
Running Aerial cuPHY

Table of contents

Building Aerial cuPHY

Running the cuPHY Examples

Running cuPHY Performance Testing Scripts

Running Aerial cuPHY 1

Table of contents

Building Aerial cuPHY

Running the cuPHY Examples

Running cuPHY Performance Testing Scripts

Running Aerial cuPHY 2

List of Figures
Figure 0. Pucch Outcome 1

Figure 1. Pucch Outcome 2

Figure 2. Cubb Gpu Test Bench

Running Aerial cuPHY 3

Aerial cuPHY provides the cuPHY library and several examples that link with the library.
Here we include instructions on using MATLAB to generate TVs. Please refer to
Generating TV and Launch Pattern Files for using Aerial Python mcore Module to
generate TVs.

Building Aerial cuPHY

Prerequisites

The following instructions assume the system configuration and Aerial cuBB installation
are done. If not, see the cuBB Install Guide to complete the installation or upgrade
process.

After powering on the system, use the following commands to verify that the GPU and
NIC are in the correct state:

Verify that the NIC is in the correct state on the host (this is only required to run cuBB
end-to-end):

Verify GPU is detected and CUDA driver version matches the release manifest. $ nvidia-
smi

Verify NIC is detected: Example CX6-DX $ sudo lshw -c network -businfo Bus info
Device Class Description
===
pci@0000:05:00.0 eno1 network I210 Gigabit Network Connection pci@0000:06:00.0
enp6s0 network I210 Gigabit Network Connection pci@0000:b5:00.0 ens6f0 network
MT2892 Family [ConnectX-6 Dx] pci@0000:b5:00.1 ens6f1 network MT2892 Family
[ConnectX-6 Dx] # Verify the link state is right. Assuming NIC port 0 is connected. $
sudo mlxlink -d b5:00.0 Operational Info ---------------- State : Active Physical state :
LinkUp Speed : 100G Width : 4x FEC : Standard RS-FEC - RS(528,514) Loopback Mode
: No Loopback Auto Negotiation : ON Supported Info -------------- Enabled Link Speed
(Ext.) : 0x000007f2 (100G_2X,100G_4X,50G_1X,50G_2X,40G,25G,10G,1G) Supported
Cable Speed (Ext.) : 0x000002f2 (100G_4X,50G_2X,40G,25G,10G,1G) Troubleshooting
Info -------------------- Status Opcode : 0 Group Opcode : N/A Recommendation : No
issue was observed.

https://docs.nvidia.com/generating_tv.html
https://docs.nvidia.com/cubb_install/index.html#cubb-install-intro

Running Aerial cuPHY 4

Set Up the Host Environment

Set up the environment on both servers. You must run aerial-init.sh once each time the
system reboots. Refer to the “System Initialization Script” section in the cuBB Installation
Guide for more details.

Launch the cuBB Container

Use the following command to launch the cuBB container:

Build Aerial cuPHY in the Container

Build cuPHY in the cuBB container using the following commands:

cuPHY is, by default, built in Release mode. The option BUILD_DOCS=ON is also
enabled by default to allow the make to generate the Doxygen documentation for the
cuPHY library API. To disable this option, pass -DBUILD_DOCS=OFF to the CMake
command line. The output directory is cuPHY/install/docs .

To put the built cuPHY headers and libraries into an installation directory so that other
applications using the cuPHY library can compile and link with cuPHY, use the commands
from the current build directory:

This creates the include and lib directories under the cuPHY/install directory.

Running the cuPHY Examples

$ sudo ./aerial-init.sh

$ sudo docker exec -it cuBB /bin/bash

$ cd /opt/nvidia/cuBB/cuPHY $ mkdir build $ mkdir install $ cd build $ cmake .. -
DCMAKE_INSTALL_PREFIX=../install $ make -j $(nproc --all)

$ make install

Running Aerial cuPHY 5

This section describes how to run the Aerial cuPHY standalone example programs. They
read test vector data files as input. Refer to the supported test vector configurations list
in the cuBB Release Notes for what test vectors to use for all the different configurations.
Do not use old test vectors from previous cuBB releases with the example programs of
this release.

