
Aerial Omniverse Digital Twin

Table of contents

Aerial Omniverse Digital Twin - User Guide 8

Aerial Omniverse Digital Twin 1

Table of contents

Aerial Omniverse Digital Twin - User Guide

Aerial Omniverse Digital Twin 2

List of Figures
Figure 0. System

Figure 1. Button As Worker

Figure 2. Ov Auth

Figure 3. Install Open Tokyo

Figure 4. Install Add Panel

Figure 5. Install Add Ru

Figure 6. Install Place Ru

Figure 7. Install Edit Ru

Figure 8. Install Add Ue

Figure 9. Button As Mobi

Figure 10. Button As Play

Figure 11. Install Ray Paths

Figure 12. Interface

Figure 13. Ui Configuration

Figure 14. Ui Ant El

Figure 15. Ru

Figure 16. Ue

Figure 17. Layers

Figure 18. Button As Worker

Aerial Omniverse Digital Twin 3

Figure 19. Button As Mobi

Figure 20. Button As Play

Figure 21. Button As Pause

Figure 22. Button As Stop

Figure 23. Button As Refresh

Figure 24. Attach Worker Error Window

Figure 25. Mobi Worker Locked

Figure 26. Mobi Worker Unlocked

Figure 27. Antenna Panel Property Widget

Figure 28. Ue Edit Waypoints Property Widget

Figure 29. Drawing Ue Manual Waypoints

Figure 30. Spawn Zone Bounding Box

Figure 31. Scale Rotate Move Widget

Figure 32. Camera View

Figure 33. Sim Progress Bar

Figure 34. Show Raypaths

Figure 35. Simulate Ran

Figure 36. UE Thr

Figure 37. UE Thr2

Figure 38. UE MCS

Figure 39. Scheduler

Aerial Omniverse Digital Twin 4

Figure 40. Building Edge Data

Figure 41. CFRs Mem Arrangement

Aerial Omniverse Digital Twin 5

List of Tables
Table 0.

Table 1.

Table 2.

Table 3.

Table 4.

Table 5.

Table 6.

Table 7.

Table 8.

Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

Table 18.

Aerial Omniverse Digital Twin 6

Table 19.

Table 20.

Table 21.

Table 22.

Table 23.

Table 24.

Table 25.

Table 26.

Aerial Omniverse Digital Twin 7

Aerial Omniverse Digital Twin - User Guide
Overview
System requirements
Installation
Graphical user interface
Scene importer
RAN digital twin
Appendix

https://docs.nvidia.com/text/user_guide.html
https://docs.nvidia.com/text/user_guide.html#overview
https://docs.nvidia.com/text/user_guide.html#system-requirements
https://docs.nvidia.com/text/user_guide.html#installation
https://docs.nvidia.com/text/user_guide.html#graphical-user-interface
https://docs.nvidia.com/text/user_guide.html#id1
https://docs.nvidia.com/text/user_guide.html#id2
https://docs.nvidia.com/text/user_guide.html#appendix

Aerial Omniverse Digital Twin 8

Aerial Omniverse Digital
Twin - User Guide
Changelog

Revision Date Changes

1.0.0 4/19/2024 First release

Overview

The Aerial Omniverse Digital Twin consists of the following components:

User interface

ClickHouse

Omniverse Nucleus

Scene importer

RAN digital twin interconnected as illustrated in the following figure.

Aerial Omniverse Digital Twin 9

User interface

The graphical interface offers the possibility of visualizing and interacting with the
scenario, as well as parametrizing, starting, interrupting and stopping simulations.

ClickHouse

The results produced by the Aerial Omniverse Digital Twin are stored in an SQL database
hosted by the ClickHouse server. Correspondingly, they can be access through
ClickHouse clients.

Nucleus

The Nucleus server delivers message brokering services and provisions the scene
geometry to the other components. In all cases, the Nucleus server needs to be on a
node whose IP address can be reached by the other components. This requires having
the ports described here open.

Scene importer

The Nucleus server stores and distributes the scene geometry in the OpenUSD format.
The scene importer takes in geospatial data in CityGML format and creates the OpenUSD
assets needed by the Nucleus server to represent a given scene.

RAN digital twin

https://clickhouse.com/
https://docs.omniverse.nvidia.com/nucleus/latest/ports_connectivity.html#enterprise-nucleus-server
https://openusd.org/docs/index.html
https://www.ogc.org/standard/citygml/

Aerial Omniverse Digital Twin 10

The actual radio access network (RAN) digital twin is in charge of

updating the positions of a population of terminals,

scheduling the transmission of data from all of the deployed radio units to all of the
terminals,

computing the channel frequency response for all of the links - where a link is here
intended as a wireless connection between two antenna elements - described in the
scene under investigation,

generating the waveforms at the transmission point of every link,

applying the calculated frequency response, interference and noise to said
waveforms, thus creating the final signal observed at the reception point of every
link,

applying the necessary signal processing to extract and decode the transmitted
data.

System Requirements

Aerial Omniverse Digital Twin (AODT) can be installed in the cloud or on-prem. The
installation and operation of AODT involves deploying a set of frontend components and
a set of backend components. The frontend components require one NVIDIA GPU, and
the backend components require another NVIDIA GPU. The frontend components and
backend components can be deployed to either the same node (i.e., colocated) or to
separate nodes (i.e. multi-node). The following table details the GPU requirements for
each case:

System Type
GPU
Qnty

GPU
Driver

GPU
vRAM

GPU
Requirement

GPU Notes

Frontend alone 1 r535+ 12GB+ GTX/RTX
e.g. RTX 6000 Ada, A10,
L40

Backend alone 1 r535+ 48GB+
e.g. RTX 6000 Ada,
A100, H100, L40

Frontend and
backend colocated

2 r535+
see
note

see note
1x frontend-capable
GPU, 1x backend GPU

The following table describes the OS support for each type:

Aerial Omniverse Digital Twin 11

System Type OS

Frontend alone Windows 11, Windows Server 2022, Ubuntu 22.04

Backend alone Ubuntu 22.04

Frontend and backend colocated Ubuntu 22.04

For memory and CPU requirements, we recommend looking at the qualified systems in
the next section.

Installation

The AODT Installer is a way to get up and running quickly with fresh installations on
qualified systems, both in the cloud and on-prem. There are several components that
must be installed and configured in order for a deployed system to run AODT. This
section will detail how to use the AODT Installer on each of the qualified system
configurations. Following those instructions will be more general guidelines to help with
installations for other system configurations.

Qualified deployment targets

The following qualified systems have been tested and are directly supported with the
AODT Installer:

Qualified system Node 1 Node 2

Azure VM (Multi-
Node)

Frontend Node
Standard_NV36ads_A10_v5
Windows Server 2022
Omniverse Enterprise Virutal
Workstation - version 1.0 - x64 Gen 2
NVIDIA A10 GPU
36 vcpus
Memory 440GB

Backend Node
Standard_NC24a
ds_A100_v4
Ubuntu Server
22.04
NVIDIA A100
GPU
24 vcpus
Memory 220GB

Dell R750 (Coloc
ated)

Colocated
Ubuntu 22.04 - Server
Intel Xeon Gold 6336Y 2.4G, 24C/48T
PCIe Gen4
2x NVIDIA RTX 6000 Ada GPU

N/A

Aerial Omniverse Digital Twin 12

Memory 512GB DDR4
Storage 2TB

Note that Azure installations on A10 VMs require NVIDIA GRID drivers.

Azure deployment

The Aerial Omniverse Digital Twin (AODT) can be installed on Microsoft Azure using the
Azure Installer. The Azure Installer in turn can be downloaded from NGC - Aerial
Omniverse DT Installer using version tag 1.0.0 .

Specifically, we will first download the files from the Azure folder into a local directory. In
that directory, we will create a file called .secrets and define the following environment
variables:

Variable Description

RESOURCEG
ROUP

Microsoft Azure Resource Group

SSH_KEY_NA
ME

Name of SSH key stored in Microsoft Azure

WINDOWS_P
ASSWORD

Password length must be between 12 and 72 characters and satisfy 3 of
the following conditions: 1 lower case character, 1 upper case character,
1 number and 1 special character

LOCAL_IP
IP address (as seen by Azure) of the host that will run the provisioning
scripts

GUI_OS Windows

NGC_CLI_API
_KEY

NGC API KEY

More information on NGC_CLI_API_KEY can be found here: NGC - User’s Guide.

Also, if necessary, the following command can be used to find the external IP address of
the local machine.

RESOURCEGROUP= WINDOWS_PASSWORD= SSH_KEY_NAME= LOCAL_IP= GUI_OS=
NGC_CLI_API_KEY=

https://registry.ngc.nvidia.com/orgs/esee5uzbruax/resources/aodt-installer/files?version=1.0.0
https://registry.ngc.nvidia.com/orgs/esee5uzbruax/resources/aodt-installer/files?version=1.0.0
https://docs.nvidia.com/ngc/gpu-cloud/ngc-catalog-user-guide/index.html#generating-api-key

Aerial Omniverse Digital Twin 13

Once the variables above are configured, we can use the mcr.microsoft.com/azure-cli
docker image to run the provisioning scripts.

The docker container will mounts the downloaded scripts, and it will access to the private
SSH key. In the example, the private key can be found in ~/.ssh/azure.pem .

Inside the docker container, we can run the following commands:

and the script will create the VMs, configure the network inbound ports, and download
the scripts needed in the next step.

At the end, azure_install.sh will show:

Logging into the Azure VM

We can use Microsoft Remote Desktop Client to connect to the IP address shown at the
end of azure_install.sh using the configured username and password.

Once successfully logged, we can then

sign into NVIDIA Omniverse and complete the installation of the Omniverse
launcher

open File Explorer, navigate to C:\AerialODT , right click download_installer and
select Run with PowerShell .

curl ifconfig.me

docker run -it --env-file .secrets -v .:/aodt -v ~/.ssh/azure.pem:/root/.ssh/id_rsa
mcr.microsoft.com/azure-cli

$ az login $ cd aodt $ bash azure_install.sh

Use Microsoft Remote Desktop Connection to connect to <ip-address> Username:
aerial Password: <configured password>

Aerial Omniverse Digital Twin 14

When the command is finished, we can open a Command Prompt and type

At the end, the installation script will open a Jupyter notebook in the browser. We can
then click on the Library tab in the Omniverse Launcher Window, and Launch the
Aerial Omnivere Digital Twin graphical user interface.

Dell R750 deployment

For a full deployment on prem, we can select the pre-qualified Dell PowerEdge R750
server. After installing Ubuntu-22.04.3 Server , we can log in using SSH and run the
following commands

Again, more information on NGC_CLI_API_KEY can be found here: NGC - User’s Guide.

Once the aodt_bundle.zip has been downloaded and extracted, we will continue by
running the following command

When the installation is complete, we can use a VNC client to connect to the VNC server
on port 5901. The VNC password is nvidia .

cd c:\AerialODT install_script.bat

sudo apt-get install -y jq unzip export NGC_CLI_API_KEY=<NGC_CLI_API_KEY>
AUTH_URL="https://authn.nvidia.com/token?
service=ngc&scope=group/ngc:esee5uzbruax&group/ngc:esee5uzbruax/"
TOKEN=$(curl -s -u "\$oauthtoken":"$NGC_CLI_API_KEY" -H "Accept:application/json"
"$AUTH_URL" | jq -r '.token') versionTag="1.0.0"
downloadedZip="$HOME/aodt_bundle.zip" curl -L
"https://api.ngc.nvidia.com/v2/org/esee5uzbruax/resources/aodt-
installer/versions/$versionTag/files/aodt_bundle.zip" -H "Authorization:
Bearer$TOKEN" -H "Content-Type: application/json" -o $downloadedZip # Unzip the
downloaded file unzip -o $downloadedZip

./aodt_bundle/install.sh localhost $NGC_CLI_API_KEY

https://docs.nvidia.com/ngc/gpu-cloud/ngc-catalog-user-guide/index.html#generating-api-key

Aerial Omniverse Digital Twin 15

We will then sign into NVIDIA Omniverse and complete the installation in the Omniverse
Launcher as for Azure. As before, a Jupyter notebook will also be opened in the browser.
We can then click on the Library tab in the Omniverse Launcher Window, and Launch
the Aerial Omniverse Digital Twin graphical user interface.

Validation

Once the Aerial Omniverse Digital Twin graphical interface is running, we can click
on the toolbar icon showing the gears and connect to the RAN digital twin.

If asked for credentials, we can use the following:

username: omniverse

password: aerial_123456

Once successfully logged in, we can then select the Content tab (refer to the Graphical
User Interface section for further details) and click Add New Connection. In the dialog
window, we can then

type omniverse-server

Aerial Omniverse Digital Twin 16

click OK

expand the omniverse-server tree view

and double click on omniverse://omniverse-server/Users/aerial/plateau/tokyo.usd

This will open the Tokyo.usd map. Once loaded, we will continue by

selecting the Viewport tab

right clicking on the Stage widget

and selecting Aerial > Create Panel twice from the context menu.

The first panel will be used - by default - for the user equipment UE and the second for
the radio unit (RU).

Aerial Omniverse Digital Twin 17

With the panels defined, we then can

right click in the Viewport

select Aerial > Deploy RU from the context menu

and click on the final location where we would like to place the RU

Aerial Omniverse Digital Twin 18

Aerial Omniverse Digital Twin 19

With the RU is deployed, we will then select it from the Stage widget and enable the
Show Raypaths checkbox from the Property widget.

Aerial Omniverse Digital Twin 20

Similarly, we will

right click on the Viewport

Aerial Omniverse Digital Twin 21

and select Aerial > Deploy UE from the context menu.

Differently from the procedure for the RU, however, this will drop the UE in the location
where the right click took place.

Finally, we can

select the Scenario entry in the Stage widget

set

Duration equal to 10.0

Interval to 0.1

 click the Generate UEs icon in the toolbar

Aerial Omniverse Digital Twin 22

 click the Start UE Mobility icon

This will start a simulation and update the graphical interface as in the figure below.

