
Aerial CUDA-Accelerated RAN
Release 25-1

NVIDIA Corporation

Apr 18, 2025





CONTENTS

1 Aerial cuBB 7
1.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Product Brief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 cuBB Release Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
1.4 cuBB Installation Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
1.5 cuBB Quickstart Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
1.6 cuBB Integration Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
1.7 cuBB Developer Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381
1.8 Glossary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431

2 Aerial cuMAC 435
2.1 Getting Started with cuMAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
2.2 cuMAC API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
2.4 cuMAC-CP integration guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

3 Aerial Data Lake 479
3.1 Target Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.2 Key Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 479
3.3 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
3.4 Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
3.5 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
3.6 Multi-Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
3.7 Using Data Lake in Notebooks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
3.8 Database Administration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

4 pyAerial 489
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
4.2 Getting Started with pyAerial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
4.3 Examples of Using pyAerial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 495
4.4 API Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613

Python Module Index 663

Index 665

i



ii



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN brings together the Aerial software for 5G and AI frameworks and the NVIDIA accel-
erated computing platform, enabling TCO reduction and unlocking infrastructure monetization for telcos.
Aerial CUDA-Accelerated RAN has the following key features:

• Software-defined, scalable, modular, highly programmable and cloud-native, without any fixed function accelera-
tors. Enables the ecosystem to flexibly adopt necessary modules for their commercial products.

• Full-stack acceleration of DU L1, DU L2+, CU, UPF and other network functions, enabling workload consolidation
for maximum performance and spectral efficiency, leading to best-in-class system TCO.

• General purpose infrastructure, with multi-tenancy that can power both traditional workloads and cutting-edge AI
applications for best-in-class RoA.

What’s New in 25-1
The following new features are available in release 25-1 for Aerial CUDA-Accelerated RAN:

• Aerial cuPHY: CUDA accelerated inline PHY
– cuPHY 4TR

∗ 20x100MHz 4TR Peak Cells on GH200
∗ NN PUSCH Channel Estimate

– cuPHY 64TR
∗ 3x100MHz 64TR Ave Cells w/ Mod Comp, on GH200
∗ Reconfiguration of static beam weights to RU

– SRS Configuration
∗ Extended number of SRS UEs for mMIMO
∗ BFW calculation for SRS unallocated RBs
∗ Support 4 SRS symbols on S-slot

– Operation/Redundancy/Resiliency
∗ Dynamic OAM (Out-Of-Service) - configuration or modification of dl/ulBandwidth and eAxCID.
∗ Logging on cloud platform
∗ Version check for YAML configuration files
∗ Enhanced cuBB_system_checks script to check versions and configurations required for cuBB test
∗ Cooperative cancellation of GPU workload for PUSCH
∗ Support for FH UL I/Q sample capture in case of CRC errors

• Aerial cuMAC: CUDA accelerated MAC scheduler
– cuMAC-CP

∗ Functional Interface for 4T4R L2
– cuMAC-Sch 4TR

∗ 40x100MHz 4TR Ave Cells on GH200
∗ Type 0 & 1, PF Parallel Riding Peaks.
∗ UE Down Selection / TTI
∗ PRB Allocation & Layer Selection

CONTENTS 1



Aerial CUDA-Accelerated RAN, Release 25-1

∗ Link Adaptation (MCS OLLA) & AI - DRL-MCS
– cuMAC-Sch 64TR

∗ 3x100MHz 64TR Ave Cells on GH200
∗ UE Sorting & down Selection
∗ MU-MIMO user grouping (PRB allocation & Layer Selection) – Type 1 & flexible layers per UE.
∗ Link Adaptation (MCS OLLA).

– SRS Configuration
∗ Wideband SRS, Aperiodic, non-inter cell
∗ 40x100MHz 4TR Ave Cells

– Baseline Scheduler – on CPU
∗ MU-MIMO Type 1 SU-MIMO PRB allocation for Anchor UE and PF-Based greedy MU-MIMO user

grouping.
• Aerial E2E: System level / End-to-End validation

– 4T4R 100MHz
∗ 8 Peak Cells in E2E configuration (CN + RAN + UE-EM) validated in eCPRI setup.
∗ Achieving aggregate DL throughput of 11.2Gbps and aggregate UL throughput of 1.68Gbps
∗ AI- RAN: Validated 8 peak cell performance with MIG enabled

• pyAerial: Python interface to Aerial cuPHY
– CuPy-based API, in addition to the existing Numpy-based API

∗ Significantly reduce copies between GPU and host memory
∗ Improve interoperability with other frameworks supporting the CUDA array interface (PyTorch, Numba,

etc.)
– New configuration API for configuring pyAerial pipelines and components
– SRS transmitter and receiver pipelines
– SRS example notebook
– CRC encoding

• Performance
– 1x100MHz 64T64R Peak cell / 3x100MHz 64T64R average cells
– 20x100MHz 4T4R Peak cells

What’s New in 24-3
The following new features are available in release 24-3 for Aerial CUDA-Accelerated RAN:

• Aerial cuPHY: CUDA accelerated inline PHY
– Multi-cell support for mMImO (up to 3 cells)
– Scheduling DL in special slots
– Increase SRS slots in 4T4R and mMIMO
– SRS CS multiplexing for different UEs
– UL PUSCH channel estimation at PRG level

2 CONTENTS



Aerial CUDA-Accelerated RAN, Release 25-1

– RKHS channel estimation
• Aerial E2E: System level / End-to-End validation

– Fronthaul Port Failover Validation (Active-Standby) of C/U/S-Planes
– Concluded Ch.8 Conformance testing with PRACH
– MIG validation of AI + RAN

• Aerial Redundancy/Resiliency: CUDA accelerated RAN Redundancy/Resiliency features
– RU Health Monitor - actively detect FH connectivity issues with ORU and take corrective action
– Introduce L1 recovery period - If L1 is running late, drop FAPI messages for some time to allow L1 to recover
– nvIPC pcap acquisition improvements - Introduced capability to add filters (cell-id , msg-id level) to nvIPC

pcap acquisition
– Backtrace output on console - Aerial prints backtrace on console in case of crash

• Aerial cuMAC: CUDA accelerated MAC scheduler
– DRL MCS selection module

∗ Pre-trained neural networks available under aerial_sdk/cuMAC/testVectors
∗ Inference based on TensorRT

– 64TR MU-MIMO scheduler
∗ UE sorting algorithm based on SRS SNR estimates
∗ UE grouping algorithm based on SRS channel coefficient estimates

– Aperiodic SRS resource manager
∗ Combined with MU-MIMO UE sorting algorithm

– 4T4R system simulation with GPU-based TDL channel model
– Improved algorithms & CUDA implementation for type-0 and type-1 4T4R schedulers

• pyAerial: Python interface to Aerial cuPHY
– CSI-RS transmission pipeline
– RSRP and pre- and post-equalizer SINR estimation
– Carrier frequency offset and timing advance estimation
– CRC checking
– OFDM fading channel simulation
– Support of multiple UE groups for PUSCH receiver pipeline and its components
– An improved API to PUSCH receiver pipeline and its components

What’s New in 24-2.1
The following new features are available in release 24-2.1 for Aerial CUDA-Accelerated RAN:

• Aerial cuPHY: CUDA accelerated inline PHY
– 64T64R Massive MIMO:

∗ 100 MHz DL max combined 16 layers + UL max combined 8 layers + SRS
∗ 64T64R SRS + Dynamic + Static Beamforming Weights

CONTENTS 3



Aerial CUDA-Accelerated RAN, Release 25-1

∗ Support multiple dynamic UE groups
∗ Support flexible PRG size and PRB number
∗ Support SRS buffer indexing from L2
∗ Support non 2^n layers
∗ Use different section IDs when splitting the C-Plane section
∗ FH messaging for CSIRS + PDSCH and other channel combinations

– Support GH200+BF3 as RU emulator platform
What’s New in 24-2
The following new features are available in release 24-2 for Aerial CUDA-Accelerated RAN:

• Aerial cuPHY: CUDA accelerated inline PHY
– MGX Grace Hopper multicell capacity w/ telco-grade traffic model

∗ 20 peak loaded 4T4R @ 100MHz
∗ Capacity also validated with more challenging traffic model

· PUSCH and PDCCH symbols in the S-slot
– L1-L2 interface enhancements

∗ Separate FAPI request timelines for PDSCH and PDCCH
• Aerial cuMAC: CUDA accelerated MAC scheduler

– cuMAC-Sch
∗ 4T4R CUDA implementation complete

– cuMAC-CP
∗ 4T4R implementation (Functional – early access)

• Aerial cuBB/E2E: System level / End-to-End validation
– Over-The-Air (OTA) validation:

∗ CBRS O-RU
∗ 8 UE OTA w/ 6 UE/TTI for > 8 hours

– RedHat-OCP:
∗ Multicell capacity validated on MGX (GH200+BF3)

– O-RAN Fronthaul:
∗ 16-bit fixed point IQ sample validated E2E (Keysight eLSU)
∗ Simultaneous dual-port FH capability (8 peak cells; 4 per port)

– L2 integration:
∗ Multi-L2 container instances per L1 validated E2E

• pyAerial: Python interface to Aerial cuPHY
– TensorRT inference engine

∗ Jupyter notebook example using pyAerial to validate a neural PUSCH receiver
– LDPC API improvements

4 CONTENTS



Aerial CUDA-Accelerated RAN, Release 25-1

∗ Added soft outputs to LDPC decoder
– LS channel estimation
– Limited support for Grace Hopper

∗ Run pyAerial together with Aerial Data Lakes

CONTENTS 5



Aerial CUDA-Accelerated RAN, Release 25-1

6 CONTENTS



CHAPTER

ONE

AERIAL CUBB

The NVIDIA cuBB SDK provides GPU accelerated 5G signal processing pipeline including cuPHY for Layer 1 PHY,
cuMAC for L2 scheduler, delivering unprecedented throughput and efficiency by keeping all the processing within the
high-performance GPU memory.
Aerial cuBB is a software-defined, scalable, modular, highly programmable and cloud-native, without any fixed function
accelerators. Enables the ecosystem to flexibly adopt necessary modules for their commercial products.
Aerial cuBB has the following key components:

• cuPHY: L1 library of the Aerial CUDA-Accelerated RAN. It is designed as an inline accelerator to run on NVIDIA
GPUs and it does not require any additional hardware accelerator.

• cuMAC: L2 MAC Scheduler library of the Aerial CUDA-Accelerated RAN for accelerating 5G/6G MAC layer
scheduler functions with NVIDIA GPUs.

1.1 Getting Started

Aerial cuBB brings together the Aerial software for 5G and AI frameworks and the NVIDIA accelerated computing
platform, enabling TCO reduction and unlocking infrastructure monetization for telcos.

1.1.1 Aerial cuBB Content Map

The following table describes the different sections of the Aerial cuBB developer documentation.

Section Description
Product Brief Provides an in-depth exploration of the standards and configurations supported by Aerial cuBB.
cuBB Release
Notes

Outlines what Aerial cuBB features and settings have changed in the most recent release of Aerial
CUDA-Accelerated RAN.

cuBB Installa-
tion Guide

Describes how to install Aerial cuBB.

cuBB Quickstart Describes how to run cuBB software examples.
cuBB Integration
Guide

Provides reference information related to the CUDA RAN MAC Scheduler Control Plane
(cuMAC-CP) and NVIPC messaging standard.

cuBB Developer
Guide

Provides reference information for the cuPHY library software stack.

7



Aerial CUDA-Accelerated RAN, Release 25-1

1.2 Product Brief

This section includes an in-depth exploration of the standards and configurations supported by Aerial cuBB.

1.2.1 cuPHY Features Overview

This section provides an overview of supported features in cuPHY.

Supported Features

Aerial CUDA-Accelerated RAN Layer 1

Aerial CUDA-Accelerated RAN adheres to 3GPP Release 15 standard specifications to deliver the necessary Layer 1
capabilities for a gNB.

3GPP Release 15

Aerail cuPHY adheres to 3GPP Release 15 standard specifications to deliver the following capabilities for gNB Layer 1.
Overall PHY capabilities include:

• Error detection on the transport channel and indication to higher layers
• FEC encoding/decoding of the transport channel
• Hybrid ARQ soft-combining
• Rate matching of the coded transport channel to physical channels
• Mapping of the coded transport channel onto physical channels
• Power weighting of physical channels
• Modulation and demodulation of physical channels including:

– Frequency and time synchronization
– Radio characteristics measurements and indication to higher layers
– Multiple Input Multiple Output (MIMO) antenna processing
– Transmit Diversity (TX diversity)
– Digital and Analog Beamforming
– RF processing

8 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

PHY FH Interface

Aerial CUDA-Accelerated RAN PHY Overall Capabilities

Features Configuration Supported
Standard support 3GPP 5G NR Rel 15 P
Duplexing Mode TDD Y
Nawrrow Bandwidth (MHz) 30MHz, 40 MHz, 50MHz, 80 MHz P
Channel Bandwidth (MHz) 100 MHz Y
Subcarrier Spacing (kHz) 30khz Y
Maximum Number of Subcarriers
(Max number of RBs x Num of Sub-
carriers per RB) = 273 x 12

3276 Y

Downlink Waveform CP-OFDM Y
Uplink Waveform CP-OFDM Y

DFT-s-OFDM (for data and control) Y
Configurable to DFT-s-OFDM (for
data & Control)

Y

Number of Downlink SU-MIMO
layers

Up to 4 Y

Number of Uplink SU-MIMO layers 1, 2 Y
Number of Tx physical antennas 1 N

2 Y
4 Y
8 N
64 Y

Number of Rx physical antennas 1 N
2 Y
4 Y
8 N
64 Y

Slot format DDDSUUDDDD
S = 6:4:4 (DL: G: UL)

Y

Carrier Aggregation Configurable component carriers Y
Configurable BW Parts Up to 4 Y
BBU-RRU split option 7.1 Y

7.2 Y
8 N

Maximum Downlink throughput per
user (Mbps) 4T4R configuration

1870 Y

Maximum Uplink throughput per
user (Mbps) 4T4R configuration

467 Y

1.2. Product Brief 9



Aerial CUDA-Accelerated RAN, Release 25-1

TS 38.211 Numerologies, Physical Resources, Modulation, Sequence, Signal Generation

Aerial CUDA-Accelerated RAN PHY Numerologies

Feature Configuration Sup-
ported

Numerologies:Normal
CP

μ=0:SCS=15kHz, 14symbol/slot, 10slot/frame, 1slot/subframe, Normal
CP

N

μ=1:SCS=30kHz, 14symbol/slot, 20slot/frame, 2slot/subframe, Normal
CP

Y

μ=2:SCS=60kHz, 14symbol/slot, 40slot/frame, 4slot/subframe, Normal
CP

N

μ=3:SCS=120kHz, 14symbol/slot, 80slot/frame, 8slot/subframe, Nor-
mal CP

N

μ=4:SCS=240kHz, 14symbol/slot, 160slot/frame, 16slot/subframe,
Normal CP

N

Numerologies:Extended
CP

μ=2:SCS=60kHz, 12symbol/slot, 40slot/frame, 4slot/subframe, Ex-
tended CP

N

Aerial CUDA-Accelerated RAN Overall PHY Physical Resources

Feature Sup-
ported

Antenna Ports Y
Resource Grid Y
Resource Elements Y
Resource Block Y
Resource Block - Common Resource Block(CRB) Y
Resource Block - Physical Resource Block(PRB) Y
Resource Block - Virtual Resource Block (VRB) Y
Bandwidth Part (BWP)
Dynamically adapt the carrier bandwidth and numerology in which a UE operates
A bandwidth part is a subset of contiguous common resource blocks for a given numerology μi in bandwidth
part i on a given carrier.
A UE can be configured with up to four bandwidth parts in UL and DL

Y

10 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN PHY Physical Resources – BWP

Feature Sup-
ported

Bandwidth Part (BWP)
Dynamically adapt the carrier bandwidth and numerology in which a UE operates
A bandwidth part is a subset of contiguous common resource blocks for a given numerology μi in bandwidth
part i on a given carrier
A UE can be configured with up to four bandwidth parts in both UL and DL

Y

Default Aerial CUDA-Accelerated RAN startup configuration to not use BWP, can be enabled to support BWP
on a per carrier basis (while cell OOS)

N

Default Aerial CUDA-Accelerated RAN startup configuration to not use BWP, can be enabled to support BWP
on a per carrier basis at startup

N

Aerial CUDA-Accelerated RAN Overall Carrier Aggregation

Feature Description Supported
(emulated)

Carrier Aggregation Transmissions in multiple cells can be aggregated to support inter-
band and intra-band configurations

Y

100MHz Up to 2 cells aggregation(1CC,2CC) Y
Up to 4 cells aggregation(1CC,2CC,3CC, 4CC) Y

Narrowband Carrier Aggre-
gation (ZMhz)

Configurable upto 4 component carriers Y

Aerial CUDA-Accelerated RAN PHY Modulation Mapper

Modulation Scheme Supported
Pi/2 BPSK Y
BPSK Y
QPSK Y
16QAM Y
64QAM Y
256QAM Y

Aerial CUDA-Accelerated RAN PHY Sequence Generation

Feature Description Sup-
ported

Sequence Gen-
eration

Pseudo-random sequence generation
Generic pseudo-random sequences are defined by a length-31 Gold sequence

Y

Low-PAPR sequence generation type 1 Y
Low-PAPR sequence generation type 2 Y

1.2. Product Brief 11



Aerial CUDA-Accelerated RAN, Release 25-1

OFDM Baseband Signal Generation (UL DFT-S-OFDM)

Feature Configuration Supported
Signal generation for all channels ex-
cept PRACH & RIM-RS

RU support expected

PRACH RU support expected
RIM-RS RU support expected
Uplink waveform
Support concurrent UE configuration
to use CP-OFDM or DFT-S-OFDM
on same cell.

DFT-S-OFDM for UL.
Some specific parameters:

• Support for PUSCH and for
PUCCH format 3

• Support 0.5 pi-BPSK for Mod-
ulation

• Support DMRS group hopping
• Support DMRS sequence hop-

ping

Y

TS 38.211 Channels

12 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Physical Overall Channels and Reference Signals

Category L1 requirement Sup-
ported

Downlink Channels (TX
)

PDSCH processing Y

PDCCH processing Y
PBCH processing Y

Downlink signals (TX ) DMRS for PDSCH Y
DMRS for PDCCH Y
DMRS for PBCH Y
PSS, SSS Y
CSI-RS, TRS Y
PT-RS N

Downlink Physical Re-
sources

Antenna ports starting with 1000 for PDSCH Y

Antenna ports starting with 2000 for PDCCH Y
Antenna ports starting with 3000 for channel-state information reference sig-
nals

Y

Antenna ports starting with 4000 for SS/PBCH block transmission Y
Uplink Channels (RX ) PUSCH processing Y

PUCCH processing Y
PRACH processing Y

Uplink signals (RX) DMRS for PUSCH Y
DMRS for PUCCH Y
SRS Y
PT-RS N

Uplink physical Re-
sources

Antenna ports starting with 0 for PUSCH and associated demodulation ref-
erence signals

Y

Antenna ports starting with 1000 for SRS Y
Antenna ports starting with 2000 for PUCCH Y
Antenna port 4000 for PRACH Y

1.2. Product Brief 13



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Overall Channel - PUSCH (Physical Uplink Shared Channel)

Features Configuration Supported
Number of codewords 1 Y
Scrambling Y
Modulation schemes Pi/2-BPSK Y

QPSK Y
16 QAM Y
64 QAM Y
256 QAM Y

PUSCH transform precoding mode Disable Y
Enable Y

Precoding Implemented in UE for UL Y
HARQ process Number of HARQ process = 1 Y
HARQ process Maximum number of HARQ process is 16 Y
Mapping to virtual resource blocks Y
VRB to PRB mapping Type Non-interleaved Y

Interleaved N
Transmission Mode SU-MIMO up to 4 layers Y

MU-MIMO up to 8 layers Y
PUSCH DMRS CDM group without data PUSCH DMRS CDM group without data 1 Y

PUSCH DMRS CDM group without data 2 Y
PUSCH users per TTI 16 Y
Uplink algorithm UL HARQ control Y

UL Channel Estimation LS Y
MRC, MMSE for equalizer Y
IRC, MMSE for equalizer Y
Frequency Offset Correction Y

Rate Matching I_LBRM = 1 (Limited Buffer Rate Matching) Y
I_LBRM = 0 (Limited Buffer Rate Matching) Y

Aerial CUDA-Accelerated RAN Overall Channel - PUCCH (Physical Uplink Control Channel

14 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Format Configuration Supported
Format 0 Y

1 Y
2 Y
3 Y
4 N

UCI sched coding, AFC, DFT (Format 1) N
Modulation schemes Pi/2-BPSK, BPSK, QPSK Y
Scheduling Request SR Support needed Y
Group hopping neither Y

disable Y
enable Y

Sequence cyclic shift Zadoff-Chu sequence Y
Intra-slot Frequency hopping/second hop PRB Support Y
Inter-slot Frequency hopping/second hop PRB Support Y
PUCCH over multiple slots Number of slots - 2,4,8 N
Frequency Offset Correction PUCCH format 1, 3 N
Multi-UE support 24 UEs / TTI Y
PUCCH UCI HARQ-ACK Polar codeblock CB size < 359, liftsize = 8 Y

1-Capabilities-TSx211-6-3-3] Aerial CUDA-Accelerated RAN Overall Channel - PRACH(PHY Random
Access Channel)

Feature Configuration Supported
Format A1 N

A2 N
A3 N
B1 N
B2 N
B3 N
B4 Y
C0 N
C2 N
0 N
1 N
2 N
3 N

Subcarrier Spacing (kHz) 1.25 N
5 N
15 N
30 Y

Sequence cyclic shift Zadoff-Chu sequence Y
Preamble length 839 N

139 Y
Number of PRACH occasions per TTI 4 FDM Y
Contention based Random Access Configurable non-contention based Random Access N

1.2. Product Brief 15



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Overall PHY - UL Reference Signals

PUSCH

Signal Configuration Sup-
ported

PUSCH DMRS sequence generation when transform pre-
coding is disabled

Y

PUSCH DMRS sequence generation when transform pre-
coding is enabled

Neither group, nor sequence hopping is en-
abled

Y

Group hopping is enabled and sequence hop-
ping is disabled

Y

Sequence hopping is enabled and group hop-
ping is disabled

Y

Demodulation reference signal for PUSCH Mapping to
physical resources

DM-RS configuration type 1 Y
DM-RS configuration type 2 N
UL-DMRS-max-len=1 Y
UL-DMRS-max-len=2 Y
UL-DMRS-add-pos=0 Y
UL-DMRS-add-pos=1 Y
UL-DMRS-add-pos=2 Y
UL-DMRS-add-pos=3 Y

Phase-tracking reference signals for PUSCH Sequence
generation

transform precoding is not enabled N
transform precoding is enabled N

Phase-tracking reference signals for PUSCH Mapping to
physical resources

transform precoding is disabled N
transform precoding is enabled N

PUCCH

Signal Configuration Sup-
ported

Demodulation reference signal for PUCCH format 1 no intra-slot frequency hopping Y
intra-slot frequency hopping en-
abled

Y

Demodulation reference signal for PUCCH format 2 Y
Demodulation reference signal for PUCCH format 3 (Format 4 not
supported)

No additional DM-RS, No hop-
ping

Y

No Additional DM-RS, hopping Y
Additional DM-RS, No hopping Y
Additional DM-RS, hopping Y

SRS

16 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Signal Configuration Sup-
ported

Sounding reference signal resource Antenna ports=1, 1OFDM symbols Y
Antenna ports=1, 2OFDM symbols Y
Antenna ports=1, 4OFDM symbols Y
Antenna ports=2, 1OFDM symbpls Y
Antenna ports=2, 2OFDM symbols Y
Antenna ports=2, 4OFDM symbols Y
Antenna ports=4, 1OFDM symbpls Y
Antenna ports=4, 2OFDM symbols Y
Antenna ports=4, 4OFDM symbols Y

Sounding reference signal Sequence generation KTC=2 Y
KTC=4 Y
KTC=8 Y

Sounding reference signal Mapping to physical re-
sources

CSRS=0~63 Y

Sounding reference signal slot configuration Indicated by higher layer parameter SRS-
Config

Y

PTRS

Signal Configuration Supported
PTRS N

Aerial CUDA-Accelerated RAN Overall Channel - PDSCH(PHY DL Shared Channel)

Feature Configuration Supported
Scrambling Y
Modulation schemes QPSK Y

16 QAM Y
64 QAM Y
256 QAM Y

Transmission Mode 4T4R SU-MIMO up to 4 layers Y
64T64R MU-MIMO up to 16 layers Y

Number of codewords 1 Y
2 N

Number of antenna ports 1000 - 1011 Y
Number of physical antennas 4 Y

64 Y
Beam Forming weights computation BF m2 N
Precoding non-codebook Y

pre-coding weight Y
Type I Single-Panel Codebook N
Type I Multi-Panel Codebook N
Type II Codebook N
Type II Port Selection Codebook N

PDSCH mapping type Type A Y
continues on next page

1.2. Product Brief 17



Aerial CUDA-Accelerated RAN, Release 25-1

Table 3 – continued from previous page
Feature Configuration Supported

Type B Y
Resource allocation type Type 0 (4T4R only) Y

Type 1 Y
VRB to PRB mapping Type Non-interleaved Y

Interleaved N
PDSCH DMRS CDM groups without data 1 Y

2 Y
3 N/A

Number PDSCH users per TTI 16 Y
Power Control PDSCH Y

DMRS - PDSCH Y

Aerial CUDA-Accelerated RAN Overall Channel - PDCCH (Physical DL Control Channel)

Feature Configuration Supported
Scrambling Up to 2 codewords N
CORESET Normal Y

RMSI CORESET Y
SSB - RMSI CORESET multiplexing pattern Pattern 1 Y
Aggregation Level 1 Y

2 Y
4 Y
8 Y
16 Y

Modulation schemes QPSK Y
Layer mapping Supported Y
Antenna port mapping Supported Y
Mapping to virtual resource blocks Supported Y
Mapping from virtual to physical resource blocks Non-interleaved VRB-to-PRB mapping Y
Polar code Block length up to 128 bits Y
DMRS (Demodulation Reference Signal) m-sequence Y
CCE To REG Mapping Type Non-interleaved Y

Interleaved Y
Number OFDM symbol of CORESET 1 Y

2 Y
3 Y

Power Control PDCCH Y
DMRS-PDCCH Y

DCI format 0_0 NA
0_1 NA
1_0 NA
1_1 NA
2_x NA

Precoding Precoding Matrix Idx based precoding in the DU Y

18 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Overall Channel - PBCH (Physical Broadcast Channel)

Configuration cuBB Tested
Precoding Y
Scrambling SS/PBCH block index Lmax=4 N

SS/PBCH block index Lmax=8 N
SS/PBCH block index Lmax=64 N

Modulation schemes QPSK Y
Mapping to Physical Resources Y
DMRS Support Support Y
DMRS config type Type 1 Y

Type 2 N
DMRS type A Pos Pos2 Y

Pos3 Y
DMRS max length 1 Y

2 Y
DMRS Additional Position Pos0 Y

Pos1 Y
Pos2 Y
Pos3 Y

Aerial CUDA-Accelerated RAN Overall - PHY DL Reference Signals

PDSCH

Feature Configuration Sup-
ported

Demodulation reference signals for PDSCH Sequence generation Y
Demodulation reference signals for PDSCH Mapping to physical resources DM-RS configuration

type 1
Y

DM-RS configuration
type 2

N

DL-DMRS-max-len=1 Y
DL-DMRS-max-len=2 Y
DL-DMRS-add-pos=0 Y
DL-DMRS-add-pos=1 Y
DL-DMRS-add-pos=2 Y
DL-DMRS-add-pos=3 Y

Phase-tracking reference signals (PTRS) for PDSCH Mapping to physical
resources

LPT-RS=1 N
LPT-RS=2 N
LPT-RS=4 N

PDCCH

Feature Configuration Supported
Demodulation reference signals for PDCCH Sequence generation Y
Demodulation reference signals for PDCCH Mapping to physical resources Y

1.2. Product Brief 19



Aerial CUDA-Accelerated RAN, Release 25-1

PBCH

Feature Configuration Supported
Demodulation reference signals for PBCH Se-
quence generation

Y

Demodulation reference signals for PBCH Mapping
to physical resources

Y

CSI reference signals
CSI reference signals Zero-power Y

non-zero-power Y
CSI reference signals Sequence generation nID equals the higher-layer parameter

ScramblingID
Y

CSI reference signals Mapping to physical resources Row 1: 1 port, Density = 3, CDMtype = No
CDM

Y

Row 2: 1 port, Density = 1, 0.5, CDMtype
= No CDM

Y

Row 3: 2 port, Density = 1, 0.5, CDMtype
= FD-CDM2

Y

Row 4: 4 port, Density = 1, CDMtype = FD-
CDM2

Y

Row 5: 4 port, Density = 1, CDMtype = FD-
CDM2

Y

Row 6: 8 port, Density = 1, CDMtype = FD-
CDM2

Y

Row 7: 8 port, Density = 1, CDMtype = FD-
CDM2

Y

Row 8: 8 port, Density = 1, CDMtype =
CDM4 (FD2, TD2)

Y

Row 9: 12 port, Density = 1, CDMtype =
FD-CDM2

N

Row 10: 12 port, Density = 1, CDMtype =
CDM4 (FD2, TD2)

N

Row 11: 16 port, Density = 1, 0.5, CDM-
type = FD-CDM2

N

Row 12: 16 port, Density = 1, 0.5, CDM-
type = CDM4 (FD2, TD2)

N

Row 13: 24 port, Density = 1, 0.5, CDM-
type = FD-CDM2

N

Row 14: 24 port, Density = 1, 0.5, CDM-
type = CDM4(FD2, TD2)

N

Row 15: 24 port, Density = 1, 0.5, CDM-
type = CDM8(FD2, TD4)

N

Row 16: 32 port, Density = 1, 0.5, CDM-
type = FD-CDM2

N

Row 17: 32 port, Density = 1, 0.5, CDM-
type = CDM4(FD2, TD2)

N

Row 18: 32 port, Density = 1, 0.5, CDM-
type = CDM8(FD2, TD4)

N

RIM

20 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Feature Configuration Sup-
ported

RIM reference signal General The first RIM-RS type can be used to convey in-
formation

N

The second RIM-RS type depends on configura-
tion only

N

RIM reference signal Sequence generation N
RIM reference signal Mapping to physical re-
sources

N

RIM reference signal RIM-RS configuration Enough Indication is disabled N
Enough Indication is enabled N

Positioning Reference
Positioning reference signal Sequence generation N
Positioning reference signal Mapping to physical
resources

LPRS = 2, Kcomb = 2 N
LPRS = 4, Kcomb = 2 N
LPRS = 6, Kcomb = 2 N
LPRS = 12, Kcomb = 2 N
LPRS = 4, Kcomb = 4 N
LPRS = 12, Kcomb = 4 N
LPRS = 6, Kcomb = 6 N
LPRS = 12, Kcomb = 6 N
LPRS = 12, Kcomb = 12 N

Synchronization Signals

Feature Configuration Sup-
ported

SSB numerology 30 kHz Y
SSB precoding supported Y
SSB burst set configuration 2 SS blocks w/ single SSB burst set Y
Synchronization signal generation PSS generation and mapping to physical resources Y

SSS generation and mapping to physical resources Y
SS/PBCH block Mapping of PSS within an SS/PBCH block Y

Mapping of SSS within an SS/PBCH block Y
Mapping of PBCH and DM-RS within an SS/PBCH block Y
Time-frequency structure and time location of an SS/PBCH block Y

TS 38.212 Multiplexing and Channel Coding

Aerial CUDA-Accelerated RAN Overall Multiplexing and Channel Coding

Feature Configuration Supported
General Procedures CRC calculation

All CRC len supported
(6, 11, 16, 24)

Y

continues on next page

1.2. Product Brief 21



Aerial CUDA-Accelerated RAN, Release 25-1

Table 5 – continued from previous page
Feature Configuration Supported

Code block segmentation and code block
CRC attachment

• Polar coding
• Low density parity check coding

Y

Transport to physical channel mapping - UL UL-SCH -> PUSCH Y
RACH -> PRACH Y
UCI -> PUCCH,PUSCH Y

Transport to physical channel mapping - DL DL-SCH -> PDSCH Y
BCH -> PBCH Y
PCH -> PDSCH Y
DCI -> PDCCH Y

Channel coding schemes Polar coding Y
Low density parity check coding (LDPC) Y
Channel coding of small block lengths Y

Rate matching Rate matching for Polar code Y
Rate matching for LDPC code Y
Rate matching for channel coding of small
block lengths

Y

Code block concatenation sequentially concatenating the rate matching
outputs for the different code blocks

• LDPC
• Polar Coding

Y

uplink transport channels and control information Random access channel Y
Uplink shared channel

• LDPC graph selection
• Rate Matching
• Code block concatenation
• Data & Control Mulitiplexing

Y

Uplink control information
• Uplink control information on

PUCCH
• Uplink control information on

PUSCH

Y

downlink transport channels and control informa-
tion

Broadcast channel Y

Downlink shared channel and paging chan-
nel

Y

Downlink control information
• DCI formats
• CRC attachment
• Channel coding

Y

UCI multiplexing on PUCCH support muxing mode as per 38.212 -
6.3.1.1

Y

22 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

TS 38.213 Physical Layer Procedures for Control

Aerial CUDA-Accelerated RAN Overall - PHY Control Procedures

UE procedures (Not applicable to base station)

Category L1 requirement Supported
Synchronization procedures Cell search NA

Transmission timing adjustments NA
Timing for secondary cell activation / deactivation NA

Radio link monitoring SSB based NA
CSI-RS based NA

Link recovery procedures radio link failure NA
beam failure recovery NA

Uplink power control Physical uplink shared channel NA
Physical uplink control channel NA
Sounding reference signal NA
Physical random access channel NA
Power ramping counter suspention NA
Dual connectivity NA
Power headroom report NA

PHY RACH

Category L1 requirement Supported
Type-1 random access procedure Y
Type-2 random access procedure N

UE procedures (Not applicable to base station)

Category L1 requirement Sup-
ported

HARQ-ACK codebook deter-
mination

CBG-based HARQ-ACK codebook determination NA

Type-1 HARQ-ACK codebook determination in physical uplink
control channel

NA

Type-1 HARQ-ACK codebook determination in physical uplink
shared channel

NA

Type-2 HARQ-ACK codebook determination in physical uplink
control channel

NA

Type-2 HARQ-ACK codebook determination in physical uplink
shared channel

NA

Type-3 HARQ-ACK codebook determination NA

UCI reporting on PUSCH

1.2. Product Brief 23



Aerial CUDA-Accelerated RAN, Release 25-1

Category L1 Requirement Sup-
ported

Short block codes for UCI Input: 1 - 11 bits output 32 bits Y
Multiplexing of coded UCI bits
to PUSCH

CSI part 1, support maximum 48 bit Y

CSI part 1 and CSI part 2, support maximum 48 bit Y
Decoding UCI on PUSCH with PUSCH data (UCI-ON-PUSCH scal-
ing) 0.5/0.65/0.8/1

N

Decoding UCI on PUSCH without PUSCH data (UCI-ON-PUSCH
scaling) 0.5/0.65/0.8/1

N

HARQ information length maximum 128 Y
Semi-static offset N
Dynamic offset N

UCI Reporting on PUCCH

Category L1 Requirement Supported
UCI reporting on PUCCH PUCCH Resource Sets before RRC connection establishment N

PUCCH Resource Sets for RRC connected UE N
UE procedure for reporting multiple UCI types N
PUCCH repetition procedure N

UE Procedures (Not applicable to base station)

Category L1 Requirement Sup-
ported

UE procedure for determining physical downlink control channel
assignment

Type0-PDCCH common search
space

NA

Type0A-PDCCH common search
space

NA

Type1-PDCCH common search
space

NA

Type2-PDCCH common search
space

NA

Type3-PDCCH common search
space

NA

UE-specific search space NA

UE Procedure for Receiving Control Information

Category L1 Requirement Sup-
ported

PDCCH validation for DL SPS and UL grant Type 2 NA
PDCCH validation for DL SPS and UL grant Type 2 NA
PDCCH monitoring indication and dormancy/non-dormancy behaviour for SCells NA
Search space set group switching NA
HARQ-ACK information for PUSCH transmissions NA

24 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

UE-Group Common Signaling

Category L1 Requirement Supported
UE-group common signalling Slot configuration N

UE procedure for determining slot format N
Interrupted transmission indication N
Cancellation indication N
Group TPC commands for PUCCH/PUSCH N
SRS switching N

Bandwidth Part Operation

Category L1 Requirement Supported
BWP Configurable upto 4 Y

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {15, 15} kHz for frequency bands with
minimum channel bandwidth 5 MHz or 10 MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {15, 15} kHz for frequency bands oper-
ated with shared spectrum channel access

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {15, 30} kHz for frequency bands with
minimum channel bandwidth 5 MHz or 10 MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {30, 15} kHz for frequency bands with
minimum channel bandwidth 5 MHz or 10 MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {30, 30} kHz for frequency bands with
minimum channel bandwidth 5 MHz or 10 MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {30, 30} kHz for frequency bands oper-
ated with shared spectrum channel access

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {30, 15} kHz for frequency bands with
minimum channel bandwidth 40MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {30, 30} kHz for frequency bands with
minimum channel bandwidth 40MHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {120, 60} kHz

N

continues on next page

1.2. Product Brief 25



Aerial CUDA-Accelerated RAN, Release 25-1

Table 7 – continued from previous page
Category L1 Requirement Supported

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {120, 120} kHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {240, 60} kHz

N

Set of resource blocks and slot symbols of CORESET for
Type0-PDCCH search space set when {SS/PBCH block,
PDCCH} SCS is {240, 120} kHz

N

Parameters for PDCCH monitoring occasions for Type0-
PDCCH CSS set - SS/PBCH block and CORESET Multi-
plexing pattern 1 and FR1

N

Parameters for PDCCH monitoring occasions for Type0-
PDCCH CSS set - SS/PBCH block and CORESET Multi-
plexing pattern 1 and FR2

N

PDCCH monitoring occasions for Type0-PDCCH CSS set
- SS/PBCH block and CORESET Multiplexing pattern 2
and {SS/PBCH block, PDCCH} SCS {120, 60} kHz

N

PDCCH monitoring occasions for Type0-PDCCH CSS set
- SS/PBCH block andCORESET Multiplexing pattern 2
and {SS/PBCH block, PDCCH} SCS {240, 120} kHz

N

PDCCH monitoring occasions for Type0-PDCCH CSS set
- SS/PBCH block and CORESET Multiplexing pattern 3
and {SS/PBCH block, PDCCH} SCS {120, 120} kHz

N

Integrated access-backhaul opera-
tion

N

Dual active protocol stack based
handover

N

TS 38.214 Physical Layer Procedures for Data

Aerial CUDA-Accelerated RAN Overall PHY Data Procedures

Category L1 Requirement Supported
UL PUSCH Procedures
Transmission Scheme Codebook-based Y

Non-codebook-based Y
Resource allocation Type 0 (4T4R only) N

Type 1 Y
Modulation order, redundancy version and transport block size determination Y
Code block group based PUSCH transmission N
MCS Table Table64QAM Y

Table256QAM Y
Table64QAMLowSE Y

PUSCH mapping type Type A Y
Type B Y

CBG retranmission bitmap Enable N
Disable Y

26 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

FH Interfaces

Aerial CUDA-Accelerated RAN Overall 4T4R L1 - L2 Layer Interface Based on SCF FAPI

Feature Configuration (10.02) Supported (Emulated)
SCF control interface must support the following messages
Config.request 4T4R Y
Config.response 4T4R Y
Start.request 4T4R Y
Stop.request 4T4R Y
Stop.indication 4T4R Y
Error.indication 4T4R Y
Param.request (cap query) 4T4R Y
Param.response 4T4R Y
SCF data interface includes the following messages
DL_TTI.request 4T4R Y
UL_TTI.request 4T4R Y
UL_DCI.request 4T4R Y
SLOT errors 4T4R Y
TX_Data.request 4T4R Y
Rx_Data.indication 4T4R Y
CRC.indication 4T4R Y
UCI.indication 4T4R Y
SRS.indication 4T4R Y
RACH.indication 4T4R Y

Aerial CUDA-Accelerated RAN Overall PHY FH Interface

Feature Description Supported
IOT Profiles Simultaneous support of TDD profile(s)

and TDD pattern on single GPU
• NR TDD IOT Profile 1: NR-TDD-

FR1-CAT-A-NoBF
• NR TDD IOT Profile 2: NR-TDD-

FR1-CAT-A-DBF

Y

O-RAN CUS plane features with fronthaul 7.2-x
split: [10][11]

Simultanous O-RU category support on
same GPU/DU

• CAT-A (precoding supported for
PDCSH)

• CAT-B

Y

Beamforming
• Predefined beamID based beamform-

ing

Y

continues on next page

1.2. Product Brief 27



Aerial CUDA-Accelerated RAN, Release 25-1

Table 8 – continued from previous page
Feature Description Supported
IQ compression & bit-width Simultaneous support for

• Static-bit-width Fixed point IQ (14
bit)

• BFP IQ Compression (9 bit)

Y

O-DU timing
• Defined transport delay method

Y

Synchronization
• G8275.1 (full timing support)
• LLS-C3 with PTP + SyncE

Y

Transport features
• eCPRI
• Application layer fragmentation
• QoS over fronthaul

Y

Section types
• Section Type 1 (DL/UL channels)
• Section Type 3 (PRACH)
• Multiple sections within a single C-

plane message

Y

Digital power scaling
• UL gain correction
• DL reference level adjustment

Y

Rx window monitoring, Counters like
• Data received too early
• Data received too late
• Data received on-time

Y

Scale Support for upto 8 peak - 16 avg 100Mhz
carriers

Y

Measurements

Aerial CUDA-Accelerated RAN Overall PHY Measurements - 4T4R

PUSCH measurements

Measurements Supported Config Supported
cuBB Tested

RSS 4T4R Y
RSRP 4T4R Y
Pn+I pre-eq (Noise+Interference power) 4T4R Y
Pn+I post-eq (Noise+Interference power) 4T4R Y

continues on next page

28 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 9 – continued from previous page
Measurements Supported Config Supported

cuBB Tested
SINR pre-eq 4T4R Y
SINR post-eq 4T4R Y
Timing Advance 4T4R Y

PUCCH measurements

Measurements Supported Config Supported
cuBB Tested

PUCCH Format 0 4T4R Y
PF0 RSS 4T4R Y
PF0 RSRP 4T4R Y
PF0 Pn+i 4T4R Y
PF0 timing advance 4T4R Y
PUCCH Format 1 4T4R Y
PF1 RSS 4T4R Y
PF1 RSRP 4T4R Y
PF1 Pn+i 4T4R Y
PF1 timing advance 4T4R Y
PUCCH Format 2 4T4R Y
PF2 RSS 4T4R Y
PF2 RSRP 4T4R Y
PF2 Pn+i 4T4R Y
PF2 timing advance 4T4R Y
PUCCH Format 3 4T4R Y
PF3 RSS 4T4R Y
PF3 RSRP 4T4R Y
PF3 Pn+i 4T4R Y
PF3 timing advance 4T4R Y
PUCCH Format 4 4T4R N
PF4 RSS 4T4R N
PF4 RSRP 4T4R N
PF4 Pn+i 4T4R N
PF4 timing advance 4T4R N

PRACH measurements

Measurements Supported Config Supported
cuBB Tested

Pn+i (Noise+Interference power) 4T4R Y
Preamble signal strength 4T4R Y

SRS measurements

1.2. Product Brief 29



Aerial CUDA-Accelerated RAN, Release 25-1

Measurements Supported Config Supported
cuBB Tested

SNR 4T4R Y
Received signal strength 4T4R Y
Timing advance 4T4R Y

All channels measurements

Measurements Supported Config Supported
cuBB Tested

Both pre-equalization and post-equalization across
all channels should be configurable and supported

4T4R N

TS 38.104 (base station radio Tx and Rx) Base Station (BS) Radio Transmission and Reception

Aerial CUDA-Accelerated RAN Overall PHY Performance Conformance

Feature Configuration Supported
PUSCH
PUSCH with transform precoding disabled 4T4R Y
PUSCH with transform precoding enabled 4T4R Y
UCI multiplexed on PUSCH 4T4R Y
PUCCH
DTX to ACK probability 4T4R N
Performance requirements for PUCCH format 0 4T4R N
Performance requirements for PUCCH format 1 4T4R N
Performance requirements for PUCCH format 2 4T4R N
Performance requirements for PUCCH format 3 4T4R N
Performance requirements for PUCCH format 4 4T4R N
Performance requirements for multi-slot PUCCH 4T4R N
PRACH
Performance requirements for PRACH PRACH False alarm probability N

PRACH detection requirements N

1.2.2 Aerial CUDA-Accelerated RAN Features for 5G gNB

The 5G gNB capabilities, procedures, and interfaces have dependencies on Aerial CUDA-Accelerated RAN PHY Layer.
The purpose of this section is to ensure that the Aerial CUDA-Accelerated RAN provides support for gNB capabilities,
procedures, and interfaces.

30 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Highlights

• PUCCH Format 1 I+N and SINR, DTX for UCI on PUSCH
• Predefined BeamId support
• Foxconn O-RU support
• Cell life cycle management
• 4T4R TDD 7 beam support
• 8-port CSI-RS
• Dynamic OAM supporting out-of-service updates:

1. Dest MAC and VLAN ID
2. exponent_dl
3. dl_iq_data_fmt
4. ul_iq_data_fmt
5. exponent_ul
6. max_amp_ul
7. section_3_time_offset
8. pusch_prb_stride
9. prach_prb_stride

10. fh_len_range
11. lower_guard_bw
12. gps_alpha (Shared across cells)
13. gps_beta (Shared across cells)
14. prachRootSequenceIndex
15. prachZeroCorrConf
16. numPrachFdOccasions
17. restrictedSetConfig
18. prachConfigIndex
19. K1

• Fronthaul Extension to 50km
• Simultaneous fronthaul ports for higher fronthaul bandwidth
• Multiple BandWidth Part (BWP) support
• 4T4R TDD bandwidth: 10MHz, 30MHz, 40MHz, 50MHz and 80MHz
• Carrier aggregation:

1. 100MHz + 80MHz
2. 100MHz + 40MHz
3. 80MHz + 40MHz
4. 100MHz + 80MHz + 40MHz

1.2. Product Brief 31



Aerial CUDA-Accelerated RAN, Release 25-1

• L1 startup time within 30 seconds
• Support for multiple L2 on a single converged card
• Cell-Id starts from 0 for all pods

Capabilities

Homogeneous Cell Lifecycle Mgmt - Cell State Mgmt (IS/OOS)

Feature Sup-
ported

Support cell activation and de-activation.
This is commonly refered to as taking a carrier OOS (Out of Service) and bringing it to IS (In Service)
states

Y

Fronthaul Port Failover Validation (Active-Standby) of C/U/S-Planes

Feature Sup-
ported

Supports switching to secondary FH port within same BF3 card on primary FH port failure, transitioning
C/U/S-Plane traffic from primary port to secondary FH port without stopping L1

Y

Procedures

32 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Overall Beam and Carrier Mobility

Feature Configuration Supported
Inter-gNB Handover UE moves from 1 gNB to another

gNB
• UL RRC transfer
• UE Context Modification Re-

quest/Response
• UE Context Release
• Serving and Target gNB cells

can support different frequen-
cies

N

Intra-DU Handover Cell-level mobility: UE establishes
new connection to new carrier (inter-
cell) supported by UE context modi-
fication procedure

• UE Context Modification Re-
quest/Response

• UE Context Release
• Serving and Target Cells can

support different frequencies

Y

Beam Mobility UE establishes data path to new beam
within carrier coverage (intra-cell)

N

Mobility at low speeds Aerial CUDA-Accelerated RAN
shall support pedestrian mobility by
modeling the 3GPP channels and
38.104 requirements

N

Mobility at vehicular speeds Aerial CUDA-Accelerated RAN
shall support mobility at high vehic-
ular speeds - up to 70mph (Doppler
Shift = 400Hz)

N

UL Power Control

Feature Description Supported
Single UE Power Control BS initiated power control for single UEs Y
UE Group Power Control BS initiated power control for UE groups Y

1.2. Product Brief 33



Aerial CUDA-Accelerated RAN, Release 25-1

Carrier Aggregation

Feature Description Sup-
ported

Carrier Aggregation Transmissions in multiple cells can be aggregated to support inter-band
and intra-band configurations

Y

100MHz Up to 2 cells aggregation (1CC,2CC), intra-band contiguous Y
Up to 2 cells aggregation (1CC,2CC), intra-band non-contiguous Y
Up to 4 cells aggregation(1CC,2CC,3CC,4CC), inter-band non contiguous Y

Narrowband Carrier Aggre-
gation (ZMhz)

Configurable up to 4 component carriers Y

Interfaces

gNB Interfaces

Interface Supported
NG Interface (TS 38.410) Y
Xn interface (TS 38.420) N
F1 interface (TS 38.470) Y
E1 interface (TS 38.460) N
Front Haul interface - ORAN 7.2 Split (CUS version 3) Y
E2 interface N
O1 interface N

Network, Services, and KPIs

This section includes E2E integration configuration and KPIs for appropriate NEs across 5G RAN, CN, and 5G infras-
tructure.

Highlights

• 4 Peak Cells validated in eCPRI/ RF cabled setup. 8 Peak cells validated in eCPRI setup
• 4 DL Layers and 2 UL Layers validated in 4T4R configuration
• 6 UE/TTI Validated
• Simultaneous Front Haul capability supported.
• Multi L2 also validated with each L2 supporting different cells.
• 1 Cell OTA verified

34 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

E2E Summary

• 8 Peak Cells in E2E configuration (CN + RAN + UE-EM) via eCPRI connection to test equipment
(Achieving aggregate DL throughput of 11.2Gbps and aggregate UL throughput of 1.68Gbps)

• 4 Peak Cell in E2E configuration (CN + RAN + UE-EM) via RF cable connection to O-RU
(Achieving aggregate DL throughput of 5.72Gbps and aggregate UL throughput of 800Mbps)

• 1 Cell OTA in E2E configuration (CN + RAN + CUE) via OTA connection to UE device
(Achieving DL throughput of 955Mbps and UL throughput of 105Mbps)

• 1 Cell OTA testing in Bands n78 and CBRS
• AI-RAN: Validated peak cell performance with MIG enabled

4T4R Overall Configuration and KPIs

Feature Configuration
Release 15 SA TDD 7.2 CatA
Subcarrier spacing (SCS) 30kHz
sub-6 frequency spectrum n78 Germany (3700 - 3800 MHz)
sub-6 frequency spectrum n48 US CBRS (3550 - 3700 MHz)
Channel bandwidth 100 Mhz
MIMO Layers support DL : 4 layer

UL : 2 layer
100MHz cells Up to 4 peak cells

Up to 8 peak cells
Peak throughput per cell DL : 1.46 Gbps per cell

UL : 210 Mbps per cell
Number of RRC Connected UEs per cell (Cabled Environment) 100
Number of RRC Connected UEs per cell (OTA Environment) 8
Number of UEs/TTI DL : 16 UE/TTI

UL : 16 UE/TTI
Frame structure and slot format DDDSUUDDDD

S = 6:4:4 (DL: G: UL)
DSUUU
DDDSU

User plane latency (RRC connected mode) 10ms one way for DL and UL
Synchronization and Timing support IEEE 1588v2 PTP / SyncE

ORAN LLS-C3
MTU size 1500 / 8192 bytes
Modulation 256 QAM DL

256 QAM UL
Soak Testing 8 hours

1.2. Product Brief 35



Aerial CUDA-Accelerated RAN, Release 25-1

Aerial CUDA-Accelerated RAN Overall ORU Ecosystem

ORU Configuration Freq Band
Foxconn
RPQN-7801E

4T4R 3.7GHz - 3.8GHz
(indoors)

Fujitsu
TA08029-B059

4T4R 3.6GHz - 3.7GHz

Foxconn
RP0N-7800

4T4R 3.7GHz - 3.8GHz
(outdoors)

Foxconn
RPQN-4800E

4T4R CBRS
3.55GHz - 3.7GHz, (indoors)

Aerial CUDA-Accelerated RAN Overall UE Ecosystem

UE Configuration
Camera
FourFaith Camera F-SC241-216-5G

SU-MIMO
4DL, 1UL

Camera
FourFaith Camera F-SC241-216-5G (EU)

SU-MIMO
4DL, 2UL

CUE
OnePlus Nord 5G AC2003 EU/UK Model

SU-MIMO
4DL, 1UL

CUE
Oppo Reno 5G

SU-MIMO
4DL, 1UL

CUE
Samsung S22

SU-MIMO
4DL, 1UL

CUE
Samsung S23

SU-MIMO
4DL, 1UL

CUE
Xiaomi 13 pro

SU-MIMO
4DL, 2UL

CUE
Google Pixel 8

SU-MIMO
4DL, 1UL

Programmable UE
NI X410 with OAI stack

SU-MIMO
4DL, 1UL

36 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

5G Infrastructure Integration

5G RAN Integration

Function Features Supported
gNB Baseband functions for

• signal processing using multi-
ple antennas

• signal processing for detecting
and correcting errors in the
wireless transmission

• signal processing to ensure that
the wireless transmission is se-
cure

• managing the wireless re-
sources efficiently between
different devices in the net-
work

Y

O-RU Radio functions to convert digital in-
formation into signals that can be
transmitted wirelessly, ensuring that
the transmitted signals are in the right
frequency bands and have the correct
power levels.
Includes antennas which radiate the
electrical signals into radio waves

Y

UE End user devices such as smart-
phones, routers, tablets, HMDs,
CPEs

Y

1.2. Product Brief 37



Aerial CUDA-Accelerated RAN, Release 25-1

5G Mobile Core (NGC) integration

Function Features Sup-
ported

AMF
Core Access and
Mobility Management
Function

Connection and reachability management, mobility management, access authentica-
tion and authorization, location services

Y

SMF
Session Management
Function

UE session, including IP address allocation, selection of associated UP function,
control aspects of QoS, and control aspects of UP routing.

Y

PCF
Policy Control Func-
tion

Manage policy rules that other CP functions then enforce. Y

UDM
Unified Data Manage-
ment

Manage user identity, including generation of authentication credentials. Y

AUSF Authentication
Server Function

Essentially an authentication server Y

UDR
Unified Data Reposi-
tory

Repository of subscriber information that can be used by other microservies. For
example UDM

Y

NCHF
New Charging Func-
tion

Cover all the network’s needs of charging and interaction with billing systems Y

CP - SDSF
Structured Data Stor-
age

“Helper” service used to store structured data. Y

CP - UDSF
Unstructured Data
Storage

“helper” service used to store unstructured data. Y

CP - NEF
Network Exposure
Function

Expose select capabilities to third-party services, including translation between in-
ternal and external representations for data. Could be implemented by an “API
Server” in a microservices-based system.

N

CP - NRF
NF Repository Func-
tion

A means to discover available services. N

CP - NSSF
Network Slicing Selec-
tor Function

A means to select a Network Slice to serve a given UE. Network slices are essentially
a way to partition network resources in order to differentiate service given to different
users.

N

UP - UPF
User Plane Function

Forwards traffic between RAN and the Internet. In addition to packet forwarding,
it is responsible for policy enforcement, lawful intercept, traffic usage reporting, and
QoS policing

Y

38 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

5G NSE Overall Network Deployment Topologies

Topology Configuration Sup-
ported

On Prem Isolated Island Co-located gNB + CN + MEC applications Y
Colocated 5G infra with low
latency MEC applications +
centralized 5GC

MEC applications + gNB + UPF with centralized 5G CN (CUPS support -
with SBA and to minimize latency in user plane)

N

Campus Distributed MEC ap-
plications
(latency tolerant)

Campus Distributed MEC applications + colocated (gNB + UPF + CN) -
(Non latency sensitive applications can be distributed and leverage an existing
enterprise network data stream)

Y

CUPS Architecture Support N

Aerial E2E Reference BOM and Component Manifest

5G Infra
Component

HW and SW Revision Manifest Sup-
ported

gNB SMC Grace Hopper MGX Serve with BF3 NIC Y
Dell PowerEdge R750 Server with A100X Y
Altran L2+ Y

CN Dell PowerEdge R750 Server Y
Altran CN Y

FH Switch Dell PowerSwitch S5248F-ON Y
Adva switch FSP 150 XG400 Y
Spectrum switch SN3750X Y
Ciena switch 5164 Y
Cisco switch N9K-C93180YC-FX3S Y

GM QULSAR Qg 2 Multi-Sync Gatway Y
Cables Dell C2G 1m LC-LC 50/125 Duplex Multimode OM4 Fiber Cable - Aqua - 3ft – Optical

patch cable
Y

NVIDIA MCP1650-V01AE30 DAC Cable Ethernet 200GbE QSFP28 1.5m Y
NVIDIA MCP1600-C001E30N DAC Cable Ethernet 100GbE QSFP28 1m Y
Beyondtech 5m (16ft) LC UPC to LC UPC Duplex OM3 Multimode PVC (OFNR) 2.0mm
Fiber Optic Patch Cable

Y

CableCreation 3ft Cat5/Cat6 Ethernet Cables Y
PDUs Tripp Lite 1.4kW Single-Phase Monitored PDU with LX Platform Interface, 120V Outlets

(8 5-15R), 5-15P, 12ft Cord, 1U Rack-Mount, TAA
Y

Transceivers Finisar SFP-to-RJ45 Transceiver Y
Intel Ethernet SFP+SR Optics Y
Dell SFP28-25G-SR Transceiver Y

Ethernet
Switch

Netgear ProSafe Plus JGS524E Rackmount Y

1.2. Product Brief 39



Aerial CUDA-Accelerated RAN, Release 25-1

1.2.3 Supported Systems

Aerial cuPHY is a software-defined workload hosted on NVIDIA-certified EGX servers and a stack that uses the CUDA
OS platform and GPU/NIC/CPU firmware and toolkits. This section highlights the Aerial cuPHY workload configuration
interdependencies as part of the NVIDIA platform stack.

Highlights

• Grace Hopper MGX system supports 20 4T4R Peak cells / 20 4T4R average BFP9 cells
• Supports Massive MIMO: 64T64R (16DL | 8UL) @ 100MHz w/ SRS-based Beamforming

Aerial CUDA-Accelerated RAN Overall Platform Qualification

System Configuration Applications
Grace Hopper MGX • 72-core NVIDIA Grace CPU

• NVIDIA H100 Tensor Core
GPU

• 480GB of LPDDR5X mem-
ory with ECC

• Supports 96GB of HBM3
• BF3 NIC x2

gNB, RU emulator

x86 platform Dell R750
• Server Skew 10-AYCG
• Intel Xeon Gold 6336Y 2.4G,

24C/48T
• PCIe Gen4
• Memory 512GB DDR4
• Storage 2TB
• BF3 NIC

RU emulator only

1.2.4 Operations, Administration, and Management (OAM) Guide

The Operations, Administration, and Management (OAM) guide covers Aerial OAM capabilities that include startup
configuration using YAML configuration files, run-time configuration and status using remote procedure calls, high per-
formance logging, and metrics reporting using the Prometheus framework.

40 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

OAM Operation

Cloud Native DevOps

Aerial CUDA-Accelerated RAN is based on cloud-native principles and supports a DevOps work-flow using industry
standard tools such as Kubernetes, gRPC, and Prometheus.

Aerial Applications

The Aerial framework includes three primary applications for end to end L1 implementation and testing.
• cuphycontroller is the full L1 stack application. This application implements the adaptation layer from L2 to the

cuPHY API, orchestrates the cuPHY API scheduling, and sends/receives ORAN compliant Fronthaul traffic over
the NIC. Several independently configurable adaptation layers from L2 to the cuPHY API are available.

