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Aerial CUDA-Accelerated RAN brings together the Aerial software for 5G and AI
frameworks and the NVIDIA accelerated computing platform, enabling TCO reduction and
unlocking infrastructure monetization for telcos.

Aerial CUDA-Accelerated RAN has the following key features:

Software-defined, scalable, modular, highly programmable and cloud-native,
without any fixed function accelerators. Enables the ecosystem to flexibly adopt
necessary modules for their commercial products.

Full-stack acceleration of DU L1, DU L2+, CU, UPF and other network functions,
enabling workload consolidation for maximum performance and spectral efficiency,
leading to best-in-class system TCO.

General purpose infrastructure, with multi-tenancy that can power both traditional
workloads and cutting-edge AI applications for best-in-class RoA.

What’s New in 24-1

Now Available in Release 24-1 for Aerial CUDA-Accelerated RAN

Aerial cuPHY: CUDA accelerated inline PHY

64T64R Massive MIMO (early access)

Enhanced L1-L2 interface

4T4R @ 100MHz multicell capacity on Grace Hopper

CSI-P2 enhancement

O-RAN Fronthaul

Grace Hopper MIG support

4T4T new feature support

Aerial cuMAC: CUDA accelerated MAC scheduler

pyAerial: Python interface to cuPHY modules and pipeline
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Aerial Data Lake: Data collection service for PHY to enable AI/ML training
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Aerial cuBB
The NVIDIA cuBB SDK provides GPU accelerated 5G signal processing pipeline including
cuPHY for Layer 1 PHY, cuMAC for L2 scheduler, delivering unprecedented throughput
and efficiency by keeping all the processing within the high-performance GPU memory.

Aerial cuBB is a software-defined, scalable, modular, highly programmable and cloud-
native, without any fixed function accelerators. Enables the ecosystem to flexibly adopt
necessary modules for their commercial products.

Aerial cuBB has the following key components:

cuPHY: L1 library of the Aerial CUDA-Accelerated RAN. It is designed as an inline
accelerator to run on NVIDIA GPUs and it does not require any additional hardware
accelerator.

cuMAC: L2 MAC Scheduler library of the Aerial CUDA-Accelerated RAN for
accelerating 5G/6G MAC layer scheduler functions with NVIDIA GPUs.

cuBB Installation Guide
This section describes how to install the Aerial cuBB.

Important Terms

Term or
Abbreviation

Definition

Aerial SDK that accelerates 5G RAN functions with NVIDIA GPUs

cuBB
CUDA GPU software libraries/tools that accelerate 5G RAN compute-
intensive processing

cuPHY CUDA 5G PHY layer software library for the cuBB

cuPHY-CP cuPHY control-plane software
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cuMAC
CUDA-based platform for accelerating 5G/6G MAC layer scheduler
functions with NVIDIA GPUs

HDF5
A data file format used for storing test vectors. The HDF5 software library
provides the functions for reading and writing the test vectors.

CMake
A software tool for configuring the makefiles for building the CUDA
examples (see https://cmake.org/)

DPDK Data Plane Development Kit

CX6-DX Mellanox ConnectX6-DX NIC

cuBB Quickstart Guide
This section explains how to run the Aerial cuBB software examples.

Important Terms

Term or
Abbreviation

Definition

Aerial Software suite that accelerates 5G RAN functions with NVIDIA GPUs

cuBB
CUDA GPU software libraries/tools that accelerate 5G RAN compute-
intensive processing

cuPHY CUDA 5G PHY layer software library of the cuBB

cuPHY-CP cuPHY control-plane software

HDF5
A data file format used for storing test vectors. The HDF5 software library
provides the functions for reading and writing test vectors.

CMake
A software tool for configuring the makefiles for building the CUDA
examples (https://cmake.org/)

DPDK Data Plane Development Kit

DOCA
DOCA is a software framework that helps developers create applications
and services on top of the NVIDIA BlueField networking platform.

GDR GPUDirect RDMA

https://cmake.org/
https://cmake.org/
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FH Fronthaul

TV Test Vector

Aerial cuPHY
cuPHY is the 5G L1 library of the Aerial CUDA-Accelerated RAN. It is designed as an inline
accelerator to run on NVIDIA GPUs and it does not require any additional hardware
accelerator.

