

Document | December 21, 2022
NVIDIA CONFIDENTIAL | Prepared and Provided Under NDA

Version 1.0

LIBNVIPC SPECIFICATION

NVIDIA CONFIDENTIAL
libnvipc Specification Document | 2

Document Change History
cuBB SDK 21-4 Release

Date Authors Summary of Change

Feb 25, 2022 Peter G Initial release.

NVIDIA CONFIDENTIAL
libnvipc Specification Document | 3

TABLE OF CONTENTS

Introduction .. 4

Purpose and Scope .. 4

Important Terms .. 4

References .. 4

Architecture Details .. 6

Shared Memory IPC .. 6

DPDK over NIC IPC .. 9

Design Details ... 11

Design Alternatives .. 11

Static Design .. 11

Configuration Data .. 11

External Interface and Specification ... 12

Dependencies .. 17
Integration Validation Plan ... 17

Dynamic Design ... 17

Lock-free array queue .. 17

Control Flow ... 21

Memory pool ... 21

FIFO Ring (for send and receive message).. 21

Error Handling ... 22

Logging and Debugging .. 22

nvlog .. 22

Enable core dump ... 22

State Machine ... 23

Test Automation) .. 23

High Availability .. 23

NVIDIA CONFIDENTIAL
libnvipc Specification Document | 4

Introduction

Purpose and Scope

This document describes the libnvipc library, which is a high-performance,

shared memory IPC solution for communication between 5G-NR MAC and PHY

processes.

Using this library, some CPU memory and GPU memory pools are created and

shared between two process for transfer messages. This library is built as a

dynamic library and can be used in other generic IPC cases.

Important Terms

This section defines important acronyms, abbreviations, and terms that are

required to understand this document.

Table 1. Terms and abbreviations

Term or
Abbreviation Definition

IPC Inter-process communication

CAS Compare and swap

SHM Shared memory

References

This section contains technical resources used to develop libnvipc.

Table 2. References

Introduction

NVIDIA CONFIDENTIALcuBB SDK 21-4 Release libnvipc Specification

Revision: December 21, 2022 Document | Page 5 of 25

SWE
Number Input Work Product Revision Location

 Non-Blocking Concurrent Queue

Algorithm
 30 January

2008
https://www.cs.rochester.edu/research/sy

nchronization/pseudocode/queues.html

https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html
https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

NVIDIA CONFIDENTIAL
libnvipc Specification Document | 6

Architecture Details

The libnvipc library is a generic Shared Memory IPC solution. Although it is

implemented using C to be widely compatible, the architecture is similar to a C++

object-oriented implementation.

Shared Memory IPC

The Shared Memory IPC is used for communication between different processes

on the same system. This architecture implements two features that are

independent with each other:

• IPC message transfer

• Synchronization (use semaphore or event_fd)

The following diagram describes the architecture of the SHM IPC message

transfer feature:

Architecture Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 7

An IPC message is divided into two parts:

• MSG: Handled in the control logic, which runs in the CPU thread.

• DATA part: Handled with high performance computing, which runs in the CPU

thread or GPU thread.

The nv_ipc_msg_t struct is defined to represent a generic IPC message. The

MSG and DATA parts are stored in different buffers. The presence of the MSG

part is mandandary, while the DATA part is optional. data_buf is null when no

DATA part exists.

typedef struct {
 int32_t cell_id; // Cell ID
 int32_t msg_id; // IPC message ID
 int32_t msg_len; // MSG part length
 int32_t data_len; // DATA part length
 int32_t data_pool; // DATA memory pool ID
 void* msg_buf; // MSG part buffer pointer
 void* data_buf; // DATA part buffer pointer
} nv_ipc_msg_t;

The MSG buffer is allocated from the CPU shared memory pool. The DATA

buffer can be allocated from the CPU shared memory pool or CUDA shared

memory pool, so in total there are three types of memory pool. The

nv_ipc_mempool_id_t enum type is defined as the memory pool indicator.