By clicking on the Play button in the toolbar, we can then inspect the evolution of the
mobility of the UE and the corresponding rays that illustrate how the radiation emitted by
the RU reaches the UE.

Graphical User Interface

The graphical user interface is illustrated in the following figure and is composed of the
following elements.

Aerial Omniverse Digital Twin 23

1. Viewport tab

The viewport displays the geospatial data that make up the scenario and is used to
deploy the radio access network (RAN) nodes or specific user equipment (UE). E.g., the
deployment of a radio unit can be performed by right clicking on a given area of the map
and selecting Aerial > Deploy RU from the context menu. To move the RU, once it has
been selected, we can instead use Aerial > Move RU. Similarly, to manually deploy a UE,
we can use Aerial > Deploy UE. (Procedural deployment of the UEs is illustrated in the
simulation section).

At the top of the viewport, we can also find the settings to change the view type (e.g., top
or perspective) or viewport resolution.

Finally, the color bar provides the gradient describing the power carried by each
individual ray traced by the EM engine, and can be hidden or shown using CTRL+B.

2. Configuration tab

The configuration tab is used to set up the simulation and offers the following fields.

Aerial Omniverse Digital Twin 24

db_host: specifies the IP address of the ClickHouse server.

db_port: indicates the ClickHouse client port. By default, this field is 9000, unless
ClickHouse has been installed with non-standard settings. Once db_host and
db_port are specified, the user can connect to the ClickHouse server using the
Connect button. If the connection is successful, the indicator next to the button will
go from red to green.

db_name: this is the name of the database that will be used to store the results
generated during the simulation.

db_author: this field records the author of the database. By default, it is the user ID.

Aerial Omniverse Digital Twin 25

db_notes: any additional text that the user intends to add to the database. This field
can be left empty.

nucleus_url: the URL for the Omniverse Nucleus server.

nucleus_bc: the name of the Nucleus broadcast channel. This is the channel over
which the graphical interface will search for an available worker to perform the RAN
simulation.

ls_session: the name of the live session. This field can be changed in order to
import or discard a given RAN deployment on the same scene.

ru_url: the URL to the 3D asset used to indicate a radio unit.

ue_url: the URL to the 3D asset used to indicate a UE.

panel_url: the URL to the asset used to express an antenna planar array.

sz_url: the URL to the asset used to indicate zone in which UEs can be procedurally
spawned.

mat_url: the URL pointing to the asset that describes the ITU P.2040 materials used
within the scope of the simulation.

3. Content tab

The content tab can be used to browse the content of the Nucleus server, move/copy
files and open the desired scene.

4. Antenna elements tab

The antenna tab is used while setting up the simulation to specify

the type of antennas that a given antenna panel is composed of

the geometrical and polarimetric properties of said panel.

The fields of the tab are illustrated in the following figure.

Aerial Omniverse Digital Twin 26

panel_asset: this field specifies which panel is being edited through the tab.

antenna_type: when a given antenna site in the panel is selected, it is possible to
change the type of antennas installed at the specific site. This can be done through
the list of antennas found at the Antenna combo box. Once a specific antenna type
is selected, it can be applied using the Apply button. If the action is successful, the
field ant_type under the selected antenna sites is changed to the value indicated in
the Antenna combo box. For a given site, there could be at most two colocated
antennas of different polarization. This can be manipulated through the Dual
Polarized check box in the property widget.

panel_sh: this field represents the uniform horizontal spacing used in the planar
antenna array.

panel_sv: correspondingly, this other field indicates the uniform vertical spacing.

panel_cf: this field is in the property widget, and indicates the center frequency for
which the antenna array has been designed.

panel_nh: the number of elements in a row of the planar antenna array.

panel_vh: the number of elements in a column of the planar antenna array.

Aerial Omniverse Digital Twin 27

panel_erf: this field expresses the roll angle, with respect to the vertical axis, of the
first element in a dual polarized antenna site.

panel_ers: the corresponding roll angle for the second element in a dual polarized
antenna site.

In the tab we also find two plots:

the gain pattern for the azimuthal cut

and the gain pattern for the zenithal cut

which, for the antenna type selected from the Antenna combo box, illustrate the contour
of the radiation solid along the azimuthal and zenithal planes.

Finally, it is worth mentioning that the selection of a given antenna site through the left
click of the mouse is additive, i.e., once a site is selected, a second one can also be added,
and then a third, and so on. A second click on the selected site, will deselect it.
Alternatively, the button Clear Selected can be used in order to remove any selection.

5. Console tab

This tab is used to illustrate all warnings and messages collected during the operation of
the Aerial Omniverse Digital Twin. Warnings are marked in yellow, and errors are marked
in red. Error of consequence for the simulation are also propagated to a dialog box.

6. Stage and property widget

The stage widget shows all the assets deployed in the scene and the property widget is
the interface for setting their attributes:

Environment

This entry in the stage widget can be used to set how the scene looks and feels. It
allows - for instance - to set the time of the day at the simulated location, with direct
consequences on sun illumination.

Looks

This entry, if present, contains the textures used to describe the buildings.

Materials

Aerial Omniverse Digital Twin 28

This entry is used to list the material used across the simulation. Each material is
characterized by a tuple \(\left(a,b,c,d\right)\) of four parameters, so that the relative
permittivity of the material is expressed as

\(\epsilon_r = a f_{\rm{GHz}}^b - j c f_{\rm{GHz}}^d \)

 as described in ITU P.2040.

Panels

This entry collects the antenna arrays used across the simulation. A new type can be
added with a right click on the stage widget area and selecting Aerial > Create
Panel. Once a panel is selected under this entry, we can set:

Antenna Element Type: by pressing the Edit button, we can go to the
Antenna Elements tab and select one of the following antenna types:

isotropic (point source radiating in all directions with the same intensity
and phase).

infinitesimal dipole

half-wave dipole

microstrip patch: reference patch antenna with

\(\epsilon_r=4.8\)

\(L = \dfrac{\lambda}{2 \sqrt{\epsilon_r}}\) (\(\lambda\) being the
wavelength of the carrier)

\(W = 1.5 L\)

user input: this points to the possibility of using

Dual Polarized: this flag indicates whether the panel uses antenna arrays with
dual-polarized elements.

Carrier Frequency: the center frequency at which the antenna in the array
will operate.

https://www.itu.int/rec/R-REC-P.2040-3-202308-I/en

Aerial Omniverse Digital Twin 29

Horizontal Elements (\(N_{hor.}\)): number of elements in a row of the
planar antenna array.

Vertical Elements: (\(N_{vert.}\)): number of elements in a column of the
planar antenna array.

Horizontal Spacing (\(\Delta_{hor.}\)): distance between antenna elements
along each row of the planar antenna array.

Vertical Spacing (\(\Delta_{vert.}\)): distance between antenna elements
along each column of the planar antenna array.

Roll of First Pol. Element: angular displacement of the element realizing the
first polarization (e.g., \(45^\circ\))

Roll of Second Pol. Element: angular displacement of the element realizing
the second polarization (e.g., \(-45^\circ\)). Has an effect only when the array is
composed of dual polarized elements.

runtime

After they have been generated, this entry collects the trajectories along which the
UEs will move during the simulation.

RUs

This entry in the stage widget collects the deployed RUs, which are added to the
scene by right clicking on the viewport area with mouse and selecting Aerial >
Deploy RU. By selecting a given RU in the list, we can set two different sets of
properties:

Aerial Properties

Cell ID: the unique identifier that defines the cell supported by the given
RU.

Panel Type: the specific antenna array for the RU currently selected.

Waveform FFT size: the size of the FFT used in a potential waveform.
This parameter is used when Enable Wideband CFRs or Simulate RAN
are on in Scenario.

Aerial Omniverse Digital Twin 30

Sub-carrier Spacing: parameter indicating the spectral distance between
adjacent sub-carriers in the OFDM waveform used by the RU.

Mechanical Azimuth (\(\phi_b\)): azimuth of the RU boresight (indicated
as \(\hat{b}\) in the figure below).

Mechanical Tilt (\(\theta_b\)): elevation of the RU boresight (indicated
as \(\hat{b}\) in the figure below) with respect to the horizon.

Radiated power: the total radiated power, across the whole antenna
array, for the given RU.

Ray Properties

Show Rays: this flag indicates whether the rays shot from a given RU
needs to be included in the telemetry visualized after the simulation.

Scenario

This entry in the stage widget collects all the simulation parameters that can be
currently set. This includes:

Default UE panel: this is the antenna array associated by default to any UE in
the simulation. As we will see later, this parameter can be overridden locally

Aerial Omniverse Digital Twin 31

for any given UE. This parameter is offered for convenience to
programmatically associate an antenna array type to large populations of UEs.

Default RU panel: same concept as described for the default UE panel, but for
the RU panel.

Enable Temperature Color: this flag indicates whether the rays need to be
colored based on their relative power.

Max dynamic range: the power range in dB that should be considered for the
visualization of the simulations. This range sets the power threshold - from the
strongest ray - under which the graphical interface will omit the visualization of
rays.

of emitted rays (in thousands): this is the number of emitted rays at a
given RU, since the rays are all traced from the RUs.

of scene interactions per ray: the total number of admissible scattering
events along any of the traced rays.

Max # of Shown Paths per RU-UE pair: this field sets the number of
visualized rays per RU-UE pair.

Ray sparsity: whereas the RAN digital twin calculates the rays for all temporal
samples, this field allows to only propagate a fraction of such rays to the
graphical interface. This is convenient when running long simulations, which
would require the transfer of substantial amount of data towards the
graphical interface host, which will have to keep the data in RAM. E.g., a Ray
sparsity factor of 10 means that the graphical interface will only request the
rays once every 10 samples.

Batches: the number of UE redrop events during the simulation. This
parameter is useful when training neural networks: in lack of aggressive
parametrization of the Interval field described below, the evolution of the UEs
movement is smooth and gradual. Correspondingly, the statistics of the
channel does not change appreciable if not across many samples. Thanks to
this parameter, it is possible to accelerate the convergence of the training
process by means of UE redropping, which occur for every batch.

Enabled Wideband CFRs: this flag indicates whether channel frequency
responses are also going to be generated.

Aerial Omniverse Digital Twin 32

Number of UEs: this indicates how many UEs will be present during the
simulation. Currently limited to a maximum of 2000.

UE Height: this is the default UE height, which will be applied to all UEs in the
scene.

UE Max speed: the maximum speed of the UEs in the simulation.

UE Min speed: the minimum speed of the UEs during the simulation. The
actual speed of given UE will be picked from a uniform distribution going from
UE Min speed to UE Max speed.

Seeded mobility: indicates whether the random number generators involved
in the creation of UE mobility are seeded or not.

Seed: in case the previous parameter is set to true, this indicates the seed for
the random number generators.

Enable training: this flag indicates whether we want to train a neural network
while running our simulation. This is currently only supported when the RAN is
not being simulated.

Simulate RAN: enables the possibility of simulating the behavior of the
deployed RUs by adding a physical layer and a medium access control layer to
both RUs and UEs.

Simulation mode: when Simulate RAN is disabled, this field allows to choose
between two different ways of specifying the simulation timeline. In Slots
mode, the simulation timeline is described by the number of slots per batch
and the number of realizations of the channel per slot (Samples per slot).
Differently, in Duration mode, the timeline is described by a total temporal
length of simulation (Duration) and the sampling period across said duration
is set by Interval. If Simulate RAN is enabled, only Slot mode is possible.

Slots per batch: number of slots to simulate for every batch in the simulation.
The total number of batches in the simulation is specified in Batches.

Samples per slot: number of samples to consider in a given slot. This field can
either be 1 or 14, indicating whether or not the simulation should account for
the Doppler effect.

Aerial Omniverse Digital Twin 33

Duration: this number represents the amount of simulated time for which we
would like to generate realizations of the radio environment.

Interval: this parameter indicates the sampling period with which the radio
environment is to be sampled.

UEs

Once a UE is deployed, using either the viewport context menu (Aerial > Deploy UE)
or the programmatic approach described next, the UE will be found under the
scope of this entry. By selecting a given UE, we can configure two different sets of
properties:

Aerial Properties:

User ID: the unique identifier that distinguishes a given UE from the
others.

Panel Type: the specific antenna array for the UE currently selected.

Mechanical Tilt (\(\theta_b\)): elevation of the UE boresight (indicated
as \(\hat{b}\) in the figure below) with respect to the horizon.

Radiated power: the total radiated power, across the whole antenna
array, for the given UE.

Manually created: this flag indicates whether UE has been positioned
directly by the user, or it has been generated procedurally by the
software.

Ray Properties:

Show Rays from: this field indicate the list of the RUs whose rays will be
included in the UE-specific telemetry visualized after the simulation.

Aerial Omniverse Digital Twin 34

World

This entry contains the geometry describing the scene.

7. Layer widget

The layer widget provides an alternative visualization of how the scene is composed and
tracks the changes introduced in the live session from the USD file as saved on disk.
These changes are collected in the authoring layer, which is marked in green. The figure
below illustrates the concept.

Aerial Omniverse Digital Twin 35

Any entry with a \(\Delta\) superimposed indicates that the assets in the and the
attributes in the live session are different from what USD file contains. In general, the
layer widget is where we want to reset the scene to its initial state by deleting the
introduced deltas using the context menu.

8. Live session widget

The function of the live session widget is to synchronize the graphical interface and the
RAN digital twin through NVIDIA’s Live Sync technology.

Any update added to the scene from the graphical interface side needs to occur while the
live session is active. This ensures that any change is propagated to the RAN digital twin.

9. Timeline widget

The timeline widget allows the user to manually move across the simulation once the EM
solver has calculated the radio frequency (RF) environment. This can be accomplished
moving the blue marker across the timeline.

The numbers on the timeline correspond to frames. The total number of frames is given
by the duration of the simulation divided by the interval separating different samples
specified in the Scenario entry of the stage widget. The total is updated every time that
the Generate UEs button described above is pressed.