Aerial cuPHY Developer Guide

Aerial CUDA-Accelerated RAN is a set of software defined libraries that are optimized to
run 5G gNB workloads on GPU. These libraries include cuPHY, cuMAC and pyAerial. In
this section, we focus on layer-1 (L1), or physical (PHY) layer of 5G gNB software stack as
defined by 3GPP [1-5].

cuPHY is the 5G L1 library of the Aerial CUDA-Accelerated RAN. It is designed as an inline
accelerator to run on NVIDIA GPUs and it does not require any additional hardware
accelerator. It is implemented according to the O-RAN 7.2 split option [8]. cuPHY library
takes advantage of massively parallel GPU architecture to accelerate computationally
heavy signal processing tasks. It also makes use of fast GPU I/O interface between the
NVIDIA Bluefield-3 (BF3) NIC and GPU (GPU Direct RDMA [7]) to improve the latency.

BF3 NIC provides the fronthaul (FH) connectivity in addition to the IEEE 1588 compliant
timing synchronization. The BF3 NIC also has a built-in SyncE and eCPRI windowing
functionality, which meets G.8273.2 timing requirements.

In the following, we first give an overview of cuPHY library software stack. cuPHY library
consists of L1 controller components running on the CPU and PHY layer functions
running on the GPU. After providing the overview, we will go into details of each
component and explain how L1 controller components interact with each other and L2.
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Finally, we will go over the PHY layer signal processing functions, which are accelerated as
CUDA kernel implementations.

Aerial CUDA-Accelerated Software Stack within 5G gNB DU

Acronyms and Definitions

Acronym Description

3GPP Third Generation Partnership Project

5G NR Fifth generation new radio

CB Code Block

CSI Channel State Information

CSI-RS
Channel State Information Reference
Signal

CUDA Compute Unified Device Architecture

cuBB
CUDA base-band (L1 software stack
consisting of L2 adapter, PHY control layer
and PHY layer)

CUDA Compute Unified Device Architecture

cuPHY
CUDA PHY (L1 functionality on the GPU
accelerator in inline mode)

DCI Downlink Control Information
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DL Downlink

DMRS Demodulation Reference Signal

DU or O-DU
O-RAN Distributed Unit (a logical node
hosting RLC/MAC/High-PHY layers based
on a lower layer functional split.)

eCPRI Ethernet Common Public Radio Interface

eAxC
Extended Antenna Carrier: a data flow for
a single antenna (or spatial stream) for a
single carrier in a single sector

FAPI
Functional Application Programming
Interface

FH Fronthaul

H2D Host-to-device memory

LDPC Low-density Parity Check

NIC Network interface card

O-RAN Open RAN

PBCH Physical Broadcast Channel

PDCCH Physical Downlink Control Channel

PDSCH Physical Downlink Shared Channel

PRACH Physical Random Access Channel

PUCCH Physical Uplink Control Channel

PUSCH Physical Uplink Shared Channel

RAN Radio Access Network

RM Reed-Muller

RU or O-RU
O-RAN Radio Unit: a logical node hosting
Low-PHY layer and RF processing based on
a lower layer functional split

SCF Small Cell Forum

SSB Synchronization Signal Block
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SyncE
Synchronous Ethernet: is an ITU-T
standard to provide a synchronization
signal to network resources

UCI Uplink Control Information

UL Uplink

TB Transport Block

Aerial cuMAC

Aerial cuMAC is a CUDA-based platform for accelerating 5G/6G MAC layer scheduler
functions with NVIDIA GPUs. cuMAC supported scheduler functions include UE
selection/grouping, PRB allocation, layer selection, MCS selection/link adaptation and
dynamic beamforming, all designed for the joint scheduling of multiple coordinated cells.
cuMAC offers a C/C++ based API for the offloading of scheduler functions from the L2
stack in the DUs to GPUs. In the future, cuMAC will evolve into a platform that combines
AI/ML based scheduler enhancements with GPU acceleration.
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Aerial L2 scheduler acceleration data flow chart

cuMAC is the main component of the Aerial L2 scheduler acceleration solution. The figure
above illustrates the overall data flow of the scheduler acceleration. The full solution
consists of the following components: 1) Aerial Scheduler Acceleration API, which is a per-
cell message passing-based interface between the 3rd party L2 stack on DU/CU and
cuMAC-CP, 2) cuMAC-CP, 3) cell group-based cuMAC API, and 4)cuMAC multi-cell
scheduler (cuMAC-sch) modules.