Architecture Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 8

typedef enum {
 NV_IPC_MEMPOOL_CPU_MSG = 0, // CPU SHM pool for MSG part
 NV_IPC_MEMPOOL_CPU_DATA = 1, // CPU SHM pool for DATA part
 NV_IPC_MEMPOOL_CUDA_DATA = 2, // CUDA SHM pool for DATA part
 NV_IPC_MEMPOOL_NUM = 3
} nv_ipc_mempool_id_t;

The array queue has the following features:

• FIFO (first in first out)

• Lock-free: Supports multiple producers and multiple consumers without lock.

• Finite size: The max length is defined at initial: N.

• Valid values are integers: 0, 1, …, N-1, can be used as the node index/pointer.

• Duplicate values are not supported.

Based on the lock-free array queue, generic memory pools and ring queues can

be easily implemented or created, and they are lock-free as well:

• Memory pool: array queue + memory buffer array

• FIFO ring queue: array queue + queue node array

At most, three shared memory pools and two ring queues will be created per

configuration:

Each memory pool is an array of fixed size buffers. The buffer size and pool

length (buffer count) are configurable for each memory pool. If the buffer size or

pool length is configured to be 0, that memory pool will not be created. The

memory pools and ring queues are created in shared memory to be accessible

between different processes.

SHM name at /dev/shm/ IPC direction Memory Pool ID

<prefix>_cpu_msg Duplex NV_IPC_MEMPOOL_CPU_MSG

Architecture Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 9

<prefix>_cpu_data Duplex NV_IPC_MEMPOOL_CPU_DATA

<prefix>_cuda_data Duplex NV_IPC_MEMPOOL_CUDA_DATA

And two ring queues are created to deliver the message buffer indices. The TX

ring in sender and RX ring in receiver are the same ring in SHM.

SHM name at /dev/shm/ Internal name IPC direction PHY/PRIMARY MAC/SECONDA

RY

<prefix>_shm <prefix>_ring_m2s Uplink TX RX

<prefix>_shm <prefix>_ring_s2m Downlink RX TX

The following diagram describes the synchronization components architecture. It

is based on eventfd to support multiple I/O with poll/epoll/select:

A typical IPC message transfer flow is as below:

DPDK over NIC IPC

The APIs are used for communication between processes on different systems

that are connected through NIC. The APIs are compatible with the SHM IPC

case; they just need to load different parameters from a YAML configuration file.

Architecture Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 10

In the internal implementation of nvipc, lock-free queues are used for TX and

RX. A dpdk_nic_poll thread is created at initialization to do the DPDK polling

task on the NIC, soo it requires a dedicated CPU core on each side.

From the nvipc user perspective, the user calls tx_send_msg() and

rx_recv_msg(); it is a wrapper of the enqueue and dequeue to the internal

TX and RX queues. The dpdk_nic_poll thread runs in background to perform

the actual packet transfer through DPDK over NIC. The following architecure

diagram describes this process.

NVIDIA CONFIDENTIAL
libnvipc Specification Document | 11

Design Details

Design Alternatives

• UDP IPC: Easy to implement and capture log by tcpdump, but has below

disadvantages:

o UDP packet size limitation is 65,507 bytes (65,535 − 8 byte UDP

header − 20 byte IP header)

o The memory copy between kernel and user space causes delay.

• SHM IPC: Pre-allocate CPU/GPU memory pools and share it between

processes. Since no additional memory is allocated/released and memory

is copied, it is most efficient.