Generating Test Vectors using Matlab 5GModel

Run this Matlab command:

All the cuPHY test vectors are generated and stored under nr_matlab/GPU_test_input .

Instructions for Testing cuPHY Channels Manually

PUSCH

Test Vectors

Match test vector name with PUSCH_gNB_CUPHY_*.h5

How to Run

Streams mode:
cuPHY/build/examples/pusch_rx_multi_pipe/cuphy_ex_pusch_rx_multi_pipe -i
~/<tv_name>.h5

Graphs mode:
cuPHY/build/examples/pusch_rx_multi_pipe/cuphy_ex_pusch_rx_multi_pipe -i
~/<tv_name>.h5 -m 1

Expected Outcome

Test 1 (CRC test KPI): All test cases must have zero CRC errors (only CRC errors, not
correct ones, are reported when the channel is run).

PUCCH

cd('nr_matlab'); startup; [nTC, errCnt] = runRegression({'TestVector'}, {'allChannels'},
'compact', [0, 1]);

https://docs.nvidia.com/aerial_cuphy/release_notes/supported_test_vector_configurations.html#dummy-header

Running Aerial cuPHY 6

Test Vectors

Match test vector name with PUCCH_F*_gNB_CUPHY_*.h5

How to Run

PUCCH format 0/1/2/3:
cuPHY/build/examples/pucch_rx_pipeline/cuphy_ex_pucch_rx_pipeline -i
<tv_name>

Expected Outcome

cuphy_ex_pucch_Fx_receiver checks if the test vector includes PFx UCI first.

If the test-vector UCI format is not expected, it displays “No PFx UCI received”.

If the test-vector UCI format is expected, it compares UCI output.xzsd.

PRACH

Test Vectors

Match test vector name with PRACH_gNB_CUPHY_*.h5

How to Run

cuPHY/build/examples/prach_receiver_multi_cell/prach_receiver_multi_cell -i
<tv_name> -r <num_iteration> -k

Running Aerial cuPHY 7

Expected Outcome

prach_receiver_multi_cell compares against the reference measurements in the
test vector.

Measured values are displayed and if they are within tolerance the message is
displayed:

========> Test PASS

PDSCH

Test Vectors

Match test vector name with PDSCH_gNB_CUPHY_*.h5

How to Run

PDSCH in non-AAS mode, streams:
cuPHY/build/examples/pdsch_tx/cuphy_ex_pdsch_tx ~/<tv_name>.h5 2 0 0

PDSCH in non-AAS mode, graphs:
cuPHY/build/examples/pdsch_tx/cuphy_ex_pdsch_tx ~/<tv_name>.h5 2 0 1

Expected Outcome

Test 1 (correctness against reference model): Channel reports correct match with
reference model

PDCCH

Test Vectors

Match test vector name with PDCCH_gNB_CUPHY_*.h5

How to Run

Streams mode:
cuPHY/build/examples/pdcch/embed_pdcch_tf_signal -i ~/<tv_name>.h5 -m 0

Running Aerial cuPHY 8

Graphs mode:
cuPHY/build/examples/pdcch/embed_pdcch_tf_signal -i ~/<tv_name>.h5 -m 1

