVIDIA CUDA
Toolkit features is enabled:

‣ Unified memory

‣ Debuggers

‣ Profilers

How to migrate a VM configured with vGPU depends on the hypervisor that you are using.

After migration, the vGPU type of the vGPU remains unchanged.

The time required for migration depends on the amount of frame buffer that the vGPU
has. Migration for a vGPU with a large amount of frame buffer is slower than for a vGPU
with a small amount of frame buffer.

5.3.1. Migrating a VM Configured with vGPU on
VMware vSphere

NVIDIA AI Enterprise supports VMware vMotion for VMs that are configured with vGPU.
VMware vMotion enables you to move a running virtual machine from one physical
host machine to another host with very little disruption or downtime. For a VM that is
configured with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other
host. The NVIDIA GPUs on both host machines must be of the same type.

Perform this task in the VMware vSphere web client by using the Migration wizard.

Before migrating a VM configured with vGPU on VMware vSphere, ensure that the
following prerequisites are met:

‣ Your hosts are correctly configured for VMware vMotion. See Host Configuration for
vMotion in the VMware documentation.

‣ The prerequisites listed for all supported hypervisors in Migrating a VM Configured
with vGPU are met.

‣ NVIDIA vGPU migration is configured. See Configuring VMware vMotion with vGPU for
VMware vSphere.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 56

 1. Context-click the VM and from the menu that opens, choose Migrate.
 2. For the type of migration, select Change compute resource only and click Next.

If you select Change both compute resource and storage, the time required for the
migration increases.

 3. Select the destination host and click Next.
The destination host must have a physical GPU of the same type as the GPU where
the vGPU currently resides. Furthermore, the physical GPU must be capable of hosting
the vGPU. If these requirements are not met, no available hosts are listed.

 4. Select the destination network and click Next.
 5. Select the migration priority level and click Next.
 6. Review your selections and click Finish.

For more information, see the following topics in the VMware documentation:

‣ Migrate a Virtual Machine to a New Compute Resource

‣ Using vMotion to Migrate vGPU Virtual Machines

If NVIDIA vGPU migration is not configured, any attempt to migrate a VM with an NVIDIA
vGPU fails and a window containing the following error message is displayed:
Compatibility Issue/Host
Migration was temporarily disabled due to another
migration activity.
vGPU hot migration is not enabled.

The window appears as follows:

If you see this error, configure NVIDIA vGPU migration as explained in Configuring
VMware vMotion with vGPU for VMware vSphere.

If your version of VMware vSpehere ESXi does not support vMotion for VMs configured
with NVIDIA vGPU, any attempt to migrate a VM with an NVIDIA vGPU fails and a window
containing the following error message is displayed:
Compatibility Issues
...
A required migration feature is not supported on the "Source" host 'host-name'.

A warning or error occurred when migrating the virtual machine.
Virtual machine relocation, or power on after relocation or cloning can fail if
vGPU resources are not available on the destination host.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6068ECD7-E3FA-4155-A326-D996BDBDF00C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-8FE6A0DA-49E9-472B-815B-D630CF2014AD.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 57

The window appears as follows:

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see NVIDIA AI Enterprise Release Notes.

5.3.2. Suspending and Resuming a VM
Configured with vGPU on VMware vSphere

NVIDIA AI Enterprise supports suspend and resume for VMs that are configured with
vGPU.

Perform this task in the VMware vSphere web client.

‣ To suspend a VM, context-click the VM that you want to suspend, and from the
context menu that pops up, choose Power > Suspend .

‣ To resume a VM, context-click the VM that you want to resume, and from the context
menu that pops up, choose Power > Power On .

5.4. Modifying a MIG-Backed vGPU's
Configuration

If compute instances weren't created within the GPU instances when the GPU was
configured for MIG-backed vGPUs, you can add the compute instances for an individual
vGPU from within the guest VM. If you want to replace the compute instances that were
created when the GPU was configured for MIG-backed vGPUs, you can delete them
before adding the compute instances from within the guest VM.

Ensure that the following prerequisites are met:

‣ You have root user privileges in the guest VM.

http://docs.nvidia.com/ai-enterprise/1.0/pdf/nvidia-ai-enterprise-release-notes.pdf

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 58

‣ The GPU instance is not being used by any other processes, such as CUDA
applications, monitoring applications, or the nvidia-smi command.

Perform this task in a guest VM command shell.

 1. Open a command shell as the root user in the guest VM.
You can use secure shell (SSH) for this purpose.

 2. List the available GPU instance.
$ nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 2g.10gb 0 0 0:8 |
+--+

 3. Optional: If compute instances were created when the GPU was configured for MIG-
backed vGPUs that you no longer require, delete them.
$ nvidia-smi mig -dci -ci compute-instance-id -gi gpu-instance-id
compute-instance-id

The ID of the compute instance that you want to delete.
gpu-instance-id

The ID of the GPU instance from which you want to delete the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU instance and retry the command.

This example deletes compute instance 0 from GPU instance 0 on GPU 0.
$ nvidia-smi mig -dci -ci 0 -gi 0
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 0

 4. List the compute instance profiles that are available for your GPU instance.
$ nvidia-smi mig -lcip

This example shows that one MIG 2g.10gb compute instance or two MIG 1c.2g.10gb
compute instances can be created within the GPU instance.
$ nvidia-smi mig -lcip
+---+
| Compute instance profiles: |
| GPU GPU Name Profile Instances Exclusive Shared |
| Instance ID Free/Total SM DEC ENC OFA |
| ID CE JPEG |
|===|
| 0 0 MIG 1c.2g.10gb 0 2/2 14 1 0 0 |
| 2 0 |
+---+
| 0 0 MIG 2g.10gb 1* 1/1 28 1 0 0 |
| 2 0 |
+---+

 5. Create the compute instances that you need within the available GPU instance.

Create each compute instance individually by running the following command.
$ nvidia-smi mig -cci compute-instance-profile-id -gi gpu-instance-id
compute-instance-profile-id

The compute instance profile ID that specifies the compute instance.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 59

gpu-instance-id
The GPU instance ID that specifies the GPU instance within which you want to
create the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU and retry the command.

This example creates a MIG 2g.10gb compute instance on GPU instance 0.
$ nvidia-smi mig -cci 1 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 2g.10gb (ID 1)
This example creates two MIG 1c.2g.10gb compute instances on GPU instance 0 by
running the same command twice.
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 1 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)

 6. Verify that the compute instances were created within the GPU instance.
Use the nvidia-smi command for this purpose.

This example confirms that a MIG 2g.10gb compute instance was created on GPU
instance 0.
nvidia-smi
Mon Apr 17 19:01:24 2023
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	28 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

This example confirms that two MIG 1c.2g.10gb compute instances were created on
GPU instance 0.
$ nvidia-smi

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 60

Mon Apr 17 19:01:24 2023
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	14 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+ +-----------+-----------------------+			
0 0 1 1		14 0	2 0 1 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

5.5. Enabling Unified Memory for a
vGPU

Unified memory is disabled by default. If used, you must enable unified memory
individually for each vGPU that requires it by setting a vGPU plugin parameter. How to
enable unified memory for a vGPU depends on the hypervisor that you are using.