10. Toolbar

Aerial Omniverse Digital Twin 36

The standard buttons of the toolbar are documented here. The buttons specific to the
Aerial Omniverse Digital Twin instead are:

 Attach worker

After the scene is ready for simulation, i.e.,

the RUs and the manual UEs have been deployed

the antenna arrays have been created

and the Scenario entry in the stage widget has been configured with the desired
parameters,

we can use this button to search for an available RAN digital twin worker to carry out the
simulation.

 Generate UEs

The first step of the simulation process is the generation of the non-manual UEs and of
the routes of all UEs. This can be accomplished using this button. The resulting routes can
be inspected under the runtime entry in the stage widget, and the play button from the
standard toolbar can be used to see how the UEs move along the generated trajectories.

 Start UE mobility

After the trajectories of the UEs have been generated, this button can be used to start the
simulation on the RAN digital twin side.

 Pause UE mobility

This button is provided to pause the simulation.

 Stop UE mobility

Similarly this button is provided to stop the simulation.

https://docs.omniverse.nvidia.com/app_create/common/tool-bar.html

Aerial Omniverse Digital Twin 37

 Telemetry refresh

After a simulation is complete, the RAN digital twin saves all telemetry in the ClickHouse
database specified in the configuration tab. The graphical interface subsequently read
such telemetry and visualized it at the press of the play button in the standard Omniverse
toolbar. For RAN simulations, this includes the instantaneous throughput of every UE and
its allocated modulation and coding scheme. This telemetry can be observed by selecting
one of the UEs under the corresponding entry in the stage widget. However, the rays
arriving at a given UE from any selected RU will not show unless the Ray Properties in
the property widget of the given RU or UE were set before the simulation began. If not,
these rays can be added to the visualized telemetry by setting the Ray Properties after
the simulation and refreshing the telemetry. This will ensure that the rays are now visible.

Scene importer

The Aerial Omniverse Digital Twin builds on NVIDIA Omniverse. As such, it requires to
have the geometry of the scenario under investigation in OpenUSD format. Geospatial
information, however, is often available and distributed in other formats. To bridge the
gap, the Aerial Omniverse Digital Twin comes with a pipeline to import geospatial data in
CityGML format.

Basic Usage

The parameters of the scene importer pipeline are:

Parameter Required Description

--output Yes
This argument specifies the URL where the USD scene needs to
be saved.

--logging N o Set logging verbosity between ```[info

--epsg_in
--epsg_out
--utm

N o

If set, the pipeline will perform a conversion between input and
output coordinate reference systems, as defined by their EPSG
codes. Currently, only the transform from geographic
coordinate systems (angular units) to projected coordinate
systems (linear units) is supported. For example, a transform
from EPSG:6697 to EPSG:32654 would be expressed as
--epsg_in EPSG:6697 --epsg_out EPSG:32654 . In lieu of
--epsg_out , a UTM zone is also accepted (e.g. --utm 54).

https://openusd.org/docs/index.html
https://www.ogc.org/standard/citygml/
https://spatialreference.org/ref/epsg/

Aerial Omniverse Digital Twin 38

--scaling N o

A scaling factor may be necessary if the target EPSG is in units
other than meters. This argument can be used to specify the
number of centimeters contained in the unit of measurement
used in the geospatial data. E.g., 100 for meters (default) and
30.48 for feet.

--textures N o

If present, colocated with the input files and referenced therein,
the textures will be copied to the destination specified by
--output . We can use --textures 0 to ensure that this does not

occur.

--
textures_o
ut_prefix

No Explicitly set the texture directory.

--flatten N o

If a digital elevation data (DEM) is available, it may be included in
the input files argument. If a DEM is not available, all buildings
may be adjusted to a flat ground plane using the --flatten
argument.

--
adjust_hei
ght_thresh
old

No

Depending on the data source, there may be a discrepancy
between a CityGML building bldg:measuredHeight and its
rendered height. Where this is a cause for concern and better
geospatial data cannot be obtained, --adjust_height_threshold
can be used to ensure that the building footprints are extruded
to bld:measuredHeight .

--
mobility_s
cale

N o

This flag defines the maximum size that an edge is allowed to
have in the mobility domain mesh generated by the pipeline
(default = 400 in target units of measurements, i.e.,
centimeters). In large scenes, this may be used to improve
performance. A warning will be generated in those cases where
there are excessive triangles in the resulting mobility mesh.

Example - PLATEAU

Using the PLATEAU open data as reference, a small model of Tokyo can be built as
follows.

First, we can run the aodt_gis container using the following command

https://www.mlit.go.jp/plateau/open-data/

Aerial Omniverse Digital Twin 39

Once inside the container, we can run a script to download the CityGML bundle
describing Tokyo using the following commands

Next, we will copy template.usd Users/<User>/assets to a target folder on the Nucleus
server, e.g., Users/<User>/plateau and rename the file to sample.usd . This can be
done either with Omniverse launcher or using the Content tab in the Aerial Omniverse
Digital Twin user interface.

With the source data and target USD URL identified, we can then run

which will take the 4 tiles described by each GML file and merge them into
Users/<User>/plateau/sample.usd. The parameters

indicate that we are projecting from the source coordinate reference system (EPSG 6697)
to the UTM (Universal Transverse Mercator) zone 54N.

docker run -it --name aodt-gis --entrypoint /bin/bash nvcr.io/esee5uzbruax/aodt-
gis:1.0.0

cd src/aodt_gis/samples/input_data ./get_tokyo.sh

./aodt_gis \ ../samples/input_data/13100_tokyo23-
ku_2022_citygml_1_2_op/udx/bldg/53393599_bldg_6697_2_op.gml
../samples/input_data/13100_tokyo23-
ku_2022_citygml_1_2_op/udx/bldg/53393690_bldg_6697_2_op.gml
../samples/input_data/13100_tokyo23-
ku_2022_citygml_1_2_op/udx/bldg/53393589_bldg_6697_2_op.gml
../samples/input_data/13100_tokyo23-
ku_2022_citygml_1_2_op/udx/bldg/53393680_bldg_6697_2_op.gml --output
omniverse://<Nucleus Server IP>/Users/<User>/plateau/sample.usd --epsg_in
EPSG:6697 --epsg_out EPSG:32654

--epsg_in EPSG:6697 --epsg_out EPSG:32654

Aerial Omniverse Digital Twin 40

Unless otherwise configured, textures will be moved to the destination folder where the
generated USD file resides.

RAN Digital Twin

The following sections describe how to run simulations in three different modes - EM,
RAN, and ML training.

EM Simulation

The EM simulation mode simulates the electromagnetic propagation between
transmitters and receivers and does not include the transfer of information from RAN to
UEs or vice versa.

Attaching a worker from the UI

As discussed in the previous sections, the Aerial Omniverse Digital Twin consists of five
subcomponents:

the graphical user interface

Nucleus

ClickHouse

the scene importer

and the RAN digital twin,

where the Nucleus server is the element that allows all the others to interact with one
another.

Our entry point to running simulations is the graphical user interface. After opening the
graphical interface, we can navigate to the Configuration tab to attach to an instance of
the RAN digital twin, here referred to also as a worker.

Once in the Configuration tab, we shall enter the DB host, DB port for the ClickHouse
server and press the Connect button. If the server is reached successfully, the indicator
next to the Connect button will go from red to green. Continuing, we can then add a DB
name, and optionally a DB author. DB notes can be left empty or can be used to

Aerial Omniverse Digital Twin 41

describe key characteristics of the simulation which can help us to retrieve at a later
point. We can disconnect from the DB at any time by clicking the Disconnect button.

Next, we can enter the Nucleus server URL, e.g.
omniverse://<Nucleus IP or hostname> , and the desired live Session Name. The

Broadcast Channel Name is an optional parameter to additionally isolate multiple
workers running on the same node. By default, Broadcast Channel Name is simply
broadcast . Finally, we can specify the URLs of the Assets installed on the selected

Nucleus server during installation.

After these steps, we are ready to click on the Attach worker button from the toolbar,
which is the icon represented by a set of gears. If there is a problem with the installation
and the graphical user interface is not able to communicate with the worker, an error
window will pop up.

Differently, if the worker attaches successfully, the gear icon will turn green as shown
below. To detach the worker, we can click the gear icon again and confirm we want to
detach the work. The icon will turn gray again.

It is worth mentioning that it is not necessary to explicitly connect to the database each
time since attaching the worker will also connect to the database. Of course, the DB host
and DB port need to be valid for this to happen.

Aerial Omniverse Digital Twin 42

After attaching the worker, we are ready to open a scene. We can do so by going to File >
Open and selecting a scene, e.g. tokyo.usd , from the Nucleus server. Alternatively, we
can use the Content tab and double click on the file we want to open.

After the UI and the worker both open the scene, we will see a 3D map in the viewport,
and the Live session icon in the top right will turn green, indicating that the live session is
active.

Adding antenna panels

Next, we need to create the antenna panels that the RUs and UEs will use.

First, we can create a new antenna array by right clicking on the Stage widget and
selecting the Aerial > Create Panel entry from the context menu. The new panel can be
found in the Stage widget under the Panels entry. By selecting the new panel, we can
inspect its properties and change using the Antenna Elements tab and the Property
widget as illustrated in the figure below.

Custom antenna patterns

In release 1.0, the Aerial Omniverse Digital Twin supports the possibility of importing and
using a custom antenna pattern. An example of the format in which the pattern needs to
be specified can be found in

/aodt/aodt_sim/antennas/infinitesimal_dipole.csv

Aerial Omniverse Digital Twin 43

in the aodt_sim container.

To use a custom antenna file, e.g., user_antenna_pattern.csv , the current process is as
follows:

1. Access the host where the aodt_sim container is running or will run

2.

3. Edit docker-compose.yml and set

4. Bring the container up again

Deploying RUs

To deploy new radio units (RUs), it is sufficient to right click on the map with the mouse
and select Aerial > Deploy RU. This will create a movable asset which follows the mouse.
Once the location of the RU is found, we can click to confirm the position of the RU. The
RU can be later moved by selecting it, right clicking on it and using Aerial > Move RU
from the context menu.

After a given RU is in the intended position, its attributes can be modified using the
property widget. Most importantly we need to associate a Panel Type is the field is
empty.

Deploying UEs

The UEs can be deployed in two ways - procedurally or manually. To deploy manually, we
can navigate to the viewport and right click on the position where we would like the UE to
be located. Selecting Aerial > Deploy UE from the context menu will create a capsule in

cd $HOME/backend_bundle docker-compose down vi docker-compose.yml

services: connector: [...] command: ./aodt_sim --nucleus
omniverse://omniverse-server --broadcast broadcast --log debug --antenna-
pattern-path /aodt_sim/antennas/user_antenna_pattern.csv [...] volumes: -
./aodt_sim/antennas:/aodt/aodt_sim/antennas [...]

docker-compose up -d

Aerial Omniverse Digital Twin 44

the desired location. The corresponding entry in the UEs group of the stage widget will
have the Manually Created flag active.

For a manually created UE, we can also specify its mobility path by clicking on the Edit
Waypoints button in the UE property widget. Then, in the viewport we can draw a
polyline defining the intended trajectory of the UE across the map.

This approach is typically sufficient to simulate small scenarios, where the number of UEs
is limited. For larger populations of UEs, we can procedurally generate a set of UEs by
changing the parameter Number of UEs in the Scenario entry of the Stage widget.
Pressing the Generate UEs button in the toolbar, when the worker is attached, will
procedurally create enough UEs, so that the total number of UEs the one specified in
Scenario.

We can constrain where the procedural UEs are generated and can move by creating a
Spawn Zone, i.e., by right clicking in the viewport and selecting Aerial > Deploy Spawn
Zone. This will create the bounding box show in the figure.

Aerial Omniverse Digital Twin 45

We can adjust the size and position of the bounding box using the Move, Rotate, and
Scale buttons in the toolbar. More in detail, after selecting one of such actions, we can
drag the red/blue/green arrows and rectangles show in the figure to execute the desired
transformation.

Aerial Omniverse Digital Twin 46

It is important that bounding box intersects with the ground of the stage. Otherwise, the
procedural UEs will not be dropped in the spawn zone. For this reason, we might want to
modify the spawn zone bounding box from the top view, instead of perspective view (the
view can be changed from the Camera view widget at the top of the viewport).

If there is no spawn zone or if the spawn zone bounding box is too small, then procedural
UEs will be dropped in a random position in the stage.

Procedural and manual UEs can be mixed for a given deployment, and manual UEs are
not moved at every press of the Generate UEs button.

Changing the scattering properties of the environment

The proper association of materials to the scene geometry plays a key role in producing a
realistic representation of the radio environment. Currently, materials can be assigned to
each building and to the terrain as a whole. To do so,

we can select the building we want to edit using either the stage view or the
viewport and then proceed to alter the field Building Material from the property
widget;

similarly, for the terrain, we can select the ground_plane asset in the stage view
and then modify the Ground Plane Material field from the property widget.

For the buildings, it is also possible to batch assign a given material to the whole map by
selecting World/buildings in the stage widget.

Aerial Omniverse Digital Twin 47

With a similar procedure and interface, we can also assign two other important
properties:

Enable RF: this flag indicates whether the mesh or meshes representing

one building,

all of the buildings

or the terrain

can interact with the electromagnetic field. If this flag is not enabled the
electromagnetic field will not be able to interact with the geometry of the selected
asset;

Enable Diffusion: this option in turn specifies whether the mesh or meshes - again
representing

one building

all of the buildings

or the terrain

can interact with the electromagnetic field in a diffuse fashion, i.e., whether the
surface of such meshes can produce non-specular reflections.

Running simulations

Before running the simulation, it is important to check that all of the parameters in the
Scenario property widget are aligned with our intentions that Enable Training and
Simulate RAN are unchecked.