The 3rd party L2 stack sits on the CPU and contains a single-cell L2 scheduler for each
individual cell under its control. To offload L2 scheduling to GPU for
acceleration/performance purposes, in each time slot (TTI), the L2 stack host sends per-
cell request messages to cuMAC-CP through the Aerial Scheduler Acceleration API, which
consists of required scheduling input & config. information from each single-cell
scheduler. Upon receiving the per-cell request messages, cuMAC-CP integrates all
scheduler input information from those (coordinated) cells into the cuMAC API cell group
data structures and populates the GPU data buffers contained in these structures. Next,
the cuMAC multi-cell scheduler (cuMAC-sch) modules are called by cuMAC-CP through
cuMAC API to compute scheduling solutions for the given time slot (TTI). After the cuMAC-
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sch modules complete the computation and the scheduling solutions become available in
the GPU memory, cuMAC-CP converts them into per-cell response messages and sends
them back to the L2 stack host on CPU through the Aerial Scheduler Acceleration API.
Finally, the L2 stack host uses the obtained solutions to schedule the cells under its
control.

When there are multiple coordinated cell groups, a separate set of Aerial Scheduler
Acceleration API, cuMAC-CP, cuMAC API and cuMAC instances should be constructed and
maintained for each cell group.

Implementation Details

Multi-cell scheduling - All cuMAC scheduling algorithms are implemented as CUDA
kernels that are executed by GPU and jointly compute the scheduling solutions (PRB
allocation, MCS selection, layer selection, etc.) for a group of cells at the same time.
The algorithms can be constrained to single cell scheduling by configuring a single
cell in the cell group. A comparison between the single-cell scheduler and multi-cell
scheduler approaches is given in the below figure.

Single-cell scheduler approach vs. multi-cell scheduler approach

Scheduling algorithm CUDA implementation

PF UE down-selection algorithm - cuMAC offers a PF-based UE selection
algorithm to down-select a subset of UEs for new transmissions or HARQ re-
transmissions in each TTI from the pool of all active UEs in each cell of a cell
group. The association of UEs and cells in the cell group is an input to the UE
selection module. When selecting UEs for each cell in each TTI, the UE
selection algorithm first assigns a priority weight to each active UE in a cell and
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then sorts all active UEs in descending order of the priority weight. The subset
of UEs that have the highest priority weights in each cell are selected for
scheduling in a TTI. The number of selected UEs per cell is an input parameter
to this module. HARQ re-transmissions are always assigned with the highest
priority weight. For the new-transmission UEs, their priority weights are the PF
metrics, calculated as the ratio of each UE’s long-term average throughput and
its instantaneous achievable data rate. The UE selection algorithm is
implemented as CUDA kernels that run on GPU and jointly select UEs for all
cells in a cell group at the same time.

PF PRB allocation algorithms - cuMAC offers algorithms to perform channel-
aware and frequency-selective PRB allocation among a group of cells and their
connected active UEs on a per-TTI basis. The input arguments to the PRB
allocation algorithms include the narrow-band SRS channel estimates (MIMO
channel matrices) per cell-UE link, the association solutions between cells and
UEs, and other UE status and cell group parameters. The output is the PRB
allocation solution for the cell group, whose data format depends on the type
of allocation: 1) for type-0 allocation, a per UE binary bitmap indicating
whether each PRB is allocated to the UE, and 2) for type-1 allocation, with 2
elements per UE indicating the starting and ending PRB indices for the UE’s
allocation. Two versions of the PRB allocation algorithms are provided, one for
single cell scheduling and the other for multi-cell joint scheduling. A major
difference between the two versions is that the multi-cell algorithm considers
the impact of inter-cell interference in the evaluation of per-PRB SINRs, which
can be derived from the narrow-band SRS channel estimates. The single-cell
version does not explicitly consider inter-cell interference and only utilizes
information restricted to each individual cell. The multi-cell algorithm can lead
to a globally optimized resource allocation in a cell group by leveraging all
available information from the coordinated multiple cells. A prototyping CUDA
kernel implementation of PRB allocation algorithms is provided in the figure
below.

Layer selection algorithm - cuMAC offers layer selection algorithms that
choose the best set of layers for transmission for a UE based on the singular
value distribution across the UE’s multiple layers. A predetermined singular
value threshold is used to find the number of layers (with descending singular
values) that can be supported on each subband (PRB group). Then the
minimum number of layers across all allocated subbands to the UE is chosen
as the optimal layer selection solution. Input arguments to the layer selection
algorithms include the PRB allocation solution per UE, the singular values of
each UE’s channel on its allocated subbands, the association solutions
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between cells and UEs, and other UE status and cell group parameters. The
output is the per-UE layer selection solution. The layer selection algorithm is
implemented as CUDA kernels that run on GPU and jointly select layers for all
UEs in a cell group at the same time.