• test_mac application, for integration testing, implements a mock L2 that is capable of interfacing with cuphycon-
troller over the L2/L1 API.

• ru-emulator application, for integration testing, implements a mock O-RU + UE that is capable of interfacing
with cuphycontroller over the ORAN compliant Fronthaul interface.

Every Aerial application supports the following:
• Configuration at startup through the use of YAML-format configuration files.
• Support for optionally-configured cloud-based logging and metrics backends.
• Support for optionally-deployed OAM clients for run-time configuration and status queries.
• When deployed as a Kubernetes pod:

– Support for application monitoring and configuration auto-discovery through the Kubernetes API.
– Configuration YAML files can optionally be mounted as a Kubernetes ConfigMap, separating the container

image from the configuration.
– Configuration YAML files can optionally be templatized using the Kubernetes kustomization.yaml format,

1.2. Product Brief 41



Aerial CUDA-Accelerated RAN, Release 25-1

Deployment Scenarios

Functional Testing

For real-time functional correctness testing, test cases are generated offline in HDF5 binary file format, then played back in
real-time through the testMAC and RU Emulator applications. The Aerial cuPHY-CP + cuPHY components under test,
run in real-time to exercise GPU and Fronthaul Network interfaces. Test case sequencing is enabled through configurable
launch pattern files read by testMAC and RU Emulator. The diagram below shows an example of downlink functional
testing:

The diagram below shows an example of uplink functional testing:

42 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

End to End Testing

A variety of end to end testing scenarios are possible. Shown below is one example using an Aerial gNB system im-
plementing the CU+DU, an ORAN compliant RU connected to the DU via the ORAN fronthaul interface, and UE test
equipment from Keysight.

Another example is the all-digital eCPRI topology is shown below with an Aerial gNB system implementing the CU+DU
with the Keysight test equipment implementing the O-RU and UE functions.

Fault Management

Logging

Aerial follows the best practices of Kubernetes (https://kubernetes.io/docs/concepts/cluster-administration/logging/) for
implementing logging.
The cuphycontroller application outputs log messages, where the log level is less than or equal to the
nvlog.console_log_level cuphycontroller YAML configuration parameter, directly to stdout using the logging at the node
level pattern:

1.2. Product Brief 43

https://kubernetes.io/docs/concepts/cluster-administration/logging/


Aerial CUDA-Accelerated RAN, Release 25-1

For high performance logs, Aerial uses a shared memory logger to offload the I/O bottleneck from the real-time threads.
Log messages, where level is less than or equal to the nvlog.shm_log_level cuphycontroller YAML configuration parameter,
are output to the shared memory logger. The shared memory logger outputs can be retrieved using either the streaming
sidecar pattern with logs written directly to the local disk:

Or the sidecar with logging agent pattern to stream directly to an external logging backend:

44 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

nvlog message format

Each nvlog message is a string of the form “[Software Component Name] Msg” prefixed with the following space-
separated optional fields:

• Date
• Timestamp
• Primary or Secondary nvlog process
• Log level
• Log event code id
• Log event code string
• CPU core number the calling thread is running on
• 64-bit sequence number
• Thread ID
• Thread Name

These fields are enabled in the nvlog_config.yaml.
An example nvlog message is:

20:58:09.036299 C [NVLOG.CPP] nvlog_create: name=phy shm_level=1
console_level=1 max_file_size=0x10000000 shm_cache_size=0x200000
log_buf_size=1024 prefix_opts=0x09

The message above had the following prefaces enabled:
• Timestamp
• Log level

Here are three more example nvlog messages, where all prefixed fields are enabled, taken at the start of the cuphycontroller
process execution:

2021-09-15 21:29:22.926521 P C 0 SUCESS 1 0 140699056300032
cuphycontroller [NVLOG.CPP] nvlog_create: name=phy shm_level=1
console_level=1 max_file_size=0x10000000 shm_cache_size=0x200000
log_buf_size=1024 prefix_opts=0xFF

2021-09-15 21:29:22.926560 P C 0 SUCCESS 1 1 140699056300032
cuphycontroller [CTL.SCF] Config file:
/cuBB_21-3/cuPHY-CP/cuphycontroller/config/cuphycontroller_V08.yaml

2021-09-15 21:29:23.130882 P C 0 SUCCESS 22 2 140699056300032
cuphycontroller [CTL.YAML] Standalone mode: No

Here is an example of an nvlog message at Fault level with Event Code AERIAL_MEMORY_EVENT:

20:58:09.036299 F MEMORY_EVENT Unable to allocate memory for FH buffers

The message above had the following prefaces enabled:
• Timestamp
• Log level

1.2. Product Brief 45



Aerial CUDA-Accelerated RAN, Release 25-1

• Log event code string
The fields are further described herein:
Date is YYYY-MM-DD format, for example, 1970-01-01
Timestamp is HH:MM:SS.us, for example, 20:58:09.036299
Primary process is P, secondary process is S.
Log level is:

• F - Fatal
• E - Error
• C - Console
• W - Warning
• I - Info
• D - Debug
• V - Verbose

Log event code string or log event code id is a string (or a numerical id) that indicates the category of event that has
occurred.

nvlog Components

Aerial implements the following default logging component tags:
nvlog component:

• 10: “NVLOG”
• 11: “NVLOG.TEST”
• 12: “NVLOG.ITAG”

nvipc component:
• 30: “NVIPC”

cuPHY-CP Controller component:
• 100: “CTL”
• 101: “CTL.SCF”
• 102: “CTL.ALTRAN”
• 103: “CTL.DRV”
• 104: “CTL.YAML”

cuPHY-CP driver component:
• 200: “DRV”
• 201: “DRV.SA”
• 202: “DRV.TIME”
• 203: “DRV.CTX”
• 204: “DRV.API”

46 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

• 205: “DRV.FH”
• 206: “DRV.GEN_CUDA”
• 207: “DRV.GPUDEV”
• 208: “DRV.PHYCH”
• 209: “DRV.TASK”
• 210: “DRV.WORKER”
• 211: “DRV.DLBUF”
• 212: “DRV.CSIRS”
• 213: “DRV.PBCH”
• 214: “DRV.PDCCH_DL”
• 215: “DRV.PDSCH”
• 216: “DRV.MAP_DL”
• 217: “DRV.FUNC_DL”
• 218: “DRV.HARQ_POOL”
• 219: “DRV.ORDER_CUDA”
• 220: “DRV.ORDER_ENTITY”
• 221: “DRV.PRACH”
• 222: “DRV.PUCCH”
• 223: “DRV.PUSCH”
• 224: “DRV.MAP_UL”
• 225: “DRV.FUNC_UL”
• 226: “DRV.ULBUF”
• 227: “DRV.MPS”
• 228: “DRV.METRICS”
• 229: “DRV.MEMFOOT”
• 230: “DRV.CELL”

cuPHY-CP cuphyl2adapter component:
• 300: “L2A”
• 301: “L2A.MAC”
• 302: “L2A.MACFACT”
• 303: “L2A.PROXY”
• 304: “L2A.EPOLL”
• 305: “L2A.TRANSPORT”
• 306: “L2A.MODULE”
• 307: “L2A.TICK”
• 308: “L2A.UEMD”

1.2. Product Brief 47



Aerial CUDA-Accelerated RAN, Release 25-1

cuPHY-CP scfl2adapter component:
• 330: “SCF”
• 331: “SCF.MAC”
• 332: “SCF.DISPATCH”
• 333: “SCF.PHY”
• 334: “SCF.SLOTCMD”
• 335: “SCF.L2SA”
• 336: “SCF.DUMMYMAC”

cuPHY-CP testMAC component:
• 400: “MAC”
• 401: “MAC.LP”
• 402: “MAC.FAPI”
• 403: “MAC.UTILS”
• 404: “MAC.SCF”
• 405: “MAC.ALTRAN”
• 406: “MAC.CFG”
• 407: “MAC.PROC”

cuPHY-CP ru-emulator component:
• 500: “RU”
• 501: “RU.EMULATOR”
• 502: “RU.PARSER”

cuPHY-CP aerial-fh-driver component:
• 600: “FH”
• 601: “FH.FLOW”
• 602: “FH.FH”
• 603: “FH.GPU_MP”
• 604: “FH.LIB”
• 605: “FH.MEMREG”
• 606: “FH.METRICS”
• 607: “FH.NIC”
• 608: “FH.PDUMP”
• 609: “FH.PEER”
• 610: “FH.QUEUE”
• 611: “FH.RING”
• 612: “FH.TIME”

cuPHY-CP compression_decompression component:

48 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

• 700: “COMP”
cuPHY-CP cuphyoam component:

• 800: “OAM”
cuPHY component:

• 900: “CUPHY”

Note

These strings can be changed using the nvlog_config.yaml.

Event codes

The following is the list of event codes (see aerial_event_code.h). The event strings match the event code names,
minus the AERIAL_.

| AERIAL_SUCCESS = 0,
| AERIAL_INVALID_PARAM_EVENT = 1,
| AERIAL_INTERNAL_EVENT = 2,
| AERIAL_CUDA_API_EVENT = 3,
| AERIAL_DPDK_API_EVENT = 4,
| AERIAL_THREAD_API_EVENT = 5,
| AERIAL_CLOCK_API_EVENT = 6,
| AERIAL_NVIPC_API_EVENT = 7,
| AERIAL_ORAN_FH_EVENT = 8,
| AERIAL_CUPHYDRV_API_EVENT = 9,
| AERIAL_INPUT_OUTPUT_EVENT = 10,
| AERIAL_MEMORY_EVENT = 11,
| AERIAL_YAML_PARSER_EVENT = 12,
| AERIAL_NVLOG_EVENT = 13,
| AERIAL_CONFIG_EVENT = 14,
| AERIAL_FAPI_EVENT = 15,
| AERIAL_NO_SUPPORT_EVENT = 16,
| AERIAL_SYSTEM_API_EVENT = 17,
| AERIAL_L2ADAPTER_EVENT = 18,
| AERIAL_RU_EMULATOR_EVENT = 19,

OAM Configuration

Startup Configuration (cuphycontroller)

The application binary name for the combined cuPHY-CP + cuPHY is cuphycontroller. When cuphycontroller starts, it
reads static configuration from configuration YAML files. This section describes the fields in the YAML files.

1.2. Product Brief 49



Aerial CUDA-Accelerated RAN, Release 25-1

l2adapter_filename

This field contains the filename of the YAML-format config file for l2 adapter configuration.

aerial_metrics_backend_address

Aerial Prometheus metrics backend address.

low_priority_core

CPU core shared by all low-priority threads, isolated CPU core is preferred. Can be non-isolated CPU core but make
sure no other heavy load task on it.

nic_tput_alert_threshold_mbps

This parameter is used to monitor NIC throughput. The units are in Mbps, that is, 85000 = 85 Gbps. This value is almost
the max throughput that can be achieved with accurate send scheduling for a 100 Gbps link. A gRPC client(reference:
$cuBB_SDK/cuPHY-CP/cuphyoam/examples/test_grpc_push_notification_client.cpp) needs to be implemented to re-
ceive the alert.

cuphydriver_config

This container holds configuration for cuphydriver.

standalone

0 - run cuphydriver integrated with other cuPHY-CP components
1 - run cuphydriver in standalone mode (no l2adapter, etc)

validation

Enables additional validation checks at run-time.
0 - Disabled
1 - Enabled

num_slots

Number of lots to run in cuphydriver standalone test.

50 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

log_level

cuPHYDriver log level: DBG, INFO, ERROR.

profiler_sec

Number of seconds to run the CUDA profiling tool.

dpdk_thread

Sets the CPU core used by the primary DPDK thread. It does not have to be an isolated core. And the DPDK thread
itself is defaulted to ‘SCHED_FIFO+priority 95’.

dpdk_verbose_logs

Enable maximum log level in DPDK.
0 - Disable
1 - Enable

accu_tx_sched_res_ns

Sets the accuracy of the accurate transmit scheduling, in units of nanoseconds.

accu_tx_sched_disable

Disable accurate TX scheduling.
0 - packets are sent according to the TX timestamp
1 - packets are sent whenever it is convenient

fh_stats_dump_cpu_core

Sets the CPU core used by the FH stats logging thread. It does not have to be an isolated core. And currently the default
FH stats polling interval is 500ms.

pdump_client_thread

CPU core to use for pdump client. Set to -1 to disable fronthaul RX traffic PCAP capture.
See:

1. https://doc.dpdk.org/guides/howto/packet_capture_framework.html
2. aerial-fh README.md

1.2. Product Brief 51

https://doc.dpdk.org/guides/howto/packet_capture_framework.html


Aerial CUDA-Accelerated RAN, Release 25-1

mps_sm_pusch

Number of SMs for PUSCH channel.

mps_sm_pucch

Number of SMs for PUCCH channel.

mps_sm_pusch

Number of SMs for PUSCH channel.

mps_sm_prach

Number of SMs for PRACH channel.

mps_sm_ul_order

Number of SMs for UL order kernel.

mps_sm_pdsch

Number of SMs for PDSCH channel.

mps_sm_pdcch

Number of SMs for PDCCH channel.

mps_sm_pbch

Number of SMs for PBCH channel.

mps_sm_srs

Number of SMs for SRS channel.

52 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

mps_sm_gpu_comms

Number of SMs for GPU comms.

nics

Container for NIC configuration parameters.

nic

PCIe bus address of the NIC port.

mtu

Maximum transmission size, in bytes, supported by the Fronthaul U-plane and C-plane.

cpu_mbufs

Number of preallocated DPDK memory buffers (mbufs) used for Ethernet packets.

uplane_tx_handles

The number of pre-allocated transmit handles that link the U-plane prepare() and transmit() functions.

txq_count

NIC transmit queue count.
Must be large enough to handle all cells attached to this NIC port.
Each cell uses one TXQ for C-plane and txq_count_uplane TXQs for U-plane.

rxq_count

Receive queue count.
This value must be large enough to handle all cell attached to this NIC port.
Each cell uses one RXQ to receive all uplink traffic.

1.2. Product Brief 53



Aerial CUDA-Accelerated RAN, Release 25-1

txq_size

Number of packets that can fit in each transmit queue.

rxq_size

Number of packets that can be buffered in each receive queue.

gpu

CUDA device to receive uplink packets from this NIC port.

gpus

List of GPU device IDs. To use gpudirect, the GPU must be on the same PCIe root complex as the NIC. To maximize
performance, the GPU should be on the same PCIe switch as the NIC. Only the first entry in the list is used.

workers_ul

List of pinned CPU cores used for uplink worker threads.

workers_dl

List of pinned CPU cores used for downlink worker threads.

debug_worker

For performance debug purpose, this is set to a free core to work with the enable_*_tracing logs.

workers_sched_priority

cuPHYDriver worker threads scheduling priority.

dpdk_file_prefix

Shared data file prefix to use for the underlying DPDK process.

54 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

wfreq

Filename containing the coefficients for channel estimation filters, in HDF5 (.h5) format.

cell_group

Enable cuPHY cell groups.
0 - disable 1 - enable

cell_group_num

Number of cells to be configured in L1 for the test.

enable_h2d_copy_thread

Enable/disable offloading of h2d copy in L2A to a seperate copy thread.

h2d_copy_thread_cpu_affinity

CPU core on which the h2d copy thread in L2A should run. Applicable only if enable_h2d_copy_thread is 1.

h2d_copy_thread_sched_priority

h2d copy thread priority in L2A. Applicable only if enable_h2d_copy_thread is 1.

fix_beta_dl

Fix the beta_dl for local test with RU Emulator so that the output values are a bytematch to the TV.

prometheus_thread

Pinned CPU core for updating NIC metrics once per second.

start_section_id_srs

ORAN CUS start section ID for the SRS channel.

1.2. Product Brief 55



Aerial CUDA-Accelerated RAN, Release 25-1

start_section_id_prach

ORAN CUS start section ID for the PRACH channel.

enable_ul_cuphy_graphs

Enable UL processing with CUDA graphs.

enable_dl_cuphy_graphs

Enable DL processing with CUDA graphs.

section_3_time_offset

Time offset, in units of nanoseconds, for the PRACH channel.

ul_order_timeout_cpu_ns

Timeout, in units of nanoseconds, for the uplink order kernel to receive any U-plane packets for this slot.

ul_order_timeout_gpu_ns

Timeout, in units of nanoseconds, for the order kernel to complete execution on the GPU.

pusch_sinr

Enable pusch sinr calculation (0 by default).

pusch_rssi

Enable PUSCH RSSI calculation (0 by default).

pusch_tdi

Enable PUSCH TDI processing (0 by default).

56 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

pusch_cfo

Enable PUSCH CFO calculations (0 by default).

pusch_dftsofdm

DFT-s-OFDM enable/disable flag: 0 - disable, 1 - enable.

pusch_to

It is only used for timing offset reporting to L2. If the timing offset estimate is not used by L2, it can be disabled.

pusch_select_eqcoeffalgo

Algorithm selector for PUSCH noise interference estimation and channel equalization. The following values are sup-
ported: 0: Regularized zero-forcing (RZF) 1: Diagonal MMSE regularization 2: Minimum Mean Square Error - In-
terference Rejection Combining (MMSE-IRC) 3: MMSE-IRC with RBLW covariance shrinkage 4: MMSE-IRC with
OAS covariance shrinkage.

pusch_select_chestalgo

Channel estimation algorithm selection: 0 - legacy MMSE, 1 - multi-stage MMSE with delay estimation.

pusch_tbsizecheck

Tb size verification enable/disable flag: 0 - disable, 1 - enable.

pusch_subSlotProcEn

Sub-slot processing enable/disable flag: 0 - disable, 1 - enable. The early HARQ feature will be enabled accordingly when
this flag is enabled. To get HARQ values in UCI.indication for UCI on PUSCH, before complete PUSCH slot processing,
L2 should include PHY configuration TLV 0x102B (indicationInstancesPerSlot) with UCI.indication set to 2, according
to Table 3–36 in SCF FAPI 222.10.04. If UCI.indication set to 2 in CONFIG.request for any cell the early HARQ feature
will get activated for all cells.

pusch_deviceGraphLaunchEn

Static flag to allow device graph launch in PUSCH.

1.2. Product Brief 57



Aerial CUDA-Accelerated RAN, Release 25-1

pusch_waitTimeOutPreEarlyHarqUs

Timeout threshold in microseconds for receiving OFDM symbols for PUSCH early-HARQ processing.

pusch_waitTimeOutPostEarlyHarqUs

Timeout threshold in microseconds for receiving OFDM symbols for PUSCH non-early-HARQ processing (essentially
all the PUSCH symbols).

puxch_polarDcdrListSz

List size used in List Decoding of Polar codes.

enable_cpu_task_tracing

The flag is used to trace and instrument DL/UL CPU tasks running on existing cuphydriver cores.

enable_prepare_tracing

It’s for tracing the U-plane packet preperation kernel durations and end times and need the debug worker to be enabled.

enable_dl_cqe_tracing

Enables tracing of DL CQEs (debug feature to check for DL U-plane packets’ timing at the NIC).

ul_rx_pkt_tracing_level

This YAML param can be set to 3 different values: 0 (default, recommended) : Only keeps count of the early/ontime/late
packet counters per slot as seen by the DU (Reorder kernel) for the Uplink U-plane packets. 1 : Also Captures and logs
earliest/latest packet timestamp per symbol per slot as seen by the DU. 2 : Also Captures and logs timestamp of each
packet received per symbol per slot as seen by the DU.

split_ul_cuda_streams

Keep default of 0. This allows back to back UL slots to overlap their processing. Keep disabled to maintain performance
of first UL slot in every group of 2.

58 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

aggr_obj_non_avail_th

Keep the default value at 5. This param sets the threshold for successive non-availability of L1 objects (can be interpreted
as L1 handler necessary to schedule PHY compute tasks to the GPU). Unavailability could imply the execution timeline
falling behind the expected L1 timeline budget.

dl_wait_th_ns

This parameter is used for error handling in the event of GPU failure. You must keep the defaults.

sendCPlane_timing_error_th_ns

Keep the default value at 50000 (50 us). The threshold is used as a check for the proximity of the current time during
C-plane task’s execution to the actual scheduled C-plane packet’s transmission time. Meeting the threshold check would
result in C-plane packet transmission being dropped for the slot.

pusch_forcedNumCsi2Bits

Debug feaure if > 0, overrides the number of PUSCH CSI-P2 bits for all CSI-P2 UCIs with the non-zero value provided.
Recommend setting it to 0.

mMIMO_enable

Keep at default of 0. This flag is reserved for future capability.

enable_srs

Enable/disable SRS

enable_csip2_v3

Enable/disable the the support of CSI part2 defined by FAPI 10.03 Table 3-77

pusch_aggr_per_ctx

Number of PUSCH objects per context (3 by default).

1.2. Product Brief 59



Aerial CUDA-Accelerated RAN, Release 25-1

prach_aggr_per_ctx

Number of PRACH objects per context (2 by default).

pucch_aggr_per_ctx

Number of PUCCH objects per context (4 by default).

srs_aggr_per_ctx

Number of SRS objects per context (2 by default).

ul_input_buffer_per_cell

Number of UL buffers allocated per cell (10 by default).

ul_input_buffer_per_cell_srs

Number of UL buffers allocated per cell for SRS (4 by default).

ue_mode

Flag for spectral effeciency feature. Must be enabled on the RU side YAML to emulate UE operation.

cplane_disable

Disable C-plane for all cells.
0 - Enable C-plane 1 - Disable C-plane

cells

List of containers of cell parameters.

name

Name of the cell

60 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

cell_id

ID of the cell.

src_mac_addr

Source MAC address for U-plane and C-plane packets. Set to 00:00:00:00:00:00 to use the MAC address of the NIC
port in use.

dst_mac_addr

Destination MAC address for U-plane and C-plane packets.

nic

gNB NIC port to which the cell is attached.
Must match the ‘nic’ key value in one of the elements of in the ‘nics’ list.

vlan

VLAN ID used for C-plane and U-plane packets.

pcp

QoS priority codepoint used for C-plane and U-plane Ethernet packets.

txq_count_uplane

Number of transmit queues used for U-plane.

eAxC_id_ssb_pbch

List of eAxC IDs to use for SSB/PBCH.

eAxC_id_pdcch

List of eAxC IDs to use for PDCCH.

1.2. Product Brief 61



Aerial CUDA-Accelerated RAN, Release 25-1

eAxC_id_pdsch

List of eAxC IDs to use for PDSCH.

eAxC_id_csirs

List of eAxC IDs to use for CSI RS.

eAxC_id_pusch

List of eAxC IDs to use for PUSCH.

eAxC_id_pucch

List of eAxC IDs to use for PUCCH.

eAxC_id_srs

List of eAxC IDs to use for SRS.

eAxC_id_prach

List of eAxC IDs to use for PRACH.

dl_iq_data_fmt:comp_meth

DL U-plane compression method: 0: Fixed point 1: BFP

dl_iq_data_fmt:bit_width

Number of bits used for each RE on DL U-plane channels. Fixed point supported value: 16 BFP supported value: 9, 14,
16

ul_iq_data_fmt:comp_meth

UL U-plane compression method: 0: Fixed point 1: BFP

62 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

ul_iq_data_fmt:bit_width

Number of bits used per RE on uplink U-plane channels. Fixed point supported value: 16 BFP supported value: 9, 14,
16

fs_offset_dl

Downlink U-plane scaling per ORAN CUS 6.1.3.

exponent_dl

Downlink U-plane scaling per ORAN CUS 6.1.3.

ref_dl

Downlink U-plane scaling per ORAN CUS 6.1.3.

fs_offset_ul

Uplink U-plane scaling per ORAN CUS 6.1.3.

exponent_ul

Uplink U-plane scaling per ORAN CUS 6.1.3.

max_amp_ul

Maximum full scale amplitude used in uplink U-plane scaling per ORAN CUS 6.1.3.

mu

3GPP subcarrier bandwidth index ‘mu’.
0 - 15 kHz 1 - 30 kHz 2 - 60 kHz 3 - 120 kHz 4 - 240 kHz

T1a_max_up_ns

Scheduled timing advance before time-zero for downlink U-plane egress from DU, per ORAN CUS.

1.2. Product Brief 63



Aerial CUDA-Accelerated RAN, Release 25-1

T1a_max_cp_ul_ns

Scheduled timing advance before time-zero for uplink C-plane egress from DU, per ORAN CUS.

Ta4_min_ns

Start of DU reception window after time-zero, per ORAN CUS.

Ta4_max_ns

End of DU reception window after time-zero, per ORAN CUS.

Tcp_adv_dl_ns

Downlink C-plane timing advance ahead of U-plane, in units of nanoseconds, per ORAN CUS.

ul_u_plane_tx_offset_ns

Flag for spectral effeciency feature. Must be set on the RU side YAML to offset UL transmission start from T0.

pusch_prb_stride

Memory stride, in units of PRBs, for the PUSCH channel. Affects GPU memory layout.

prach_prb_stride

Memory stride, in units of PRBs, for the PRACH channel. Affects GPU memory layout.

srs_prb_stride

Memory stride, in units of PRBs, for the SRS. Affects GPU memory layout.

pusch_ldpc_max_num_itr_algo_type

0 - Fixed LDPC iteration count
1 - MCS based LDPC iteration count
Recommend setting pusch_ldpc_max_num_itr_algo_type:1

64 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

pusch_fixed_max_num_ldpc_itrs

Unused currently, reserved to replace pusch_ldpc_n_iterations.

pusch_ldpc_n_iterations

Iteration count is set to pusch_ldpc_n_iterations, when the fixed LDPC iteration count option is selected
(pusch_ldpc_max_num_itr_algo_type:0). Because the default value of pusch_ldpc_max_num_itr_algo_type is 1 (itera-
tion count optimized based on MCS), pusch_ldpc_n_iterations is unused.

pusch_ldpc_algo_index

Algorithm index for LDPC decoder: 0 - automatic choice.

pusch_ldpc_flags

pusch_ldpc_flags are flags that configure the LDPC decoder. pusch_ldpc_flags:2 selects an LDPC decoder that optimizes
for throughput i..e processes more than one codeword (for example, 2) instead of latency.

pusch_ldpc_use_half

Indication of input data type of LDPC decoder:
0 - single precision, 1 - half precision

pusch_nMaxPrb

This is for memory allocation of max PRB range of peak cells compared to average cells.

ul_gain_calibration

UL Configured Gain used to convert dBFS to dBm. Default value, if unspecified: 48.68

lower_guard_bw

Lower Guard Bandwidth expressed in kHZ. Used for deriving freqOffset for each Rach Occasion. Default is 845.

tv_pusch

HDF5 file containing static configuration (for example, filter coefficients) for the PUSCH channel.

1.2. Product Brief 65



Aerial CUDA-Accelerated RAN, Release 25-1

tv_prach

HDF5 file containing static configuration (for example, filter coefficients) for the PRACH channel.

pusch_ldpc_n_iterations

PUSCH LDPC channel coding iteration count.

pusch_ldpc_early_termination

PUSCH LDPC channel coding early termination.
0 - Disable 1 - Enable

Startup Configuration (l2_adapter_config)

msg_type

Defines the L2/L1 interface API. Supported options are:
• scf_fapi_gnb - Use the small cell forum API.

phy_class

Same as msg_type.

tick_generator_mode

The SLOT.incication interval generator mode:
0 - poll + sleep. During each tick the threads sleep some time to release the CPU core to avoid hanging the system,
then they poll the system time. 1 - sleep. Sleep to absolute timestamp, no polling. 2 - timer_fd. Start a timer and call
epoll_wait() on the timer_fd.

allowed_fapi_latency

Allowed maximum latency of SLOT FAPI messages, which send from L2 to L1, otherwise the message is ignored and
dropped.
Unit: slot. Default is 0, it means L2 message should be received in current slot.

66 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

allowed_tick_error

Allowed tick interval error.
Unit: us
Tick interval error is printed in statistic style. If observed tick error > allowed, the log is printed as Error level.

timer_thread_config

Configuration for the timer thread.

name

Name of thread.

cpu_affinity

Id of pinned CPU core used for timer thread.

sched_priority

Scheduling priority of timer thread.

message_thread_config

Configuration container for the L2/L1 message processing thread.

name

Name of thread.

cpu_affinity

Id of pinned CPU core used for timer thread.

sched_priority

Scheduling priority of message thread.

1.2. Product Brief 67



Aerial CUDA-Accelerated RAN, Release 25-1

ptp

ptp configs for GPS_ALPHA, GPS_BETA.

gps_alpha

GPS Alpha value for ORAN WG4 CUS section 9.7.2. Default value = 0, if undefined.

gps_beta

GPS Beta value for ORAN WG4 CUS section 9.7.2. Default value = 0, if undefined.

mu_highest

Highest supported mu, used for scheduling TTI tick rate.

slot_advance

Timing advance ahead of time-zero, in units of slots, for L1 to notify L2 of a slot request.

enableTickDynamicSfnSlot

Enable dynamic slot/sfn.

staticPucchSlotNum

Debugging param for testing against RU Emulator to send set static PUCCH slot number.

staticPuschSlotNum

Debugging param for testing against RU Emulator to send set static PUSCH slot number.

staticPdschSlotNum

Debugging param for testing against RU Emulator to send set static PDSCH slot number.

68 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

staticPdcchSlotNum

Debugging param for testing against RU Emulator to send set static PDCCH slot number.

staticCsiRsSlotNum

Debugging param for testing against RU Emulator to send set static CSI-RS slot number.

staticSsbSlotNum

Override the incoming slot number with the YAML configured SlotNumber for SS/PBCH.
Example
staticSsbSlotNum:10

staticSsbPcid

Debugging param for testing against RU Emulator to send set static SSB phycellId.

staticSsbSFN

Debugging param for testing against RU Emulator to send set static SSB SFN.

pucch_dtx_thresholds

Array of scale factors for DTX Thresholds of each PUCCH format.
Default value, if not present, is 1.0, which means the thresholds are not scaled.
For PUCCH format 0 and 1, -100.0 is replaced with 1.0.
Example:
pucch_dtx_thresholds: [-100.0, -100.0, 1.0, 1.0, -100.0]

pusch_dtx_thresholds

Scale factor for DTX Thresholds of UCI on PUSCH.
Default value, if not present, is 1.0, which means the threshold is not scaled.
Example:
pusch_dtx_thresholds: 1.0

1.2. Product Brief 69



Aerial CUDA-Accelerated RAN, Release 25-1

enable_precoding

Enable/Disable Precoding PDUs to be parsed in L2Adapter.
Default value is 0 enable_precoding: 0/1

prepone_h2d_copy

Enable/Disable preponing of H2D copy in L2Adapter.
Default value is 1 prepone_h2d_copy: 0/1

enable_beam_forming

Enables/Disables BeamIds to parsed in L2Adapter.
Default value : 0 enable_beam_forming: 1

dl_tb_loc

Transport block location in inside nvipc buffer.
Default value is 1 dl_tb_loc: 0 # TB is located in inline with nvipc’s msg buffer. dl_tb_loc: 1 # TB is located in nvipc’s
CPU data buffer. dl_tb_loc: 2 # TB is located in nvipc’s GPU buffer.

instances

Container for cell instances.

name

Name of the instance.

nvipc_config_file

Config dedicated YAML file for nvipc. Example: nvipc_multi_instances.yaml

transport

Configuration container for L2/L1 message transport parameters.

70 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

type

Transport type. One of shm, dpdk, or udp.

udp_config

Configuration container for the udp transport type.

local_port

UDP port used by L1.

remote_port

UDP port used by L2.

shm_config

Configuration container for the shared memory transport type.

primary

Indicates process is primary for shared memory access.

prefix

Prefix used in creating shared memory filename.

cuda_device_id

Set this parameter to a valid GPU device ID to enable CPU data memory pool allocation in host pinned memory. Set to
-1 to disable this feature.

ring_len

Length, in bytes, of the ring used for shared memory transport.

1.2. Product Brief 71



Aerial CUDA-Accelerated RAN, Release 25-1

mempool_size

Configuration container for the memory pools used in shared memory transport.

cpu_msg

Configuration container for the shared memory transport for CPU messages (that is, L2/L1 FAPI messages).

buf_size

Buffer size in bytes.

pool_len

Pool length in buffers.

cpu_data

Configuration container for the shared memory transport for CPU data elements (that is, downlink and uplink transport
blocks).

buf_size

Buffer size in bytes.

pool_len

Pool length in buffers.

cuda_data

Configuration container for the shared memory transport for GPU data elements.

buf_size

Buffer size in bytes.

72 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

pool_len

Pool length in buffers.

dpdk_config

Configurations for the DPDK over NIC transport type.

primary

Indicates process is primary for shared memory access.

prefix

The name used in creating shared memory files and searching DPDK memory pools.

local_nic_pci

The NIC address or name used in IPC.

peer_nic_mac

The peer NIC MAC address, only need to be set in secondary process (L2/MAC).

cuda_device_id

Set this parameter to a valid GPU device ID to enable CPU data memory pool allocation in host pinned memory. Set to
-1 to disable this feature.

need_eal_init

Whether nvipc needs to call rte_eal_init() to initiate the DPDK context. 1 - initiate by nvipc; 0 - initiate by other module
in the same process.

lcore_id

The logic core number for nvipc_nic_poll thread.

1.2. Product Brief 73



Aerial CUDA-Accelerated RAN, Release 25-1

mempool_size

Configuration container for the memory pools used in shared memory. transport.

cpu_msg

Configuration container for the shared memory transport for CPU messages (that is, L2/L1 FAPI messages).

buf_size

Buffer size in bytes.

pool_len

Pool length in buffers.

cpu_data

Configuration container for the shared memory transport for CPU data elements (that is, downlink and uplink transport
blocks).

buf_size

Buffer size in bytes.

pool_len

Pool length in buffers.

cuda_data

Configuration container for the shared memory transport for GPU data elements.

buf_size

Buffer size in bytes.

74 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

pool_len

Pool length in buffers.

app_config

Configurations for all transport types, mostly used for debug.

grpc_forward

Whether to enable forwarding nvipc messages and how many messages to be forwarded automatically from initialization.
Here count = 0 means forwarding every message forever.
0: disabled; 1: enabled but doesn’t start forwarding at initial; -1: enabled and start forwarding at initial with count = 0;
Other positive number: enabled and start forwarding at initial with count = grpc_forward.

debug_timing

For debug only.
Whether to record timestamp of allocating, sending, receiving, releasing of all nvipc messages.

pcap_enable

For debug only.
Whether to capture nvipc messages to pcap file.

pcap_cpu_core

CPU core of background pcap log save thread.

pcap_cache_size_bits

Size of /dev/shm/${prefix}_pcap. If set to 29, size is 2^29 = 512MB.

pcap_file_size_bits

Max size of /dev/shm/${prefix}_pcap. If set to 31, size is 2^31 = 2GB.

1.2. Product Brief 75



Aerial CUDA-Accelerated RAN, Release 25-1

pcap_max_data_size

Max DL/UL FAPI data size to capture reduce pcap size.

Startup Configuration (ru-emulator)

The application binary name for the combined O-RU + UE emulator is ru-emulator. When ru-emulator starts, it reads
static configuration from a configuration YAML file. This section describes the fields in the YAML file.

core_list

List of CPU cores that RU Emulator could use.

nic_interface

PCIe address of NIC to use that is, b5:00.1.

peerethaddr

MAC address of cuPHYController port.

nvlog_name

The nvlog instance name for ru-emulator. Detailed nvlog configurations are in nvlog_config.yaml.

cell_configs

Cell configs agreed upon with DU.

name

Cell string name (largely unused).

eth

Cell MAC address.

76 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

dl_iq_data_fmt:comp_meth

DL U-plane compression method: 0: Fixed point 1: BFP

dl_iq_data_fmt:bit_width

Number of bits used for each RE on DL U-plane channels. Fixed point supported value: 16 BFP supported value: 9, 14,
16

ul_iq_data_fmt:comp_meth

UL U-plane compression method: 0: Fixed point 1: BFP

ul_iq_data_fmt:bit_width

Number of bits used for each RE on UL U-plane channels. Fixed point supported value: 16 BFP supported value: 9, 14,
16

flow_list

eAxC list

eAxC_prach_list

eAxC prach list

vlan

vlan to use for RX and TX

nic

Index of the nic to use in the nics list.

tti

Slot indication inverval.

1.2. Product Brief 77



Aerial CUDA-Accelerated RAN, Release 25-1

validate_dl_timing

Validate DL timing (need to be PTP synchronized).

timing_histogram

generate histogram

timing_histogram_bin_size

histogram bin size

oran_timing_info

dl_c_plane_timing_delay

t1a_max_up from ORAN

dl_c_plane_window_size

DL C Plane RX ontime window size.

ul_c_plane_timing_delay

T1a_max_cp_ul from ORAN.

ul_c_plane_window_size

UL C Plane RX ontime window size.

dl_u_plane_timing_delay

T2a_max_up from ORAN.

dl_u_plane_window_size

DL U Plane RX ontime window size.

78 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

ul_u_plane_tx_offset

Ta4_min_up from ORAN.

Run-time Configuration/Status

During run-time, Aerial components can be re-configured or queried for status through gRPC remote procedure calls
(RPCs). The RPCs are defined in “protocol buffers” syntax, allowing support for clients written in any of the languages
supported by gRPC and protocol buffers.
More information about gRPC may be found at: https://grpc.io/docs/what-is-grpc/core-concepts/
More information about protocol buffers may be found at: https://developers.google.com/protocol-buffers

Simple Request/Reply Flow

Aerial applications support a request/reply flow using the gRPC framework with protobufs messages. At run-time, certain
configuration items may be updated and certain status information may be queried. An external OAM client interfaces
with the Aerial application acting as the gRPC server.

Streaming Request/Replies

Aerial applications support the gRPC streaming feature for sending periodic status between client and server.

1.2. Product Brief 79

https://grpc.io/docs/what-is-grpc/core-concepts/
https://developers.google.com/protocol-buffers


Aerial CUDA-Accelerated RAN, Release 25-1

Asynchronous Interthread Communication

Certain request/reply scenarios require interaction with the high-priority CPU-pinned threads orchestrating GPU work.
These interactions occur through Aerial-internal asynchronous queues, and requests are processed on a best effort basis
that prioritizes the orchestration of GPU kernel launches and other L1 tasks.

Aerial Common Service Definition

/\*

\* Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.

\*

\* NVIDIA CORPORATION and its licensors retain all intellectual property

\* and proprietary rights in and to this software, related documentation

(continues on next page)

80 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
\* and any modifications thereto. Any use, reproduction, disclosure or

\* distribution of this software and related documentation without an
express

\* license agreement from NVIDIA CORPORATION is strictly prohibited.

\*/

syntax = "proto3";

package aerial;

service Common {

rpc GetSFN (GenericRequest) returns (SFNReply) {}

rpc GetCpuUtilization (GenericRequest) returns (CpuUtilizationReply) {}

rpc SetPuschH5DumpNextCrc (GenericRequest) returns (DummyReply) {}

rpc GetFAPIStream (FAPIStreamRequest) returns (stream FAPIStreamReply)
{}

}

message GenericRequest {

string name = 1;

}

message SFNReply {

int32 sfn = 1;

int32 slot = 2;

}

message DummyReply {

}

message CpuUtilizationPerCore {

int32 core_id = 1;

int32 utilization_x1000 = 2;

}

message CpuUtilizationReply {

repeated CpuUtilizationPerCore core = 1;

}
(continues on next page)

1.2. Product Brief 81



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

message FAPIStreamRequest {

int32 client_id = 1;

int32 total_msgs_requested = 2;

}

message FAPIStreamReply {

int32 client_id = 1;

bytes msg_buf = 2;

bytes data_buf = 3;

}

rpc GetCpuUtilization

The GetCpuUtilization RPC returns a variable-length array of CPU utilization per-high-priority-core.
CPU utilization is available through the Prometheus node exporter, however the design approach used by Aerial high-
priority threads results in a false 100% CPU core utilization per thread. This RPC allows retrieval of the actual CPU
utilization of high-priority threads. High-priority threads are pinned to specific CPU cores.

rpc GetFAPIStream

This RPC requests snooping of one or more (up to infinite number) of SCF FAPI messages. The snooped messages are
delivered from the Aerial gRPC server to a third party client. See cuPHY-CP/cuphyoam/examples/aerial_get_l2msgs.py
for an example client.

rpc TerminateCuphycontroller

This RPC message terminates cuPHYController with immediate effect.

rpc CellParamUpdateRequest

This RPC message updates cell configuration without stopping the cell. Message specification:

message CellParamUpdateRequest {

int32 cell_id = 1;

string dst_mac_addr = 2;

int32 vlan_tci = 3;

}

82 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

dst_mac_addr must be in ‘XX:XX:XX:XX:XX:XX’ format.
vlan_tci must include the 16-bit TCI value of 802.1Q tag.

List of Parameters Supported by Dynamic OAM via gRPC and CONFIG.request (M-plane)

The Configuration unit is accross all cells/per cell config. The Cell outage is either in-service or out-of-service.

Note

With OAM commands, you can use localhost for the $SERVER_IP when running on DU server. Otherwise,
use the DU server numeric IP address. $CELL_ID is the mplane id, which starts from 1. The default values of
the parameters can be found in the corresponding cuphycontroller YAML config file: $cuBB_SDK/cuPHY-CP/
cuphycontroller/config/cuphycontroller_xxx.yaml

ru_type

• Parameter Name: ru_type
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --ru_type $RU_TYPE

• Notes: $RU_TYPE : 1 for FXN_RU, 2 for FJT_RU, 3 for OTHER_RU(including ru_emulator)

nic

• Parameter Name: nic
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --nic $NIC

• Notes: The nic PCIe address. It has to be one of the nic ports configured in cuphycontroller YAML file.

1.2. Product Brief 83



Aerial CUDA-Accelerated RAN, Release 25-1

dst_mac_addr

• Parameter Name: dst_mac_addr
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --dst_mac_addr $DST_MAC_ADDR --vlan_id $VLAN_ID --pcp $PCP

• Notes: The dst_mac_addr, vlan_id, and pcp parameters must be updated together.

vlan_id

• Parameter Name: vlan_id
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --dst_mac_addr $DST_MAC_ADDR --vlan_id $VLAN_ID --pcp $PCP

• Notes: The dst_mac_addr, vlan_id, and pcp parameters must be updated together.

pcp

• Parameter Name: pcp
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --dst_mac_addr $DST_MAC_ADDR --vlan_id $VLAN_ID --pcp $PCP

• Notes: The dst_mac_addr, vlan_id, and pcp parameters must be updated together.

84 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

dl_iq_data_fmt

• Parameter Name: dl_iq_data_fmt
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --dl_comp_meth $COMP_METH --dl_bit_width $BIT_WIDTH

ul_iq_data_fmt

• Parameter Name: ul_iq_data_fmt
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --ul_comp_meth $COMP_METH --ul_bit_width $BIT_WIDTH

exponent_dl

• Parameter Name: exponent_dl
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --exponent_dl $EXPONENT_DL

exponent_ul

• Parameter Name: exponent_ul
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --exponent_ul $EXPONENT_UL

1.2. Product Brief 85



Aerial CUDA-Accelerated RAN, Release 25-1

prusch_prb_stride

• Parameter Name: prusch_prb_stride
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --pusch_prb_stride $PUSCH_PRB_STRIDE

prach_prb_stride

• Parameter Name: prach_prb_stride
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --prach_prb_stride $PRACH_PRB_STRIDE

max_amp_ul

• Parameter Name: max_amp_ul
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --max_amp_ul $MAX_AMP_UL

section_3_time_offset

• Parameter Name: section_3_time_offset
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --section_3_time_offset $SECTION_3_TIME_OFFSET

86 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

fh_distance_range

• Parameter Name: fh_distance_range
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --fh_distance_range $FH_DISTANCE_RANGE

• Notes: $FH_DISTANCE_RANGE: 0 for 0~30km, 1 for 20~50km. Suppose the following are the default configs
in the cuhycontroller YAML config file that correspond to FH_DISTANCE_RANGE option 0 (0~30km).

t1a_max_up_ns : d1

t1a_max_cp_ul_ns : d2

ta4_min_ns : d3

ta4_max_ns : d4

Updating the FH_DISTANCE_RANGE option to 1 (20~50km) adjusts the following values:

t1a_max_up_ns : d1+$FH_EXTENSION_DELAY_ADJUSTMENT

t1a_max_cp_ul_ns : d2+$FH_EXTENSION_DELAY_ADJUSTMENT

ta4_min_ns : d3+$FH_EXTENSION_DELAY_ADJUSTMENT

ta4_max_ns : d4+$FH_EXTENSION_DELAY_ADJUSTMENT

$FH_EXTENSION_DELAY_ADJUSTMENT is 100us for now and can be tuned in source file:

${cuBB_SDK}/cuPHY-CP/cuphydriver/include/constant.hpp#L207

static constexpr uint32_t FH_EXTENSION_DELAY_ADJUSTMENT = 100000;//100us

ul_gain_calibration

• Parameter Name: ul_gain_calibration
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --ul_gain_calibration $UL_GAIN_CALIBRATION

1.2. Product Brief 87



Aerial CUDA-Accelerated RAN, Release 25-1

lower_guard_bw

• Parameter Name: lower_guard_bw
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --lower_guard_bw $LOWER_GUARD_BW

ref_dl

• Parameter Name: ref_dl
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --cell_id
↪→$CELL_ID --ref_dl $REF_DL

attenuation_db

• Parameter Name: attenuation_db
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_param_attn_update.py $CELL_ID $ATTENUATION_DB

gps_alpha

• Parameter Name: gps_alpha
• Configuration Unit: accross all cells
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --gps_alpha
↪→$GPS_ALPHA

88 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

gps_beta

• Parameter Name: gps_beta
• Configuration Unit: accross all cells
• Cell Outage: out-of-service
• OAM Command:

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_multi_attrs_update.py --server_ip $SERVER_IP --gps_beta
↪→$GPS_BETA

• Notes: All cells have to be in idle state before configuring this param

prachRootSequenceIndex

• Parameter Name: prachRootSequenceIndex
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

prachZeroCorrConf

• Parameter Name: prachZeroCorrConf
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

numPrachFdOccasions

• Parameter Name: numPrachFdOccasions
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

1.2. Product Brief 89



Aerial CUDA-Accelerated RAN, Release 25-1

restrictedSetConfig

• Parameter Name: restrictedSetConfig
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

prachConfigIndex

• Parameter Name: prachConfigIndex
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

K1

• Parameter Name: K1
• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAMCommand: Via FAPI CONFIG.request. Refer to theDynamic PRACH Configuration and Init Sequence
Test section for more details.

UL bandwidth

• Parameter Name: UL bandwidth

• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command: Via FAPI CONFIG.request. Refer to the Cell BW update Test section for more details.

DL bandwidth

• Parameter Name: DL bandwidth

• Configuration Unit: per-cell config
• Cell Outage: out-of-service
• OAM Command: Via FAPI CONFIG.request. Refer to the Cell BW update Test section for more details.
• Notes: This is no-op currently.

90 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

M-Plane Hybrid Mode ORAN YANG Model Provisioning

Aerial supports M-plane hybrid mode, which allows NMS/SMO, using ORAN YANG data models to pass RU capabilities,
C/U–plane transport config, and U-plane config to L1.
Here is the high level sequence diagram:

Data Model Procedures-Yang data tree write procedure

Data Model Procedures-Yang data tree read procedure

1.2. Product Brief 91



Aerial CUDA-Accelerated RAN, Release 25-1

Data Model Transfer APIs(gRPC ProtoBuf contract)

syntax = "proto3";
package p9_messages.v1;

service P9Messages {
rpc HandleMsg (Msg) returns (Msg) {}

}

message Msg
{

Header header = 1;
Body body = 2;

}

message Header
{

string msg_id = 1; // Message identifier to
// 1) Identify requests and notifications
// 2) Correlate requests and response

optional string oru_name = 2; // The name (identifier) of the O-RU, if present.
int32 vf_id = 3; // The identifier for the FAPI VF ID
int32 phy_id = 4; // The identifier for the FAPI PHY ID
optional int32 trp_id = 5; // The identifier PHY’s TRP, if any

}

message Body
{

oneof msg_body
{

Request request = 1;
Response response = 2;

}
}

message Request
{

oneof req_type
{

Get get = 1;
EditConfig edit_config = 2;

}
}

message Response
{

oneof resp_type
{

GetResp get_resp = 1;
EditConfigResp edit_config_resp = 2;

}
}

message Get { repeated bytes filter = 1; }

message GetResp
{

(continues on next page)

92 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Status status_resp = 1;
bytes data = 2;

}

message EditConfig
{

bytes delta_config = 1; // List of Node changes with the associated operation to␣
↪→apply to the node
}

message EditConfigResp { Status status_resp = 1; }

message Error
{ // Type of error as defined in RFC 6241 section 4.3

string error_type = 1; // Error type defined in RFC 6241, Appendix B
string error_tag = 2; // Error tag defined in RFC 6241, Appendix B
string error_severity = 3; // Error severity defined in RFC 6241, Appendix B
string error_app_tag = 4; // Error app tag defined in RFC 6241, Appendix B
string error_path = 5; // Error path defined in RFC 6241, Appendix B
string error_message = 6; // Error message defined in RFC 6241, Appendix B

}

message Status
{

enum StatusCode
{

OK = 0;
ERROR_GENERAL = 1;

}
StatusCode status_code = 1;
repeated Error error = 2; // Optional: Error information

}

List of Parameters Supported by YANG Model

The Configuration unit is accross all cells/per cell config. The Cell outage is either in-service or out-of-service.

o-du-mac-address

• Parameter Name: o-du-mac-address
• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: DU side mac address. It is translated to the corresponding ‘nic’ internally.
• YANGModel:

– o-ran-uplane-conf.yang
– o-ran-processing-element.yang
– ietf-interfaces.yang

• xpath: /processing-elements/ru-elements/transport-flow/eth-flow/
o-du-mac-address

1.2. Product Brief 93



Aerial CUDA-Accelerated RAN, Release 25-1

ru-mac-address

• Parameter Name: ru-mac-address
• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: MAC address of the corresponding RU
• YANGModel:

– o-ran-uplane-conf.yang
– o-ran-processing-element.yang
– ietf-interfaces.yang

• xpath: /processing-elements/ru-elements/transport-flow/eth-flow/
ru-mac-address

vlan-id

• Parameter Name: vlan-id
• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: VLAN ID
• YANGModel:

– ietf-interfaces.yang
– o-ran-interfaces.yang
– o-ran-processing-element.yang

• xpath: /processing-elements/ru-elements/transport-flow/eth-flow/vlan-id

pcp

• Parameter Name: pcp
• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: VLAN priority level
• YANGModel:

– ietf-interfaces.yang
– o-ran-interfaces.yang
– o-ran-processing-element.yang

• xpath: /interfaces/interface/class-of-service/u-plane-marking

94 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

ul_iq_data_fmt: bit_width

• Parameter Name: ul_iq_data_fmt: bit_width

• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: Indicate the bit length after compression.

– BFP values: 9 and 14; 16 for no compression
– Fixed point values: Currently only supports 16

• YANGModel: o-ran-uplane-conf.yang
• xpath: /user-plane-configuration/low-level-tx-endpoints/compression/
iq-bitwidth

ul_iq_data_fmt: comp_meth

• Parameter Name: ul_iq_data_fmt: comp_meth

• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: Indicates the UL compression method.

– BFP values: BLOCK_FLOATING_POINT
– Fixed point values: NO_COMPRESSION

• YANGModel: o-ran-uplane-conf.yang
• xpath: /user-plane-configuration/low-level-tx-endpoints/compression/
compression-method

dl_iq_data_fmt: bit_width

• Parameter Name: dl_iq_data_fmt: bit_width

• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: Indicates the bit length after compression.

– BFP values: 9 and 14; 16 for no compression
– Fixed point values: Currently only supports 16

• YANGModel: o-ran-uplane-conf.yang
• xpath: /user-plane-configuration/low-level-rx-endpoints/compression/
iq-bitwidth

1.2. Product Brief 95



Aerial CUDA-Accelerated RAN, Release 25-1

dl_iq_data_fmt: comp_meth

• Parameter Name: dl_iq_data_fmt: comp_meth

• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description: Indicates the DL compression method.

– BFP values: BLOCK_FLOATING_POINT
– Fixed point values: NO_COMPRESSION

• YANGModel: o-ran-uplane-conf.yang
• xpath: /user-plane-configuration/low-level-rx-endpoints/compression/
compression-method

exponent_dl

• Parameter Name: exponent_dl
• Configuration Unit: Per-cell config
• Cell Outage: Out-of-service
• Description:
• YANGModel:

– o-ran-uplane-conf.yang
– o-ran-compression-factors.yang

• xpath: /user-plane-configuration/low-level-rx-endpoints/compression/exponent

exponent_ul

• Parameter Name: exponent_ul
• Configuration Unit: Per-cell config
• Cell Outage: out-of-service
• Description:
• YANGModel:

– o-ran-uplane-conf.yang
– o-ran-compression-factors.yang

• xpath: /user-plane-configuration/low-level-tx-endpoints/compression/exponent

96 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Reference Examples

The following is a client-side reference implementation:
$cuBB_SDK/cuPHY-CP/cuphyoam/examples/p9_msg_client_grpc_test.cpp

Below are a few examples for update and retrieval of related params.

Update ru-mac-address, vlan-id, and pcp

#step 1: Edit $cuBB_SDK/cuPHY-CP/cuphyoam/examples/mac_vlan_pcp.xml and update ru_mac,
↪→ vlan_id and pcp accordingly
#step 2: Run below cmd to do the provisioning
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→edit_config --xml_file $cuBB_SDK/cuPHY-CP/cuphyoam/examples/mac_vlan_pcp.xml
#step 3: Run below cmds to retrieve the config
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→get --xpath /o-ran-processing-element:processing-elements
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→get --xpath /ietf-interfaces:interfaces

Update o-du-mac-address(du nic port)

#step 1: Edit $cuBB_SDK/cuPHY-CP/cuphyoam/examples/nic_du_mac.xml and update du_mac,␣
↪→which is translated to the corresponding nic port internally
#step 2: Run below cmd to do the provisioning
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→edit_config --xml_file $cuBB_SDK/cuPHY-CP/cuphyoam/examples/nic_du_mac.xml
#step 3: Run below cmd to retrieve the config
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→get --xpath /o-ran-processing-element:processing-elements

Update DL/UL IQ data format

#step 1: Edit $cuBB_SDK/cuPHY-CP/cuphyoam/examples/iq_data_fmt.xml and update DL/UL␣
↪→IQ data format accordingly
(compression-method: BLOCK_FLOATING_POINT for BFP or NO_COMPRESSION for fixed point)
(iq-bitwidth: 9, 14, 16 for BFP or 16 for fixed point)
#step 2: Run below cmd to do the provisioning
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→edit_config --xml_file $cuBB_SDK/cuPHY-CP/cuphyoam/examples/iq_data_fmt.xml
#step 3: Run below cmd to retrieve the config
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→get --xpath /o-ran-uplane-conf:user-plane-configuration

1.2. Product Brief 97



Aerial CUDA-Accelerated RAN, Release 25-1

Update dl and ul Exponent

#step 1: Edit $cuBB_SDK/cuPHY-CP/cuphyoam/examples/dl_ul_exponent.xml and dl and ul␣
↪→exponent accordingly
#step 2: Run below cmd to do the provisioning
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→edit_config --xml_file $cuBB_SDK/cuPHY-CP/cuphyoam/examples/dl_ul_exponent.xml
#step 3: Run below cmd to retrieve the config
$cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_client_grpc_test --phy_id $mplane_id --cmd␣
↪→get --xpath /o-ran-uplane-conf:user-plane-configuration

Logging

Log Levels

Nvlog supports the following log levels: Fatal, Error, Console, Warning, Info, Debug, and Verbose.
A Fatal log message results in process termination. For other log levels, the process continues execution. A typical
deployment sends Fatal, Error, and Console levels to stdout. Console level is for printing something that is neither a
warning nor an error, but you want to print to stdout.

nvlog

This YAML container contains parameters related to nvlog configuration, see nvlog_config.yaml.

name

Used to create the shared memory log file. Shared memory handle is /dev/shm/${name}.log and temp logfile is named
/tmp/${name}.log.

primary

In all processes logging to the same file, set the first starting porcess to be primary, set others to be secondary.

shm_log_level

Sets the log level threshold for the high performance shared memory logger. Log messages with a level at or below this
threshold are sent to the shared memory logger.
Log levels: 0 - NONE, 1 - FATAL, 2 - ERROR, 3 - CONSOLE, 4 - WARNING, 5 - INFO, 6 - DEBUG, 7 - VERBOSE
Setting the log level to LOG_NONE means no logs are sent to the shared memory logger.

98 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

console_log_level

Sets the log level threshold for printing to the console. Log messages with a level at or below this threshold are printed to
stdout.

max_file_size_bits

Define the rotating log file /var/log/aerial/${name}.log size. Size = 2 ^ bits.

shm_cache_size_bits

Define the SHM cache file /dev/shm/${name}.log size. Size = 2 ^ bits.

log_buf_size

Max log string length of one time call of the nvlog API.

max_threads

The maximum number of threads that are using nvlog all together.

save_to_file

Whether to copy and save the SHM cache log to a rotating log file under /var/log/aerial/ folder.

cpu_core_id

CPU core ID for the background log saving thread. -1 means the core is not pinned.

prefix_opts

bit5 - thread_id bit4 - sequence number bit3 - log level bit2 - module type bit1 - date bit0 - time stamp
Refer to nvlog.h for more details.

Metrics

The OAM Metrics API is used internally by cuPHY-CP components to report metrics (counters, gauges, and histograms).
The metrics are exposed via a Prometheus Aerial exporter.

1.2. Product Brief 99



Aerial CUDA-Accelerated RAN, Release 25-1

Host Metrics

Host metrics are provided via the Prometheus node exporter. The node exporter provides many thousands of metrics
about the host hardware and OS, such as but not limited to:

• CPU statistics
• Disk statistics
• Filesystem statistics
• Memory statistics
• Network statistics

See https://github.com/prometheus/node_exporter and https://prometheus.io/docs/guides/node-exporter/ for detailed
documentation on the node exporter.

GPU Metrics

GPU hardware metrics are provided through the GPU Operator via the Prometheus DCGM-Exporter. The DCGM-
Exporter provides many thousands of metrics about the GPU and PCIe bus connection, such as but not limited to:

• GPU hardware clock rates
• GPU hardware temperatures
• GPU hardware power consumption
• GPU memory utilization
• GPU hardware errors including ECC
• PCIe throughput

See https://github.com/NVIDIA/gpu-operator for details on the GPU operator.
See https://github.com/NVIDIA/gpu-monitoring-tools for detailed documentation on the DCGM-Exporter.
An example Grafana dashboard is available at https://grafana.com/grafana/dashboards/12239.

Aerial Metric Naming Conventions

In addition to metrics available through the node exporter and DCGM-Exporter, Aerial exposes several application met-
rics.
Metric names are per https://prometheus.io/docs/practices/naming/ and follows the format aerial_<component>_<sub-
component>_<metricdescription>_<units>.
Metric types are per https://prometheus.io/docs/concepts/metric_types/.
The component and sub-component definitions are in the table below. For each metric, the description, metric type, and
metric tags are provided. Tags are a way of providing granularity to metrics without creating new metrics.

100 Chapter 1. Aerial cuBB

https://github.com/prometheus/node_exporter
https://prometheus.io/docs/guides/node-exporter/
https://github.com/NVIDIA/gpu-operator
https://github.com/NVIDIA/gpu-monitoring-tools
https://grafana.com/grafana/dashboards/12239
https://prometheus.io/docs/practices/naming/
https://prometheus.io/docs/concepts/metric_types/


Aerial CUDA-Accelerated RAN, Release 25-1

Comp onent Sub -Component Description
cuphycp cuPHY Control Plane application

fapi L2/L1 interface metrics
cplane Fronthaul C-plane metrics
uplane Fronthaul U-plane metrics
net Generic network interface metrics

cuphy cuPHY L1 library
pbch Physical Broadcast Channel metrics
pdsch Physical Downlink Shared Channel metrics
pdcch Physical Downlink Common Channel metrics
pusch Physical Uplink Shared Channel metrics
pucch Physical Uplink Common Channel metrics
prach Physical Random Access Channel metrics

Metrics Exporter Port

Aerial metrics are exported on port 8081. Configurable in cuphycontroller YAML file via
‘aerial_metrics_backend_address’.