Static Design

Configuration Data

Config yaml file (for NVIDIA cuphycontroller):

Transport settings for nvIPC
transport:
 type: dpdk
 udp_config:
 local_port: 38556
 remort_port: 38555
 shm_config:
 primary: 0
 prefix: nvipc # Note: prefix string length should < 32
 cuda_device_id: -1
 ring_len: 8192
 mempool_size:
 cpu_msg:

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 12

 buf_size: 8192
 pool_len: 4096
 cpu_data:
 buf_size: 576000
 pool_len: 1024
 cuda_data:
 buf_size: 307200
 pool_len: 0 # Set to 0 to do not create CUDA memory pool
 dpdk_config:
 primary: 0
 prefix: nvipc
 # local_nic_pci: mlx5_core.sf.2 # For run on BlueField DPU
 local_nic_pci: 0000:b6:00.0
 peer_nic_mac: 02:c0:47:39:92:fb
 nic_mtu: 1536
 cuda_device_id: -1
 need_eal_init: 1
 lcore_id: 7
 mempool_size:
 cpu_msg:
 buf_size: 8192
 pool_len: 4096
 cpu_data:
 buf_size: 576000
 pool_len: 1024
 cuda_data:
 buf_size: 307200
 pool_len: 0
 app_config:
 grpc_forward: 0
 debug_timing: 0
 pcap_enable: 0

Config debug with coredump:

lib/nvIPC/CMakeLists.txt

set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O0 -g")

External Interface and Specification

Here is the public API interface of the library:

struct nv_ipc_t {
 // De-initiate and destroy the nv_ipc_t instance
 int (*ipc_destroy)(nv_ipc_t* ipc);

 // Memory allocate and release
 int (*tx_allocate)(nv_ipc_t* ipc, nv_ipc_msg_t* msg, uint32_t options);
 int (*rx_release)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

 // Send and receive (enqueue in TX ring queue and dequeue in RX ring queue)
 int (*tx_send_msg)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);
 int (*rx_recv_msg)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

 // Synchronization option 1: sem_post and sem_wait
 int (*tx_tti_sem_post)(nv_ipc_t* ipc);
 int (*rx_tti_sem_wait)(nv_ipc_t* ipc);

 // Synchronization option 2: get an event_fd for RX and epoll on it
 int (*get_fd)(nv_ipc_t* ipc);
 int (*notify)(nv_ipc_t* ipc, int value);
 int (*get_value)(nv_ipc_t* ipc);

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 13

 // CUDA memory copy function
 int (*cuda_memcpy_to_host)(nv_ipc_t* ipc, void* host, const void* device, size_t size);
 int (*cuda_memcpy_to_device)(nv_ipc_t* ipc, void* device, const void* host, size_t size);

 // Deprecated. rx_allocate is equal to tx_allocate, tx_release is equal to rx_release.
 int (*rx_allocate)(nv_ipc_t* ipc, nv_ipc_msg_t* msg, uint32_t options);
 int (*tx_release)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);
};
int set_nv_ipc_default_config(nv_ipc_config_t* cfg, nv_ipc_module_t module_type);
int load_nv_ipc_yaml_config(nv_ipc_config_t* cfg, const char* yaml_path, nv_ipc_module_t
module_type);
nv_ipc_t* create_nv_ipc_interface(const nv_ipc_config_t* cfg);

Initiation

Here is the reference code for initiation. The first starting process is PRIMARY,

the latter starting process is SECONDARY. PRIMARY is responsible for creating

and initiating SHM pools and ring queues. SECONDARY looks up the created

pools and queues:

 // Create configuration
 nv_ipc_config_t config;
 config.ipc_transport = NV_IPC_TRANSPORT_SHM;
 if(set_nv_ipc_default_config(&config, module_type) < 0) {
 LOGE(TAG, "%s: set configuration failed\n", __func__);
 return -1;
 }

 // Optional: Override the default configurations

config.transport_config.shm.cuda_device_id = test_cuda_device_id;

// Create IPC interface: nv_ipc_t ipc
nv_ipc_t* ipc;

 if((ipc = create_nv_ipc_interface(&config)) == NULL) {
 LOGE(TAG, "%s: create IPC interface failed\n", __func__);
 return -1;

}

After the IPC interface is successfully created, you can see items under

/dev/shm/ folder. For example, if <prefix>=”nvipc”:

ls -al /dev/shm/nvipc*
nvipc_shm
nvipc_cpu_msg
nvipc_cpu_data
nvipc_cuda_data
nvipc.log