MCS selection algorithm - cuMAC offers MCS selection algorithms that
choose the best feasible MCS (highest level that can meet a given BLER target)
per UE based on a given PRB allocation solution. An outer-loop link adaptation
algorithm is integrated internally to the MCS selection algorithm, which offsets
the SINR estimates based on previous transport block decoding results per UE
link. Input arguments to the MCS selection algorithms include the PRB
allocation solution per UE, the narrow-band SRS channel estimates (MIMO
channel matrices) per cell-UE link, the association solutions between cells and
UEs, the decoding results of the last transport block for each UE, and other UE
status and cell group parameters. The output is the per-UE MCS selection
solution. The MCS selection algorithm is implemented as CUDA kernels that
run on GPU and jointly select MCS for all UEs in a cell group at the same time.

Support for HARQ - all the above cuMAC scheduler algorithms can support
HARQ re-transmissions with non-adaptative mode, i.e., reusing the same
scheduling solution of the initial transmission for re-transmissions.

CPU reference code - CPU C++ implementation of the above algorithms is also
provided for verification and performance evaluation purposes.

Different CSI types - cuMAC offers scheduler algorithm CUDA kernels to work with
different CSI types, including SRS channel coefficient estimates and CSI-RS based
channel quality information.

Support for FP32 and FP16 - cuMAC offers scheduler algorithm CUDA kernels
implemented in FP32 and FP16. Using FP16 kernels can help reduce scheduler
latency with a minor performance loss.
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A prototyping CUDA kernel implementation of PRB allocation algorithms
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Aerial Data Lake
6G will be artificial intelligence (AI) native. AI and machine learning (ML) will extend
through all aspects of next generation networks from the radio, baseband processing,
the network core including system management, orchestration and dynamic optimization
processes. GPU hardware, together with programming frameworks will be essential to
realize this vision of a software defined native-AI communication infrastructure.

The application of AI/ML in the physical layer has particularly been a hot research topic.

There is no AI without data. While the synthetic data generation capabilities of Aerial
Omniverse Digital Twin (AODT) and Sionna/SionnaRT are essential aspects of a research
project, availability of over-the-air (OTA) waveform data from real-time systems is equally
important. This is the role of Aerial Data Lake. It is a data capture platform supporting the
capture of OTA radio frequency (RF) data from virtual radio access network (vRAN)
networks built on the Aerial CUDA-Accelerated RAN. Aerial Data Lake consists of a data
capture application (app) running on the base station (BS) distributed unit (DU), a
database of samples collected by the app, and an application programming interface
(API) for accessing the database.

Target Audience

Industry and university researchers and developers looking to bring ML to the physical
layer with the end goal of benchmarking on OTA testbeds like NVIDIA ARC-OTA or other
GPU-based BSs.

Key Features

Aerial Data Lake has the following features:

Real-time capture of RF data from OTA testbed

Aerial Data Lake is designed to operate with gnBs built on the Aerial CUDA-
Accelerated RAN and that employ the Small Cell Forum FAPI interface between L2
and L1. One example system being the NVIDIA ARC-OTA network testbed. I/Q
samples from O-RUs connected to the GPU platform via a O-RAN 7.2x split fronthaul
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interface are delivered to the host CPU and exported to the Aerial Data Lake
database.

Aerial Data Lake APIs to access the RF database

The data passed to the layer-2 via RX_Data.Indication and UL_TTI.Request are
exported to the database. The fields in these data structures form the basis of the
database access APIs.

Scalable and time coherent over arbitrary number of BSs

The data collection app runs on the same CPU that supports the DU. It runs on a
single core, and the database runs on free cores. Because each BS is responsible for
collecting its own uplink data, the collection process scales as more BSs are added
to the network testbed. Database entires are time-stamped so data collected over
multiple BSs can be used in a training flow in a time-coherent manner.

Use in conjunction with pyAerial to generate training data for neural network
physical layer designs

Aerial Data Lake can be used in conjunction with the NVIDIA pyAerial CUDA-
Accelerated Python L1 library. Using the Data Lake database APIs, pyAerial can
access RF samples in a Data Lake database and transform those samples into
training data for all the signal processing functions in an uplink or downlink
pipeline.

Design

Aerial Data Lake sits beside the Aerial L1 and copies out data that would be useful for
machine learning into an external database.
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Figure 1: The Aerial Data Lake data capture platform as part of the gNB.