As mentioned in the previous section, the duration and the sampling period of the
simulation is determined by the Simulation Mode in Scenario. The user is given two
options: duration and interval, or slot and symbol per slot.

Simulation Mode: Duration requires to set

Batches,

Duration,

Aerial Omniverse Digital Twin 48

Interval

Simulation Mode: Slots instead requires

Batches,

Slots Per Batch,

Samples Per Slot.

Refer to the Graphical User Interface section describing the Scenario stage widget for
more details on these and other parameters.

Now, we can generate the UEs and the trajectories that they will follow during the
simulation using the Generate UEs button. The trajectories appear in the viewport
widget as polylines in white on the ground plane, and in the Stage widget as entries of the
runtime scope. Once the UE and their trajectories are available, we can start the
simulation by pressing the Start UE mobility button in the toolbar.

While running, the simulation can be paused and stopped using the Pause UE mobility
and the Stop UE mobility buttons of the toolbar. While the simulation is paused, the
Generate UEs button can be pressed but it will not generate a new set of trajectories. In
order to so, the simulation will have to be stopped first using the Stop UE mobility
button. The progress of the simulation is shown in the progress bar.

Viewing simulation results

When the simulation is complete, press the Play button on the toolbar or move the blue
indicator in the Timeline widget to a specific frame of interest. To stop the replay, we can
click the Stop button.

The visualization of the rays can be turned on or off for each RU-UE pair by selecting the
UE ahead of the simulation and using the Property widget as illustrated in the figure.

Aerial Omniverse Digital Twin 49

If a given RU is not selected before the simulation was launched, and we are interested in
seeing the rays from that RU, we can use the Refresh telemetry button.

Radio environment

The radio environment results stored in the database are for the RU to UE direction, i.e.,
for downlink. Specifically, if we take

the total transmitted power \(P^{\left(RU\right)}\) at RU,

the number of polarizations used at RU per transmitting antenna site \
(N^{\left(RU\right)}_{pol.}\)

the number of horizontal sites used at the RU \(N^{\left(RU\right)}_{hor.}\)

the number of horizontal sites used at the RU \(N^{\left(RU\right)}_{vert.}\)

the number of FFT points \(n\)

the channel frequency response per link \(\mathbf{H}_{i,j}^{\left(UE\right)}\left(k
\right)\) observed at the UE for a given subcarrier \(k\), across the link from the \(i\)-
transmitter antenna to the \(j\)-th receiver antenna

the channel frequency response per link \(\mathbf{H}_{i,j}^{\left(ch\right)}\left(k
\right)\) observed at the UE for a given subcarrier \(k\), across the link from the \(i\)-
transmitter antenna to the \(j\)-th receiver antenna when each subcarrier is
allocated unitary power at transmission

the results are such that

\(\left<\mathbf{H}_{i,j}^{\left(UE\right)}, \mathbf{H}_{i,j}^{\left(UE\right)} \right> =
\dfrac{P^{\left(RU\right)}}{n \cdot N^{\left(RU\right)}_{pol.} \cdot N^{\left(RU\right)}_{hor.}
\cdot N^{\left(RU\right)}_{vert.}} \left<\mathbf{H}_{i,j}^{\left(ch\right)},
\mathbf{H}_{i,j}^{\left(ch\right)} \right>. \) The set of \(\left\
{\mathbf{H}_{i,j}^{\left(UE\right)}\left(k \right)\right\}_{i,j,k}\) is stored in the cfrs table
discussed in the next section.

If we define \(\mathbf{h}_{i,j}^{\left(UE\right)} = \dfrac{{\rm{iFFT}}_n \left[\mathbf{H}_{i,j}
^ {\left(UE \right)}\right]}{\sqrt{n}} \) and the geometrically calculated channel impulse
response as \(h^{UE}_{i,j} \left(t\right) = \sum_w h^{\left(w \right)}_{i,j} \delta\left(t -
\tau^{\left(w \right)}_{i,j} \right) \) we also have \(\left<h^{UE}_{i,j}, h^{UE}_{i,j}\right> =
\left<\mathbf{h}_{i,j}^{\left(wb\right)}, \mathbf{h}_{i,j}^{\left(wb\right)}\right> \) where the

Aerial Omniverse Digital Twin 50

set of \(\left\{h_{i,j}^{\left(UE\right)}\right\}_{i,j}\) is stored in the raypaths table discussed
in the upcoming section.

Finally, if we are interested in calculating the channel frequency response in uplink, we
can do so by imposing \(\left<\mathbf{H}_{i,j}^{\left(RU\right)},
\mathbf{H}_{i,j}^{\left(RU\right)} \right>_{UL} = \dfrac{P^{\left(UE\right)}}
{N^{\left(UE\right)}_{pol.} \cdot N^{\left(UE\right)}_{hor.} \cdot N^{\left(UE\right)}_{vert.}}
\cdot \dfrac{N^{\left(RU\right)}_{pol.} \cdot N^{\left(RU\right)}_{hor.} \cdot
N^{\left(RU\right)}_{vert.}}{P^{\left(RU\right)}} \left<\mathbf{H}_{i,j}^{\left(UE\right)},
\mathbf{H}_{i,j}^{\left(UE\right)} \right>_{DL}. \)

RAN simulation

The RAN simulation mode builds on top of the EM mode and adds key elements of the
physical (PHY) and medium access control (MAC) layers. To enable the simulation of the
RAN, we can select the Scenario entry under the Stage widget and enable the
Simulate RAN checkbox, as shown in the figure below. This will restrict the Simulation

mode field in Scenario to Slots.

We can then define the number of batches, number of slots per batch and samples per
slot as in EM mode. Specifically,

when Samples Per Slot is set to 1, a single front-loaded realization of the channel
will be used across the whole slot

whereas when Samples Per Slot is set to 14, every OFDM symbol will be convolved
with a different channel realization.

RAN Parameters

The RAN parameters are stored in

/aodt/aodt_sim/src_be/components/common/config_ran.json

Aerial Omniverse Digital Twin 51

where the following parameters can be changed

Meaning Default value

gNB noise figure Noise figure of RU power amplifier 0.5 dB

UE noise figure Noise figure of UE power amplifier 0.5 dB

DL HARQ enabled Enables DL HARQ 0

UL HARQ enabled Enables UL HARQ 0

TDD patterns
Supported TDD patterns, additional
patterns can be added

1: DDDDUUDDDD
2: DDDDDDDDDD
3: UUUUUUUUUU

Simulation pattern Specifies the TDD pattern for simulation
2 (i.e.,
DDDDDDDDDD)

Max scheduled UEs
per TTI - dl

Maximum number of UEs per TTI per cell for
DL

6 (max: 6)

Max scheduled UEs
per TTI - ul

Maximum number of UEs per TTI per cell for
UL

6 (max: 6)

Simulation

After the parameters described in config_ran.json are set, we can run the simulation
using the same sequence of as for the EM mode. The results are then propagated to

the graphical interface, where we can visualize instantaneous throughput and
modulation coding scheme (MCS) for each UE

the local console, where detailed scheduling information (e.g., PRB allocations and
number of layers) are printed slot-by-slot

the selected ClickHouse database, where the full telemetry will be stored.

Graphical user interface

After the simulation is complete, we can select a specific UE under in the Stage widget
and press the play button from the toolbar. In the Property widget, we will see the time
series of the instantaneous throughput and the MCS allocated to the UE, for both
downlink and uplink, as in the figure below.

Aerial Omniverse Digital Twin 52

Additionally, we can observe the instantaneous throughput of the UE directly above their
representation in the viewport, as shown below.

Aerial Omniverse Digital Twin 53

The MCS allocated by the MAC scheduler in serving a given UE can also be found right
below the instantaneous throughput.

Aerial Omniverse Digital Twin 54

Local console

If accessible, additional details can be observed in the console where the RAN digital twin
is running. At the end of each slot, a table is printed listing all scheduled UEs, PRB
allocations (start PRB index and number of allocated PRBs), MCS, number of layers,
redundancy version in presence of HARQ, pre-equalization SINR, post-equalization SINR,
and CRC results, with 0 denoting a successful decoding.

Aerial Omniverse Digital Twin 55

ClickHouse database

Comprehensive telemetry data is available in the telemetry table of the database used
for the simulation. For instance,

where the meaning of each column is explained in the Database schemas.

MAC Scheduling

== results
== cell idx grp idx rnti
startPrb nPrb MCS layer RV sinrPreEq sinrPostEq CRC 0 0 94 176 80 4 2 0 5.67 4.16 0
0 1 95 4 36 0 2 0 -3.94 -2.43 0 0 2 155 40 40 3 2 0 1.47 1.10 0 0 3 175 80 96 27 1 0
34.94 40.00 0 0 4 192 256 16 1 1 0 -6.14 -1.21 0 0 5 193 0 4 26 2 0 36.21 26.23
9860658 1 6 28 200 16 15 1 0 10.12 16.60 0 1 7 58 216 56 10 1 0 3.95 10.01 0 1 8 89
0 80 24 1 0 12.64 22.68 7891203 1 9 92 80 12 27 1 0 35.69 40.00 0 1 10 178 148 52
12 1 0 6.74 11.62 0 1 11 184 92 56 7 1 0 2.02 7.28 0 2 12 34 244 28 27 1 0 34.56
39.19 0 2 13 47 124 48 15 1 0 6.36 15.37 0 2 14 60 16 92 16 1 0 5.22 15.24 0 2 15 68
172 72 9 1 0 3.41 9.45 0 2 16 194 0 16 11 1 0 3.72 10.74 0 2 17 199 108 16 3 2 0 9.68
4.18 0 3 18 23 200 8 27 1 0 31.78 37.85 0 3 19 56 208 28 20 1 0 14.68 19.20 0 3 20 57
0 60 3 1 0 -0.52 5.20 0 3 21 62 60 140 27 1 0 33.20 37.99 0 3 22 160 260 12 15 1 0
14.91 20.29 0 3 23 187 236 24 27 1 0 36.80 39.92 0
==

clickhouse-client aerial :) select * from aerial_2024_4_16_14_28_33.telemetry SELECT
* FROM aerial_2024_4_16_14_28_33.telemetry Query id: e463ec6a-4e11-4197-88e0-
8762a630181d

batch_id slot_id link ru_id ue_id startPrb nPrb mcs layers
 0 0 UL 0 46 28 132 0 1 372 0 1 30000 0 0 UL 0 49
 0 28 0 1 80 0 1 30000 0 0 UL 0 53 160 24 0 2 141
 0 1 30000 0 0 UL 0 94 184 88 0 2 497 0 0 30000 0
 0 UL 1 124 0 272 0 1 769 0 1 30000 0 1 UL 1 124

0 272 9 1 7813 0 1 30000 0 1 UL 2 34 0 272 0 1 769
 0 1 30000 0 1 UL 3 23 20 252 0 1 705 0 1 30000 ...

Aerial Omniverse Digital Twin 56

The MAC scheduling tasks are performed by cuMAC, with full support for both UL and DL,
HARQ and single-cell as well multi-cell jointly scheduling. The data flow for the scheduling
process is illustrated in the following figure.

In each time slot, after the required input data gets passed to cuMAC, the following
scheduler functions are executed serially on GPU:

UE selection: UE down-selection using the SINR reported reported by the PHY layer,

PRB allocation: PRB allocation for the selected UEs using the CFRs from the EM
engine

Layer selection: layer selection for each selected UE

MCS selection: MCS selection for each of the selected UEs using the SINR reported
from the PHY. An outer-loop link adaptation is employed to add a positive/negative
offset to the reported SINR. The offset is tuned by the ACK/NACK result of the last
scheduled transmission for the given UE.

ML training

The Aerial Omniverse Digital Twin can be used to generate site-specific data to train
machine learning models. After running a simulation, we can import simulation data from
the ClickHouse database to train a model offline. More details of the data saved for a
simulation is available in the appendix of this guide.

In order to speed up development workflows, the Aerial Omniverse Digital Twin can also
be used to train models online, while the simulation is evolving. This is achieved by

Aerial Omniverse Digital Twin 57

exposing Python bindings from the aodt_sim application. For each simulation time step,
aodt_sim passes state, including UE position, speed, and channel data from the EM

engine to Python code outside of the application. This allows the user to train a model
using a machine learning framework of choice.

NOTE To avoid slowing down simulations, it is recommended not to use raw loops and
other complicated logic in pure Python, and instead rely on optimized GPU/CPU kernels,
e.g. in PyTorch or NumPy.

Example - training a channel predictor

To illustrate how to perform online training, we can use a minimal example to train a
channel predictor based on the channel frequency responses (CFRs) computed by the EM
engine. In subsequent releases, we will provide more examples to support training
additional PHY/MAC components.

Channel aging is a well-known problem for reciprocal beamforming, especially for UEs
moving with high speed. This is due to the difference between in the radio environment
between when the channel is sounded and when the base station applies the
beamforming weights. One way to address this problem is to use a neural network to
predict the channel when the beamforming weights are planned to be applied.

To train a neural network attempting to predict the channel, we can start by setting the
following parameters in the Scenario stage widget.

Scenario: 5 UEs and 1 RU

Antenna Panels: 2 horizontal, 2 vertical elements, with dual polarization unchecked

Batches: 250

Slots per batch: 6

Sample per slot: 1

UE speed: min and max speeds set to 2.0 m/s

Enable Training: checked

Simulate RAN: unchecked

Aerial Omniverse Digital Twin 58

In this example, the channel predictor treats the channel from each RU and UE antenna
pair independently, so we can optionally add more RUs, UEs, and antenna elements,
resulting in more channels generated per batch.

Our neural network will estimate the channel 5 slots in advance. That is, given the
channel at slot 0, it will predict the channel at slot 5. Thus, we set the slots per batch to 6.
We set the number of batches to 250, which provides a good tradeoff between simulation
time and achieving a reasonable training loss for this example. At each batch, the UEs are
redropped.