De-initiation

 if(ipc->ipc_destroy(ipc) < 0) {
 LOGE(TAG, "%s close IPC interface failed\n", __func__);
 }

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 14

Send

The procedure for sending is as follows

:

allocate buffers –> fill content –> send

When fill content, for CUDA memory, the data_buf is a CUDA memory pointer

which can’t be accessed directly in CPU memory space. The IPC API interface

provide basic memcpy functions to copy between CPU memory and CUDA

memory. For more CUDA operation, user can directly access the GPU memory

buffer with CUDA APIs.

 nv_ipc_msg_t send_msg,
 send_msg.msg_id = fapi_msg_id; // Optional: FAPI message ID
 send_msg.msg_len = fapi_msg_len; // Max length is the MSG buffer size, configurable
 send_msg.data_len = fapi_data_len; // Max length is the MSG buffer size, configurable
 send_msg.data_pool = NV_IPC_MEMPOOL_CPU_DATA; // Options: CPU_MSG, CPU_DATA, CUDA_DATA

 // Allocate buffer for TX message
 if(ipc->tx_allocate(ipc, &send_msg, 0) != 0)
 {
 LOGE(TAG, "%s error: allocate buffer failed\n", __func__);
 return -1;
 }

// Fill the MSG content
 int8_t fapi_msg[SHM_MSG_BUF_SIZE];
 memcpy(send_msg.msg_buf, fapi_msg, fapi_len);

// Fill the DATA content if data exist.
 int8_t fapi_data[SHM_MSG_DATA_SIZE];
 if (send_msg.data_pool == NV_IPC_MEMPOOL_CPU_DATA) { // CPU_DATA case
 memcpy(send_msg.data_buf, fapi_data, send_msg.data_len);
 } else if (send_msg.data_pool == NV_IPC_MEMPOOL_CUDA_DATA) { // CUDA_DATA case
 if(ipc->cuda_memcpy_to_device(ipc, send_msg.data_buf, fapi_data, send_msg.data_len) < 0){
 LOGE(TAG, "%s CUDA copy failed\n", __func__);
 }
 } else { // NO_DATA case
 // NO data, do nothing
 }

 // Send the message
 if(ipc->tx_send_msg(ipc, &send_msg) < 0){
 LOGE(TAG, "%s error: send message failed\n", __func__);
 // May need future retry or release the send_msg buffers
 // If fail, check configuration: ring queue length > memory pool length
 }

Receive

The procedure for receiving is as follows:

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 15

receive –> handle message –> release buffers

 nv_ipc_msg_t recv_msg
 if(ipc->rx_recv_msg(ipc, &recv_msg) < 0)
 {
 LOGV(TAG, "%s: no more message available\n", __func__);
 return -1;
 }

 // Example: Handle MSG part
 int8_t fapi_msg[SHM_MSG_BUF_SIZE];
 memcpy(fapi_msg, recv_msg.msg_buf, recv_msg.msg_len);

 // Example: Handle DATA part
 int8_t fapi_data[SHM_MSG_BUF_SIZE];
 if (recv_msg.data_pool == NV_IPC_MEMPOOL_CPU_DATA) { // CPU_DATA case
 memcpy(fapi_data, recv_msg.data_buf, &recv_msg.data_len);
 } else if (recv_msg.data_pool == NV_IPC_MEMPOOL_CUDA_DATA) { // CUDA_DATA case
 if(ipc->cuda_memcpy_to_host(ipc, fapi_data, recv_msg.data_buf, recv_msg.data_len) < 0){
 LOGE(TAG, "%s CUDA copy failed\n", __func__);
 }
 } else { // NO_DATA case
 // NO data, do nothing
 }

 if(ipc->rx_release(ipc, &recv_msg) < 0){
 LOGW(TAG, "%s: release error\n", __func__);

}

Synchronization

Since above memory pools and ring queues support lock-less concurrence, the

use of synchronization APIs is not mandandary.

