חVIDIA.

## cuMAC API Reference

## Table of contents

cuMAC API Data Structures
cuMAC Scheduler Module API

## cuMAC API Data Structures

## CumacCellGrpPrms

API data structure containing cell group information of the coordinated cells.

| Field Type |  | Description |
| :---: | :---: | :---: |
| nUe | uint16_t | Total number of selected UEs in a TTI of all coordinated cells. Value: 0 -> 65535 |
| nActiveU <br> e | uint16_t | Total number of active UEs of all coordinated cells. Value: 0 > 65535 |
| numUeS <br> chdPerC <br> ellTTI | uint8_t | Number of UEs selected/scheduled per TTI per cell. Value: 0 -> 255 |
| nCell | uint16_t | Total number of coordinated cells. Value: 0 -> 65535 |
| nPrbGrp | uint16_t | Total number of PRGs per cell. Value: 0 -> 65535 |
| nBsAnt | uint8_t | Number of BS antenna ports. Value: 0 -> 255 |
| nUeAnt | uint8_t | Number of UE antenna ports. Value: 0 -> 255 |
| W | float | Frequency bandwidth (Hz) of a PRG. Value: 12 * subcarrier spacing * number of PRBs per PRG |
| sigmaSq <br> rd | float | Noise variance. Value: noise variance value in watts |
| precodin gScheme | uint8_t | Precoder type. Value: 0: No precoding 1: SVD precoder |
| receivers cheme | uint8_t | Receiver/equalizer type. Value: Currently only support 1: MMSE-IRC receiver |
| allocTyp <br> e | uint8_t | PRG allocation type. Value: 0: non-consecutive type-0 allocation 1: consecutive type-1 allocation |
| betaCoef f | float | Coefficient for adjusting the cell-edge UEs' performance in multi-cell scheduling Value: non-negative real number. The default value is 1.0 , representing the classic proportionalfairness scheduling. |


| sinValTh <br> r | float | Singular value threshold for layer selection. Value: in ( 0,1 ). Default value is 0.1 |
| :---: | :---: | :---: |
| prioWeig htStep | uint16_t | For priority-weight based scheduling algorithm. Step size for UE priority weight increment per TTI if UE does not get scheduled. Value: default 100 |
| cellld | uint16_t[nCell] | IDs of coordinated cells. One dimensional array. Value of each element: Denote cldx $=0,1, \ldots$, nCell-1 as the coordinated cell index. cellId[cldx] is the ID of the cldx-th coordinated cell |
| cellAssoc | uint8_t[nCell*n Ue] | Cell-UE association indication for all the selected UEs of the coordinated cells. One dimensional array. Value of each element: Denote cldx $=0,1, \ldots, n C e l l-1$ as the coordinated cell index. Denote uldx $=0,1, \ldots, n \in e-1$ as the selected UE index in the coordinated cells. cellAssoc[cldx*nUe $+u l d x]==$ 1 means the uldx-th selected UE is associated with cldx-th coordinated cell, 0 otherwise. |
| cellAssoc ActUe | uint8_t[nCell*n ActiveUe] | Cell-UE association indication for all active UEs of the coordinated cells. One dimensional array. Value of each element: Denote cldx = 0, 1, ...nCell-1 as the coordinated cell index. Denote uldx $=0,1, \ldots$, nActiveUe-1 as the global active UE index in the coordinated cells. cellAssocActUe[cldx*nUe + uldx] == 1 means the uldx-th active UE is associated with cldx-th coordinated cell, 0 otherwise. |
| prgMsk | uint8_t[nCell] [nPrbGrp] | Per-cell bit map for the availability of each PRG for allocation Two-dimensional array. Value of each element: Denote cldx $=0,1, \ldots$ nCell- 1 as the coordinated cell index Denote prgldx $=0,1, \ldots$, nPrbGrp- 1 as the PRG index $\operatorname{prgMsk}[c \mid d x][p r g l d x]$ is the availability indicator for the prgldx-th PRG in the cldx-th coordinated cell 0 - unavailable, 1 - available |
| postEqSi <br> nr | float[nActiveUe *nPrbGrp* nUeAnt] | Array of the per-PRG per-layer post-equalizer SINRs of all active UEs in the coordinated cells. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nActiveUe- 1 as the global active UE index in the coordinated cells. Denote prgldx $=0,1, \ldots, n$ PrbGrp- 1 as the PRG index. Denote layerIdx $=0,1, \ldots$, nUeAnt- 1 as the layer index. |