L2/L1 Interface Metrics

aerial_cuphycp_slots_total

Counts the total number of processed slots.
Metric type: counter
Metric tags:

• type: “UL” or “DL”
• cell: “cell number”

aerial_cuphycp_fapi_rx_packets

Counts the total number of messages L1 receives from L2.
Metric type: counter
Metric tags:

• msg_type: “type of PDU”
• cell: “cell number”

1.2. Product Brief 101



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_fapi_tx_packets

Counts the total number of messages L1 transmits to L2.
Metric type: counter
Metric tags:

• msg_type: “type of PDU”
• cell: “cell number”

Fronthaul Interface Metrics

aerial_cuphycp_cplane_tx_packets_total

Counts the total number of C-plane packets transmitted by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_cplane_tx_bytes_total

Counts the total number of C-plane bytes transmitted by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_uplane_rx_packets_total

Counts the total number of U-plane packets received by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_uplane_rx_bytes_total

Counts the total number of U-plane bytes received by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

102 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_uplane_tx_packets_total

Counts the total number of U-plane packets transmitted by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_uplane_tx_bytes_total

Counts the total number of U-plane bytes transmitted by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_uplane_lost_prbs_total

Counts the total number of PRBs expected but not received by L1 over ORAN Fronthaul interface.
Metric type: counter
Metric tags:

• cell: “cell number”
• channel: One of “prach” or “pusch”

NIC Metrics

aerial_cuphycp_net_rx_failed_packets_total

Counts the total number of erroneous packets received.
Metric type: counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_rx_nombuf_packets_total

Counts the total number of receive packets dropped due to the lack of free mbufs.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

1.2. Product Brief 103



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_net_rx_dropped_packets_total

Counts the total number of receive packets dropped by the NIC hardware.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_failed_packets_total

Counts the total number of instances a packet failed to transmit.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_accu_sched_missed_interrupt_errors_total

Counts the total number of instances accurate send scheduling missed an interrupt.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_accu_sched_rearm_queue_errors_total

Counts the total number of accurate send scheduling rearm queue errors.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_accu_sched_clock_queue_errors_total

Counts the total number accurate send scheduling clock queue errors.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

104 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_net_tx_accu_sched_timestamp_past_errors_total

Counts the total number of accurate send scheduling timestamp in the past errors.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_accu_sched_timestamp_future_errors_total

Counts the total number of accurate send scheduling timestamp in the future errors.
Metric type: Counter
Metric tags:

• nic: “nic port BDF address”

aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns

Current measurement of accurate send scheduling clock queue jitter, in units of nanoseconds.
Metric type: Gauge
Metric tags:

• nic: “nic port BDF address”
Details:
This gauge shows the TX scheduling timestamp jitter, that is, how far each individual Clock Queue (CQ) completion is
from UTC time.

If you set CQ completion frequency to 2MHz (tx_pp=500), you might see the following completions:
cqe 0 at 0 ns
cqe 1 at 505 ns
cqe 2 at 996 ns
cqe 3 at 1514 ns
…

tx_pp_jitter is the time difference between two consecutive CQ completions.

1.2. Product Brief 105



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns

Current measurement of the divergence of Clock Queue (CQ) completions from UTC time over a longer time period
(~8s).
Metric type: Gauge
Metric tags:

• nic: “nic port BDF address”

Application Performance Metrics

aerial_cuphycp_slot_processing_duration_us

Counts the total number of slots with GPU processing duration in each 250us-wide histogram bin.
Metric type: Histogram
Metric tags:

• cell: “cell number”
• channel: one of “pbch”, “pdcch”, “pdsch”, “prach”, or “pusch”
• le: histogram less-than-or-equal-to 250us-wide histogram bins, for 250, 500, …, 2000, +inf bins.

aerial_cuphycp_slot_pusch_processing_duration_us

Counts the total number of PUSCH slots with GPU processing duration in each 250us-wide histogram bin.
Metric type: Histogram
Metric tags:

• cell: “cell number”
• le: histogram less-than-or-equal-to 250us-wide histogram bins, range 0 to 2000us.

aerial_cuphycp_pusch_rx_tb_bytes_total

Counts the total number of transport block bytes received in the PUSCH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

106 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_pusch_rx_tb_total

Counts the total number of transport blocks received in the PUSCH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_pusch_rx_tb_crc_error_total

Counts the total number of transport blocks received with CRC errors in the PUSCH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_pusch_nrofuesperslot

Counts the total number of UEs processed in each slot per histogram bin PUSCH channel.
Metric type: Histogram
Metric tags:

• cell: “cell number”
• le: Histogram bin less-than-or-equal-to for 2, 4, …, 24, +inf bins.

PRACH Metrics

aerial_cuphy_prach_rx_preambles_total

Counts the total number of detected preambles in PRACH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

PDSCH Metrics

aerial_cuphycp_slot_pdsch_processing_duration_us

Counts the total number of PDSCH slots with GPU processing duration in each 250us-wide histogram bin.
Metric type: Histogram
Metric tags:

• cell: “cell number”
• le: histogram less-than-or-equal-to 250us-wide histogram bins, range 0 to 2000us.

1.2. Product Brief 107



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphy_pdsch_tx_tb_bytes_total

Counts the total number of transport block bytes transmitted in the PDSCH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

aerial_cuphy_pdsch_tx_tb_total

Counts the total number of transport blocks transmitted in the PDSCH channel.
Metric type: Counter
Metric tags:

• cell: “cell number”

aerial_cuphycp_pdsch_nrofuesperslot

Counts the total number of UEs processed in each slot per histogram bin PDSCH channel.
Metric type: Histogram
Metric tags:

• cell: “cell number”
• le: Histogram bin less-than-or-equal-to for 2, 4, …, 24, +inf bins.

1.3 cuBB Release Notes

1.3.1 cuBB Software Mainfest

Release Version: 25-1

Aerial CUDA-Accelerated RAN Software Manifest

Description Revision
Host OS

• Grace Hopper platform: Ubuntu 22.04 with 6.5.0-1019-nvidia-64k
kernel

• x86 platform: Ubuntu 22.04 with 5.15.0-1042-nvidia-lowlatency
kernel

GH200
• CUDA Toolkit: 12.8.0
• GPU Driver (OpenRM): 570.124.06

continues on next page

108 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 14 – continued from previous page
Description Revision
BF3 NIC

• BFB: bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb
• NIC FW: 32.41.1000

DOCA OFED 24.04-0.6.6 (only required on Grace Hopper platform)
GDRCopy 2.4.1
DOCA 2.7 (included in cuBB container)
DPDK 22.11 (Included in Mellanox DOCA)
NV Container Toolkit 1.17.4
SCF 222.10.02 (partial upgrade to 222.10.04)
Server

• Supermicro Grace Hopper MGX ARS-111GL-NHR (Config 2)
• Dell PowerEdge R750 with duel Intel(R) Xeon(R) Gold 6336Y

CPU @ 2.40GHz
• Gigabyte(E251-U70) with Intel(R) Xeon(R) Gold 6240R CPU @

2.40GHz (EOL)

GPU GH200

Note

• Aerial support of AX800, A100X, A100, CX6-DX has reached End of Life (EOL).
• Aerial has been using DMA-buf, inbox driver and OpenRM driver since 23-4 release. So MOFED and nvidia-

peermem are not needed anymore. On the x86 platform, the 5.15 kernel with DMA-buf and inbox driver are
used. On the Grace Hopper platform, the 6.2 kernel with DMA-buf and DOCA OFED are used.

Kubernetes Software Manifest

Description Revision
Host OS Grace Hopper platform: Ubuntu 22.04 with 6.5.0-1019-nvidia-64k kernel
Container OS Ubuntu 22.04
Containerd 1.5.8
Kubernetes 1.23
Helm 3.8
BF3 NIC FW 32.41.1000
GPU Operator 24.9.2
CUDA Toolkit 12.8.0
NVIDIA GPU Driver 570.124.06

1.3. cuBB Release Notes 109



Aerial CUDA-Accelerated RAN, Release 25-1

1.3.2 Supported Features and Configurations

This release of the Aerial cuBB supports the following configurations and features. These features are verified with test
vectors in a simulated environment using TestMAC and RU emulator.

PUSCH

• SU-MIMO layers: up to 4
• MU-MIMO layers: up to 8
• Modulation and coding rates: MCS 0 – MCS 27
• Optimized LDPC decoder
• UCI on PUSCH (HARQ up to 11 bits + CSI part 1 + CSI part 2 up to 11 bits)
• Time-interpolated channel estimation and equalization
• SINR reporting to L2
• MMSE-IRC receiver
• Early HARQ in UCI.indication

PUCCH

• Format 0 + DTX detection
• Format 1 + DTX detection
• Format 2 (unsegmented payload) + DTX detection
• Format 3 (unsegmented payload) + DTX detection
• SINR / confidence level reporting to L2

PRACH

• Format 0
• Format B4 (multiple per slot in FDM)
• Interference level reporting

PDSCH

• SU-MIMO layers: up to 4
• MU-MIMO layers: up to 16
• Modulation and coding rates: MCS 0 – MCS 27
• Supports Cat-A O-RAN split and Cat-B O-RAN split. For Cat-A O-RAN split, PDSCH is implemented up to

modulation and precoding (identity matrix precoder) For Cat-B O-RAN split, PDSCH is implemented up to the
rate matching block.

• Precoding (4 layers)

110 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

PDCCH

• Interleaved and non-interleaved mode
• Aggregation level (AL) 1, 2, 4, 8, 16
• 1, 2, 3 symbol CORESET
• Precoding (1 layer)

SS Block

• PSS, SSS generation
• DMRS and PBCH generation and time-frequency mapping
• Precoding (1 layer)

CSI-RS

• NZP-CSI-RS
• ZP-CSI-RS
• Precoding (1 layer)

SRS

• Support SRS reporting for upto 64T64R BB Antenna ports.
• Support SRS reporting according to 5G FAPI 222.10.04 for beamManagemnt, codebook and non-codebook SRS

usage.
• Support SRS reporting according to 5G FAPI 222.10.02 for SINR reporting.

MIMO Features

• Support 64 Transmit and Receive antenna ports
• Support SRS-based channel estimation, buffering and FAPI-compliant reporting to L2
• Support PUSCH and PDSCH Dynamic beamforming weight (BFW) calculation from SRS channel estimates (reg-

ularized zero-forcing)
• Support up to 8 layers multi-user MIMO PUSCH
• Support up to 16 layers multi-user MIMO PDSCH
• Support of upto 3 cells with multi-user MIMO configurtion

1.3. cuBB Release Notes 111



Aerial CUDA-Accelerated RAN, Release 25-1

LDPC Decoder

• Standalone LDPC decoder

SHM Logger

• Support for C++ std::format syle logging like std::format("{} {}!", "Hello", "world",
"something");

• Support for C (printf) style formatted strings.

1.3.3 Multicell Capacity

The tested L2 timeline is as follows:
• FAPI SLOT.indication for Slot N is sent from L1 to L2 at the wall-clock time for Slot N-3 (i.e. 3 slot advance).

Supports 500us L2 processing budget and 7 beam peak and average patterns as defined below using 100MHz:
On Grace Hopper:

• BFP9: 20 4T4R Peak cells / 20 4T4R average cells
while respecting the following configuration for 7 beam traffic patterns:

112 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 15: TDD 4T4R - 80 Slot Traffic Models
4T4R 7-beam config Configuration

Peak Average
Compression BFP9 and BFP14 BFP9 and BFP14
Max PxSCH PRB 270 132
PxSCH layer count 4DL/2UL 4DL/2UL
DL Throughput/cell 1544.14 Mbps 558.90 Mbps
UL Throughput/cell 196.70 Mbps 79.91 Mbps
Peak DL Fronthaul Bandwidth / cell 11.06 Gbps BFP14 5.46 Gbps BFP14

7.14 Gbps BFP9 3.58 Gbps BFP9
Peak UL Fronthaul Bandwidth / cell 11.88 Gbps BFP14 6.34 Gbps BFP14

8.03 Gbps BFP9 4.57 Gbps BFP9
SSB slots Frame 0 & 2: 0,1,2,3 Frame 0 & 2: 0,1,2,3
#SSB per slot Frame 0 & 2: 2,2,2,1 Frame 0 & 2: 2,2,2,1
TRS slots Frame 0-3: 6,7,8,9,10,11 Frame 0-3: 6,7,8,9,10,11

Frame 0 & 2: 16,17 Frame 0 & 2: 16,17
TRS Symbols Even cells: 6,10 Even cells: 6,10

Odd cells: 5,9 Odd cells: 5,9
CSI-RS slots Frame 0: 8,10,16 Frame 0: 8,10,16

Frame 1: 6,8,10 Frame 1: 6,8,10
Frame 2: 6 Frame 2: 6

CSI-RS Symbols Even cells: 12 Even cells: 12
Odd cells: 13 Odd cells: 13

PDCCH #DCI 12 (6 DL + 6 UL per slot) 12 (6 DL + 6 UL per slot)
UE/TTI/Cell 6 per DL slot, 6 per UL slot 6 per DL slot, 6 per UL slot
UCI on PUSCH HARQ+CSIP1+CSIP2 (bits) 4+37+5 4+37+5
PUCCH format 1 1
PUCCH payload (bits) 18 18
PRACH format B4 B4
PRACH slots Frame 0-3: 5, 15 Frame 0-3: 5, 15
PRACH occasions Slot 5: 4, Slot 15: 3 Slot 5: 4, Slot 15: 3

On Grace Hopper:
• BFP9: 1 64T64R Peak cell / 3 64T64R average cell

while respecting the following traffic patterns:

1.3. cuBB Release Notes 113



Aerial CUDA-Accelerated RAN, Release 25-1

Table 16: TDD 64T64R - 80 Slot Traffic Model
64T64R config Configuration

Peak Average
Compression BFP9 and BFP14 BFP9 and BFP14
Max PxSCH PRB 273 136
PxSCH layer count 8DL/2UL 8DL/2UL
DL Throughput/cell 2464.93 Mbps 1227.29 Mbps
UL Throughput/cell 224.50 Mbps 107.37 Mbps
SSB slots Frame 0 & 2: 0 Frame 0 & 2: 0
#SSB per slot Frame 0 & 2: 1 Frame 0 & 2: 1
TRS slots Frame 1 & 3: 0,1 Frame 1 & 3: 0,1
TRS Symbols Even cells: 5,9 Even cells: 5,9

Odd cells: 6,8 Odd cells: 6,8
CSI-RS slots Frame 1 & 3: 0,1 Frame 1 & 3: 0,1
CSI-RS Symbols Even cells: 13 Even cells: 13

Odd cells: 12 Odd cells: 12
PDCCH #DCI 14 (8 DL + 6 UL per slot) 14 (8 DL + 6 UL per slot)
UE/TTI/Cell 8 per DL slot, 6 per UL slot 8 per DL slot, 6 per UL slot
UCI on PUSCH HARQ+CSIP1+CSIP2
(bits)

4+6+5 4+6+5

PUCCH format 1 1
PUCCH payload (bits) Frame 0 & 2, slots 4, 5: 36

(HARQ)
Frame 0 & 2, slots 4, 5: 36
(HARQ)

Frame 1 & 3, slots 4, 5: 108 (SR) Frame 1 & 3, slots 4, 5: 108 (SR)
PRACH format B4 B4
PRACH slots Frame 0-3: 5, 15 Frame 0-3: 5, 15
PRACH occasions Slot 5, 15: 1 Slot 5, 15: 1

CPU core usage for multicell benchmark (core isolation needed on all cores):
On Grace Hopper:

MIMO antenna configuration 4T4R 64T64R
L1 CPU core count* 10 13

• Above core count does not include allocation for PTP applications (phc2sys+ptp4l)

Note

Stated performance achievement and CPU core count usage is for L1 workload only (additional non-L1 workloads in
E2E setting may have an impact on the achieved performance and/or CPU core count usage)

Note

Performance achievement is measured by running L1 in steady-state traffic mode (e.g. impact of workloads such as
cell reconfiguration on other cells is not captured)

114 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.3.4 Supported Test Vector Configurations

This release of Aerial cuBB currently supports the following test-vector configurations.

PUSCH

TC start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

7201 7201 base 1 1 1
7202 7203 mcsTable 2 2 2
7204 7204 mcs 1 1 1
7205 7207 num of layers 3 3 3
7208 7208 rb0, Nrb 1 1 1
7209 7210 sym0 2 2 2
7211 7211 dmsr0 1 1 1
7212 7213 Nsym 2 2 2
7214 7214 SCID 1 1 1
7215 7215 BWP0, nBWP 1 1 1
7216 7216 RNTI 1 1 1
7217 7219 addPos 3 3 3
7220 7220 dataScId 1 1 1
7221 7222 maxLen 2 2 2
7223 7223 dmrsScId 1 1 1
7224 7224 nCdm 1 1 1
7225 7225 port0 1 1 1
7227 7227 nAnt=2 1 1 1
7228 7228 nAnt=16 1 1 0
7229 7229 slotIdx 1 1 1
7230 7232 rvIdx 3 3 3
7233 7235 FDM 3 3 3
7236 7241 CDM 6 6 6
7242 7244 rvIdx>0/BGN=1 3 3 3
7245 7245 ulGridSize=106 1 1 0
7246 7247 dmrs_par per Ueg 2 2 2
7248 7250 additional FDM 3 3 3
7251 7257 precoding 7 7 7
7258 7260 mapping type B 3 3 3
7261 7272 Flexible DMRS ports 12 12 12
7273 7273 MCS > 28 1 1 1
7274 7279 additional nCDM=1 6 6 6
7280 7283 Flexible SLIV 4 4 4
7301 7320 multi-params 20 20 18
7321 7323 LBRM 3 3 3
7324 7326 HARQ-rx 3 3 0
7327 7330 8/16 UEs 4 4 4
7331 7338 multiple layers 8 8 8
7340 7340 Multi-layers with nAnt=16 1 1 0
7401 7403 CFO 3 3 3
7404 7406 TO 3 3 3
7407 7407 RSSI 1 1 1
7408 7408 CFO w/ SDM 1 1 1

continues on next page

1.3. cuBB Release Notes 115



Aerial CUDA-Accelerated RAN, Release 25-1

Table 17 – continued from previous page
TC start TC End Description TV Gener-

ated
cuPHY Pass cuBB Pass

7409 7409 TO w/ SDM 1 1 1
7410 7411 CEE-TDI 2 2 2
7412 7413 rx power 2 2 2
7414 7414 TDI maxLen = 2 1 1 1
7415 7417 small/big/zero rx 3 3 3
7418 7419 additional TDI 2 2 2
7420 7426 IRC=0 7 7 7
7427 7432 SINR meas 6 6 6
7501 7516 UCI on PUSCH (w/o data) 16 16 16
7517 7530 UCI on PUSCH (w/ data) 14 14 14
7531 7531 UciOnPusch DTX 1 1 1
7532 7532 UciOnPusch CRC fail 1 1 1
7533 7534 UciOnPusch addPos 2 2 2
7551 7570 UciOnPusch (multi-params) 20 20 20
7571 7575 UCI w/ and w/o data 5 5 5
7601 7613 FR1 BW mu = 1 13 13 13
7614 7621 FR1 BW mu = 0 8 8 0
7901 7901 demo_msg3 1 1 1
7902 7902 demo_traffic_ul 1 1 1
7903 7904 UciOnPusch conformance 0 0 0
7016 7153 sweep Zc/mcs (skip

7016,7017,7024,7025,7032,7039,7045,7057)
130 130 130

PUCCH

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

6001 6003 bases for format 0 3 3 3
6004 6010 vary single parameter for format 0 7 7 7
6011 6040 vary multiple parameters for format

0
30 30 30

6041 6046 vary slotIdx (single-UCI) for format
0

6 6 6

6047 6056 multi-UCI tests for format 0 10 10 10
6057 6061 vary slotIdx (multi-UCI) for format

0
5 5 5

6101 6103 bases for format 1 3 3 3
6104 6116 vary single parameter for format 1 13 13 13
6117 6146 vary multiple parameters for format

1
30 30 30

6147 6155 vary slotIdx (single-UCI) for format
1

9 9 9

6156 6173 multi-UCI tests for format 1 18 18 18
6175 6192 TA estimation for format 1 18 18 18
6193 6194 192 UCI groups for format 1 2 2 2
6201 6203 bases for format 2 3 3 3
6204 6219 test Nf for format 2 16 16 16

continues on next page

116 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 18 – continued from previous page
TC Start TC End Description TV Gener-

ated
cuPHY Pass cuBB Pass

6220 6235 test Nt and freq hopping for format 2 16 16 16
6236 6236 11 info bits and 2 PRBS for format 2 1 1 1
6239 6245 different payload sizes for format 2 7 7 7
6301 6310 bases for format 3 10 10 10
6311 6313 multi-UCI tests for format 3 3 3 3
6314 6324 tests with freqHop enabled for for-

mat 3
11 11 11

6325 6335 tests with freqHop disabled for for-
mat 3

11 11 11

6336 6346 tests with add’l DMRS postion, fre-
qHop enabled for format 3

11 11 11

6347 6357 tests with add’l DMRS postion, fre-
qHop disabled for format 3

11 11 11

6358 6364 different payload sizes for format 3 7 7 7
6365 6373 24-UCI tests for format 3 9 9 9
6501 6513 sweep different bandwidth for for-

mat 0, mu = 1
13 13 13

6514 6526 sweep different bandwidth for for-
mat 1, mu = 1

13 13 13

6527 6539 sweep different bandwidth for for-
mat 2, mu = 1

13 13 13

6540 6552 sweep different bandwidth for for-
mat 3, mu = 1

13 13 13

6553 6560 sweep different bandwidth for for-
mat 0, mu = 0

8 8 0

6561 6568 sweep different bandwidth for for-
mat 1, mu = 0

8 8 0

6569 6576 sweep different bandwidth for for-
mat 2, mu = 0

8 8 0

6577 6584 sweep different bandwidth for for-
mat 3, mu = 0

8 8 0

6585 6586 rx power for format 0 2 2 2
6587 6588 rx power for format 1 2 2 2
6589 6590 rx power for format 2 2 2 2
6591 6592 rx power for format 3 2 2 2
6593 6595 very small/very big/forcRxZero rx

power for format 0
3 3 3

6596 6598 very small/very big/forcRxZero rx
power for format 1

3 3 3

6599 6601 very small/very big/forcRxZero rx
power for format 2

3 3 3

6602 6605 very small/very big/forcRxZero rx
power for format 3

4 4 4

6801 6802 perf TV F08 2 2 2
6803 6804 perf TV F14 2 2 2

1.3. cuBB Release Notes 117



Aerial CUDA-Accelerated RAN, Release 25-1

PRACH

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

5001 5001 base 1 1 1
5002 5002 format 0 1 1 0
5003 5003 rootIdx 1 1 1
5004 5004 zoneIdx 1 1 1
5005 5005 prmbIdx 1 1 1
5006 5006 Nant 1 1 0
5007 5007 N_nc 1 1 1
5008 5008 delay 1 1 1
5009 5009 SNR 1 1 1
5010 5010 CFO 1 1 1
5011 5011 2-UE 1 1 1
5012 5012 4-UE 1 1 1
5013 5013 4FDM/16UE 1 1 1
5014 5018 rx power 5 5 5
5101 5101 FDD,mu=0,B4,nAnt=2 1 1 0
5102 5102 FDD,mu=1,B4,nAnt=4 1 1 1
5103 5103 TDD,mu=0,B4,nAnt=8 1 1 0
5104 5104 TDD,mu=1,B4,nAnt=16 1 1 0
5105 5105 FDD,mu=0,F0,nAnt=16 1 1 0
5106 5106 FDD,mu=1,F0,nAnt=8 1 1 0
5107 5107 TDD,mu=0,F0,nAnt=4 1 1 0
5108 5108 TDD,mu=1,F0,nAnt=2 1 1 0
5201 5213 FR1 BW mu = 1 13 13 13
5214 5221 FR1 BW mu = 0 8 8 0
5801 5802 perf TV F08 2 2 2
5803 5804 perf TV F14 2 2 0
5901 5901 demo_msg1 1 1 1
5911 5914 comformance TC 4 4 1

PDSCH

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

3201 3201 base 1 1 1
3202 3203 mcsTable 2 2 2
3204 3204 mcs 1 1 1
3205 3207 num of layers 3 3 3
3208 3208 rb0, Nrb 1 1 1
3209 3210 sym0 2 2 2
3211 3211 dmrs0 1 1 1
3212 3213 Nsym 2 2 2
3214 3214 SCID 1 1 1
3215 3215 BWP0, nBWP 1 1 1
3216 3216 RNTI 1 1 1

continues on next page

118 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 20 – continued from previous page
TC Start TC End Description TV Gener-

ated
cuPHY Pass cuBB Pass

3217 3219 addPos 3 3 3
3220 3220 dataScId 1 1 1
3221 3222 maxLen 2 2 2
3223 3223 dmrsScId 1 1 1
3224 3224 nCdm 1 1 1
3225 3225 port0 1 1 1
3226 3228 nAnt 3 3 3
3229 3229 slotIdx 1 1 1
3230 3232 rvIdx 3 3 3
3233 3235 FDM 3 3 3
3236 3241 SDM/SCID 6 6 6
3242 3244 rvIdx>0/BGN=1 3 3 3
3245 3245 dlGridSize=106 1 1 0
3246 3247 dmrs_par per Ueg 2 2 2
3248 3254 precoding 7 7 7
3255 3257 mapping type B 3 3 3
3258 3260 mixed precoding 3 3 3
3261 3261 refPoint 1 1 1
3262 3262 TxPower 1 1 1
3263 3263 modComp 1 0 0
3264 3264 precoding (mixed nPorts) 1 1 1
3265 3265 TxPower with 2 UEs 1 1 1
3266 3267 different rv 2 2 2
3268 3269 multi-layer 2 2 2
3271 3276 nCDM = 1 6 6 6
3321 3322 LBRM 2 2 2
3323 3333 RE map from CSI-RS 11 11 11
3334 3336 8/16 UEs (SU-MIMO) 3 3 3
3337 3337 16 UEs (MU-MIMO) 1 1 1
3401 3413 FR1 BW mu = 1 13 13 13
3414 3421 FR1 BW mu = 0 8 8 0
3901 3901 demo_coreset0 1 1 1
3902 3902 demo_msg2 1 1 1
3903 3903 demo_msg4 1 1 1
3904 3904 demo_traffic_dl 1 1 1
3001 3015 multi-params 15 15 15
3016 3154 sweep Zc/mcs

(3016,3017,3024,3025,3032,3039,3045,3057
are skipped)

131 131 131

1.3. cuBB Release Notes 119



Aerial CUDA-Accelerated RAN, Release 25-1

PDCCH

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

2001 2001 base 1 1 1
2002 2002 slotIdx 1 1 1
2003 2003 nBWP 1 1 1
2004 2004 BPW0 1 1 1
2005 2005 sym0 1 1 1
2006 2007 Nsym 2 2 2
2008 2009 crstIdx 2 2 2
2010 2010 intl 1 1 1
2011 2012 nBndl 2 2 2
2013 2014 nIntl 2 2 2
2015 2015 nShift 1 1 1
2016 2016 isCSS 1 1 1
2017 2017 rnti 1 1 1
2018 2018 scrbId 1 1 1
2019 2019 scrbRnti 1 1 1
2020 2022 aggrL 3 3 3
2023 2023 dbQam 1 1 1
2024 2024 dbDmrs 1 1 1
2025 2025 Npayload 1 1 1
2026 2027 crstMap 2 2 2
2028 2028 nDCI 1 1 1
2029 2029 Npayload 1 1 1
2030 2030 aggrL 1 1 1
2031 2031 precoding 1 1 1
2032 2032 modComp 1 0 0
2033 2033 multi-PDCCH 1 1 1
2101 2112 multi-params 12 12 12
2201 2213 FR1 BW mu = 1 13 13 13
2214 2221 FR1 BW mu = 0 8 8 0
2801 2802 perf TV F14 2 2 2
2803 2804 perf TV F08 2 2 2
2805 2806 perf TV F09 2 2 2
2901 2901 demo_msg2 1 1 1
2902 2902 demo_msg4 1 1 1
2903 2903 demo_coreset0 1 1 1
2904 2904 demo_traffic_dl 1 1 1
2905 2905 demo_msg5 1 1 1

120 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

SS Block

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

1001 1001 base 1 1 1
1002 1002 mu = 0 1 1 0
1003 1003 N_CELL_ID 1 1 1
1004 1004 n_hf = 1 1 1 1
1005 1005 L_max = 4 1 1 1
1006 1006 k_SSB 1 1 1
1007 1007 offsetPointA 1 1 1
1008 1008 SFN 1 1 1
1009 1009 blockIdx 1 1 1
1010 1010 precoding 1 1 1
1011 1011 betaPss 1 1 1
1101 1101 mu=0, 1SSB 1 1 0
1102 1102 mu=1, 1SSB 1 1 1
1103 1103 mu=1, 2SSB 1 1 0
1104 1104 mu=1, 2SSB 1 1 1
1202 1213 FR1 BW, mu = 1 12 12 12
1214 1221 FR1 BW, mu = 0 8 8 0
1801 1801 Perf TV 1 1 1
1901 1901 demo_ssb 1 1 1
1902 1902 for CP pipeline 1 1 1

CSI-RS

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

4001 4004 nPorts = 1 4 4 4
4005 4007 nPorts = 2 3 3 3
4008 4009 nPorts = 4 2 2 2
4010 4012 nPorts = 8 3 3 3
4013 4038 nPorts > 8, row > 8 26 26 0
4039 4039 RB0 1 1 1
4040 4040 nRB 1 1 1
4041 4041 sym0 1 1 1
4042 4042 sym1 1 1 0
4043 4043 nID 1 1 1
4044 4044 power control 1 1 1
4045 4050 freqDomainAllocation 6 6 5
4051 4051 idxSlot 1 1 1
4052 4054 batching 3 3 3
4055 4055 small gird size 1 1 0
4056 4056 TRS 1 1 1
4057 4057 precoding 1 1 1
4058 4058 modComp 1 0 0
4059 4060 16/32 CSIRS PDUs 2 2 2

continues on next page

1.3. cuBB Release Notes 121



Aerial CUDA-Accelerated RAN, Release 25-1

Table 23 – continued from previous page
TC Start TC End Description TV Gener-

ated
cuPHY Pass cuBB Pass

4101 4103 multiple parameters 3 3 3
4201 4213 FR1 BW mu = 1 13 13 13
4214 4221 FR1 BW mu = 0 8 8 0
4801 4801 perf TV F08 1 1 1
4802 4802 perf TV F09 1 1 1
4803 4803 perf TV F14 1 1 0

SRS

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

8001 8001 base 1 1 1
8002 8002 rnti 1 1 1
8003 8003 Nap=2 1 1 1
8004 8004 Nap=4 1 1 1
8005 8005 nSym=2 1 1 1
8006 8006 nSym=4 1 1 1
8007 8007 Nrep=2 1 1 1
8008 8008 Nrep=4 1 1 1
8009 8009 sym0 1 1 1
8010 8010 cfgIdx 1 1 1
8011 8011 seqId 1 1 1
8012 8012 bwIdx=1 1 1 1
8013 8013 bwIdx=2 1 1 1
8014 8014 bwIdx=3 1 1 1
8015 8015 cmbSize 1 1 1
8016 8016 cmbOffset 1 1 1
8017 8017 cyclic shift 1 1 1
8018 8018 freqPosition 1 1 1
8019 8019 freqShift 1 1 1
8020 8020 freqHopping=1 1 1 1
8021 8021 freqHopping=2 1 1 1
8022 8022 freqHopping=3 1 1 1
8023 8023 grpSeqHopping=1 1 1 1
8024 8024 grpSeqHopping=2 1 1 1
8025 8025 rsrcType,Tsrs,Toffset 1 1 0
8026 8026 idxSlot 1 1 1
8027 8033 multi-SRS 1 1 1
8034 8034 rsrcType,Tsrs,Toffset 1 1 0
8035 8035 16 users wideband 1 1 1
8051 8057 multiple parameters 7 7 7
8101 8164 sweep cfgIdx 64 64 64
8201 8213 FR1 BW mu=1 13 13 13
8214 8221 FR1 BW mu=0 8 8 0
8222 8226 rx power 5 5 5
8227 8227 additional BW 1 1 1
8301 8302 SRS integration 2 2 2

continues on next page

122 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 24 – continued from previous page
TC Start TC End Description TV Gener-

ated
cuPHY Pass cuBB Pass

8401 8415 32 nAnt 15 15 15
8420 8421 32 nAnt 2 2 2
8501 8524 64 nAnt 24 24 24
8801 8801 F09 perf TV 1 1 1
8802 8802 20M perf TV 1 1 1

mSlot_mCell

TC Start TC End Description TV Gener-
ated

cuPHY Pass cuBB Pass

90001 90007 single channel 7 7 7
90011 90012 dlmix/ulmix 2 2 2
90013 90015 s-slot 3 3 3
90016 90018 multi-cell base case 3 3 3
90019 90019 prcd+noPrcd 1 1 1
90020 90020 BFP14+BFP9 1 1 1
90021 90022 HARQ 2 2 2
90023 90023 empty slot 1 1 1
90032 90037 multi-slot combo TC 6 6 6
90041 90046 SRS + UL + DL 6 6 6
90051 90056 mixed cells 6 6 6
90057 90058 adaptive re-tx 2 2 2
90060 90060 SRS even/odd frames 1 1 1
90501 90505 bug TCs 5 5 5
90601 90603 multi-channel TCs 3 3 3

LDPC Performance

The ldpc\_perf\_collect.py Python script from the cuPHY repository can be used to perform error rate tests
for the cuPHY LDPC decoder. There are test input files defined for Z = [64, 128, 256, 384], BG = [1,2]. The tests check
whether the block error rate (BLER, also sometimes referred to as Frame Error Rate or FER) is less than 0.1.
From the build directory, the following commands run the tests:

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG1\_Z64\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG1\_Z128\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG1\_Z256\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG1\_Z384\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

(continues on next page)

1.3. cuBB Release Notes 123



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
../util/ldpc/test/ldpc\_decode\_BG2\_Z64\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG2\_Z128\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG2\_Z256\_BLER0.1.txt -f -w 800 -P

../util/ldpc/ldpc\_perf\_collect.py --mode test -i

../util/ldpc/test/ldpc\_decode\_BG2\_Z384\_BLER0.1.txt -f -w 800 -P

Each test input file contains multiple tests for different code rates, as specified by the number of parity nodes. The format
of the input files has the following form:

# BG Z num_parity num_iter SNR max_BER max_BLER
#--------------------------------------------------------------

1 384 4 10 6.87 1 0.1
1 384 5 10 6.15 1 0.1
1 384 6 10 5.64 1 0.1
1 384 7 10 5.17 1 0.1
1 384 8 10 4.79 1 0.1

...

After running each of the test cases, the ldpc\_perf\_collect.py script
displays an output table:

+-------------------------------------------------------------------------------------
↪→----------------------+
| # BG Z num\_parity num\_iter SNR max\_BER BER max\_BLER ␣
↪→ BLER STATUS |
| ␣
↪→ |
| 1 384 4 10 6.870 1.000000e+00 4.833980e-04 1.000000e-01 8.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 5 10 6.150 1.000000e+00 1.481120e-04 1.000000e-01 7.
↪→250000e-02 PASS |
| ␣
↪→ |
| 1 384 6 10 5.640 1.000000e+00 5.652230e-05 1.000000e-01 8.
↪→000000e-02 PASS |
| ␣
↪→ |
| 1 384 7 10 5.170 1.000000e+00 7.886480e-05 1.000000e-01 8.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 8 10 4.790 1.000000e+00 1.673470e-04 1.000000e-01 8.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 9 10 4.480 1.000000e+00 1.185190e-04 1.000000e-01 7.
↪→625000e-02 PASS |
| ␣

(continues on next page)

124 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→ |
| 1 384 10 10 4.200 1.000000e+00 8.552320e-05 1.000000e-01 8.
↪→875000e-02 PASS |
| ␣
↪→ |
| 1 384 11 10 3.920 1.000000e+00 5.385890e-05 1.000000e-01 8.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 12 10 3.660 1.000000e+00 1.234020e-04 1.000000e-01 9.
↪→125000e-02 PASS |
| ␣
↪→ |
| 1 384 13 10 3.450 1.000000e+00 7.013490e-05 1.000000e-01 8.
↪→000000e-02 PASS |
| ␣
↪→ |
| 1 384 14 10 3.220 1.000000e+00 7.620150e-05 1.000000e-01 8.
↪→125000e-02 PASS |
| ␣
↪→ |
| 1 384 15 10 3.020 1.000000e+00 5.800190e-05 1.000000e-01 7.
↪→250000e-02 PASS |
| ␣
↪→ |
| 1 384 16 10 2.830 1.000000e+00 8.774270e-05 1.000000e-01 8.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 17 10 2.640 1.000000e+00 4.838420e-05 1.000000e-01 7.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 18 10 2.500 1.000000e+00 3.950640e-05 1.000000e-01 7.
↪→875000e-02 PASS |
| ␣
↪→ |
| 1 384 19 10 2.310 1.000000e+00 3.551140e-05 1.000000e-01 8.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 20 10 2.150 1.000000e+00 2.500590e-05 1.000000e-01 8.
↪→500000e-02 PASS |
| ␣
↪→ |
| 1 384 21 10 1.980 1.000000e+00 3.181230e-05 1.000000e-01 7.
↪→625000e-02 PASS |
| ␣
↪→ |
| 1 384 22 10 1.810 1.000000e+00 3.299600e-05 1.000000e-01 8.
↪→000000e-02 PASS |
| ␣
↪→ |
| 1 384 23 10 1.670 1.000000e+00 2.618960e-05 1.000000e-01 9.
↪→125000e-02 PASS |
| ␣
↪→ |

(continues on next page)

1.3. cuBB Release Notes 125



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
| 1 384 24 10 1.530 1.000000e+00 3.136840e-05 1.000000e-01 7.
↪→875000e-02 PASS |
| ␣
↪→ |
| 1 384 25 10 1.400 1.000000e+00 2.663350e-05 1.000000e-01 8.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 26 10 1.270 1.000000e+00 3.255210e-05 1.000000e-01 8.
↪→625000e-02 PASS |
| ␣
↪→ |
| 1 384 27 10 1.140 1.000000e+00 2.692950e-05 1.000000e-01 7.
↪→500000e-02 PASS |
| ␣
↪→ |
| 1 384 28 10 0.999 1.000000e+00 5.149150e-05 1.000000e-01 9.
↪→250000e-02 PASS |
| ␣
↪→ |
| 1 384 29 10 0.889 1.000000e+00 3.225620e-05 1.000000e-01 8.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 30 10 0.772 1.000000e+00 3.536340e-05 1.000000e-01 9.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 31 10 0.650 1.000000e+00 4.113400e-05 1.000000e-01 9.
↪→125000e-02 PASS |
| ␣
↪→ |
| 1 384 32 10 0.547 1.000000e+00 3.965440e-05 1.000000e-01 8.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 33 10 0.428 1.000000e+00 5.489460e-05 1.000000e-01 9.
↪→625000e-02 PASS |
| ␣
↪→ |
| 1 384 34 10 0.333 1.000000e+00 5.030780e-05 1.000000e-01 8.
↪→875000e-02 PASS |
| ␣
↪→ |
| 1 384 35 10 0.220 1.000000e+00 3.906250e-05 1.000000e-01 8.
↪→875000e-02 PASS |
| ␣
↪→ |
| 1 384 36 10 0.127 1.000000e+00 2.929690e-05 1.000000e-01 8.
↪→250000e-02 PASS |
| ␣
↪→ |
| 1 384 37 10 0.034 1.000000e+00 3.225620e-05 1.000000e-01 9.
↪→000000e-02 PASS |
| ␣
↪→ |
| 1 384 38 10 -0.066 1.000000e+00 2.737330e-05 1.000000e-01 8.

(continues on next page)

126 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 39 10 -0.170 1.000000e+00 2.722540e-05 1.000000e-01 8.
↪→500000e-02 PASS |
| ␣
↪→ |
| 1 384 40 10 -0.253 1.000000e+00 3.521540e-05 1.000000e-01 7.
↪→500000e-02 PASS |
| ␣
↪→ |
| 1 384 41 10 -0.344 1.000000e+00 5.563450e-05 1.000000e-01 9.
↪→375000e-02 PASS |
| ␣
↪→ |
| 1 384 42 10 -0.424 1.000000e+00 2.559780e-05 1.000000e-01 8.
↪→750000e-02 PASS |
| ␣
↪→ |
| 1 384 43 10 -0.515 1.000000e+00 4.690460e-05 1.000000e-01 9.
↪→500000e-02 PASS |
| ␣
↪→ |
| 1 384 44 10 -0.605 1.000000e+00 5.755800e-05 1.000000e-01 9.
↪→125000e-02 PASS |
| ␣
↪→ |
| 1 384 45 10 -0.693 1.000000e+00 3.980230e-05 1.000000e-01 8.
↪→000000e-02 PASS |
| ␣
↪→ |
| 1 384 46 10 -0.766 1.000000e+00 5.208330e-05 1.000000e-01 9.
↪→875000e-02 PASS |
| ␣
↪→ |
| 43 TESTS PASSED, 0 TESTS FAILED ␣
↪→ |
+-------------------------------------------------------------------------------------
↪→----------------------+

Plots of current SNR values used for BLER testing are shown below:

1.3. cuBB Release Notes 127



Aerial CUDA-Accelerated RAN, Release 25-1

1.3.5 Limitations

Known Limitations

• The cuPHY library and binaries are intended for the Linux environment on the qualified platforms only.
• The supported configurations are limited to those listed above. Other configurations are not supported and may not

perform well.
• Only homogeneous configurations supported for multiple cells.
• The configurable YAML parametersenable_h2d_copy_thread, h2d_copy_thread_cpu_affinity,

and h2d_copy_thread_sched_priority are optional in the cuphycontroller YAML file. If these pa-
rameters are not present, the code uses the default values and throws the exception “YAML invalid key:” on the
cuphycontroller console. This exception message has no impact on the functionality and can be disregarded.

• GPU Initiated Comms for DL (gpu_init_comms_dl flag in the cuphycontroller config yaml) is required to be
enabled by default from 22-2.4 release onwards. The flag enables the feature within Aerial L1 to engage GPU kernels
to prepare and send U-Plane packets on the DL as opposed to CPU Initiated Comms (gpu_init_comms_dl=0) which
exercises CPU code/consumes CPU cycles to prepare/send U-plane packets on the DL.

• No simultaneous DL and UL scheduling in S-slot. However, DL-only s-slot is supported in E2E test with O-RU.
• When the FAPI messages for a given cell are sent via nvipc, L1 expects an explicit notify (once per cell) via nvipc.

In the case of multiple cells, multiple explicit notify APIs be called from L2. When a cell doesn’t have any messages
for a given slot, L1 expects dummy DL_TTI and/or UL_TTI.request, that is (nPDU = 0), to be sent “per cell”. If the
Slot Response feature is enabled by compiling Aerial with -DENABLE_L2_SLT_RSP=ON, this step is optional.

• For multi cells operation, L2 can signal the L2Adapter in 2 ways:
– Single event per slot: which contains SCF FAPI messages for all cells. The single event is raised by calling

nvipc notify(1) once per slot after the messages for all the cells are sent.
– Single event per cell: which is signaled by L2 after all FAPI messages for a given cell are sent. It is expected

that multiple nvipc notify(1) are called for multiple cells. The number of times that notify is being called
must be the same as the number of active cells. A cell is marked active after START.req is received from L2.
In this case, L1 expects dummy DL_TTI and UL_TTI described above. This is the default behavior.

128 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

To select the operation mode, set the ipc_sync_mode in yaml:

# Option 1: Sync per slot
ipc_sync_mode: 0
# Option 2: Sync per active cell
ipc_sync_mode: 1

If Slot Response feature is enabled by compiling Aerial with -DENABLE_L2_SLT_RSP=ON, this setting is a
no-op as L1 does not expect any event from L2.

• Cell life cycle management:
– All cells have to be configured before any cell start.
– No In-service configuration update.
– CONFIG.request received in CONFIGURED (Out-of-Service) state can be used to change PCI and the sup-

ported PRACH parameters specified in dynamic PRACH section in cuBB quickstart guide only. PHY ignores
any other TLVs received in CONFIG.request. If CONFIG.response indicates success, then only PCI and
supported PRACH parameters are changed. All other parameters remain as in the initial CONFIG.request
received for the cell.

– PHY reconfiguration of a cell in CONFIGURED (Out-of-Service) state can take upto 40ms to complete
(details below). Another CONFIG.request for any cell during this time (around 20ms) that occurs before
receiving a CONFIG.response returns a CONFIG.response with the error code “MSG_INVALID_STATE”.
The ERROR.indication will NOT be sent for this error. L2 needs to wait to receive a CONFIG.response
before sending a CONFIG.request for another cell in CONFIGURED state.

∗ If Aerial is configured for 4 cells and 3 cells are In-service with data running, reconfiguration of 1 cell
(Out-of-Service) can take around 40ms to complete

∗ If Aerial is configured for 4 cells and 3 cells are In-service with no data running, reconfiguration of 1 cell
(O-RU) can take around 20 ms to complete

– If CONFIG.response is received with error code “MSG_INVALID_CONFIG”, then reconfiguration was
unsuccessful and the cell is still with the configuration received in initial CONFIG.request.

– No UE attach allowed in all cells during the reconfiguration time.
• Dynamic M-plane parameters:

– When OAM sends gRPC message to change MAC address in M-plane, it must be a valid O-RU MAC address.
• The nvlog_observer and nvlog_collect are deprecated in 23-1.
• F13 test cases are deprecated in 23-2.
• Early HARQ in UCI.indication:

– This feature is supported only for the first UL slot (x4 slots) and when all the early-HARQ bits are resident
in symbols 0-3.

– UCI.Indication with early HARQ will not have any measurement values.
– If only HARQ is scheduled on PUSCH then with this feature enabled, no UCI.indication will be sent to L2

after full slot processing of PUSCH. Consequently no measurements for that slot will be reported to L2.
– If CSI reports are also scheduled on PUSCH along with HARQ, then UCI.Indication with early HARQ will

not have any measurement values. But the UCI.indication sent after full slot processing of PUSCH will have
the measurements.

– A constraint to enable early-HARQ is that these HARQ bits should be fully resident in OFDM symbols
0-3. So HARQ bits resident in OFDM symbols 0-3 will be in the 1st UCI.indication (that is, early-HARQ

1.3. cuBB Release Notes 129



Aerial CUDA-Accelerated RAN, Release 25-1

indication) and all other HARQ bits in the subsequent UCI.indication (that is, after full slot PUSCH processing
completes).

• Multiple cell operation without issuing dummy config.req:
– L2 should wait for at least 40msec between two CONFIG.request even at the initial stage, so that CON-

FIG.response is received by L2.
– L2 can retry the failed CONFIG.request for a given cell after 1 sec.

• Multi-L2 with single cuphycontroller per GPU:
– The total cell number of all L2 instances cannot exceed the cell_group_num configured in cuphycontroller

yaml.
– nvIPC only supports static cell allocation defined in the nvipc_multi_instances.yaml for multiple L2 instances.

The number of cells and the cell mapping in each L2 instance cannot change after L1 is configured..
– Support dynamic cell start/stop in each L2 instance. Do not support dynamic L2 restart. L2 instance needs

to hold the nvipc instance after connecting to L1.
• 64T64R TDD single cell:

– PDSCH Resource Allocation Type 0 (RAT0) is not supported.
– SRS reports related to antennaSwitching (FAPI 222.10.04, Table 3-133 - Channel SVD Representation) is

not supported.
• When L2 restarts without restarting L1, L2 has to keep the same cell config and cell sequence. If not, it should

restart L1 to ensure a clean state in PHY.
• When running cuBB 59c peak cell test on MIG 4g.48g and LLM on MIG 3g.48gb, the validation was done up to

11C.

Known Issues

• The support for CPU Initiated Comms (gpu_init_comms_dl=0) mode is no longer available after the 22-2.4 release
and it is recommended that this mode not be enabled for testing purposes.

• Support up to 8 DMRS ports, if the allocations are contiguous in PUSCH.
• SCHED_FIFO + 100% CPU poll thread causes the system to hang on the 5.4.0-65-lowlatency kernel. The solution

is one of the following:
– Configure the kernel option CONFIG_RCU_NOCB_CPU=y, recompile, and install the kernel.
– Upgrade the host system to 5.15.0-71-lowlatency or later.

• CUDA application on Grace Hopper:
– CUDA applications on the Grace Hopper platform require ATS support. Currently, ATS is not enabled on

the arm64 platform when IOMMU passthrough is enabled.
• NIC string conversion issue on Grace Hopper:

– While working on dynamic CPU core assignments in K8s pod, we need to parse and dump the cuphycontroller
config yaml file. On the Grace Hopper, the nic: 0000:01:00.0 will be converted to nic: 60.0. This is because
the PCIe address might be interpreted as a 60 based integer according to ‘https://yaml.org/type/int.html’. The
fix is to explicitly tell yaml parser to interpret the PCIe address as a string by putting single quotation marks
around or !!str before the pcie address, e.g., nic: ‘0000:01:00.0’ or nic: !!str 0000:01:00.0.

130 Chapter 1. Aerial cuBB

https://yaml.org/type/int.html


Aerial CUDA-Accelerated RAN, Release 25-1

From
sed -i "s/nic:.*/nic: 0000:01:00.0/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/

↪→config/cuphycontroller_P5G_FXN.yaml
to

sed -i "s/nic:.*/nic: ‘0000:01:00.0’/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_P5G_FXN.yaml

(or sed -i "s/nic:.*/nic: \!\!str 0000:01:00.0/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_P5G_FXN.yaml)

• There is a known issue (DL C-plane send error) when running multiple L2 instances if H2D copy thread is enabled.
The workaround is to disable the H2D copy thread when running multiple L2 instances.

• F08 20C_60c: cuPHYController Reports ‘DL C-plane Send Error’ (Error Type 1) during Initialization. This is a
transient error only occurs at startup.

• cuBB test case 90502, RUE reports unexpected DL slots and throughput with approximate validation enabled. The
workaround is to disable the approximate validation.

• cuBB test case 90634, there are [DRV.FUNC_UL] ERROR: AGGR 3 task waiting for Order kernel messages
when running with R750 RUE. The workaround is to run with Grace Hopper RUE.

• There is a known issue (UE attach failure) when using cuBB compiled with SCF_FAPI_10_04 flag for E2E inte-
gration. The workaround is for L2 to send TRP scheme field when sending RX Beamforming PDU according to
SCF FAPI 10.04 release.

• The following test cases are not passing. They could be functionality issues or test framework issues:

Channel Test Cases Feature
PDSCH 3870, 3879, 3880, 3881 64TR

• If below error is observed on startup of cuphycontroller, please try a different port for
‘aerial_metrics_backend_address’ in cuphycontroller yaml file, e.g., current default address is 127.0.0.1:8081,
change it to 127.0.0.1:8082. We’ve seen this issue with RHOCP.

null context when constructing CivetServer. Possible problem binding to␣
↪→port.

1.3.6 Acknowledgements

Abseil

Apache License
Version 2.0, January 2004

https://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

(continues on next page)

1.3. cuBB Release Notes 131



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the

(continues on next page)

132 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with

(continues on next page)

1.3. cuBB Release Notes 133



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a

(continues on next page)

134 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

https://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

Backward-cpp

Copyright 2013 Google Inc. All Rights Reserved.

The MIT License (MIT)

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

BoringSSL

BoringSSL is a fork of OpenSSL. As such, large parts of it fall under OpenSSL
licensing. Files that are completely new have a Google copyright and an ISC
license. This license is reproduced at the bottom of this file.

Contributors to BoringSSL are required to follow the CLA rules for Chromium:
https://cla.developers.google.com/clas

Files in third_party/ have their own licenses, as described therein. The MIT
license, for third_party/fiat, which, unlike other third_party directories, is

(continues on next page)

1.3. cuBB Release Notes 135



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
compiled into non-test libraries, is included below.

The OpenSSL toolkit stays under a dual license, i.e. both the conditions of the
OpenSSL License and the original SSLeay license apply to the toolkit. See below
for the actual license texts. Actually both licenses are BSD-style Open Source
licenses. In case of any license issues related to OpenSSL please contact
openssl-core@openssl.org.

The following are Google-internal bug numbers where explicit permission from
some authors is recorded for use of their work. (This is purely for our own
record keeping.)

27287199
27287880
27287883

OpenSSL License
---------------

/* ====================================================================
* Copyright (c) 1998-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,

(continues on next page)

136 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com).
*
*/

Original SSLeay License
-----------------------

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*

(continues on next page)

1.3. cuBB Release Notes 137



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/

ISC license used for completely new code in BoringSSL:

/* Copyright (c) 2015, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */

The code in third_party/fiat carries the MIT license:

Copyright (c) 2015-2016 the fiat-crypto authors (see
https://github.com/mit-plv/fiat-crypto/blob/master/AUTHORS).

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE

(continues on next page)

138 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
SOFTWARE.

Licenses for support code
-------------------------

Parts of the TLS test suite are under the Go license. This code is not included
in BoringSSL (i.e. libcrypto and libssl) when compiled, however, so
distributing code linked against BoringSSL does not trigger this license:

Copyright (c) 2009 The Go Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

BoringSSL uses the Chromium test infrastructure to run a continuous build,
trybots etc. The scripts which manage this, and the script for generating build
metadata, are under the Chromium license. Distributing code linked against
BoringSSL does not trigger this license.

Copyright 2015 The Chromium Authors. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
(continues on next page)

1.3. cuBB Release Notes 139



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Benchmark

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

(continues on next page)

140 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(continues on next page)

1.3. cuBB Release Notes 141



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

(continues on next page)

142 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
8. Limitation of Liability. In no event and under no legal theory,

whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.3. cuBB Release Notes 143



Aerial CUDA-Accelerated RAN, Release 25-1

Bloaty

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to

(continues on next page)

144 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or

(continues on next page)

1.3. cuBB Release Notes 145



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only

(continues on next page)

146 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

c-ares

# c-ares license

Copyright (c) 2007 - 2018, Daniel Stenberg with many contributors, see AUTHORS
file.

Copyright 1998 by the Massachusetts Institute of Technology.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission.
M.I.T. makes no representations about the suitability of this software for any
purpose. It is provided "as is" without express or implied warranty.

1.3. cuBB Release Notes 147



Aerial CUDA-Accelerated RAN, Release 25-1

CivetWeb

Copyright (c) 2013-2021 The CivetWeb developers (CREDITS.md)
Copyright (c) 2004-2013 Sergey Lyubka
Copyright (c) 2013 No Face Press, LLC (Thomas Davis)
Copyright (c) 2013 F-Secure Corporation
Permission is hereby granted, free of charge, to any person obtaining a copy of this␣
↪→software and associated documentation files (the "Software"), to deal in the␣
↪→Software without restriction, including without limitation the rights to use, copy,␣
↪→modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,␣
↪→and to permit persons to whom the Software is furnished to do so, subject to the␣
↪→following conditions:
The above copyright notice and this permission notice shall be included in all copies␣
↪→or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,␣
↪→INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A␣
↪→PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT␣
↪→HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION␣
↪→OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE␣
↪→SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Data plane API

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,

(continues on next page)

148 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
(continues on next page)

1.3. cuBB Release Notes 149



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or

(continues on next page)

150 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner].

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

1.3. cuBB Release Notes 151



Aerial CUDA-Accelerated RAN, Release 25-1

DPDK

The DPDK uses the Open Source BSD-3-Clause license for the core libraries and
drivers. The kernel components are naturally GPL-2.0 licensed.

Including big blocks of License headers in all files blows up the
source code with mostly redundant information. An additional problem
is that even the same licenses are referred to by a number of
slightly varying text blocks (full, abbreviated, different
indentation, line wrapping and/or white space, with obsolete address
information, ...) which makes validation and automatic processing a nightmare.

To make this easier, DPDK uses a single line reference to Unique License
Identifiers in source files as defined by the Linux Foundation's SPDX project
(https://spdx.org/).

Adding license information in this fashion, rather than adding full license
text, can be more efficient for developers; decreases errors; and improves
automated detection of licenses. The current set of valid, predefined SPDX
identifiers is set forth on the SPDX License List at https://spdx.org/licenses/.

DPDK uses first line of the file to be SPDX tag. In case of *#!* scripts, SPDX
tag can be placed in 2nd line of the file.

For example, to label a file as subject to the BSD-3-Clause license,
the following text would be used:

SPDX-License-Identifier: BSD-3-Clause

To label a file as GPL-2.0 (e.g., for code that runs in the kernel), the
following text would be used:

SPDX-License-Identifier: GPL-2.0

To label a file as dual-licensed with BSD-3-Clause and GPL-2.0 (e.g., for code
that is shared between the kernel and userspace), the following text would be
used:

SPDX-License-Identifier: (BSD-3-Clause OR GPL-2.0)

To label a file as dual-licensed with BSD-3-Clause and LGPL-2.1 (e.g., for code
that is shared between the kernel and userspace), the following text would be
used:

SPDX-License-Identifier: (BSD-3-Clause OR LGPL-2.1)

Any new file contributions in DPDK shall adhere to the above scheme.
It is also being recommended to replace the existing license text in the code
with SPDX-License-Identifiers.

Any exception to the DPDK IP policies shall be approved by DPDK Tech Board and
DPDK Governing Board. Steps for any exception approval:
1. Mention the appropriate license identifier form SPDX. If the license is not

listed in SPDX Licenses. It is the submitters responsibility to get it
first listed.

2. Get the required approval from the DPDK Technical Board. Technical Board may
advise the author to check alternate means first. If no other alternative

(continues on next page)

152 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
are found and the merit of the contributions are important for DPDK's
mission, it may decide on such exception with two-thirds vote of the members.

3. Technical Board then approach Governing Board for such limited approval for
the given contribution only.

Any approvals shall be documented in "Licenses/exceptions.txt" with record
dates.

DPDK project supported licenses are:

1. BSD 3-clause "New" or "Revised" License
SPDX-License-Identifier: BSD-3-Clause
URL: http://spdx.org/licenses/BSD-3-Clause#licenseText
DPDK License text: licenses/bsd-3-clause.txt

2. GNU General Public License v2.0 only
SPDX-License-Identifier: GPL-2.0
URL: http://spdx.org/licenses/GPL-2.0.html#licenseText
DPDK License text: licenses/gpl-2.0.txt

3. GNU Lesser General Public License v2.1
SPDX-License-Identifier: LGPL-2.1
URL: http://spdx.org/licenses/LGPL-2.1.html#licenseText
DPDK License text: licenses/lgpl-2.1.txt

Eigen

Mozilla Public License
Version 2.0

1. Definitions
1.1. “Contributor”

means each individual or legal entity that creates, contributes to the creation of,
↪→ or owns Covered Software.

1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a␣

↪→Contributor and that particular Contributor’s Contribution.

1.3. “Contribution”
means Covered Software of a particular Contributor.

1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the notice in␣

↪→Exhibit A, the Executable Form of such Source Code Form, and Modifications of␣
↪→such Source Code Form, in each case including portions thereof.

1.5. “Incompatible With Secondary Licenses”
means

a. that the initial Contributor has attached the notice described in Exhibit B␣
↪→to the Covered Software; or

b. that the Covered Software was made available under the terms of version 1.1␣
↪→or earlier of the License, but not also under the terms of a Secondary License.

1.6. “Executable Form”
means any form of the work other than Source Code Form.