Two tyles of synchronization APIs are provided: semaphore style and event_fd

style. Each side can choose any tyles no matter what the other side chooses, but

keep using one tyles in one side.

In low level of the SHM IPC library event_fd is implemented. The semaphore

API interface is a wapper of the event_fd implementation.

The APIs are ready to use after IPC interface successfully created by

create_nv_ipc_interface().

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 16

For semaphore tyles, it’s easy to use:

Receiver:

ipc->tx_tti_sem_wait(ipc);

Sender:
 ipc->tx_tti_sem_post(ipc);

For event_fd style, user can get the the fd and use epoll functions to monitor

multiple I/O:

Receiver:
 struct epoll_event ev, events[MAX_EVENTS];

 int epoll_fd = epoll_create1(0);
 if(epoll_fd == -1)
 {
 LOGE(TAG, "%s epoll_create failed\n", __func__);
 }

 int ipc_rx_event_fd = ipc->get_fd(ipc); // IPC synchronization API: get_fd()
 ev.events = EPOLLIN;
 ev.data.fd = ipc_rx_event_fd;
 if(epoll_ctl(epoll_fd, EPOLL_CTL_ADD, ev.data.fd, &ev) == -1)
 {
 LOGE(TAG, "%s epoll_ctl failed\n", __func__);
 }

 while(1)
 {
 int nfds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
 if(nfds == -1)
 {
 LOGE(TAG, "epoll_wait notified: nfds=%d\n", nfds);
 }

 for(int n = 0; n < nfds; ++n)
 {
 if(events[n].data.fd == ipc_rx_event_fd)
 {
 ipc->get_value(ipc); // IPC synchronization API: get_value()
 // Receive incoming message here
 }
 }
 }
 close(epoll_fd);

Sender:
 ipc->notify(ipc, 1); // IPC synchronization API: notify()

Synchronization can be called one time for each message or one time for a whole

TTI per user’s requirement.

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 17

Dependencies

• GCC version >= 4.9.2 (Other compilers were not verified)

• CUnit library (For internal test only).

Team or Company Deliverable Ref Commit

Open Source No

Open source:
https://gitlab.com/cunity/cunit

IP Audit: Bug 200578584

Integration Validation Plan

Functionality to Validate Teams Participating Interfaces Covered Date
Complete

Use CUnit to test nv_ipc_t All the APIs in nv_ipc_t Mar 6, 2020

Dynamic Design

Lock-free array queue
The below document and pseudo code describes the theory of a typical lock-free

queue. The document was written by Maged M. Michael and Michael L. Scott.

https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf

https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

https://gitlab.com/cunity/cunit
http://nvbugs/200578584
http://www.cs.rochester.edu/u/michael
http://www.cs.rochester.edu/u/scott
https://www.cs.rochester.edu/u/scott/papers/1996_PODC_queues.pdf
https://www.cs.rochester.edu/research/synchronization/pseudocode/queues.html

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 18

Disadvantage: In the above pseudo code, there’s memory allocation in

ENQUEUE operation. The node allocation may cause performance decrease and

unknown delay:

E1: node = new_node() // Allocate a new node to enqueue a node data

Improvement solution: Improve the allocation by using a pre-allocate fixed size

node array. Assume size = N, the queue supports enqueuing integer value in

range 0, 1, …, N-1. When enqueue, allocate the array element whose index is

equals to the enqueuing value. The allocation will always succeed and doesn’t

cost memory allocation time:

E1: node = array[value] // Allocate array[value] to enqueue an integer

value

Another difference with the original queue design is that there’s one node in

queue (the initial node) when the queue is empty, but in this implementation,

there’s no node in the empty queue. This change is necessary because of the new

node allocation mechanism.