|  |  | postEqSinr[uldx*nPrbGrp* nUeAnt + prgldx*nUeAnt + layerldx] is the uldx-th active UE's post-equalizer SINR on the prgldx-th PRG and the layerldx-th layer. |
| :---: | :---: | :---: |
| wbSinr | float[nActiveUe *nUeAnt] | Array of wideband per-layer post-equalizer SINRs of all active UEs in the coordinated cells. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nActiveUe-1 as the global active UE index in the coordinated cells. Denote layerldx $=0,1, \ldots, n$ UeAnt-1 as the layer index. wbSinr[uldx*nUeAnt + layerIdx] is the uldx-th active UE's wideband post-equalizer SINR on the layerIdx-th layer. |
| FP32: <br> estH_fr <br> or FP16: <br> estH_fr_ <br> half | FP32: <br> cuComplex[nC ell][nUe* nPrbGrp*nBsA nt*nUeAnt] Or FP16: _nv_bfloat162[ nCell][nUe* nPrbGrp*nBsA nt*nUeAnt] | Per-cell array of the narrow-band SRS channel estimate coefficients for the selected UEs in the coordinated cells. Two-dimensional array: the 1st dimension is for cells, and the 2 nd dimension is for UEs, PRGs, and antenna ports. Value of each element: Denote cIdx $=0,1, \ldots, n C e l l-1$ as the coordinated cell index. Denote uldx $=0,1, \ldots$, nUe-1 as the selected UE index in the coordinated cells. Denote prgldx = $0,1, \ldots, n$ PrbGrp-1 as the PRG index. Denote bsAntldx $=0,1$, ..., nBsAnt-1 as the BS antenna port index Denote ueAntldx $=0,1, \ldots$, nUeAnt as the UE antenna port index estH_fr[cldx] [uldx* nPrbGrp*nBsAnt*nUeAnt + prgldx* nBsAnt*nUeAnt + bsAntldx*nUeAnt + ueAntldx] is the complex channel coefficient between the cldx-th cell and the uldx-th selected UE in the cell group on the prgldx-th PRG, the bsAntldx-th BS antenna port and the ueAntldx-th UE antenna port. (The above applies to the FP16 version as well) |
| prdMat | cuComplex[nU e*nPrbGrp* nBsAnt*nBsAn t] | Array of the precoder/beamforming weights for the selected UEs in the coordinated cells. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nUe-1 as the selected UE index in the coordinated cells. Denote prgldx $=0,1, \ldots$, nPrbGrp- 1 as the PRG index. Denote inPortldx $=0,1, \ldots$, nBsAnt-1 as the precoder input port index Denote outPortldx $=0,1, \ldots$, nBsAnt- 1 as the precoder output port index prdMat[uldx*nPrbGrp* nBsAnt*nBsAnt + prgldx* nBsAnt*nBsAnt + inPortldx *nBsAnt + outPortldx] is the precoder/beamforming weight of the uldx-th selected UE in the coordinated cells on the prgldx-th PRG and between the inPortldx-th input port and the outPortldx-th output port. |