Following the steps described in the EM mode, we can click Generate UEs and Start UE
mobility to start the simulation. After the simulation finishes, the training and the
validation losses are retrieved from the training_result table of the database and shown
as part of the properties of Scenario. In the example, such losses are compared to the
loss from a LMMSE filter attempting to perform the same action. Such loss appears in the
graphical interface as baseline loss.

In the next section, we will go into further detail on how to train a more generic model.

Example - training our own model

In this section, we will discuss the Python API to train our own model using the Aerial
Omniverse Digital Twin. As previously mentioned, the API exposes position information
from the UE mobility model and channel information from the EM engine. Thus, it is
possible to train any other model that relies on such data. The following discusses the
minimum set of functions and data structures to consider when training any of such
models.

Specifically, the aodt_sim application makes calls into the Python source code in the
channel_predictor directory via Python bindings. The directory includes the following

files.

Only the Trainer class with member functions scenario and append_cfr in
channel_predictor/trainer.py are required for the aodt_sim Python bindings, and must

|-- aodt_sim |-- channel_predictor | |-- channel_predictor.py | |--
channel_predictor_bindings.cpython-310-x86_64-linux-gnu.so | |-- config.ini | |--
data_source.py | |-- plot_channels.py | |-- torch_utils.py | |-- train.py | |--
trainer.py | `-- weiner_filter.py 1 directory, 10 files

Aerial Omniverse Digital Twin 59

therefore be present in any user-modified Python code. The scenario function is called
once at the beginning of a simulation, and the append_cfr function is called for every
time step of the simulation. The rest of the files are local to the channel predictor
example and do not interface with the aodt_sim application. The reader can refer to the
Python docstrings in those files for further details. The user may substitute them with
their own Python code.

The following data structures are passed between aodt_sim and the Trainer class.

ScenarioInfo

Field Type Comment

slot_symbol_m
ode

bool
True: slot/symbol simulation mode,
False: duration/interval simulation mode

batches
uint3
2

Number of batches defined in Scenario

slots_per_batc
h

uint3
2

Number of slots per batch defined in Scenario

symbols_per_sl
ot

uint3
2

Number of samples per slot defined in Scenario

duration
float3
2

Simulation duration computed based on slots_per_batch and
symbols_per_slot

class Trainer(): """Class that manages training state""" def scenario(self,
scenario_info, ru_ue_info): """Load scenario and initialize torch parameters Args:
scenario_info (ScenarioInfo): Object containing information about the simulation
scenario ru_ue_info (RuUeInfo): Object containing information about RUs and UEs
Returns: int: Return code if status was successful (=0) or not (<0) """ def
append_cfr(self, time_info, ru_assoc_infos, cfrs): """Append channel frequency
response (CFR) Args: time_info (TimeInfo): Simulation time information including
batch/slot/symbol ru_assoc_infos (list(RuAssocInfo)): List of RU to UE association
information cfrs (numpy.ndarray): Numpy array of channel frequency response
Returns: TrainingInfo: Result of training including information about number of
iterations trained for and losses """

Aerial Omniverse Digital Twin 60

interval
float3
2

Interval computed based on slots_per_batch and
symbols_per_slot

ue_min_speed_
mps

float3
2

UE minimum speed in m/s

ue_max_speed
_mps

int32 UE maximum speed in m/s

seeded_mobilit
y

int32 Whether or not to use a seed when randomizing UE mobility

seed int32 Value of the seed to use when randomizing UE mobility

scale
float6
4

Scale factor when converting to the units used in the USD
scene (typically centimeters)

ue_height_m
float3
2

UE height in meters

RuUeInfo

Field Type Comment

num_ues uint32 Number of RUs in simulation

num_rus uint32 Number of UEs in simulation

ue_pol uint32 Number of UE antenna polarizations

ru_pol uint32 Number of RU antenna polarizations

ants_per_ue uint32 Number of antennas per UE

ants_per_ru uint32 Number of antennas per RU

fft_size uint32 Number of frequency samples in channel frequency responses

numerology uint32 Numerology (μ) as defined in 3GPP 38.211

TimeInfo

Field Type Comment

time_id uint32 Current time index of simulation

batch_id uint32 Current batch index of simulation

Aerial Omniverse Digital Twin 61

slot_id uint32 Current slot index of simulation

symbol_id uint32 Current symbol index of simulation

UeInfo

Field Type Comment

ue_index uint32 UE index (starts from 0)

ue_id uint32 User ID as defined in the stage widget

position_x float32 Current UE x position in the stage

position_y float32 Current UE y position in the stage

position_z float32 Current UE z position in the stage

speed_mps float32 Current UE speed in meters per second

RuAssocInfo

Field Type Comment

ru_index uint32 RU index (starts from 0)

ru_id uint32 RU ID as defined in the stage widget

associated_ues list(UeInfo) List of UEs associated to this RUs

CFRs

Field Type Comment

cfrs
list(numpy.ndarray((ues,
ue_ants, ru_ants, fft_size),
dtype=numpy.complex64))

Channel frequency response for all RUs in a list. The
elements of the list are multi-dimensional arrays of
the form [ue, ue_ant, ru_ant, fft_size]

TrainingInfo

Field Type Comment

time_id uint32 Current time index of simulation

batch_id uint32 Current batch index of simulation

Aerial Omniverse Digital Twin 62

slot_id uint32 Current slot index of simulation

symbol_id uint32 Current symbol index of simulation

name string Optional name of model, e.g. “Channel Predictor”

num_itera
tions\
(^{*}\)

float32
Number of iterations that were trained in this time step of the
simulation. An iteration is here defined as one forward and
one backward pass through the model.

training_l
osses

list(tuple(ui
nt32,
float32))

Training losses: there may be multiple iterations trained for a
given time index, so format is [(iteration0, loss0), (iteration1,
loss1), …]

validation
_losses

list(tuple(ui
nt32,
float32))

Optional validation losses, same format as training losses

test_losse
s

list(tuple(ui
nt32,
float32))

Optional test losses, same format as training losses

baseline_l
osses

list(tuple(ui
nt32,
float32))

Baseline losses, same format as training losses

title string Optional title of loss plot in the UI, e.g. Training Loss

y_label string Optional y-label of loss plot in the UI, e.g. MSE (dB)

x_label string Optional x-label of loss plot in the UI, e.g. Slot

As previously mentioned, additional APIs to train RAN models will be added in
subsequent releases.

* Consider a setup consisting of 4 RUs, 4 UEs, 4 ants per UE, 4 ants per RU. There will be
256 CFRs computed every time step of the simulation. The channel predictor considers
each RU/UE antenna pair independently. If we configure prediction 6 slots in advance,
then slots 0-4 will be spent accumulating data. Then for a training batch size of 16, there
will be enough data to train 256 CFRs / 16 (training batch size) = 16 training iterations (16
forward/backward passes) on slot 5.

Appendix

Know limitations

Aerial Omniverse Digital Twin 63

EM engine

The key parameters for the EM engine are:

the number of rays emitted at every RU

the maximum number of scattering events for each ray

the number of frequency samples for the wideband CFR

the number of UEs

the number of antennas for the antenna panels in use.

These parameters are directly linked to the consumption of GPU RAM during the
operation of the EM engine. The corresponding limits are as per the following table.

Parameter Maximum value

Number of rays emitted at every RU 1,000,000

Maximum number of scattering events per ray 5

Number of frequency samples (FFT size) for the wideband CFR 4096

Number of UEs 10,000

Number of antenna elements per RU panel 64

Number of antenna elements per UE panel 8

In presence of a high number of emitted rays (i.e., exceeding 500,000) and scattering
events per ray, it is also recommended that

the total number of UE per RU does not exceed 1000

the total number of links, across the whole population of RUs and UEs - where a link
is here intended as a wireless connection between two antenna elements, does not
exceed 10,000.

If such large simulation size is desired and during a simulation there is an error log
reporting that the simulation does not succeed, lowering the number of emitted rays, the
number of scattering events, or turning off the diffusion is suggested.

Functionally,

Aerial Omniverse Digital Twin 64

across the selected maximum number of scattering events, diffraction currently can
only occur once per ray

only direct diffuse scattering (diffuse vertex is in line-of-sight to both the RU and the
UE) with a Lambertian pattern is supported

the number of rays or paths considered for each RU-UE pair is limited to a max of

\(500 \times\) Number of RU antenna elements \(\times\) Number of UE
antenna elements

strongest paths

EM engine currently only supports the following antenna models:

isotropic,

infinitesimal dipole,

halfwave dipole,

microstrip patch,

and custom user input.

In the latter case, it is only possible to import one custom model.

The radiation solid of a single element is replicated across the whole antenna array.
For point sources represented by isotropic of infinitesimal current elements, this is
not an issue, but for antennas of finite dimensions (half-wave dipole, microstrip
patch, custom user input), this means that there is no account of mutual coupling
across antenna elements. Mutual coupling calculations for halfwave dipoles and
microstrip antennas, as well as support for using a different radiation solid per each
element in the antenna array will be added in a future release.

RAN simulation

For RAN simulation, here are some of the fixed configurations and limitations. We plan to
introduce additional features and enhance flexibility in future releases.

Supports only 4 transmit antennas (or 2 dual-polarized antennas) and 4 receiver
antennas (or 2 dual-polarized antennas).

Aerial Omniverse Digital Twin 65

Supports only a 100 MHz bandwidth with 273 PRBs.

Supports only Single-User MIMO (SU-MIMO).

Supports only 30 kHz subcarrier spacing.

If a UE does not have any rays with any of the RUs, it is not currently supported. The
use of Spawn Zone to restrict the mobility range of UEs is recommended.

Beamforming is not applied.

MMSE-IRC is applied indiscriminately at the receivers.

The power settings for all gNBs and UEs must be identical across cells and UEs.

DMRS positions are fixed in symbols 2, 3, 10, and 11.

PRBs are scheduled at the PRB group level, with each PRB group containing 4 PRBs.

HARQ, if enabled, operates on a per-slot basis, assuming perfect knowledge of
control channel information and immediate retransmission at a slot after a failed
transmission slot.

HARQ, if enabled, will allow a maximum of 4 transmissions (i.e. a new transmission,
followed by 3 re-transmissions), in case of CRC failures. Transmissions are
associated with redundancy versions (RV) in the order of 0, 2, 3, 1.

In addition to the noise figure, a fixed thermal noise of -174 dBm/Hz is added at
each receiver antenna.

MAC scheduler

Non-adaptive HARQ re-transmission: the same scheduling solution (PRB allocation,
layer and MCS selection) for the original transmissions are always reused for the
HARQ re-transmissions. Further improvement is possible by employing advanced
algorithms that may alter the scheduling decisions for re-transmissions.

layer selection: the current layer selection algorithm is not optimized for the data
transmissions without beamforming as being used in the RAN Simulation. An
improved data transmission performance can be expected by employing a layer
selection algorithm customized for no beamforming cases.

Aerial Omniverse Digital Twin 66

MCS selection: currently RAN Simulation has only integrated an SINR-to-MCS lookup
table for single-layer transmissions under AWGN channel. The SINR-to-MCS
mappings in this lookup table may not be accurate for transmissions with more
than one layers. This can be improved by using separate SINR-to-MCS lookup tables
under varied numbers of layers and different channel characteristics generated
from link level simulations.

Database schemas

The simulation data generated by the Aerial Omniverse Digital Twin is saved to a
Clickhouse database. The following section describes the database tables and example
Python scripts to access that data.

1. db_info

Field Type Comment

scene_url
strin
g

Path to the scene on the Nucleus server

scene_timestamp
strin
g

Timestamp of when the scene was originally opened

db_author
strin
g

Database author, as specified in the UI Configuration tab

db_notes
strin
g

Any additional notes, as specified in the UI Configuration
tab

db_timestamp
strin
g

Database timestamp, as specified in the UI Configuration
tab

db_schemas_versio
n

strin
g

The version of database schemas (1.0.0 for this release)

2. time_info

Field Type Comment

time_idx uint32 Time index of the simulation

batch_idx uint32 Batch index of the simulation

slot_idx uint32 Slot index of the simulation

symbol_idx uint32 Symbol index of the simulation

Aerial Omniverse Digital Twin 67

3. raypaths

Field Type Comment

time_idx uint32 Time index of the simulation

ru_id uint32 RU ID as defined in the UI stage widget

ue_id uint32 UE ID as defined in the UI stage widget

points
array(tuple(float32, float32,
float32))

Stores the (x, y, z) coordinates of interaction
points

normals
array(tuple(float32, float32,
float32))

Stores the (x, y, z) normals at the interaction
points

tap_pow
er

array(array(float32)) Power of the raypath channel tap in Watts

4. cirs

Field Type Comment

time_idx uint32 Time index of the simulation

ru_id uint32 RU ID as defined in the UI stage widget

ue_id uint32 UE ID as defined in the UI stage widget

ru_ant_e
l

tuple(uint32, uint32,
uint32)

Tuple of antenna element indices for the RU
antenna panel

ue_ant_
el

tuple(uint32, uint32,
uint32)

Tuple of antenna element indices for the UE
antenna panel

cir_re array(float32) Real part of the channel impulse response

cir_im array(float32) Imaginary part of the channel impulse response

cir_dela
y

array(float32) Propagation delay in seconds

where, in the tuple<h,v,p>

h is the index of the element in horizontal dimension

v is the index of the element in vertical dimension

Aerial Omniverse Digital Twin 68

p is the index of the polarization

5. cfrs

Field Type Comment

time_idx uint32 Time index of the simulation

ru_id uint32 RU ID as defined in the UI stage widget

ue_id uint32 UE ID as defined in the UI stage widget

ru_ant_e
l

tuple(uint32, uint32,
uint32)

Tuple of antenna element indices for the RU
antenna panel

ue_ant_
el

tuple(uint32, uint32,
uint32)

Tuple of antenna element indices for the UE
antenna panel

cfr_re array(float32) Real part of the channel frequency response

cfr_im array(float32) Imaginary part of the channel frequency response

where, in the tuple<h,v,p>

h is the index of the element in horizontal dimension

v is the index of the element in vertical dimension

p is the index of the polarization dimension.

