Table of contents | Product Highlights | | |----------------------------|--| | Key Performance Indicators | | | Product Features | | # **List of Figures** Figure 0. Image61 ### **Product Highlights** - A wideband, real-time platform to replace existing narrow-band, non-real-time systems - A full-featured platform for NG wireless evolution - C/C++ programmable from the physical layer through to the Core Node (CN) - Quick network onboarding and algorithm development in real-time networks - Accelerated AI experimentation in wireless RAN workloads - A pipeline for data collection, storage, and parsing using 3GPP schema for wireless communication. # **Key Performance Indicators** The configuration and capabilities of ARC-OTA 1.3 are outlined in the following sections. | Number Antennas | 4T4R | |---|--------------------------------| | Number of Component Carriers | 1x 100MHz carrier | | Subcarrier Spacing (PDxCH; PUxCH, SSB) | 30kHz | | FFT Size | 4096 | | MIMO layers | DL: 2 layers; UL: 1 layers | | Duplex Mode | Release 15 SA TDD | | Number of RRC connected UEs | 16 | | Number of UEs/TTI | 2 | | Frame structure and slot format | DDDDDDSUUU | | | DDDSU | | User plane latency (RRC connected mode) | < 10ms one way for DL and UL | | Synchronization and Timing | IEEE 1588v2 PTP; SyncE; LLS-C3 | | Frequency Band | n78 | |----------------------------|--| | Max Transmit Power | 22dBM at RF connector | | Peak Throughput KPI | DL: ~460Mbps; UL: ~112Mbps | | | > 4.0 hours exercised (Dell R750 + A100X) | | Bi-directional UDP Traffic | > 4.0 hours exercised (Gigabyte + A100 + CX6-
DX) | ### (i) Note OTA test was performed with the following configuration: Samsung S22 + Gigabyte + DDDDDDSUUU. # **Product Features** | Feature | Description | |---------------------------------------|---| | Software
Containers | A 3GPP Release 15 compliant and O-RAN 7.2 split 5G SA 4T4R wireless stack, with all network elements from Radio Access Network and 5G Core. Aerial CUDA-Accelerated RAN Layer 1 is integrated with Open Air Alliance (OAI) (https://openairinterface.org/) Distributed Unit (DU), Centralized Unit(CU), or a 5G NR gNB and 5G Core Node(CN) network elements. | | Deployme
nt
Blueprint | A blueprint to ease developer onboarding, staging, and integration of all advanced 5G network components, including step-by-step verification through bi-directional UDP traffic with tutorials, FAQs, and troubleshooting tips to configure all the network components for a quick-turnaround live network. <u>SDK Manager</u> automation takes this a step further and automates developer environment setup. | | Network
Compone
nt
Blueprint | Advanced 5G NR network component blueprint and NVIDIA lab integrated and OTA-qualified HW BOM manifest. | | Source
Code | Complete access to source code in C/C++, from Layer 1 through 5GC to jump start customizations and next-generation algorithm research | | Access | | |--------|---| | | The <u>Kubernetes Service Management</u> optional developer extension from Sterling provides two capabilities: Kubernetes Service Orchestration and Service Monitoring. | #### **5G Fronthaul Features** | RU Category | Category A | |-------------------------|---| | FH Split Compliance | 7.2x with DL low-PHY to include Precoding, Digital BF, iFFT+CP and UL low-PHY to include FFT-CP, Digital BF | | FH Ethernet Link | 25Gbps x 1 lane | | Transport encapsulation | Ethernet | | Transport header | eCPRI | | C Plane | Conformant to O-RAN-WG4.CUS.0-v02.00 7.2x split | | U Plane | Conformant to O-RAN-WG4.CUS.0-v02.00 7.2x split | | S Plane | Conformant to O-RAN-WG4.CUS.0-v02.00 7.2x split | | M Plane | Conformant to O-RAN-WG4.CUS.0-v02.00 7.2x split | | RU Beamforming Type | Code book based | ## **5G NR gNB Features** #### Component #### Capabilities #### gNB PHY Aerial CUDA-Accelerated RAN Layer 1 PHY (cuPHY) adheres to 3GPP Release 15 standard specifications to deliver the following capabilities. PHY capabilities include the following: - Error detection on the transport channel and indication to higher layers - FEC encoding/decoding of the transport channel - Hybrid ARQ soft combining - Rate matching of the coded transport channel to physical channels - Mapping of the coded transport channel onto physical channels - Power weighting of physical channels - Modulation and demodulation of physical channels including - Frequency and time synchronization - Radio characteristics measurements and indication to higher layers - Multiple Input Multiple Output (MIMO) antenna processing - Transmit Diversity (TX