5.5.1. Enabling Unified Memory for a vGPU on
VMware vSphere

On VMware vSphere, enable unified memory by setting the pciPassthruvgpu-
id.cfg.enable_uvm configuration parameter in advanced VM attributes.
Ensure that the VM to which the vGPU is assigned is powered off.
Perform this task in the vSphere Client for each vGPU that requires unified memory.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_uvm vGPU plugin
parameter for the vGPU to 1 as explained in Setting vGPU Plugin Parameters on VMware
vSphere.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 61

vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling unified memory for both vGPUs, set pciPassthru0.cfg.enable_uvm and
pciPassthru1.cfg.enable_uvm to 1.

5.6. Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA
vGPU

By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If
used, you must enable NVIDIA CUDA Toolkit development tools individually for each VM
that requires them by setting vGPU plugin parameters. One parameter must be set for
enabling NVIDIA CUDA Toolkit debuggers and a different parameter must be set for
enabling NVIDIA CUDA Toolkit profilers.

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers
for NVIDIA vGPU

By default, NVIDIA CUDA Toolkit debuggers are disabled. If used, you must enable them
for each vGPU VM that requires them by setting a vGPU plugin parameter. How to set
the parameter to enable NVIDIA CUDA Toolkit debuggers for a vGPU VM depends on the
hypervisor that you are using.

You can enable NVIDIA CUDA Toolkit debuggers for any number of VMs configured with
vGPUs on the same GPU. When NVIDIA CUDA Toolkit debuggers are enabled for a VM, the
VM cannot be migrated.

Perform this task for each VM for which you want to enable NVIDIA CUDA Toolkit
debuggers.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit debuggers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_debugging vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 62

are enabling debuggers for both vGPUs, set pciPassthru0.cfg.enable_debugging
and pciPassthru1.cfg.enable_debugging to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for
NVIDIA vGPU

By default, only GPU workload trace is enabled. If you want to use all NVIDIA CUDA Toolkit
profiler features that NVIDIA vGPU supports, you must enable them for each vGPU VM
that requires them.

Note: Enabling profiling for a VM gives the VM access to the GPU’s global performance
counters, which may include activity from other VMs executing on the same GPU. Enabling
profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other
VMs executing on the same GPU.

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler
Features

You can enable the following NVIDIA CUDA Toolkit profiler features for a vGPU VM:

‣ NVIDIA Nsight™ Compute

‣ NVIDIA Nsight Systems

‣ CUDA Profiling Tools Interface (CUPTI)

5.6.2.2. Clock Management for a vGPU VM for Which
NVIDIA CUDA Toolkit Profilers Are Enabled

Clocks are not locked for periodic sampling use cases such as NVIDIA Nsight Systems
profiling.

Clocks are locked for multipass profiling such as:

‣ NVIDIA Nsight Compute kernel profiling

‣ CUPTI range profiling

Clocks are locked automatically when profiling starts and are unlocked automatically
when profiling ends.

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit
Profilers with NVIDIA vGPU

The following limitations apply when NVIDIA CUDA Toolkit profilers are enabled for NVIDIA
vGPU:

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 63

‣ NVIDIA CUDA Toolkit profilers can be used on only one VM at a time.

‣ Multiple CUDA contexts cannot be profiled simultaneously.

‣ Profiling data is collected separately for each context.

‣ A VM for which NVIDIA CUDA Toolkit profilers are enabled cannot be migrated.

Because NVIDIA CUDA Toolkit profilers can be used on only one VM at a time, you should
enable them for only one VM assigned a vGPU on a GPU. However, NVIDIA AI Enterprise
cannot enforce this requirement. If NVIDIA CUDA Toolkit profilers are enabled on more
than one VM assigned a vGPU on a GPU, profiling data is collected only for the first VM to
start the profiler.

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a
vGPU VM

You enable NVIDIA CUDA Toolkit profilers for a vGPU VM by setting a vGPU plugin
parameter. How to set the parameter to enable NVIDIA CUDA Toolkit profilers for a vGPU
VM depends on the hypervisor that you are using.

Perform this task for the VM for which you want to enable NVIDIA CUDA Toolkit profilers.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit profilers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_profiling vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling profilers for the second vGPU, set pciPassthru1.cfg.enable_profiling
to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 64

Chapter 6. Monitoring GPU
Performance

NVIDIA AI Enterprise enables you to monitor the performance of physical GPUs and
virtual GPUs from the hypervisor and from within individual guest VMs.

6.1. NVIDIA System Management
Interface nvidia-smi

NVIDIA System Management Interface, nvidia-smi, is a command-line tool that reports
management information for NVIDIA GPUs.

The nvidia-smi tool is included in the following packages:

‣ NVIDIA Virtual GPU Manager package for each supported hypervisor

‣ NVIDIA driver package for each supported guest OS

The scope of the reported management information depends on where you run nvidia-
smi from:

‣ From a hypervisor command shell, such as the VMware ESXi host shell, nvidia-smi
reports management information for NVIDIA physical GPUs and virtual GPUs present
in the system.

‣ From a guest VM, nvidia-smi retrieves usage statistics for vGPUs or pass-through
GPUs that are assigned to the VM.

6.2. Using nvidia-smi to Monitor GPU
Performance from a Hypervisor

You can get management information for the NVIDIA physical GPUs and virtual GPUs
present in the system by running nvidia-smi from a hypervisor command shell such as
the Citrix Hypervisor dom0 shell or the VMware ESXi host shell.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 65

Without a subcommand, nvidia-smi provides management information for physical
GPUs. To examine virtual GPUs in more detail, use nvidia-smi with the vgpu
subcommand.

From the command line, you can get help information about the nvidia-smi tool and the
vgpu subcommand.

Help Information Command

A list of subcommands supported by the nvidia-smi tool. Note
that not all subcommands apply to GPUs that support NVIDIA
AI Enterprise.

nvidia-smi -h

A list of all options supported by the vgpu subcommand. nvidia-smi vgpu –h

6.2.1. Getting a Summary of all Physical GPUs in
the System

To get a summary of all physical GPUs in the system, along with PCI bus IDs, power
state, temperature, current memory usage, and so on, run nvidia-smi without additional
arguments.