6. panels

Field Type Comment

ID uint32 ID of the panel as defined in the UI stage widget

carrier_fre
q

float32 Carrier frequency associated with this panel

radiated_
power

float32 Radiated power (in Watts) associated with this panel

is_dual_p
olarized

boolea
n

Indicates if panel is dual-polarized. 1=dual polarization, 0=single
polarization.

num_hor_
el

uint32 Number of columns in the planar array

Aerial Omniverse Digital Twin 69

num_ver_
el

uint32 Number of rows in the planar array

ant_el_typ
es

array(e
num)

Type of antenna. Isotropic=0, Infinitesimal_dipole=1,
Halfwave_dipole=2, Rec_microstrip_patch=3, User_input=4

hor_spaci
ng

float32 Spacing of horizontal antenna elements in cm

vert_spaci
ng

float32 Spacing of vertical antenna elements in cm

roll_first_
pol

float32
Rotation (in radians) of the antenna element, corresponding to the
first polarization

roll_secon
d_pol

float32
Rotation (in radians) of the antenna element, corresponding to the
second polarization. Only used for dual-polarized elements.

7. ues

Field Type Comment

ID uint32 UE ID as defined in the UI stage widget

is_manual boolean
Indicates if the UE was generated manually (1)
or procedurally (0)

is_manual_
mobility

boolean
Whether or not the manual UE has waypoints
explicitly added by the user

height float32 Height of the UE in meters

mech_tilt float32 Tilt of of UE antenna panel in degrees

panel array(uint32) Array of panels for this UE

batch_indice
s

array(uint32) Array of batch indices for this UE

waypoint_id
s

array(array(uint32)) Per-batch waypoint identifiers [batch, ids]

waypoint_p
oints

array(array(tuple(float32,
float32,float32)))

Per-batch waypoint positions [batch,
waypoints(x, y, z)]

waypoint_st
ops

array(array(float32))
Per-batch waypoint stop times in seconds
[batch, stops]

Aerial Omniverse Digital Twin 70

waypoint_sp
eeds

array(array(float32))
Per-batch waypoint speeds in m/s [batch,
speeds]

trajectory_id
s

array(array(uint32))
Per-batch waypoint identifiers along UE
trajectory [batch, ids]

trajectory_p
oints

array(array(tuple(float32,
float32,float32)))

Per-batch points along UE trajectory [batch,
points(x, y, z)]

trajectory_st
ops

array(array(float32))
Per-batch stop times (in seconds) along UE
trajectory [batch, stops]

trajectory_s
peeds

array(array(float32))
Per-batch speed (in m/s) at waypoints along
UE trajectory [batch, speeds]

route_positi
ons

array(array(tuple(float32,
float32,float32)))

Per-batch positions along sampled route
[batch, points(x, y, z)]

route_orient
ations

array(array(tuple(float32,
float32,float32)))

Per-batch UE orientations along sampled
route [batch, orientations(x, y, z)]

route_speed
s

array(array(float32))
Per-batch speeds (in m/s) along sampled
route. [batch, speeds]

route_times array(array(float32))
Per-batch times (in seconds) along sampled
route. [batch, times]

8. rus

Field Type Comment

ID uint32 RU ID as defined in the UI stage widget

subcarrier_spac
ing

float32 Subcarrier spacing (in Hz)

fft_size uint32
Number of frequency samples used in the wideband CFR
calculation

height float32 Height of the RU in meters

mech_azimuth float32 Mechanical azimuth rotation angle of the RU, in degrees

mech_tilt float32 Mechanical tilt angle of the RU, in degrees

panel
array(uint3
2)

Array of antenna panel IDs associated with this RU

Aerial Omniverse Digital Twin 71

position
array(float
32)

Position of the RU in the stage. The array contains 3
elements (x, y, z).

9. scenario

Field Type Comment

default_ue_pane
l

string The default panel ID assigned to UEs

default_ru_panel string The default panel ID assigned to RUs

num_emitted_ra
ys_in_thousands

int32 Number of emitted rays (x 1000)

num_scene_inte
ractions_per_ray

int32
Number of interactions that a ray has with the environment. 0
= no interaction (line of sight)

max_paths_per_
ru_ue_pair

uint3
2

Maximum number of raypaths per RU/UE

ray_sparsity int32 Ratio of total computed rays to rays shown in the UI

num_batches int32
Number of batches, where each batch represents a re-drop of
the UE in a different position

slots_per_batch int32 Number of slots to simulate for each batch

symbols_per_slo
t

int32 Number of symbols in a slot. Either 1 or 14.

duration
float3
2

The duration (in seconds) of the simulation

interval
float3
2

The sampling time (in seconds) of the simulation

enable_wideban
d_cfrs

Boole
an

True=>CFRs contain frequency points for the entire FFT size.
False=>CFRs contain one frequency point at the center
frequency.

num_ues
uint3
2

The total number of UEs in the simulation

ue_height
float3
2

UE height in meters

Aerial Omniverse Digital Twin 72

ue_min_speed
float3
2

Minimum UE speed in meters per second

ue_max_speed
float3
2

Maximum UE speed in meters per second

is_seeded uint8 Indicates if mobility is seeded or not

seed
uint3
2

Seed used to define the randomness of UE batch drops and
trajectories

simulate_ran
boole
an

Enable RAN simulations

enable_training
boole
an

Enable training simulations

10. telemetry

Field Type Comment

batch_id uint32 The batch index of the simulation

slot_id unit32 The slot index within the batch

link String If this telemetry result is for downlink (“DL”) or uplink (“UL”)

ru_id uint32 RU ID

ue_id uint32 UE ID

startPrb uint32 Start PRB that the scheduler has assigned to this UE

nPrb uint32 Number of PRBs that the scheduler has assigned to this UE

mcs uint8 MCS index that the scheduler has assigned to this UE

layers uint8 Number of layers used by this UE

tbs uint32 Transport block (TB) size (in bytes) that was scheduled for this UE

rv uint8 The redundancy version used for this transmission

outcome uint32 If the transport block was successfully decoded (1) or not (0)

scs float32 Subcarrier spacing (in Hz)

11. training_result

Aerial Omniverse Digital Twin 73

Field Type Comment

time_idx uint32 Current time index of the simulation

name string Optional name of a model

training_l
osses

array(tuple(ui
nt32,float32))

Training losses: there may be multiple iterations trained for a
given time index, so format is [(iteration0, loss0), (iteration1,
loss1), …]

validatio
n_losses

array(tuple(ui
nt32,float32))

Optional validation losses, same format as training losses

test_loss
es

array(tuple(ui
nt32,float32))

Optional test losses, same format as training losses

baseline_
losses

array(tuple(ui
nt32,float32))

Baseline losses, same format as training losses

title string Optional title of loss plot in the UI, e.g. Training Loss

y_label string Optional y-label of loss plot in the UI, e.g. MSE (dB)

x_label string Optional x-label of loss plot in the UI, e.g. Slot

12. world

Field Type Comment

prim_pat
h

strin
g

Prim path of the building

material
strin
g

Name of material assigned to this prim

is_rf_acti
ve

uint
8

If geometry of the structure is considered by the EM solver (0=not
considered, 1=considered)

is_rf_diff
use

uint
8

If geometry of the structure is considered for diffusion in the EM solver
(0=not considered, 1=considered)

13. materials

Field Type Comment

label
strin
g

Captures the material set in the UI stage

Aerial Omniverse Digital Twin 74

itu_r_p204
0_a

float
64

ITU-R P2040 ‘a’ parameter \(^{[1]}\)

itu_r_p204
0_b

float
64

ITU-R P2040 ‘b’ parameter \(^{[1]}\)

itu_r_p204
0_c

float
64

ITU-R P2040 ‘c’ parameter \(^{[1]}\)

itu_r_p204
0_d

float
64

ITU-R P2040 ‘d’ parameter \(^{[1]}\)

scattering_
xpd

float
64

Scattering cross-polarization/co-polarization power ratio

rms_rough
ness

float
64

Root mean squared of the surface roughness

scattering_
coeff

float
64

Scattering coefficient in the effective roughness (ER) model

exponent_
alpha_r

int32
Integer exponent parameter for the directivity of the scattering lobe
in the specular reflection direction in the ER model

exponent_
alpha_i

int32
Integer exponent parameter for the directivity of the back-scattering
lobe in the incidence direction in the double-lobe model

lambda_r
float
64

Ratio between the specular-direction scattering power and the total
scattering power in double-lobe model

[1] Table 3 of ITU, “Effects of building materials and structures on radio wave propagation
above about 100 MHz”, Recommendation P.2040-3, August 2023.

Accessing the results in the database

Some examples of how to access the database results are bundled with the source code
in the examples/ directory. These scripts serve as a template, and can be extended for
your own data analysis.

Example clickhouse scripts

There are two ways to run the ClickHouse scripts - using the Jupyter notebooks or as
Python scripts. Both approaches are explained below.

Aerial Omniverse Digital Twin 75

To run as scripts, the necessary packages are available inside of the development
container. Refer to the Installation section of this guide for how to start the development
container. Then identify the name of the database of interest by using the
clickhouse-client or using the database name in the Configurations tab in the UI.

In this section, we use RU interchangeably with tx and UE interchangeably with rx .
The examples assume the following database configuration:

Database Name: yoda_2024_4_15_13_4_6

hostname: localhost

1. extract_CIR_sample.py

This script is provided to illustrate access to the cirs table in the database.

For example to retrieve the CIR for sample 5, for ue_0002 and ru_0001, run the folllowing
command:

The script fetches the desired CIRs and writes them to the binary file sample-cir-
<time_idx>.dat. The binary file can be accessed using the pickle Python module. The
pickled data structures have the following definition:

data: holds the complex amplitude of each raypath

delay: holds the associated time of arrival in seconds

The shape of the data and delay dictionaries is [time_idx, tx_id, rx_id] , where the inner-
most dimension rx_id is a flat array of size

$ clickhouse-client :) show databases

python3 extract_CIR_sample.py --hostname <hostname> --database
<database_name> --sample <time_idx> --RU <tx_id> --UE <rx_id>

python3 extract_CIR_sample.py --hostname "localhost" --database
"yoda_2024_4_15_13_4_6" --sample 5 --RU 1 --UE 2

https://docs.python.org/3/library/pickle.html

Aerial Omniverse Digital Twin 76

\(\left(Max_{Paths}, N_{hor.}^{\left(rx\right)} \times N_{vert.}^{\left(rx\right)} \times
N_{pol.}^{\left(rx\right)}, N_{hor.}^{\left(tx\right)} \times N_{vert.}^{\left(tx\right)} \times
N_{pol.}^{\left(tx\right)} \right) \)

\(Max_{Paths}\) is the length of the CIR in samples,

\(N_{hor.}^{yx}\) is the number of horizontal antenna sites (without considering
polarization) in the \(yx\) panel

\(N_{vert.}^{yx}\) is the number of vertical antenna sites (without considering
polarization) in the \(yx\) panel

\(N_{pol.}^{yx}\) is the number of used polarizations per antenna site in the \(yx\)
panel.

That is, the array is flattened according to the following order:
[\(h_{0}v_{0}p_{0}\), \(h_{0}v_{0}p_{1}\) … \(h_{0}v_{N_{vert}}p_{1}\) … \
(h_{N_{hor}}v_{N_{vert}}p_{1}\)] , where, h,v,p correspond to the horizontal, vertical and
polarization dimension of the antenna panel.

2. extract_CFR_sample.py

The extract_CFR_sample.py reads the channel frequency response (CFR) from the cfrs
table.

For example, if we need the CFR for sample 5, for ue_0002 and ru_0001, run the following
command:

The script fetches the desired CFRs and adds it to a dictionary that is then written to the
sample-cfr-<time_idx>.dat binary file. The pickled data structure contains a dictionary
data that holds the channel frequency response for the specified RU and UE antenna

pairs. The shape of data is similar to the shape of the CIR from the previous section,
except that the innermost flattened array is of size: \(\left(NFFT, N_{hor.}^{\left(rx\right)}

python3 extract_CIR_sample.py --hostname <hostname> --database
<database_name> --sample <time_idx> --RU <tx_id> --UE <rx_id>

python3 extract_CFR_sample.py --hostname "localhost" --database
"yoda_2024_4_15_13_4_6" --sample 5 --RU 1 --UE 2

Aerial Omniverse Digital Twin 77

\times N_{vert.}^{\left(rx\right)} \times N_{pol.}^{\left(rx\right)}, N_{hor.}^{\left(tx\right)}
\times N_{vert.}^{\left(tx\right)} \times N_{pol.}^{\left(tx\right)} \right) \)

where \(NFFT\) is the size of the FFT to convert from the time domain samples to
frequency domain samples.

Besides the CFR, the script also dumps the following scalar quantities:

fft_size : Size of the CFR

scs : Subcarrier spacing

ue_fc : Center frequency of the UE

ru_fc : Center frequency of the RU

3. extract_CIR.py and extract_CFR.py

The scripts extract_CIR.py and extract_CFR.py extract data for all RU/UE antenna pairs
and all time samples. To speed up reading such a large amount of data from the
database, these scripts make use of a fast reader written in C++. The source code to the
reader is provided in the examples/ directory and can be compiled into a shared library
in the development container. See Readme_chapi.md for more details. The library
provides the following Python bindings:

cfrs = read_cfrs_db(hostname,database)

cirs,delays = read_cfrs_db(hostname,database)

For example:

These bindings are called by extract_CIR.py and extract_CFR.py in order to generate
pickle files cirs.dat or cfrs.dat . The usage is as follows:

cfrs = read_cfrs_db("localhost","yoda_2024_4_15_13_4_6") cirs,delays =
read_cfrs_db("localhost",yoda_2024_4_15_13_4_6)

python3 extract_CIR.py --database <database_name> --hostname <hostname>

Aerial Omniverse Digital Twin 78

Note that unlike extract_CFR_sample.py , the read_cfrs_db() function only returns the
CFRs, not the other scalar quantities.