| detMat | cuComplex[nU e*nPrbGrp* nUeAnt*nUeAn t] | Array of the detector/beamforming weights for the selected UEs in the coordinated cells. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots, n U e-1$ as the selected UE index in the coordinated cells. Denote prgldx = $0,1, \ldots$, nPrbGrp-1 as the PRG index. Denote inPortldx $=0,1$, ..., nUeAnt-1 as the detector input port index. Denote outPortldx $=0,1, \ldots$, nUeAnt- 1 as the detector output port index. detMat[uldx*nPrbGrp*nUeAnt*nUeAnt + prgldx*nUeAnt*nUeAnt + inPortldx*nUeAnt + outPortldx] is the detector weight of the uldx-th selected UE on the prgldx-th PRG and between the inPortldx-th input port and the outPortldx-th output port. |
| :---: | :---: | :---: |
| sinVal | float[nUe*nPrb Grp*nUeAnt] | Array of the per-UE, per-PRG, per-layer singular values obtained from SVD. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nUe- 1 as the 0 -based UE index for the selected UEs in the coordinated cells. Denote prgldx $=0,1, \ldots, n$ PrbGrp- 1 as the PRG index. Denote layerldx $=0,1, \ldots$, nUeAnt-1 as the layer index. sinVal[uldx*nPrbGrp*nUeAnt + prgldx*nUeAnt + layerldx] is the UE uldx's layerldx-th largest singular value on PRG prgidx For each UE and on each PRG, the singular values are stored in descending order. |

## cumacCellGrpUeStatus

API data structure containing the per-UE information of the coordinated cell group.

| Field | Type | Description |
| :--- | :--- | :--- |
|  | float[nUe] | Array of the long-term average data <br> rates of the selected UEs in the <br> coordinated cells. One dimensional <br> array. Value of each element: <br> Denote uldx $=0,1, \ldots$, nUe-1 as the <br> selected UE index in the coordinated <br> cells. avgRates[uldx] is the long-term <br> average throughput of the uldx-th <br> selected UE in the coordinated cells. |
| avgRatesActUe | float[nActiveUe] | Array of the long-term average data <br> rates of all active UEs in the |


|  |  | coordinated cells One dimensional array. Value of each element: Denote uldx = 0, 1, ..., nActiveUe-1 as the global active UE index in the coordinated cells. avgRatesActUe[uldx] is the longterm average throughput of the uldx-th active UE in the coordinated cells. |
| :---: | :---: | :---: |
| prioWeightActUe | u int16_t[nActiveUe] | For priority-based UE selection. Priority weights of all active UEs in the coordinated cells One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nActiveUe-1 as the global UE index for all active UEs in the coordinated cells. prioWeightActUe[uldx] is the uldx-th active UE's priority weight. OxFFFF indicates an invalid element. |
| tbErrLast | int8_t[nUe] | Array of the selected UEs' transport block (TB) decoding error indicators of the last transmissions One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nUe1 as the selected UE index in the coordinated cells. tbErrLast[uldx] is the uldx-th selected UE's TB decoding error indicator of the last transmission. -1 - the last transmission is not a new transmission (is a re-transmission) 0 - decoded correctly 1 - decoding error ** Note that if the last transmission of a UE is not a new transmission, tbErrLast of that UE should be set to -1. |
| tbErrLastActUe | int8_[[nActiveUe] | TB decoding error indicators of all active UEs in the coordinated cells. One dimensional array. Value of |


|  |  | each element: Denote uldx $=0,1, \ldots$, nActiveUe-1 as the global UE index for all active UEs in the coordinated cells. tbErrLastActUe[uldx] is the uldx-th active UE's TB decoding error indicator: - 1 - the last transmission is not a new transmission (is a retransmission) 0 - decoded correctly 1 - decoding error ** Note that if the last transmission of a UE is not a new transmission, tbErrLastActUe of that UE should be set to -1. |
| :---: | :---: | :---: |
| newDataActUe | int8_t[nActiveUe] | Indicators of initial transmission/retransmission for all active UEs. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots$, nActiveUe-1 as the global UE index for all active UEs in the coordinated cells. newDataActUe[uldx] is the indicator of initial transmission/retransmission for the uldx-th active UE in the coordinated cells 0 - retransmission 1 - new data/initial transmission -1 indicates an invalid element |
| allocSolLastTx | For type-0 PRG allocation: int16 _t[nCell*nPrbGrp] For type-1 PRG allocation: int16_t[2*nUe] | The PRG allocation solution of the last transmission of the selected/scheduled UEs in the coordinated cells Format referring to the description for allocSol in the cumacSchdSol structure |
| mcsSelSolLastTx | int16_t[nUe] | MCS selection solution of the last transmission of the selected/scheduled UEs in the coordinated cells. Format referring to the description for mcsSelSol in the cumacSchdSol structure |