Below is the queue data structure:

typedef struct {
 int32_t next;
 uint32_t counter;
} note_t;

typedef union {
 note_t node;
 uint64_t ulong;
} cas_union_t;

typedef struct {
 atomic_ulong head; // Point to the latest enqueued node.
 atomic_ulong tail; // Point to the earliest enqueued node.
 atomic_ulong queue[]; // Queue array data
} array_queue_header_t;

And the queue APIs:

struct array_queue_t
{
 int32_t (*get_length)(array_queue_t* queue);

 int (*enqueue)(array_queue_t* queue, int32_t value);

 int32_t (*dequeue)(array_queue_t* queue);

 int (*close)(array_queue_t* queue);
};

// The memory size pre-allocated for the queue structure
#define ARRAY_QUEUE_HEADER_SIZE(queue_len) (align_8(sizeof(array_queue_header_t) +
sizeof(atomic_ulong) * (queue_len)))

// header size should be calculated by ARRAY_QUEUE_MEMORY_SIZE(length)
array_queue_t* array_queue_open(int primary, const char* name, void* header, int32_t length);

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 19

Here is the node structure and the node array. Each node contains a “counter”

and “next” fields. The node value is equal to its array index, so there’s no need to

define it in the structure.

Counter is used to avoid ABA problem. The atomic functions (CAS) operate on

uint64_t type data, they change “counter” and “next” together.

Below diagram demonstrates all possible state transition flows of the array

queue:

Empty (initial) --> One Node --> Multi Nodes --> One Node --> Empty

Of all the states, there are 3 final states: Empty (S1, S2, S11), One Node in Queue

(S4, S5, S8), Multi Nodes in Queue (S7). Other states (S3, S6, S9, S10) are

temporary states. At final state it’s ready to go ahead with enqueue/dequeue

CAS. At temporary states the head or the tail need to be moved to final states

first.

We can see that for a generic node (i = 0, 1, 2, …, N-1), its value equals to its array

index: value = index = i. The queue head and tail have the same structure with

generic nodes, and head can be treated as a special node: value = index = -1 (NA).

The value changed in last step is marked red.

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 20

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 21

Control Flow

Memory pool

struct nv_ipc_mempool_t
{
 int32_t (*alloc)(nv_ipc_mempool_t* mempool);

 int (*free)(nv_ipc_mempool_t* mempool, int32_t index);

 int (*get_index)(nv_ipc_mempool_t* mempool, void* buf);

 void* (*get_addr)(nv_ipc_mempool_t* mempool, int32_t index);

 int (*get_buf_size)(nv_ipc_mempool_t* mempool);

 int (*get_pool_len)(nv_ipc_mempool_t* mempool);

 int (*memcpy_to_host)(nv_ipc_mempool_t* mempool, void* host, const void* device, size_t size);

 int (*memcpy_to_device)(nv_ipc_mempool_t* mempool, void* device, const void* host, size_t
size);

 int (*close)(nv_ipc_mempool_t* mempool);
};

nv_ipc_mempool_t* nv_ipc_mempool_open(int primary, const char* name, int buf_size, int pool_len,
int cuda_device_id);

With the use of the array_queue, it’s easy to implement the memory pool

manager (buffer allocate/release). Here is pseudo code for buffer allocate and

free:
Initiate:

array_queue_t* queue = array_queue_open(length);
 for(int i = 0; i < length; i++) {
 queue->enqueue(i);
 }

Allocate:
 int index = queue->dequeue();

void* buf = queue->get_addr(index);
return buf;

Free buf:
 int index = queue->get_index(buf);

queue->enqueue(index);

FIFO Ring (for send and receive message)

FIFO rings are embedded in nv_ipc_shm_if.c. Below is the pseudo code:
Initiate:

array_queue_t* tx_ring = array_queue_open(tx_name, length);
array_queue_t* rx_ring = array_queue_open(rx_name, length);

Send:
 // Allocate memory buffer and fill with message first

tx_ring->enqueue(msg_index);

Receive:
 int msg_index = rx_ring->dequeue();
 // Get buffer from memory pool by msg_index, get the message and free the buffer

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 22

Error Handling

All the APIs return negative integer value (-1) or NULL pointer when fails or

queue is empty; return 0, positive integer or valid pointer when success. User can

check the return value to get whether the function call was successful.