(continues on next page)

1.3. cuBB Release Notes 153



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate␣

↪→file or files, that is not Covered Software.

1.8. “License”
means this document.

1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the␣

↪→time of the initial grant or subsequently, any and all of the rights conveyed by␣
↪→this License.

1.10. “Modifications”
means any of the following:

a. any file in Source Code Form that results from an addition to, deletion from,
↪→ or modification of the contents of Covered Software; or

b. any new file in Source Code Form that contains any Covered Software.

1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process, and␣

↪→apparatus claims, in any patent Licensable by such Contributor that would be␣
↪→infringed, but for the grant of the License, by the making, using, selling,␣
↪→offering for sale, having made, import, or transfer of either its Contributions or␣
↪→its Contributor Version.

1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser General␣

↪→Public License, Version 2.1, the GNU Affero General Public License, Version 3.0, or␣
↪→any later versions of those licenses.

1.13. “Source Code Form”
means the form of the work preferred for making modifications.

1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this License. For␣

↪→legal entities, “You” includes any entity that controls, is controlled by, or is␣
↪→under common control with You. For purposes of this definition, “control” means (a)␣
↪→the power, direct or indirect, to cause the direction or management of such entity,␣
↪→whether by contract or otherwise, or (b) ownership of more than fifty percent (50%)␣
↪→of the outstanding shares or beneficial ownership of such entity.

2. License Grants and Conditions
2.1. Grants

Each Contributor hereby grants You a world-wide, royalty-free, non-exclusive␣
↪→license:

a. under intellectual property rights (other than patent or trademark)␣
↪→Licensable by such Contributor to use, reproduce, make available, modify, display,␣
↪→perform, distribute, and otherwise exploit its Contributions, either on an␣
↪→unmodified basis, with Modifications, or as part of a Larger Work; and

b. under Patent Claims of such Contributor to make, use, sell, offer for sale,␣
↪→have made, import, and otherwise transfer either its Contributions or its␣
↪→Contributor Version.

(continues on next page)

154 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become␣

↪→effective for each Contribution on the date the Contributor first distributes such␣
↪→Contribution.

2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this␣

↪→License. No additional rights or licenses will be implied from the distribution or␣
↪→licensing of Covered Software under this License. Notwithstanding Section 2.1(b)␣
↪→above, no patent license is granted by a Contributor:

a. for any code that a Contributor has removed from Covered Software; or

b. for infringements caused by: (i) Your and any other third party’s␣
↪→modifications of Covered Software, or (ii) the combination of its Contributions␣
↪→with other software (except as part of its Contributor Version); or

c. under Patent Claims infringed by Covered Software in the absence of its␣
↪→Contributions.

This License does not grant any rights in the trademarks, service marks, or logos of␣
↪→any Contributor (except as may be necessary to comply with the notice requirements␣
↪→in Section 3.4).

2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to distribute the␣
↪→Covered Software under a subsequent version of this License (see Section 10.2) or␣
↪→under the terms of a Secondary License (if permitted under the terms of Section 3.
↪→3).

2.5. Representation
Each Contributor represents that the Contributor believes its Contributions are its␣
↪→original creation(s) or it has sufficient rights to grant the rights to its␣
↪→Contributions conveyed by this License.

2.6. Fair Use
This License is not intended to limit any rights You have under applicable copyright␣
↪→doctrines of fair use, fair dealing, or other equivalents.

2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in Section 2.1.

3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any Modifications␣
↪→that You create or to which You contribute, must be under the terms of this License.
↪→ You must inform recipients that the Source Code Form of the Covered Software is␣
↪→governed by the terms of this License, and how they can obtain a copy of this␣
↪→License. You may not attempt to alter or restrict the recipients’ rights in the␣
↪→Source Code Form.

3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:

a. such Covered Software must also be made available in Source Code Form, as␣
↪→described in Section 3.1, and You must inform recipients of the Executable Form how␣

(continues on next page)

1.3. cuBB Release Notes 155



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→they can obtain a copy of such Source Code Form by reasonable means in a timely␣
↪→manner, at a charge no more than the cost of distribution to the recipient; and

b. You may distribute such Executable Form under the terms of this License, or␣
↪→sublicense it under different terms, provided that the license for the Executable␣
↪→Form does not attempt to limit or alter the recipients’ rights in the Source Code␣
↪→Form under this License.

3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice, provided that␣
↪→You also comply with the requirements of this License for the Covered Software. If␣
↪→the Larger Work is a combination of Covered Software with a work governed by one or␣
↪→more Secondary Licenses, and the Covered Software is not Incompatible With␣
↪→Secondary Licenses, this License permits You to additionally distribute such␣
↪→Covered Software under the terms of such Secondary License(s), so that the␣
↪→recipient of the Larger Work may, at their option, further distribute the Covered␣
↪→Software under the terms of either this License or such Secondary License(s).

3.4. Notices
You may not remove or alter the substance of any license notices (including copyright␣
↪→notices, patent notices, disclaimers of warranty, or limitations of liability)␣
↪→contained within the Source Code Form of the Covered Software, except that You may␣
↪→alter any license notices to the extent required to remedy known factual␣
↪→inaccuracies.

3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support, indemnity or␣
↪→liability obligations to one or more recipients of Covered Software. However, You␣
↪→may do so only on Your own behalf, and not on behalf of any Contributor. You must␣
↪→make it absolutely clear that any such warranty, support, indemnity, or liability␣
↪→obligation is offered by You alone, and You hereby agree to indemnify every␣
↪→Contributor for any liability incurred by such Contributor as a result of warranty,␣
↪→support, indemnity or liability terms You offer. You may include additional␣
↪→disclaimers of warranty and limitations of liability specific to any jurisdiction.

4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License with␣
↪→respect to some or all of the Covered Software due to statute, judicial order, or␣
↪→regulation then You must: (a) comply with the terms of this License to the maximum␣
↪→extent possible; and (b) describe the limitations and the code they affect. Such␣
↪→description must be placed in a text file included with all distributions of the␣
↪→Covered Software under this License. Except to the extent prohibited by statute or␣
↪→regulation, such description must be sufficiently detailed for a recipient of␣
↪→ordinary skill to be able to understand it.

5. Termination
5.1. The rights granted under this License will terminate automatically if You fail␣
↪→to comply with any of its terms. However, if You become compliant, then the rights␣
↪→granted under this License from a particular Contributor are reinstated (a)␣
↪→provisionally, unless and until such Contributor explicitly and finally terminates␣
↪→Your grants, and (b) on an ongoing basis, if such Contributor fails to notify You␣
↪→of the non-compliance by some reasonable means prior to 60 days after You have come␣
↪→back into compliance. Moreover, Your grants from a particular Contributor are␣
↪→reinstated on an ongoing basis if such Contributor notifies You of the non-
↪→compliance by some reasonable means, this is the first time You have received␣
↪→notice of non-compliance with this License from such Contributor, and You become␣
↪→compliant prior to 30 days after Your receipt of the notice.

(continues on next page)

156 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

5.2. If You initiate litigation against any entity by asserting a patent infringement␣
↪→claim (excluding declaratory judgment actions, counter-claims, and cross-claims)␣
↪→alleging that a Contributor Version directly or indirectly infringes any patent,␣
↪→then the rights granted to You by any and all Contributors for the Covered Software␣
↪→under Section 2.1 of this License shall terminate.

5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user␣
↪→license agreements (excluding distributors and resellers) which have been validly␣
↪→granted by You or Your distributors under this License prior to termination shall␣
↪→survive termination.

6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without warranty␣
↪→of any kind, either expressed, implied, or statutory, including, without limitation,
↪→ warranties that the Covered Software is free of defects, merchantable, fit for a␣
↪→particular purpose or non-infringing. The entire risk as to the quality and␣
↪→performance of the Covered Software is with You. Should any Covered Software prove␣
↪→defective in any respect, You (not any Contributor) assume the cost of any␣
↪→necessary servicing, repair, or correction. This disclaimer of warranty constitutes␣
↪→an essential part of this License. No use of any Covered Software is authorized␣
↪→under this License except under this disclaimer.

7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including negligence),
↪→ contract, or otherwise, shall any Contributor, or anyone who distributes Covered␣
↪→Software as permitted above, be liable to You for any direct, indirect, special,␣
↪→incidental, or consequential damages of any character including, without limitation,
↪→ damages for lost profits, loss of goodwill, work stoppage, computer failure or␣
↪→malfunction, or any and all other commercial damages or losses, even if such party␣
↪→shall have been informed of the possibility of such damages. This limitation of␣
↪→liability shall not apply to liability for death or personal injury resulting from␣
↪→such party’s negligence to the extent applicable law prohibits such limitation.␣
↪→Some jurisdictions do not allow the exclusion or limitation of incidental or␣
↪→consequential damages, so this exclusion and limitation may not apply to You.

8. Litigation
Any litigation relating to this License may be brought only in the courts of a␣
↪→jurisdiction where the defendant maintains its principal place of business and such␣
↪→litigation shall be governed by laws of that jurisdiction, without reference to its␣
↪→conflict-of-law provisions. Nothing in this Section shall prevent a party’s ability␣
↪→to bring cross-claims or counter-claims.

9. Miscellaneous
This License represents the complete agreement concerning the subject matter hereof.␣
↪→If any provision of this License is held to be unenforceable, such provision shall␣
↪→be reformed only to the extent necessary to make it enforceable. Any law or␣
↪→regulation which provides that the language of a contract shall be construed␣
↪→against the drafter shall not be used to construe this License against a␣
↪→Contributor.

10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section 10.3, no one␣
↪→other than the license steward has the right to modify or publish new versions of␣
↪→this License. Each version will be given a distinguishing version number.

(continues on next page)

1.3. cuBB Release Notes 157



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of the License␣
↪→under which You originally received the Covered Software, or under the terms of any␣
↪→subsequent version published by the license steward.

10.3. Modified Versions
If you create software not governed by this License, and you want to create a new␣
↪→license for such software, you may create and use a modified version of this␣
↪→License if you rename the license and remove any references to the name of the␣
↪→license steward (except to note that such modified license differs from this␣
↪→License).

10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With Secondary␣
↪→Licenses under the terms of this version of the License, the notice described in␣
↪→Exhibit B of this License must be attached.

Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the terms of the Mozilla Public License, v. 2.

↪→0. If a copy of the MPL was not distributed with this file, You can obtain one at␣
↪→https://mozilla.org/MPL/2.0/.

If it is not possible or desirable to put the notice in a particular file, then You␣
↪→may include the notice in a location (such as a LICENSE file in a relevant␣
↪→directory) where a recipient would be likely to look for such a notice.

You may add additional accurate notices of copyright ownership.

Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible With Secondary Licenses”, as defined by the␣

↪→Mozilla Public License, v. 2.0.

Fluent Helm Charts

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

(continues on next page)

158 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable

(continues on next page)

1.3. cuBB Release Notes 159



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed

(continues on next page)

160 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

Fmtlog

MIT License
Copyright (c) 2021 Meng Rao <raomeng1@gmail.com>

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
(continues on next page)

1.3. cuBB Release Notes 161



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

GDRCopy

Copyright (c) 2014-2021, NVIDIA CORPORATION. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a
copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation
the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Google APIs

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or

(continues on next page)

162 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,

(continues on next page)

1.3. cuBB Release Notes 163



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.

(continues on next page)

164 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

(continues on next page)

1.3. cuBB Release Notes 165



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

GoogleTest

Copyright 2008, Google Inc.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

gRPC

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

(continues on next page)

166 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

(continues on next page)

1.3. cuBB Release Notes 167



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
2. Grant of Copyright License. Subject to the terms and conditions of

this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

(continues on next page)

168 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

(continues on next page)

1.3. cuBB Release Notes 169



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-----------------------------------------------------------

BSD 3-Clause License

Copyright 2016, Google Inc.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from this
software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE.

-----------------------------------------------------------

(continues on next page)

170 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Mozilla Public License, v. 2.0

This Source Code Form is subject to the terms of the Mozilla Public License,
v. 2.0. If a copy of the MPL was not distributed with this file, You can
obtain one at https://mozilla.org/MPL/2.0/.

libuv

Copyright (c) 2015-present libuv project contributors.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
====

This license applies to parts of libuv originating from the
https://github.com/joyent/libuv repository:

====

Copyright Joyent, Inc. and other Node contributors. All rights reserved.
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

====

(continues on next page)

1.3. cuBB Release Notes 171



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
This license applies to all parts of libuv that are not externally
maintained libraries.

The externally maintained libraries used by libuv are:

- tree.h (from FreeBSD), copyright Niels Provos. Two clause BSD license.

- inet_pton and inet_ntop implementations, contained in src/inet.c, are
copyright the Internet Systems Consortium, Inc., and licensed under the ISC
license.

- stdint-msvc2008.h (from msinttypes), copyright Alexander Chemeris. Three
clause BSD license.

- pthread-fixes.c, copyright Google Inc. and Sony Mobile Communications AB.
Three clause BSD license.

- android-ifaddrs.h, android-ifaddrs.c, copyright Berkeley Software Design
Inc, Kenneth MacKay and Emergya (Cloud4all, FP7/2007-2013, grant agreement
n° 289016). Three clause BSD license.

LibYAML

Copyright (c) 2017-2020 Ingy döt Net
Copyright (c) 2006-2016 Kirill Simonov

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

172 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Libyang

Copyright (c) 2015-2021, CESNET
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

* Neither the name of CESNET nor the names of
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Mimalloc

MIT License

Copyright (c) 2018-2021 Microsoft Corporation, Daan Leijen

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

1.3. cuBB Release Notes 173



Aerial CUDA-Accelerated RAN, Release 25-1

Prometheus Client Library for Modern C++

MIT License

Copyright (c) 2016-2019 Jupp Mueller
Copyright (c) 2017-2019 Gregor Jasny

And many contributors, see
https://github.com/jupp0r/prometheus-cpp/graphs/contributors

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

Protocol Buffers

Copyright 2008 Google Inc. All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:

* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.

* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(continues on next page)

174 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Code generated by the Protocol Buffer compiler is owned by the owner
of the input file used when generating it. This code is not
standalone and requires a support library to be linked with it. This
support library is itself covered by the above license.

protoc-gen-validate (PGV)

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,

(continues on next page)

1.3. cuBB Release Notes 175



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,

(continues on next page)

176 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the

(continues on next page)

1.3. cuBB Release Notes 177



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

RE2

// Copyright (c) 2009 The RE2 Authors. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer

(continues on next page)

178 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

UDPA API

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
(continues on next page)

1.3. cuBB Release Notes 179



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(continues on next page)

180 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the

(continues on next page)

1.3. cuBB Release Notes 181



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

182 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

zlib

(C) 1995-2017 Jean-loup Gailly and Mark Adler

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distribution.

Jean-loup Gailly Mark Adler
jloup@gzip.org madler@alumni.caltech.edu

CLI11

CLI11 2.2 Copyright (c) 2017-2024 University of Cincinnati, developed by Henry
Schreiner under NSF AWARD 1414736. All rights reserved.

Redistribution and use in source and binary forms of CLI11, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

1.3. cuBB Release Notes 183



Aerial CUDA-Accelerated RAN, Release 25-1

gsl-lite

The MIT License (MIT)

Copyright (c) 2015-2019 Martin Moene
Copyright (c) 2019-2021 Moritz Beutel
Copyright (c) 2015-2018 Microsoft Corporation. All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

cmake-modules

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

184 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

wise_enum

Boost Software License - Version 1.0 - August 17th, 2003

Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:

The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

fmtlib

Copyright (c) 2012 - present, Victor Zverovich and {fmt} contributors

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

--- Optional exception to the license ---

As an exception, if, as a result of your compiling your source code, portions
of this Software are embedded into a machine-executable object form of such
source code, you may redistribute such embedded portions in such object form
without including the above copyright and permission notices.

1.3. cuBB Release Notes 185



Aerial CUDA-Accelerated RAN, Release 25-1

pybind11

Copyright (c) 2016 Wenzel Jakob <wenzel.jakob@epfl.ch>, All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Please also refer to the file .github/CONTRIBUTING.md, which clarifies licensing of
external contributions to this project including patches, pull requests, etc.

fixuid

MIT License

Copyright (c) 2017 BoxBoat Technologies, LLC

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

186 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

This section describes the supported configurations, test-vector configurations, and limitations for this release of Aerial
cuPHY.

1.4 cuBB Installation Guide

This section describes how to install the Aerial cuBB.

1.4.1 Installing Tools on Grace Hopper MGX System

This chapter describes how to install the required kernel, driver, and tools on the host. This is a one-time installation and
can be skipped if the system has been configured already.

• In the following sequence of steps, the target host is Supermicro Grace Hopper MGX System.
• Depending on the release, tools that are installed in this section may need to be upgraded in the Installing and
Upgrading Aerial cuBB section.

• After everything is installed and updated, refer to the cuBB Quick Start Guide for how to use Aerial cuBB.

Supermicro Grace Hopper MGX Configuration

Supermicro Server SKU: ARS-111GL-NHR (Config 2)

Top View:

1.4. cuBB Installation Guide 187

https://www.supermicro.com/en/accelerators/nvidia/mgx


Aerial CUDA-Accelerated RAN, Release 25-1

Back View:

Cable Connection

Host OS Internet Connection

The BF3 NICs are reserved for fronthaul and backhaul connections, a USB to Ethernet dongle to the back USB port is
recommended for the host OS internet connection.

E2E Test Connection

To run end-to-end test with O-RU, the BF3 fronthaul port#0 or port#1 must be connected to the fronthaul switch. Make
sure the PTP is configured to use the port connected to the fronthaul switch. The following diagram shows a typical E2E
connection in O-RAN LLS-C3 topology.

188 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

cuBB Test Connection

To run cuBB end-to-end test with TestMAC and RU emulator, a R750 RU emulator is recommended to pair with the
Grace Hopper MGX system. The BF3 NIC (P/N: 900-9D3B6-00CV-AA0) should be installed on the slot 7 of the R750
server as the picture shown below.

To provision the R750 RU emulator, follow the instructions at Installing Tools on Dell R750. Because the R750 RU
emulator has no GPU, the Installing CUDA Driver can be skipped. Note that the PCI addresses of the BF3 ports are
ca:00.0 and ca:00.1 on the R750 RU emulator.

$ lshw -c network -businfo
Bus info Device Class Description
==========================================================
pci@0000:04:00.0 eno8303 network NetXtreme BCM5720 Gigabit Etherne
pci@0000:04:00.1 eno8403 network NetXtreme BCM5720 Gigabit Etherne
pci@0000:ca:00.0 aerial00 network MT43244 BlueField-3 integrated Co
pci@0000:ca:00.1 aerial01 network MT43244 BlueField-3 integrated Co

The Mellanox 200GbE direct attach copper cable is required to connect the Grace Hopper MGX and R750 RU emulator
to run more than 10 cells. The 100GbE direct attach copper cable should be able to support 10C 59c BFP9 but it is not
going to work for 20C 60c BFP9.

To run RU emulator on R750 + BF3, update the RU emulator yaml as below:

1.4. cuBB Installation Guide 189



Aerial CUDA-Accelerated RAN, Release 25-1

# For RU Emulator on R750 system
sed -i "s/ul_core_list.*/ul_core_list: [5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,
↪→37,39,41,43]/" $RU_YAML
sed -i "s/dl_core_list.*/dl_core_list: [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,
↪→36,38,40,42]/" $RU_YAML
sed -i "s/aerial_fh_split_rx_tx_mempool.*/aerial_fh_split_rx_tx_mempool: 1/" $RU_YAML
sed -i "s/low_priority_core.*/low_priority_core: 45/" $RU_YAML

System Firmware Upgrade

During the first boot, login to BMC to check the firmware inventory. Go to Dashboard -> Maintenance -> Firmware
Management -> Inventory to see the current firmware versions.

Here is the list of the minimum required versions. Upgrade the firmware to the following or newer versions, if your system
has older firmware.

190 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Component Firmware Version Firmware filename
BMC 1.02.01 (20231103) BMC_SCMAST2600-ROT20-

2501MS_20231103_01.02.01_STDsp.bin
BIOS 1.0 (20231026) BIOS_G1SMH-G-1D31_20231026_1.0_STDsp.bin
FPGA 0.8A FPGA_MBD-G1SMH-G-

10XX1D31_20231018_00.8A.XX_STDsp.bin
VBIOS 96.00.84.00.02 g530_0206_888__9600840002-prod.fwpkg
EROT 1.03.0114.0000-n01 cec1736-ecfw-01.03.0114.0000-n01-rel-prod.fwpkg
CPLD Motherboard
Misc

V0B CPLD_XO3-GP03E0-10XX03E0_20231020_0B.XX.XX_STDsp.jed

The recommended firmware update sequence is:
1. Power off host
2. Update BMC
3. Update CPLD motherboard misc
4. Update CPU ERoT
5. Update FPGA
6. A/C power cycle
7. Update BIOS
8. Update VBIOS
9. Reboot or Power cycle

To update the firmware for a specific component, go to Dashboard -> Maintenance -> Firmware Management ->
Update then select the component icon -> Next -> Select File -> Upload -> Update. For example, select BMC and its
firmware file as follows:

1.4. cuBB Installation Guide 191



Aerial CUDA-Accelerated RAN, Release 25-1

For non-BMC firmware update, it is queued in the task list to update in next boot.

192 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Install Ubuntu 22.04 Server

Download the Ubuntu server 22.04 ISO image for ARM-based system from https://ubuntu.com/download/server/arm.
Before installing the system OS, prepare a bootable USB drive contains the OS image or configure the virtual media in
the BMC for remote installation. Also verify that a USB to Ethernet dongle is connected to the back USB port for host
internet access.
There are two ways to configure the virtual media. One is to share the OS ISO image by Windows network sharing or
Samba sharing on Linux. Then go to BMC Dashboard -> Configuration -> Virtual Media to enter the virtual media
connection info including the share host ip, image path, username and password. After the connection info is saved, click
the Link icon to connect.

Another way to configure virtual media, is to select the Virtual Media icon from the remote console then mount the OS
ISO image to the virtual CD/DVD drive.

1.4. cuBB Installation Guide 193

https://ubuntu.com/download/server/arm


Aerial CUDA-Accelerated RAN, Release 25-1

Reboot the system after the virtual media is configured and connected. Press F11 to enter the BIOS boot menu and select
UEFI: USB CD/DVD Drive to boot with the virtual media.

194 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Launch the SOL console from the BMC Remote Control menu. The SOL console is required to complete the Ubuntu
OS installation.

Note

The Ubuntu 22.04.3 installation media does not include a required patch for the resolution of an issue with the ast
driver. The ast driver is used to interface with the BMC. The absence of this patch causes distorted output from the
on-board display port and remote console. Because of this, the OS installation must be done on the SOL console. The
fix is included in the NVIDIA optimized Ubuntu kernel. After installing the NVIDIA optimized Ubuntu kernel, the
output of the on-board display and the remote console from BMC will be normal again.

After seeing the GRUB menu from the SOL console, select Ubuntu Server with the HWEKernel to install the Ubuntu
server OS.

1.4. cuBB Installation Guide 195



Aerial CUDA-Accelerated RAN, Release 25-1

Follow the Ubuntu installation process with the notable selection below:
• Continue in rich mode
• Continue without updating
• Ubuntu Server
• Install OpenSSH server

When the installation is done, the console shows Install complete and Reboot now. Reboot the system and check the
following:

• Check if the system time is correct to avoid apt update error.
Run the following commands to set the date and time via NTP once (this will not enable the NTP service):

sudo apt-get install ntpdate
sudo ntpdate -s pool.ntp.org

• Check if the GPU and NIC are detected by the OS.
Use the following commands to determine whether the GPU and NIC are detected by the OS:

$ lspci | grep -i nvidia
# GH200 GPU
0009:01:00.0 3D controller: NVIDIA Corporation Device 2342 (rev a1)

$ lspci | grep -i mellanox
# The first BF3 NIC (Fronthaul NIC)
0000:01:00.0 Ethernet controller: Mellanox Technologies MT43244 BlueField-3␣
↪→integrated ConnectX-7 network controller (rev 01)
0000:01:00.1 Ethernet controller: Mellanox Technologies MT43244 BlueField-3␣
↪→integrated ConnectX-7 network controller (rev 01)

(continues on next page)

196 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
0000:01:00.2 DMA controller: Mellanox Technologies MT43244 BlueField-3 SoC Management␣
↪→Interface (rev 01)
# The second BF3 NIC (Backhaul NIC)
0002:01:00.0 Ethernet controller: Mellanox Technologies MT43244 BlueField-3␣
↪→integrated ConnectX-7 network controller (rev 01)
0002:01:00.1 Ethernet controller: Mellanox Technologies MT43244 BlueField-3␣
↪→integrated ConnectX-7 network controller (rev 01)
0002:01:00.2 DMA controller: Mellanox Technologies MT43244 BlueField-3 SoC Management␣
↪→Interface (rev 01)

Use the following command to change the hostname:

$ sudo hostnamectl set-hostname NEW_HOSTNAME

To display the GRUB menu during boot, create /etc/default/grub.d/menu.cfg with the following content:

$ cat <<"EOF" | sudo tee /etc/default/grub.d/menu.cfg
GRUB_TIMEOUT_STYLE=menu
GRUB_TIMEOUT=5
GRUB_TERMINAL="console serial"
GRUB_CMDLINE_LINUX_DEFAULT=""
GRUB_SERIAL_COMMAND="$GRUB_SERIAL_COMMAND serial --unit=0 --speed=115200 --word=8 --
↪→parity=no --stop=1"
EOF

Configure the Network Interfaces

The following installation steps need an Internet connection. Ensure that you have the proper netplan config for your local
network.
The network interface names could change after reboot. To ensure persistent network interface names after reboot, create
a persistent net link files under /etc/systemd/network, one for each interface.
To find the MAC address of the BlueField-3 NIC, run lshw to check for network devices and look for the ConnectX-7
entries.

$ sudo apt-get install jq -y
$ sudo lshw -json -C network | jq '.[] | "\(.product), MAC: \(.serial)"' | grep
↪→"ConnectX-7"
"MT43244 BlueField-3 integrated ConnectX-7 network controller, MAC: 94:6d:ae:ww:ww:ww"
"MT43244 BlueField-3 integrated ConnectX-7 network controller, MAC: 94:6d:ae:xx:xx:xx"
"MT43244 BlueField-3 integrated ConnectX-7 network controller, MAC: 94:6d:ae:yy:yy:yy"
"MT43244 BlueField-3 integrated ConnectX-7 network controller, MAC: 94:6d:ae:zz:zz:zz"

Create files at /etc/systemd/network/ with the desired name for the interface and the MAC address found in the previous
step.

Note

The rest of the document will assume the aerial00 and aerial01 interfaces are the ones connected to the RU emulator
for the cuBB testing or the frounthaul switch for the E2E tests and that aerial00 is the interface used for PTP.

1.4. cuBB Installation Guide 197



Aerial CUDA-Accelerated RAN, Release 25-1

$ sudo nano /etc/systemd/network/20-aerial00.link

[Match]
MACAddress=94:6d:ae:ww:ww:ww

[Link]
Name=aerial00

$ sudo nano /etc/systemd/network/20-aerial01.link

[Match]
MACAddress=94:6d:ae:xx:xx:xx

[Link]
Name=aerial01
$ sudo nano /etc/systemd/network/20-aerial02.link

[Match]
MACAddress=94:6d:ae:yy:yy:yy

[Link]
Name=aerial02

$ sudo nano /etc/systemd/network/20-aerial03.link

[Match]
MACAddress=94:6d:ae:zz:zz:zz

[Link]
Name=aerial03

To apply the change:

$ sudo netplan apply

Disable Auto Upgrade

Edit the /etc/apt/apt.conf.d/20auto-upgrades system file, and change the “1” to “0” for both lines. This
prevents the installed version of the low latency kernel from being accidentally changed with a subsequent software up-
grade.

$ sudo nano /etc/apt/apt.conf.d/20auto-upgrades
APT::Periodic::Update-Package-Lists "0";
APT::Periodic::Unattended-Upgrade "0";

Disable the fwupd-refresh timer to prevent fwupdmgr from automatically checking for any updates.

$ sudo systemctl mask fwupd-refresh.timer

198 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Install NVIDIA Optimized Ubuntu Kernel

Run the following commands to install the NVIDIA optimized Ubuntu kernel.

$ sudo apt update
# NOTE: This will install the specific kernel version, not the latest NVIDIA␣
↪→optimized kernel.
$ sudo apt install -y linux-image-6.5.0-1019-nvidia-64k

Then, update the GRUB to change the default boot kernel. The version to use here depends on the latest version that was
installed with the previous command:

# Update grub to change the default boot kernel
$ sudo sed -i 's/^GRUB_DEFAULT=.*/GRUB_DEFAULT="Advanced options for Ubuntu>Ubuntu,␣
↪→with Linux 6.5.0-1019-nvidia-64k"/' /etc/default/grub

Configure Linux Kernel Command-line

Ensure the iommu.passthrough=y kernel parameter is NOT passed to the kernel. This parameter prevents the GPU
driver from loading so it must be removed if it is present.
Verify that the parameter is present by running:

$ grep iommu.passthrough=y /proc/cmdline

If the parameter is present, find the file that contains this parameter and remove it. For example:

$ grep -rns iommu.passthrough /etc/default/grub*

# Remove iommu.passthrough=y from the found file
$ sudo sed -i 's/ iommu.passthrough=y//' /etc/default/<found file>

To set kernel command-line parameters, edit the GRUB_CMDLINE_LINUX parameter in the grub file /etc/
default/grub.d/cmdline.cfg and append or update the parameters described below. The following kernel
parameters are optimized for GH200. To automatically append the grub file with these parameters, enter this command:

$ cat <<"EOF" | sudo tee /etc/default/grub.d/cmdline.cfg
GRUB_CMDLINE_LINUX="$GRUB_CMDLINE_LINUX pci=realloc=off pci=pcie_bus_safe default_
↪→hugepagesz=512M hugepagesz=512M hugepages=48 tsc=reliable processor.max_cstate=0␣
↪→audit=0 idle=poll rcu_nocb_poll nosoftlockup irqaffinity=0 isolcpus=managed_irq,
↪→domain,4-64 nohz_full=4-64 rcu_nocbs=4-64 earlycon module_blacklist=nouveau acpi_
↪→power_meter.force_cap_on=y numa_balancing=disable init_on_alloc=0 preempt=none"
EOF

Note

The hugepage size is 512MB which is optimized for the 64k page size kernel on ARM.

1.4. cuBB Installation Guide 199



Aerial CUDA-Accelerated RAN, Release 25-1

Apply the Changes and Reboot to Load the Kernel

$ sudo update-grub
$ sudo reboot

After rebooting, enter this command to verify that the kernel command-line parameters are configured properly:

$ uname -r
6.5.0-1019-nvidia-64k

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-6.5.0-1019-nvidia-64k root=/dev/mapper/ubuntu--vg-ubuntu--lv ro␣
↪→pci=realloc=off pci=pcie_bus_safe default_hugepagesz=512M hugepagesz=512M␣
↪→hugepages=48 tsc=reliable processor.max_cstate=0 audit=0 idle=poll rcu_nocb_poll␣
↪→nosoftlockup irqaffinity=0 isolcpus=managed_irq,domain,4-64 nohz_full=4-64 rcu_
↪→nocbs=4-64 earlycon module_blacklist=nouveau acpi_power_meter.force_cap_on=y numa_
↪→balancing=disable init_on_alloc=0 preempt=none

Enter this command to check if hugepages are enabled:

$ grep -i huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 48
HugePages_Free: 48
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 524288 kB
Hugetlb: 25165824 kB

Install Dependency Packages

Enter these commands to install the prerequisite packages:

$ sudo apt-get update
$ sudo apt-get install -y build-essential linux-headers-$(uname -r) dkms unzip␣
↪→linuxptp pv apt-utils net-tools

Install DOCA OFED and Mellanox Firmware Tools on the Host

Check if there is an existing MOFED installed on the host system.

$ ofed_info -s
OFED-internal-23.10-1.1.9:

Uninstall MOFED if it is present.

$ sudo /usr/sbin/ofed_uninstall.sh

Enter the following commands to install DOCA OFED.

200 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

# Install DOCA OFED
$ wget https://www.mellanox.com/downloads/DOCA/DOCA_v2.7.0/host/doca-host_2.7.0-
↪→204000-24.04-ubuntu2204_arm64.deb
$ sudo dpkg -i doca-host_2.7.0-204000-24.04-ubuntu2204_arm64.deb
$ sudo apt update
$ sudo apt install -y doca-ofed

# To check what version of OFED you have installed
$ ofed_info -s
OFED-internal-24.04-0.6.6:

Enter the following commands to install Mellanox firmware tools.

# Install Mellanox Firmware Tools
$ export MFT_VERSION=4.28.0-92
$ wget https://www.mellanox.com/downloads/MFT/mft-$MFT_VERSION-arm64-deb.tgz
$ tar xvf mft-$MFT_VERSION-arm64-deb.tgz
$ sudo mft-$MFT_VERSION-arm64-deb/install.sh

$ sudo mst version
mst, mft 4.28.0-92, built on Apr 25 2024, 15:22:48. Git SHA Hash: N/A

$ sudo mst start

# check NIC PCIe bus addresses and network interface names
$ sudo mst status -v
MST modules:
------------

MST PCI module is not loaded
MST PCI configuration module loaded

PCI devices:
------------
DEVICE_TYPE MST PCI RDMA ␣
↪→NET NUMA
BlueField3(rev:1) /dev/mst/mt41692_pciconf1.1 0002:01:00.1 mlx5_3 ␣
↪→net-aerial03 0
BlueField3(rev:1) /dev/mst/mt41692_pciconf1 0002:01:00.0 mlx5_2 ␣
↪→net-aerial02 0
BlueField3(rev:1) /dev/mst/mt41692_pciconf0.1 0000:01:00.1 mlx5_1 ␣
↪→net-aerial01 0
BlueField3(rev:1) /dev/mst/mt41692_pciconf0 0000:01:00.0 mlx5_0 ␣
↪→net-aerial00 0

Enter these commands to check the link status of port 0:

# Here is an example if the port 0 of fronthaul NIC is connected to another server or␣
↪→switch via a 200GbE DAC cable.
$ sudo mlxlink -d 0000:01:00.0

Operational Info
----------------
State : Active
Physical state : LinkUp
Speed : 200G
Width : 4x
FEC : Standard_RS-FEC - (544,514)
Loopback Mode : No Loopback

(continues on next page)

1.4. cuBB Installation Guide 201



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Auto Negotiation : ON

Supported Info
--------------
Enabled Link Speed (Ext.) : 0x00003ff2 (200G_2X,200G_4X,100G_1X,100G_2X,100G_
↪→4X,50G_1X,50G_2X,40G,25G,10G,1G)
Supported Cable Speed (Ext.) : 0x000017f2 (200G_4X,100G_2X,100G_4X,50G_1X,50G_
↪→2X,40G,25G,10G,1G)

Troubleshooting Info
--------------------
Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed

Tool Information
----------------
Firmware Version : 32.39.2048
amBER Version : 2.22
MFT Version : mft 4.26.1-3

Install CUDA Driver

If the system has an older driver installed, unload the current driver modules and uninstall the old driver, using the
following:

# Unload the current driver modules
$ for m in $(lsmod | awk "/^[^[:space:]]*(nvidia|nv_|gdrdrv)/ {print \$1}"); do echo␣
↪→Unload $m...; sudo rmmod $m; done

# Remove the driver if it was installed by runfile installer before.
$ sudo /usr/bin/nvidia-uninstall

Create the driver module config with the following recommended settings:

$ cat <<EOF | sudo tee /etc/modprobe.d/nvidia.conf
options nvidia NVreg_RegistryDwords="RMNvLinkDisableLinks=0x3FFFF;"
EOF

Run the following commands to install the NVIDIA open-source GPU kernel driver (OpenRM).

# Install NVIDIA GPU driver
$ wget https://us.download.nvidia.com/tesla/570.124.06/NVIDIA-Linux-aarch64-570.124.
↪→06.run
$ sudo sh NVIDIA-Linux-aarch64-570.124.06.run --silent -m kernel-open

# Verify that the driver is loaded successfully
$ nvidia-smi
+-------------------------------------------------------------------------------------
↪→----+
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version: 12.8␣
↪→ |
|-----------------------------------------+------------------------+------------------
↪→----+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr.␣

(continues on next page)

202 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util ␣
↪→Compute M. |
| | | ␣
↪→MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GH200 480GB On | 00000009:01:00.0 Off | ␣
↪→ 0 |
| N/A 37C P0 117W / 700W | 1MiB / 97871MiB | 0% ␣
↪→Default |
| | | ␣
↪→Disabled |
+-----------------------------------------+------------------------+------------------
↪→----+

+-------------------------------------------------------------------------------------
↪→----+
| Processes: ␣
↪→ |
| GPU GI CI PID Type Process name GPU␣
↪→Memory |
| ID ID Usage ␣
↪→ |
|=========================================================================================|
| No running processes found ␣
↪→ |
+-------------------------------------------------------------------------------------
↪→----+

Install GDRCopy Driver

Run the following commands to install the GDRCopy driver. If the system has an older version installed, remove the old
driver first.

Warning

GDRCopy driver must be installed after the CUDA driver.

# Check the installed GDRCopy driver version
$ apt list --installed | grep gdrdrv-dkms

# Remove the driver, if you have the older version installed.
$ sudo apt purge gdrdrv-dkms
$ sudo apt autoremove

# Install GDRCopy driver
$ wget https://developer.download.nvidia.com/compute/redist/gdrcopy/CUDA%2012.2/
↪→ubuntu22_04/aarch64/gdrdrv-dkms_2.4-1_arm64.Ubuntu22_04.deb
$ sudo dpkg -i gdrdrv-dkms_2.4-1_arm64.Ubuntu22_04.deb

1.4. cuBB Installation Guide 203



Aerial CUDA-Accelerated RAN, Release 25-1

Install Docker CE

The full official instructions for installing Docker CE can be found here: https://docs.docker.com/engine/install/ubuntu/
#install-docker-engine. The following instructions are one supported way of installing Docker CE:

Warning

To work correctly, the CUDA driver must be installed before Docker CE or nvidia-container-toolkit installation. It is
recommended that you install the CUDA driver before installing Docker CE or the nvidia-container-toolkit.

$ sudo apt-get update
$ sudo apt-get install -y ca-certificates curl gnupg
$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /
↪→etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg
$ echo \

"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg]␣
↪→https://download.docker.com/linux/ubuntu \

"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update
$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin␣
↪→docker-compose-plugin
$ sudo docker run --rm hello-world

Install the Nvidia Container Toolkit

Locate and follow the nvidia-container-toolkit install instructions.
Or use the following instructions as an alternate way to install the nvidia-container-toolkit. Version 1.17.4 is supported.

Warning

To work correctly, the CUDA driver must be installed before Docker CE or nvidia-container-toolkit installation. It is
recommended that you install the CUDA driver before installing Docker CE or the nvidia-container-toolkit.

$ curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor␣
↪→-o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-

↪→container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-

↪→keyring.gpg] https://#g' | \
sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \

&& \
sudo apt-get update

$ sudo apt-get install -y nvidia-container-toolkit
$ sudo nvidia-ctk runtime configure --runtime=docker
$ sudo systemctl restart docker
$ sudo docker run --rm --runtime=nvidia --gpus all ubuntu nvidia-smi

204 Chapter 1. Aerial cuBB

https://docs.docker.com/engine/install/ubuntu/#install-docker-engine
https://docs.docker.com/engine/install/ubuntu/#install-docker-engine
https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/install-guide.html


Aerial CUDA-Accelerated RAN, Release 25-1

Note

If you have nvidia-container-toolkit installed on the existing system, check the version by running the nvidia-ctk
--version command. If it is older than 1.17.4, run the following commands to upgrade to the current version:
$ nvidia-ctk --version
NVIDIA Container Toolkit CLI version 1.14.4
commit: d167812ce3a55ec04ae2582eff1654ec812f42e1

$ sudo apt update
$ sudo apt-get install -y nvidia-container-toolkit

$ nvidia-ctk --version
NVIDIA Container Toolkit CLI version 1.17.4
commit: 9b69590c7428470a72f2ae05f826412976af1395

Update BF3 BFB Image and NIC Firmware

Note

• The following instructions are for BF3 NIC (OPN: 900-9D3B6-00CV-A; PSID: MT_0000000884) specifi-
cally.

• There is no need to switch to DPU mode if using the BFB image below.
• This BFB image will update the NIC firmware automatically.

# Enable MST
$ sudo mst start
$ sudo mst status

MST modules:
------------

MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:
------------
/dev/mst/mt41692_pciconf0 - PCI configuration cycles access.

domain:bus:dev.fn=0000:01:00.0 addr.reg=88 data.
↪→reg=92 cr_bar.gw_offset=-1

Chip revision is: 01
/dev/mst/mt41692_pciconf1 - PCI configuration cycles access.

domain:bus:dev.fn=0002:01:00.0 addr.reg=88 data.
↪→reg=92 cr_bar.gw_offset=-1

Chip revision is: 01

# Download the BF3 BFB image
$ wget https://content.mellanox.com/BlueField/BFBs/Ubuntu22.04/bf-bundle-2.7.0-33_24.
↪→04_ubuntu-22.04_prod.bfb
# Update the BFB image of the 1st BF3
$ sudo bfb-install -r rshim0 -b bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb
# Update the BFB image of the 2nd BF3

(continues on next page)

1.4. cuBB Installation Guide 205



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
$ sudo bfb-install -r rshim1 -b bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb

Pushing bfb
1.41GiB 0:01:24 [17.1MiB/s] [ ␣
↪→ <=>]
Collecting BlueField booting status. Press Ctrl+C to stop…
INFO[PSC]: PSC BL1 START
INFO[BL2]: start
INFO[BL2]: boot mode (rshim)
INFO[BL2]: VDDQ adjustment complete
INFO[BL2]: VDDQ: 1120 mV
INFO[BL2]: DDR POST passed
INFO[BL2]: UEFI loaded
INFO[BL31]: start
INFO[BL31]: lifecycle GA Secured
INFO[BL31]: VDD: 851 mV
ERR[BL31]: MB timeout
INFO[BL31]: runtime
INFO[UEFI]: eMMC init
INFO[UEFI]: eMMC probed
INFO[UEFI]: UPVS valid
INFO[UEFI]: PMI: updates started
INFO[UEFI]: PMI: total updates: 1
INFO[UEFI]: PMI: updates completed, status 0
INFO[UEFI]: PCIe enum start
INFO[UEFI]: PCIe enum end
INFO[UEFI]: UEFI Secure Boot (enabled)
INFO[UEFI]: Redfish enabled
INFO[BL31]: Partial NIC
INFO[BL31]: power capping disabled
INFO[UEFI]: exit Boot Service
INFO[MISC]: Ubuntu installation started
INFO[MISC]: Installing OS image
INFO[MISC]: Ubuntu installation completed
WARN[MISC]: Skipping BMC components upgrade.
INFO[MISC]: Updating NIC firmware...
INFO[MISC]: NIC firmware update done
INFO[MISC]: Installation finished

# Wait 10 minutes to ensure the card initializes properly after the BFB installation
$ sleep 600

# NOTE: Requires a full power cycle from host with cold boot

# Verify NIC FW version after reboot
$ sudo mst start
$ sudo flint -d /dev/mst/mt41692_pciconf0 q
Image type: FS4
FW Version: 32.41.1000
FW Release Date: 28.4.2024
Product Version: 32.41.1000
Rom Info: type=UEFI Virtio net version=21.4.13 cpu=AMD64,AARCH64

type=UEFI Virtio blk version=22.4.13 cpu=AMD64,AARCH64
type=UEFI version=14.34.12 cpu=AMD64,AARCH64
type=PXE version=3.7.400 cpu=AMD64

Description: UID GuidsNumber
Base GUID: 946dae0300f5aa8e 38

(continues on next page)

206 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Base MAC: 946daef5aa8e 38
Image VSD: N/A
Device VSD: N/A
PSID: MT_0000000884
Security Attributes: secure-fw

Run the following commands to configure the BF3 NIC:

# Setting BF3 port to Ethernet mode (not Infiniband)
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set LINK_TYPE_P1=2
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set LINK_TYPE_P2=2

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_MODEL=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_PAGE_
↪→SUPPLIER=EXT_HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_ESWITCH_
↪→MANAGER=EXT_HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_IB_VPORT0=EXT_
↪→HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_OFFLOAD_
↪→ENGINE=DISABLED

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set CQE_COMPRESSION=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set PROG_PARSE_GRAPH=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set ACCURATE_TX_SCHEDULER=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set FLEX_PARSER_PROFILE_ENABLE=4
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set REAL_TIME_CLOCK_ENABLE=1

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_PXE_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_UEFI_ARM_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_UEFI_x86_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_BLK_UEFI_ARM_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_BLK_UEFI_x86_
↪→ENABLE=0

# NOTE: Requires a full power cycle from host with cold boot

# Verify that the NIC FW changes have been applied
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 q | grep "CQE_COMPRESSION\|PROG_PARSE_
↪→GRAPH\|ACCURATE_TX_SCHEDULER\|FLEX_PARSER_PROFILE_ENABLE\|REAL_TIME_CLOCK_ENABLE\
↪→|INTERNAL_CPU_MODEL\|LINK_TYPE_P1\|LINK_TYPE_P2\|INTERNAL_CPU_PAGE_SUPPLIER\
↪→|INTERNAL_CPU_ESWITCH_MANAGER\|INTERNAL_CPU_IB_VPORT0\|INTERNAL_CPU_OFFLOAD_ENGINE"

INTERNAL_CPU_MODEL EMBEDDED_CPU(1)
INTERNAL_CPU_PAGE_SUPPLIER EXT_HOST_PF(1)
INTERNAL_CPU_ESWITCH_MANAGER EXT_HOST_PF(1)
INTERNAL_CPU_IB_VPORT0 EXT_HOST_PF(1)
INTERNAL_CPU_OFFLOAD_ENGINE DISABLED(1)
FLEX_PARSER_PROFILE_ENABLE 4
PROG_PARSE_GRAPH True(1)
ACCURATE_TX_SCHEDULER True(1)
CQE_COMPRESSION AGGRESSIVE(1)
REAL_TIME_CLOCK_ENABLE True(1)
LINK_TYPE_P1 ETH(2)

(continues on next page)

1.4. cuBB Installation Guide 207



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
LINK_TYPE_P2 ETH(2)

Install ptp4l and phc2sys

Enter these commands to configure PTP4L, assuming that aerial00 NIC interface:

$ cat <<EOF | sudo tee /etc/ptp.conf
[global]
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
maxStepsRemoved 255
logAnnounceInterval -3
logSyncInterval -4
logMinDelayReqInterval -4
G.8275.portDS.localPriority 128
network_transport L2
domainNumber 24
tx_timestamp_timeout 30
slaveOnly 1

clock_servo pi
step_threshold 1.0
egressLatency 28
pi_proportional_const 4.65
pi_integral_const 0.1

[aerial00]
announceReceiptTimeout 3
delay_mechanism E2E
network_transport L2
EOF

$ cat <<EOF | sudo tee /lib/systemd/system/ptp4l.service
[Unit]
Description=Precision Time Protocol (PTP) service
Documentation=man:ptp4l
After=network.target

[Service]
Restart=always
RestartSec=5s
Type=simple
ExecStartPre=ifconfig aerial00 up
ExecStartPre=ethtool --set-priv-flags aerial00 tx_port_ts on
ExecStartPre=ethtool -A aerial00 rx off tx off
ExecStartPre=ifconfig aerial01 up
ExecStartPre=ethtool --set-priv-flags aerial01 tx_port_ts on
ExecStartPre=ethtool -A aerial01 rx off tx off
ExecStart=/usr/sbin/ptp4l -f /etc/ptp.conf

[Install]
WantedBy=multi-user.target
EOF

$ sudo systemctl daemon-reload

(continues on next page)

208 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
$ sudo systemctl restart ptp4l.service
$ sudo systemctl enable ptp4l.service

One server becomes the master clock, as shown below:

$ sudo systemctl status ptp4l.service

● ptp4l.service - Precision Time Protocol (PTP) service
Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset:␣

↪→enabled)
Active: active (running) since Fri 2024-08-30 01:25:57 UTC; 2min 16s ago
Docs: man:ptp4l

Main PID: 3404 (ptp4l)
Tasks: 1 (limit: 598789)
Memory: 2.6M

CPU: 126ms
CGroup: /system.slice/ptp4l.service

└─3404 /usr/sbin/ptp4l -f /etc/ptp.conf

Aug 30 01:25:57 r750-01 ptp4l[3404]: [14.291] port 0: INITIALIZING to LISTENING on␣
↪→INIT_COMPLETE
Aug 30 01:25:57 r750-01 ptp4l[3404]: [14.291] port 1: link down
Aug 30 01:25:57 r750-01 ptp4l[3404]: [14.291] port 1: LISTENING to FAULTY on FAULT_
↪→DETECTED (FT_UNSPECIFIED)
Aug 30 01:25:57 r750-01 ptp4l[3404]: [14.323] selected local clock a088c2.fffe.47be40␣
↪→as best master
Aug 30 01:25:57 r750-01 ptp4l[3404]: [14.323] port 1: assuming the grand master role
Aug 30 01:26:56 r750-01 ptp4l[3404]: [73.338] port 1: link up
Aug 30 01:26:56 r750-01 ptp4l[3404]: [73.368] port 1: FAULTY to LISTENING on INIT_
↪→COMPLETE
Aug 30 01:26:57 r750-01 ptp4l[3404]: [73.860] port 1: LISTENING to MASTER on ANNOUNCE_
↪→RECEIPT_TIMEOUT_EXPIRES
Aug 30 01:26:57 r750-01 ptp4l[3404]: [73.860] selected local clock a088c2.fffe.47be40␣
↪→as best master
Aug 30 01:26:57 r750-01 ptp4l[3404]: [73.860] port 1: assuming the grand master role

The other becomes the secondary, follower clock, as shown below:

$ sudo systemctl status ptp4l.service

● ptp4l.service - Precision Time Protocol (PTP) service
Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset:␣

↪→enabled)
Active: active (running) since Fri 2024-08-30 01:29:33 UTC; 47s ago
Docs: man:ptp4l
Process: 1509 ExecStartPre=ifconfig aerial00 up (code=exited, status=0/SUCCESS)
Process: 3069 ExecStartPre=ethtool --set-priv-flags aerial00 tx_port_ts on␣

↪→(code=exited, status=0/SUCCESS)
Process: 3755 ExecStartPre=ethtool -A aerial00 rx off tx off (code=exited,␣

↪→status=0/SUCCESS)
Process: 3822 ExecStartPre=ifconfig aerial01 up (code=exited, status=0/SUCCESS)
Process: 3827 ExecStartPre=ethtool --set-priv-flags aerial01 tx_port_ts on␣

↪→(code=exited, status=0/SUCCESS)
Process: 3862 ExecStartPre=ethtool -A aerial01 rx off tx off (code=exited,␣

↪→status=0/SUCCESS)
Main PID: 3870 (ptp4l)

Tasks: 1 (limit: 73247)
(continues on next page)

1.4. cuBB Installation Guide 209



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Memory: 9.2M

CPU: 183ms
CGroup: /system.slice/ptp4l.service

└─3870 /usr/sbin/ptp4l -f /etc/ptp.conf

Aug 30 01:30:12 aerial-mgx-cg1-01 ptp4l[3870]: [107.479] rms 3 max 6 freq ␣
↪→+9551 +/- 12 delay -94 +/- 0
Aug 30 01:30:13 aerial-mgx-cg1-01 ptp4l[3870]: [108.479] rms 3 max 6 freq ␣
↪→+9556 +/- 10 delay -94 +/- 0
Aug 30 01:30:14 aerial-mgx-cg1-01 ptp4l[3870]: [109.479] rms 3 max 4 freq ␣
↪→+9552 +/- 13 delay -94 +/- 0
Aug 30 01:30:15 aerial-mgx-cg1-01 ptp4l[3870]: [110.479] rms 3 max 6 freq ␣
↪→+9556 +/- 12 delay -94 +/- 1
Aug 30 01:30:16 aerial-mgx-cg1-01 ptp4l[3870]: [111.479] rms 3 max 7 freq ␣
↪→+9558 +/- 14 delay -94 +/- 0
Aug 30 01:30:17 aerial-mgx-cg1-01 ptp4l[3870]: [112.479] rms 4 max 7 freq ␣
↪→+9567 +/- 12 delay -94 +/- 0
Aug 30 01:30:18 aerial-mgx-cg1-01 ptp4l[3870]: [113.479] rms 3 max 5 freq ␣
↪→+9569 +/- 7 delay -94 +/- 0
Aug 30 01:30:19 aerial-mgx-cg1-01 ptp4l[3870]: [114.479] rms 3 max 6 freq ␣
↪→+9574 +/- 8 delay -94 +/- 1
Aug 30 01:30:20 aerial-mgx-cg1-01 ptp4l[3870]: [115.479] rms 3 max 5 freq ␣
↪→+9577 +/- 9 delay -94 +/- 0
Aug 30 01:30:21 aerial-mgx-cg1-01 ptp4l[3870]: [116.479] rms 4 max 7 freq ␣
↪→+9583 +/- 12 delay -94 +/- 0

Enter the commands to turn off NTP:

$ sudo timedatectl set-ntp false
$ timedatectl

Local time: Fri 2024-08-30 01:30:36 UTC
Universal time: Fri 2024-08-30 01:30:36 UTC

RTC time: Fri 2024-08-30 01:30:36
Time zone: Etc/UTC (UTC, +0000)

System clock synchronized: no
NTP service: inactive

RTC in local TZ: no

Run PHC2SYS as service:
PHC2SYS is used to synchronize the system clock to the PTP hardware clock (PHC) on the NIC.
Specify the network interface used for PTP and system clock as the slave clock.

# If more than one instance is already running, kill the existing
# PHC2SYS sessions.

# Command used can be found in /lib/systemd/system/phc2sys.service
# Update the ExecStart line to the following
$ cat <<EOF | sudo tee /lib/systemd/system/phc2sys.service
[Unit]
Description=Synchronize system clock or PTP hardware clock (PHC)
Documentation=man:phc2sys
Requires=ptp4l.service
After=ptp4l.service

[Service]

(continues on next page)

210 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Restart=always
RestartSec=5s
Type=simple
# Gives ptp4l a chance to stabilize
ExecStartPre=sleep 2
# Sync system clock to TAI time scale
ExecStart=/bin/sh -c "/usr/sbin/phc2sys -s /dev/ptp$(ethtool -T aerial00 |␣
↪→grep PTP | awk '{print $4}') -c CLOCK_REALTIME -n 24 -O 0 -R 256 -u 256"
# Sync system clock to UTC time scale
#ExecStart=/bin/sh -c "/usr/sbin/phc2sys -s /dev/ptp$(ethtool -T aerial00 |␣
↪→grep PTP | awk '{print $4}') -c CLOCK_REALTIME -n 24 -w -R 256 -u 256"

[Install]
WantedBy=multi-user.target
EOF

Note

PTP is based on TAI time and the system clock is synchronized to TAI time scale with the above PHC2SYS settings.
The current offset between UTC and TAI is 37 seconds (leap seconds) and TAI is ahead of UTC by this amount. If
there is a need to change the system clock to UTC time on DU, the first ExecStart with -O 0 should be commented
out and the second ExecStart with -w should be uncommented assuming the PTP and GrandMaster are properly
configured.

After the PHC2SYS config file is changed, run the following:

$ sudo systemctl daemon-reload
$ sudo systemctl restart phc2sys.service

# Set to start automatically on reboot
$ sudo systemctl enable phc2sys.service

# check that the service is active and has converged to a low rms value (<30) and␣
↪→that the correct NIC has been selected (aerial00):
$ sudo systemctl status phc2sys.service

● phc2sys.service - Synchronize system clock or PTP hardware clock (PHC)
Loaded: loaded (/lib/systemd/system/phc2sys.service; enabled; vendor preset:␣

↪→enabled)
Active: active (running) since Fri 2024-08-30 01:31:35 UTC; 18min ago
Docs: man:phc2sys
Process: 3871 ExecStartPre=sleep 2 (code=exited, status=0/SUCCESS)

Main PID: 4006 (sh)
Tasks: 2 (limit: 73247)
Memory: 6.0M

CPU: 3.628s
CGroup: /system.slice/phc2sys.service

├─4006 /bin/sh -c "/usr/sbin/phc2sys -s /dev/ptp\$(ethtool -T aerial00 |␣
↪→grep PTP | awk '{print \$4}') -c CLOCK_REALTIME -n 24 -O 0 -R 256 -u 256"

└─4012 /usr/sbin/phc2sys -s /dev/ptp2 -c CLOCK_REALTIME -n 24 -O 0 -R 256␣
↪→-u 256

Aug 30 01:48:09 aerial-mgx-c1-01 phc2sys[4012]: [1184.489] CLOCK_REALTIME rms 8␣
↪→max 22 freq +5522 +/- 47 delay 480 +/- 0

(continues on next page)

1.4. cuBB Installation Guide 211



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Aug 30 01:48:10 aerial-mgx-c1-01 phc2sys[4012]: [1185.505] CLOCK_REALTIME rms 7␣
↪→max 19 freq +5542 +/- 30 delay 480 +/- 2
Aug 30 01:48:11 aerial-mgx-c1-01 phc2sys[4012]: [1186.521] CLOCK_REALTIME rms 7␣
↪→max 19 freq +5530 +/- 36 delay 480 +/- 0
Aug 30 01:48:12 aerial-mgx-c1-01 phc2sys[4012]: [1187.537] CLOCK_REALTIME rms 7␣
↪→max 19 freq +5534 +/- 43 delay 480 +/- 2
Aug 30 01:48:13 aerial-mgx-c1-01 phc2sys[4012]: [1188.553] CLOCK_REALTIME rms 9␣
↪→max 22 freq +5557 +/- 64 delay 480 +/- 0
Aug 30 01:48:14 aerial-mgx-c1-01 phc2sys[4012]: [1189.569] CLOCK_REALTIME rms 9␣
↪→max 23 freq +5516 +/- 52 delay 480 +/- 0
Aug 30 01:48:15 aerial-mgx-c1-01 phc2sys[4012]: [1190.586] CLOCK_REALTIME rms 7␣
↪→max 19 freq +5538 +/- 32 delay 480 +/- 0
Aug 30 01:48:16 aerial-mgx-c1-01 phc2sys[4012]: [1191.602] CLOCK_REALTIME rms 7␣
↪→max 19 freq +5534 +/- 27 delay 480 +/- 0
Aug 30 01:48:17 aerial-mgx-c1-01 phc2sys[4012]: [1192.618] CLOCK_REALTIME rms 8␣
↪→max 18 freq +5538 +/- 42 delay 480 +/- 0
Aug 30 01:48:18 aerial-mgx-c1-01 phc2sys[4012]: [1193.634] CLOCK_REALTIME rms 8␣
↪→max 20 freq +5547 +/- 47 delay 480 +/- 0

Verify that the system clock is synchronized:

$ timedatectl
Local time: Fri 2024-08-30 01:48:25 UTC

Universal time: Fri 2024-08-30 01:48:25 UTC
RTC time: Fri 2024-08-30 01:48:25

Time zone: Etc/UTC (UTC, +0000)
System clock synchronized: yes

NTP service: inactive
RTC in local TZ: no

Setup the Boot Configuration Service

Create the directory /usr/local/bin and create the /usr/local/bin/nvidia.sh file to run the commands
with every reboot.

Note

The command for “nvidia-smi lgc” expects just one GPU device (-i 0). This needs to be modified if the system uses
more than one GPU. The mode must be set to 1 for the GH200 so that it can utilize the max clock rate, otherwise it
is limited to 1830MHz with the default mode=0.

$ cat <<"EOF" | sudo tee /usr/local/bin/nvidia.sh
#!/bin/bash

mst start

nvidia-smi -i 0 -lgc $(nvidia-smi -i 0 --query-supported-clocks=graphics --format=csv,
↪→noheader,nounits | sort -h | tail -n 1) --mode=1
nvidia-smi -mig 0

echo -1 > /proc/sys/kernel/sched_rt_runtime_us
EOF

Create a system service file to be loaded after network interfaces are up.