Uplink I/Q data from one or more O-RAN radio units (O-RUs) is delivered to GPU memory
where it is both processed by the Aerial L1 PUSCH baseband pipeline and delivered to
host CPU memory. The Aerial Data Lake collector process writes the I/Q samples to the
Aerial Data Lake database in the fh table. The fh table has columns for SFN, Slot, IQ
samples as fhData, and the start time of that SFN.slot as TsTaiNs.

The collector app saves data that the L2 sent to L1 to describe UL OTA transmissions in
UL_TTI.Request messages as well as data returned to L2 the via RX_Data.Indication and
CRC.Indication. This data is then written to the fapi database table. These messages and
the fields within them are described in SCF 5G FAPI PHY Spec version 10.02, sections
3.4.3, 3.4.7, and 3.4.8.

Each gNB in a network testbed collects data from all O-RUs associated with it. That is,
data collection over the span of a network is performed in a distributed manner, each
gNB is building its own local database. Training can be performed locally at each gNB,
and site-specific optimizations can be realized with this approach. Since the data in a
database is time-stamped, the local databases can be consolidated at a centralized
compute resource and training performed using the time aligned aggregated data. In
cases where the aerial pusch pipeline was unable to decode due to channel conditions,

https://scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php
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retransmissions can be used as ground truth as long as one of the retransmissions
succeeds, allowing the user to test algorithms with better performance than the originals.

The Aerial Data Lake database storage requirements depend on the number of O-RUs,
the antenna configuration of the O-RU, the carrier bandwidth, the TDD pattern and the
number of samples to be collected. Collecting IQ samples of 1 million tranmissions from a
single RU 4T4R O-RU employing a single 100MHz carrier will consume approximately 660
GB of storage.

Aerial Data Lake database comprises the fronthaul RF data. However, for many training
applications access to data at other nodes in the receive pipeline is required. A pyAerial
pipeline, together with the Data Lake database APIs, can access samples from an Aerial
Data Lake database and transform that data into training data for any function in the
pipeline.

Figure 2 illustrates data ingress from a Data Lake database into a pyAerial pipeline and
using standard Python file I/O to generate training data for a soft de-mapper.

Figure 2: pyAerial is used in conjunction with the NVIDIA data collection platform, namely,
Aerial Data Lake to build training data sets for any node in the layer-1 downlink or uplink
signal processing pipeline. The example shows a Data Lake database of over-the-air samples
transformed into training data for a neural network soft de-mapper.

Installation

Aerial Data Lake is compiled by default as part of cuphycontoller. If you would like to
record fresh data every time cuphycontroller is started, see the section on Fresh Data.
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Start by installing Clickhouse database on the server collecting the data. The command
below will download and run an instance of the clickhouse server in a docker container.

By default clickhouse will not drop large tables, and will return an error if attempted. The
clickhouse-cpp library does not return exceptions so to avoid what loooks like a
cuphycontroller crash we recommend allowing it to drop large tables using the following
command:

Usage

In the cuphycontoller adapter yaml configuration file, enable data collection by specifying
a core then start cuphycontroller and usual. The core should be on the same NUMA node
as the rest of cuphycontroller, i.e. should follow the same pattern as the rest of the cores
An example of this can be found commented out in cuphycontroller_P5G_FXN_R750.yaml.

When enabled the DataLake object is created and DataLake::dbInit() initializes the two
tables in the database. After cuphycontroller runs the PUSCH pipeline, cupycontroller
calls DataLake::notify() with the addresses of the data to be saved, which DataLake then
saves. When DataLake::waitForLakeData wakes up it calls DataLake::dbInsert() which
appends data to respective Clickhouse columns, then sleeps waiting for more data. Once
20 PUSCH transmissions have been stored or a total of datalake_samples have been
recived the columns are appended to a Clickhouse::Block and inserted into the respective
table.

docker run -d \ --network=host \ -v $(realpath ./ch_data):/var/lib/clickhouse/ \ -v
$(realpath ./ch_logs):/var/log/clickhouse-server/ \ --cap-add=SYS_NICE --cap-
add=NET_ADMIN --cap-add=IPC_LOCK \ --name my-clickhouse-server --ulimit
nofile=262144:262144 clickhouse/clickhouse-server

sudo touch './ch_data/flags/force_drop_table' && sudo chmod 666
'./ch_data/flags/force_drop_table'

cuphydriver_config: # Fields added for data collection datalake_core: 19 # Core on
which data collection runs. E.g isolated odd on R750, any isolated core on gigabyte
datalake_address: localhost datalake_samples: 1000000 # Number of samples to
collect for each UE/RNTI. Defaults to 1M

https://clickhouse.com/docs/en/install
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Using Data Lake in Notebooks

Follow pyAerial instructions and usual to build and launch that container. It must be run
on a server with a GPU.