Each vGPU instance is reported in the Compute processes section, together with its
physical GPU index and the amount of frame-buffer memory assigned to it.

In the example that follows, three vGPUs are running in the system: One vGPU is running
on each of the physical GPUs 0, 1, and 2.
[root@vgpu ~]# nvidia-smi
Fri Apr 14 09:26:18 2023
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:83:00.0 Off | Off |
| N/A 31C P8 23W / 150W | 1889MiB / 8191MiB | 7% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:84:00.0 Off | Off |
| N/A 26C P8 23W / 150W | 926MiB / 8191MiB | 9% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M10 On | 0000:8A:00.0 Off | N/A |
| N/A 23C P8 10W / 53W | 1882MiB / 8191MiB | 12% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M10 On | 0000:8B:00.0 Off | N/A |
| N/A 26C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 Tesla M10 On | 0000:8C:00.0 Off | N/A |
| N/A 34C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 Tesla M10 On | 0000:8D:00.0 Off | N/A |
| N/A 32C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 11924 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
| 1 11903 C+G /usr/lib64/xen/bin/vgpu 896MiB |

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 66

| 2 11908 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
+---+
[root@vgpu ~]#

6.2.2. Getting a Summary of all vGPUs in the
System

To get a summary of the vGPUs currently that are currently running on each physical GPU
in the system, run nvidia-smi vgpu without additional arguments.
[root@vgpu ~]# nvidia-smi vgpu
Fri Apr 14 09:27:06 2023
+---+
| NVIDIA-SMI 470.182.02 Driver Version: 470.182.02 |
|-------------------------------+--------------------------------+------------+
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
|===============================+================================+============|
| 0 Tesla M60 | 0000:83:00.0 | 7% |
| 11924 GRID M60-2Q | 3 Win7-64 GRID test 2 | 6% |
+-------------------------------+--------------------------------+------------+
| 1 Tesla M60 | 0000:84:00.0 | 9% |
| 11903 GRID M60-1B | 1 Win8.1-64 GRID test 3 | 8% |
+-------------------------------+--------------------------------+------------+
| 2 Tesla M10 | 0000:8A:00.0 | 12% |
| 11908 GRID M10-2Q | 2 Win7-64 GRID test 1 | 10% |
+-------------------------------+--------------------------------+------------+
| 3 Tesla M10 | 0000:8B:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 4 Tesla M10 | 0000:8C:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 5 Tesla M10 | 0000:8D:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
[root@vgpu ~]#

6.2.3. Getting vGPU Details
To get detailed information about all the vGPUs on the platform, run nvidia-smi vgpu
with the –q or --query option.

To limit the information retrieved to a subset of the GPUs on the platform, use the –i or
--id option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -q -i 1
GPU 00000000:86:00.0
 Active vGPUs : 1
 vGPU ID : 3251634178
 VM ID : 1
 VM Name : Win7
 vGPU Name : GRID M60-8Q
 vGPU Type : 22
 vGPU UUID : b8c6d0e1-d167-11e8-b8c9-55705e5a54a6
 Guest Driver Version : 411.81
 License Status : Unlicensed
 Accounting Mode : Disabled
 Accounting Buffer Size: 4000
 Frame Rate Limit : 3 FPS
 FB Memory Usage :
 Total : 8192 MiB
 Used : 675 MiB
 Free : 7517 MiB
 Utilization :

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 67

 Gpu : 3 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Encoder Stats :
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 FBC Stats :
 Active Sessions : 1
 Average FPS : 227
 Average Latency : 4403
[root@vgpu ~]#

6.2.4. Monitoring vGPU engine usage
To monitor vGPU engine usage across multiple vGPUs, run nvidia-smi vgpu with the –u
or --utilization option.

For each vGPU, the usage statistics in the following table are reported once every second.
The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU
is using. For example, a vGPU that uses 20% of the GPU’s graphics engine’s capacity will
report 20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -u
gpu vgpu sm mem enc dec
Idx Id % % % %
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 9 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 68

 4 - - - - -
 5 - - - - -
^C[root@vgpu ~]#

6.2.5. Monitoring vGPU engine usage by
applications

To monitor vGPU engine usage by applications across multiple vGPUs, run nvidia-smi
vgpu with the –p option.

For each application on each vGPU, the usage statistics in the following table are reported
once every second. Each application is identified by its process ID and process name.
The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity used by
an application running on a vGPU that resides on the physical GPU. For example, an
application that uses 20% of the GPU’s graphics engine’s capacity will report 20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -p
GPU vGPU process process sm mem enc dec
Idx Id Id name % % % %
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 32 25 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 32 24 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257869 4432 FurMark.exe 38 30 0 0
 1 257911 656 DolphinVS.exe 19 14 0 0
 1 257969 4552 FurMark.exe 38 30 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257848 3220 Balls64.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257911 656 DolphinVS.exe 32 25 0 0
 1 257969 4552 FurMark.exe 64 50 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 69

 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
[root@vgpu ~]#

6.2.6. Monitoring Encoder Sessions

Note: Encoder sessions can be monitored only for vGPUs assigned to Windows VMs. No
encoder session statistics are reported for vGPUs assigned to Linux VMs.

To monitor the encoder sessions for processes running on multiple vGPUs, run nvidia-
smi vgpu with the –es or --encodersessions option.

For each encoder session, the following statistics are reported once every second:

‣ GPU ID

‣ vGPU ID

‣ Encoder session ID

‣ PID of the process in the VM that created the encoder session

‣ Codec type, for example, H.264 or H.265

‣ Encode horizontal resolution

‣ Encode vertical resolution

‣ One-second trailing average encoded FPS

‣ One-second trailing average encode latency in microseconds

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -es
GPU vGPU Session Process Codec H V Average Average
Idx Id Id Id Type Res Res FPS Latency(us)
 1 21211 2 2308 H.264 1920 1080 424 1977
 1 21206 3 2424 H.264 1920 1080 0 0
 1 22011 1 3676 H.264 1920 1080 374 1589
 1 21211 2 2308 H.264 1920 1080 360 807
 1 21206 3 2424 H.264 1920 1080 325 1474
 1 22011 1 3676 H.264 1920 1080 313 1005
 1 21211 2 2308 H.264 1920 1080 329 1732
 1 21206 3 2424 H.264 1920 1080 352 1415
 1 22011 1 3676 H.264 1920 1080 434 1894
 1 21211 2 2308 H.264 1920 1080 362 1818
 1 21206 3 2424 H.264 1920 1080 296 1072
 1 22011 1 3676 H.264 1920 1080 416 1994
 1 21211 2 2308 H.264 1920 1080 444 1912
 1 21206 3 2424 H.264 1920 1080 330 1261
 1 22011 1 3676 H.264 1920 1080 436 1644
 1 21211 2 2308 H.264 1920 1080 344 1500
 1 21206 3 2424 H.264 1920 1080 393 1727
 1 22011 1 3676 H.264 1920 1080 364 1945
 1 21211 2 2308 H.264 1920 1080 555 1653