212 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

$ cat <<EOF | sudo tee /lib/systemd/system/nvidia.service
[Unit]
After=network.target

[Service]
ExecStart=/usr/local/bin/nvidia.sh

[Install]
WantedBy=default.target
EOF

Create a system service file for nvidia-persistenced to be run at startup.

Note

This file was created following the sample from /usr/share/doc/NVIDIA_GLX-1.0/samples/nvidia-persistenced-
init.tar.bz2

$ cat <<EOF | sudo tee /lib/systemd/system/nvidia-persistenced.service
[Unit]
Description=NVIDIA Persistence Daemon
Wants=syslog.target

[Service]
Type=forking
ExecStart=/usr/bin/nvidia-persistenced
ExecStopPost=/bin/rm -rf /var/run/nvidia-persistenced

[Install]
WantedBy=multi-user.target
EOF

Then set the file permissions, reload the systemd daemon, enable the service, restart the service when installing the first
time, and check status

$ sudo chmod 744 /usr/local/bin/nvidia.sh
$ sudo chmod 664 /lib/systemd/system/nvidia.service
$ sudo chmod 664 /lib/systemd/system/nvidia-persistenced.service
$ sudo systemctl daemon-reload
$ sudo systemctl enable nvidia-persistenced.service
$ sudo systemctl enable nvidia.service
$ sudo systemctl restart nvidia.service
$ sudo systemctl restart nvidia-persistenced.service
$ sudo systemctl status nvidia.service
$ sudo systemctl status nvidia-persistenced.service

The output of the last command should look like this:

$ sudo systemctl status nvidia.service
○ nvidia.service

Loaded: loaded (/lib/systemd/system/nvidia.service; enabled; vendor preset:␣
↪→enabled)

Active: inactive (dead) since Fri 2024-06-07 20:11:55 UTC; 2s ago
Process: 3300619 ExecStart=/usr/local/bin/nvidia.sh (code=exited, status=0/

↪→SUCCESS)

(continues on next page)

1.4. cuBB Installation Guide 213



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Main PID: 3300619 (code=exited, status=0/SUCCESS)

CPU: 1.091s

Jun 07 20:11:54 server nvidia.sh[3300620]: Loading MST PCI module - Success
Jun 07 20:11:54 server nvidia.sh[3300620]: [warn] mst_pciconf is already loaded,␣
↪→skipping
Jun 07 20:11:54 server nvidia.sh[3300620]: Create devices
Jun 07 20:11:55 server nvidia.sh[3300620]: Unloading MST PCI module (unused) - Success
Jun 07 20:11:55 server nvidia.sh[3302599]: GPU clocks set to "(gpuClkMin 1980,␣
↪→gpuClkMax 1980)" for GPU 00000009:01:00.0
Jun 07 20:11:55 server nvidia.sh[3302599]: All done.
Jun 07 20:11:55 server nvidia.sh[3302600]: Disabled MIG Mode for GPU 00000009:01:00.0
Jun 07 20:11:55 server nvidia.sh[3302600]: All done.
Jun 07 20:11:55 server systemd[1]: nvidia.service: Deactivated successfully.
Jun 07 20:11:55 server systemd[1]: nvidia.service: Consumed 1.091s CPU time.

$ sudo systemctl status nvidia-persistenced.service
● nvidia-persistenced.service - NVIDIA Persistence Daemon

Loaded: loaded (/lib/systemd/system/nvidia-persistenced.service; enabled; vendor␣
↪→preset: enabled)

Active: active (running) since Wed 2024-06-05 21:42:17 UTC; 1 day 22h ago
Main PID: 1858 (nvidia-persiste)

Tasks: 1 (limit: 146899)
Memory: 36.5M

CPU: 2.353s
CGroup: /system.slice/nvidia-persistenced.service

└─1858 /usr/bin/nvidia-persistenced

Jun 05 21:42:15 server systemd[1]: Starting NVIDIA Persistence Daemon...
Jun 05 21:42:15 server nvidia-persistenced[1858]: Started (1858)
Jun 05 21:42:17 server systemd[1]: Started NVIDIA Persistence Daemon.

Validating software-component versions and system configurations

Before running Aerial, make sure that your software-component versions and system configurations meet the required
specifications. For more information, refer to the System Configuration Validation Script.

Running Aerial on Grace Hopper

The default MGX CG1 configs within the Aerial source are:
• cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml
• cuPHY-CP/cuphycontroller/config/l2_adapter_config_F08_CG1.yaml

Pass F08_CG1 to the cuphycontroller_scf executable to select them.

214 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.4.2 Installing Tools on Dell R750

This chapter describes how to install the required kernel, driver, and tools on the host. This is a one-time installation and
can be skipped if the system has been configured already.

• In the following sequence of steps, the target host is Dell PowerEdge R750.
• Depending on the release, tools that are installed in this section may need to be upgraded in the Installing and
Upgrading Aerial cuBB section.

• After everything is installed and updated, refer to the cuBB Quick Start Guide on how to use Aerial cuBB.

Dell PowerEdge R750 Server Configuration

1. Dual Intel Xeon Gold 6336Y CPU @ 2.4G, 24C/48T (185W)
2. 512GB RDIMM, 3200MT/s
3. 1.92TB, Enterprise NVMe
4. Riser Config 2, Full Length, 4x16, 2x8 slots (PCIe gen 4)
5. Dual, Hot-Plug Power Supply Redundant (1+1), 1400W or 2400W
6. GPU Enablement

BF3 NIC Installation

R750 supports PCIe 4.0 x16 at slot 2,3,6,7 and x8 at slot 4,5. Follow the table below to install BF3 NIC and ensure the
PCIe/GPU power cable is connected properly. These are the GPU installation instructions from Dell R750 Installation
Manual.
NOTE: Only use SIG_PWR_3 connector on the motherboard for PCIe/GPU power.

NIC Slot PCIe/GPU Power NUMA
BF3 7 (Riser 4) SIG_PWR_3 1

Configure BIOS Settings

During the first boot, change the BIOS settings in the following order. The same settings can be changed via BMC:
Configuration → BIOS Settings.
Integrated Devices: Enable Memory Mapped I/O above 4GB and change Memory Mapped I/O Base to 12TB.

1.4. cuBB Installation Guide 215

https://i.dell.com/sites/csdocuments/Product_Docs/en/poweredge-r750-spec-sheet.pdf
https://www.dell.com/support/manuals/en-nz/poweredge-r750/per750_ism_pub/installing-a-gpu?guid=guid-6bb1c301-7595-4c6d-b631-b6a5761c6052&lang=en-us
https://www.dell.com/support/manuals/en-nz/poweredge-r750/per750_ism_pub/installing-a-gpu?guid=guid-6bb1c301-7595-4c6d-b631-b6a5761c6052&lang=en-us


Aerial CUDA-Accelerated RAN, Release 25-1

System Profile Settings: Change System Profile to Performance and Workload Profile to Low Latency Optimized Profile.

Processor Settings: Aerial CUDA-Accelerated RAN supports both HyperThreaded mode (experimental) or non-
HyperThreaded mode (default) but make sure the kernel command line and the CPU core affinity in the cuPHYController
YAML match the BIOS settings.
To enable HyperThreading, enable the Logical Processor. To disable HyperThreading, disable the Logical Processor.

216 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Save the BIOS settings, then reboot the system.

Install Ubuntu 22.04 Server

After installing Ubuntu 22.04 Server, verify the following:
• System time is correct to avoid apt update error. If not, see How to fix system time.
• LVM volume uses the whole disk space. If not, see How to resize LVM volume.
• GPU and NIC are detected by the OS:

Use the following commands to determine whether the NIC is detected by the OS:

$ lspci | grep -i mellanox
ca:00.0 Ethernet controller: Mellanox Technologies MT43244 BlueField-3 integrated␣
↪→ConnectX-7 network controller (rev 01)
ca:00.1 Ethernet controller: Mellanox Technologies MT43244 BlueField-3 integrated␣
↪→ConnectX-7 network controller (rev 01)
ca:00.2 DMA controller: Mellanox Technologies MT43244 BlueField-3 SoC Management␣
↪→Interface (rev 01)

Disable Auto Upgrade

Edit the /etc/apt/apt.conf.d/20auto-upgrades system file, and change the “1” to “0” for both lines. This
prevents the installed version of the low latency kernel from being accidentally changed with a subsequent software up-
grade.

$ sudo nano /etc/apt/apt.conf.d/20auto-upgrades
APT::Periodic::Update-Package-Lists "0";
APT::Periodic::Unattended-Upgrade "0";

Disable the fwupd-refresh timer to prevent fwupdmgr from automatically checking for any updates.

$ sudo systemctl mask fwupd-refresh.timer

1.4. cuBB Installation Guide 217



Aerial CUDA-Accelerated RAN, Release 25-1

Install the Low-Latency Kernel

If the low latency kernel is not installed, you must remove the old kernels and keep only the latest generic kernel. Enter
the following command to list the installed kernels:

$ dpkg --list | grep -i 'linux-image' | awk '/ii/{ print $2}'

# To remove old kernel
$ sudo apt-get purge linux-image-<old kernel version>
$ sudo apt-get autoremove

Install the low-latency kernel with the specific version listed in the release manifest.

$ sudo apt-get update
$ sudo apt-get install -y linux-image-5.15.0-1042-nvidia-lowlatency

Update the GRUB to change the default boot kernel:

# Update grub to change the default boot kernel
$ sudo sed -i 's/^GRUB_DEFAULT=.*/GRUB_DEFAULT="Advanced options for Ubuntu>Ubuntu,␣
↪→with Linux 5.15.0-1042-nvidia-lowlatency"/' /etc/default/grub

Configure Linux Kernel Command-line

To set kernel command-line parameters, edit the GRUB_CMDLINE_LINUX_DEFAULT parameter in the GRUB file
/etc/default/grub and append/update the parameters described below. The following kernel parameters are op-
timized for Xeon Gold 6336Y CPU and 512GB memory.
To automatically append the GRUB file with these changes, enter this command:

# When HyperThread is disabled (default)
$ sudo sed -i 's/^GRUB_CMDLINE_LINUX_DEFAULT="[^"]*/& pci=realloc=off default_
↪→hugepagesz=1G hugepagesz=1G hugepages=16 tsc=reliable clocksource=tsc intel_idle.
↪→max_cstate=0 mce=ignore_ce processor.max_cstate=0 intel_pstate=disable audit=0␣
↪→idle=poll rcu_nocb_poll nosoftlockup iommu=off irqaffinity=0-3 isolcpus=managed_irq,
↪→domain,4-47 nohz_full=4-47 rcu_nocbs=4-47 noht numa_balancing=disable/' /etc/
↪→default/grub

# When HyperThread is enabled (experimental)
$ sudo sed -i 's/^GRUB_CMDLINE_LINUX_DEFAULT="[^"]*/& pci=realloc=off default_
↪→hugepagesz=1G hugepagesz=1G hugepages=16 tsc=reliable clocksource=tsc intel_idle.
↪→max_cstate=0 mce=ignore_ce processor.max_cstate=0 intel_pstate=disable audit=0␣
↪→idle=poll rcu_nocb_poll nosoftlockup iommu=off irqaffinity=0-3 isolcpus=managed_irq,
↪→domain,4-95 nohz_full=4-95 rcu_nocbs=4-95 numa_balancing=disable/' /etc/default/grub

The CPU-cores-related parameters must be adjusted depending on the number of CPU cores on the system. In the
example above, the “4-47” value represents CPU core numbers 4 to 47; you may need to adjust this parameter depending
on the HW configuration. By default, only one DPDK thread is used. The isolated CPUs are used by the entire cuBB
software stack. Use the nproc --all command to see how many cores are available. Do not use core numbers that
are beyond the number of available cores.

Warning

These instructions are specific to Ubuntu 22.04 with a 5.15 low-latency kernel provided by Canonical. Make sure the
kernel commands provided here are suitable for your OS and kernel versions and revise these settings to match your

218 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

system if necessary.

Apply the Changes and Reboot to Load the Kernel

$ sudo update-grub
$ sudo reboot

After rebooting, enter the following command to verify that the system has booted into the low-latency kernel:

$ uname -r
5.15.0-1042-nvidia-lowlatency

Enter this command to verify that the kernel command-line parameters are configured properly:

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-5.15.0-1042-nvidia-lowlatency root=/dev/mapper/ubuntu--vg-ubuntu--
↪→lv ro pci=realloc=off default_hugepagesz=1G hugepagesz=1G hugepages=16 tsc=reliable␣
↪→clocksource=tsc intel_idle.max_cstate=0 mce=ignore_ce processor.max_cstate=0 intel_
↪→pstate=disable audit=0 idle=poll rcu_nocb_poll nosoftlockup iommu=off irqaffinity=0-
↪→3 isolcpus=managed_irq,domain,4-47 nohz_full=4-47 rcu_nocbs=4-47 noht numa_
↪→balancing=disable

Enter this command to verify if hugepages are enabled:

$ grep -i huge /proc/meminfo
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
FileHugePages: 0 kB
HugePages_Total: 16
HugePages_Free: 16
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 1048576 kB
Hugetlb: 16777216 kB

Disabling Nouveau

Enter this command to disable nouveau:

$ cat <<EOF | sudo tee /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
EOF

Regenerate the kernel initramfs and reboot the system:

$ sudo update-initramfs -u
$ sudo reboot

1.4. cuBB Installation Guide 219



Aerial CUDA-Accelerated RAN, Release 25-1

Install Dependency Packages

Enter these commands to install prerequisite packages:

$ sudo apt-get update
$ sudo apt-get install -y build-essential linux-headers-$(uname -r) dkms unzip␣
↪→linuxptp pv

Install RSHIM and Mellanox Firmware Tools on the Host

Note

Aerial has been using Mellanox inbox driver instead of MOFED since the 23-4 release. MOFED must be removed
if it is installed on the system.

Check if there is an existing MOFED installed on the host system.

$ ofed_info -s
MLNX_OFED_LINUX-23.07-0.5.0.0:

Uninstall MOFED if it is present.

$ sudo /usr/sbin/ofed_uninstall.sh

Enter the following commands to install rshim driver.

# Install rshim
$ wget https://developer.nvidia.com/downloads/networking/secure/doca-sdk/DOCA_2.7/
↪→doca-host_2.7.0-209000-24.04-ubuntu2204_amd64.deb
$ sudo dpkg -i doca-host_2.7.0-209000-24.04-ubuntu2204_amd64.deb
$ sudo apt-get update
$ sudo apt install rshim

Enter the following commands to install Mellanox firmware tools.

# Install Mellanox Firmware Tools
$ export MFT_VERSION=4.28.0-92
$ wget https://www.mellanox.com/downloads/MFT/mft-$MFT_VERSION-x86_64-deb.tgz
$ tar xvf mft-$MFT_VERSION-x86_64-deb.tgz
$ sudo mft-$MFT_VERSION-x86_64-deb/install.sh

# Verify the install Mellanox firmware tool version
$ sudo mst version
mst, mft 4.28.0-92, built on Apr 25 2024, 15:22:58. Git SHA Hash: N/A

$ sudo mst start

# check NIC PCIe bus addresses and network interface names
$ sudo mst status -v

# Here is the result of GPU#1 on slot 7
MST modules:
------------

MST PCI module is not loaded

(continues on next page)

220 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
MST PCI configuration module loaded

PCI devices:
------------
DEVICE_TYPE MST PCI RDMA NET ␣
↪→ NUMA
BlueField3(rev:1) /dev/mst/mt41692_pciconf0.1 ca:00.1 mlx5_1 net-
↪→aerial01 1

BlueField3(rev:1) /dev/mst/mt41692_pciconf0 ca:00.0 mlx5_0 net-
↪→aerial00 1

Enter these commands to check the link status of port 0:

# Here is an example if port 0 is connected to another server via a 200GbE DAC cable.

$ sudo mlxlink -d /dev/mst/mt41692_pciconf0

Operational Info
----------------
State : Active
Physical state : LinkUp
Speed : 200G
Width : 4x
FEC : Standard_RS-FEC - (544,514)
Loopback Mode : No Loopback
Auto Negotiation : ON

Supported Info
--------------
Enabled Link Speed (Ext.) : 0x00003ff2 (200G_2X,200G_4X,100G_1X,100G_2X,100G_
↪→4X,50G_1X,50G_2X,40G,25G,10G,1G)
Supported Cable Speed (Ext.) : 0x000017f2 (200G_4X,100G_2X,100G_4X,50G_1X,50G_
↪→2X,40G,25G,10G,1G)

Troubleshooting Info
--------------------
Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed

Tool Information
----------------
Firmware Version : 32.41.1000
amBER Version : 3.2
MFT Version : mft 4.28.0-92

1.4. cuBB Installation Guide 221



Aerial CUDA-Accelerated RAN, Release 25-1

Install Docker CE

The full official instructions for installing Docker CE can be found on the Docker website: https://docs.docker.com/
engine/install/ubuntu/#install-docker-engine. The following instructions are one supported way of installing Docker CE:

Warning

To work correctly, the CUDA driver must be installed before Docker CE or nvidia-container-toolkit installation. It is
recommended that you install the CUDA driver before installing Docker CE or the nvidia-container-toolkit.

$ sudo apt-get update
$ sudo apt-get install -y ca-certificates curl gnupg
$ sudo install -m 0755 -d /etc/apt/keyrings
$ curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /
↪→etc/apt/keyrings/docker.gpg
$ sudo chmod a+r /etc/apt/keyrings/docker.gpg
$ echo \

"deb [arch="$(dpkg --print-architecture)" signed-by=/etc/apt/keyrings/docker.gpg]␣
↪→https://download.docker.com/linux/ubuntu \

"$(. /etc/os-release && echo "$VERSION_CODENAME")" stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null

$ sudo apt-get update
$ sudo apt-get install -y docker-ce docker-ce-cli containerd.io docker-buildx-plugin␣
↪→docker-compose-plugin
$ sudo docker run --rm hello-world

Update BF3 BFB Image and NIC Firmware

Note

• The following instructions are for BF3 NIC (OPN: 900-9D3B6-00CV-A; PSID: MT_0000000884) specifi-
cally.

• There is no need to switch to DPU mode if using the BFB image below.
• This BFB image will update the NIC firmware automatically.

# Enable MST
$ sudo mst start
$ sudo mst status

MST modules:
------------

MST PCI module is not loaded
MST PCI configuration module loaded

MST devices:
------------
/dev/mst/mt41692_pciconf0 - PCI configuration cycles access.

domain:bus:dev.fn=0000:ca:00.0 addr.reg=88 data.
↪→reg=92 cr_bar.gw_offset=-1

Chip revision is: 01

(continues on next page)

222 Chapter 1. Aerial cuBB

https://docs.docker.com/engine/install/ubuntu/#install-docker-engine
https://docs.docker.com/engine/install/ubuntu/#install-docker-engine


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Download the BF3 BFB image
$ wget https://content.mellanox.com/BlueField/BFBs/Ubuntu22.04/bf-bundle-2.7.0-33_24.
↪→04_ubuntu-22.04_prod.bfb
# Here is the command to flash BFB image. NOTE: If there are multiple BF3 NICs,␣
↪→repeat the same command with rshim<0..N-1>. N is the number of BF3 NICs.
$ sudo bfb-install -r rshim0 -b bf-bundle-2.7.0-33_24.04_ubuntu-22.04_prod.bfb

Pushing bfb
1.41GiB 0:01:24 [17.1MiB/s] [ ␣
↪→ <=>]
Collecting BlueField booting status. Press Ctrl+C to stop…
INFO[PSC]: PSC BL1 START
INFO[BL2]: start
INFO[BL2]: boot mode (rshim)
INFO[BL2]: VDDQ adjustment complete
INFO[BL2]: VDDQ: 1120 mV
INFO[BL2]: DDR POST passed
INFO[BL2]: UEFI loaded
INFO[BL31]: start
INFO[BL31]: lifecycle GA Secured
INFO[BL31]: VDD: 851 mV
ERR[BL31]: MB timeout
INFO[BL31]: runtime
INFO[UEFI]: eMMC init
INFO[UEFI]: eMMC probed
INFO[UEFI]: UPVS valid
INFO[UEFI]: PMI: updates started
INFO[UEFI]: PMI: total updates: 1
INFO[UEFI]: PMI: updates completed, status 0
INFO[UEFI]: PCIe enum start
INFO[UEFI]: PCIe enum end
INFO[UEFI]: UEFI Secure Boot (enabled)
INFO[UEFI]: Redfish enabled
INFO[BL31]: Partial NIC
INFO[BL31]: power capping disabled
INFO[UEFI]: exit Boot Service
INFO[MISC]: Ubuntu installation started
INFO[MISC]: Installing OS image
INFO[MISC]: Ubuntu installation completed
WARN[MISC]: Skipping BMC components upgrade.
INFO[MISC]: Updating NIC firmware...
INFO[MISC]: NIC firmware update done
INFO[MISC]: Installation finished

# Wait 10 minutes to ensure the card initializes properly after the BFB installation
$ sleep 600

# NOTE: Requires a full power cycle from host with cold boot

# Verify NIC FW version after reboot
$ sudo mst start
$ sudo flint -d /dev/mst/mt41692_pciconf0 q
Image type: FS4
FW Version: 32.41.1000
FW Release Date: 28.4.2024

(continues on next page)

1.4. cuBB Installation Guide 223



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Product Version: 32.41.1000
Rom Info: type=UEFI Virtio net version=21.4.13 cpu=AMD64,AARCH64

type=UEFI Virtio blk version=22.4.13 cpu=AMD64,AARCH64
type=UEFI version=14.34.12 cpu=AMD64,AARCH64
type=PXE version=3.7.400 cpu=AMD64

Description: UID GuidsNumber
Base GUID: 946dae0300f5aa8e 38
Base MAC: 946daef5aa8e 38
Image VSD: N/A
Device VSD: N/A
PSID: MT_0000000884
Security Attributes: secure-fw

Run the following commands to configure the BF3 NIC:

# Setting BF3 port to Ethernet mode (not Infiniband)
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set LINK_TYPE_P1=2
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set LINK_TYPE_P2=2

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_MODEL=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_PAGE_
↪→SUPPLIER=EXT_HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_ESWITCH_
↪→MANAGER=EXT_HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_IB_VPORT0=EXT_
↪→HOST_PF
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set INTERNAL_CPU_OFFLOAD_
↪→ENGINE=DISABLED

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set CQE_COMPRESSION=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set PROG_PARSE_GRAPH=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set ACCURATE_TX_SCHEDULER=1
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set FLEX_PARSER_PROFILE_ENABLE=4
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set REAL_TIME_CLOCK_ENABLE=1

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_PXE_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_UEFI_ARM_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_NET_UEFI_x86_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_BLK_UEFI_ARM_
↪→ENABLE=0
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 --yes set EXP_ROM_VIRTIO_BLK_UEFI_x86_
↪→ENABLE=0

# NOTE: Requires a full power cycle from host with cold boot

# Verify that the NIC FW changes have been applied
$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 q | grep "CQE_COMPRESSION\|PROG_PARSE_
↪→GRAPH\|ACCURATE_TX_SCHEDULER\|FLEX_PARSER_PROFILE_ENABLE\|REAL_TIME_CLOCK_ENABLE\
↪→|INTERNAL_CPU_MODEL\|LINK_TYPE_P1\|LINK_TYPE_P2\|INTERNAL_CPU_PAGE_SUPPLIER\
↪→|INTERNAL_CPU_ESWITCH_MANAGER\|INTERNAL_CPU_IB_VPORT0\|INTERNAL_CPU_OFFLOAD_ENGINE"

INTERNAL_CPU_MODEL EMBEDDED_CPU(1)
INTERNAL_CPU_PAGE_SUPPLIER EXT_HOST_PF(1)
INTERNAL_CPU_ESWITCH_MANAGER EXT_HOST_PF(1)
INTERNAL_CPU_IB_VPORT0 EXT_HOST_PF(1)

(continues on next page)

224 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
INTERNAL_CPU_OFFLOAD_ENGINE DISABLED(1)
FLEX_PARSER_PROFILE_ENABLE 4
PROG_PARSE_GRAPH True(1)
ACCURATE_TX_SCHEDULER True(1)
CQE_COMPRESSION AGGRESSIVE(1)
REAL_TIME_CLOCK_ENABLE True(1)
LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2)

Set Persistent NIC Interface Name

Configure the network link files so that the NIC interfaces always come up with the same name. Runlshw -c network
-businfo to find the current interface name on the target bus address then runip link to find the corresponding MAC
address by the interface name. After identifying the MAC address, create files at /etc/systemd/network/NN-persistent-
net.link with the following information:

[Match]
MACAddress={{item.mac}}

[Link]
Name={{item.name}}

The following network link files set the converged accelerator port#0 to aerial00 and port#1 to aerial01:

$ sudo nano /etc/systemd/network/11-persistent-net.link

# Update the MAC address to match the converged accelerator port 0 MAC address
[Match]
MACAddress=48:b0:2d:xx:xx:xx

[Link]
Name=aerial00

$ sudo nano /etc/systemd/network/12-persistent-net.link

# Update the MAC address to match the converged accelerator port 1 MAC address
[Match]
MACAddress=48:b0:2d:yy:yy:yy

[Link]
Name=aerial01

Reboot the system after creating these files.

1.4. cuBB Installation Guide 225



Aerial CUDA-Accelerated RAN, Release 25-1

Install ptp4l and phc2sys

Enter these commands to configure PTP4L assuming the aerial00 NIC interface:

$ cat <<EOF | sudo tee /etc/ptp.conf
[global]
dataset_comparison G.8275.x
G.8275.defaultDS.localPriority 128
maxStepsRemoved 255
logAnnounceInterval -3
logSyncInterval -4
logMinDelayReqInterval -4
G.8275.portDS.localPriority 128
network_transport L2
domainNumber 24
tx_timestamp_timeout 30
# When used as an RU and PTP master, set slaveOnly to 0
slaveOnly 0

clock_servo pi
step_threshold 1.0
egressLatency 28
pi_proportional_const 4.65
pi_integral_const 0.1

[aerial00]
announceReceiptTimeout 3
delay_mechanism E2E
network_transport L2
EOF

cat <<EOF | sudo tee /lib/systemd/system/ptp4l.service
[Unit]
Description=Precision Time Protocol (PTP) service
Documentation=man:ptp4l
After=network.target

[Service]
Restart=always
RestartSec=5s
Type=simple
ExecStartPre=ifconfig aerial00 up
ExecStartPre=ethtool --set-priv-flags aerial00 tx_port_ts on
ExecStartPre=ethtool -A aerial00 rx off tx off
ExecStartPre=ifconfig aerial01 up
ExecStartPre=ethtool --set-priv-flags aerial01 tx_port_ts on
ExecStartPre=ethtool -A aerial01 rx off tx off
ExecStart=/usr/sbin/ptp4l -f /etc/ptp.conf

[Install]
WantedBy=multi-user.target
EOF

$ sudo systemctl daemon-reload
$ sudo systemctl restart ptp4l.service
$ sudo systemctl enable ptp4l.service

One server becomes the master clock, as shown below:

226 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

$ sudo systemctl status ptp4l.service

• ptp4l.service - Precision Time Protocol (PTP) service
Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset:␣

↪→enabled)
Active: active (running) since Tue 2023-08-08 19:37:56 UTC; 2 weeks 3 days ago
Docs: man:ptp4l

Main PID: 1120 (ptp4l)
Tasks: 1 (limit: 94533)

Memory: 460.0K
CPU: 9min 8.089s

CGroup: /system.slice/ptp4l.service
└─1120 /usr/sbin/ptp4l -f /etc/ptp.conf

Aug 09 18:12:35 aerial-devkit ptp4l[1120]: [81287.043]: selected local clock b8cef6.
↪→fffe.d333be as best master
Aug 09 18:12:35 aerial-devkit ptp4l[1120]: [81287.043]: port 1: assuming the grand␣
↪→master role
Aug 11 20:44:51 aerial-devkit ptp4l[1120]: [263223.379]: timed out while polling for␣
↪→tx timestamp
Aug 11 20:44:51 aerial-devkit ptp4l[1120]: [263223.379]: increasing tx_timestamp_
↪→timeout may correct this issue, but it is likely caused by a driver bug
Aug 11 20:44:51 aerial-devkit ptp4l[1120]: [263223.379]: port 1: send sync failed
Aug 11 20:44:51 aerial-devkit ptp4l[1120]: [263223.379]: port 1: MASTER to FAULTY on␣
↪→FAULT_DETECTED (FT_UNSPECIFIED)
Aug 11 20:45:07 aerial-devkit ptp4l[1120]: [263239.522]: port 1: FAULTY to LISTENING␣
↪→on INIT_COMPLETE
Aug 11 20:45:08 aerial-devkit ptp4l[1120]: [263239.963]: port 1: LISTENING to MASTER␣
↪→on ANNOUNCE_RECEIPT_TIMEOUT_EXPIRES
Aug 11 20:45:08 aerial-devkit ptp4l[1120]: [263239.963]: selected local clock b8cef6.
↪→fffe.d333be as best master
Aug 11 20:45:08 aerial-devkit ptp4l[1120]: [263239.963]: port 1: assuming the grand␣
↪→master role

The other becomes the secondary, follower clock, as shown below:

$ sudo systemctl status ptp4l.service

• ptp4l.service - Precision Time Protocol (PTP) service
Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset:␣

↪→enabled)
Active: active (running) since Tue 2023-08-22 16:25:41 UTC; 3 days ago
Docs: man:ptp4l

Main PID: 3251 (ptp4l)
Tasks: 1 (limit: 598810)

Memory: 472.0K
CPU: 2min 48.984s

CGroup: /system.slice/ptp4l.service
└─3251 /usr/sbin/ptp4l -f /etc/ptp.conf

Aug 25 19:58:34 aerial-r750 ptp4l[3251]: ptp4l[272004.187]: rms 8 max 15 freq -
↪→14495 +/- 9 delay 11 +/- 0
Aug 25 19:58:35 aerial-r750 ptp4l[3251]: ptp4l[272005.187]: rms 6 max 12 freq -
↪→14480 +/- 7 delay 11 +/- 1
Aug 25 19:58:36 aerial-r750 ptp4l[3251]: ptp4l[272006.187]: rms 8 max 12 freq -
↪→14465 +/- 5 delay 10 +/- 0
Aug 25 19:58:37 aerial-r750 ptp4l[3251]: ptp4l[272007.187]: rms 11 max 18 freq -

(continues on next page)

1.4. cuBB Installation Guide 227



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→14495 +/- 10 delay 11 +/- 1
Aug 25 19:58:38 aerial-r750 ptp4l[3251]: ptp4l[272008.187]: rms 12 max 21 freq -
↪→14515 +/- 7 delay 12 +/- 1
Aug 25 19:58:39 aerial-r750 ptp4l[3251]: ptp4l[272009.187]: rms 7 max 12 freq -
↪→14488 +/- 7 delay 12 +/- 1
Aug 25 19:58:40 aerial-r750 ptp4l[3251]: ptp4l[272010.187]: rms 7 max 12 freq -
↪→14479 +/- 7 delay 11 +/- 1
Aug 25 19:58:41 aerial-r750 ptp4l[3251]: ptp4l[272011.187]: rms 10 max 20 freq -
↪→14503 +/- 11 delay 11 +/- 1
Aug 25 19:58:42 aerial-r750 ptp4l[3251]: ptp4l[272012.188]: rms 10 max 20 freq -
↪→14520 +/- 7 delay 13 +/- 1
Aug 25 19:58:43 aerial-r750 ptp4l[3251]: ptp4l[272013.188]: rms 2 max 7 freq -
↪→14510 +/- 4 delay 12 +/- 1

Enter the commands to turn off NTP:

$ sudo timedatectl set-ntp false
$ timedatectl
Local time: Thu 2022-02-03 22:30:58 UTC

Universal time: Thu 2022-02-03 22:30:58 UTC
RTC time: Thu 2022-02-03 22:30:58

Time zone: Etc/UTC (UTC, +0000)
System clock synchronized: no

NTP service: inactive
RTC in local TZ: no

Run PHC2SYS as service:
PHC2SYS is used to synchronize the system clock to the PTP hardware clock (PHC) on the NIC.
Specify the network interface used for PTP and system clock as the slave clock.

# If more than one instance is already running, kill the existing
# PHC2SYS sessions.

# Command used can be found in /lib/systemd/system/phc2sys.service
# Update the ExecStart line to the following
$ cat <<EOF | sudo tee /lib/systemd/system/phc2sys.service
[Unit]
Description=Synchronize system clock or PTP hardware clock (PHC)
Documentation=man:phc2sys
After=ntpdate.service
Requires=ptp4l.service
After=ptp4l.service

[Service]
Restart=always
RestartSec=5s
Type=simple
# Gives ptp4l a chance to stabilize
ExecStartPre=sleep 2
ExecStart=/bin/sh -c "/usr/sbin/phc2sys -s /dev/ptp$(ethtool -T aerial00|␣
↪→grep PTP | awk '{print $4}') -c CLOCK_REALTIME -n 24 -O 0 -R 256 -u 256"

[Install]
WantedBy=multi-user.target
EOF

228 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

After the PHC2SYS config file is changed, run the following:

$ sudo systemctl daemon-reload
$ sudo systemctl restart phc2sys.service

# Set to start automatically on reboot
$ sudo systemctl enable phc2sys.service

# check that the service is active and has converged to a low rms value (<30) and␣
↪→that the correct NIC has been selected (aerial00):
$ sudo systemctl status phc2sys.service
● phc2sys.service - Synchronize system clock or PTP hardware clock (PHC)

Loaded: loaded (/lib/systemd/system/phc2sys.service; enabled; vendor preset:␣
↪→enabled)

Active: active (running) since Fri 2023-02-17 17:02:35 UTC; 7s ago
Docs: man:phc2sys

Main PID: 2225556 (phc2sys)
Tasks: 1 (limit: 598864)

Memory: 372.0K
CGroup: /system.slice/phc2sys.service

└─2225556 /usr/sbin/phc2sys -a -r -n 24 -R 256 -u 256

Feb 17 17:02:35 aerial-devkit phc2sys[2225556]: [1992363.445] reconfiguring after␣
↪→port state change
Feb 17 17:02:35 aerial-devkit phc2sys[2225556]: [1992363.445] selecting CLOCK_
↪→REALTIME for synchronization
Feb 17 17:02:35 aerial-devkit phc2sys[2225556]: [1992363.445] selecting aerial00 as␣
↪→the master clock
Feb 17 17:02:36 aerial-devkit phc2sys[2225556]: [1992364.457] CLOCK_REALTIME rms 15␣
↪→max 37 freq -19885 +/- 116 delay 1944 +/- 6
Feb 17 17:02:37 aerial-devkit phc2sys[2225556]: [1992365.473] CLOCK_REALTIME rms 16␣
↪→max 42 freq -19951 +/- 103 delay 1944 +/- 7
Feb 17 17:02:38 aerial-devkit phc2sys[2225556]: [1992366.490] CLOCK_REALTIME rms 13␣
↪→max 31 freq -19909 +/- 81 delay 1944 +/- 6
Feb 17 17:02:39 aerial-devkit phc2sys[2225556]: [1992367.506] CLOCK_REALTIME rms 9␣
↪→max 27 freq -19918 +/- 40 delay 1945 +/- 6
Feb 17 17:02:40 aerial-devkit phc2sys[2225556]: [1992368.522] CLOCK_REALTIME rms 8␣
↪→max 24 freq -19925 +/- 11 delay 1945 +/- 9
Feb 17 17:02:41 aerial-devkit phc2sys[2225556]: [1992369.538] CLOCK_REALTIME rms 9␣
↪→max 23 freq -19915 +/- 36 delay 1943 +/- 8

Verify that the system clock is synchronized:

$ timedatectl
Local time: Thu 2022-02-03 22:30:58 UTC

Universal time: Thu 2022-02-03 22:30:58 UTC
RTC time: Thu 2022-02-03 22:30:58

Time zone: Etc/UTC (UTC, +0000)
System clock synchronized: yes

NTP service: inactive
RTC in local TZ: no

1.4. cuBB Installation Guide 229



Aerial CUDA-Accelerated RAN, Release 25-1

Setup the Boot Configuration Service

Create the directory /usr/local/bin and create the /usr/local/bin/nvidia.sh file to run the commands
with every reboot. The command for “nvidia-smi lgc” expects just one GPU device (-i 0). This needs to be modified, if
the system uses more than one GPU.

$ cat <<"EOF" | sudo tee /usr/local/bin/nvidia.sh
#!/bin/bash

mst start

nvidia-smi -i 0 -lgc $(nvidia-smi -i 0 --query-supported-clocks=graphics --format=csv,
↪→noheader,nounits | sort -h | tail -n 1)
nvidia-smi -mig 0

echo -1 > /proc/sys/kernel/sched_rt_runtime_us
EOF

Create a system service file to be loaded after network interfaces are up.

$ cat <<EOF | sudo tee /lib/systemd/system/nvidia.service
[Unit]
After=network.target

[Service]
ExecStart=/usr/local/bin/nvidia.sh

[Install]
WantedBy=default.target
EOF

Create a system service file for nvidia-persistenced to be run at startup.

Note

This file was created following the sample from /usr/share/doc/NVIDIA_GLX-1.0/samples/nvidia-persistenced-
init.tar.bz2

cat <<EOF | sudo tee /lib/systemd/system/nvidia-persistenced.service
[Unit]
Description=NVIDIA Persistence Daemon
Wants=syslog.target

[Service]
Type=forking
ExecStart=/usr/bin/nvidia-persistenced
ExecStopPost=/bin/rm -rf /var/run/nvidia-persistenced

[Install]
WantedBy=multi-user.target
EOF

Then set the file permissions, reload the systemd daemon, enable the service, restart the service when installing the first
time, and check status

230 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

sudo chmod 744 /usr/local/bin/nvidia.sh
sudo chmod 664 /lib/systemd/system/nvidia.service
sudo chmod 664 /lib/systemd/system/nvidia-persistenced.service
sudo systemctl daemon-reload
sudo systemctl enable nvidia-persistenced.service
sudo systemctl enable nvidia.service
sudo systemctl restart nvidia.service
sudo systemctl restart nvidia-persistenced.service
sudo systemctl status nvidia.service
sudo systemctl status nvidia-persistenced.service

The output of the last command should look like this:

aerial@server:~$ sudo systemctl status nvidia.service
○ nvidia.service

Loaded: loaded (/lib/systemd/system/nvidia.service; enabled; vendor preset:␣
↪→enabled)

Active: inactive (dead) since Fri 2024-06-07 20:26:06 UTC; 2s ago
Process: 251860 ExecStart=/usr/local/bin/nvidia.sh (code=exited, status=0/SUCCESS)

Main PID: 251860 (code=exited, status=0/SUCCESS)
CPU: 788ms

Jun 07 20:26:05 server nvidia.sh[251862]: Starting MST (Mellanox Software Tools)␣
↪→driver set
Jun 07 20:26:05 server nvidia.sh[251862]: Loading MST PCI module - Success
Jun 07 20:26:05 server nvidia.sh[251862]: [warn] mst_pciconf is already loaded,␣
↪→skipping
Jun 07 20:26:05 server nvidia.sh[251862]: Create devices
Jun 07 20:26:06 server nvidia.sh[251862]: Unloading MST PCI module (unused) - Success
Jun 07 20:26:06 server nvidia.sh[252732]: GPU clocks set to "(gpuClkMin 1410,␣
↪→gpuClkMax 1410)" for GPU 00000000:CF:00.0
Jun 07 20:26:06 server nvidia.sh[252732]: All done.
Jun 07 20:26:06 server nvidia.sh[252733]: Disabled MIG Mode for GPU 00000000:CF:00.0
Jun 07 20:26:06 server nvidia.sh[252733]: All done.
Jun 07 20:26:06 server systemd[1]: nvidia.service: Deactivated successfully.

aerial@server:~$ sudo systemctl status nvidia-persistenced.service
● nvidia-persistenced.service - NVIDIA Persistence Daemon

Loaded: loaded (/lib/systemd/system/nvidia-persistenced.service; enabled; vendor␣
↪→preset: enabled)

Active: active (running) since Fri 2024-06-07 20:25:57 UTC; 3s ago
Process: 251836 ExecStart=/usr/bin/nvidia-persistenced (code=exited, status=0/

↪→SUCCESS)
Main PID: 251837 (nvidia-persiste)

Tasks: 1 (limit: 598792)
Memory: 672.0K

CPU: 9ms
CGroup: /system.slice/nvidia-persistenced.service

└─251837 /usr/bin/nvidia-persistenced

Jun 07 20:25:57 server systemd[1]: Starting NVIDIA Persistence Daemon...
Jun 07 20:25:57 server nvidia-persistenced[251837]: Started (251837)
Jun 07 20:25:57 server systemd[1]: Started NVIDIA Persistence Daemon.

1.4. cuBB Installation Guide 231



Aerial CUDA-Accelerated RAN, Release 25-1

Validating software-component versions and system configurations

Before running Aerial, make sure that your software-component versions and system configurations meet the required
specifications. For more information, refer to the System Configuration Validation Script.

1.4.3 Installing and Upgrading Aerial cuBB

You must update the dependent software components to the specific version listed in the Release Manifest.
If you are upgrading a Grace Hopper MGX system, follow Installing Tools on Grace Hopper to upgrade the dependent
SW first.
If you are upgrading a Dell R750 system with A100X converged accelerator, follow Installing Tools on Dell R750 to
upgrade the dependent SW first.

Removing the Old Aerial cuBB Container

This step is optional. To remove the old cuBB container, enter the following commands:

$ sudo docker stop <cuBB container name>
$ sudo docker rm <cuBB container name>

Installing the New Aerial cuBB Container

The cuBB container is available on the NVIDIA GPU Cloud (NGC). Follow the instructions on that page to pull the
container and to run the container.

Note

If you receive the cuBB container image via nvonline, run “docker load < cuBB container image file” to load the
image. Then use the same docker run command detailed on the NGC page to launch it.

1.4.4 cuBB on NVIDIA Cloud Native Stack

NVIDIA Cloud Native Stack (formerly known as Cloud Native Core) is a collection of software that runs cloud native
workloads on NVIDIA GPUs. This section describes how to install and run the Aerial cuBB software examples on
NVIDIA Cloud Native Stack and related components to run Aerial cuBB.

Installation of NVIDIA Cloud Native Stack

Prerequisite: The server must already have the OS, NVIDIA Driver, and other configuration as described in Installing
Tools on Grace Hopper or Installing Tools on Dell R750.
The steps to install NVIDIA Cloud Native Stack follows the NVIDIA Cloud Native Stack v13.0 installation guide on
GitHub, starting with section “Installing Container Runtime”, with the following additional notes:

• Select containerd when given the choice between containerd or CRI-O in the install guide.
• For running an ru-emulator on a server without a GPU, it is necessary to remove/comment out the “BinaryName”

field from /etc/containerd/config.toml on that server.
If this step is not done, an ru-emulator failed to start error message can occur

232 Chapter 1. Aerial cuBB

https://registry.ngc.nvidia.com/orgs/qhrjhjrvlsbu/containers/aerial-cuda-accelerated-ran
https://github.com/NVIDIA/cloud-native-stack/blob/master/install-guides/Ubuntu-22-04_Server_Developer-x86-arm64_v13.0.md/
https://github.com/NVIDIA/cloud-native-stack/blob/master/install-guides/Ubuntu-22-04_Server_Developer-x86-arm64_v13.0.md/


Aerial CUDA-Accelerated RAN, Release 25-1

State: Terminated
Reason: StartError
Message: failed to create containerd task: failed to create shim task: OCI␣

↪→runtime create failed: runc create failed: unable to start container process:␣
↪→error during container init: error running hook #0: error running hook: exit␣
↪→status 1, stdout: , stderr: Auto-detected mode as 'legacy'
nvidia-container-cli: initialization error: nvml error: driver not loaded: unknown

Exit Code: 128
Started: Thu, 01 Jan 1970 00:00:00 +0000
Finished: Wed, 17 Jan 2024 05:25:27 +0000

• Enable k8s CPU Manager, Topology Manager, and Memory Manager.
1. Update each worker node’s /var/lib/kubelet/config.yaml. The file to use depends on the server type.

# For Aerial Devkit servers
$ cat <<EOF | sudo tee -a /var/lib/kubelet/config.yaml
# Additional Configuration

# Feature Gates
featureGates:
MemoryManager: true

# CPU Manager Configuration
cpuManagerPolicy: "static"
cpuManagerPolicyOptions:
full-pcpus-only: "true"

reservedSystemCPUs: 0-2,22-23

# Topology Manager Configuration
topologyManagerPolicy: "restricted"
topologyManagerScope: "container"

# Memory Manager Configuration
memoryManagerPolicy: "Static"
reservedMemory:
- numaNode: 0

limits:
memory: 100Mi

EOF

# for Dell R750 servers
$ cat <<EOF | sudo tee -a /var/lib/kubelet/config.yaml
# Additional Configuration

# Feature Gates
featureGates:
MemoryManager: true

# CPU Manager Configuration
cpuManagerPolicy: "static"
cpuManagerPolicyOptions:
full-pcpus-only: "true"

reservedSystemCPUs: 0-3

# Topology Manager Configuration
topologyManagerPolicy: "restricted"
topologyManagerScope: "pod"

(continues on next page)

1.4. cuBB Installation Guide 233



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Memory Manager Configuration
memoryManagerPolicy: "Static"
reservedMemory:
- numaNode: 0

limits:
memory: 50Mi

- numaNode: 1
limits:
memory: 50Mi

EOF

2. Drain each worker node.

# Run from k8s master or other server where you have the kube config
kubectl drain $nodeName --force --ignore-daemonsets

3. Restart each worker node’s kubelet.

# Run on worker node
sudo systemctl stop kubelet
sudo rm -f /var/lib/kubelet/cpu_manager_state
sudo rm -f /var/lib/kubelet/memory_manager_state
sudo systemctl start kubelet
sudo systemctl status kubelet

4. Confirm kubelet status, verify that it is healthy.

$ systemctl status kubelet
● kubelet.service - kubelet: The Kubernetes Node Agent

Loaded: loaded (/lib/systemd/system/kubelet.service; enabled; vendor preset:
↪→ enabled)

Drop-In: /etc/systemd/system/kubelet.service.d
└─10-kubeadm.conf

Active: active (running) since Thu 2023-10-12 19:36:05 UTC; 5s ago

5. Uncordon the node.

# Run from k8s master or other server where you have the kube config
kubectl uncordon $nodeName

6. Setup a registry secret called “regcred” to be able to pull from $YourPrivateRegistry container registry. Follow the
procedure described in the Kubernetes documentation. If you are using $YourPrivateRegistry=nvcr.io, please remember
to generate an API Key from the NGC API-Key Setup Portal if you don’t already have one.

Building Aerial Binary Container

This section describes how to build an Aerial binary container for the cuphycontroller_scf, test_mac, and ru_emulator
applications, along with some example scenario test vectors.

1. Extract the build script.

mkdir -p cuPHY-CP/
docker pull nvcr.io/ea_aerial_sdk/aerial:24-2-cubb
docker run --rm -u `id -u` -v .:/staging nvcr.io/ea_aerial_sdk/aerial:24-2-cubb␣
↪→cp -a /opt/nvidia/cuBB/cuPHY-CP/container /staging/cuPHY-CP/

234 Chapter 1. Aerial cuBB

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/
https://ngc.nvidia.com/setup/api-key


Aerial CUDA-Accelerated RAN, Release 25-1

Install dependencies

sudo apt update
sudo apt install python3-pip -y
pip3 install hpccm

2. Build the binary container and push to your private container repository.

AERIAL_BUILD_IMAGE=nvcr.io/ea_aerial_sdk/aerial:24-2-cubb AERIAL_RELEASE_REPO=
↪→$YourPrivateRepo/ AERIAL_RELEASE_VERSION_TAG=$YourTag ./cuPHY-CP/container/
↪→build_binary.sh
docker push $YourPrivateRepo/aerial_binary:$YourTag-amd64

Deploying Binary Container using Helm Chart

Configure the NGC cli tool - follow the steps in https://ngc.nvidia.com/setup/installers/cli
Login to NGC

$ ngc config set

2. Fetch the Helm Chart from NGC.

ngc registry chart pull ea_aerial_sdk/aerial-l1
ngc registry chart pull ea_aerial_sdk/aerial-ru-emulator

3. Create value overload files specific to your environment. You must change the following values:
• YourRUEmulatorNodeName
• YourPrivateRepo
• YourTag
• <MAC Address of DU’s FH Port>
• YourDUNodeName

$ cat <<EOF | tee override-ru-emulator-binary.yaml
# Deployment customization
extraSpec:

nodeName: "YourRUEmulatorNodeName"

image:
repository: YourPrivateRepo/
name: aerial_binary
pullPolicy: Always
# Overrides the image tag whose default is the chart appVersion.
tag: "YourTag"

peerethaddr: "<MAC Address of DU's FH Port>"

# Spacing is critical below
extraSetup: |

\`# ru-emulator extra setup\`

sed -i "s/enable_beam_forming:.*/enable_beam_forming: 1/" ../cuPHY-CP/ru-
↪→emulator/config/config_dyn.yaml

(continues on next page)

1.4. cuBB Installation Guide 235

https://ngc.nvidia.com/setup/installers/cli


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

\`# Configure NIC PCIe Address\`
sed -i "s/nic_interface.*/nic_interface: 0000:3b:00.0/" ../cuPHY-CP/ru-

↪→emulator/config/config_dyn.yaml

EOF

$ cat <<EOF | tee override-l1-binary.yaml
# Deployment customization
extraSpec:

nodeName: "YourDUNodeName"

image:
repository: YourPrivateRepo/
name: aerial_binary
pullPolicy: Always
# Overrides the image tag whose default is the chart appVersion.
tag: "YourTag"

enableTestMACContainer: 1

# Spacing is critical below
extraSetup: |

\`# Aerial L1 extra setup\`

\`# Launch pattern related configuration\`
sed -i "s/cell_group_num: .*/cell_group_num: 16/" ../cuPHY-CP/

↪→cuphycontroller/config/cuphycontroller_dyncore.yaml;
sed -i "s/pusch_nMaxPrb: .*/pusch_nMaxPrb: 136/" ../cuPHY-CP/

↪→cuphycontroller/config/cuphycontroller_dyncore.yaml;

\`# 3GPP conformance\`
sed -i "s/pusch_tdi:.*/pusch_tdi: 1/" ../cuPHY-CP/cuphycontroller/config/

↪→cuphycontroller_dyncore.yaml;
sed -i "s/pusch_cfo:.*/pusch_cfo: 1/" ../cuPHY-CP/cuphycontroller/config/

↪→cuphycontroller_dyncore.yaml;
sed -i "s/pusch_to:.*/pusch_to: 1/" ../cuPHY-CP/cuphycontroller/config/

↪→cuphycontroller_dyncore.yaml;
sed -i "s/puxch_polarDcdrListSz:.*/puxch_polarDcdrListSz: 8/" ../cuPHY-

↪→CP/cuphycontroller/config/cuphycontroller_dyncore.yaml;

\`# Configure NIC PCIe Address\`
sed -i "s/ nic:.*/ nic: 0000:cc:00.1/" ../cuPHY-CP/cuphycontroller/

↪→config/cuphycontroller_dyncore.yaml;

# Spacing is critical below
extraTestMACSetup: |

\`# testMAC extra setup\`

\`#sed -i "s/test_slots: 0/test_slots: 100000/" ../cuPHY-CP/testMAC/
↪→testMAC/test_mac_config_dyncore.yaml;\`

sed -i "s/schedule_total_time: 0/schedule_total_time: 470000/" ../cuPHY-
↪→CP/testMAC/testMAC/test_mac_config_dyncore.yaml;

sed -i "s/fapi_delay_bit_mask: 0/fapi_delay_bit_mask: 0xF/" ../cuPHY-CP/
↪→testMAC/testMAC/test_mac_config_dyncore.yaml;

sed -i "s/builder_thread_enable: 0/builder_thread_enable: 1/" ../cuPHY-
(continues on next page)

236 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→CP/testMAC/testMAC/test_mac_config_dyncore.yaml;
EOF

4. Deploy the Helm Chart.

helm install aerial-ru-emulator-test aerial-ru-emulator-0.20234.0.tgz -f override-
↪→ru-emulator-binary.yaml
helm install aerial-l1-test aerial-l1-0.20234.0.tgz -f override-l1-binary.yaml

5. View the logs for each container.

# Run in separate windows
kubectl logs aerial-l1-test -f
kubectl logs aerial-l1-test -c aerial-testmac-ctr -f
kubectl logs aerial-ru-emulator-test -f

6. Remove the Helm Chart and destroy the pods when finished.

helm uninstall aerial-l1-test
helm uninstall aerial-ru-emulator-test

Theory of Operation

At pod deployment time, k8s dynamically assigns dedicated CPU cores to the Aerial L1 cuphycon-
troller_scf container and the testMAC container (if it is deployed). When the container starts up, the
$cuBB_SDK/cubb_scripts/autoconfig/auto_assign_cores.py script runs to map the k8s-assigned cores to the vari-
ous Aerial functions. The following template configuration YAML files are used by the auto_assign_cores.py script:

• $cuBB_SDK/cuPHY-CP/cuphycontroller/config/cuphycontroller_$configL1.yaml -> $cuBB_SDK/cuPHY-
CP/cuphycontroller/config/cuphycontroller_dyncore.yaml

• $cuBB_SDK/cuPHY-CP/cuphycontroller/config/$l2adapter_filename -> $cuBB_SDK/cuPHY-
CP/cuphycontroller/config/l2_adapter_dyncore.yaml

• $cuBB_SDK/cuPHY-CP/testMAC/testMAC/$configMAC -> $cuBB_SDK/cuPHY-
CP/testMAC/testMAC/test_mac_config_dyncore.yaml

The variables used above come from:
• $cuBB_SDK: Environment variable defined in container
• $configL1: Helm chart aerial-l1/values.yaml (or override-l1-binary.yaml if overridden) variable ‘configL1’
• $l2adapter_filename: YAML configuration parameter ‘l2adapter_filename’ defined in the template cuphycontroller

configuration yaml.
• $configMAC: Helm chart aerial-l1/values.yaml (or override-l1-binary.yaml if overridden) variable ‘configMAC’

An example run of the auto_assign_cores.py script for the aerial-l1-ctr container is:

Detected HT Enabled
Detected Multiple NUMA Nodes: [0, 1]. Will use node 1 for scheduling.
OS core affinity: [5, 7, 9, 11, 13, 15, 17, 53, 55, 57, 59, 61, 63, 65]
OS core affinity for numa node 1: [5, 7, 9, 11, 13, 15, 17, 53, 55, 57, 59, 61, 63,␣
↪→65]
OS isolated cores: [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,␣
↪→22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,␣

(continues on next page)

1.4. cuBB Installation Guide 237



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,␣
↪→64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,␣
↪→89, 90, 91, 92, 93, 94, 95]
Tentative primary cores: [5, 7, 9, 11, 13, 15, 17]
Cuphycontroller core assignment strategy for HT enabled:

* 1 low priority primary core (shared with dpdk EAL), HT sibling for h2d_copy thread
* {args.workers_ul_count} UL worker primary cores, HT siblings idle
* {args.workers_dl_count} DL worker primary cores, HT siblings idle
* 1 L2A timer thread primary core, HT sibling for L2A msg processing thread

Need 7 physical cores (plus 0 reserved), potential affinity for 7 isolated physical␣
↪→cores
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| Primary | Primary Core | Sibling | ␣
↪→Sibling Core |
| Core Number | Uses | Core Number | ␣
↪→ Uses |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 5 | low priority threads (inc. DPDK EAL) | 53 | H2D copy ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 7 | UL Worker | 55 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 9 | UL Worker | 57 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 11 | DL Worker | 59 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 13 | DL Worker | 61 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 15 | DL Worker | 63 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 17 | L2A timer | 65 | L2A msg␣
↪→processing |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
Parsing cuphycontroller configuration template: /opt/nvidia/cuBB/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_R750.yaml
Writing cuphycontroller configuration: /opt/nvidia/cuBB/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_dyncore.yaml
Parsing l2adapter configuration template: /opt/nvidia/cuBB/cuPHY-CP/cuphycontroller/
↪→config/l2_adapter_config_F08_R750.yaml
Writing l2adapter configuration: /opt/nvidia/cuBB/cuPHY-CP/cuphycontroller/config/l2_
↪→adapter_config_dyncore.yaml

238 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

An example run of the auto_assign_cores.py script for the aerial-l1-ctr container is:

Detected HT Enabled
Detected Multiple NUMA Nodes: [0, 1]. Will use node 1 for scheduling.
OS core affinity: [19, 21, 23, 67, 69, 71]
OS core affinity for numa node 1: [19, 21, 23, 67, 69, 71]
OS isolated cores: [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,␣
↪→22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42,␣
↪→43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,␣
↪→64, 65, 66, 67,
68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88,␣
↪→89, 90, 91, 92, 93, 94, 95]
Tentative primary cores: [19, 21, 23]
testMAC core assignment strategy:

* 1 low priority primary core, HT sibling idle
* 1 mac_recv thread primary core, HT sibling idle
* 1 builder thread primary core, HT sibling idle

Need 3 physical cores (plus 0 reserved), potential affinity for 3 isolated physical␣
↪→cores
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| Primary | Primary Core | Sibling | ␣
↪→Sibling Core |
| Core Number | Uses | Core Number | ␣
↪→ Uses |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 19 | [testmac] low priority threads | 67 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 21 | [testmac] recv | 69 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
| 23 | [testmac] builder | 71 | [idle] ␣
↪→ |
+-------------+----------------------------------------+-------------+----------------
↪→------------------------+
Parsing testmac configuration template: /opt/nvidia/cuBB/cuPHY-CP/testMAC/testMAC/
↪→test_mac_config.yaml
Writing testmac configuration: /opt/nvidia/cuBB/cuPHY-CP/testMAC/testMAC/test_mac_
↪→config_dyncore.yaml

1.4.5 Aerial System Scripts

System Configuration Validation Script

A script is included in the release package to check and display key software versions and system configuration settings
required for running Aerial CUDA Accelerate RAN:

$ pip3 install psutil packaging paramiko
$ cd $cuBB_SDK/cuPHY/util/cuBB_system_checks
$ sudo -E python3 ./cuBB_system_checks.py

The output of cuBB_system_checks.py may differ slightly between bare-metal, container, Kubernetes-based plat-
forms. The script helps retrieve software-component versions and hardware configurations. Refer to the Release Manifest

1.4. cuBB Installation Guide 239



Aerial CUDA-Accelerated RAN, Release 25-1

in the cuBB Release Notes to ensure the correct software-component versions are installed. Because some software-
component versions and hardware configurations cannot be retrieved directly from the Aerial container, the script can
use SSH to gather the information from the host if it is run from within the container. Below is an example of using SSH
with password authentication:

$ python3 cuBB_system_checks.py --host <hostname or IP address> --username <username␣
↪→on the host>
[+] Connecting to <hostname> with password auth.
Password for <username>@<hostname>:
[+] Caching sudo password...
[+] Sudo password cached successfully.