diversity) - Digital and Analog Beamforming - RF processing 3GPP standards specifications that define the Layer 1 compliance are: - TS 38.211 (38.211 v15.8.0) numerologies, physical resources, modulation, sequence, signal generation - TS 38.212 (38.212 v15.8.0) Multiplexing and channel coding - TS 38.213 (38.213v15.8.0) Physical layer procedures for control - TS 38.214 (38.214v15.8.0) Physical layer procedures for data - TS 38.215 (38.215v15.8.0) Physical layer measurements - TS 38.104 (base station radio Tx and Rx) Base Station (BS) radio transmission and reception Aerial CUDA-Accelerated RAN complies with ORAN FH CUS specification version 3 (version 4 for power scaling) Aerial CUDA-Accelerated RAN complies with northbound interfaces adopted by industry based on Small Cells Forum for Layer 1 and Layer 2 (SCF FAPI). #### gNB MAC - MAC -> PHY configuration using NR FAPI P5 interface - MAC <-> PHY data interface using FAPI P7 interface for BCH PDU, DCI PDU, PDSCH PDU - Scheduler procedures for SIB1 - Scheduler procedures for RA - Contention Free RA procedure - o Contention Based RA procedure - Msg3 can transfer uplink CCCH, DTCH or DCCH messages - CBRA can be performed using MAC CE or C-RNTI - Scheduler procedures for CSI-RS - MAC downlink scheduler - phy-test scheduler (fixed allocation and usable also without UE) - o regular scheduler with dynamic allocation - MCS adaptation from HARQ BLER - MAC header generation (including timing advance) - ACK / NACK handling and HARQ procedures for downlink - MAC uplink scheduler - phy-test scheduler (fixed allocation) - o regular scheduler with dynamic allocation - HARQ procedures for uplink - Scheduler procedures for SRS reception - o Periodic SRS reception - Channel rank computation up to 2x2 scenario - TPMI computation based on SRS up 4 antenna ports and 2 layers | | MAC procedures to handle CSI measurement report evaluation of RSRP report evaluation of CQI report MAC scheduling of SR reception Bandwidth part (BWP) operation Handle multiple dedicated BWPs BWP switching through RRCReconfiguration method | |----------|---| | gNB RLC | Segmentation and reassembly procedures RLC Acknowledged mode supporting PDU retransmissions RLC Unacknowledged mode DRBs and SRBs establishment/handling and association with RLC entities Timers implementation Interfaces with PDCP, MAC Interfaces with gtp-u (data Tx/Rx over F1-U at the DU) Send/Receive operations according to 38.322 Rel.16 | | gNB PDCP | Integrity protection and ciphering procedures Sequence number management, SDU discard and in-order delivery Radio bearer establishment/handling and association with PDCP entities Interfaces with RRC, RLC Interfaces with gtp-u (data Tx/Rx over N3 and F1-U interfaces) Send/Receive operations according to 38.323 Rel.16 | | gNB SDAP | Establishment/Handling of SDAP entities. Transfer of User Plane Data Mapping between a QoS flow and a DRB for both DL and UL Marking QoS flow ID in both DL and UL packets Reflective QoS flow to DRB mapping for UL SDAP data PDUs Send/Receive operations according to 37.324 Rel.15 | | gNB X2AP | • Integration of X2AP messages and procedures for the exchanges with the eNB over X2 interface according to 36.423 Rel. 15 | | gNB NGAP | Integration of NGAP messages and procedures for the exchanges with the AMF over N2 interface according to 38.413 Rel. 15 NGAP Setup request/response NGAP Initial UE message | | | NGAP Initial context setup request/response NGAP Downlink/Uplink NAS transfer NGAP UE context release request/complete NGAP UE radio capability info indication NGAP PDU session resource setup request/response Interface with RRC | |-----------|--| | gNB F1AP | Integration of F1AP messages and procedures for the control plane exchanges between the CU and DU entities according to 38.473 Rel. 16 F1 Setup request/response F1 DL/UL RRC message transfer F1 Initial UL RRC message transfer F1 UE Context setup request/response F1 gNB CU configuration update Interface with RRC Interface with gtp-u (tunnel creation/handling for F1-U interface) | | gNB GTP-U | New gtp-u implementation supporting both N3 and F1-U interfaces according to 29.281 Rel.15 Interfaces with RRC, F1AP for tunnel creation Interfaces with PDCP and RLC for data send/receive at the CU and DU respectively (F1-U interface) Interface with SDAP for data send/receive, capture of GTP-U Optional Header, GTP-U Extension Header and PDU Session Container. | #### **5G Core Features** | OAI CN | |--------| |--------| © Copyright 2024, NVIDIA... PDF Generated on 06/13/2024