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 70

 1 21206 3 2424 H.264 1920 1080 295 925
 1 22011 1 3676 H.264 1920 1080 372 1869
 1 21211 2 2308 H.264 1920 1080 326 2206
 1 21206 3 2424 H.264 1920 1080 318 1366
 1 22011 1 3676 H.264 1920 1080 464 2015
 1 21211 2 2308 H.264 1920 1080 305 1167
 1 21206 3 2424 H.264 1920 1080 445 1892
 1 22011 1 3676 H.264 1920 1080 361 906
 1 21211 2 2308 H.264 1920 1080 353 1436
 1 21206 3 2424 H.264 1920 1080 354 1798
 1 22011 1 3676 H.264 1920 1080 373 1310
^C[root@vgpu ~]#

6.2.7. Listing Supported vGPU Types
To list the virtual GPU types that the GPUs in the system support, run nvidia-smi vgpu
with the –s or --supported option.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or
--id option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -s -i 0
GPU 0000:83:00.0
 GRID M60-0B
 GRID M60-0Q
 GRID M60-1A
 GRID M60-1B
 GRID M60-1Q
 GRID M60-2A
 GRID M60-2Q
 GRID M60-4A
 GRID M60-4Q
 GRID M60-8A
 GRID M60-8Q
[root@vgpu ~]#

To view detailed information about the supported vGPU types, add the –v or --verbose
option:
[root@vgpu ~]# nvidia-smi vgpu -s -i 0 -v | less
GPU 00000000:83:00.0
 vGPU Type ID : 0xb
 Name : GRID M60-0B
 Class : NVS
 Max Instances : 16
 Device ID : 0x13f210de
 Sub System ID : 0x13f21176
 FB Memory : 512 MiB
 Display Heads : 2
 Maximum X Resolution : 2560
 Maximum Y Resolution : 1600
 Frame Rate Limit : 45 FPS
 GRID License : GRID-Virtual-PC,2.0;GRID-Virtual-WS,2.0;GRID-
Virtual-WS-Ext,2.0;Quadro-Virtual-DWS,5.0
 vGPU Type ID : 0xc
 Name : GRID M60-0Q
 Class : Quadro
 Max Instances : 16
 Device ID : 0x13f210de
 Sub System ID : 0x13f2114c
 FB Memory : 512 MiB
 Display Heads : 2
 Maximum X Resolution : 2560
 Maximum Y Resolution : 1600
 Frame Rate Limit : 60 FPS

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 71

 GRID License : GRID-Virtual-WS,2.0;GRID-Virtual-WS-Ext,2.0;Quadro-
Virtual-DWS,5.0
 vGPU Type ID : 0xd
 Name : GRID M60-1A
 Class : NVS
 Max Instances : 8
…
[root@vgpu ~]#

6.2.8. Listing the vGPU Types that Can Currently
Be Created

To list the virtual GPU types that can currently be created on GPUs in the system, run
nvidia-smi vgpu with the –c or --creatable option.

This property is a dynamic property that varies for each GPU depending on whether MIG
mode is enabled for the GPU.

‣ If MIG mode is not enabled for the GPU, or if the GPU does not support MIG, this
property reflects the number and type of vGPUs that are already running on the GPU.

‣ If no vGPUs are running on the GPU, all vGPU types that the GPU supports are
listed.

‣ If one or more vGPUs are running on the GPU, but the GPU is not fully loaded, only
the type of the vGPUs that are already running is listed.

‣ If the GPU is fully loaded, no vGPU types are listed.

‣ If MIG mode is enabled for the GPU, the result reflects the number and type of GPU
instances on which no vGPUs are already running.

‣ If no GPU instances have been created, no vGPU types are listed.

‣ If GPU instances have been created, only the vGPU types that correspond to GPU
instances on which no vGPU is running are listed.

‣ If a vGPU is running on every GPU instance, no vGPU types are listed.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or
--id option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -c -i 0
GPU 0000:83:00.0
 GRID M60-2Q
[root@vgpu ~]#

To view detailed information about the vGPU types that can currently be created, add the
–v or --verbose option.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 72

6.3. Monitoring GPU Performance from
a Guest VM

You can use monitoring tools within an individual guest VM to monitor the performance
of vGPUs or pass-through GPUs that are assigned to the VM. The scope of these tools
is limited to the guest VM within which you use them. You cannot use monitoring tools
within an individual guest VM to monitor any other GPUs in the platform.

For a vGPU, only these metrics are reported in a guest VM:

‣ 3D/Compute

‣ Memory controller

‣ Video encoder

‣ Video decoder

‣ Frame buffer usage

Other metrics normally present in a GPU are not applicable to a vGPU and are reported as
zero or N/A, depending on the tool that you are using.

6.3.1. Using nvidia-smi to Monitor GPU
Performance from a Guest VM

In guest VMs, you can use the nvidia-smi command to retrieve statistics for the total
usage by all applications running in the VM and usage by individual applications of the
following resources:

‣ GPU

‣ Video encoder

‣ Video decoder

‣ Frame buffer

To use nvidia-smi to retrieve statistics for the total resource usage by all applications
running in the VM, run the following command:
nvidia-smi dmon

To use nvidia-smi to retrieve statistics for resource usage by individual applications
running in the VM, run the following command:
nvidia-smi pmon

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 73

Chapter 7. Changing Scheduling
Behavior for Time-Sliced
vGPUs

NVIDIA GPUs implement a best effort vGPU scheduler that aims to balance performance
across vGPUs. The best effort scheduler allows a vGPU to use GPU processing cycles that
are not being used by other vGPUs. Under some circumstances, a VM running a graphics-
intensive application may adversely affect the performance of graphics-light applications
running in other VMs.

To address this issue with the best effort vGPU scheduler, NVIDIA GPUs additionally
support equal share and fixed share vGPU schedulers. These schedulers impose a limit on
GPU processing cycles used by a vGPU, which prevents graphics-intensive applications
running in one VM from affecting the performance of graphics-light applications running
in other VMs. On GPUs that support multiple vGPU schedulers, you can select the vGPU
scheduler to use. You can also set the length of the time slice for the equal share and
fixed share vGPU schedulers.

Note: If you use the equal share or fixed share vGPU scheduler, the frame-rate limiter
(FRL) is disabled.

The best effort scheduler is the default scheduler for all supported GPU architectures.