If you are using Red Hat OpenShift to manage Aerial, the script can retrieve information using the oc command:

$ oc get nodes # check if you have already logged in a RHOCP cluster
NAME STATUS ROLES AGE VERSION
gh-smc-cg1-qs-06.nvidia.com Ready control-plane,master,worker 70d v1.28.
↪→11+add48d0
$ python3 cuBB_system_checks.py --cli oc

Below is an example of the script’s output from a container with SSH access to the host:

# To get the system or ptp info, the command has to run on the host.
$ python3 cuBB_system_checks.py --host <hostname or IP address> --username <username␣
↪→on the host>
[+] Connecting to <hostname of IP address> with password auth.
Password for <username>@<hostname of IP address>:
[+] Caching sudo password...
[+] Sudo password cached successfully.
-----General--------------------------------------
Hostname : smc-gh-01
IP address : <IP address>
Linux distro : "Ubuntu 22.04.4 LTS"
Linux kernel version : 6.5.0-1019-nvidia-64k
-----System---------------------------------------
FRU Device Description : Builtin FRU Device (ID 0)
Board Mfg Date : Mon Jan 1 00:00:00 1996
Board Mfg : Supermicro
Board Serial :
Product Serial :

FRU Device Description : BMC FRU (ID 2)
Board Mfg Date : Mon Apr 17 10:40:00 2023
Board Mfg : Supermicro
Board Product : BMC Secure Control Module
Board Serial :
Board Part Number : AOM-SCM-NV
Product Manufacturer : Supermicro
Product Name : BMC Secure Control Module
Product Part Number : AOM-SCM-NV
Product Version : 1.00

FRU Device Description : AOC1 FRU (ID 4)
Board Mfg Date : Wed Aug 2 20:41:00 2023
Board Mfg : Nvidia
Board Product : BlueField-3 SmartNIC Main Card
Board Serial :
Board Part Number : 900-9D3B6-00CV-AA0

(continues on next page)

240 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
Product Manufacturer : Nvidia
Product Name : BlueField-3 SmartNIC Main Card
Product Part Number : 900-9D3B6-00CV-AA0
Product Version : A9
Product Serial :
Product Asset Tag : 900-9D3B6-00CV-AA0

FRU Device Description : MB FRU (ID 1)
Invalid FRU size 0

FRU Device Description : CPU FRU (ID 3)
Board Mfg Date : Wed Jul 5 21:53:00 2023
Board Mfg : NVIDIA
Board Product : PG530
Board Serial :
Board Part Number : 699-2G530-0206-QS1
Product Manufacturer : NVIDIA
Product Name : GH200 480GB
Product Part Number : 900-2G530-0000-000
Product Version : A-R00
Product Serial :

FRU Device Description : AOC2 FRU (ID 5)
Board Mfg Date : Thu Jul 27 02:16:00 2023
Board Mfg : Nvidia
Board Product : BlueField-3 SmartNIC Main Card
Board Serial :
Board Part Number : 900-9D3B6-00CV-AA0
Product Manufacturer : Nvidia
Product Name : BlueField-3 SmartNIC Main Card
Product Part Number : 900-9D3B6-00CV-AA0
Product Version : A9
Product Serial :
Product Asset Tag : 900-9D3B6-00CV-AA0
-----Kernel Command Line--------------------------
Audit subsystem : audit=0
Clock source : N/A
HugePage count : hugepages=48
HugePage size : hugepagesz=512M
CPU idle time management : idle=poll
Max Intel C-state : N/A
Intel IOMMU : N/A
IOMMU : N/A
Isolated CPUs : isolcpus=managed_irq,domain,4-64
Corrected errors : N/A
Adaptive-tick CPUs : nohz_full=4-64
Soft-lockup detector disable : nosoftlockup
Max processor C-state : processor.max_cstate=0
RCU callback polling : rcu_nocb_poll
No-RCU-callback CPUs : rcu_nocbs=4-64
TSC stability checks : tsc=reliable
IRQ affinity : irqaffinity=0
ACPI power meter cap forcely on : acpi_power_meter.force_cap_on=y
NUMA balancing : numa_balancing=disable
Mem init on alloc : init_on_alloc=0
Preempt : preempt=none
Pressure Stall Information : N/A ("psi=0" is recommended)

(continues on next page)

1.4. cuBB Installation Guide 241



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
-----CPU------------------------------------------
CPU cores : 72
Thread(s) per CPU core : 1
CPU max MHz: : 3456.0000
CPU sockets : 1
-----Environment variables------------------------
CUDA_DEVICE_MAX_CONNECTIONS : 8
cuBB_SDK : /opt/nvidia/cuBB
-----Memory---------------------------------------
HugePage count : 72
Free HugePages : 70
HugePage size : 524288 kB
Shared memory size : 240G
-----Nvidia GPUs----------------------------------
GPU driver version : 570.124.06
CUDA version : 12.8
GPU0

GPU product name : NVIDIA GH200 480GB
GPU persistence mode : Enabled
Current GPU temperature : 34 C
Max GPU clock frequency : 1980 MHz
GPU clock frequency : 1980 MHz
GPU PCIe bus id : 00000009:01:00.0

-----GPUDirect topology---------------------------
GPU0 NIC0 NIC1 NIC2 NIC3 CPU Affinity NUMA Affinity GPU NUMA ID
GPU0 X NODE NODE NODE NODE 0-71 0 1
NIC0 NODE X PIX NODE NODE
NIC1 NODE PIX X NODE NODE
NIC2 NODE NODE NODE X PIX
NIC3 NODE NODE NODE PIX X

Legend:

X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA␣

↪→nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host␣

↪→Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe␣

↪→Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

NIC Legend:

NIC0: mlx5_0
NIC1: mlx5_1
NIC2: mlx5_2
NIC3: mlx5_3

-----Loaded Kernel Modules------------------------
GDRCopy : gdrdrv
GPUDirect RDMA : N/A
Nvidia : nvidia
-----Non-persistent settings----------------------
VM swappiness : vm.swappiness = 0
VM zone reclaim mode : vm.zone_reclaim_mode = 0

(continues on next page)

242 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
-----Kernel Parameters----------------------------
Real-time throttling : -1
Transparent hugepage : [madvise]
-----Software Packages----------------------------
docker /usr/bin : 27.3.1
NVIDIA Container Toolkit : 1.17.4
OFED version : OFED-internal-24.04-0.6.6
ptp4l /usr/sbin : 3.1.1-3
-----Software Packages in the Container-----------
-----Linux PTP------------------------------------
● ptp4l.service - Precision Time Protocol (PTP) service

Loaded: loaded (/lib/systemd/system/ptp4l.service; enabled; vendor preset:␣
↪→enabled)

Active: active (running) since Wed 2024-11-27 01:58:59 UTC; 2 months 14 days ago
Docs: man:ptp4l

Main PID: 3903 (ptp4l)
Tasks: 1 (limit: 146899)

Memory: 7.3M
CPU: 58min 50.438s

CGroup: /system.slice/ptp4l.service
└─3903 /usr/sbin/ptp4l -f /etc/ptp.conf

Feb 10 06:27:41 smc-gh-01 ptp4l[3903]: [6496263.224] rms 2 max 4 freq -4911 +/-
↪→ 12 delay -92 +/- 0
Feb 10 06:27:42 smc-gh-01 ptp4l[3903]: [6496264.224] rms 2 max 4 freq -4908 +/-
↪→ 9 delay -93 +/- 0
Feb 10 06:27:43 smc-gh-01 ptp4l[3903]: [6496265.224] rms 3 max 7 freq -4912 +/-
↪→ 13 delay -93 +/- 0
Feb 10 06:27:44 smc-gh-01 ptp4l[3903]: [6496266.224] rms 2 max 5 freq -4919 +/-
↪→ 8 delay -93 +/- 0
Feb 10 06:27:45 smc-gh-01 ptp4l[3903]: [6496267.225] rms 2 max 5 freq -4910 +/-
↪→ 9 delay -93 +/- 0
Feb 10 06:27:46 smc-gh-01 ptp4l[3903]: [6496268.225] rms 2 max 5 freq -4911 +/-
↪→ 11 delay -93 +/- 0
Feb 10 06:27:47 smc-gh-01 ptp4l[3903]: [6496269.225] rms 3 max 7 freq -4908 +/-
↪→ 15 delay -93 +/- 0
Feb 10 06:27:48 smc-gh-01 ptp4l[3903]: [6496270.225] rms 2 max 3 freq -4911 +/-
↪→ 9 delay -93 +/- 0
Feb 10 06:27:49 smc-gh-01 ptp4l[3903]: [6496271.225] rms 2 max 5 freq -4919 +/-
↪→ 9 delay -93 +/- 0
Feb 10 06:27:50 smc-gh-01 ptp4l[3903]: [6496272.225] rms 2 max 3 freq -4912 +/-
↪→ 9 delay -93 +/- 0
● phc2sys.service - Synchronize system clock or PTP hardware clock (PHC)

Loaded: loaded (/lib/systemd/system/phc2sys.service; enabled; vendor preset:␣
↪→enabled)

Active: active (running) since Wed 2024-11-27 01:59:01 UTC; 2 months 14 days ago
Docs: man:phc2sys

Main PID: 4304 (sh)
Tasks: 2 (limit: 146899)

Memory: 2.0M
CPU: 5h 45min 34.886s

CGroup: /system.slice/phc2sys.service
├─4304 /bin/sh -c "taskset -c 21 /usr/sbin/phc2sys -s /dev/ptp\$(ethtool -

↪→T aerial01 | grep PTP | awk '{print \$4}') -c CLOCK_REALTIME -n 24 -O 0 -R 256 -u␣
↪→256"

└─4309 /usr/sbin/phc2sys -s /dev/ptp1 -c CLOCK_REALTIME -n 24 -O 0 -R 256␣
↪→-u 256

(continues on next page)

1.4. cuBB Installation Guide 243



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

Feb 10 06:27:40 smc-gh-01 phc2sys[4309]: [6496262.994] CLOCK_REALTIME rms 7 max ␣
↪→19 freq -934 +/- 14 delay 506 +/- 12
Feb 10 06:27:41 smc-gh-01 phc2sys[4309]: [6496264.010] CLOCK_REALTIME rms 8 max ␣
↪→19 freq -934 +/- 18 delay 506 +/- 12
Feb 10 06:27:42 smc-gh-01 phc2sys[4309]: [6496265.026] CLOCK_REALTIME rms 7 max ␣
↪→19 freq -942 +/- 19 delay 508 +/- 11
Feb 10 06:27:43 smc-gh-01 phc2sys[4309]: [6496266.042] CLOCK_REALTIME rms 8 max ␣
↪→19 freq -935 +/- 30 delay 506 +/- 13
Feb 10 06:27:44 smc-gh-01 phc2sys[4309]: [6496267.058] CLOCK_REALTIME rms 7 max ␣
↪→17 freq -933 +/- 11 delay 506 +/- 13
Feb 10 06:27:46 smc-gh-01 phc2sys[4309]: [6496268.074] CLOCK_REALTIME rms 7 max ␣
↪→17 freq -929 +/- 10 delay 506 +/- 12
Feb 10 06:27:47 smc-gh-01 phc2sys[4309]: [6496269.091] CLOCK_REALTIME rms 7 max ␣
↪→18 freq -941 +/- 15 delay 506 +/- 13
Feb 10 06:27:48 smc-gh-01 phc2sys[4309]: [6496270.107] CLOCK_REALTIME rms 8 max ␣
↪→18 freq -938 +/- 10 delay 506 +/- 12
Feb 10 06:27:49 smc-gh-01 phc2sys[4309]: [6496271.123] CLOCK_REALTIME rms 8 max ␣
↪→19 freq -937 +/- 21 delay 507 +/- 12
Feb 10 06:27:50 smc-gh-01 phc2sys[4309]: [6496272.139] CLOCK_REALTIME rms 7 max ␣
↪→18 freq -932 +/- 16 delay 506 +/- 12
-----NTP------------------------------------------
NTP : inactive
-----Mellanox NIC Interfaces----------------------
Interface0

Name : aerial00
Network adapter : mlx5_0
PCIe bus id : 0000:01:00.0
Ethernet address : 94:6d:ae:f5:a9:12
Operstate : up
MTU : 1500
RX flow control : off
TX flow control : off
PTP hardware clock : 0
QoS Priority trust state : pcp
PCIe MRRS : N/A

High-quality Tx timestamp : on
Interface1

Name : aerial01
Network adapter : mlx5_0
PCIe bus id : 0000:01:00.1
Ethernet address : 94:6d:ae:f5:a9:13
Operstate : up
MTU : 1500
RX flow control : off
TX flow control : off
PTP hardware clock : 1
QoS Priority trust state : pcp
PCIe MRRS : N/A

High-quality Tx timestamp : on
Interface2

Name : aerial02
Network adapter : mlx5_1
PCIe bus id : 0002:01:00.0
Ethernet address : 94:6d:ae:f5:a0:e8
Operstate : up
MTU : 1500

(continues on next page)

244 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
RX flow control : off
TX flow control : off
PTP hardware clock : 2
QoS Priority trust state : pcp
PCIe MRRS : N/A

High-quality Tx timestamp : on
Interface3

Name : aerial03
Network adapter : mlx5_1
PCIe bus id : 0002:01:00.1
Ethernet address : 94:6d:ae:f5:a0:e9
Operstate : down
MTU : 1500
RX flow control : off
TX flow control : off
PTP hardware clock : 3
QoS Priority trust state : pcp
PCIe MRRS : N/A

High-quality Tx timestamp : on
-----Mellanox NICs--------------------------------
NIC1

NIC product name : BlueField3
NIC part number : 900-9D3B6-00CV-A_Ax
NIC PCIe bus id : /dev/mst/mt41692_pciconf1
NIC FW version : 32.41.1000
INTERNAL_CPU_MODEL : EMBEDDED_CPU(1)
INTERNAL_CPU_PAGE_SUPPLIER : EXT_HOST_PF(1)
INTERNAL_CPU_ESWITCH_MANAGER : EXT_HOST_PF(1)
INTERNAL_CPU_IB_VPORT0 : EXT_HOST_PF(1)
INTERNAL_CPU_OFFLOAD_ENGINE : DISABLED(1)
FLEX_PARSER_PROFILE_ENABLE : 4
PROG_PARSE_GRAPH : True(1)
ACCURATE_TX_SCHEDULER : True(1)
CQE_COMPRESSION : AGGRESSIVE(1)
REAL_TIME_CLOCK_ENABLE : True(1)
LINK_TYPE_P1 : ETH(2)
LINK_TYPE_P2 : ETH(2)

NIC2
NIC product name : BlueField3
NIC part number : 900-9D3B6-00CV-A_Ax
NIC PCIe bus id : /dev/mst/mt41692_pciconf0
NIC FW version : 32.41.1000
INTERNAL_CPU_MODEL : EMBEDDED_CPU(1)
INTERNAL_CPU_PAGE_SUPPLIER : EXT_HOST_PF(1)
INTERNAL_CPU_ESWITCH_MANAGER : EXT_HOST_PF(1)
INTERNAL_CPU_IB_VPORT0 : EXT_HOST_PF(1)
INTERNAL_CPU_OFFLOAD_ENGINE : DISABLED(1)
FLEX_PARSER_PROFILE_ENABLE : 4
PROG_PARSE_GRAPH : True(1)
ACCURATE_TX_SCHEDULER : True(1)
CQE_COMPRESSION : AGGRESSIVE(1)
REAL_TIME_CLOCK_ENABLE : True(1)
LINK_TYPE_P1 : ETH(2)
LINK_TYPE_P2 : ETH(2)

1.4. cuBB Installation Guide 245



Aerial CUDA-Accelerated RAN, Release 25-1

Checking the NIC Status

To query back the Mellanox NIC firmware settings initialized with the script above, use these commands:

$ sudo mlxconfig -d /dev/mst/mt41692_pciconf0 q | grep "CQE_COMPRESSION\|PROG_PARSE_
↪→GRAPH\
\|ACCURATE_TX_SCHEDULER\|FLEX_PARSER_PROFILE_ENABLE\|REAL_TIME_CLOCK_ENABLE\

↪→|INTERNAL_CPU_MODEL\
\|LINK_TYPE_P1\|LINK_TYPE_P2\|INTERNAL_CPU_PAGE_SUPPLIER\|INTERNAL_CPU_ESWITCH_

↪→MANAGER\
\|INTERNAL_CPU_IB_VPORT0\|INTERNAL_CPU_OFFLOAD_ENGINE"

INTERNAL_CPU_MODEL EMBEDDED_CPU(1)
INTERNAL_CPU_PAGE_SUPPLIER EXT_HOST_PF(1)
INTERNAL_CPU_ESWITCH_MANAGER EXT_HOST_PF(1)
INTERNAL_CPU_IB_VPORT0 EXT_HOST_PF(1)
INTERNAL_CPU_OFFLOAD_ENGINE DISABLED(1)
FLEX_PARSER_PROFILE_ENABLE 4
PROG_PARSE_GRAPH True(1)
ACCURATE_TX_SCHEDULER True(1)
CQE_COMPRESSION AGGRESSIVE(1)
REAL_TIME_CLOCK_ENABLE True(1)
LINK_TYPE_P1 ETH(2)
LINK_TYPE_P2 ETH(2)

To check the current status of a NIC port, use this command:

$ sudo mlxlink -d /dev/mst/mt41692_pciconf0

Operational Info
----------------
State : Active
Physical state : LinkUp
Speed : 200G
Width : 4x
FEC : Standard_RS-FEC - (544,514)
Loopback Mode : No Loopback
Auto Negotiation : ON

Supported Info
--------------
Enabled Link Speed (Ext.) : 0x00003ff2 (200G_2X,200G_4X,100G_1X,100G_2X,100G_
↪→4X,50G_1X,50G_2X,40G,25G,10G,1G)
Supported Cable Speed (Ext.) : 0x000017f2 (200G_4X,100G_2X,100G_4X,50G_1X,50G_
↪→2X,40G,25G,10G,1G)

Troubleshooting Info
--------------------
Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed

Tool Information
----------------
Firmware Version : 32.41.1000
amBER Version : 3.2
MFT Version : mft 4.28.0-92

246 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Alternatively, you can use the System Configuration Validation Script to obtain a full list of configuration settings.

1.4.6 CUBB Aerial SDK Versioning in YAML Files

Starting with Aerial 25-1 release, we are verifying the YAML versioning attribute against the compiled software.
The goal is to ensure that only the YAML files provided with the software release are used, thereby preventing the use of
mismatched YAML files and software versions.
We have introduced cubb-utils.cmake under the root cmake/ folder. This file contains a function to read the
aerial-sdk-version file located in the root directory. The aerial-sdk-version file includes an internal version string
AERIAL_SDK_INTERNAL_VERSION, which is replaced with the actual version during packaging.
YAML files that require versioning will include the following:

aerial_sdk_version: AERIAL_SDK_INTERNAL_VERSION

This placeholder will be replaced during the packaging process.
All C++ code will call the check_yaml_version() function which reads the version from the aerial-sdk-version file and
uses it for the -DAERIAL_SDK_VERSION definition.
Once the aerial_sdk_version attribute is read from the YAML file, the function checks the string against the compiled
version defined by -DAERIAL_SDK_VERSION. If there is a mismatch, an exception is thrown, resulting in a hard failure.
The name of the YAML file is included in the error message.
Users of the software are advised to make changes directly on the newly released YAML vs taking an old YAML files
and introducing it to the new Software.

1.4.7 Troubleshooting

This page documents solutions to common issues that you might encounter.

Hugepages Issues

Normally the hugepages settings are updated through the /etc/default/grub configuration file. However, de-
pending on the version of operating system, the settings changes may become overwritten by another configuration file:
/etc/grub.

Remove Old CUDA Toolkit and Driver

If the system has an old version installed, run the following to remove the CUDA Toolkit and driver :

sudo apt-get --purge remove "*cublas*" "*cufft*" "*curand*" "*cusolver*" "*cusparse*"
↪→"*npp*" "*nvjpeg*" "cuda*" "nsight*" "*nvidia*"
sudo apt-get autoremove

1.4. cuBB Installation Guide 247



Aerial CUDA-Accelerated RAN, Release 25-1

How to Fix Apt Update Error Due to Incorrect System Time

You may see the apt update error if the system time is incorrect.

E: Release file for https://download.docker.com/linux/ubuntu/dists/focal/InRelease is␣
↪→not valid yet (invalid for another 2d 10h 51min 11s).
Updates for this repository will not be applied.

Run the following commands to set the date and time via NTP once (this will not enable the NTP service):

sudo apt-get install ntpdate
sudo ntpdate -s pool.ntp.org

How to Resize the Default LVM Volume

When installing Ubuntu 22.04 server, it partitions the whole disk but only creates a 200GB logical volume. This is what
you will see on a newly installed devkit:

# Devkit has 1TB SSD but default lv uses only 200GB
lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 55.5M 1 loop /snap/core18/2246
loop1 7:1 0 55.5M 1 loop /snap/core18/2253
loop2 7:2 0 67.3M 1 loop /snap/lxd/21545
loop3 7:3 0 67.2M 1 loop /snap/lxd/21835
loop4 7:4 0 61.9M 1 loop /snap/core20/1242
loop5 7:5 0 61.9M 1 loop /snap/core20/1169
loop6 7:6 0 32.5M 1 loop /snap/snapd/13640
loop7 7:7 0 42.2M 1 loop /snap/snapd/14066
sda 8:0 0 894.3G 0 disk
├─sda1 8:1 0 512M 0 part /boot/efi
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 892.8G 0 part
└─ubuntu--vg-ubuntu--lv 253:0 0 200G 0 lvm /

The following commands resize the logic volume to use the entire disk, then resize the file system to use the entire logic
volume.

# Test mode first
sudo lvresize -t -v -l +100%FREE /dev/mapper/ubuntu--vg-ubuntu--lv

# Remove -t if test mode succeeds
sudo lvresize -v -l +100%FREE /dev/mapper/ubuntu--vg-ubuntu--lv
lsblk

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
loop0 7:0 0 55.5M 1 loop /snap/core18/2246
loop1 7:1 0 55.5M 1 loop /snap/core18/2253
loop2 7:2 0 67.3M 1 loop /snap/lxd/21545
loop3 7:3 0 67.2M 1 loop /snap/lxd/21835
loop4 7:4 0 61.9M 1 loop /snap/core20/1242
loop5 7:5 0 61.9M 1 loop /snap/core20/1169
loop6 7:6 0 32.5M 1 loop /snap/snapd/13640
loop7 7:7 0 42.2M 1 loop /snap/snapd/14066
sda 8:0 0 894.3G 0 disk

(continues on next page)

248 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
├─sda1 8:1 0 512M 0 part /boot/efi
├─sda2 8:2 0 1G 0 part /boot
└─sda3 8:3 0 892.8G 0 part
└─ubuntu--vg-ubuntu--lv 253:0 0 892.8G 0 lvm /

# Resize file system
sudo resize2fs -p /dev/mapper/ubuntu--vg-ubuntu--lv
df -h -T

Filesystem Type Size Used Avail Use% Mounted on
udev devtmpfs 39G 0 39G 0% /dev
tmpfs tmpfs 9.4G 2.0M 9.4G 1% /run
/dev/mapper/ubuntu--vg-ubuntu--lv ext4 878G 77G 764G 10% /
tmpfs tmpfs 47G 0 47G 0% /dev/shm
tmpfs tmpfs 5.0M 0 5.0M 0% /run/lock
tmpfs tmpfs 47G 0 47G 0% /sys/fs/cgroup
/dev/sda2 ext4 976M 460M 450M 51% /boot
/dev/loop0 squashfs 56M 56M 0 100% /snap/core18/2246
/dev/sda1 vfat 511M 5.3M 506M 2% /boot/efi
/dev/loop1 squashfs 56M 56M 0 100% /snap/core18/2253
/dev/loop5 squashfs 62M 62M 0 100% /snap/core20/1169
/dev/loop2 squashfs 68M 68M 0 100% /snap/lxd/21545
/dev/loop4 squashfs 62M 62M 0 100% /snap/core20/1242
/dev/loop6 squashfs 33M 33M 0 100% /snap/snapd/13640
/dev/loop3 squashfs 68M 68M 0 100% /snap/lxd/21835
/dev/loop7 squashfs 43M 43M 0 100% /snap/snapd/14066
overlay overlay 878G 77G 764G 10% /var/lib/docker/
↪→overlay2/851cbfd83b022a24f61fb0f87a007c56da8065a7528f6b661bf45d3d65ccc787/merged
tmpfs tmpfs 9.4G 4.0K 9.4G 1% / run/user/1000

How to Identify the NIC Interface Name and MAC Address

Use the sudo lshw -c network |grep -i 'product\|bus info\|name\|serial command to find
the bus address and MAC address of each NIC on the system. Here is an example:

$ sudo lshw -c network |grep -i 'product\|bus info\|name\|serial'
product: I210 Gigabit Network Connection
bus info: pci@0000:05:00.0
logical name: eno1
serial: 18:c0:4d:79:49:b6
product: I210 Gigabit Network Connection
bus info: pci@0000:06:00.0
logical name: enp6s0
serial: 18:c0:4d:79:49:b7
product: MT2892 Family [ConnectX-6 Dx]
bus info: pci@0000:b5:00.0
logical name: ens6f0
serial: b8:ce:f6:33:fd:ee
product: MT2892 Family [ConnectX-6 Dx]
bus info: pci@0000:b5:00.1
logical name: ens6f1
serial: b8:ce:f6:33:fd:ef

1.4. cuBB Installation Guide 249



Aerial CUDA-Accelerated RAN, Release 25-1

1.5 cuBB Quickstart Guide

This section explains how to run the Aerial cuBB software examples.

1.5.1 cuBB Quickstart Overview

The diagrams below show the Aerial cuBB software and hardware components.
• cuPHY is the GPU-Accelerated 5G PHY layer software library and examples. It provides GPU-offloaded 5G

signal processing.
• DPDK is the software library that provides network data transfer acceleration. The public version of DPDK now

contains features like eCPRI flow steering and accurate TX scheduling, which Aerial uses.
• cuPHY-CP is the cuPHY Control-Plane software that provides the control plane interface between the layer 1

cuPHY and the upper layer stack.
Shown below is the block diagram of the cuPHY-CP. It supports multi-cell. Included with cuPHY-CP are the built-in
test MAC and RU emulator modules.

The Aerial cuBB makes use of the DPDK for the network interface. It provides efficient high-speed network data con-
nectivity to GPU processing of network data.
The diagram below shows the overall Aerial cuBB software and hardware stack layers:

250 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.5.2 Generating TV and Launch Pattern Files

Since the cuBB 22-2.2 release, the test vectors are not included in the release package. You must generate the TV files
before running cuPHY examples or cuBB end-to-end test.

Note

TV generation is NOT supported on ARM because Matlab Compiler SDK doesn’t support it yet.

Using Aerial Python mcore Module

No Matlab license is required to generate TV files using the Aerial Python mcore module. The cuBB container already
has aerial_mcore installed.
To generate the test vectors required for end-to-end testing, follow these steps:

1. Install the MATLAB Runtime and supporting apt packages inside the Aerial container. Note that following these
instructions accepts the MATHWORKS license.

sudo apt update && sudo apt install -y unzip
wget https://ssd.mathworks.com/supportfiles/downloads/R2023a/Release/1/deployment_
↪→files/installer/complete/glnxa64/MATLAB_Runtime_R2023a_Update_1_glnxa64.zip
mkdir unzip && cd unzip
unzip ../MATLAB_Runtime_R2023a_Update_1_glnxa64.zip
sudo ./install -mode silent -agreeToLicense yes
cd .. && rm -rf MATLAB_Runtime_R2023a_Update_1_glnxa64.zip unzip

sudo apt install -y libxcomposite1 libnss3 libxrandr-dev libatk1.0-0 libatk-
↪→bridge2.0-0 libx11-xcb-dev libxcb-dri3-0 libxcursor-dev libxdamage-dev libxi-
↪→dev libdrm-dev libgbm-dev libasound-dev libcups2-dev libxtst-dev

1.5. cuBB Quickstart Guide 251



Aerial CUDA-Accelerated RAN, Release 25-1

These instructions can be run directly inside the Aerial container as shown above, or with a Dockerfile against the Aerial
container so that a new container with the MATLAB Runtime and its dependencies are only installed once. Create a
Dockerfile with the following contents by running the following command. Note that the double backslash ensures a
single backslash in the Dockerfile.

mkdir temp_dockerfile && cd temp_dockerfile
cat << EOF > Dockerfile
FROM nvcr.io/qhrjhjrvlsbu/aerial-cuda-accelerated-ran:25-1-cubb

USER root

RUN apt update && apt install -y unzip

RUN wget https://ssd.mathworks.com/supportfiles/downloads/R2023a/Release/1/
↪→deployment_files/installer/complete/glnxa64/MATLAB_Runtime_R2023a_Update_1_
↪→glnxa64.zip && \\

mkdir unzip && \\
cd unzip && \\
unzip ../MATLAB_Runtime_R2023a_Update_1_glnxa64.zip && \\
./install -mode silent -agreeToLicense yes && \\
cd .. && \\
rm -rf MATLAB_Runtime_R2023a_Update_1_glnxa64.zip unzip

RUN apt install -y \\
libxcomposite1 \\
libnss3 \\
libxrandr-dev \\
libatk1.0-0 \\
libatk-bridge2.0-0 \\
libx11-xcb-dev \\
libxcb-dri3-0 \\
libxcursor-dev \\
libxdamage-dev \\
libxi-dev \\
libdrm-dev \\
libgbm-dev \\
libasound-dev \\
libcups2-dev \\
libxtst-dev

USER aerial

EOF

Next execute the following command to create the new Aerial container with the MATLAB runtime and its dependencies.
This needs to be executed from a machine that has docker installed. See instructions here

docker build -t aerial-cuda-accelerated-ran:25-1-cubb-matlab-runtime-enabled␣
↪→.

This will create the aerial-cuda-accelerated-ran image with a 25-1-cubb-matlab-runtime-enabled tag. Use the 25-1-cubb-
matlab-runtime-enabled tagged image in place of the Aerial container when generating TVs using aerial_mcore.

2. Run the following inside the Aerial container. It completes in less than a minute.

cd ${cuBB_SDK}/5GModel/aerial_mcore/examples
source ../scripts/setup.sh
../scripts/gen_e2e_ota_tvs.sh

(continues on next page)

252 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
ls -lh GPU_test_input/
cp GPU_test_input/* ${cuBB_SDK}/testVectors/

The following is example output from the above commands:

aerial@c_aerial_aerial:/opt/nvidia/cuBB/5GModel/aerial_mcore$ source ./scripts/
↪→setup.sh
[Aerial Python]aerial@c_aerial_aerial:/opt/nvidia/cuBB/5GModel/aerial_mcore$ ./
↪→scripts/gen_e2e_ota_tvs.sh
Finished genCuPhyChEstCoeffs
Elapsed time: 1.166473150253296 seconds
[Aerial Python]aerial@c_aerial_aerial:/opt/nvidia/cuBB/5GModel/aerial_mcore$ ls -
↪→lh ../GPU_test_input/
-rw-rw-r-- 1 aerial aerial 90K Oct 17 2023 ../cuPhyChEstCoeffs.h5

Note

The cuPhyChEstCoeffs.h5 file can be found in the /opt/nvidia/cuBB/testVectors directory
of both the x86 and ARM containers.

2. Copy the output to the testVectors folder.
To generate all of the TV files, including files that are not necessary for E2E testing, follow these steps:

1. Run the following commands inside the Aerial container.

cd ${cuBB_SDK}/5GModel/aerial_mcore/examples
source ../scripts/setup.sh
export REGRESSION_MODE=1
time python3 ./example_5GModel_regression.py allChannels
echo $?
ls -alF GPU_test_input/
du -h GPU_test_input/

Note

The TV generation may take a few hours on the devkit with the current isocpus parameter setting in the kernel
command line. The host must have at least 64GB of memory and 430GB of available disk space. Hyperthread-
ing must be enabled.

2. Review the output from the above commands; an example is shown below. The “real” time takes less than one hour
on a 24-core x86 host. The echo $? command shows the exit code of the process, which should be 0, while a
non-zero exit code indicates a failure.

Channel Compliance_Test Error Test_Vector Error Performance_Test Fail
------------------------------------------------------------------------------
SSB 37 0 42 0 0 0
PDCCH 71 0 80 0 0 0
PDSCH 274 0 286 0 0 0
CSIRS 86 0 87 0 0 0
DLMIX 0 0 1049 0 0 0
PRACH 60 0 60 0 48 0
PUCCH 469 0 469 0 96 0

(continues on next page)

1.5. cuBB Quickstart Guide 253



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
PUSCH 388 0 398 0 41 0
SRS 125 0 125 0 0 0
ULMIX 0 0 576 0 0 0
BFW 58 0 58 0 0 0
------------------------------------------------------------------------------
Total 1568 0 3230 0 185 0

Total time for runRegression is 2147 seconds
Parallel pool using the 'local' profile is shutting down.

real 36m51.931s
user 585m1.704s
sys 10m28.322s

To generate the launch pattern for each test case using cubb_scripts, follow these steps:
1. Run the following commands:

cd $cuBB_SDK
cd cubb_scripts
python3 auto_lp.py -i ../5GModel/aerial_mcore/examples/GPU_test_input -t launch_
↪→pattern_nrSim.yaml

2. Copy the launch pattern and TV files to the testVectors repo:

cd $cuBB_SDK
cp ./5GModel/aerial_mcore/examples/GPU_test_input/*h5 ./testVectors/.
cp ./5GModel/aerial_mcore/examples/GPU_test_input/launch_pattern* ./testVectors/
↪→multi-cell/.`

Using Matlab

To generate TV files using Matlab:
1. Run the following command in Matlab:

cd('nr_matlab'); startup; [nTC, errCnt] = runRegression({'TestVector'}, {
↪→'allChannels'}, 'compact', [0, 1] );

All the cuPHY TVs are generated and stored under nr_matlab/GPU_test_input.
2. Generate the launch pattern for each test case using cubb_scripts:

cd $cuBB_SDK
cd cubb_scripts
python3 auto_lp.py -i ../5GModel/nr_matlab/GPU_test_input -t launch_
↪→pattern_nrSim.yaml

3. Copy the launch pattern and TV files to testVectors repo.

cd $cuBB_SDK
cp ./5GModel/nr_matlab/GPU_test_input/TVnr_* ./testVectors/.
cp ./5GModel/nr_matlab/GPU_test_input/launch_pattern* ./testVectors/multi-cell/.

254 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.5.3 Running Aerial cuPHY

Aerial cuPHY provides the cuPHY library and several examples that link with the library. Here we include instructions
on using MATLAB to generate TVs. Please refer to Generating TV and Launch Pattern Files for using Aerial Python
mcore Module to generate TVs.

Building Aerial cuPHY

Prerequisites

The following instructions assume the system configuration and Aerial cuBB installation are done. If not, see the cuBB
Install Guide to complete the installation or upgrade process.
After powering on the system, use the following commands to verify that the GPU and NIC are in the correct state:

# Verify GPU is detected and CUDA driver version matches the release manifest.

$ nvidia-smi

Verify that the NIC is in the correct state on the host (this is only required to run cuBB end-to-end):

# Verify NIC is detected: Example CX6-DX

$ sudo lshw -c network -businfo

Bus info Device Class Description
=======================================================
pci@0000:05:00.0 eno1 network I210 Gigabit Network Connection
pci@0000:06:00.0 enp6s0 network I210 Gigabit Network Connection
pci@0000:b5:00.0 ens6f0 network MT2892 Family [ConnectX-6 Dx]
pci@0000:b5:00.1 ens6f1 network MT2892 Family [ConnectX-6 Dx]

# Verify the link state is right. Assuming NIC port 0 is connected.

$ sudo mlxlink -d b5:00.0

Operational Info
----------------
State : Active
Physical state : LinkUp
Speed : 100G
Width : 4x
FEC : Standard RS-FEC - RS(528,514)
Loopback Mode : No Loopback
Auto Negotiation : ON

Supported Info
--------------
Enabled Link Speed (Ext.) : 0x000007f2 (100G_2X,100G_4X,50G_1X,50G_2X,40G,25G,
↪→10G,1G)
Supported Cable Speed (Ext.) : 0x000002f2 (100G_4X,50G_2X,40G,25G,10G,1G)

Troubleshooting Info
--------------------
Status Opcode : 0
Group Opcode : N/A
Recommendation : No issue was observed.

1.5. cuBB Quickstart Guide 255



Aerial CUDA-Accelerated RAN, Release 25-1

Set Up the Host Environment

Set up the environment by following the cuBB Installation Guide for the server type you are using.

Launch the cuBB Container

Use the following command to launch the cuBB container:

$ sudo docker exec -it cuBB /bin/bash

Build Aerial cuPHY in the Container

Build cuPHY in the cuBB container using the following commands:

$ cd /opt/nvidia/cuBB/cuPHY
$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/toolchains/native -DCMAKE_
↪→INSTALL_PREFIX=./install
$ cmake --build build

cuPHY is, by default, built inReleasemode. The optionBUILD_DOCS=ON is also enabled by default to allow the make
to generate the Doxygen documentation for the cuPHY library API. To disable this option, pass -DBUILD_DOCS=OFF
to the CMake command line. The output directory is cuPHY/install/docs.
To put the built cuPHY headers and libraries into an installation directory so that other applications using the cuPHY
library can compile and link with cuPHY, use the commands from the current build directory:

$ cmake --install build

This creates the include and lib directories under the cuPHY/install directory.

Building and running on separate servers

When building the source code on one server, and running the binaries on another server, it might be important to use
the correct toolchain for the target.
The source code directory cuPHY/cmake/toolchains contains toolchains for the following targets:

x86-64: devkit, r750, x86-64
arm: grace-cross, bf3

A new toolchain file might need to be created if using a different target.
The toolchain file defines what compiler to use, and the value of AERIAL_ARCH_TUNE_FLAGS
One way to make sure that the flag is correct, is to do the following:
Run the aerial_sdk container on the target, inside the container run the following command:

$ gcc -march=native -Q --help=target

Run the aerial_sdk container on the build server, inside the container run the following command:

$ gcc -march=<march for target> -Q --help=target

Make sure the outputs from both commands are the same. Create a toolchain file and use it when building aerial_sdk:

256 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/toolchains/my-target

Running the cuPHY Examples

This section describes how to run the Aerial cuPHY standalone example programs. They read test vector data files as
input. Refer to the Supported Test Vector Configurations section of the cuPHY Release Notes to determine which test
vectors to use for different configurations. Do not use old test vectors from previous cuBB releases with the example
programs of this release.

Generating Test Vectors using Matlab 5GModel

Run this Matlab command:

cd('nr_matlab'); startup; [nTC, errCnt] = runRegression({'TestVector'}, {'allChannels
↪→'}, 'compact', [0, 1] );

All the cuPHY test vectors are generated and stored under nr_matlab/GPU_test_input.

Instructions for Testing cuPHY Channels Manually

PUSCH

Test Vectors
Match test vector name with PUSCH_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/pusch_rx_multi_pipe/
cuphy_ex_pusch_rx_multi_pipe -i ~/<tv_name>.h5

• Graphs mode: cuPHY/build/examples/pusch_rx_multi_pipe/
cuphy_ex_pusch_rx_multi_pipe -i ~/<tv_name>.h5 -m 1

Expected Outcome
Test 1 (CRC test KPI): All test cases must have zero CRC errors (only CRC errors, not correct ones, are reported when
the channel is run).

PUCCH

Test Vectors
Match test vector name with PUCCH_F*_gNB_CUPHY_*.h5
How to Run
PUCCH format 0/1/2/3: cuPHY/build/examples/pucch_rx_pipeline/
cuphy_ex_pucch_rx_pipeline -i <tv_name>

Expected Outcome
• cuphy_ex_pucch_Fx_receiver checks if the test vector includes PFx UCI first.
• If the test-vector UCI format is not expected, it displays “No PFx UCI received”.

1.5. cuBB Quickstart Guide 257



Aerial CUDA-Accelerated RAN, Release 25-1

• If the test-vector UCI format is expected, it compares UCI output.xzsd.

PRACH

Test Vectors
Match test vector name with PRACH_gNB_CUPHY_*.h5
How to Run
cuPHY/build/examples/prach_receiver_multi_cell/prach_receiver_multi_cell -i
<tv_name> -r <num_iteration> -k

Expected Outcome
• prach_receiver_multi_cell compares against the reference measurements in the test vector.
• Measured values are displayed and if they are within tolerance the message is displayed:

========> Test PASS

PDSCH

Test Vectors
Match test vector name with PDSCH_gNB_CUPHY_*.h5
How to Run

• PDSCH in non-AAS mode, streams: cuPHY/build/examples/pdsch_tx/cuphy_ex_pdsch_tx ~/
<tv_name>.h5 2 0 0

• PDSCH in non-AAS mode, graphs: cuPHY/build/examples/pdsch_tx/cuphy_ex_pdsch_tx ~/
<tv_name>.h5 2 0 1

Expected Outcome
Test 1 (correctness against reference model): Channel reports correct match with reference model

258 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

PDCCH

Test Vectors
Match test vector name with PDCCH_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/pdcch/embed_pdcch_tf_signal -i ~/<tv_name>.
h5 -m 0

• Graphs mode: cuPHY/build/examples/pdcch/embed_pdcch_tf_signal -i ~/<tv_name>.
h5 -m 1

Expected Outcome
Test 1 (correctness against reference model): Test PASS

SSB

Test Vectors
Match test vector name with SSB_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/ss/testSS -i ~/<tv_name>.h5 -m 0

• Graphs mode: cuPHY/build/examples/ss/testSS -i ~/<tv_name>.h5 -m 1

Expected Outcome
Test 1 (correctness against reference model): Test PASS

CSI-RS

Test Vectors
Match test vector name with CSIRS_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/csi_rs/nzp_csi_rs_test -i <tv_name> -m 0

• Graphs mode: cuPHY/build/examples/csi_rs/nzp_csi_rs_test -i <tv_name> -m 1

Expected Outcome
Test 1 (correctness against reference model): Test PASS

1.5. cuBB Quickstart Guide 259



Aerial CUDA-Accelerated RAN, Release 25-1

SRS

Test Vectors
Match test vector name with SRS_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/srs_rx_pipeline/cuphy_ex_srs_rx_pipeline -i
<tv_name> -r <num_iteration> -m 0

• Graphs mode: cuPHY/build/examples/srs_rx_pipeline/cuphy_ex_srs_rx_pipeline -i
<tv_name> -r <num_iteration> -m 1

Expected Outcome
Test 1 (correctness against reference model): SRS reference check: PASSED!; Timing results are provided

BFC

Test Vectors
Match test vector name with BFW_gNB_CUPHY_*.h5
How to Run

• Streams mode: cuPHY/build/examples/bfc/cuphy_ex_bfc -i <tv_name> -r
<num_iteration> -m 0

• Graphs mode: cuPHY/build/examples/bfc/cuphy_ex_bfc -i <tv_name> -r
<num_iteration> -m 1

• Add -c to enable reference check (default disabled)
Expected Outcome
Test 1 (measure latency without reference check): Timing results are provided
Test 2 (correctness against reference model using -c): Test PASS; Timing results are provided

Instructions for LDPC Performance Test

The ldpc_perf_collect.py Python script from the cuPHY repository can be used to perform error rate tests for
the cuPHY LDPC decoder. There are test input files defined for Z = [64, 128, 256, 384], BG = [1,2]. The current tests
check whether the block error rate (BLER, also sometimes referred to as Frame Error Rate or FER) is less than 0.1.
From the build directory, the following commands run the tests:

../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG1_
↪→Z64_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG1_
↪→Z128_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG1_
↪→Z256_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG1_
↪→Z384_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG2_
↪→Z64_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG2_

(continues on next page)

260 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→Z128_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG2_
↪→Z256_BLER0.1.txt -f -w 800 -P
../util/ldpc/ldpc_perf_collect.py --mode test -i ../util/ldpc/test/ldpc_decode_BG2_
↪→Z384_BLER0.1.txt -f -w 800 -P

Each test input file contains multiple tests for different code rates, as specified by the number of parity nodes.

Running cuPHY Performance Testing Scripts

aerial_sdk/testBenches provides a multi-cell multi-channel test bench to test cuPHY standalone performance. It relies on
NVIDIA Multi-Process Service (MPS) to share the GPU among multiple channels. Specifically, there are two folders
and their relationship can be summarized as follows:

• cubb_gpu_test_bench: a C test bench that runs the multi-cell multi-channel cuPHY standalone GPU workload (that
is, without I/O to and from NIC or layer 2). The input of cubb_gpu_test_bench are test vectors, a Yaml file, and
some command options to run the GPU workload. The output is a buffer-XX.txt file that has the logs, channel
start/end times, debug info, etc. Here XX is the number of cells used in testing.

• perf: a set of Python scripts to automate performance testing using cubb_gpu_test_bench. The Python scripts can
help generate the Yaml file and command options, config GPU and MPS before running cubb_gpu_test_bench;
collect the test results by reading the output buffer-XX.txt from cubb_gpu_test_bench.

1.5. cuBB Quickstart Guide 261

https://docs.nvidia.com/deploy/mps/index.html


Aerial CUDA-Accelerated RAN, Release 25-1

Generating Test Vectors using Matlab 5GModel

Run this Matlab command:

cd <5GModel root>/nr_matlab
startup
genCfgTV_perf_ss('performance-avg.xlsm');
genCfgTV_perf_ss_bwc('performance-avg.xlsm');
genCfgTV_perf_pucch();
genCfgTV_perf_pdcch();
genCfgTV_perf_prach();
genCfgTV_perf_csirs();
genCfgTV_perf_ssb();
genCfgTV_perf_srs();

All the cuPHY Performance test vectors are generated and stored under nr_matlab/GPU_test_input.

Measuring cuPHY Performance using cubb_gpu_test_bench

Requirements:
• The performance measurements can be run using a Linux environment making one of more GPU available. Such

environment is here assumed to have:
– bash or zsh as default shell
– Python 3.8+ and the following packages: numpy, pyCUDA, pyYAML
– CUDA toolkit 11.4 or above properly configured so that nvidia-cuda-mps-control and nvidia-smi are in PATH
– The executable cubb_gpu_test_bench is located in the <testBenches>/build folder.

There are three steps when measuring cell capacity using cubb_gpu_test_bench. The perf folder provides some
pre defined test cases. Below is an example of 4T4R (F08) using TDD pattern DDDSUUDDDD.

1. Generate the JSON file that defines the use case (e.g., 8~16 peak or average cells)

python3 generate_avg_TDD.py --peak 8 9 10 11 12 13 14 15 16 --avg 0 --exact --
↪→case F08

2. Measure the latency of all channels based on predefined patterns

python3 measure.py --cuphy <testBenches>/build --vectors <test_vectors> --config␣
↪→testcases_avg_F08.json --uc uc_avg_F08_TDD.json --delay 100000 --gpu <GPU_ID> --
↪→freq <GPU_freq> --start <cell_start> --cap <cell_cap> --iterations 1 --slots
↪→<nSlots> --power <budget> --target <sms_prach> <sms_pdcch> <sms_pucch> <sms_
↪→pdsch> <sms_pusch> <sms_ssb> --2cb_per_sm --save_buffer --priority --prach --
↪→prach_isolate --pdcch --pdcch_isolate --pucch --pucch_isolate --tdd_pattern␣
↪→dddsuudddd --pusch_cascaded --ssb --csirs --groups_dl --pack_pdsch --groups_
↪→pusch --ldpc_parallel <--graph>

• <GPU_ID>: The ID of the GPU on which the measurements are to be run (e.g. 0 for single GPU systems)
• <GPU_freq>: The GPU clock frequency in MHz
• <cell_start>: The minimum number of cells to be tested
• <cell_cap>: The maximum number of cells to be tested. The Python scripts will run
cubb_gpu_test_bench for a range of [<cell_start>, <cell_cap>] cells and collect the la-
tency results.

262 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

• <budget>: The power budget in Watts
• <sms_channelName>: The number of streaming multiprocessors used per MPS sub-context for each

channel during the run, where channelName can be “PRACH”, “PDCCH”, “PUCCH”, “PDSCH”,
“PUSCH”, or “SSB”

• <--graph> Runs the measurement in graph mode. If this parameter is not included, stream mode will be
used.

Note

Use --test to see which YAML file and command options the Python scripts generated without running the
tests on GPU.

3. Visualize the latency of each channel (this step requires Python library matplotlib). We generate a
compare-<date>.png file showing the CDF of the latency for all tested channels:

• If run in stream mode:

python3 compare.py --filename <sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_
↪→<sms_pusch>_<sms_ssb>_sweep_streams_avg_F08.json --cells <nCell>+0

• If run in graph mode:

python3 compare.py --filename <sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_
↪→<sms_pusch>_<sms_ssb>_sweep_graphs_avg_F08.json --cells <nCell>+0

Where <nCell> is the number of cells we would like to visualize the latency results
It is possible to compare latency results of different number of cells in one figure. For instance, we can compare
the latency of 8 cells and 9 cells:

python3 compare.py --filename <sms_prach>_<sms_pdcch>_<sms_pucch>_<sms_pdsch>_
↪→<sms_pusch>_<sms_ssb>_sweep_graphs_avg_F08.json <sms_prach>_<sms_pdcch>_<sms_
↪→pucch>_<sms_pdsch>_<sms_pusch>_<sms_ssb>_sweep_graphs_avg_F08.json --cells 8+0␣
↪→9+0

In all cases, Aerial CUDA-Accelerated RAN offers the possibility of measuring the latency of all workloads in-
cluding:

• Dynamic and heterogeneous traffic (meaning that each cell is stimulated with different test vectors and every
slot sees a different allocation of the test vectors to the considered cells)

• Specific traffic models

1.5.4 Running cuBB End-to-End

Beyond the cuPHY layer 1 PHY software and its standalone examples, this section describes how to build and run the
cuBB software components shown in the block diagram below.

• The cuPHYController block operates between L2 and the RU fronthaul interface. It interfaces through cuPHY and
DOCA GPUNetIO + DPDK to operate the GPU and the NIC.

– L2 Adapter: This module communicates with L2 or TestMAC through FAPI messages over nvIPC. It receives
downlink and uplink scheduling commands from L2 and converts it to internal cuPHYDriver API calls.

– cuPHYDriver: This module distributes the UL and DL tasks among the available worker threads. It interacts
with GPU for the following tasks:

1.5. cuBB Quickstart Guide 263



Aerial CUDA-Accelerated RAN, Release 25-1

∗ To prepare and trigger a new UL/DL cuPHY processing through the cuPHY API.
∗ To launch UL packets ordering with CUDA kernel.

It interacts with DPU/NIC through the Fronthaul Driver to send and receive ORAN fronthaul packets (C/U-
plane).

• The RU Emulator emulates the network traffic of single or multiple RU. It validates the following:
– All packet timing for DL direction packets (i.e. DL-C, UL-C, DL-U) based on configurable ORAN packet

windows.
– It checks for all packets that the eCPRI packet structure is aligned to ORAN specs.
– It validates the IQ samples in the DL U-plane payload and expected section sizes for different compression

methods.
– It validates the BFW IQ samples in DL/UL C-plane, and RE mask in DL-C for CSI-RS/PDSCH.
– It validates UL-C section information for PUCCH/PUSCH/PRACH/SRS and responds with corresponding

UL U-plane.
• The TestMAC simulates the L2 and provides the FAPI interface over nvIPC. It validates the following:

– It calculates the expected throughput data from the launch pattern and TVs and print to console. Then a
python script can be used to validate the throughput of both TestMAC and RU. The throughput data include:
Prmb/HARQ/SR/CSI/SRS number, channel numbers, DL/UL data rate. Unit is number per seconds.

– It validates the UL FAPI message data structure and TB buffers by comparing with the preloaded data from
TVs.

– It validates the UL FAPI timing (The number of slots that the UL FAPI messages expect to receive).
The cuPHYController is exercised with an environment between the RU Emulator and the TestMAC.

The L1/L2 interface is based on the 5G FAPI 222.10.02 with partial 222.10.04 defined by the Small Cell Forum (SCF).
For the supported message and PDU types and exceptions, refer to cuBB Release Notes.

264 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Building the cuBB End-to-End

The following procedure describes the steps for building the end-to-end components in Aerial cuBB.
1. Inside the cuBB container, go to the SDK folder:

$ cd /opt/nvidia/cuBB

2. Create the build directory with build options:
-DSCF_FAPI_10_04=ON to enable the supported FAPI 10.04 fields (for example, SRS).
-DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON to run Test Mode (TM) tests.
-DENABLE_20C=ON to run more than 16 cells on Grace Hopper MGX system
-DENABLE_64C=ON to run 40 cells on Grace Hopper MGX system
-DENABLE_MODCOMP=ON to run Modulation compression tests

Note

The compile time flag DYNAMIC_SFN_SLOT has been replaced by the l2_adapter yaml startup time op-
tion enableTickDynamicSfnSlot. The default is 1 (Dynamic SFN slot enabled) if this field is not present in
the l2_adapter yaml. It is no longer necessary to run cmake with the -DDYNAMIC_SFN_SLOT=ON/OFF
flag. The same binaries can be used in RU emulator configuration and eLSU/O-RU configuration. The DY-
NAMIC_SFN_SLOT option has been removed entirely from CMakeLists.txt since Aerial 23-4 release.

For example, to run F08 performance benchmarking, use the following CMake command:

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -
↪→DSCF_FAPI_10_04=ON -DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON

To run 20C test on Grace Hopper MGX system, use the following CMake command:

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -
↪→DSCF_FAPI_10_04=ON -DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON -DENABLE_20C=ON

To run 40C test on Grace Hopper MGX system, use the following CMake command:

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -
↪→DSCF_FAPI_10_04=ON -DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON -DENABLE_64C=ON

To run Modulation compression tests, use the following CMake command:

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -
↪→DSCF_FAPI_10_04=ON -DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON -DENABLE_MODCOMP=ON

To build with default option, use the following CMake command:

$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native

The following are supported build variants:
FAPI 10.02

1.5. cuBB Quickstart Guide 265



Aerial CUDA-Accelerated RAN, Release 25-1

RU Type \ Build Options Default (no build flag)
RU emulator: No build flag; instead,
enableTickDynamicSfnSlot: 0 is
set in the l2_adapter YAML file

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native

Keysight eLSU: Default (no build flag)
cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native

Enable FAPI 10.04

RU Type \ Build Options DSCF_FAPI_10_04=ON
RU emulator: No build flag; instead,
enableTickDynamicSfnSlot: 0 is
set in the l2_adapter YAML file

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native -DSCF_
↪→FAPI_10_04=ON

Keysight eLSU: Default (no build flag) N/A

Enable TestMode

RU Type \ Build Options DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON
RU emulator: No build flag; instead,
enableTickDynamicSfnSlot: 0 is
set in the l2_adapter YAML file

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native -DENABLE_
↪→CONFORMANCE_TM_PDSCH_PDCCH=ON

Keysight eLSU: Default (no build flag) N/A

Enable 20C on Grace Hopper MGX

RU Type \ Build Options DENABLE_20C=ON
RU emulator: No build flag; instead,
enableTickDynamicSfnSlot: 0 is
set in the l2_adapter YAML file

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native
-DSCF_FAPI_10_04=ON``
-DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON
-DENABLE_20C=ON

Keysight eLSU: Default (no build flag) N/A

Enable 40C on Grace Hopper MGX

266 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

RU Type \ Build Options DENABLE_64C=ON
RU emulator: No build flag; instead,
enableTickDynamicSfnSlot: 0 is
set in the l2_adapter YAML file

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_
↪→FILE=cuPHY/cmake/toolchains/native
-DSCF_FAPI_10_04=ON``
-DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON
-DENABLE_64C=ON

Keysight eLSU: Default (no build flag) N/A

Note

When building for E2E test, “-DENABLE_L2_SLT_RSP=ON” is enabled by default in the cmake build op-
tions. It requires the L2 to support the vendor-specific message “SLOT.response”. If the L2 doesn’t support it,
“-DENABLE_L2_SLT_RSP=OFF” must be included in the cmake build option to turn off this feature in L1.
ENABLE_L2_SLT_RSP=ON is recommended.

3. Build the Aerial cuBB components as follows.
To build all Aerial cuBB components, use these commands:

$ cd ${cuBB_SDK}
$ cmake --build build

To build only the cuPHY, use these commands:

$ cd ${cuBB_SDK}/cuPHY
$ cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/toolchains/native
$ cmake --build build

To build only the Test MAC, use these commands:

$ cd ${cuBB_SDK}
$ cmake --build build -t test_mac

To build only the cuPHY controller, use these commands:

$ cd ${cuBB_SDK}
$ cmake --build build -t cuphycontroller_scf

To build only the cuPHY driver, use these commands:

$ cd ${cuBB_SDK}
$ cmake --build build -t cuphydriver

To build only the RU emulator, use these commands:

$ cd ${cuBB_SDK}
$ cmake --build build -t ru_emulator

To compile the Aerial code in the container on a devkit or Dell R750 machine that has isolcpus restricting cores,
you can override isolcpus using the following command: The example command uses cores 10-20.

1.5. cuBB Quickstart Guide 267



Aerial CUDA-Accelerated RAN, Release 25-1

$ sudo chrt -r 1 sudo -u aerial taskset -c 10-20 cmake --build build

nvlog Configuration

Aerial-SDK use nvlog as logger. It is based on the opensource FMT logger. Configuration file is located at ./cuPHY/
nvlog/config/nvlog_config.yaml.
Log files are stored at /tmp directory by default and the path can be overridden by environment variable
AERIAL_LOG_PATH.
Maximum log file size can be configured by max_file_size_bytes to avoid exhausting the system disk storage.
To configure global log level, set “shm_log_level: <level>”. To configure log level for a specific tag, add a “shm_level:
<level>” line under the tag name line. As an example, below configuration sets global log level to 3 - CONSOLE level
and sets “FH.LATE_PACKETS” tag to 5 - INFO level.

# log files stored at /tmp directory (default)
# log file path can be customized using environment variable $AERIAL_LOG_PATH
# Log levels: 0 - NONE, 1 - FATAL, 2 - ERROR, 3 - CONSOLE, 4 - WARNING, 5 - INFO, 6 -␣
↪→DEBUG, 7 - VERBOSE

nvlog:
shm_log_level: 3 # Global log level
max_file_size_bytes: 50000000000 # Size in bytes The rotating log files in /tmp␣

↪→(default)
nvlog_tags:
- 0: "" # Reserve number 0 for no tag print

shm_level: 5 # Example: overlay shm_log_level for a tag

- 621: "FH.LATE_PACKETS"
shm_level: 5

Updating Configuration Files for End-to-End

This section describes the config parameters that you can modify to run end-to-end.

Server #1 (to Run TestMAC and cuPHYController)

There are several common configurations. Check and edit the following parameters in the .yaml file:
1. Configure the NIC address in the following configuration files depending on the setup you are using, these are the

default files provided:
• cuphycontroller_F08_CG1.yaml

• cuphycontroller_F08_R750.yaml

• cuphycontroller_nrSim_SCF.yaml

2. Edit the NIC PCIe address to match the NIC hardware PCIe address. For example, the FH NIC on R750 gNB
uses PCIe address 0000:cc:00.0:

$ sed -i "s/ nic:.*/ nic: 0000:cc:00.0/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_R750.yaml

268 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

3. Check the GPU ID for the GPU that is sharing the PCIe switch with the NIC. The gpus parameter shown below
has a default value of 0 for a GPU ID of 0. If GPU 0 is not the GPU you want to use, replace 0 in the sed command
line and run it:

$ sed -i "/gpus:/{n;s/.*/    - 0/}" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_*.yaml

If the system has only one GPU card, you can keep the default setting of 0.
To identify which GPU is sharing the PCIe switch with the NIC, use the following command:

$ nvidia-smi topo -m

In the output, look for the GPU connected to the NIC with connection type of PIX (where they intersect in the
table). In the example below, GPU 0 in the column is the one with the PIX intersecting with Mellanox mlx5_0 and
mlx5_1. Use GPU ID value of 0 for the .yaml gpus parameter.

GPU0 mlx5_0 mlx5_1 CPU Affinity
GPU0 X PIX PIX 0-23
mlx5_0 PIX X PIX
mlx5_1 PIX PIX X

The meaning of PIX is:

X = Self
SYS = Connection traversing PCIe and the SMP interconnect between NUMA nodes (e.
↪→g., QPI/UPI)
NODE = Connection traversing PCIe and the interconnect between PCIe Host Bridges␣
↪→within a NUMA node
PHB = Connection traversing PCIe and a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe␣
↪→Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks

Note

Aerial-SDK expects the set of eAxCid ports to be the same between DL and UL channels (excluding PRACH). Make
sure that the same set of port indices in the YAML configuration file are configured for DL and UL channels. For
example, if the set of port indices [0,8,1,2] are configured for PDSCH, the same setting should be used for PDCCH,
SSB/PBCH, and CSI-RS. Similarly, if the set of port indices [0,8] are configured for PUSCH, the same set of indices
should be used for PUCCH. The number of eAxCid ports between DL and UL channels does not need to be the same.