5. plot_PDP_from_CIR.py

The script produces a figure of the channel impulse response associated with one of the
RU/UE antenna links.

6. plot_PDP_from_CFR.py

The channel impulse response can also be calculated and plotted using the channel
frequency response data by running:

7. plot_PAS_from_CIR.py

This script uses the rays in the raypaths table to calculate the uplink power angular
spectrum.

8. plot_CFR.py

Finally, to visualize the channel frequency response, run:

python3 extract_CIR_sample.py --database "yoda_2024_4_15_13_4_6" --hostname
"localhost"

python3 plot_PDP_from_CIR.py --filename sample-cir-<time_idx>.dat --sample
<time_idx> --RU <tx_id> --UE <rx_id> --suppress

python3 plot_PDP_from_CFR.py --filename sample-cir-<time_idx>.dat --sample
<time_idx> --RU <tx_id> --UE <rx_id>

python3 plot_PAS_from_CIR.py --filename sample-cir-<time_idx>.dat --sample
<time_idx> --RU <tx_id> --UE <rx_id> --angle [azimuth|zenith] --suppress

python plot_CFR.py -filename sample-<time_idx>.dat --sample <time_idx> --RU

Aerial Omniverse Digital Twin 79

Jupyter notebooks

It may be convenient to execute the post processing scripts via Jupyter notebooks, if
running on a different machine than the backend. The following notebooks are available
in the examples/ directory:

extract_CFR_sample.ipynb

extract_CIR_sample.ipynb

Fast Clickhouse Access.ipynb

The Jupyter Notebooks can be accessed by opening a web browser using the address of
the backend http://omniverse-server:8888/. The webpage may ask for a token the first
time. As mentioned in the Installation section of this guide, the token is shown at the end
of the install process. The token may also be found on the backend server, in the docker
compose examples.

EM engine interface

The EM engine is developed directly by NVIDIA, but it modularly embedded in the Aerial
Omniverse Digital Twin through a specific interface. With future releases, there will be
support for swapping in and out different EM engines. This section aims at preparing for
such a possibility by providing an overview of the key mechanics of NVIDIA’s EM engine.

NVIDIA’s EM engine API provides functions to

manage the device memory,

perform EM calculations,

and copy results to host memory.

<tx_id> --UE <rx_id>

cd <path to source top level installation>/examples docker compose -f docker-
compose-examples.yaml logs | grep token=

Aerial Omniverse Digital Twin 80

All classes, member functions and variables are defined in the aerial_emsolver_api.h
header and make use of the C++/CUDA primitive data types.

Data types

d_complex

Thrust complex data type used in both host code and device code.

d_complex4

An array of four d_complex elements.

Matrix4x4

A \(4\times4\) matrix of d_complex elements.

BuildingEdge

A struct storing geometry data of each building edge in the scene.

Member Description

p1 the first building edge vertex point (type float3), in centimeters

p2 the second building edge vertex point (type float3), in centimeters

typedef thrust::complex<float> d_complex

typedef struct d_complex4 { d_complex m[4]{}; } d_complex4

typedef struct Matrix4x4 { float m[4][4]{}; } Matrix4x4

struct BuildingEdge { float3 p1{}; float3 p2{}; float3 e{}; float3 e1{}; float3 e2{};
float3 n1{}; float3 n2{}; int material_id1{}; int material_id2{}; int diffuse_attr_1{};
int diffuse_attr_2{}; }

Aerial Omniverse Digital Twin 81

e unit vector from p1 to p2 (type float3)

e1
unit vector tangent to the first half plane describing the building edge
(type float3)

e2
unit vector tangent to the second half plane describing the building
edge (type float3)

n1
normal vector to the first half plane describing the building edge (type
float3)

n2
normal vector to the second half plane describing the building edge
(type float3)

material_i
d1

material index of the first half plane describing the building edge (type
int)

material_i
d2

material index of the second half plane describing the building edge
(type int)

diffuse_att
r_1

diffuse attribute of the first half plane describing the building edge
(type int); 0 if the surface is non-diffuse and 1 otherwise

diffuse_att
r_2

diffuse attribute of the second half plane describing the building edge
(type int); 0 if the surface is non-diffuse and 1 otherwise

An illustration of the geometry data associated with an edge is shown in the figure
below.

EMMaterial

Aerial Omniverse Digital Twin 82

A struct storing EM material parameters.

Member Description

abcd
a float4 storing ITU-R P2040 a, b, c, and d parameters for

calculating the relative permittivity 1

roughness_r
ms

the root mean square of the surface roughness (type float), in
meters

k_xpol
scattering cross-polarization/col-polarization power ratio (type
float)

scattering_c
oeff

scattering coefficient in the effective roughness (ER) model 2 (type
float)

exponent_al
pha_R

integer exponent for the directivity of the scattering lobe (type int)

exponent_al
pha_I

integer exponent parameter for the directivity of the back-
scattering lobe in the double-lobe model (type int)

lambda_R
ratio between the specular-direction scattering power and the total
scattering power in the double-lobe model (type float)

EM_INTERACT_TYPE

An enumeration of EM interaction types per ray.

RayPath

struct EMMaterial { float4 abcd{}; float roughness_rms{}; float k_xpol{}; float
scattering_coeff{} int exponent_alpha_R{} int exponent_alpha_I{} float
lambda_R{} }

enum EM_INTERACT_TYPE : unsigned int { Emission = 0, Reflection = 1,
Diffraction = 2, Diffuse = 3, Reception = 4, Reserved, }

struct RayPath { int tx_id{}; int rx_id{}; int tx_ij[2]{}; int rx_ij[2]{}; int rx_index{};
EM_INTERACT_TYPE point_types[MAX_NUM_INTERACTIONS+2]{}; float3

Aerial Omniverse Digital Twin 83

A struct storing geometry and EM data of a propagation path.

Member Description

tx_id ID of the RU (type int)

rx_id ID of the UE (type int)

tx_ij
two-element array of indices (type int , i for horizontal index and j
for vertical index) of the antenna element within the RU panel

rx_ij
two-element array of indices (type int , i for horizontal index and j
for vertical index) of the antenna element within the UE panel

rx_index index of the UE (type int)

point_typ
es

an array of EM_INTERACT_TYPE storing the EM interaction types for
points along the path

points
an array of float3 storing the (x, y, z) coordinates of interaction points,
in centimeters

prim_ids
an array of int storing the indices of the geometry primitive at the
interaction points: the hit triangle index for a reflection, hit edge index
for a diffraction, -1s otherwise

normals an array of float3 storing the normals at the interaction points

points[MAX_NUM_INTERACTIONS+2]{}; int
prim_ids[MAX_NUM_INTERACTIONS+2]{}; float3
normals[MAX_NUM_INTERACTIONS+2]{}; int num_points{}; d_complex
cir_ampl[4]{}; float cir_delay{}; __host__ __device__ RayPath() {} __host__
__device__ RayPath(int* tx_ij, int* rx_ij, float3* points, EM_INTERACT_TYPE*
point_types, int* prim_ids, float3* normals, int tx_id, int rx_id, int rx_index, int
num_points, int txrxPairID) : tx_ij{tx_ij[0], tx_ij[1]}, rx_ij{rx_ij[0], rx_ij[1]} { this-
>tx_id = tx_id; this->rx_id = rx_id; this->rx_index = rx_index; this->num_points =
num_points; for(int i=0; i<num_points; i++) { this->points[i] =
make_float3(points[i].x, points[i].y, points[i].z); this->prim_ids[i] = prim_ids[i];
this->normals[i] = make_float3(normals[i].x, normals[i].y, normals[i].z); this-
>point_types[i] = point_types[i]; } for(int i=0; i<4; i++) { this->cir_ampl[i] =
d_complex(0.0, 0.0); } this->cir_delay = 0.0; } }

Aerial Omniverse Digital Twin 84

num_poi
nts

number of interaction points from the RU to UE (type int)

cir_ampl
an array of four complex-valued elements storing the path CIR
amplitude for four UE-RU polarization combinations*

cir_delay propagation delay of the path (type float), in seconds

* cir_ampl[i*2 + j] is for the UE’s \(i\)-th polarization and RU’s \(j\)-th polarization, for
\(i \in \left[0, 1\right]\) and \(j \in \left[0, 1\right]\).

ANTENNA_TYPE

An enumeration for the antenna types currently supported by the EM solver.

AntennaPattern

A struct storing a user input antenna pattern.

Member Description

thetas a vector storing elevation angles (type float) in radians

phis a vector storing azimuth angles (type float) in radians

ampls_the
ta

a vector storing complex-valued amplitudes (type d_complex) of the
antenna radiated field along the theta direction

ampls_phi
a vector storing complex-valued amplitudes (type d_complex) of the
antenna radiated field along the phi direction

num_thet
as

number of theta angles (type int)

enum ANTENNA_TYPE : unsigned int { Isotropic = 0, Infinitesimal_dipole = 1,
Halfwave_dipole = 2, Rec_microstrip_patch = 3, User_input = 4 }

struct AntennaPattern { std::vector<float> thetas{}; std::vector<float> phis{};
std::vector<d_complex> ampls_theta{}; std::vector<d_complex> ampls_phi{};
int num_thetas{}; int num_phis{}; }

Aerial Omniverse Digital Twin 85

num_phis number of phi angles (type int)

AntennaPanel

An struct storing information for a given antenna panel.

Member Description

id ID of the panel (type int)

antenna_element_ty
pes

a vector of ANTENNA_TYPE values indicating the types of
the antenna elements in the panel

reference_freq center frequency (type double) of the panel, in Hertz

radiated_power radiated power (type double) of the panel, in Watts

dual_polarized
a bool variable to indicate if the panel antennas are dual-
(true) or single- polarized (false)

num_loc_antenna_h
orz

number of antenna elements (type unsigned int) in the
planar array along a row

num_loc_antenna_ve
rt

number of antenna elements (type unsigned int) in the
planar array along a column

antenna_spacing_ho
rz

horizontal antenna element spacing (type double), in
centimeters

antenna_spacing_ver
t

vertical antenna element spacing (type double), in
centimeters

antenna_roll_angle_f
irst_polz

angular displacement of the antenna element realizing the
first polarization (type double), in radians

struct AntennaPanel { int id{}; std::vector<ANTENNA_TYPE>
antenna_element_types{}; double reference_freq{}; double radiated_power{};
bool dual_polarized{}; unsigned int num_loc_antenna_horz{}; unsigned int
num_loc_antenna_vert{}; double antenna_spacing_horz{}; double
antenna_spacing_vert{}; double antenna_roll_angle_first_polz{}; double
antenna_roll_angle_second_polz{}; }

Aerial Omniverse Digital Twin 86

antenna_roll_angle_s
econd_polz

angular displacement of the element realizing the second
polarization (type double), in radians

TXInfo

An struct storing RU information.

Member Description

tx_ID ID of the RU (type int)

tx_center (x , y, z) coordinates of the RU center (type float3), in centimeters

Ttx
a Matrix4x4 transformation matrix for the RU combining
translation and rotation, in centimeters

panel_id
a vector of indices (type int) identifying the panels used by the RU;
currently only size 1 is supported

height
height (type float) calculated from RU base to the RU center, in
centimeters

mech_azimu
th_deg

mechanical azimuth (type float) of the RU, in degrees

mech_tilt_de
g

mechanical tilt (type float) of the RU, in degrees

carrier_freq carrier frequency (type float) of the RU, in Hertz

subcarrier_s
pacing

sub-carrier spacing (type float), in Hertz

struct TXInfo { int tx_ID{}; float3 tx_center{}; Matrix4x4 Ttx{}; std::vector<int>
panel_id{}; float height{}; float mech_azimuth_deg{}; float mech_tilt_deg{}; float
carrier_freq{}; float carrier_bandwidth{}; float subcarrier_spacing{}; int
fft_size{}; float radiated_power{}; std::vector<ANTENNA_TYPE>
antenna_element_types{}; bool dual_polarized_antenna{}; std::vector<float3>
antenna_rotation_angles{}; int num_loc_antenna_horz{}; int
num_loc_antenna_vert{}; std::vector<float3> loc_antenna{};
std::vector<std::pair<int, int>> ij_antenna{}; }

Aerial Omniverse Digital Twin 87

fft_size FFT size (type int) used for wideband CFR calculation

radiated_po
wer

radiated power (type float) of the RU, in Watts

antenna_ele
ment_types

a vector of ANTENNA_TYPE values indicating the types of the
antenna elements used in the RU panel

dual_polariz
ed_antenna

a bool variable to indicate if the antenna panel is composed by
dual- (true) or single- polarized (false) elements

antenna_rot
ation_angles

a vector of triplets storing rotation angles (type float3) of the
antennas: the first triplet is for the first polarization, and in case of
dual-polarized antennas, the second triplet is for the second
polarization

num_loc_ant
enna_horz

number of antenna elements (type unsigned int) in the horizontal
direction within the antenna panel

num_loc_ant
enna_vert

number of antenna elements (type unsigned int) in the vertical
direction within the antenna panel

loc_antenna
vector of (x, y, z) of antenna positions within the antenna panel
(type float3), in centimeters

ij_antenna
a vector of pairs of indices (type int) storing horizontal and vertical
indices of the antenna elements in the RU antenna panel

RXInfo

An struct storing UE information.