7.1. Scheduling Policies for Time-Sliced
vGPUs

In addition to the default best effort scheduler, GPUs based on NVIDIA GPU architectures
after the Maxwell architecture support equal share and fixed share vGPU schedulers.
Equal share scheduler

The physical GPU is shared equally amongst the running vGPUs that reside on it. As
vGPUs are added to or removed from a GPU, the share of the GPU's processing cycles
allocated to each vGPU changes accordingly. As a result, the performance of a vGPU
may increase as other vGPUs on the same GPU are stopped, or decrease as other
vGPUs are started on the same GPU.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 74

Fixed share scheduler
Each vGPU is given a fixed share of the physical GPU's processing cycles, the amount
of which depends on the vGPU type, which in turn determines the maximum number
of vGPUs per physical GPU. For example, the maximum number of T4-4C vGPUs per
physical GPU is 4. When the scheduling policy is fixed share, each T4-4C vGPU is given
one quarter, or 25%, the physical GPU's processing cycles. As vGPUs are added to or
removed from a GPU, the share of the GPU's processing cycles allocated to each vGPU
remains constant. As a result, the performance of a vGPU remains unchanged as other
vGPUs are stopped or started on the same GPU.

7.2. Scheduler Time Slice for Time-
Sliced vGPUs

When multiple VMs access the vGPUs on a single GPU, the GPU performs the work for
each VM serially. The vGPU scheduler time slice represents the amount of time that the
work of a VM is allowed to run on the GPU before it is preempted and the work of the
next VM is performed.

For the equal share and fixed share vGPU schedulers, you can set the length of the time
slice. The length of the time slice affects latency and throughput. The optimal length of
the time slice depends the workload that the GPU is handling.

‣ For workloads that require low latency, a shorter time slice is optimal. Typically, these
workloads are applications that must generate output at a fixed interval, such as
graphics applications that generate output at a frame rate of 60 FPS. These workloads
are sensitive to latency and should be allowed to run at least once per interval. A
shorter time slice reduces latency and improves responsiveness by causing the
scheduler to switch more frequently between VMs.

‣ For workloads that require maximum throughput, a longer time slice is optimal.
Typically, these workloads are applications that must complete their work as quickly as
possible and do not require responsiveness, such as CUDA applications. A longer time
slice increases throughput by preventing frequent switching between VMs.

7.3. RmPVMRL Registry Key
The RmPVMRL registry key controls the scheduling behavior for NVIDIA vGPUs by setting
the scheduling policy and the length of the time slice.

Note: You can change the vGPU scheduling behavior only on GPUs that support multiple
vGPU schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture.

Type

Dword

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 75

Contents

Value Meaning

0x00 (default) Best effort scheduler

0x01 Equal share scheduler with the default time slice length

0x00TT0001 Equal share scheduler with a user-defined time slice length TT

0x11 Fixed share scheduler with the default time slice length

0x00TT0011 Fixed share scheduler with a user-defined time slice length TT

The default time slice length depends on the maximum number of vGPUs per physical
GPU allowed for the vGPU type.

Maximum Number of vGPUs Default Time Slice Length

Less than or equal to 8 2 ms

Greater than 8 1 ms

TT
Two hexadecimal digits in the range 01 to 1E that set the length of the time slice in
milliseconds (ms) for the equal share and fixed share schedulers. The minimum length
is 1 ms and the maximum length is 30 ms.

If TT is 00, the length is set to the default length for the vGPU type.

If TT is greater than 1E, the length is set to 30 ms.

Examples

This example sets the vGPU scheduler to equal share scheduler with the default time
slice length.
RmPVMRL=0x01

This example sets the vGPU scheduler to equal share scheduler with a time slice that is 3
ms long.
RmPVMRL=0x00030001

This example sets the vGPU scheduler to fixed share scheduler with the default time slice
length.
RmPVMRL=0x11

This example sets the vGPU scheduler to fixed share scheduler with a time slice that is 24
(0x18) ms long.
RmPVMRL=0x00180011

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 76

7.4. Getting the Current Time-Sliced
vGPU Scheduling Behavior for All
GPUs

Get the current scheduling behavior before changing the scheduling behavior of one
or more GPUs to determine if you need to change it or after changing it to confirm the
change.

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
 2. Use the dmesg command to display messages from the kernel that contain the strings

NVRM and scheduler.
$ dmesg | grep NVRM | grep scheduler

The scheduling behavior is indicated in these messages by the following strings:

‣ BEST_EFFORT

‣ EQUAL_SHARE

‣ FIXED_SHARE

If the scheduling behavior is equal share or fixed share, the scheduler time slice in ms
is also displayed.

This example gets the scheduling behavior of the GPUs in a system in which the
behavior of one GPU is set to best effort, one GPU is set to equal share, and one GPU
is set to fixed share.
$ dmesg | grep NVRM | grep scheduler
2020-10-05T02:58:08.928Z cpu79:2100753)NVRM: GPU at 0000:3d:00.0 has software
 scheduler DISABLED with policy BEST_EFFORT.
2020-10-05T02:58:09.818Z cpu79:2100753)NVRM: GPU at 0000:5e:00.0 has software
 scheduler ENABLED with policy EQUAL_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.
2020-10-05T02:58:12.115Z cpu79:2100753)NVRM: GPU at 0000:88:00.0 has software
 scheduler ENABLED with policy FIXED_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.

7.5. Changing the Time-Sliced vGPU
Scheduling Behavior for All GPUs

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
 2. Set the RmPVMRL registry key to the value that sets the GPU scheduling policy and the

length of the time slice that you want.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 77

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia -p
 "NVreg_RegistryDwords=RmPVMRL=value"

value

The value that sets the GPU scheduling policy and the length of the time slice that
you want, for example:
0x01

Sets the vGPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the vGPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.
 3. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Behavior for All GPUs.

7.6. Changing the Time-Sliced vGPU
Scheduling Behavior for Select
GPUs

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
 2. Use the lspci command to obtain the PCI domain and bus/device/function (BDF) of

each GPU for which you want to change the scheduling behavior.

‣ On VMware vSphere, pipe the output of lspci to the grep command to display
information only for NVIDIA GPUs.
lspci | grep NVIDIA

The NVIDIA GPU listed in this example has the PCI domain 0000 and BDF 86:00.0.
0000:86:00.0 3D controller: NVIDIA Corporation GP104GL [Tesla P4] (rev a1)

 3. Use the module parameter NVreg_RegistryDwordsPerDevice to set the pci and
RmPVMRL registry keys for each GPU.

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia \

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 78

-p "NVreg_RegistryDwordsPerDevice=pci=pci-domain:pci-bdf;RmPVMRL=value\
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

For each GPU, provide the following information:
pci-domain

The PCI domain of the GPU.
pci-bdf

The PCI device BDF of the GPU.
value

The value that sets the GPU scheduling policy and the length of the time slice that
you want, for example:
0x01

Sets the GPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the GPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.