Expected Outcome

Test 1 (correctness against reference model): Test PASS

SSB

Test Vectors

Match test vector name with SSB_gNB_CUPHY_*.h5

How to Run

Streams mode: cuPHY/build/examples/ss/testSS -i ~/<tv_name>.h5 -m 0

Graphs mode: cuPHY/build/examples/ss/testSS -i ~/<tv_name>.h5 -m 1

Expected Outcome

Test 1 (correctness against reference model): Test PASS

CSI-RS

Test Vectors

Match test vector name with CSIRS_gNB_CUPHY_*.h5

How to Run

Streams mode:
cuPHY/build/examples/csi_rs/nzp_csi_rs_test -i <tv_name> -m 0

Graphs mode: cuPHY/build/examples/csi_rs/nzp_csi_rs_test -i <tv_name> -m 1

Expected Outcome

Test 1 (correctness against reference model): Test PASS

SRS

Running Aerial cuPHY 9

Test Vectors

Match test vector name with SRS_gNB_CUPHY_*.h5

How to Run

Streams mode:
cuPHY/build/examples/srs_rx_pipeline/cuphy_ex_srs_rx_pipeline -i <tv_name>
-r <num_iteration> -m 0

Graphs mode:
cuPHY/build/examples/srs_rx_pipeline/cuphy_ex_srs_rx_pipeline -i <tv_name>
-r <num_iteration> -m 1

Expected Outcome

Test 1 (correctness against reference model): SRS reference check: PASSED! ; Timing
results are provided

BFC

Test Vectors

Match test vector name with BFW_gNB_CUPHY_*.h5

How to Run

Streams mode:
cuPHY/build/examples/bfc/cuphy_ex_bfc -i <tv_name> -r
<num_iteration> -m 0

Graphs mode:
cuPHY/build/examples/bfc/cuphy_ex_bfc -i <tv_name> -r
<num_iteration> -m 1

Add -c to enable reference check (default disabled)

Expected Outcome

Test 1 (measure latency without reference check): Timing results are provided

Running Aerial cuPHY 10

Test 2 (correctness against reference model using -c): Test PASS ; Timing results are
provided

Instructions for LDPC Performance Test

The ldpc_perf_collect.py Python script from the cuPHY repository can be used to
perform error rate tests for the cuPHY LDPC decoder. There are test input files defined
for Z = [64, 128, 256, 384], BG = [1,2]. The current tests check whether the block error rate
(BLER, also sometimes referred to as Frame Error Rate or FER) is less than 0.1.

From the build directory, the following commands run the tests:

Each test input file contains multiple tests for different code rates, as specified by the
number of parity nodes.

Running cuPHY Performance Testing Scripts

aerial_sdk/testBenches provides a multi-cell multi-channel test bench to test cuPHY
standalone performance. It relies on NVIDIA Multi-Process Service (MPS) to share the GPU

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG1_Z64_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG1_Z128_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG1_Z256_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG1_Z384_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG2_Z64_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG2_Z128_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG2_Z256_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc_perf_collect.py --mode test -i

../util/ldpc/test/ldpc_decode_BG2_Z384_BLER0.1.txt -f -w 800 -P

https://docs.nvidia.com/deploy/mps/index.html

Running Aerial cuPHY 11

among multiple channels. Specifically, there are two folders and their relationship can be
summarized as follows:

cubb_gpu_test_bench: a C test bench that runs the multi-cell multi-channel cuPHY
standalone GPU workload (that is, without I/O to and from NIC or layer 2). The input
of cubb_gpu_test_bench are test vectors, a Yaml file, and some command options to
run the GPU workload. The output is a buffer-XX.txt file that has the logs, channel
start/end times, debug info, etc. Here XX is the number of cells used in testing.

perf: a set of Python scripts to automate performance testing using
cubb_gpu_test_bench. The Python scripts can help generate the Yaml file and
command options, config GPU and MPS before running cubb_gpu_test_bench; collect
the test results by reading the output buffer-XX.txt from cubb_gpu_test_bench.

Generating Test Vectors using Matlab 5GModel

Run this Matlab command:

cd <5GModel root>/nr_matlab startup genCfgTV_perf_ss('performance-avg.xlsm');
genCfgTV_perf_ss_bwc('performance-avg.xlsm'); genCfgTV_perf_pucch();
genCfgTV_perf_pdcch(); genCfgTV_perf_prach(); genCfgTV_perf_csirs();
genCfgTV_perf_ssb(); genCfgTV_perf_srs();

Running Aerial cuPHY 12

All the cuPHY Performance test vectors are generated and stored under
nr_matlab/GPU_test_input .