|  |  | Layer selection solution of the last <br> transmission of the <br> selected/scheduled UEs in the <br> coordinated cells. Format referring <br> to the description for layerSelSol in <br> the cumacSchdSol structure |
| :--- | :--- | :--- |

## cumacSchdSol

API data structure containing the scheduling solutions.

| Field | Type | Description |
| :---: | :---: | :---: |
| setSchdUePerCellTTI | uint16_t[nCell* numUeSchdPerCellTTI] | Set of global IDs of the selected UEs per cell per TTI. One dimensional array. Value of each element: Denote cldx $=0,1, \ldots, n C e l l-1$ as the coordinated cell index. Denote $\mathrm{i}=0$, 1, ..., numUeSchdPerCellTTI-1 as the i-th selected UE in a given cell. setSchdUePerCel ITTI[cldx*numUeSchdPerCellTTI + i] is within $\{0,1, \ldots, n A c t i v e U e-1\}$ and represents the global active UE index of the i-th selected UE in the cldx-th coordinated cell. |
| allocSol | For type-0 PRG allocation: int1 6_t[nCell*nPrbGrp] For type-1 PRG allocation: int16_t[2*nUe] | PRB group allocation solution for the selected UEs per TTI in the coordinated cells One dimensional array. Value of each element: For type-0 PRG allocation: Denote prgldx $=0,1, \ldots, n P r b G r p-1$ as the PRG index. Denote cldx $=0,1, \ldots$, nCell-1 as the coordinated cell index. allocSol[prgldx*nCell + cldx] indicates the selected UE index ( 0 , $1, \ldots, n \cup e-1$ ) that the prgidx-th PRG is allocated to in the cldx-th coordinated cell. -1 indicates that a given PRG in a cell is not allocated |

$\left.\begin{array}{|l|l|l|} & & \begin{array}{l}\text { to any UE. For type-1 PRG } \\ \text { allocation: Denote uldx }=0,1, \ldots, \\ \text { nUe-1 as the selected UE index in } \\ \text { the coordinated cells. } \\ \text { allocSol[2*uldx] is the starting PRG } \\ \text { index of the uldx-th selected UE. }\end{array} \\ \text { allocSol[2*uldx + 1] is the ending } \\ \text { PRG index of the uldx-th selected } \\ \text { UE plus one. -1 indicates that a } \\ \text { given UE is not being allocated to } \\ \text { any PRG. }\end{array}\right\}$

|  |  | cells. Range of each element: 0,1 , ..., 27 (Currently only support Table 5.1.3.1-2: MCS index table 2, 3GPP TS 38.214). - 1 indicates an element is invalid. |
| :---: | :---: | :---: |
| layerSeISol | uint8_t[nUe] | Layer selection solution for the selected UEs per TTI in the coordinated cells. One dimensional array. Value of each element: Denote uldx $=0,1, \ldots, n \cup e-1$ as the selected UE index in the coordinated cells. layerSelSol[uldx] indicates the number of layers selected for the uldx-th selected UE in the coordinated cells. Range of each element: $0,1, \ldots$, nUeAnt-1 The selected layers have singular values descending from the largest one. |