This example changes the scheduling behavior of a single GPU. The command sets
the scheduling policy of the GPU at PCI domain 0000 and BDF 15:00.0 to fixed share
scheduler with the default time slice length.
esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x11]"

This example changes the scheduling behavior of a single GPU. The command sets
the scheduling policy of the GPU at PCI domain 0000 and BDF 15:00.0 to fixed share
scheduler with a time slice that is 24 (0x18) ms long.
esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x00180011]"

 4. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Behavior for All GPUs.

7.7. Restoring Default Time-Sliced
vGPU Scheduler Settings

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
 2. Unset the RmPVMRL registry key.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 79

‣ On VMware vSphere, set the module parameter to an empty string.
esxcli system module parameters set -m nvidia -p "module-parameter="
module-parameter

The module parameter to set, which depends on whether the scheduling
behavior was changed for all GPUs or select GPUs:

‣ For all GPUs, set the NVreg_RegistryDwords module parameter.

‣ For select GPUs, set the NVreg_RegistryDwordsPerDevice module
parameter.

For example, to restore default vGPU scheduler settings after they were changed
for all GPUs, enter this command:
esxcli system module parameters set -m nvidia -p "NVreg_RegistryDwords="

 3. Reboot your hypervisor host machine.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 80

Chapter 8. Troubleshooting

This chapter describes basic troubleshooting steps for NVIDIA vGPU and how to collect
debug information when filing a bug report.

8.1. Known issues
Before troubleshooting or filing a bug report, review the release notes that accompany
each driver release, for information about known issues with the current release, and
potential workarounds.

8.2. Troubleshooting steps
If a vGPU-enabled VM fails to start, or doesn’t display any output when it does start,
follow these steps to narrow down the probable cause.

8.2.1. Verifying the NVIDIA Kernel Driver Is
Loaded

 1. Run the vmkload_mod command.
[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver (see Examining NVIDIA kernel driver output).

8.2.2. Verifying that nvidia-smi works
If the NVIDIA kernel driver is correctly loaded on the physical GPU, run nvidia-smi and
verify that all physical GPUs not currently being used for GPU pass-through are listed in
the output. For details on expected output, see NVIDIA System Management Interface
nvidia-smi.

If nvidia-smi fails to report the expected output, check dmesg for NVIDIA kernel driver
messages.

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 81

8.2.3. Examining NVIDIA kernel driver output
Information and debug messages from the NVIDIA kernel driver are logged in kernel logs,
prefixed with NVRM or nvidia.

Run dmesg and check for the NVRM and nvidia prefixes:
[root@xenserver ~]# dmesg | grep -E "NVRM|nvidia"
[22.054928] nvidia: module license 'NVIDIA' taints kernel.
[22.390414] NVRM: loading
[22.829226] nvidia 0000:04:00.0: enabling device (0000 -> 0003)
[22.829236] nvidia 0000:04:00.0: PCI INT A -> GSI 32 (level, low) -> IRQ 32
[22.829240] NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:
[22.829241] NVRM: BAR0 is 0M @ 0x0 (PCI:0000:00:04.0)
[22.829243] NVRM: The system BIOS may have misconfigured your GPU.

8.2.4. Examining NVIDIA Virtual GPU Manager
Messages

Information and debug messages from the NVIDIA Virtual GPU Manager are logged to the
hypervisor’s log files, prefixed with vmiop.

8.2.4.1. Examining VMware vSphere vGPU Manager
Messages

For VMware vSphere, NVIDIA Virtual GPU Manager messages are written to the
vmware.log file in the guest VM’s storage directory.

Look in the vmware.log file for the vmiop prefix:
[root@esxi:~] grep vmiop /vmfs/volumes/datastore1/win7-vgpu-test1/vmware.log
2023-04-14T14:02:21.275Z| vmx| I120: DICT pciPassthru0.virtualDev = "vmiop"
2023-04-14T14:02:21.344Z| vmx| I120: GetPluginPath testing /usr/lib64/vmware/plugin/
libvmx-vmiop.so
2023-04-14T14:02:21.344Z| vmx| I120: PluginLdr_LoadShared: Loaded shared plugin
 libvmx-vmiop.so from /usr/lib64/vmware/plugin/libvmx-vmiop.so
2023-04-14T14:02:21.344Z| vmx| I120: VMIOP: Loaded plugin libvmx-
vmiop.so:VMIOP_InitModule
2023-04-14T14:02:21.359Z| vmx| I120: VMIOP: Initializing plugin vmiop-display
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: gpu-pci-id : 0000:04:00.0
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: vgpu_type : quadro
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: Framebuffer: 0x74000000
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: Virtual Device Id: 0x11B0:0x101B
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: ######## vGPU Manager Information:
 ########
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: Driver Version: 470.182.02
2023-04-14T14:02:21.365Z| vmx| I120: vmiop_log: VGX Version: 13.7
2023-04-14T14:02:21.445Z| vmx| I120: vmiop_log: Init frame copy engine: syncing...
2023-04-14T14:02:37.031Z| vthread-12| I120: vmiop_log: ######## Guest NVIDIA Driver
 Information: ########
2023-04-14T14:02:37.031Z| vthread-12| I120: vmiop_log: Driver Version:
2023-04-14T14:02:37.031Z| vthread-12| I120: vmiop_log: VGX Version: 13.7
2023-04-14T14:02:37.093Z| vthread-12| I120: vmiop_log: Clearing BAR1 mapping
2023-04-17T23:39:55.726Z| vmx| I120: VMIOP: Shutting down plugin vmiop-display
[root@esxi:~]

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 82

8.3. Capturing configuration data by
running nvidia-bug-report.sh

The nvidia-bug-report.sh script captures debug information into a gzip-compressed
log file on the server.

Run nvidia-bug-report.sh from the VMware ESXi host shell.

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 83

Chapter 9. Additional Information

The following table provides links to additional information about each application or
framework in NVIDIA AI Enterprise.

Application or Framework Additional Information

TensorFlow ‣ TensorFlow Release Notes

‣ TensorFlow User Guide

PyTorch PyTorch Release Notes

NVIDIA Triton Inference Server Triton Inference Server Documentation on
Github

NVIDIA TensorRT NVIDIA TensorRT Documentation

RAPIDS RAPIDS Docs on the RAPIDS project site

Other Software Additional Information

NVIDIA GPU Operator NVIDIA GPU Operator Documentation

NVIDIA Network Operator NVIDIA Network Operator Documentation

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html
https://github.com/triton-inference-server/server/blob/r21.02/README.md#documentation
https://docs.nvidia.com/deeplearning/tensorrt/
https://docs.rapids.ai/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.mellanox.com/display/COKAN10/Network+Operator

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 84

Appendix A. Virtual GPU Types for
Supported GPUs

NVIDIA vGPU is available as a licensed product on supported NVIDIA GPUs. For a list
of recommended server platforms and supported GPUs, consult the release notes for
supported hypervisors at NVIDIA AI Enterprise Documentation.