To enable early HARQ, set pusch_subSlotProcEn to 1 in cuphycontroller config:

sed -i "s/ pusch_subSlotProcEn:.*/ pusch_subSlotProcEn: 1/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_*.yaml

To activate early HARQ, set uciIndPerSlot to 2 in test_mac_config.yaml:

sed -i "s/ uciIndPerSlot :.*/ uciIndPerSlot : 2/" ${cuBB_SDK}/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml

1.5. cuBB Quickstart Guide 269



Aerial CUDA-Accelerated RAN, Release 25-1

Note

This split UCI.indication with early-HARQ feature is enabled only in FAPI 10.04. To enable this feature, build with
compilation flag -DSCF_FAPI_10_04=ON. This feature is enabled at cuPHY, if pusch_subSlotProcEn is set to 1 in
cuphycontroller config. But cuPHY does not report early HARQ for UCI on PUSCH until L2 sends config.request with
TLV 0x102B indicationInstancesPerSlot.UCI.indication = 2. To instruct testMac to send this TLV in config.request
set uciIndPerSlot to 2 in test_mac_config.yaml.
sed -i "s/ pusch_subSlotProcEn:.*/ pusch_subSlotProcEn: 1/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_*.yaml
sed -i "s/ uciIndPerSlot :.*/ uciIndPerSlot : 2/" ${cuBB_SDK}/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml

sed -i "s/ mCh_segment_proc_enable:.*/ mCh_segment_proc_enable: 1/" ${cuBB_SDK}/
↪→cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_*.yaml
sed -i "s/ channel_segment_timelines:.*/ channel_segment_timelines: 1/"${cuBB_SDK}/
↪→cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

Note

To enable enhanced L1-L2 interace, early-HARQ feature must be enabled as above and compiled with FAPI 10.04.
To enable this feature, build with compilation flag -DSCF_FAPI_10_04=ON. To instruct testMac to send TLV CON-
FIG_TLV_VENDOR_CHAN_SEGMENT (0xA018), set channel_segment_timelines to 1 in test_mac_config.yaml.
The expectation is that there is an Error.Indication sent when the timelines don’t meet the processing from cuPHY-
Driver.

Server #2 (to Run RU Emulator)

The RU emulator reads a configuration file located at: $cuBB_SDK/cuPHY-CP/ru-emulator/config/
config.yaml.
Before running the ru-emulator, modify the config.yaml to match your server system hardware settings.
There are two parameters to modify in the config.yaml file:

# PCI Address of NIC interface used
nic_interface: b5:00.0
# MAC address of cuPHYController port in use on server#1
peerethaddr: 1c:34:da:ff:ff:fe

Update the nic_interface and peerethaddr according to the systems used. Look up the addresses of these NIC
interfaces.

• nic_interface is the NIC port PCIe bus address on the system running RU emulator. Replace 0000:b5:00.0
with the PCIe address of NIC for use.

• peerethaddr is the NIC port MAC address on the system running cuPHYController. Replace the MAC address
with the MAC address of the NIC used in Server#1.

Replace 0000:b5:00.0 with the PCIe address of NIC port for use:

$ sed -i "s/nic_interface.*/nic_interface: 0000:b5:00.0/" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

Replace the MAC address with the MAC address of the NIC port used in Server#1:

270 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

$ sed -i "s/peerethaddr.*/peerethaddr: 1c:34:da:ff:ff:fe/" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

Run the following command on the host to identify the correct PCIe address and the MAC address.

$ sudo lshw -c network -businfo

Bus info Device Class Description
=========================================================
pci@0000:05:00.0 eno1 network I210 Gigabit Network Connection
pci@0000:06:00.0 enp6s0 network I210 Gigabit Network Connection
pci@0000:b5:00.0 ens6f0 network MT2892 Family [ConnectX-6 Dx]
pci@0000:b5:00.1 ens6f1 network MT2892 Family [ConnectX-6 Dx]

vethdf87878 network Ethernet interface

To find the MAC address of the NIC port, run the following command:

$ ifconfig -a
…
68: ens6f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1514 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 1c:34:da:ff:ff:fe brd ff:ff:ff:ff:ff:ff
inet6 fe80::bace:f6ff:fe33:fe16/64 scope link

valid_lft forever preferred_lft forever
69: ens6f1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group␣
↪→default qlen 1000

link/ether 1c:34:da:ff:ff:ff brd ff:ff:ff:ff:ff:ff
inet6 fe80::bace:f6ff:fe33:fe17/64 scope link

valid_lft forever preferred_lft forever

The MAC addresses of the NIC port are under the link/ether label.

Running Environment Initialization for End-to-End

This section describes how to run the various cuBB software components together. Here, the cuBB uses the GPU and the
NIC for cuPHY L1 compute and for network data traffic acceleration.
A network connection is used between the two servers to physically connect the RU emulator and the cuBB gNB software
stack.

To verify that PTP4L and PHC2SYS services are running, run the following commands on the host:

$ sudo systemctl status ptp4l.service
…
# check that the service is active and has low rms value (<30):
$ sudo systemctl status phc2sys.service

Verify the System Clock is synchronized and that NTP is off:

1.5. cuBB Quickstart Guide 271



Aerial CUDA-Accelerated RAN, Release 25-1

$ timedatectl
Local time: Thu 2022-02-03 22:30:58 UTC

Universal time: Thu 2022-02-03 22:30:58 UTC
RTC time: Thu 2022-02-03 22:30:58

Time zone: Etc/UTC (UTC, +0000)
System clock synchronized: yes

NTP service: inactive
RTC in local TZ: no

Running Examples for End-to-End (SCF FAPI)

This section describes how to run the cuBB end-to-end using the SCF FAPI.
There are three use case examples:

• Use case 1: testMAC + SCF L2 Adapter Standalone
• Use case 2: testMAC + cuPHYController_SCF + RU Emulator
• Use case 3: testMAC + cuPHYController_SCF + RU Emulator P5G PRACH

Running testMAC + SCF L2 Adapter Standalone

1. Build all the modules as described in Building cuBB for End-to-End.
2. Run l2adapter in standalone mode:

sudo $cuBB_SDK/build/cuPHY-CP/scfl2adapter/scf_app/cuphycontroller\
/l2_adapter_cuphycontroller_scf

3. Run testMAC after l2adapter starts.
You can run different cases:

sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac <Fxx> <xC> [-- channels
↪→<CHANNELS>] --no-validation

Examples:

sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac F08 1C --no-validation
sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac F08 2C --no-validation
sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac F08 3C --no-validation
sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac F08 4C --no-validation

4. Test result and test log: In the testMAC terminal output below, you can see the TTI tick counter and throughput:

08:32:15.793986 Cell 0 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps 400 Slots␣
↪→| Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 150 | INV 0
08:32:15.793996 Cell 1 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps 400 Slots␣
↪→| Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 150 | INV 0
08:32:15.794000 Cell 2 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps 400 Slots␣
↪→| Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 150 | INV 0
08:32:15.794003 Cell 3 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps 400 Slots␣
↪→| Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 150 | INV 0

272 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Running testMAC + cuPHYController_SCF + RU Emulator

Note

Before running the cuBB test case, restart MPS in each run. Run the following commands to export environment
variables and restart MPS in the cuphycontroller terminal (do not run this for test_mac and ru-emulator).
# Export variables
export CUDA_DEVICE_MAX_CONNECTIONS=8
export CUDA_MPS_PIPE_DIRECTORY=/var
export CUDA_MPS_LOG_DIRECTORY=/var

# Stop existing MPS
sudo -E echo quit | sudo -E nvidia-cuda-mps-control

# Start MPS
sudo -E nvidia-cuda-mps-control -d
sudo -E echo start_server -uid 0 | sudo -E nvidia-cuda-mps-control

The nvlog level can be changed in $cuBB_SDK/cuPHY/nvlog/config/nvlog_config.yaml if needed. For
example, to change to console only log level:

name: phy
- shm_log_level:5 # SHM log level
+ shm_log_level: 3 # SHM log level

Execute the following command to disable GPU (if there is one) for ru_emulator.

export CUDA_VISIBLE_DEVICES=""

Export might not work in some system environments. In this case, add the value before command as shown in the following
example:

sudo -E CUDA_VISIBLE_DEVICES="" ./ru_emulator xxx

Without CUDA_VISIBLE_DEVICES=””, the following log is seen when ru_emulator is started with a GPU on the host.
It does not affect the functionality.

15:15:56.251444 [FH.FLOW] [/opt/nvidia/cuBB/cuPHY-CP/aerial-fh-driver/lib/flow.cpp:
↪→201] cuda failed with invalid argument

Configure the workers in ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
cuphycontroller_F08_CG1.yaml to for the CPUs to use in the L1 cuPHYDriver:

workers_ul:
- 5
- 6

workers_dl:
- 11
- 12
- 13

1.5. cuBB Quickstart Guide 273



Aerial CUDA-Accelerated RAN, Release 25-1

Running the F08 Test Cases

Configure the cell_group in ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
cuphycontroller_F08_CG1.yaml: Set cell_group to 1 and set cell_group_num to the number of cells to
run.
For example, to run 1C:

cell_group: 1
cell_group_num: 1

To run 2C:

cell_group: 1
cell_group_num: 2

To run 3C:

cell_group: 1
cell_group_num: 3

To run 4C:

cell_group: 1
cell_group_num: 4

F08 traffic patterns:
For Patterns 59C and 60C, you must enable the OTA conformance features in cuphycontroller_F08_CG1.yaml:

pusch_tdi: 1
pusch_cfo: 1
pusch_to: 1
pusch_dftsofdm: 0
pusch_select_eqcoeffalgo: 1
puxch_polarDcdrListSz: 8

For Patterns 60C you must set the pusch_nMaxPrb for each cell in cuphycontroller_F08_CG1.yaml:

pusch_nMaxPrb: 136

For Pattern 61, you must set the pusch_nMaxPrb for each cell in cuphycontroller_F08_CG1.yaml, this allows
us to test 20C on Grace Hopper system:

pusch_nMaxPrb: 36

23-4 onwards supports early HARQ processing. For the 59C and 60C patterns, enable early HARQ processing with the
following configurations:

# For early HARQ
sed -i 's/uciIndPerSlot :.*/uciIndPerSlot : 2/' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/
↪→test_mac_config.yaml
sed -i "s/pusch_subSlotProcEn:.*/pusch_subSlotProcEn: 1/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

# For early non HARQ
sed -i 's/uciIndPerSlot :.*/uciIndPerSlot : 0/' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/

(continues on next page)

274 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→test_mac_config.yaml
sed -i "s/pusch_subSlotProcEn:.*/pusch_subSlotProcEn: 0/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

# For Enhanced L1 - L2 Interface
sed -i 's/uciIndPerSlot :.*/uciIndPerSlot : 2/' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/
↪→test_mac_config.yaml
sed -i "s/pusch_subSlotProcEn:.*/pusch_subSlotProcEn: 1/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

sed -i "s/ mCh_segment_proc_enable:.*/ mCh_segment_proc_enable: 1/" ${cuBB_SDK}/cuPHY-
↪→CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml
sed -i "s/ channel_segment_timelines:.*/ channel_segment_timelines: 1/"${cuBB_SDK}/
↪→cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

# Run F08 1C only as Enhanced L1 - L2 Interface is intended for 1 Cell.

For 24-3 and onward, patterns 59C peak and 60C average are the latest patterns used for performance testing.
For performance testing, use the following settings for testMAC to adjust the schedule time of the FAPI command, this
requires a builder thread:

# testMAC configs for scheduling FAPI messages with appropriate L2 delay, also␣
↪→configure testMAC to stop after 600k slots:
sed -i 's/schedule_total_time:.*/schedule_total_time: 455000/' ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml
sed -i 's/builder_thread_enable:.*/builder_thread_enable: 1/' ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml
sed -i 's/fapi_delay_bit_mask:.*/fapi_delay_bit_mask: 0xF/' ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml

# optionally configure the test duration with the number of test_slots. Keep test_
↪→slots: 0 to run indefinitely.
sed -i 's/test_slots: 0/test_slots: 600000/' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/
↪→test_mac_config.yaml

# testMAC core configs, use free cores on the same NUMA, for example, the following␣
↪→settings can be applied to an R750 using NUMA 1:
sed -i -z 's/ cpu_affinity:\s*[0-9]\+/ cpu_affinity: 35/2' ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml
sed -i -z 's/ cpu_affinity:\s*[0-9]\+/ cpu_affinity: 33/1' ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml

You must enable the PUSCH conformance flags and RU Emulator validation to account for beamforming:

# cuphycontroller configs for PUSCH conformance flags:
sed -i "s/pusch_tdi:.*/pusch_tdi: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/pusch_cfo:.*/pusch_cfo: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/pusch_to:.*/pusch_to: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/puxch_polarDcdrListSz:.*/puxch_polarDcdrListSz: 8/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

# RU emulator beamforming validation config

(continues on next page)

1.5. cuBB Quickstart Guide 275



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sed -i "s/enable_beam_forming:.*/enable_beam_forming: 1/" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

# RU emulator 20C performance configurations on running a R750 system:
sed -i "s/ul_core_list.*/ul_core_list: [5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,
↪→37,39,41,43]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml
sed -i "s/dl_core_list.*/dl_core_list: [4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,
↪→36,38,40,42]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml
sed -i "s/aerial_fh_split_rx_tx_mempool.*/aerial_fh_split_rx_tx_mempool: 1/" ${cuBB_
↪→SDK}/cuPHY-CP/ru-emulator/config/config.yaml
sed -i "s/low_priority_core.*/low_priority_core: 45/" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

To test 4T 4R TDD 7 beams series 59 and 60 with 80 slot patterns have been generated:
• Series 59c: 20C peak cells, 7 beams, Full BW CSI-RS, OTA, 4 UL streams, 18 PUCCH UCIs + 6 PUSCH
UCIs freq-multiplexed

– PDSCH: 6 UEG / slot, MCS 27, 45 PRBs / UEG, (42 PRBs / UEG when having SSB)
– PUSCH: 6 UEG / slot, MCS 27, 42 PRBs / UEG, (34 PRBs / UEG when having 4 PRACH, 36 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 4 HARQ, 37 CSI-1, 5 CSI-2
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 18 UE frequency multiplexed (PF1)
– Frame 0

∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS
∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3
∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number

276 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number
• Series 59d: 20C peak cells, 7 beams, Full BW CSI-RS, OTA, 4 UL streams, 24 PUCCH UCIs
freq-multiplexed:

– PDSCH: 6 UEG / slot, MCS 27, 45 PRBs / UEG, (42 PRBs / UEG when having SSB)
– PUSCH: 6 UEG / slot, MCS 27, 41 PRBs / UEG, (33 PRBs / UEG when having 4 PRACH, 35 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 0 HARQ, 37 CSI-1, 5 CSI-2
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 24 UE frequency multiplexed (PF1)
– Frame 0

∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS
∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3
∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number
∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number

• Series 59e: 30C peak cells, 7 beams, Full BW CSI-RS, 1 dmrs, 4 UL streams, 18 PUCCH UCIs + 6
PUSCH UCIs freq-multiplexed

– Same settings as 59c expect that only 1 dmrs.
– PDSCH: 6 UEG / slot, MCS 27, 45 PRBs / UEG, (42 PRBs / UEG when having SSB)
– PUSCH: 6 UEG / slot, MCS 27, 42 PRBs / UEG, (34 PRBs / UEG when having 4 PRACH, 36 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 4 HARQ, 37 CSI-1, 5 CSI-2
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 18 UE frequency multiplexed (PF1)

1.5. cuBB Quickstart Guide 277



Aerial CUDA-Accelerated RAN, Release 25-1

– TRS/CSI-RS in symbol 6+10 / 12 for even case number
– TRS/CSI-RS in symbol 5+9 / 13 for odd case numbe

• Series 60c: 7 beams, 100 MHz (273 PRBs), 20C, ave cell, OTA, disjoint PDSCH and CSIRS, 4 UL
streams, 18 PUCCH UCIs freq-multiplexed

– PDSCH: 6 UEG / slot, MCS 27, 22 PRBs / UEG, (18 PRBs / UEG when having ssb)
– PUSCH: 6 UEG / slot, MCS 27, 19 PRBs / UEG, (11 PRBs / UEG when having 4 PRACH, 13 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 4 HARQ, 37 CSI-1, 5 CSI-2 (early HARQ enabled)
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 18 UE frequency multiplexed (PF1)
– Frame 0

∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS
∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3
∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number
∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number

• Series 60d: 7 beams, 100 MHz (273 PRBs), 20C, ave cell, OTA, disjoint PDSCH and CSIRS, 4 UL
streams, 24 PUCCH UCIs freq-multiplexed:

– PDSCH: 6 UEG / slot, MCS 27, 22 PRBs / UEG, (18 PRBs / UEG when having ssb)
– PUSCH: 6 UEG / slot, MCS 27, 18 PRBs / UEG, (10 PRBs / UEG when having 4 PRACH, 12 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 0 HARQ, 37 CSI-1, 5 CSI-2 (early HARQ enabled)
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 24 UE frequency multiplexed (PF1)

278 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

– Frame 0
∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS
∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3
∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number
∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number

• Series 62c: 30C peak cells, 7 beams, Full BW CSI-RS, OTA, 4 UL streams, 18 PUCCH UCIs + 6 PUSCH
UCIs freq-multiplexed, PUSCH in S slot

– 59c + 4 symbols of pusch in S slot
– PDSCH: 6 UEG / slot, MCS 27, 45 PRBs / UEG, (42 PRBs / UEG when having SSB)
– PUSCH: 6 UEG / slot, MCS 27, 42 PRBs / UEG, (34 PRBs / UEG when having 4 PRACH, 36 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 4 HARQ, 37 CSI-1, 5 CSI-2
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 18 UE frequency multiplexed (PF1)
– Frame 0

∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS

1.5. cuBB Quickstart Guide 279



Aerial CUDA-Accelerated RAN, Release 25-1

∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3
∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number
∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number

• Series 63c: 7 beams, 100 MHz (273 PRBs), 20C, ave cell, OTA, disjoint PDSCH and CSIRS, 4 UL
streams, 18 PUCCH UCIs freq-multiplexed, PUSCH in S slot

– 59c + 4 symbols of pusch in S slot
– PDSCH: 6 UEG / slot, MCS 27, 22 PRBs / UEG, (18 PRBs / UEG when having ssb)
– PUSCH: 6 UEG / slot, MCS 27, 19 PRBs / UEG, (11 PRBs / UEG when having 4 PRACH, 13 PRBs /

UEG when having 3 PRACH)
– UCI@PUSCH: 4 HARQ, 37 CSI-1, 5 CSI-2 (early HARQ enabled)
– PDCCH: 12 DCI / slot (6 DL + 6 UL)
– PUCCH: 18 UE frequency multiplexed (PF1)
– Frame 0

∗ Slot 0, 1, 2: ssb (2 blocks),
∗ Slot 3, ssb (1 block)
∗ Slot 6,8,10,16, TRS + CSIRS
∗ Slot 7,9,11,17, TRS
∗ Slot 5,15, PRACH

– Frame 1
∗ Slot 6,8,10, TRS + CSIRS
∗ Slot 7,9,11, TRS
∗ Slot 5,15, PRACH

– Frame 2
∗ Slot 0, 1, 2: ssb *2,
∗ Slot 3, ssb
∗ Slot 6,7,8,9,10,11, 16,17 TRS
∗ Slot 5,15, PRACH

– Frame 3

280 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

∗ Slot 6,7,8,9,10,11 TRS
∗ Slot 5,15, PRACH
∗ TRS/CSI-RS in symbol 6+10 / 12 for even case number
∗ TRS/CSI-RS in symbol 5+9 / 13 for odd case number

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 4C 59C
sudo ./ru_emulator F08 4C 59C

21:40:26.213585 WRN 2231 0 [RU] Cell 0 DL 1469.14 Mbps 1400 Slots | UL 213.84 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.91% UL_C_ON 100.00%␣
↪→|Seconds 459
21:40:26.213591 WRN 2231 0 [RU] Cell 1 DL 1469.14 Mbps 1400 Slots | UL 213.84 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.94% UL_C_ON 100.00%␣
↪→|Seconds 459
21:40:26.213595 WRN 2231 0 [RU] Cell 2 DL 1469.14 Mbps 1400 Slots | UL 213.84 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.92% UL_C_ON 100.00%␣
↪→|Seconds 459
21:40:26.213599 WRN 2231 0 [RU] Cell 3 DL 1469.14 Mbps 1400 Slots | UL 213.84 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.95% UL_C_ON 100.00%␣
↪→|Seconds 459

On R750 A100X DU system F08 4C with pattern 60 (average pattern):

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 4C 60C
sudo ./ru_emulator F08 4C 60C

22:01:12.039024 WRN 2375 0 [RU] Cell 0 DL 523.10 Mbps 1400 Slots | UL 94.65 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.99% UL_C_ON 100.00%␣
↪→|Seconds 471
22:01:12.039030 WRN 2375 0 [RU] Cell 1 DL 523.10 Mbps 1400 Slots | UL 94.65 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.99% UL_C_ON 100.00%␣
↪→|Seconds 471
22:01:12.039034 WRN 2375 0 [RU] Cell 2 DL 523.10 Mbps 1400 Slots | UL 94.65 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.99% UL_C_ON 100.00%␣
↪→|Seconds 471
22:01:12.039037 WRN 2375 0 [RU] Cell 3 DL 523.10 Mbps 1400 Slots | UL 94.65 Mbps ␣
↪→400 Slots | PBCH 200 | PDCCH_UL 1600 | PDCCH_DL 1600 | CSI_RS 700 | PRACH ␣
↪→200 Slots | PUCCH 400 Slots | DL_C_ON 100.00% DL_U_ON 99.99% UL_C_ON 100.00%␣
↪→|Seconds 471

1.5. cuBB Quickstart Guide 281



Aerial CUDA-Accelerated RAN, Release 25-1

Simultaneous FH Port Test Configs with RU Emulator

The following TC can be tested with both FH ports:
• BFP9 2C 59c

To set up the two port test, you must set up the configurations appropriately.
You can choose between the following verified 2 port test topologies:

• 1 GH and 1 RU server
– GH P0 <-> RU P0
– GH P1 <-> RU P1

• 1 GH and 2 RU server
– GH P0 <-> RU 1 P0
– GH P1 <-> RU 2 P0

Note: For the scenario with 1 GH and 2 RU server, we need the three setups to be synchronized, i.e. with a FH switch
as the PTP master in between the three systems.
cuPHYController configuration:

nics:
- nic: 0000:01:00.0
mtu: 1514
cpu_mbufs: 196608
uplane_tx_handles: 64
txq_count: 48
rxq_count: 16
txq_size: 8192
rxq_size: 16384
gpu: 0

- nic: 0000:01:00.1
mtu: 1514
cpu_mbufs: 196608
uplane_tx_handles: 64
txq_count: 48
rxq_count: 16
txq_size: 8192
rxq_size: 16384
gpu: 0

In the cuPHYController cell configurations, you could set port that the cell would run traffic on:

cells:
- name: O-RU 0
[...]

nic: 0000:01:00.0
- name: O-RU 1
[...]

nic: 0000:01:00.1

For the first topology with a single RU emulator system, you could specify the NIC interfaces and the peer ethernet
addresses with the address of the DU ports, for example:

282 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

nics:
- nic_interface: 0000:cc:00.0
- nic_interface: 0000:cc:00.1

peers:
- peerethaddr: 48:b0:2d:a6:28:02 # MAC address of DU port 0
- peerethaddr: 48:b0:2d:a6:28:03 # MAC address of DU port 1

Similarly for RU emulator config, appropriately assign the NIC and peer addresses, based on the index in the lists defined
above:

cell_configs:
-
name: "Cell1"
peer: 0
nic: 0

-
name: "Cell2"
peer: 1
nic: 1

Running RU on a GH server

For running the RU on a GH server, please update the core bindings for the RU for the GH CPU numbering.
To support the 20C peak cell performance test cases, NUMA is not an issue, as an example, we can use the below core
assignments:
Note that 41 is skipped due to the PTP4L/PHC2SYS core binding.

ul_core_list: [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,␣
↪→23]
dl_core_list: [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 42,
↪→ 43, 44]
low_priority_core: 45
aerial_fh_dpdk_thread: 46

Note: Please be sure to include the “0000” in the PCIe nic_interface:

nics:
- nic_interface: 0000:01:00.0

Please build the RU emulator binary on the arm server, the execution command is the same as the above examples.

Running the nrSim Test Cases

PBCH

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 1901 --channels PBCH
sudo ./ru_emulator nrSim 1901 --channels PBCH
# Expect RU Emulator to report 100 PBCH per second

1.5. cuBB Quickstart Guide 283



Aerial CUDA-Accelerated RAN, Release 25-1

PDCCH_DL

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 2901 --channels PDCCH_DL
sudo ./ru_emulator nrSim 2901 --channels PDCCH_DL
# Expect RU Emulator to report 100 PDCCH_DL per second

PDSCH

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 3901 --channels PDSCH
sudo ./ru_emulator nrSim 3901 --channels PDSCH
# Expect RU Emulator to report 100 PDSCH per second

PUSCH

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7901 --channels PUSCH
sudo ./ru_emulator nrSim 7901 --channels PUSCH
# Expect testMAC to report 100 PUSCH per second

# PUSCH Mapping Type B
# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7258 --channels PUSCH
sudo ./ru_emulator nrSim 7258 --channels PUSCH
# Expect testMAC to report 100 PUSCH per second

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7259 --channels PUSCH
sudo ./ru_emulator nrSim 7259 --channels PUSCH
# Expect testMAC to report 100 PUSCH per second

#CSI P2
sed -i "s/enable_csip2_v3.*/enable_csip2_v3: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_nrSim_SCF.yaml
sed -i "s/enable_csip2_v3.*/enable_csip2_v3: 1/" $cuBB_SDK/cuPHY-CP/testMAC/testMAC/
↪→test_mac_config.yaml

# Restart MPS
sed -i "s/ uciIndPerSlot :.*/ uciIndPerSlot : 2/" ${cuBB_SDK}/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7599 --channels PUSCH
sudo ./ru_emulator nrSim 7599 --channels PUSCH
# Expect testMAC to report 100 PUSCH and 100 CSIP2 per second

# Restart MPS
sed -i "s/ uciIndPerSlot :.*/ uciIndPerSlot : 2/" ${cuBB_SDK}/cuPHY-CP/testMAC/

(continues on next page)

284 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→testMAC/test_mac_config.yaml
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7600 --channels PUSCH
sudo ./ru_emulator nrSim 7600 --channels PUSCH
# Expect testMAC to report 100 PUSCH and 100 CSIP2 per second

PRACH

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 5901 --channels PRACH
sudo ./ru_emulator nrSim 5901 --channels PRACH
# Expect testMAC to report 100 Preambles per second

# PRACH 16 PID/Slot and PRACH B4 4FDM
# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 5013 --channels PRACH
sudo ./ru_emulator nrSim 5013 --channels PRACH
Expect testMAC to receive 1600 Preambles per second

- Change tv_prach field as below in cuphycontroller_nrSim_SCF.yaml
tv_prach: TVnr_5013_PRACH_gNB_CUPHY_s1p0.h5

Expect 4 RO occasions in each slot in phy.log in sequence mentioned in below.
RO 0 - PrmbIndex (2,5,8,11)
RO 1 - PrmbIndex (14,17,20,23)
RO 2 - PrmbIndex (32,35,26,29)
RO 3 - PrmbIndex (38,41,44,47)

# grep -i "RO\|prmbIndex" phy.log
15:57:41.161874 I [DRV.PRACH] RO 0 SFN 599.01 Preambles num detected 4
15:57:41.161878 I [DRV.PRACH] SFN 599.01 #0 prmbIndex 2 prmbDelay 0.000000␣
↪→prmbPower -2.878487
15:57:41.161880 I [DRV.PRACH] SFN 599.01 #1 prmbIndex 5 prmbDelay 0.000000␣
↪→prmbPower -2.801307
15:57:41.161883 I [DRV.PRACH] SFN 599.01 #2 prmbIndex 8 prmbDelay 0.000000␣
↪→prmbPower -3.207683
15:57:41.161886 I [DRV.PRACH] SFN 599.01 #3 prmbIndex 11 prmbDelay 0.000000␣
↪→prmbPower -3.423241
15:57:41.161901 I [DRV.PRACH] RO 1 SFN 599.01 Preambles num detected 4
15:57:41.161904 I [DRV.PRACH] SFN 599.01 #0 prmbIndex 14 prmbDelay 0.000000␣
↪→prmbPower -4.193221
15:57:41.161906 I [DRV.PRACH] SFN 599.01 #1 prmbIndex 17 prmbDelay 0.000000␣
↪→prmbPower -4.011869
15:57:41.161909 I [DRV.PRACH] SFN 599.01 #2 prmbIndex 20 prmbDelay 0.000000␣
↪→prmbPower -3.471422
15:57:41.161912 I [DRV.PRACH] SFN 599.01 #3 prmbIndex 23 prmbDelay 0.000000␣
↪→prmbPower -3.552692
15:57:41.161924 I [DRV.PRACH] RO 2 SFN 599.01 Preambles num detected 4
15:57:41.161927 I [DRV.PRACH] SFN 599.01 #0 prmbIndex 32 prmbDelay 0.000000␣
↪→prmbPower -4.954414
15:57:41.161930 I [DRV.PRACH] SFN 599.01 #1 prmbIndex 35 prmbDelay 0.000000␣
↪→prmbPower -3.706564

(continues on next page)

1.5. cuBB Quickstart Guide 285



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
15:57:41.161933 I [DRV.PRACH] SFN 599.01 #2 prmbIndex 26 prmbDelay 0.000000␣
↪→prmbPower -4.333083
15:57:41.161935 I [DRV.PRACH] SFN 599.01 #3 prmbIndex 29 prmbDelay 0.000000␣
↪→prmbPower -3.994442
15:57:41.161945 I [DRV.PRACH] RO 3 SFN 599.01 Preambles num detected 4
15:57:41.161947 I [DRV.PRACH] SFN 599.01 #0 prmbIndex 38 prmbDelay 0.000000␣
↪→prmbPower -3.341729
15:57:41.161950 I [DRV.PRACH] SFN 599.01 #1 prmbIndex 41 prmbDelay 0.000000␣
↪→prmbPower -4.641103
15:57:41.161952 I [DRV.PRACH] SFN 599.01 #2 prmbIndex 44 prmbDelay 0.000000␣
↪→prmbPower -4.189767
15:57:41.161955 I [DRV.PRACH] SFN 599.01 #3 prmbIndex 47 prmbDelay 0.000000␣
↪→prmbPower -4.946166

NZP CSI_RS

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 4001 --channels CSI_RS
sudo ./ru_emulator nrSim 4001 --channels CSI_RS
# Expect RU Emulator to report 100 CSI_RS per second

PDSCH + ZP CSI_RS

To run TC 3323, 3338, and 3339, add --channels CSI_RS+PDSCH in the test_mac and ru_emulator
commands.

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 3323 --channels CSI_RS+PDSCH
sudo ./ru_emulator nrSim 3323 --channels CSI_RS+PDSCH
# Expect RU Emulator to count 100 CSI_RS and 100 PDSCH per second

Precoding

# Below steps are applicable to precoding test for PDSCH, PDCCH, PBCH, and CSI_RS
# In l2_adapter_config_nrSim_SCF.yaml, set enable_precoding to 1
sed -i -z "s/enable_precoding: 0/enable_precoding: 1/" $cuBB_SDK/cuPHY-CP/
↪→cuphycontroller/config/l2_adapter_config_nrSim_SCF.yaml
# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 3248 --channels PDSCH
# Reset enable_precoding to 0
sed -i -z "s/enable_precoding: 1/enable_precoding: 0/" $cuBB_SDK/cuPHY-CP/
↪→cuphycontroller/config/l2_adapter_config_nrSim_SCF.yaml

# In ru-emulator/config/config.yaml, set dl_approx_validation to 1
sed -i -z "s/dl_approx_validation: 0/dl_approx_validation: 1/1" $cuBB_SDK/cuPHY-CP/ru-
↪→emulator/config/config.yaml

(continues on next page)

286 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sudo ./ru_emulator nrSim 3248 --channels PDSCH
# Expect testMAC and RU Emulator both see 1.36 Mbps 100 Slots per second
# Reset dl_approx_validation to 0
sed -i -z "s/dl_approx_validation: 1/dl_approx_validation: 0/1" $cuBB_SDK/cuPHY-CP/ru-
↪→emulator/config/config.yaml

Note for 24-3 we need to enable oam_cell_ctrl_cmd on RU Emulator side for precoding-enabled nrSim test cases as well.

sed -i "s/oam_cell_ctrl_cmd:.*/oam_cell_ctrl_cmd: 1/" $cuBB_SDK/cuPHY-CP/ru-emulator/
↪→config/config.yaml

PUCCH HARQ

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 6001 --channels PUCCH
sudo ./ru_emulator nrSim 6001 --channels PUCCH
# Expect testMAC to report 100 HARQ indications and ru-emulator to report 100 PUCCH␣
↪→per second

PUCCH Format 2

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 6201 --channels PUCCH
sudo ./ru_emulator nrSim 6201 --channels PUCCH
# Expect testMAC to report 100 HARQ indications and ru-emulator to report 100 PUCCH␣
↪→per second

PUCCH HARQ/SR

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 6049 --channels PUCCH
sudo ./ru_emulator nrSim 6049 --channels PUCCH
# Expect testMAC to report 300 HARQ + 300 SR and ru-emulator to report 100 PUCCH per␣
↪→second

PUCCH Format 3

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 6301 --channels PUCCH
sudo ./ru_emulator nrSim 6301 --channels PUCCH
# Expect testMAC to report 100 HARQ indications and ru-emulator to report 100 PUCCH␣
↪→per second

1.5. cuBB Quickstart Guide 287



Aerial CUDA-Accelerated RAN, Release 25-1

UCI on PUSCH

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7501
sudo ./ru_emulator nrSim 7501
# Expect testMAC to report 100 HARQ/s and UL slots/s

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7502
sudo ./ru_emulator nrSim 7502
# Expect testMAC to report 100 HARQ/s and UL slots/s

# Restart MPS
#UCI on PUSCH CSI part 2
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 7517
sudo ./ru_emulator nrSim 7517 --channel PUSCH

For 7517-7519, 7524-26, 7528-29
# Expect testMAC to report 100 CSI part2/s and 100 UL slots/s
# Expect cuphycontroller to report 0 CRC for 100 slots/s and 1.61 Mbps UL throughput

For 7520-7523, 7527, 7530
# Expect testMAC to report 100 CSI part2/s
# Expect cuphycontroller to report 0 CRC for 100 slots/s

SRS

To enable FAPI 10.04 fields for the SRS test, add -DSCF_FAPI_10_04=ON in the cmake options and do a clean
build. The test cases for SRS validation are 8301 and 8302.

In cuphycontroller_nrSim_SCF.yaml - enable_srs: 1

# Restart MPS
# Running 8301
sudo ./ru_emulator nrSim 8301 --channels SRS or ./ru_emulator nrSim 8301 (default␣
↪→support all channels)
sudo ./test_mac nrSim 8301 --channels SRS or ./test_mac nrSim 8301 (default support␣
↪→all channels)
sudo -E ./cuphycontroller_scf nrSim_SCF
# Expect the testMac to report the number of received SRS is between 97 and 103 and␣
↪→INV values per second to be 0.
# If the INV Values are greater than 0, there is either a SRS report mismatch or SRS␣
↪→report parameter mismatch.

# Restart MPS
# Running 8302
sudo ./ru_emulator nrSim 8302 --channels SRS or ./ru_emulator nrSim 8302 (default␣
↪→support all channels)
sudo ./test_mac nrSim 8302 --channels SRS or ./test_mac nrSim 8302 (default support␣
↪→all channels)
sudo -E ./cuphycontroller_scf nrSim_SCF
# Expect the testMac to report the number of received SRS is between 97 and 103 and␣

(continues on next page)

288 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→INV values per second to be 0.
# If the INV Values are greater than 0, there is either a SRS report mismatch or SRS␣
↪→report parameter mismatch.

S-slot

# Restart MPS
sudo ./ru_emulator nrSim 90013 --channels 0x1ff
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 90013 --channels 0x1ff
# Expect RU Emulator to report 50 DL and PDCCH_DL per second, testMAC to report 50␣
↪→HARQ per second

# Restart MPS
sudo ./ru_emulator nrSim 90015 --channels 0x1ff
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 90015 --channels 0x1ff
# Expect RU Emulator to report 50 DL and PDCCH_DL per second, testMAC to report 50␣
↪→HARQ per second

Multiple SSB

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./test_mac nrSim 1104 --channels PBCH
sudo ./ru_emulator nrSim 1104 --channels PBCH
# Expect RU Emulator to report 100 PBCH per second

PUSCH TDI

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF_tdi
sudo ./test_mac nrSim 7411 --channels PUSCH
sudo ./ru_emulator nrSim 7411 --channels PUSCH
# Expect testMAC and RU Emulator both see 1.79 Mbps 100 Slots per second

PUSCH SINR and Noise

# For TCs 7265,7266,7268,7269,7271,7272
# Change cuphycontroller_nrSim_SCF.yaml file to have 8 eAxIds for PUSCH
eAxC_id_pusch: [8,0,1,2,3,4,5,6]
sed -i s/"eAxC_id_pusch: \\[8,0,1,2\\]/eAxC_id_pusch: \\[8,0,1,2,3,4,5,6\\
↪→]/1" $cuBB_SDK/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml

# For TCs 7264,7267,7270 no change to cuphycontroller_nrSim_SCF.yaml
# Restart MPS
sudo ./test_mac nrSim 7265 --channels PUSCH

(continues on next page)

1.5. cuBB Quickstart Guide 289



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sudo ./ru_emulator nrSim 7265 --channels PUSCH
# Revert if changed earlier
sed -i s/"eAxC_id_pusch: \\[8,0,1,2,3,4,5,6\\]/eAxC_id_pusch: \\[8,0,1,2\\
↪→]/1" $cuBB_SDK/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml

mSlot_mCell Test Cases

TCs 90001-90006,90011-90015, 90061-90063, 90700-90705 - TDD Pattern DSUUU TCs: 90061,90062, 90063 -
Multi-Slot SRS TCs: 90700, 90701, 90702, 90703, 90705

# nrSim config generation
cd ${cuBB_SDK}/cubb_scripts/autoconfig
python3 auto_controllerConfig.py -i ../../testVectors/ -t ../../cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml -o ../../cuPHY-CP/
↪→cuphycontroller/config
python3 auto_RuEmulatorConfig.py -i ../../cuPHY-CP/cuphycontroller/config -t ../../
↪→cuPHY-CP/ru-emulator/config/config.yaml -o ../../cuPHY-CP/ru-emulator/config

# backup default nrSim config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml.orig

# Use nrSim_SCF_900xx config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF_900xx.yaml $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/ru_emulator_config_900xx.yaml ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml
python3 auto_TestMacConfig.py -t ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
↪→orig -c 900xx -p CG1 -o ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

#For TCs 90061-90063, set pusch_aggr_per_ctx to 9, prach_aggr_per_ctx to 4 and ul_
↪→input_buffer_per_cell to 15 in cuphycontroller_nrSim_SCF.yaml
sed -i "s/ pusch_aggr_per_ctx:.*/ pusch_aggr_per_ctx: 9/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
sed -i "s/ prach_aggr_per_ctx:.*/ prach_aggr_per_ctx: 4/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
sed -i "s/ ul_input_buffer_per_cell:.*/ ul_input_buffer_per_cell: 15/" ${cuBB_SDK}/
↪→cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml

# For TCs, 90703 and 90704, set prach_aggr_per_ctx to 4 and ul_input_buffer_per_cell␣
↪→to 12 in cuphycontroller_nrSim_SCF.yaml
sed -i "s/ prach_aggr_per_ctx:.*/ prach_aggr_per_ctx: 4/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
sed -i "s/ ul_input_buffer_per_cell:.*/ ul_input_buffer_per_cell: 12/" ${cuBB_SDK}/
↪→cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./ru_emulator nrSim 900xx --channels 0x1ff
sudo ./test_mac nrSim 900xx --channels 0x1ff

(continues on next page)

290 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# Restore nrSim config file
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config.yaml

64T64R SRS + Dynamic Beamforming Weights + Static Beamforming Weights Test Cases

Here are the steps to build and run the 64T6R SRS and dynamic beamforming weights related tests.
Build options:

cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cmake/toolchains/native -DSCF_FAPI_10_
↪→04=ON
cmake --build build

Verify all of the following launch patterns for Dynamic DL-BFW+PDSCH, Dynamic UL-BFW+PUSCH, All channels
Static+Dynamic Beamforming Weight:
Basic full allocation:

1. 100 MHz DL 16 Layers (1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1) - 90090
2. 100 MHz UL 8 Layers 1+1+1+1+1+1+1+1 layer - 90091
3. 100 MHz DL 8 PDU SRS - 8514
4. 100 MHz DL 1 layer - 90092
5. 100 MHz UL 1 layer - 90093
6. 100 MHz DL 2 layers - 90094
7. 100 MHz UL 2 layers - 90095
8. 100 MHz DL 1+1 layers - 90096
9. 100 MHz UL 1+1 layers - 90097

10. 100 MHz DL 2+2 layers - 90098
11. 100 MHz UL 2+2 layers - 90099
12. 100 MHz DL 1+1+1+1 layers - 90100
13. 100 MHz UL 1+1+1+1 layers - 90101
14. 100 MHz DL 2+2+2+2 layers - 90102
15. 100 MHz UL 1+1+1+1+1+1+1+1 layers - 90110
16. 100 MHz DL 2+2+2+2+2+2+2+2 layers - 90111
17. 100 MHz UL 2+2+2+2 layers - 90112
18. 100 MHz DL 4+4+4+4 layers - 90113
19. 100 MHz DL 16 Layers (1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1) + UL 8 Layers (1+1+1+1+1+1+1+1) + SRS

- 90103
20. 100 MHz DL 1 layer + UL 1 layer + SRS - 90104

1.5. cuBB Quickstart Guide 291



Aerial CUDA-Accelerated RAN, Release 25-1

21. 100 MHz DL 2 layers + UL 2 layers + SRS - 90105
22. 100 MHz DL 1+1 layers + UL 1+1 layer + SRS - 90106
23. 100 MHz DL 2+2 layers + UL 2+2 layers + SRS - 90107
24. 100 MHz DL 1+1+1+1 layers + UL 1+1+1+1 layers + SRS - 90108
25. 100 MHz DL 2+2+2+2 layers + UL 1+1+1+1 layers + SRS - 90109
26. 100 MHz UL 1+1+1+1+1+1+1+1 layers + DL 2+2+2+2+2+2+2+2 layers + SRS - 90114
27. 100 MHz UL 2+2+2+2 layer + DL 4+4+4+4 layers + SRS - 90115

Multiple UE groups with one BWP:
1. 100 MHz UL 2 UE grps, same layers, prb sizes, start prb - 90116
2. 100 MHz DL 2 UE grps, same layers, prb sizes, start prb - 90117
3. 100 MHz UL 2 UE grps. Different prb sizes. - 90118
4. 100 MHz DL 2 UE grps. Different prb sizes. - 90119
5. 100 MHz UL 2 UE grps. Different start prbs. - 90120
6. 100 MHz DL 2 UE grps. Different start prbs. - 90121
7. 100 MHz UL 2 UE grps. Different layers. - 90122
8. 100 MHz DL 2 UE grps. Different layers. - 90123
9. 100 MHz UL 2 UE grps. All prms different. - 90124

10. 100 MHz DL 2 UE grps. All prms different. - 90125
11. 100 MHz UL 4 UE grps. all different layers. - 90126
12. 100 MHz DL 4 UE grps. all different layers. - 90127
13. 100 MHz UL 8 UE grps - 90128
14. 100 MHz DL 8 UE grps - 90129
15. 100 MHz UL + DL 2 UE grps, same layers, prb sizes, start prb + SRS - 90130
16. 100 MHz UL + DL 2 UE grps. Different prb sizes + SRS - 90131
17. 100 MHz UL + DL 2 UE grps. Different start prbs. + SRS - 90132
18. 100 MHz UL + DL 2 UE grps. Different layers. + SRS - 90133
19. 100 MHz UL + DL 2 UE grps. All prms different. + SRS - 90134
20. 100 MHz UL + DL 4 UE grps. all different layers. + SRS - 90135
21. 100 MHz UL + DL 8 UE grps + SRS - 90136

Flexible PRG size/PRB number:
1. 100 MHz DL 8 layer partial PRB allocation - 90137
2. 100 MHz UL 4 layer partial PRB allocation - 90138
3. 100 MHz DL partial PRB allocation - 90139
4. 100 MHz UL partial PRB allocation - 90140
5. 100 MHz DL 8 layer + UL 4 layer partial PRB allocation + SRS - 90143
6. 100 MHz DL + UL partial PRB allocation + SRS - 90144

292 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Multiple PRG sizes:
1. 100MHz 64 PRBs, prgSize=4 UL - 90141
2. 100MHz 64 PRBs, prgSize=4 DL - 90142
3. prgSize_SRS != prgSize_BFW DL - 90146
4. prgSize_SRS != prgSize_BFW UL - 90147
5. 100MHz 64 PRBs, prgSize=4 UL + DL + SRS - 90145
6. prgSize_SRS != prgSize_BFW DL + UL + SRS - 90148

Dynamic + Static Beamforming:
1. All Channels UEG0 (static, 1 UE) - 90606
2. All Channels UEG0 (static, 1 UE) + UEG1 (static, 1 UE) - 90607
3. All Channels UEG0 (dynamic, 4 UEs) + UEG1 (dynamic, 1 UE) + UEG2 (static, 1 UE) - 90608
4. All Channels UEG0 (dynamic, 1 UE) + UEG1 (static, 1 UE) - 90609
5. All Channels UEG0 (dynamic, 2 UEs) + UEG1 (static, 1 UE) - 90610
6. All Channels DL(dynamic, 1x8 UEs) + UL (dynamic 2x1 UEs) - 90611
7. All Channels Static+Dynamic Config - 90612
8. PDSCH + CSIRS (nPrb =< 255, sym 0) - 90613
9. PDSCH + CSIRS (nPrb > 255, sym 0) - 90614

10. PDSCH + CSIRS (nPrb > 255, sym 6) - 90615
11. PDSCH + CSIRS (prgSize = 273, nPrg = 1) - 90616
12. All Channels - SRS on UL slot 3 & 4 - 90620
13. All Channels - SRS on UL slot 3 & 5 - 90621
14. All Channels - SRS on UL slot 3, 4 & 5 - 90622
15. 2 multi User MIMO Cells - All Channels UEG0 (dynamic, 4 UEs) + UEG1 (dynamic, 1 UE) + UEG2 (static, 1

UE) - 90630
16. 3 multi User MIMO Cells - All Channels UEG0 (dynamic, 4 UEs) + UEG1 (dynamic, 1 UE) + UEG2 (static, 1

UE) - 90631
17. 2 multi User MIMO Cells - All Channels Cell 1 (No BFW) + Cell 2 (BFW) - 90632
18. 2 multi User MIMO Cells - All Channels Cell 1 (No BFW) + Cell 2 (No BFW) + Cell 3 (BFW) - 90633
19. 3 multi User MIMO Cells - 100 MHz DL 16 Layers (1+1+1+1+1+1+1+1+1+1+1+1+1+1+1+1) + UL 8 Layers

(1+1+1+1+1+1+1+1) + SRS - 90634
For 64T64R SRS 85xx, the TV’s need to be executed. You can generate the config using the autoconfig scripts for the
above launch patterns, with the exception that only the following parameters need to be explicitly modified in the generated
config file:

In cuphycontroller_nrSim_SCF.yaml - enable_srs: 1, mMIMO_enable: 1, mtu: 8192, cpu_
↪→mbufs: 196608
In cuphycontroller_nrSim_SCF_CG1.yaml - enable_srs: 1, mMIMO_enable: 1, mtu: 8192,␣
↪→cpu_mbufs: 196608
In ru-emulator: config.yaml - aerial_fh_mtu: 8192, enable_mmimo: 1

1.5. cuBB Quickstart Guide 293



Aerial CUDA-Accelerated RAN, Release 25-1

# nrSim config generation
cd ${cuBB_SDK}/cubb_scripts/autoconfig
python3 auto_controllerConfig.py -i ../../testVectors/ -t ../../cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml -o ../../cuPHY-CP/
↪→cuphycontroller/config
python3 auto_RuEmulatorConfig.py -i ../../cuPHY-CP/cuphycontroller/config -t ../../
↪→cuPHY-CP/ru-emulator/config/config.yaml -o ../../cuPHY-CP/ru-emulator/config

# backup default nrSim config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml.orig

# Use nrSim_SCF_900xx config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF_900xx.yaml $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/ru_emulator_config_900xx.yaml ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml
python3 auto_TestMacConfig.py -t ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
↪→orig -c 90xxx -p CG1 -o ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./ru_emulator nrSim 90xxx --channels 0x7ff
sudo ./test_mac nrSim 90xxx --channels 0x7ff

# Restore nrSim config file
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config.yaml

# Modulation compression config generation
# For Modulation compression tests, only TC 90190 is supported. Compile using -
↪→DENABLE_MODCOMP=ON as stated earlier.
cd ${cuBB_SDK}/cubb_scripts/autoconfig
python3 auto_controllerConfig.py -i ../../testVectors/ -t ../../cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml -o ../../cuPHY-CP/
↪→cuphycontroller/config
python3 auto_RuEmulatorConfig.py -i ../../cuPHY-CP/cuphycontroller/config -t ../../
↪→cuPHY-CP/ru-emulator/config/config.yaml -o ../../cuPHY-CP/ru-emulator/config

# backup default nrSim config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml.orig

# Use nrSim_SCF_900xx config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF_90190.yaml $

(continues on next page)

294 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/ru_emulator_config_90190.yaml ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml
python3 auto_TestMacConfig.py -t ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
↪→orig -c 90190 -p CG1 -o ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./ru_emulator nrSim 90190 --channels 0x7ff
sudo ./test_mac nrSim 90190 --channels 0x7ff

# Restore nrSim config file
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config.yaml

FAPI Message Reference Check

The cuBB software supports the FAPI message reference check. The values and payloads of RX_DATA.ind, CRC.
ind, UCI.ind, and RACH.ind are compared with the related INDx PDU of the TV. If validation fails, a “mismatch”
WARN level log is printed to testmac.log by testMAC.

Note

Some validation failures are not fixed yet. The current known validation failures are not reported with “INV > 0” by
default.

The following configurations are implemented to configure test_mac reporting. The default configuration for FAPI vali-
dation is as follows:

# FAPI indication validating
# validate_enable: 0 - disabled; 1 - report error level; 2 - report error and warning␣
↪→levels
validate_enable: 1
# validate_log_opt: 0 - no print; 1 - print per MSG; 2 - print per PDU; 3 - force␣
↪→print all
validate_log_opt: 1

The following is an example validation failure log with default configuration:

09:35:02.205513 W [MAC.FAPI] SFN 0.5 Cell 6 CRC.ind mismatch: 0 err 6 warn [crc->num_
↪→cb=192 tv.NumCb=4] [meas->ul_cqi=255 tv.UL_CQI=206] [meas->rssi=65535 tv.RSSI=880]

One FAPI message canmay contain multiple PDUs, and one PDU can contain multiple validation failures.
• Set “validate_enable: 1” to report only some validation failures with “INV > 0” in test_mac console. Known

validation failures are not reported with “INV > 0” (but can still be seen in the “mismatch” WARN log).
• Set “validate_enable: 2” to report all validation failures with “INV > 0” in test_mac console.
• Set “validate_log_opt: 1” to print one line “mismatch” log with at most three mismatched values per FAPI message,

and print the total mismatched PDU count (e.g. “0 err, 6 warn”) per FAPI message (avoids performance dropping).

1.5. cuBB Quickstart Guide 295



Aerial CUDA-Accelerated RAN, Release 25-1

• Set “validate_log_opt: 2” to print all validation failures in the “mismatch” WARN log, one line per PDU.
Example log with “validate_log_opt: 2”:

07:32:09.407972 W [MAC.FAPI] SFN 0.14 Cell 0 CRC.ind PDU0 mismatch: [crc->num_cb=0 tv.
↪→NumCb=5] [meas->ul_cqi=255 tv.UL_CQI=206] [meas->rssi=65535 tv.RSSI=1280]
07:32:09.407976 W [MAC.FAPI] SFN 0.14 Cell 0 CRC.ind PDU1 mismatch: [crc->num_cb=0 tv.
↪→NumCb=5] [meas->ul_cqi=255 tv.UL_CQI=206] [meas->rssi=65535 tv.RSSI=1280]
07:32:09.407979 W [MAC.FAPI] SFN 0.14 Cell 0 CRC.ind PDU2 mismatch: [crc->num_cb=0 tv.
↪→NumCb=5] [meas->ul_cqi=255 tv.UL_CQI=206] [meas->rssi=65535 tv.RSSI=1280]

The current recommended test instructions:
• Use the default configuration to test, then grep “mismatch” in phy.log to check whether there is a validation

failure.
• Configure “validate_log_opt: 2” to print all validation failures, if required.

Running testMAC + cuPHYController_SCF + RU Emulator P5G PRACH

This use case runs the Private 5G SIB1 and PRACH demo msg1-4 between the RU Emulator and the testMAC.
You need additional modifications to the default cuPHYController_P5G_GH.yaml to test against RU emulator.
Ensure it matches the configs here. You must also set the PCIe NIC address that is currently in use:

Server#1

sed -i "s/dl_iq_data_fmt.*/dl_iq_data_fmt: {comp_meth: 1, bit_width: 16}/" ${cuBB_SDK}
↪→/cuPHY-CP/cuphycontroller/config/cuphycontroller_P5G_GH.yaml
sed -i "s/ul_iq_data_fmt.*/ul_iq_data_fmt: {comp_meth: 1, bit_width: 16}/" ${cuBB_SDK}
↪→/cuPHY-CP/cuphycontroller/config/cuphycontroller_P5G_GH.yaml
sed -i "s/pcp.*/pcp: 7/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_
↪→P5G_GH.yaml
sed -i "0,/dst_mac_addr.*/{s/dst_mac_addr.*/dst_mac_addr: 20:04:9B:9E:27:A3/}" ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_P5G_GH.yaml
sed -i "s/enableTickDynamicSfnSlot.*/enableTickDynamicSfnSlot: 0/" ${cuBB_SDK}/cuPHY-
↪→CP/cuphycontroller/config/l2_adapter_config_P5G_GH.yaml

Server#2

Replace 0000:b5:00.0 with the PCIe address of the NIC fo use. Also, replace the MAC address with the MAC
address of the NIC used in Server#1 (the server running cuPHYController and testMAC):

sed -i "s/nic_interface.*/nic_interface: 0000:b5:00.0/" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

Change the dl_iq_data_fmt/ul_iq_data_fmt to BFP 16. Ensure you change it back to BFP 14 for other tests.

sed -i "s/dl_iq_data_fmt.*/dl_iq_data_fmt: {comp_meth: 1, bit_width: 16}/" ${cuBB_
↪→SDK}/cuPHY-CP/ru-emulator/config/config.yaml
sed -i "s/ul_iq_data_fmt.*/ul_iq_data_fmt: {comp_meth: 1, bit_width: 16}/" ${cuBB_
↪→SDK}/cuPHY-CP/ru-emulator/config/config.yaml
sed -i "s/eAxC_DL: \[8,0,1,2\]/eAxC_DL: \[0,8,1,9\]/1" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml

(continues on next page)

296 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sed -i "s/eAxC_UL: \[8,0,1,2\]/eAxC_UL: \[0,8,1,9\]/1" ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
sed -i "s/eAxC_prach_list: \[15,7,0,1\]/eAxC_prach_list: \[7,15,6,14\]/1" ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml

Run the emulator:

sudo ./ru_emulator P5G PRACH --channels 0x1FF

Run the cuPHY controller and the testMAC:

sudo -E ./cuphycontroller_scf P5G_GH
sudo ./test_mac P5G PRACH --channels 0x1FF

Expected RU emulator console:

00:44:12.169849 Cell 0 DL 0.17 Mbps 100 Slots | UL 0.03 Mbps 50 Slots | PBCH␣
↪→ 50 | PDCCH_UL 0 | PDCCH_DL 150 | PRACH 50 Slots | Seconds 25
00:44:13.169848 Cell 0 DL 0.17 Mbps 100 Slots | UL 0.03 Mbps 50 Slots | PBCH␣
↪→ 50 | PDCCH_UL 0 | PDCCH_DL 150 | PRACH 50 Slots | Seconds 26
00:44:14.169849 Cell 0 DL 0.17 Mbps 100 Slots | UL 0.03 Mbps 50 Slots | PBCH␣
↪→ 50 | PDCCH_UL 0 | PDCCH_DL 150 | PRACH 50 Slots | Seconds 27

Expected testMAC console:

00:44:11.565232 Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps 50 Slots |␣
↪→Prmb 50 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
00:44:12.565230 Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps 50 Slots |␣
↪→Prmb 50 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
00:44:13.565230 Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps 50 Slots |␣
↪→Prmb 50 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0

Expected cuPHYController logs to be flooded with preamble detection:

00:44:11.565224 C [SCF.PHY] Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps ␣
↪→50 Slots CRC 0 ( 0) | Tick 2000
00:44:12.565224 C [SCF.PHY] Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps ␣
↪→50 Slots CRC 0 ( 0) | Tick 4000
00:44:13.565224 C [SCF.PHY] Cell 0 | DL 0.26 Mbps 150 Slots | UL 0.03 Mbps ␣
↪→50 Slots CRC 0 ( 0) | Tick 6000

Running End-to-End with Full Stack

This section provides a guide on reference cuPHYController YAML to be used when using Aerial CUDA-Accelerated
RAN with Full Stack application.
When running full stack Aerial CUDA-Accelerated RAN on Grace Hopper, use the following file as a starting point to
be modified according to your lab configuration.

1. When using Keysight RU-SIM as a Radio Unit, use cuphycontroller_P5G_GH.yaml as a reference.
2. When using Foxconn O-RU as a Radio Unit, use cuphycontroller_P5G_FXN_GH.yaml as a reference.

1.5. cuBB Quickstart Guide 297



Aerial CUDA-Accelerated RAN, Release 25-1

Note

You need to modify the above mentioned reference files based on to your End-to-End setup.

Capture Logs

Collect the text logs after testing.
1. By default, the logs get stored in the /tmp location. You can use the AERIAL_LOG_PATH environment variable

to set the logfile path.
2. When the log size exceeds 50GB, a new file gets created (e.g. phy.log, phy.log.1, phy.log.2 … phy.

log.7).
a. The test MAC logs are named as testmac.log, testmac.log.1, etc.
b. The RU logs are named as ru.log, ru.log.1, etc.

3. These file segments are reused in a cyclic manner by overwriting the oldest files.
For SHM IPC, if you see the IPC buffer pool full during testing, run the following command to dump IPC status after
test:

# For SHM IPC, dump nvipc message queues after test
sudo ./build/cuPHY-CP/gt_common_libs/nvIPC/tests/dump/ipc_dump

# If not using default nvipc configurations, need input the nvipc "prefix" and yaml␣
↪→config file like below.
# For Multi-L2 case, the "prefix" names are different for each L2 instance, see␣
↪→related nvipc config yaml files.
sudo ./build/cuPHY-CP/gt_common_libs/nvIPC/tests/dump/ipc_dump nvipc ./cuPHY-CP/
↪→cuphycontroller/config/l2_adapter_config_F08_CG1.yaml

Capture NVIPC PCAP Logs

1. NVIPC PCAP yaml configuations
The PCAP logger configuations are included in NVIPC configurations. In Multi-L2 case, multiple PCAP logger instances
should be configured. They NVIPC and PCAP logger instances are identified by the “prefix” names.