Measuring cuPHY Performance using cubb_gpu_test_bench

Requirements:

The performance measurements can be run using a Linux environment making one
of more GPU available. Such environment is here assumed to have:

bash or zsh as default shell

Python 3.8+ and the following packages: numpy, pyCUDA, pyYAML

CUDA toolkit 11.4 or above properly configured so that nvidia-cuda-mps-control
and nvidia-smi are in PATH

The executable cubb_gpu_test_bench is located in the <testBenches>/build
folder.

There are three steps when measuring cell capacity using cubb_gpu_test_bench . The
perf folder provides some pre defined test cases. Below is an example of 4T4R (F08) using
TDD pattern DDDSUUDDDD.

1. Generate the JSON file that defines the use case (e.g., 8~16 peak or average cells)

2. Measure the latency of all channels based on predefined patterns

python3 generate_avg_TDD.py --peak 8 9 10 11 12 13 14 15 16 --avg 0 --exact --case
F08

python3 measure.py --cuphy <testBenches>/build --vectors <test_vectors> --config
testcases_avg_F08.json --uc uc_avg_F08_TDD.json --delay 100000 --gpu <GPU_ID> --
freq <GPU_freq> --start <cell_start> --cap <cell_cap> --iterations 1 --slots <nSlots> --
power <budget> --target <sms_prach> <sms_pdcch> <sms_pucch> <sms_pdsch>
<sms_pusch> <sms_ssb> --2cb_per_sm --save_buffer --priority --prach --
prach_isolate --pdcch --pdcch_isolate --pucch --pucch_isolate --tdd_pattern

Running Aerial cuPHY 13

where:

<GPU_ID> is the ID of the GPU on which the measurements are to be run; e.g., 0 for
single GPU systems

<GPU_freq> is the GPU clock frequency in MHz

<cell_start> is the minimum number of cells to be tested

<cell_cap> is the maximum number of cells to be tested. The Python scripts will run
cubb_gpu_test_bench for a range of [<cell_start>, <cell_cap>] cells and collect the

latency results

<budget> is the power budget in Watts

<sms_channelName> is the number of streaming multiprocessors used per MPS sub-
context for each channel during the run, where channelName can be PRACH,
PDCCH, PUCCH, PDSCH, PUSCH, SSB

<--graph> add this option to run in graph mode, otherwise in stream mode

Notes: use --test to see what yaml file and commend options the Python scripts
generated without running the tests on GPU

3. Visualize the latency of each channel (this step requires Python library matplotlib).
We generate compare-<date>.png showing the CDF of the latency for all tested
channels:

if run in stream mode:

if run in graph mode:

dddsuudddd --pusch_cascaded --ssb --csirs --groups_dl --pack_pdsch --groups_pusch
--ldpc_parallel <--graph>

python3 compare.py --filename
<sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_<sms_pusch>_<sms_ssb>_sw
--cells <nCell>+0

Running Aerial cuPHY 14

where:

<nCell> is the number of cells we would like to visualize the latency results

It is possible to compare latency results of different number of cells in one figure. For
instance, we can compare the latency of 8 cells and 9 cells:

In all cases, Aerial CUDA-Accelerated RAN offers the possibility of measuring the latency
of all workloads including:

Dynamic and heterogeneous traffic (meaning that each cell is stimulated with
different test vectors and every slot sees a different allocation of the test vectors to
the considered cells)

Specific traffic models

© Copyright 2024, NVIDIA.. PDF Generated on 06/06/2024

python3 compare.py --filename
<sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_<sms_pusch>_<sms_ssb>_sw
--cells <nCell>+0

python3 compare.py --filename
<sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_<sms_pusch>_<sms_ssb>_sw
<sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_<sms_pusch>_<sms_ssb>_sw
--cells 8+0 9+0

	Building Aerial cuPHY
	Running the cuPHY Examples
	Running cuPHY Performance Testing Scripts