In all error cases, the error reason will be printed with ERROR level log. User can

check /dev/shm/nvipc.log or /tmp/nvipc.log to get the fail reason.

Logging and Debugging

nvlog

A high performance, ordered, lock-free logger is implemented in nvlog.c.

Firstly, the logs are cached to SHM memory /dev/shm/phy.log. The SHM log file

has fixed size and it is configured to 4MB by default. Can be changed at:
#define SHM_SIZE_BIT_LEN 22 // 4MB
#define LOG_SHM_SIZE (1 << SHM_SIZE_BIT_LEN)

If too many logs exceed the SHM file size, then the /dev/shm/nvipc.log file will

be over written. A background thread is waiting to save half of the SHM cache to

/tmp/nvipc.log every time when available.

Each log line will be added with logging time, module type (primary/secondary),

log level and an increasing counter.

By default, the statistic info printed every 1000 times of

allocate/send/recv/release. Can change log level to LOG_DEBUG to print the

msg_id, msg_len, data_len, data_pool of each FAPI message.

Hard code the DEFAULT_LOG_LEVEL value and recompile libnvipc.so or call

nv_ipc_log_set_level(LOG_DEBUG) in the user program.
#define DEFAULT_LOG_LEVEL LOG_INFO // 3
#define DEFAULT_LOG_LEVEL LOG_DEBUG // 4
void nv_ipc_log_set_level(int level);

2020-03-17 04:46:17.499906 M I 28850 QUEUE: nvipc_cpu_msg: enqueue try_max=1 counter: enq=12784001 deq=12779906 available~4095
2020-03-17 04:46:17.512319 M I 28851 QUEUE: nvipc_cpu_msg: dequeue try_max=1 counter: enq=12784096 deq=12780000 available=4095
2020-03-17 04:46:17.672086 S I 28852 QUEUE: nvipc_ring_s2m: enqueue try_max=2 counter: enq=7340001 deq=7340000 available~1
2020-03-17 04:46:17.672117 M I 28853 QUEUE: nvipc_ring_s2m: dequeue try_max=1 counter: enq=7340002 deq=7340000 available=1
2020-03-17 04:46:17.754056 M I 28854 QUEUE: nvipc_cpu_msg: enqueue try_max=1 counter: enq=12786001 deq=12781905 available~4096
2020-03-17 04:46:17.766276 M I 28855 QUEUE: nvipc_cpu_msg: dequeue try_max=1 counter: enq=12786095 deq=12782000 available=4094
2020-03-17 04:46:17.797613 S I 28856 QUEUE: nvipc_cpu_data: dequeue try_max=1 counter: enq=3251024 deq=3250000 available=1023
2020-03-17 04:46:17.933682 M I 28857 QUEUE: nvipc_ring_m2s: enqueue try_max=3 counter: enq=5442001 deq=5441999 available~2
2020-03-17 04:46:17.933685 S I 28858 QUEUE: nvipc_ring_m2s: dequeue try_max=3 counter: enq=5442001 deq=5442000 available=0

Enable core dump

set(CMAKE_C_FLAGS "${CMAKE_C_FLAGS} -O0 -g")

set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -O0 -g")

ulimit -c unlimited

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 23

For CentOS docker container running on Ubuntu host case, need to run below

additional step on host:

echo "core.%p" | sudo tee /proc/sys/kernel/core_pattern

State Machine

See Lock-free Array Queue section above.

Test Automation)

Note: Test automation is mandatory only for GPU Driver features, optional otherwise

Unit test program: tests/cunit/nvipc_cunit. It covers below cases:

(1) Run single process or fork to 2 processes: PRIMARY and SECONDARY.

(2) test_ipc_open: Create IPC inteface in PRIMARY or SECONDARY.