Two example notebooks for are included:
datalake_channel_estimation.ipynb performs channel estimation and plots the result
datalake_chan_estimation_decoding.ipynb goes futher and runs the full PUSCH decoding
pipeline, both a fused version and a version build up up constituent parts

Notes

Database Administration

Clickhouse client

A clickhouse client is needed to interact with the server. To download it and run it do the
following:

You are now at the clickhouse client prompt. Commands starting with aerial-gnb :) are
entered at this prompt and those with $ are run on the host.

Database Import

There are example fapi and fh tables included in Aerial CUDA-Accelerated RAN. These
tables can be imported into the clickhouse database by copying them to the clickhouse
user_files folder, using the client to import them:

curl https://clickhouse.com/ | sh ./clickhouse client aerial@aerial-gnb:~$
./clickhouse client ClickHouse client version 24.3.1.1159 (official build). Connecting
to localhost:9000 as user default. Connected to ClickHouse server version 24.3.1.
aerial-gnb :)

$ docker cp c_aerial_$USER:/opt/nvidia/cuBB/pyaerial/notebooks/data/fh.parquet .
$ docker cp c_aerial_$USER:/opt/nvidia/cuBB/pyaerial/notebooks/data/fapi.parquet
. $ sudo cp *.parquet ./ch_data/user_files/ aerial-gnb :) create table fapi ENGINE =
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You now have five PUSCH transmissions loaded in the database and can run the example
notebooks.

Database Queries

To show some information about the entries (rows) you can run the following:

MergeTree primary key TsTaiNs settings allow_nullable_key=1 as select * from
file('fapi.parquet',Parquet) Ok. aerial-gnb :) create table fh ENGINE = MergeTree
primary key TsTaiNs settings allow_nullable_key=1 as select * from
file('fh.parquet',Parquet) Ok. aerial-gnb :) select table,
formatReadableSize(sum(bytes)) as size from system.parts group by table SELECT
`table`, formatReadableSize(sum(bytes)) AS size FROM system.parts GROUP BY
`table` Query id: 95451ea7-6ea9-4eec-b297-15de78036ada

table size   fh  4.54 MiB   fapi  2.18 KiB
 

# Show counts of transmissions for all RNTIs aerial-gnb :) select rnti, count(*) from
fapi group by rnti SELECT rnti, count(*) FROM fapi GROUP BY rnti Query id:
76cf63d8-7302-4d73-972e-8ba7392da7ac rnti count()   55581  5 

 # Show select information from all rows of the fapi table
aerial-gnb :) from fapi select TsTaiNs,TsSwNs,SFN,Slot,pduData SELECT TsTaiNs,
TsSwNs, SFN, Slot, pduData FROM fapi Query id: af362836-b379-46fd-85ae-
0e9f62deb8ab

TsTaiNs TsSwNs SF
 2024-03-21 12:18:39.162000000  2024-03-21 12:18:39.162990534  192  4 

[62,1,0,63,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,
  2024-03-21 12:18:39.187000000  2024-03-21 12:18:39.188086009  194  14 

[1,36,192,1,0,1,58,12,191,0,166,41,62,128,2,191,0,46,0,6,128,128,120,136,120,127,128,
  2024-03-21 12:18:39.192000000  2024-03-21 12:18:39.194784691  195  4 

[62,1,0,63,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,
  2024-03-21 12:18:39.252000000  2024-03-21 12:18:39.253086195  201  4 

[1,3,0,2,0,61,0,57,63,51,63,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33,33
  2024-03-21 12:18:39.332000000  2024-03-21 12:18:39.332997301  209  4 

[1,38,192,2,0,2,58,13,191,0,216,239,96,3,131,63,0,44,138,152,7,112,128,220,160,94,152
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Fresh Data

The database of IQ samples grows quite quickly. If you want fresh data every run the
tables can be dropped automatically by uncommenting these lines in cuPHY-
CP/data_lakes/data_lakes.cpp:

Dropping Data

You can manually drop all of the data from the database with these commands:

Jupyter notebooks

Exceptions are not always displayed in jupyter notebooks the way that it would be if a
python script had been run, so in some cases it can be easier to convert the notebook to
a script and run that.