A.1. NVIDIA A100 PCIe 40GB Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100-7-40C Training
Workloads

40960 1 7 7 MIG 7g.40gb

A100-4-20C Training
Workloads

20480 1 4 4 MIG 4g.20gb

A100-3-20C Training
Workloads

20480 2 3 3 MIG 3g.20gb

A100-2-10C Training
Workloads

10240 3 2 2 MIG 2g.10gb

A100-1-5C Inference
Workloads

5120 7 1 1 MIG 1g.5gb

https://docs.nvidia.com/ai-enterprise/1.5/
http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 85

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100-1-5CME Inference
Workloads

5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100-40C
Training
Workloads

40960 1 1 4096×21601 1

A100-20C
Training
Workloads

20480 2 2 4096×21601 1

A100-10C
Training
Workloads

10240 4 4 4096×21601 1

A100-8C
Training
Workloads

8192 5 5 4096×21601 1

A100-5C
Inference
Workloads

5120 8 8 4096×21601 1

A100-4C
Inference
Workloads

4096 10 10 4096×21601 1

A.2. NVIDIA A100 HGX 40GB Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 86

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100X-7-40C Training
Workloads

40960 1 7 7 MIG 7g.40gb

A100X-4-20C Training
Workloads

20480 1 4 4 MIG 4g.20gb

A100X-3-20C Training
Workloads

20480 2 3 3 MIG 3g.20gb

A100X-2-10C Training
Workloads

10240 3 2 2 MIG 2g.10gb

A100X-1-5C Inference
Workloads

5120 7 1 1 MIG 1g.5gb

A100X-1-5CME Inference
Workloads

5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100X-40C
Training
Workloads

40960 1 1 4096×21601 1

A100X-20C
Training
Workloads

20480 2 2 4096×21601 1

A100X-10C
Training
Workloads

10240 4 4 4096×21601 1

A100X-8C
Training
Workloads

8192 5 5 4096×21601 1

A100X-5C
Inference
Workloads

5120 8 8 4096×21601 1

A100X-4C
Inference
Workloads

4096 10 10 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 87

A.3. NVIDIA A100 PCIe 80GB Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100D-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A100D-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A100D-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

A100D-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

A100D-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A100D-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100D-80C
Training
Workloads

81920 1 1 4096×21601 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 88

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100D-40C
Training
Workloads

40960 2 2 4096×21601 1

A100D-20C
Training
Workloads

20480 4 4 4096×21601 1

A100D-16C
Inference
Workloads

16384 5 5 4096×21601 1

A100D-10C
Training
Workloads

10240 8 8 4096×21601 1

A100D-8C
Training
Workloads

8192 10 10 4096×21601 1

A100D-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.4. NVIDIA A100 HGX 80GB Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100DX-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A100DX-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A100DX-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

A100DX-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 89

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100DX-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A100DX-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100DX-80C
Training
Workloads

81920 1 1 4096×21601 1

A100DX-40C
Training
Workloads

40960 2 2 4096×21601 1

A100DX-20C
Training
Workloads

20480 4 4 4096×21601 1

A100DX-16C
Inference
Workloads

16384 5 5 4096×21601 1

A100DX-10C
Training
Workloads

10240 8 8 4096×21601 1

A100DX-8C
Training
Workloads

8192 10 10 4096×21601 1

A100DX-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.5. NVIDIA A40 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA A40

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 90

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A40-48C
Training
Workloads

49152 1 1 4096×21601 1

A40-24C
Training
Workloads

24576 2 2 4096×21601 1

A40-16C
Training
Workloads

16384 3 3 4096×21601 1

A40-12C
Training
Workloads

12288 4 4 4096×21601 1

A40-8C
Training
Workloads

8192 6 6 4096×21601 1

A40-6C
Training
Workloads

6144 8 8 4096×21601 1

A40-4C
Inference
Workloads

4096 82 12 4096×21601 1

A.6. NVIDIA A30 Virtual GPU Types
Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A30

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A30-4-24C Training
Workloads

24576 1 4 4 MIG 4g.24gb

A30-2-12C Training
Workloads

12288 2 2 2 MIG 2g.12gb

A30-1-6C Inference
Workloads

6144 4 1 1 MIG 1g.6gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 91

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A30-1-6CME Inference
Workloads

6144 1 1 1 MIG 1g.6gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A30

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A30-24C
Training
Workloads

24576 1 1 4096×21601 1

A30-12C
Training
Workloads

12288 2 2 4096×21601 1

A30-8C
Training
Workloads

8192 3 3 4096×21601 1

A30-6C
Inference
Workloads

6144 4 4 4096×21601 1

A30-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.7. NVIDIA A16 Virtual GPU Types
Physical GPUs per board: 4

C-Series Virtual GPU Types for NVIDIA A16

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A16-16C
Training
Workloads

16384 1 4 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 92

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A16-8C
Training
Workloads

8192 2 8 4096×21601 1

A16-4C
Inference
Workloads

4096 4 16 4096×21601 1

A.8. NVIDIA A10 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA A10

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A10-24C
Training
Workloads

24576 1 1 4096×21601 1

A10-12C
Training
Workloads

12288 2 2 4096×21601 1

A10-8C
Training
Workloads

8192 3 3 4096×21601 1

A10-6C
Training
Workloads

6144 4 4 4096×21601 1

A10-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.9. NVIDIA RTX A6000 Virtual GPU
Types

Physical GPUs per board: 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 93

C-Series Virtual GPU Types for NVIDIA RTX A6000

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTXA6000-48C
Training
Workloads

49152 1 1 4096×21601 1

RTXA6000-24C
Training
Workloads

24576 2 2 4096×21601 1

RTXA6000-16C
Training
Workloads

16384 3 3 4096×21601 1

RTXA6000-12C
Training
Workloads

12288 4 4 4096×21601 1

RTXA6000-8C
Training
Workloads

8192 6 6 4096×21601 1

RTXA6000-6C
Training
Workloads

6144 8 8 4096×21601 1

RTXA6000-4C
Inference
Workloads

4096 82 12 4096×21601 1

A.10. NVIDIA RTX A5000 Virtual GPU
Types

Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA RTX A5000

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTXA5000-24C
Training
Workloads