## cuMAC Scheduler Module API

## Multi-cell proportional-fairness UE down-selection

Wrapper class and public member functions:
class cumac::multiCellUeSelection public: // constructor multiCellUeSelection(); // destructor ~multiCellUeSelection(); // setup() function for per-TTI algorithm execution void setup(cumac::cumacCellGrpUeStatus\* cellGrpUeStatus, cumac::cumacSchdSol\* schdSol, cumac::cumacCellGrpPrms\* cellGrpPrms, uint8_t in_enableHarq, cudaStream_t strm); // requires external synchronization // set in_enableHarq to 1 if HARQ is enabled; 0 otherwise // run() function for per-TTI algorithm execution void run(cudaStream_t strm); // requires external synchronization // parameter/data buffer logging function for debugging purpose void debugLog(); // for debugging only, printing out dynamic descriptor parameters

## Multi-cell proportional-fairness PRB scheduler

Wrapper class and public member functions:
class cumac::multiCellScheduler public: // constructor multiCellScheduler(); // destructor ~multiCellScheduler(); // setup() function for per-TTI algorithm execution void setup(cumac::cumacCellGrpUeStatus\* cellGrpUeStatus, cumac::cumacSchdSol\* schdSol, cumac::cumacCellGrpPrms\* cellGrpPrms, uint8_t in_DL, uint8_t in_columnMajor, uint8_t in_halfPrecision, uint8_t in_lightWeight, cudaStream_t strm); // set in_DL to 1 if setup for DL scheduling; 0 otherwise // in_columnMajor: 0 - row-major channel access, 1 - column-major channel access // in_halfPrecision: 0 - call FP32 floating type kernel, 1 - call FP16 (bfloat162) halfprecision kernel // in_lightWeight: 0 - call heavy-weight kernel, 1 - call light-weight kernel // in_enableHarq: 0 - HARQ disabled, 1 - HARQ enabled // requires external synchronization // run() function for per-TTI algorithm execution void run(cudaStream_t strm); // requires external synchronization // parameter/data buffer logging function for debugging purpose void debugLog(); // for debugging only, printing out dynamic descriptor parameters

## Multi-cell layer selection

Wrapper class and public member functions:

> class cumac::multiCellLayerSel public: // constructor multiCellLayerSel(); // desctructor ~multiCellLayerSel(); // setup() function for per-TTI algorithm execution void setup(cumacCellGrpUeStatus\* cellGrpUeStatus, cumacSchdSol\* schdSol, cumacCellGrpPrms\* cellGrpPrms, uint8_t in_enableHarq, cudaStream_t strm); // in_enableHarq: 0 - HARQ disabled, 1 - HARQ enabled // requires external synchronization // run() function for per-TTI algorithm execution void run(cudaStream_t strm); // requires external synchronization // parameter/data buffer logging function for debugging purpose void debugLog(); // for debugging only, printing out dynamic descriptor parameters

## Multi-cell MCS selection + outer-loop link adaptation (OLLA)

Wrapper class and public member functions:
class cumac::mcsSelectionLUT public: // constructor mcsSelectionLUT(uint16_t nActiveUe, cudaStream_t strm); // requires external synchronization // uint16_t
nActiveUe is the (maximum) total number of active UEs in all coordinated cells // destructor ~mcsSelectionLUT(); // setup() function for per-TTI algorithm execution void setup(cumacCellGrpUeStatus $\backslash$ * cellGrpUeStatus, cumacSchdSol\* schdSol, cumacCellGrpPrms ${ }^{*}$ cellGrpPrms, uint8_t in_DL, uint8_t in_baseline, cudaStream_t strm); // in_DL: 0 - UL, 1 - DL // in_baseline: 0 - not using baseline algorithm, 1 - using baseline algorithm // requires external synchronization // run() function for per-TTI algorithm execution void run(cudaStream_t strm); // parameter/data buffer logging function for debugging purpose void debugLog(); // for debugging only, printing out dynamic descriptor parameters

Outer-loop link adaptation (OLLA) data structure:
// structure containing outer-loop link adaptation algorithm parameters struct ollaParam \{ float delta; // offset to SINR estimation float delta_ini; // initial value for delta parameter float delta_up; // step size for increasing delta parameter float delta_down; // step size for decreasing delta parameter \};
© Copyright 2024, NVIDIA.. PDF Generated on 06/06/2024

