Development System#
The table below lists the system requirements for UCS Tools for development:
Platform |
x86_64 |
OS |
Ubuntu 22.04 |
GPU |
CUDA-capable GPU, iGPU 1,2 |
Helm |
3.11 |
1 (Alpha) With remote access only
2 (Alpha) Need Vulkan support (Intel Iris Graphics 540 or later)
These instructions require having Ubuntu Server LTS 22.04 on your system.
Install the Ubuntu Operating System#
The Ubuntu Server can be downloaded from http://cdimage.ubuntu.com/releases/22.04/release/.
For more information on installing Ubuntu server refer to the Ubuntu Server Installation Guide.
Install CUDA Drivers#
CUDA installation instructions are available from https://developer.nvidia.com/cuda-downloads?target_os=Linux&target_arch=x86_64&Distribution=Ubuntu&target_version=22.04&target_type=deb_local.
Once the NVIDIA Drivers installed, please reboot the system and run the below command to validate NVIDIA drivers are loaded:
nvidia-smiExpected Output:
+---------------------------------------------------------------------------------------+ | NVIDIA-SMI 535.104.05 Driver Version: 535.104.05 CUDA Version: 12.2 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA GeForce RTX 4090 On | 00000000:65:00.0 Off | Off | | 0% 30C P8 5W / 450W | 133MiB / 24564MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| | 0 N/A N/A 1119 G /usr/lib/xorg/Xorg 107MiB | | 0 N/A N/A 1239 G /usr/bin/gnome-shell 13MiB | +---------------------------------------------------------------------------------------+
Install Docker CE#
Set up the repository and update the apt package index:
$ sudo apt-get update
Install packages to allow apt to use a repository over HTTPS:
$ sudo apt-get install -y \ apt-transport-https \ ca-certificates \ curl \ gnupg-agent \ software-properties-common
Add Docker’s official GPG key:
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -
Verify that you now have the key with the fingerprint 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88 by searching for the last 8 characters of the fingerprint:
$ sudo apt-key fingerprint 0EBFCD88 pub rsa4096 2017-02-22 [SCEA] 9DC8 5822 9FC7 DD38 854A E2D8 8D81 803C 0EBF CD88 uid [ unknown] Docker Release (CE deb) <docker@docker.com> sub rsa4096 2017-02-22 [S]
Use the following command to set up the stable repository:
$ sudo add-apt-repository \ "deb [arch=amd64] https://download.docker.com/linux/ubuntu \ $(lsb_release -cs) \ stable"
Install Docker Engine - Community Update the apt package index:
$ sudo apt-get update
Install Docker Engine:
$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io
Verify that Docker Engine - Community is installed correctly by running the hello-world image:
$ sudo docker run hello-world
More information on how to install Docker can be found at https://docs.docker.com/install/linux/docker-ce/ubuntu/.
Install NVIDIA Container Toolkit#
Setup the package repository:
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \ && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
Update the package index:
sudo apt update
Install NVIDIA Container Toolkit:
sudo apt-get install -y nvidia-docker2
Update the Docker Default Runtime.
Edit the docker daemon configuration to add the following line and save the file:
"default-runtime" : "nvidia"Example:
$ sudo nano /etc/docker/daemon.json { "runtimes": { "nvidia": { "path": "nvidia-container-runtime", "runtimeArgs": [] } }, "default-runtime" : "nvidia" }
Now execute the below commands to restart the docker daemon:
sudo systemctl daemon-reload && sudo systemctl restart docker
Validate docker default runtime.
Execute the below command to validate docker default runtime as NVIDIA:
$ sudo docker info | grep -i runtimeOutput:
Runtimes: nvidia runc Default Runtime: nvidia
Install Helm#
Execute the following command to download and install Helm 3.11.0:
wget https://get.helm.sh/helm-v3.11.0-linux-amd64.tar.gz && \
tar -zxvf helm-v3.11.0-linux-amd64.tar.gz && \
sudo mv linux-amd64/helm /usr/local/bin/helm && \
rm -rf helm-v3.11.0-linux-amd64.tar.gz linux-amd64/
Refer to the Helm 3.11.0 release notes and the Installing Helm guide for more information.