(3) test_assign_cpu: Assign CPU core for process: bind PRIMARY to CPU core 0, bind

SECONDARY to CPU core 2.

(4) test_ring_single_thread: Create one thread in PRIMARY running dequeue in

PRIMARY; Create one thread in SECONDARY running enqueue.

(5) test_ring_multi_thread: Create multi-threads in PRIMARY running dequeue; Create

multi-threads in SECONDARY running enqueue

(6) test_cpu_mempool: Create one thread both in PRIMARY and SECONDARY running

alloc and free; test alloc all and check full, then free all.

(7) test_blocking_transfer: Test single thread blocking wait transferring between

PRIMARY and SECONDARY (sync by event_fd).

(8) test_epoll_transfer: Test single thread epoll transferring between PRIMARY and

SECONDARY (sync by event_fd).

(9) test_no_sync_transfer: Test single thread transferring without synchronization

(infinite loop polling) between PRIMARY and SECONDARY.

(10) test_transfer_multi_thread: Test multi-thread transferring without

synchronization (infinite loop polling) between PRIMARY and SECONDARY.

(11) test_ipc_close: Close/destroy the IPC interface, all test finished.

High Availability

(1) Sending-Receiving delay

According to Test (8) the average delay is about 1.6us (above log shows min=0.34us,

avg=1.57us max=48.6us).

According to Test (9) the average delay is about 80us (above log shows min=0.36us,

Design Details

NVIDIA CONFIDENTIAL
libnvipc Specification Version 1.0 | 24

avg=80us max=294us).

(2) Bandwidth, packet count per second

According to Test (7) (8) the speed is about 673847 packets per second.

According to Test (9), the speed is about 2278611 packets per second.

The bandwidth depends on packet size:

Packet size: 1KB ---- Bandwidths: 0.67GB/s, 2.3GB/s.

Packet size: 10KB ---- Bandwidths: 6.7GB/s, 23GB/s.

Packet size: 100KB ---- Bandwidths: 67GB/s, 230GB/s.

www.nvidia.com

Notice

The information provided in this specification is believed to be accurate and reliable as of the date provided.

However, NVIDIA Corporation (“NVIDIA”) does not give any representations or warranties, expressed or implied,

as to the accuracy or completeness of such information. NVIDIA shall have no liability for the consequences or

use of such information or for any infringement of patents or other rights of third parties that may result from

its use. This publication supersedes and replaces all other specifications for the product that may have been

previously supplied.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other changes

to this specification, at any time and/or to discontinue any product or service without notice. Customer should

obtain the latest relevant specification before placing orders and should verify that such information is current

and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of

order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized

representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general

terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft,

space or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can

reasonably be expected to result in personal injury, death or property or environmental damage. NVIDIA

accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore

such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for

any specified use without further testing or modification. Testing of all parameters of each product is not

necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit

for the application planned by customer and to do the necessary testing for the application in order to avoid a

default of the application or the product. Weaknesses in customer’s product designs may affect the quality

and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements

beyond those contained in this specification. NVIDIA does not accept any liability related to any default,

damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any

manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA

intellectual property right under this specification. Information published by NVIDIA regarding third-party

products or services does not constitute a license from NVIDIA to use such products or services or a warranty

or endorsement thereof. Use of such information may require a license from a third party under the patents

or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other

intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if

reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all

associated conditions, limitations, and notices.

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER

DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO

WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND

EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR

A PARTICULAR PURPOSE. Notwithstanding any damages that customer might incur for any reason whatsoever,

NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall be limited

in accordance with the NVIDIA terms and conditions of sale for the product.

Trademarks

NVIDIA, the NVIDIA logo, and CUDA are trademarks and/or registered trademarks of NVIDIA Corporation in the

U.S. and other countries. Other company and product names may be trademarks of the respective companies

with which they are associated.

Copyright

© 2019-2022 NVIDIA Corporation. All rights reserved.