Member Description

struct RXInfo { int rx_ID{}; float3 rx_center{}; Matrix4x4 Trx{}; std::vector<int>
panel_id{}; float radiated_power{}; std::vector<ANTENNA_TYPE>
antenna_element_types{}; bool dual_polarized_antenna{}; std::vector<float3>
antenna_rotation_angles{}; int num_loc_antenna_horz{}; int
num_loc_antenna_vert{}; std::vector<float3> loc_antenna{};
std::vector<std::pair<int, int>> ij_antenna{}; }

Aerial Omniverse Digital Twin 88

rx_ID ID of the UE (type int)

rx_center (x , y, z) coordinates of the UE center (type float3), in centimeters

Trx
a Matrix4x4 transformation matrix for the UE combining
translation and rotation, in centimeters

panel_id
a vector of indices (type int) identifying the panels used by the UE;
currently only size 1 is supported

radiated_po
wer

radiated power (type float) of the UE, in Watts

antenna_ele
ment_types

a vector of ANTENNA_TYPE values indicating the types of the
antenna elements used in the UE panel

dual_polariz
ed_antenna

a bool variable to indicate if the antenna panel is composed by
dual- (true) or single- polarized (false) elements

antenna_rot
ation_angles

a vector of triplets storing rotation angles (type float3) of the
antennas: the first triplet is for the first polarization, and in case of
dual-polarized antennas, the second triplet is for the second
polarization

num_loc_ant
enna_horz

number of antenna elements (type unsigned int) in the horizontal
direction within the antenna panel

num_loc_ant
enna_vert

number of antenna elements (type unsigned int) in the vertical
direction within the antenna panel

loc_antenna
vector of (x, y, z) of antenna positions within the antenna panel
(type float3), in centimeters

ij_antenna
a vector of pairs of indices (type int) storing horizontal and vertical
indices of the antenna elements in the RU antenna panel

AntennaInfo

struct AntennaInfo { bool has_user_input_tx_antenna{}; AntennaPattern
tx_antenna_pattern{}; bool has_user_input_rx_antenna{}; AntennaPattern
rx_antenna_pattern{}; }

Aerial Omniverse Digital Twin 89

The EM engine supports several classical antenna patterns listed in
ANTENNA_TYPE , and also custom antenna patterns in the format specified by
AntennaPattern . The AntennaInfo struct stores the information of whether some

customized antenna pattern is used for a node (RU/UE) and the corresponding
antenna pattern.

Member Description

has_user_input_tx_a
ntenna

a bool variable to indicate whether a User_input antenna
type is used for a RU

tx_antenna_pattern
AntennaPattern struct storing the antenna pattern for the

RU

has_user_input_rx_a
ntenna

a bool variable to indicate whether a User_input antenna
type is used for an UE

rx_antenna_pattern
AntennaPattern struct storing the antenna pattern for the

UE

GeometryInfo

A struct storing information for the geometries in the scene.

Member Description

building_mes
h_vertices

a vector of vertices (type float3) of the buildings in the scene*, in
centimeters

triangle_mat
erial_ids

a vector of material indices (type int) of the building triangles

triangle_diffu
se_attr

a vector of diffuse attributes (type int) of the building triangles, 0 if
the triangle is non-diffuse and 1 otherwise

building_edg
es

a vector of building edges (type BuildingEges)

struct GeometryInfo { std::vector<float3> building_mesh_vertices{};
std::vector<int> triangle_material_ids{}; std::vector<int> triangle_diffuse_attr{};
std::vector<BuildingEdge> building_edges{}; std::unordered_map<std::string,
std::pair<int,EMMaterial>> material_dict{}; };

Aerial Omniverse Digital Twin 90

material_dict
an unordered map for the material dictionary storing all materials
in the scene: key is the material name (type string) and value is a
pair of <int, EMMaterial>

*The vertices are grouped in tuples of 3 elements for the building triangles, e.g.,
vertices {[0], [1], [2]} for the first triangle, vertices {[3], [4], [5]} for the second
triangles and so on.

RTConfig

A struct storing the configuration of the raytracing parameters.

Member Description

num_rays_in_tho
usands

number of emitted rays in thousands (type int)

max_num_bounc
es

maximum number of scattering events for each emitted ray
(type int)

use_only_first_an
tenna_pair

a bool variable, when set to true only the results for the first
RU-UE antenna pair are returned from runEMSolver()

calc_tau_mins
a bool variable, when set to true , runEMSolver() returns the
minimum propagation delays

simulate_ran
a bool variable, when set to true the full RAN simulation is
enabled

Class AerialEMSolver

AerialEMSolver()

struct RTConfig { int num_rays_in_thousands{}; int max_num_bounces{}; bool
use_only_first_antenna_pair{}; bool calc_tau_mins{}; bool simulate_ran{}; }

AerialEMSolver(const std::vector<TXInfo>& tx_info, const std::vector<RXInfo>&
rx_info, const AntennaInfo& antenna_info, const GeometryInfo&
geometry_info, const RTConfig& rt_cfg, cudaStream_t ext_stream)

Aerial Omniverse Digital Twin 91

Constructor for the AerialEMSolver object.

In/out Parameter Description

[in] tx_info
a vector of TXInfo structs storing the information of the RUs
to be considered

[in] rx_info
a vector of RXInfo structs storing the information of the UEs
to be considered

[in]
antenna_inf
o

AntenaInfo struct storing the information of the user’s
input for the antenna patterns

[in]
geometry_in
fo

GeometryInfo struct storing the information of the scene
geometry and materials

[in] rt_cfg RTConfig struct storing the ray tracing configurations

[in] ext_stream CUDA stream index (type cudaStream_t)

~AerialEMSolver()

Destructor for the AerialEMSolver object.

allocateDeviceMemForResults()

Allocation of device (GPU) memory to store the results of the EM engine.

In/out Parameter Description

[in] tx_indices
a vector of indices (type uint32_t) for the RUs to be
simulated

~AerialEMSolver()

int32_t allocateDeviceMemForResults(const std::vector<uint32_t>& tx_indices,
const std::vector<std::vector<uint32_t>>& rx_indices, const RTConfig& rt_cfg,
const int symbols_per_slot, std::vector<d_complex*>& d_all_CFR_results,
std::vector<float*>& d_all_tau_mins)

Aerial Omniverse Digital Twin 92

[in] rx_indices
a vector of vectors of indices (type uint32_t) of selected UEs
for each selected RUs

[in] rt_cfg RTConfig struct storing the raytracing configuration

[in]
symbols_pe
r_slot

number of symbols (type int) in one slot (either 1 or 14)

[out]
d_all_CFR_r
esults

a vector of device pointers (type d_complex), each pointing
to memory address holding the CFRs for the UEs associated
to a given RU. The content of the vector follows the content of
tx_indices

[out]
d_all_tau_m
ins

a vector of device pointers (type float), each pointing to
memory address holding the minimum propagation delay for
the UEs associated to a given RU. The content of the vector
follows the content of tx_indices

All CFR results for the \(i\)-th RU, i.e., d_all_CFR_results_i = d_all_CFR_results[i] , are
stored in the device memory as a flattened representation of multidimensional
array whose indices, in order, are
<ue_idx>, <symbol_idx>, <freq_idx>, <ue_ant_idx>,
<ru_ant_idx>, <ue_ant_pol_idx>, <ru_ant_pol_idx>

. Similar arrangement is used for the minimum delay results.

For example, the first 6 elements of d_all_CFR_results_i , with the \(i\)-the RU being
equipped with dual-polarized antennas and all associated UEs having two single-
polarized antennas, are:

runEMSolver()

int32_t runEMSolver(const unsigned int time_idx, const std::vector<TXInfo>&
tx_info, const std::vector<RXInfo>& rx_info, const std::vector<uint32_t>&

Aerial Omniverse Digital Twin 93

Launch the EM engine.

In/out Parameter Description

[in] time_idx time index (type unsigned int) in the simulation

[in] tx_info
a vector of TXInfo structs storing the information of all the
RUs to be considered

[in] rx_info
a vector of RXInfo structs storing the information of all the
UEs to be considered

[in] tx_indices
a vector of indices (type uint32_t) for the RUs whose results
need to be computed

[in] rx_indices
a vector of vectors of indices (type uint32_t) of selected UEs
for each RU whose results need to be computed

[in] rt_cfg RTConfig struct storing the ray tracing configurations

[in] symbol_idx symbol index (type int) within a slot

[in]
symbols_per
_slot

number of symbols (type int) in one slot (either 1 or 14)

[in]
all_ray_path
_results

a vector of RayPath structs storing all propagation results
from all selected RUs to their associated UEs

[out]
d_all_CFR_re
sults

a vector of device pointers (type d_complex), each pointing
to memory address holding the CFRs for the UEs associated
to a given RU. The content of the vector follows the content
of tx_indices

[out]
d_all_tau_mi
ns

a vector of device pointers (type float), each pointing to
memory address holding the minimum propagation delay for
the UEs associated to a given RU. The content of the vector
follows the content of tx_indices

tx_indices, std::vector<std::vector<uint32_t>>& rx_indices, const RTConfig&
rt_cfg, const int symbol_idx, const int symbols_per_slot, std::vector<RayPath>&
all_ray_path_results, std::vector<d_complex*>& d_all_CFR_results,
std::vector<float*>& d_all_tau_mins)

Aerial Omniverse Digital Twin 94

copyResultsFromDeviceToHost()

Copy the results of the EM engine from device to host.

In/out Parameter Description

[in] tx_indices
a vector of indices (type uint32_t) for the RUs whose results
need to be computed

[in] rx_indices
a vector of vectors of indices (type uint32_t) of selected UEs
for each RUs whose results need to be computed

[in] rt_cfg RTConfig struct storing the ray tracing configurations

[in]
symbols_pe
r_slot

number of symbols (type int) in one slot (either 1 or 14)

[in]
d_all_CFR_r
esults

a vector of device pointers (type d_complex), each pointing
to memory address holding the CFRs for the UEs associated
to a given RU. The content of the vector follows the content of
tx_indices

[out]
all_CFR_res
ults

a pointer to a host-side vector of vectors for the CFR results,
with the inner vector holding the CFRs from one RU to its
associated UEs and the outer vector following tx_indices

deAllocateDeviceMemForResults()

Deallocate device memory previously used for the EM engine results.

In/out Parameter Description

int32_t copyResultsFromDeviceToHost(const std::vector<uint32_t>& tx_indices,
const std::vector<std::vector<uint32_t>>& rx_indices, const RTConfig& rt_cfg,
const int symbols_per_slot, const std::vector<d_complex*>& d_all_CFR_results,
std::vector<std::vector<d_complex>>* all_CFR_results)

int32_t deAllocateDeviceMemForResults(const RTConfig& rt_cfg,
std::vector<d_complex*>& d_all_CFR_results, std::vector<float*>&
d_all_tau_mins)

Aerial Omniverse Digital Twin 95

[in] rt_cfg RTConfig struct storing the ray tracing configurations

[in]
d_all_CFR_r
esults

a vector of device pointers (type d_complex): each of them
pointing to a device memory that holds complex-valued
amplitude of the CFRs from one RU to its associated UEs. The
size of the vector is equal to size of the tx_indices

[in]
d_all_tau_m
ins

a vector of device pointers (type float), each pointing to
memory address holding the minimum propagation delay for
the UEs associated to a given RU. The content of the vector
follows the content of tx_indices

Error handling

The EM engine has built-in error handling. The function where the error or invalid
condition occurs is recorded and error messages are propagated to both the local and
console and the Console tab in the graphical interface.

EMLogLevel

An enumeration for the level of logging.

EMLogCallback

Callback function prototype.

registerLogCallback()

Function to register a callback function (type EMLogCallback) for error handling.

deregisterLogCallback()

enum class EMLogLevel {ERROR=0, NOTIFY=1, WARNING=2, INFO=3,
DEBUG=4, VERBOSE=5}

EMLogCallback = std::function<void(EMLogLevel, const std::string&)>

int32_t registerLogCallback(EMLogCallback func)

Aerial Omniverse Digital Twin 96

Function to deregister the currently registered callback function.

Source code and dev. container

The source code for the RAN digital twin can be found in the folder aodt_sim , a
subfolder of backend_bundle . This source code can be modified using the released
development container. To launch the development container, we can use the
aodt_sim\container\run_aodt_sim_devel.sh script, which will launch the development

container in daemon mode, and then use docker exec -it c_aodt_sim_$USER /bin/bash
to start a shell session inside the development container.

The run_aodt_sim_devel.sh script mounts the source code into the container so that
edits and builds within the development container persist on the host disk. To build the
aodt_sim executable, we can follow these instructions, starting on the host where
aodt_sim runs:

Bug reporting

When reporting bugs to NVIDIA, the following information ensures that the error can be
reproduced and correctly addressed.

The Aerial Omniverse Digital Twin release version

The system configuration where the bug occurs

int32_t deregisterLogCallback()

cd aodt_sim # Here GPU is set to 0 to use GPU device 0 inside the container. # Set to
desired GPU number. GPU=0 ./container/run_aodt_sim_devel.sh docker exec -it
c_aodt_sim_$USER /bin/bash # Inside the development container # Set SM to the value
for the GPU being used. Examples include # A100=80, H100=90, L40=89 SM=80 cmake -
Bbuild -GNinja -DCMAKE_CUDA_ARCHITECTURES=$SM -DNVTX_ENABLED=OFF -
DENABLE_CCACHE=OFF -DCMAKE_BUILD_TYPE=RelWithDebInfo cmake --build build
Test the build OMNI_USER=omniverse OMNI_PASS=aerial_123456 ./build/aodt_sim
--nucleus omniverse://omniverse-server

Aerial Omniverse Digital Twin 97

A detailed description of the issue (errors or unexpected outcomes) and of the steps
to reproduce it.

Bugs can be reported via the NVIDIA Aerial Developer Forum, for which a developer
account and is necessary.

[1]

ITU, “Effects of building materials and structures on radio wave propagation above about
100 MHz”, Recommendation P.2040-3, August 2023.

[2]

V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Measurement and
modelling of scattering from buildings,” IEEE Trans. Antennas Propag., vol. 55, no. 1, pp.
143–153, January 2007.

© Copyright 2024, NVIDIA.. PDF Generated on 06/06/2024

https://forums.developer.nvidia.com/c/accelerated-computing/nvidia-6g-developer-program/674
https://developer.nvidia.com/developer-program
https://developer.nvidia.com/developer-program

	Aerial Omniverse Digital Twin - User Guide