5 rows in set. Elapsed: 0.002 sec. #Show start times of fh table aerial-gnb :) from fh
select TsTaiNs,TsSwNs,SFN,Slot SELECT TsTaiNs, TsSwNs, SFN, Slot FROM fh Query
id: 078d451a-5db9-4f35-b890-96b2c561fdbe

TsTaiNs TsSwNs SF
 2024-03-21 12:18:39.162000000  2024-03-21 12:18:39.162990534  192  4  

2024-03-21 12:18:39.187000000  2024-03-21 12:18:39.188086009  194  14  
2024-03-21 12:18:39.192000000  2024-03-21 12:18:39.194784691  195  4  
2024-03-21 12:18:39.252000000  2024-03-21 12:18:39.253086195  201  4  
2024-03-21 12:18:39.332000000  2024-03-21 12:18:39.332997301  209  4 

5 rows in set. Elapsed: 0.002 sec.

//dbClient->Execute("DROP TABLE IF EXISTS fapi"); //dbClient->Execute("DROP TABLE
IF EXISTS fh");

aerial-gnb :) drop table fh Ok. aerial-gnb :) drop table fapi Ok.

jupyter nbconvert --to script <notebook_name>.ipynb



Aerial CUDA-Accelerated RAN 34

To interact with the data and code in place, specific lines can be debugged by adding
breakpoint() inline

Known Limitations

Currently datalakes records the first UE per TTI and has been tested with a single cell per
gNB as supported by the Open Air Interface L2+ stack.
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pyAerial
As 6G research gains momentum, and with many new technologies in its purvue, one
thing is clear, AI/ML will feature prominently in the next generation RAN. It will play a
pivotal role in realizing all parts of the network infrastructure from the radio units,
baseband processing, the network core including system management, orchestration
and dynamic optimization processes. GPU hardware, together with programming
frameworks will be essential to realize this vision of a software defined native-AI
communication infrastructure.

The application of AI/ML in the physical layer has in particular been a hot research topic.
There is a lot of emphasis on neural network architectures and optimization strategies
mostly performed in the context of simulation. The next step for the research community
and commercial system developers is to bring AI/ML applied in layer-1 to reality in over-
the-air real-time testbeds and operator-network scale systems.

This is where pyAerial enters the picture. pyAerial is a Python library of physical layer
components that can be used as part of the workflow in taking a design from simulation
to real-time operation. It helps with end-to-end verification of a neural network
integration into a PHY pipeline and helps bridge the gap from the world of training and
simulation in TensorFlow/PyTorch to real-time operation in an over-the-air testbed.

The pyAerial library provides a Python-callable bit-accurate GPU-accelerated library for all
of the signal processing CUDA kernels in the NVIDIA cuBB layer-1 PDSCH and PUSCH
pipelines. In other words, the pyAerial Python classes behave in a numerically identical
manner to the kernels employed in cuBB because a pyAerial class employs the exact
same CUDA code as the corresponding cuBB kernel: it is the CUDA kernel but with a
Python API.

Using pyAerial library components complete layer-1 pipelines can be composed in
Python. User code or inference engines, from NVIDIA TensorRT, or custom CUDA code,
can be included in the datapath as shown in the lower part of Figure 1. This rapid
prototyping design and verification flow is used for dataplane functional performance
evaluation. It is a step in the workflow for verifying a physical layer design prior to
deployment in a real-time over-the-air GPU base station.
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pyAerial can also be used in conjunction with the NVIDIA data collection platform Aerial
Data Lake. An Aerial Data Lake database consists of RF samples from a 7.2x fronthaul
interface together with L2 meta-information to enable database search and query
operations. A pyAerial pipeline can access samples from Aerial Data Lake database using
the Data Lake Python APIs, and transform that data into training data for any function in
the pipeline. Figure 2 illustrates data ingress from a Data Lake database into a pyAerial
pipeline and using standard Python file I/O to generate training data for a soft de-
mapper.