24576 1 1 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v1.5 | 94

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTXA5000-12C
Training
Workloads

12288 2 2 4096×21601 1

RTXA5000-8C
Training
Workloads

8192 3 3 4096×21601 1

RTXA5000-6C
Training
Workloads

6144 4 4 4096×21601 1

RTXA5000-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.11. Tesla T4 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for Tesla T4

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

T4-16C
Training
Workloads

16384 1 1 4096×21601 1

T4-8C
Training
Workloads

8192 2 2 4096×21601 1

T4-4C
Inference
Workloads

4096 4 4 4096×21601 1

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related
to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this
document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

© 2023 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	Introduction to NVIDIA AI Enterprise
	1.1. NVIDIA AI Enterprise Software Architecture
	1.2. Prerequisites for Using NVIDIA AI Enterprise

	Installing and Configuring NVIDIA Virtual GPU Manager
	2.1. About NVIDIA Virtual GPUs
	2.1.1. NVIDIA vGPU Architecture
	2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
	2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture

	2.1.2. About Virtual GPU Types
	2.1.3. Valid Virtual GPU Configurations on a Single GPU
	2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU
	2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU

	2.2. Switching the Mode of a GPU that Supports Multiple Display Modes
	2.3. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere
	2.3.1. Installing the NVIDIA Virtual GPU Manager Package for vSphere
	2.3.2. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere
	2.3.3. Configuring VMware vMotion with vGPU for VMware vSphere
	2.3.4. Changing the Default Graphics Type in VMware vSphere
	2.3.5. Configuring a GPU for MIG-Backed vGPUs
	2.3.5.1. Enabling MIG Mode for a GPU
	2.3.5.2. Disabling MIG Mode for One or More GPUs

	2.3.6. Configuring a vSphere VM with NVIDIA vGPU
	2.3.7. Setting vGPU Plugin Parameters on VMware vSphere

	2.4. Disabling and Enabling ECC Memory
	2.4.1. Disabling ECC Memory
	2.4.2. Enabling ECC Memory

	Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM
	3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes
	3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using NVIDIA GPU Operator
	3.1.2. Transforming Container Images for AI and Data Science Applications and Frameworks into Kubernetes Pods

	3.2. Install NVIDIA AI Enterprise Software Components by Using Docker
	3.2.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver Natively
	3.2.2. Installing AI and Data Science Applications and Frameworks by Using Docker

	3.3. Installing and Licensing NVIDIA AI Enterprise Components Natively
	3.3.1. Installing the NVIDIA AI Enterprise Graphics Driver on Linux from a Debian Package
	3.3.2. Prerequisites for Configuring a Licensed Client of NVIDIA License System
	3.3.2.1. Configuring a Licensed Client on Linux
	3.3.2.2. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client

	3.3.3. Installing NVIDIA Container Toolkit
	3.3.4. Verifying the Installation of NVIDIA Container Toolkit
	3.3.5. Installing Software Distributed as Container Images
	3.3.6. Running ResNet-50 with TensorRT
	3.3.7. Running ResNet-50 with TensorFlow
	3.3.8. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU

	Configuring Multinode Scaling
	4.1. Hardware and VM Configuration Requirements for Multinode Scaling
	4.1.1. Hardware Requirements for Multinode Scaling
	4.1.2. VM Requirements for Multinode Scaling

	4.2. Configuring NUMA Affinity for the VMs
	4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two NICs Across Both NUMA Nodes
	4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on a Single NUMA Node

	4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch
	4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections
	4.5. Installing the Mellanox OFED Driver
	4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM
	4.7. Building and Installing the NVIDIA Peer Memory Driver

	Modifying a VM's NVIDIA vGPU Configuration
	5.1. Removing a VM’s NVIDIA vGPU Configuration
	5.1.1. Removing a vSphere VM’s vGPU Configuration

	5.2. Modifying GPU Allocation Policy
	5.2.1. Modifying GPU Allocation Policy on VMware vSphere

	5.3. Migrating a VM Configured with vGPU
	5.3.1. Migrating a VM Configured with vGPU on VMware vSphere
	5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere

	5.4. Modifying a MIG-Backed vGPU's Configuration
	5.5. Enabling Unified Memory for a vGPU
	5.5.1. Enabling Unified Memory for a vGPU on VMware vSphere

	5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU
	5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU
	5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU
	5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features
	5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are Enabled
	5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU
	5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM

	Monitoring GPU Performance
	6.1. NVIDIA System Management Interface nvidia-smi
	6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor
	6.2.1. Getting a Summary of all Physical GPUs in the System
	6.2.2. Getting a Summary of all vGPUs in the System
	6.2.3. Getting vGPU Details
	6.2.4. Monitoring vGPU engine usage
	6.2.5. Monitoring vGPU engine usage by applications
	6.2.6. Monitoring Encoder Sessions
	6.2.7. Listing Supported vGPU Types
	6.2.8. Listing the vGPU Types that Can Currently Be Created

	6.3. Monitoring GPU Performance from a Guest VM
	6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM

	Changing Scheduling Behavior for Time-Sliced vGPUs
	7.1. Scheduling Policies for Time-Sliced vGPUs
	7.2. Scheduler Time Slice for Time-Sliced vGPUs
	7.3. RmPVMRL Registry Key
	7.4. Getting the Current Time-Sliced vGPU Scheduling Behavior for All GPUs
	7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs
	7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs
	7.7. Restoring Default Time-Sliced vGPU Scheduler Settings

	Troubleshooting
	8.1. Known issues
	8.2. Troubleshooting steps
	8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded
	8.2.2. Verifying that nvidia-smi works
	8.2.3. Examining NVIDIA kernel driver output
	8.2.4. Examining NVIDIA Virtual GPU Manager Messages
	8.2.4.1. Examining VMware vSphere vGPU Manager Messages

	8.3. Capturing configuration data by running nvidia-bug-report.sh

	Additional Information
	Virtual GPU Types for Supported GPUs
	A.1. NVIDIA A100 PCIe 40GB Virtual GPU Types
	A.2. NVIDIA A100 HGX 40GB Virtual GPU Types
	A.3. NVIDIA A100 PCIe 80GB Virtual GPU Types
	A.4. NVIDIA A100 HGX 80GB Virtual GPU Types
	A.5. NVIDIA A40 Virtual GPU Types
	A.6. NVIDIA A30 Virtual GPU Types
	A.7. NVIDIA A16 Virtual GPU Types
	A.8. NVIDIA A10 Virtual GPU Types
	A.9. NVIDIA RTX A6000 Virtual GPU Types
	A.10. NVIDIA RTX A5000 Virtual GPU Types
	A.11. Tesla T4 Virtual GPU Types