Content

Key Features
Target Audience
Value Proposition
Release Notes
Getting Started with pyAerial

Pre-requisites
Testing the installation
Running the example Jupyter notebooks

Examples of Using pyAerial
Running a PUSCH link simulation
LDPC encoding-decoding chain
Dataset generation by simulation
Dataset generation for LLRNet
LLRNet model training
Channel estimation on transmissions captured using Aerial Data Lake
Decoding PUSCH transmissions captured using Aerial Data Lake

API Reference
Physical layer pipelines for 5G
Utilities

Key Features

pyAerial has the following key features:

Feature 1: Productive Python for rapid prototyping of layer-1 pipelines

pyAerial library components are CUDA kernels with Python bindings. The productive
environment of Python permits the rapid assembly of signal processing pipelines in

https://docs.nvidia.com/quick_setup.html
https://docs.nvidia.com/quick_setup.html#pre-requisites
https://docs.nvidia.com/quick_setup.html#testing-the-installation
https://docs.nvidia.com/quick_setup.html#running-the-example-jupyter-notebooks
https://docs.nvidia.com/examples.html
https://docs.nvidia.com/examples.html#running-a-pusch-link-simulation
https://docs.nvidia.com/examples.html#ldpc-encoding-decoding-chain
https://docs.nvidia.com/examples.html#dataset-generation-by-simulation
https://docs.nvidia.com/examples.html#dataset-generation-for-llrnet
https://docs.nvidia.com/examples.html#llrnet-model-training
https://docs.nvidia.com/examples.html#channel-estimation-on-transmissions-captured-using-aerial-data-lake
https://docs.nvidia.com/examples.html#decoding-pusch-transmissions-captured-using-aerial-data-lake
https://docs.nvidia.com/api_reference.html
https://docs.nvidia.com/aerial.phy5g.html
https://docs.nvidia.com/aerial.util.html


Aerial CUDA-Accelerated RAN 37

Python. All of the analytic and visualization aspects of Python can be used for
performance characterization, signal visualization and debugging.

Feature 2: Simulate machine learning in the physical layer before over-the-air
operation

With the goal of going from model training and simulation in TensorFlow or PyTorch
to real-time over-the-air operation, pyAerial provides a convenient way to verify,
evaluate and benchmark your physical layer prior to deployment in an OTA testbed.

Feature 3: Fast simulation with CUDA optimized kernels

pyAerial library components are CUDA under the hood. Simulation is fast on a GPU.
When you are simulating the coding chain, including for example an LDPC decoder,
optimized CUDA code is implementing these computationally heavy functions.

Feature 4: Generate data sets for any node in layer-1 uplink or downlink pipeline

pyAerial is designed to be used in conjunction with the NVIDIA data collection
platform Aerial Data Lake. pyAerial can access RF samples in a Data Lake database
and transform those samples into training data for all of the signal processing
functions in and uplink or downlink pipeline.

Feature 5: Bit accurate simulation

Because pyAerial is Python running on CUDA, the performance you observe in BLER
and other characterization metrics is what is identical to the performance of the
real-time over-the-air system.

Target Audience
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Industry and university researchers and developers looking to bring machine learning to
the physical layer with the end goal of benchmarking on over-the-air testbeds like NVIDIA
ARC-OTA or other GPU-based base stations.

Value Proposition

Fast bit-accurate GPU accelerated simulation of neural-network downlink and uplink
signal processing pipelines. Rapid prototyping and functional verification of a real-time
layer-1 in preparation for real-time deployment. Convenient Python environment aids
debugging and provides easy access to all nodes in the pipeline for visualization and
analysis. Easy to use Python environment for producing BLER and other statistics of
interest for a real-time bit-accurate GPU layer-1 implementation. Transform RF sample
captures for over-the-air captures into data for training layer-1 functions or compositions
of multiple functions.

Figure 1: Using pyAerial to verify a neural pipeline context of a full uplink pipeline. This is one
of the verification steps to moving to real-time operation over-the-air on a GPU base station.
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Figure 2: pyAerial is used in conjunction with the NVIDIA data collection platform Aerial Data
Lake to build training data sets for any node in the layer-1 downlink or uplink signal
processing pipeline. The example shows a Data Lake database of over-the-air samples
transformed into training data for a neural network soft de-mapper, using pyAerial. Data gets
extracted at the input and output of the de-mapper, and stored in the database.

Release Notes

Release version: 24-1

Supported configurations:

AX800, A100X and A100 GPUs with the x86 platform.

CUDA Toolkit: 12.2.0

GPU Driver (OpenRM): 535.54.03

Note: The Grace Hopper platform is currently not supported.

Supported features: pyAerial exposes a subset of the cuPHY API features to Python.
Currently this subset includes the following features:

PUSCH receiver pipeline
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PDSCH transmission pipeline

Channel estimation

Noise and interference estimation

Channel equalization and soft demapping

LDPC encoding

LDPC decoding

LDPC rate matching

SRS channel estimation

Limitations:

Unlike the cuPHY API, pyAerial API supports only a single UE group per method
call. Multiple UE groups (FDM) can be supported by calling the methods
separately for each UE group.
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