# Configurations for NVIPC PCAP logger
transport:

app_config:
pcap_enable: 0
pcap_shm_caching_cpu_core: 17 # CPU core of pcap shared memory caching thread
pcap_file_saving_cpu_core: 17 # CPU core of pcap file saving thread
pcap_cache_size_bits: 29 # 2^29 = 512MB, size of /dev/shm/${prefix}_pcap
pcap_file_size_bits: 31 # 2^31 = 2GB, max size of /var/log/aerial/${prefix}_pcap.␣

↪→Requires pcap_file_size_bits > pcap_cache_size_bits.
pcap_max_data_size: 8000 # Max DL/UL FAPI data size to capture reduce pcap size.
msg_filter: [] # Example: [0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x80, 0x81, 0x82,␣

↪→0x83, 0x84, 0x85]
cell_filter: [] # Example: [0, 1, 2, 3]

There are 2 background threads implemented for NVIPC PCAP capturing:

298 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(1) shm_caching thread to save data to /dev/shm/<prefix>_pcap, this is RAM so it’s quick.
(2) file_saving thread to copy a half of /dev/shm/<prefix>_pcap to disk file /var/log/aerial/<prefix>_pcap once a half

is available.
Both /dev/shm/<prefix>_pcap and /dev/shm/<prefix>_pcap are rotating files. When total log exceed limitation configured
by pcap_file_size_bits, the middle logs will be overwritten, the initial and tail logs will be reserved.
pcap_cache_size_bits is the size of /dev/shm/${prefix}_pcap, which is used to cache the captured data before saving to
disk file. The size limitation of disk file is configured by pcap_file_size_bits.
The filters are used to filter the messages and cells to be captured. The value list is the cell_id or msg_id to be captured,
other messages will be filtered out. A empty list means all messages and cells will be captured.
PCAP log collecting should be run when PCAP capturing stopped. It collects both the 2 files and re-order, generate the
final <prefix>.pcap file.

2. Statically enable PCAP logger
To enable NVIPC PCAP capturing from start, please config pcap_enable=1 by yaml or export NVIPC_DEBUG_EN=1
in cuphycontroller_scf.

3. Dynamically enable PCAP logger
A tool “pcap” is provided to dynamically control PCAP capturing during runtime.
Usage:

Usage: sudo pcap <start|stop|config|clean|dump> [-p <prefix>] [OPTIONS]

-p, --prefix NVIPC instance prefix. Default is 'nvipc' if not provided
-m, --msg-filter PCAP msg_filter. Example: -m "0x81,0x82,0x85,0x86"
-c, --cell-filter PCAP cell_filter. Example: -c "0,1,3,5"

Note:
-p, --prefix: available for all commands, required if prefix is not "nvipc".
-m, --msg-filter: available for "config" command only, used to configure msg_

↪→filter
-c, --cell-filter: available for "config" command only, used to configure cell_

↪→filter

(1) Check PCAP Status
Use the following command to check PCAP status:

cd build/cuPHY-CP/gt_common_libs/nvIPC/tests/pcap/
sudo ./pcap dump

Example output:

# sudo ./pcap dump
[C]: [nvipc]: transport=8192 ring_len=-1 cuda_device_id=536
[C]: [nvipc]: memory pool 0 buf_size=8192 pool_len=4096
[C]: [nvipc]: memory pool 1 buf_size=576000 pool_len=1024
[C]: [nvipc]: memory pool 2 buf_size=4096000 pool_len=64
[C]: [nvipc]: memory pool 3 buf_size=307200 pool_len=0
[C]: [nvipc]: memory pool 4 buf_size=576000 pool_len=0
[C]: ========== Dump PCAP configs ======================
[C]: [nvipc]: config grpc_forward=0
[C]: [nvipc]: config debug_timing=0
[C]: [nvipc]: config pcap_enable=1

(continues on next page)

1.5. cuBB Quickstart Guide 299



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
[C]: [nvipc]: config pcap_shm_caching_cpu_core=17
[C]: [nvipc]: config pcap_file_saving_cpu_core=17
[C]: [nvipc]: config pcap_cache_size_bits=27 size=128MB
[C]: [nvipc]: config pcap_file_size_bits=28 size=256MB
[C]: [nvipc]: msg_filter[256]: all are enabled
[C]: [nvipc]: cell_filter[256]: all are enabled
[C]: ========== Dump captured packet number ============
[C]: [nvipc]: captured_num=502015
[C]: ========== Dump NVIPC forwarder status ======================
[C]: Forwarder: started=0
[C]: Forwarder: lost_num=0
[C]: Forwarder: forwarded_num=502015
[C]: Forwarder: max_forward_num=0
[C]: Forwarder: msg_buf_num=0
[C]: Forwarder: data_buf_num=0

Here the forwarded_num is total packet number (without pcap filter),␣
↪→captured_num is the filtered packet number. They are nearly equal when␣
↪→filters are configured to "all are enabled" (may have minor difference␣
↪→because of ongoing packet capturing).

(2) Start PCAP Capture
Use the following command to start PCAP capture:

sudo ./pcap start

Note

If pcap_enable: 0 was initially configured in yaml, this command will automatically create the
PCAP shmlogger instance first.

Run sudo ./pcap dump to check, will see started=1 and the counter increasing:

[C]: [nvipc]: captured_num=691251
[C]: Forwarder: started=1

(3) Stop PCAP Capture
Use the following command to stop PCAP capture:

sudo ./pcap stop

Run sudo ./pcap dump to check, will see started=0 and the counter no longer increasing:

[C]: [nvipc]: captured_num=833524
[C]: Forwarder: started=0

(4) Configure Filters
Configure message filter:

sudo ./pcap config -m "0x81,0x85,0x86"
# or
sudo ./pcap config --msg-filter "0x81,0x85,0x86"

300 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Configure cell filter:

sudo ./pcap config -c "0,1,3,5"
# or
sudo ./pcap config --cell-filter "0,1,3,5"

The filters changing will take effect immediately. Run sudo ./pcap dump to check, will see the filter
configuration changes:
Before configuration:

[C]: [nvipc]: msg_filter[256]: all are enabled
[C]: [nvipc]: cell_filter[256]: all are enabled

After configuration:

[C]: [nvipc]: msg_filter[3]: 0x81 0x85 0x86
[C]: [nvipc]: cell_filter[4]: 0 1 3 5

To capture for all messages or cells, configure filters with parameter “all”:

sudo ./pcap config -m all
sudo ./pcap config -c all
# or
sudo ./pcap config --msg-filter all
sudo ./pcap config --cell-filter all

(5) Collect PCAP Logs
Use the following command to collect PCAP logs:

sudo ./pcap collect

(6) Clean PCAP Logs
The command “sudo ./pcap stop” and “sudo ./pcap collect” don’t automatically clean the captured logs. Use
the following command to clean the old logs if needed:

sudo ./pcap clean

Run sudo ./pcap dump to check, will see captured_num and forwarded_num are reset to 0:

[C]: [nvipc]: captured_num=0
[C]: Forwarder: forwarded_num=0

(7) Select prefix if it’s not “nvipc”.
In Multi-L2 case or when prefix is not the default value “nvipc”, you need to explicitly specify the prefix
name for the commands.
Example: select prefix “nvipc1” for Multi-L2 case.

sudo ./pcap dump -p nvipc1
sudo ./pcap config -p nvipc1 -c "0,1,3,5"
sudo ./pcap config --prefix nvipc1 -m all
sudo ./pcap collect -p nvipc1

1.5. cuBB Quickstart Guide 301



Aerial CUDA-Accelerated RAN, Release 25-1

Run in Test Mode (TM)

To run any test where at least one cell is in Test Mode (TM), you need to ensure cmake was run with
-DENABLE_CONFORMANCE_TM_PDSCH_PDCCH=ON.
This option is needed for nrSIM TCs 2036 (PDCCH) and 3296 (PDSCH), as well as for DLMIX TCs 120-128 with both
PDSCH and PDCCH present. This requirement extends to any multi-cell launch pattern with at least one of these TM
test vectors present.
For test cases where no TM cell is present, the cmake option value is not relevant for the functional correctness of cuBB
tests.

Mixed O-RAN IOT Profiles (CAT-A-NoBF + CAT-A-DBF)

To run mixed one cell with CAT-A-NoBF and another cell with CAT-A-DBF, use the nrSIM TC 90019 and run the
following:

# nrSim config generation
cd ${cuBB_SDK}/cubb_scripts/autoconfig
python3 auto_controllerConfig.py -i ../../testVectors/ -t ../../cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml -o ../../cuPHY-CP/
↪→cuphycontroller/config
python3 auto_RuEmulatorConfig.py -i ../../cuPHY-CP/cuphycontroller/config -t ../../
↪→cuPHY-CP/ru-emulator/config/config.yaml -o ../../cuPHY-CP/ru-emulator/config

# backup default nrSim config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml.orig

# Use nrSim_SCF_90019 config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF_90019.yaml $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/ru_emulator_config_90019.yaml ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml
python3 auto_TestMacConfig.py -t ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
↪→orig -c 90019 -p CG1 -o ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./ru_emulator nrSim 90019 --channels 0x1ff
sudo ./test_mac nrSim 90019 --channels 0x1ff

# Restore nrSim config file
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config.yaml

Expected result:

302 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

# Expected Tput and passing criteria
Expected thrput: Cell 0: [DL=1.36/100]
Expected thrput: Cell 1: [DL=2.72/100]
Pass criterion low: Cell 0: [DL=1.31/97]
Pass criterion high: Cell 0: [DL=1.40/103]
Pass criterion low: Cell 1: [DL=2.63/97]
Pass criterion high: Cell 1: [DL=2.80/103]

# Example ru-emulator output
16:24:15.218189 Cell 0 DL 1.36 Mbps 100 Slots | UL 0.00 Mbps 0 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 0.00% |Seconds 45
16:24:15.218201 Cell 1 DL 2.72 Mbps 100 Slots | UL 0.00 Mbps 0 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 0.00% |Seconds 45
16:24:16.218191 Cell 0 DL 1.36 Mbps 100 Slots | UL 0.00 Mbps 0 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 0.00% |Seconds 46
16:24:16.218204 Cell 1 DL 2.72 Mbps 100 Slots | UL 0.00 Mbps 0 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 0.00% |Seconds 46

Mixed BFP9/BFP14

# nrSim config generation
cd ${cuBB_SDK}/cubb_scripts/autoconfig
python3 auto_controllerConfig.py -i ../../testVectors/ -t ../../cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml -o ../../cuPHY-CP/
↪→cuphycontroller/config
python3 auto_RuEmulatorConfig.py -i ../../cuPHY-CP/cuphycontroller/config -t ../../
↪→cuPHY-CP/ru-emulator/config/config.yaml -o ../../cuPHY-CP/ru-emulator/config

# backup default nrSim config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml ${cuBB_
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml.orig

# Use nrSim_SCF_90020 config
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF_90020.yaml $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/ru_emulator_config_90020.yaml ${cuBB_SDK}/
↪→cuPHY-CP/ru-emulator/config/config.yaml
python3 auto_TestMacConfig.py -t ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
↪→orig -c 90020 -p CG1 -o ../../cuPHY-CP/testMAC/testMAC/test_mac_config.yaml

# Restart MPS
sudo -E ./cuphycontroller_scf nrSim_SCF
sudo ./ru_emulator nrSim 90020 --channels 0x1ff
sudo ./test_mac nrSim 90020 --channels 0x1ff

# Restore nrSim config file
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_nrSim_SCF.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config.yaml

1.5. cuBB Quickstart Guide 303



Aerial CUDA-Accelerated RAN, Release 25-1

Expected result:

# Expected throughput and passing criteria
ExpectedSlots: Cell=0 PUSCH=100 PDSCH=0 PDCCH_UL=0 PDCCH_DL=0 PBCH=0 PUCCH=0 PRACH=0␣
↪→CSI_RS=0 SRS=0
ExpectedData: Cell=0 DL=0.000000 UL=41.797600 Prmb=0 HARQ=0 SR=0 CSI1=0 CSI2=0 ERR=0␣
↪→INV=0
ExpectedSlots: Cell=1 PUSCH=100 PDSCH=0 PDCCH_UL=0 PDCCH_DL=0 PBCH=0 PUCCH=0 PRACH=0␣
↪→CSI_RS=0 SRS=0
ExpectedData: Cell=1 DL=0.000000 UL=41.797600 Prmb=0 HARQ=0 SR=0 CSI1=0 CSI2=0 ERR=0␣
↪→INV=0

# Example testMAC output
07:09:34.600006 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:34.600015 Cell 1 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:35.600006 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:35.600014 Cell 1 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:36.600006 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:36.600013 Cell 1 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:37.600008 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:37.600017 Cell 1 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:38.600006 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:38.600014 Cell 1 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
07:09:39.600008 Cell 0 | DL 0.00 Mbps 0 Slots | UL 41.80 Mbps 100 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0

Mixed IQ data format for F08 Test Case

Here is an example to run the mixed compression using F08 test case for 1 16-bit Fixed point + 1 BFP9 + N BFP 14
cells, where N = 1,2,3. Set the value for dl_iq_data_fmt and ul_iq_data_fmt to 16-bit fixed point for the 1st cell and BFP
9 for the 2nd cell in both the cuPHYController_F08_*.yaml file and RU emulator config.yaml file. Set the
value for dl_iq_data_fmt and ul_iq_data_fmt to BFP 14 for all other cells.

# First cell
dl_iq_data_fmt: {comp_meth: 0, bit_width: 16}
ul_iq_data_fmt: {comp_meth: 0, bit_width: 16}

# Second cell
dl_iq_data_fmt: {comp_meth: 1, bit_width: 9}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 9}

# All other cells
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}

The throughput levels must be the same as non-mixed case with only BFP 14.

304 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

16:17:05.609792 C [SCF.PHY] Cell 0 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 16000
16:17:05.609808 C [SCF.PHY] Cell 1 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 16000
16:17:05.609814 C [SCF.PHY] Cell 2 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 16000
16:17:05.609822 C [SCF.PHY] Cell 3 | DL 1586.28 Mbps 1600 Slots | UL 249.10 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 16000

UL Measurements

To enable UL measurements in PHY, set the the following to 1 in cuphycontroller_nrSim_SCF.yaml and all
measurements are in dBm unit.

pusch_sinr: 1 # 0 - Disabled; 1 - PostEq value; 2 - PreEq value
pusch_rssi: 1
pusch_tdi: 1
pusch_cfo: 1

Note

From release 22-2.3 onwards, SINR reporting can be configured to report pre- or post-equalizer values from the
cuphycontroller_nrSim_SCF.yaml file, as shown above.

To enable FAPI 10.04 fields, add -DSCF_FAPI_10_04=ON in the cmake options and do a clean build.
To enable RSSI and RSRP measurements, L2 has to send Measurement Config TLV in config.request with a value of 1
for dBm as described in table 3-27 of FAPI 10.02 and table 3-48 of FAPI 10.04. To enable the same in testMac:

• RSSI is enabled by default.
• For RSRP, set the following to 1 in the $cuBB_SDK/testMAC/testMAC/test_mac_config.yaml file:

rsrpMeasurement: 1

L2 vendors have requested additional interference level reporting for PUSCH, UCI on PUSCH, and PUCCH (PF2,3 only
supported). For this purpose, vendor specific messages have been defined to indicate the Aerial instance that reports
these measurements. To enable this reporting, L2 has to send 2 additional TLVs in config.request as mentioned
in CONFIG.request.

Tag Field Type Description
0xA012 PNMeasurement uint8_t Post equalisation noise variance measurement

Value: 0: Do not report 1: dBm
0xA014 PF_234_Interference uint8_t Interference power per UE. Value: 0: Do not report

1: dBm

After it is enabled, for every CRC.indication, Aerial sends an additional RX_PE_Noise_Variance.
indication. For every UCI.indication carrying PF2,3, Aerial sends a PF_234_Interference.
indication.
To enable interference reporting in testMac, set the following to 1 in the $cuBB_SDK/testMAC/testMAC/
test_mac_config.yaml file:

1.5. cuBB Quickstart Guide 305



Aerial CUDA-Accelerated RAN, Release 25-1

pf_234_interference: 1
pnMeasurement: 1

Enable DEBUG level log for tag SCF.PHY as follows in the cuPHY/nvlog/config/nvlog_config.yaml file:

- 333: "SCF.PHY"
shm_level: 6 # Example: overlay shm_log_level for a tag

The following example shows results in the phy.log log:

05:22:56.350648 D [SCF.PHY] >>> SCF_FAPI_UCI_INDICATION: PUCCH interference Raw=1520␣
↪→dbm 733 numMeasurements 1
05:22:56.350664 I [MAC.SCF] SFN 375.0 <<< SCF_FAPI_RX_PF_234_INTEFERNCE_INDICATION:␣
↪→num=0 meas=733

For DTX detection for UCI on PUSCH, look for “detection status”. Sample below.

03:30:11.983670 D [SCF.PHY] >>> SCF_FAPI_UCI_INDICATION: HARQ detection status 4
03:30:11.983671 D [SCF.PHY] >>> SCF_FAPI_UCI_INDICATION: UCI on PUSCH HARQ bitlen 2
03:30:11.983671 D [SCF.PHY] >>> SCF_FAPI_UCI_INDICATION: PUCCH F234 CSI Part1␣
↪→detection status 4 CSI P1 bit len 10

Verification of PUSCH Measurement Reporting for BFP-9/14/16

Change the value of BFP in the matlab file 5GModel/nr_matlab/config. Generate cuPHY and FAPI TV and run the test.

% BFP setting for cuPHY UL TV generation and UL performance simulation
SimCtrl.BFPforCuphy = 16; % 16, 14 or 9 for FP16, BFP14 or BFP9

Set log level to 6 and take h5dump of IND1 in FAPI TV.

h5dump -d IND1 TVnr_7427_gNB_FAPI_s0.h5_BFP9

HDF5 "TVnr_7427_gNB_FAPI_s0.h5_BFP9" {
DATASET "IND1" {
DATATYPE H5T_COMPOUND

{ H5T_STD_U32LE "idxPdu"; H5T_STD_U32LE "type"; H5T_STD_U32LE "TbCrcStatus"; H5T_STD_
↪→U32LE "NumCb"; H5T_STD_U32LE "UL_CQI"; H5T_STD_U32LE "TimingAdvance"; H5T_STD_U32LE
↪→"RSSI"; H5T_STD_U32LE "RSRP"; H5T_STD_I16LE "sinrdB"; H5T_STD_I16LE "postEqSinrdB";␣
↪→H5T_STD_I16LE "noiseVardB"; H5T_STD_I16LE "postEqNoiseVardB"; }
Compare RSSI, RSRP, sinrdB and noiseVar values against the FAPI values in logs -

>>> SCF_FAPI_CRC_INDICATION 10.04 ul-sinr=20000 ta=63 ta-ns=16803 rssi=853 rsrp=912

[SCF.PHY] >>> RX_PE_NOISE_VARIANCE_INDICATION: PHY sfn=0x153 slot=0x0 num_meas=1␣
↪→meas[0]=633

For comparing the raw values of UL measurements against the TV, take the h5dump of the following values from cuPHY
TV. Then compare reference_sinrdB, reference_rssi, reference_rsrpdB, and reference_noiseVardB values against the raw
values in logs.

23:18:48.950917 D [SCF.PHY] Raw RSSI=6.020887 db ul_configured_gain=48.680000
23:18:48.950919 D [SCF.PHY] Raw SINR=40.000000
23:18:48.950920 D [SCF.PHY] Raw RSRP =-0.045194 db ul_configured_gain =48.680000

(continues on next page)

306 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

23:18:48.950938 D [SCF.PHY] Raw PE Noise variance=-40.000000 ul_configured_gain=48.
↪→680000

Verification of PUCCH Measurement Reporting for BFP-9/14/16

Change the value of BFP in the 5GModel/nr_matlab/config matlab file. Generate cuPHY and FAPI TV and run the test.

% BFP setting for cuPHY UL TV generation and UL performance simulation
SimCtrl.BFPforCuphy = 16; % 16, 14 or 9 for FP16, BFP14 or BFP9

Set log level to 6.
Match the value in logs against these fields in cuPHY TV.
Format 0 - F0UcisOutRef. Compare RSSI and RSRP values against corresponding value in logs.

SCF_FAPI_UCI_INDICATION 10.04: PUCCH : Raw SINR=0.000000 RSSI=16.824944 RSRP=10.804343

Format 1 - F1UcisOutRef. Compare “SinrDB”, “RSSI”, and “RSRP” values against the corresponding value in logs.

SCF_FAPI_UCI_INDICATION 10.04: PUCCH : Raw SINR=25.059706 RSSI=-3.927727 RSRP=-9.
↪→948327

Format 2/3 - pucchF234_refSnrBuffer, pucchF234_refRsrpBuffer, pucchF234_refRssiBuffer, and puc-
chF234_refInterfBuffer. Compare them against relevant values in logs.

[SCF.PHY] Raw SINR=28.154160 RSRP=-0.132790 ul_configured_gain=48.680000

[SCF.PHY] Raw RSSI=5.887811 ul_configured_gain=48.680000

>>> SCF_FAPI_UCI_INDICATION: PUCCH interference Raw=-28.286949 dbm 750␣
↪→numMeasurements 1

Verification of PRACH Interference Level Report for BFP-9/14/16

Enable config in test_mac_config.yaml.

prach_interference: 1

Run the nrSim 5013 test.

nrSim 5013 --channels PRACH

Get “nOcc=x Raw PRACH interference” (x=0~3) from phy.log and get “PDUx_noise” (x=1~4) from TV:

# phy.log
grep -o "PHY nOcc=[0-9] Raw PRACH interference=.*" phy.log
PHY nOcc=0 Raw PRACH interference=-16.046867 ul_configured_gain=48.680000 FAPI␣
↪→value=872
PHY nOcc=1 Raw PRACH interference=-16.921370 ul_configured_gain=48.680000 FAPI␣
↪→value=863
PHY nOcc=2 Raw PRACH interference=-17.524746 ul_configured_gain=48.680000 FAPI␣

(continues on next page)

1.5. cuBB Quickstart Guide 307



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→value=857
PHY nOcc=3 Raw PRACH interference=-18.472067 ul_configured_gain=48.680000 FAPI␣
↪→value=848

# TV
h5ls -ld TVnr_5013_gNB_FAPI_s1.h5/PDU1_noise TVnr_5013_gNB_FAPI_s1.h5/PDU2_noise TVnr_
↪→5013_gNB_FAPI_s1.h5/PDU3_noise TVnr_5013_gNB_FAPI_s1.h5/PDU4_noise
PDU1_noise Dataset {1, 1}

Data:
(0,0) -16.0463

PDU2_noise Dataset {1, 1}
Data:

(0,0) -16.0842
PDU3_noise Dataset {1, 1}

Data:
(0,0) -16.0449

PDU4_noise Dataset {1, 1}
Data:

(0,0) -16.294

Expected result:

abs(Raw PRACH interference - PDUx_noise) < 3
# Example, in above log the 4th occasion: abs(-18.472067 + 16.294) = 2.178067 < 3

Cell Life-Cycle Test

To restart all cells while multiple cells are running
In the test_mac_config.yaml file, set the following:

# testMAC/test_mac_config.yaml

# Total slot number in test
test_slots: 8000 # When 1 slot = 0.5 ms, 8000 slots = 4 seconds.
# Restart interval after test_slots finished. Unit is second
restart_interval: 5

This instructs the testMAC to schedule 8000 slots then send cell stop request to all cells. After waiting 5 seconds,
TestMAC sends a config request and cell start request to all cells.
Use the following commands to verify with the F08 4C pattern A case. The expected result is full throughput runs for
approximately 4 seconds, test_mac throughput stops, and ru-emulator throughput reduces to 0 for about 5 seconds, then
the procedure repeats.

sudo ./cuPHY-CP/ru-emulator/ru_emulator/ru_emulator F08 4C 60
sudo -E ./cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf F08
sudo ./cuPHY-CP/testMAC/testMAC/test_mac F08 4C 60

308 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Terminate cuphycontroller Using a gRPC Message

Run the F08 E2E test case as usual:

sudo -E ${cuBB_SDK}/build/cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf F08
sudo ${cuBB_SDK}/build/cuPHY-CP/ru-emulator/ru_emulator/ru_emulator F08 1C 60
sudo ${cuBB_SDK}/build/cuPHY-CP/testMAC/testMAC/test_mac F08 1C 60

Terminate cuphycontroller while the E2E test is running:

cd ${cuBB_SDK}/build/cuPHY-CP/cuphyoam
python3 ../../../cuPHY-CP/cuphyoam/examples/aerial_terminate_cuphycontroller.py

Verify that the cuphycontroller stops running, and that aerial_terminate_cuphycontroller.py prints the
following output:

12:23:32 Terminating cuphycontroller...
12:23:36 cuphycontroller terminated successfully!

Update M-plane Parameters Using gRPC Message

Dynamically changing M-plane parameters via gPRC message are often used with cell life during the initial cell setup
with RUs, as well as to replace the RU while cells are running. See List of parameters supported by dynamic OAM via
gRPC and CONFIG.request (M-plane).
The following sequence diagram shows an example of both scenarios:

• Initial cell and M-plane setup: After launching cuphycontroller, L1 is initialized and all cells are in idle state to
be configured. The max number of cells is defined by the cell_group_num parameter in the cuphycontroller
YAML config. In the example sequence diagram, the OAM sends a gRPC message to update M-plane parameters
so that L1 gets the details to connect to the right RU for each cell. Then L2 sends CONFIG.request to configure
the cell.

Note

In the current implementation, all cells must be configured before any cell Start.request.

• RU replacement while other cells are running: The example sequence diagram shows the sequence to move the
cell-1 traffics from RU1 to RU5. Firstly, the L2 must stop scheduling traffics on cell-1 and send cell Stop.request
to cell-1. After that, OAM sends the new M-plane parameters via gRPC message for L1 to connect to RU5. Then
L2 sends Config.request and Start.request to bring cell-1 to a running state again.

Note

In the current implementation, the cell Config.request after the first cell Start.request has no
effect.

1.5. cuBB Quickstart Guide 309



Aerial CUDA-Accelerated RAN, Release 25-1

310 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

X2 Launch Pattern Files Generation

In subsequent sections, X2 launch pattern files are needed for a related test. The $cuBB_SDK/cuPHY-
CP/cuphyoam/examples/launch_pattern_x2_update.py script is used to generate them.
Here is the usage:

usage: launch_pattern_x2_update.py [-h] -f LAUNCH_PATTERN_FILE -o OUTPUT_DIR
launch_pattern_x2_update.py: error: the following arguments are required: -f/--launch_
↪→pattern_file, -o/--output_dir

For example, to generate the X2 launch pattern file for TC “F08 2C 59”, run the following in container. This generates
the corresponding ‘$cuBB_SDK/testVectors/multi-cell/launch_pattern_F08_2C_59_X2.yaml’ file.

python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/launch_pattern_x2_update.py -f $cuBB_SDK/
↪→testVectors/multi-cell/launch_pattern_F08_2C_59.yaml -o $cuBB_SDK/testVectors/multi-
↪→cell/'

Initial OAM Update

Here is an example of a 4 cell test. Run cuphycontroller with the wrong initial configurations, then use the gRPC message
to update them to the right values.

DST MAC Address OAM Initial Update Test - Single Cell

Update configs:

# Update 'cell_group_num' to 1 in cuphycontroller yaml config
sed -i "s/cell_group_num.*/cell_group_num: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_*.yaml

# Use below settings for "Cell1" in ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.
↪→yaml, note that only the eth mac address is changed cell_configs:
-

name: "Cell1"
eth: "20:04:9B:9E:27:B3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 7

If you don’t perform the OAM update to change the cell 1 destination MAC address, the following test fails. The expected
test result is no throughput on the ru-emulator side.

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

If you perform the OAM update to change the cell 1 destination MAC address, the following test passes. The expected
test result is throughput on the ru-emulator side.

1.5. cuBB Quickstart Guide 311



Aerial CUDA-Accelerated RAN, Release 25-1

sudo -E ./cuphycontroller_scf F08_CG1
# Below OAM update command should be executed on the same server as cuphycontroller
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 1 20:04:9B:9E:27:B3 E002
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

VLAN ID OAM Initial Update Test - Single Cell

Update configs:

# Update 'cell_group_num' to 1 in cuphycontroller yaml config
sed -i "s/cell_group_num.*/cell_group_num: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_*.yaml
# Use below settings for "Cell1" in ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.
↪→yaml, note that only the VLAN ID is changedcell_configs:
-

name: "Cell1"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 3
pcp: 7

If you don’t perform the OAM update to change the cell 1 VLAN ID, the following test fails. The expected test result is
no throughput on the ru-emulator side.

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

If you perform the OAM update to change the cell 1 VLAN ID, the following test passes. The expected test result is
throughput on the ru-emulator side.

sudo -E ./cuphycontroller_scf F08_CG1
# Below OAM update command should be executed on the same server as cuphycontroller
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 1 20:04:9B:9E:27:A3 E003
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

312 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

VLAN PCP OAM Initial Update Test - Single Cell

Update configs:

# Update 'cell_group_num' to 1 in cuphycontroller yaml config
sed -i "s/cell_group_num.*/cell_group_num: 1/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_*.yaml
# Use below settings for "Cell1" in ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.
↪→yaml, note that only the PCP is changed cell_configs:
-

name: "Cell1"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 4

If you don’t perform the OAM update to change the cell 1 PCP, the following test fails. The expected test result is no
throughput on the ru-emulator side.

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

If you perform the OAM update to change the cell 1 PCP, the following test passes. The expected test result is throughput
on the ru-emulator side.

sudo -E ./cuphycontroller_scf F08_CG1
# Below OAM update command should be executed on the same server as cuphycontroller
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 1 20:04:9B:9E:27:A3 8002
sudo ./ru_emulator F08 1C 59
sudo ./test_mac F08 1C 59

DST MAC + VLAN ID + PCP OAM Initial Update Test - Multi-Cells

# Update 'cell_group_num' to 4 in cuphycontroller yaml config
sed -i "s/cell_group_num.*/cell_group_num: 4/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_*.yaml

# Change eth, vlan, pcp of Cell 1~4 to any wrong values (here only show the values␣
↪→which require change) in ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_*.yaml
-

cell_id: 1
dst_mac_addr: 20:20:20:20:20:A1
vlan: 3
pcp: 2

-
cell_id: 2

(continues on next page)

1.5. cuBB Quickstart Guide 313



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
dst_mac_addr: 20:20:20:20:20:A2
vlan: 4
pcp: 3

-
cell_id: 3
dst_mac_addr: 20:20:20:20:20:A3
vlan: 5
pcp: 4

-
cell_id: 4
dst_mac_addr: 20:20:20:20:20:A4
vlan: 6
pcp: 5

If you don’t perform the OAM update, the E2E test fails. The expected test result is no throughput on the ru-emulator
side.

sudo -E ./cuphycontroller_scf F08_CG1
sudo ./ru_emulator F08 4C 59
sudo ./test_mac F08 4C 59

If you perform the OAM update for MAC + VLAN + PCP of the 4 cells to correct values, the E2E test passes.The
expected test result is normal throughputs for all cells.

sudo -E ./cuphycontroller_scf F08_CG1
# OAM update MAC + VLAN + PCP of the 4 cells after cuphycontroller_scf started
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 1 20:04:9B:9E:27:A3 E002
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 2 26:04:9D:9E:29:B3 E002
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 3 20:34:9A:9E:29:B3 E002
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py 4 22:34:9C:9E:29:A3 E002

sudo ./ru_emulator F08 4C 59
sudo ./test_mac F08 4C 59

Dynamic OAM Update

DST MAC Address OAM On-the-Fly Update Test - Single Cell

Update the ‘restart_interval’ and ‘test_cell_update’ sections with the following values in the testMac config file
($cuBB_SDK/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml).
testMAC configs: Add cell_id 0 to the “test_cells” list to enable the test. Notice ‘vlan’ and ‘pcp’ is the same, but ‘dst_mac’
is different here. Change ‘test_sequence’ if required to test more cases.

restart_interval: 3

# For cell net parameters update test
# Configs of slot_point=0 only runs at init, other configs will run repeatably.
test_cell_update:
test_cells: [0]

(continues on next page)

314 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
test_sequence:
- slot_point: 20000

configs:
- {cell_id: 0, dst_mac: 20:04:9B:9E:27:A3, vlan: 2, pcp: 7}

- slot_point: 40000
configs:
- {cell_id: 0, dst_mac: 26:04:9D:9E:29:B3, vlan: 2, pcp: 7}

testMAC automatically calls the following script to change the net parameters during the testMAC initialization and
before cell restarting (Note: m-plane cell_id = testMAC cell_id + 1).

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py <m-plane cell_id> <dst_mac> <pcp_vlan>

In the ru-emulator config file ($cuBB_SDK/cuPHY-CP/ru-emulator/config/config.yaml), change
“Cell2” parameters to be the same as “Cell1”, except for “eth” (the only difference is the eth MAC address).

-
name: "Cell1"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 7

-
name: "Cell2"
eth: "26:04:9D:9E:29:B3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 7

Run normal F08 Pattern 0 1C E2E test commands, except change the ru-emulator parameter “1C” to “1C_X2”. The
following only shows the test case parameters; refer to the F08 cases for full instructions:

sudo ./ru_emulator F08 1C_59_X2
sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 1C 59

Test result:
• ru-emulator throughput first starts on cell 1.
• ru-emulator throughput switches between cell 0 to cell 1, and repeats.
• The switching time points are decided by the above “slot_point” in testMAC configurations. Currently 20000 slots

= 10 seconds.

1.5. cuBB Quickstart Guide 315



Aerial CUDA-Accelerated RAN, Release 25-1

VLAN ID OAM On-the-Fly Update Test - Single Cell

Update ‘restart_interval’ and ‘test_cell_update’ section with the following in the testMac config file $cuBB_SDK/
cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
testMAC configs: Add cell_id 0 to “test_cells” list to enable the test. Notice ‘dst_mac’ and ‘pcp’ are same, ‘vlan’ is
different here. Change test_sequence if required to test more cases.

restart_interval: 3

# For cell net parameters update test
test_cell_update:
test_cells: [0]
test_sequence:
- slot_point: 20000

configs:
- {cell_id: 0, dst_mac: 20:04:9B:9E:27:A3, vlan: 3, pcp: 7}

- slot_point: 40000
configs:
- {cell_id: 0, dst_mac: 20:04:9B:9E:27:A3, vlan: 2, pcp: 7}

testMAC automatically calls the following script to change the net parameters, and stop then restart the cell. (Note:
m-plane cell_id = testMAC cell_id + 1)

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py <m-plane cell_id> <dst_mac> <pcp_vlan>

Update the ‘cell_configs’ section with the following for “Cell1” and “Cell2” in the ru-emulator config file $cuBB_SDK/
cuPHY-CP/ru-emulator/config/config.yaml. Note: The only difference is the vlan id.

-
name: "Cell1"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 7

-
name: "Cell2"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 3
pcp: 7

Run normal F08 Pattern 0 1C E2E test commands except change ru-emulator parameter “1C” to “1C_X2”. This example
only shows the test case parameters, refer to F08 cases for full instructions:

316 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

sudo ./ru_emulator F08 1C_59_X2
sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 1C 59

Expected test result: ru-emulator to have throughput changed between cell 0 to cell 1, and repeat. The change time points
are decided by the above “slot_point” in testMAC configurations. Currently 20000 slots = 10 seconds.

VLAN PCP OAM On-the-Fly Update Test - Single Cell

Update ‘restart_interval’ and ‘test_cell_update’ sections with the following in the testMac config file $cuBB_SDK/
cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.
testMAC configs: add cell_id 0 to “test_cells” list to enable the test. Notice ‘dst_mac’ and ‘vlan’ are same, ‘pcp’ is different
here. Change test_sequence if requires to test more cases.

restart_interval: 3

# For cell net parameters update test
test_cell_update:
test_cells: [0]
test_sequence:
- slot_point: 20000

configs:
- {cell_id: 0, dst_mac: 20:04:9B:9E:27:A3, vlan: 2, pcp: 4}

- slot_point: 40000
configs:
- {cell_id: 0, dst_mac: 20:04:9B:9E:27:A3, vlan: 2, pcp: 7}

testMAC automatically calls the following script to change the net parameters, and stop then restart the cell. (Note:
m-plane cell_id = testMAC cell_id + 1)

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/
↪→aerial_cell_param_net_update.py <m-plane cell_id> <dst_mac> <pcp_vlan>

Update the ‘cell_configs’ section with the following for “Cell1” and “Cell2” in the ru-emulator config file $cuBB_SDK/
cuPHY-CP/ru-emulator/config/config.yaml. Note: The only difference is the PCP value.

-
name: "Cell1"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 7

-
name: "Cell2"
eth: "20:04:9B:9E:27:A3"
eAxC_UL: [8,0,1,2]
eAxC_DL: [8,0,1,2]
eAxC_prach_list: [15,7,0,1]
dl_iq_data_fmt: {comp_meth: 1, bit_width: 14}

(continues on next page)

1.5. cuBB Quickstart Guide 317



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
ul_iq_data_fmt: {comp_meth: 1, bit_width: 14}
peer: 0
nic: 0
vlan: 2
pcp: 4

Run normal F08 Pattern 0 1C E2E test commands except change ru-emulator parameter “1C” to “1C_X2” The following
example only shows the test case parameters, refer to F08 cases for full instructions:

sudo ./ru_emulator F08 1C_59_X2
sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 1C 59

Expected test result: ru-emulator has throughput changed between cell 0 to cell 1, and repeat. The change time points
are decided by above “slot_point” in testMAC configurations. Currently 20000 slots = 10 seconds.

DST MAC OAM On-the-Fly Update Test (with OAM Cell Ctrl Command) - Multi-Cells

The following sequence diagram shows the capability of updating Dst_MAC/VLAN/PCP on the fly with multi-cell run-
ning.

Configuration update:

# Save original configuration before the test
cp $cuBB_SDK/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml $cuBB_SDK/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml.orig
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml ${cuBB_

(continues on next page)

318 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml.orig

# Update config
sed -i "s/oam_cell_ctrl_cmd:.*/oam_cell_ctrl_cmd: 1/" $cuBB_SDK/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml

sed -i "s/eAxC_UL:.*/eAxC_UL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_DL:.*/eAxC_DL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_prach_list:.*/eAxC_prach_list: \\[5,6,7,10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→ru-emulator/config/config.yaml

sed -i "s/cell_group_num:.*/cell_group_num: 4/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_F08_CG1.yaml
sed -i "s/\\[.*//g" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_
↪→CG1.yaml
sed -i "s/eAxC_id_.*/&\\[0, 1, 2, 3\\]/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/eAxC_id_prach.*/eAxC_id_prach: \\[5, 6, 7, 10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

# Restore the configuration after the test
cp $cuBB_SDK/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml.orig $cuBB_SDK/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config.yaml
cp ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/config.yaml.orig ${cuBB_SDK}/cuPHY-CP/ru-
↪→emulator/config/config.yaml
cp ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml.orig $
↪→{cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_CG1.yaml

RU-Emulator will use launch pattern file “xC_59_X2” for test:
• launch_pattern_F08_4C_59_X2.yaml
• launch_pattern_F08_8C_59_X2.yaml

Note

There is a known issue with running launch_pattern_F08_8C_59_X2.yaml.

Run normal F08 4C 59 E2E test commands except change ru-emulator parameter “4C” to “4C_59_X2”. The following
example only shows the test case parameters, refer to F08 cases for full instructions:

sudo ./ru_emulator F08 4C_59_X2
sudo -E ./cuphycontroller_scf F08_CG1
sudo ./test_mac F08 4C 59

Init CONF.req is sent to all cells (executed on DU server):

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam/
for i in {0..3}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 3 && sleep 1; done;

START.req sent to all cells (executed on DU server):

1.5. cuBB Quickstart Guide 319



Aerial CUDA-Accelerated RAN, Release 25-1

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam/
for i in {0..3}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 1 && sleep 1; done;

At this point, validate that the RU emulator sees cell 0~3 have tput:

STOP.req sent to all cells (executed on DU server):

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam/
for i in {0..3}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 0 && sleep 1; done;

OAM update Cell i destination MAC updated to target cell i+4 on RU-Emulator side. That is: 0→4, 1→5, 2→6, 3->7)
(executed on DU server):

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam/
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_param_net_update.py 1 20:04:
↪→9B:9E:27:05 E002 && sleep 1
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_param_net_update.py 2 20:04:
↪→9B:9E:27:06 E002 && sleep 1
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_param_net_update.py 3 20:04:
↪→9B:9E:27:07 E002 && sleep 1
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_param_net_update.py 4 20:04:
↪→9B:9E:27:08 E002 && sleep 1

START.req sent to all cells (executed on DU server):

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam/
for i in {0..3}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 1 && sleep 1; done;

At this point, validate that the RU-Emulator sees cell 4~7 have tput:

320 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Cell BW update Test

To test Cell BW update via FAPI CONFIG.request msg, a customized luanch pattern is created:
$cuBB_SDK/testVectors/multi-cell/launch_pattern_nrSim_MIXBW.yaml containing two cells with two different
BWs. In below test procedure, only cell-0 is enabled on DU side and with several OAM commands, we re-configure the
cell-0 with the configuration of cell-1(essentially updating cell-0’s BW).

---
data_buf_opt: 0
Cell_Configs: [TVnr_5202_gNB_FAPI_s1.h5, TVnr_5205_gNB_FAPI_s1.h5]
SCHED:
- slot: 0

config:
- cell_index: 0.0
channels: []

- cell_index: 1.0
channels: []

- slot: 1
config:
- cell_index: 0.0
channels: [TVnr_5202_gNB_FAPI_s1.h5]

- cell_index: 1.0
channels: [TVnr_5205_gNB_FAPI_s1.h5]

- slot: 2
config:
- cell_index: 0.0
channels: []

- cell_index: 1.0
channels: []

After generating related configuation files with auto-gen config scripts from luanch pattern $cuBB_SDK/testVectors/multi-
cell/launch_pattern_nrSim_MIXBW.yaml, addtional below settings are needed:

1.5. cuBB Quickstart Guide 321



Aerial CUDA-Accelerated RAN, Release 25-1

sed -i "s/cell_group_num: .*/cell_group_num: 1/" $cuBB_SDK/cuPHY-CP/cuphycontroller/
↪→config/cuphycontroller_nrSim_SCF_nrSim_MIXBW.yaml;
sed -i "s/oam_cell_ctrl_cmd: .*/oam_cell_ctrl_cmd: 1/" /" $cuBB_SDK/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml;

Start ru-emulator, cuphycontroller and testmac

sudo -E ${cuBB_SDK}/build/cuPHY-CP/ru-emulator/ru_emulator/ru_emulator nrSim MIXBW
sudo –E ${cuBB_SDK}/build/cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf nrSim_
↪→SCF_nrSim_MIXBW
sudo -E ${cuBB_SDK}/build/cuPHY-CP/testMAC/testMAC/test_mac nrSim MIXBW

Run below OAM commands on DU server with another terminal to config and start traffic

# Init CONFIG.request of cell 0
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --cell_id 0 --
↪→cmd 3
# Start cell 0
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --cell_id 0 --
↪→cmd 1

At this point of time we can see traffic running for cell-0 on testMac, cuphycontroller consoles and cell-0 on ru-emulator
console:

# testMac console
09:46:04.374517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3442000
09:46:05.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3444000
09:46:05.374517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3444000
09:46:06.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3446000
09:46:06.374517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3446000
09:46:07.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3448000
09:46:07.374517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3448000
09:46:08.374514 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3450000
09:46:08.374516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3450000
09:46:09.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3452000
09:46:09.374517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣

(continues on next page)

322 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→ 0 | ERR 0 | INV 0 | Slots 3452000
09:46:10.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3454000
09:46:10.374516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3454000
09:46:11.374515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3456000
09:46:11.374516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3456000
09:46:12.374514 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 3458000

# cuphycontroller console
09:46:33.374504 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3500000
09:46:34.374502 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3502000
09:46:35.374503 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3504000
09:46:36.374505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3506000
09:46:37.374505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3508000
09:46:38.374505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3510000
09:46:39.374506 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3512000
09:46:40.374505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3514000
09:46:41.374504 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3516000
09:46:42.374505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3518000
09:46:43.374504 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 3520000

# ru-emulator console
09:47:15.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.92% |Seconds 1879
09:47:15.560339 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1879
09:47:16.560335 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.93% |Seconds 1880
09:47:16.560339 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1880
09:47:17.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.95% |Seconds 1881
09:47:17.560339 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1881
09:47:18.560338 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.96% |Seconds 1882
09:47:18.560342 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣

(continues on next page)

1.5. cuBB Quickstart Guide 323



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1882
09:47:19.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.97% |Seconds 1883
09:47:19.560340 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1883
09:47:20.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 97.98% |Seconds 1884
09:47:20.560340 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1884
09:47:21.560338 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.00% |Seconds 1885
09:47:21.560342 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1885
09:47:22.560335 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.01% |Seconds 1886
09:47:22.560338 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1886
09:47:23.560335 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.02% |Seconds 1887
09:47:23.560338 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.25% |Seconds 1887

Then we stop the traffic. With below OAM commands, we update cell-0’s BW with that of cell-1 and restart cell-0

# Stop cell 0
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --cell_id 0 --
↪→cmd 0
# Reconfig cell 0 with confiuration of cell 1
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --cell_id 0 --
↪→cmd 2 --target_cell_id 1
# Update dst mac address of cell 0 to point to cell 1 so that ru-emulator can send␣
↪→back the correct data
cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && $cuBB_SDK/build/cuPHY-CP/cuphyoam/p9_msg_
↪→client_grpc_test --phy_id 1 --cmd edit_config --xml_file $cuBB_SDK/cuPHY-CP/
↪→cuphyoam/examples/mac_vlan_pcp.xml
# Start cell 0
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --cell_id 0 --
↪→cmd 1

At this point of time we can see traffic running for cell-0 on testMac, cuphycontroller consoles and cell-1 on ru-emulator
console:

# testMac console
09:59:56.017517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4038000
09:59:57.017516 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4040000
09:59:57.017517 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4040000
09:59:58.017514 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4042000
09:59:58.017516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.

(continues on next page)

324 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4042000
09:59:59.017516 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4044000
09:59:59.017518 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4044000
10:00:00.017514 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4046000
10:00:00.017516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4046000
10:00:01.017515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4048000
10:00:01.017516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4048000
10:00:02.017514 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4050000
10:00:02.017516 CON 40076 0 [MAC.FAPI] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4050000
10:00:03.017515 CON 40076 0 [MAC.FAPI] Cell 0 | DL 0.00 Mbps 0 Slots | UL 0.
↪→00 Mbps 0 Slots | Prmb 100 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | SRS ␣
↪→ 0 | ERR 0 | INV 0 | Slots 4052000

# cuphycontroller console
09:59:41.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4008000
09:59:42.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4010000
09:59:43.017506 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4012000
09:59:44.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4014000
09:59:45.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4016000
09:59:46.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4018000
09:59:47.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4020000
09:59:48.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4022000
09:59:49.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4024000
09:59:50.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4026000
09:59:51.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4028000
09:59:52.017505 CON timer_thread 0 [SCF.PHY] Cell 0 | DL 0.00 Mbps 0 Slots |␣
↪→UL 0.00 Mbps 0 Slots CRC 0 ( 0) | Tick 4030000

# ru-emulator console
(continues on next page)

1.5. cuBB Quickstart Guide 325



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
09:59:21.560337 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2605
09:59:21.560342 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2605
09:59:22.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2606
09:59:22.560340 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2606
09:59:23.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2607
09:59:23.560339 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2607
09:59:24.560337 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2608
09:59:24.560342 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2608
09:59:25.560337 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2609
09:59:25.560342 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2609
09:59:26.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2610
09:59:26.560340 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2610
09:59:27.560336 CON 229 0 [RU] Cell 0 UL 0.00 Mbps 0 Slots | PRACH 0 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 98.95% |Seconds 2611
09:59:27.560340 CON 229 0 [RU] Cell 1 UL 0.00 Mbps 0 Slots | PRACH 100 Slots␣
↪→| DL_C_ON 0.00% DL_U_ON 0.00% UL_C_ON 99.26% |Seconds 2611

Dynamic PRACH Configuration and Init Sequence Test

This sequence shows the changing of the PCI and 4 PRACH parameters after the initial config of a cell. There is also a
possibility of changing the RU’s VLAN ID and MAC address connected to the cell.

326 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.5. cuBB Quickstart Guide 327



Aerial CUDA-Accelerated RAN, Release 25-1

To support the sequence above, testMac has been enhanced to send CONFIG.req and START.req using OAM commands.
Aerial has been enhanced to support dynamic PRACH parameter configuration and change of PCI in release 22-2.3.
Changing the VLAN-id and DST MAC address was supported in previous releases and is used to support the Init sequence
as shown above. The six PRACH parameters that can be changed are as follows:

• prachRootSequenceIndex
• restrictedSetConfig
• prachConfigIndex
• prachZeroCorrConf
• numPrachFdOccasions
• K1
• prachConfigIndex
• restrictedSetConfig

To test this feature, testMac and ru-emulator are started with a higher number of cells from the cuphyController, and then
OAM commands are used to change the configuration of a given cell.
Enable testMac to take OAM commands for CONFIG and START of a cell - change the test_mac_config.yaml
file as follows:

# Send cell config/start/stop request via OAM command
oam_cell_ctrl_cmd: 1

To test the sequence with n cells, change cell_group_num to n in cuphycontroller_F08_*.yaml and other cor-
responding files.

cell_group: 1
cell_group_num: n
fix_beta_dl: 0

For example, for 8C -

cell_group: 1
cell_group_num: 8
fix_beta_dl: 0

Update flow lists on both cuphycontroller and ru-emulator config:

sed -i "s/eAxC_UL:.*/eAxC_UL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_DL:.*/eAxC_DL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_prach_list:.*/eAxC_prach_list: \\[5,6,7,10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→ru-emulator/config/config.yaml

sed -i "s/\\[.*//g" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_
↪→CG1.yaml
sed -i "s/eAxC_id_.*/&\\[0, 1, 2, 3\\]/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/eAxC_id_prach.*/eAxC_id_prach: \\[5, 6, 7, 10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

Run cuphycontroller, testMac for > nC and ru-emulator for > nC. For example, for 8C:

328 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

sudo ./cuPHY-CP/ru-emulator/ru_emulator/ru_emulator F08 9C 14
sudo -E ./cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf F08
sudo ./cuPHY-CP/testMAC/testMAC/test_mac F08 9C 14

After testMac has created the gRPC Server and after you see the following logs on the testMac console, you can issue the
OAM commands from the OAM window.

gRPC Server listening on 0.0.0.0:50052
20:33:56.124414 C [NVIPC:SHM] shm_ipc_open: forward_enable=0 fw_max_msg_buf_count=0␣
↪→fw_max_data_buf_count=0
20:33:56.124434 C [MAC.PROC] set_launch_pattern_and_configs: fapi_type=1 tb_loc=1
20:33:56.124439 C [MAC.PROC] test_mac: create SCF FAPI interface

Execute the OAM commands for testMac from an OAM window:
• CONFIG.req command for all n cells. cmd=3 is for CONFIG.req
• Start cell-0 (cmd=1)

For example, for 8C:

export cuBB_SDK=$(pwd)
cd build/cuPHY-CP/cuphyoam/

for i in {0..7}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 3 && sleep 1; done; //Send CONFIG.req␣
↪→for cell 0~7
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --server_ip␣
↪→localhost --cell_id 0 --cmd 1 // Send START.req for cell-0

At this time you can see traffic running only for cell-0 on testMac, cuphycontroller and ru-emulator console:

# testMac console
20:34:22.124683 C [MAC.SCF] cell_init: cell_id=0 fapi_type=SCF global_tick=-1 first_
↪→init=1
20:34:26.124793 C [MAC.SCF] cell_init: cell_id=1 fapi_type=SCF global_tick=-1 first_
↪→init=1
20:34:28.124858 C [MAC.SCF] cell_start: cell_id=0 fapi_type=SCF global_tick=-1
04:55:13.040024 Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
04:55:13.040037 Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040045 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040051 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040058 Cell 4 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040065 Cell 5 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040069 Cell 6 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040074 Cell 7 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040081 Cell 8 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040025 Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0

(continues on next page)

1.5. cuBB Quickstart Guide 329



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
04:55:14.040037 Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040045 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040049 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040054 Cell 4 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040061 Cell 5 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040067 Cell 6 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040071 Cell 7 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:14.040077 Cell 8 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0

# cuphycontroller console
04:55:13.040004 C [SCF.PHY] Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040018 C [SCF.PHY] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040023 C [SCF.PHY] Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040027 C [SCF.PHY] Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040033 C [SCF.PHY] Cell 4 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040037 C [SCF.PHY] Cell 5 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040044 C [SCF.PHY] Cell 6 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040051 C [SCF.PHY] Cell 7 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 142000
04:55:14.040005 C [SCF.PHY] Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040019 C [SCF.PHY] Cell 1 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040023 C [SCF.PHY] Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040028 C [SCF.PHY] Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040033 C [SCF.PHY] Cell 4 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040040 C [SCF.PHY] Cell 5 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040046 C [SCF.PHY] Cell 6 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000
04:55:14.040050 C [SCF.PHY] Cell 7 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps ␣
↪→0 Slots CRC 0 ( 0) | Tick 144000

Now give OAM commands to switch the change PCI and PRACH parameters for cell-1 to cell ‘n+1’.
For example, the following command triggers testMac to send another CONFIG.req for cell-1 with parameters for cell-9.
The DST MAC address in the parameters for aerial_cell_param_new_update.py script must be the DST MAC address
of n+1 cell in the cuphycontroller YAML file. For example, for 8C testcase, the DST MAC address for cell-9 in the
cuphycontroller YAML file is:

330 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

dst_mac_addr: 20:04:9B:9E:27:09

python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --server_ip␣
↪→localhost --cell_id 1 --cmd 2 --target_cell_id 8 //Send CONFIG.req for cell-1 with␣
↪→PRACH parameters read from TV for cell-8 and PCI of cell-8
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_param_net_update.py 2 xx:xx:
↪→xx:xx:xx:xx E002 // Set VLAN-id and DST MAC address of cell-1 to point␣
↪→to VLAN-id & DST MAC address of cell-9 in cuphycontroller yaml file
python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --server_ip␣
↪→localhost --cell_id 1 --cmd 1 // Send START.req for cell-1

Now testMAC and cuphycontroller see traffic for cell-0 and cell-1 while RU-Emulator sees traffic for cell-0 and cell-8.

# testMac console
20:35:00.125020 C [MAC.SCF] cell_start: cell_id=1 fapi_type=SCF global_tick=61130
20:35:00.560041 Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
20:35:00.560053 Cell 1 | DL 752.17 Mbps 695 Slots | UL 6.63 Mbps 174 Slots |␣
↪→Prmb 43 | HARQ 5220 | SR 0 | CSI1 1044 | CSI2 1044 | ERR 0 | INV 174
20:35:00.560058 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:00.560063 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:01.560039 Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
20:35:01.560050 Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 15.06 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 400
20:35:01.560055 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:01.560060 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:02.560041 Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
20:35:02.560053 Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 15.06 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 400
20:35:02.560058 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:02.560063 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:03.560040 Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
20:35:03.560051 Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 15.06 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 400
20:35:03.560056 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:03.560061 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:04.560043 Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
20:35:04.560054 Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 15.06 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 400
20:35:04.560059 Cell 2 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
20:35:04.560064 Cell 3 | DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0

# cuPhyController console
20:35:00.560005 C [SCF.PHY] Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣

(continues on next page)

1.5. cuBB Quickstart Guide 331



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→400 Slots CRC 0 ( 0) | Tick 62000
20:35:00.560014 C [SCF.PHY] Cell 1 | DL 752.17 Mbps 695 Slots | UL 104.81 Mbps ␣
↪→174 Slots CRC 0 ( 0) | Tick 62000
20:35:01.560004 C [SCF.PHY] Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 64000
20:35:01.560012 C [SCF.PHY] Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 64000
20:35:02.560005 C [SCF.PHY] Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 66000
20:35:02.560013 C [SCF.PHY] Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 66000
20:35:03.560005 C [SCF.PHY] Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 68000
20:35:03.560012 C [SCF.PHY] Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 68000
20:35:04.560006 C [SCF.PHY] Cell 0 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 70000
20:35:04.560013 C [SCF.PHY] Cell 1 | DL 1731.61 Mbps 1600 Slots | UL 240.94 Mbps ␣
↪→400 Slots CRC 0 ( 0) | Tick 70000
20:35:05.457529 C [SCF.PHY] Cell 0 | DL 1553.04 Mbps 1435 Slots | UL 215.64 Mbps ␣
↪→358 Slots CRC 0 ( 0)
20:35:05.457541 C [SCF.PHY] Cell 1 | DL 1553.04 Mbps 1435 Slots | UL 215.64 Mbps ␣
↪→358 Slots CRC 0 ( 0)
20:35:05.457676 C [SCF.PHY] Cell 0 | DL 1553.04 Mbps 1435 Slots | UL 215.64 Mbps ␣
↪→358 Slots CRC 0 ( 0)
20:35:05.457681 C [SCF.PHY] Cell 1 | DL 1553.04 Mbps 1435 Slots | UL 215.64 Mbps ␣
↪→358 Slots CRC 0 ( 0)

# ru-emulator console
12:15:45.760099 Cell 8 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 513
12:15:46.760025 Cell 0 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 514
12:15:46.760041 Cell 1 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760049 Cell 2 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760054 Cell 3 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH ␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760060 Cell 4 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH ␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760073 Cell 5 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760078 Cell 6 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760083 Cell 7 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 514
12:15:46.760090 Cell 8 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣

(continues on next page)

332 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 514
12:15:47.760024 Cell 0 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 515
12:15:47.760041 Cell 1 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760047 Cell 2 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760053 Cell 3 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760060 Cell 4 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760066 Cell 5 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760076 Cell 6 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760082 Cell 7 DL 0.00 Mbps 0 Slots | UL 0.00 Mbps 0 Slots | PBCH␣
↪→ 0 | PDCCH_DL 0 | CSI_RS 0 | PRACH 0 Slots | PUCCH 0 Slots | DL_C_
↪→ON 0.00% DL_U_ON 0.00% UL_C_ON 0.00% |Seconds 515
12:15:47.760089 Cell 8 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 515
12:15:48.760023 Cell 0 DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots | PBCH␣
↪→ 100 | PDCCH_DL 1600 | CSI_RS 1600 | PRACH 100 Slots | PUCCH 400 Slots | DL_C_
↪→ON 100.00% DL_U_ON 100.00% UL_C_ON 100.00% |Seconds 516

Duplicate Configuration and Init Sequence Test

Duplicate Cell Config.request is a feature that enables dynamically configuring and starts a cell on an individual basis.
The Config.request for all the cells need not be sent before a Start.Req is issued. To enable this feature, the following
configuration in L2Adapter and testMac must be provisioned.

sed -i "s/duplicate_config_all_cells.*/duplicate_config_all_cells: 1/" ${cuBB_SDK}/
↪→cuPHY-CP/cuphycontroller/config/l2_adapter_config_F08_CG1.yaml

sed -i "s/cell_config_wait.*/cell_config_wait: 1000/" ${cuBB_SDK}/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml

sed -i "s/oam_cell_ctrl_cmd.*/oam_cell_ctrl_cmd: 1/" ${cuBB_SDK}/cuPHY-CP/testMAC/
↪→testMAC/test_mac_config.yaml

To test the sequence with n cells, change cell_group_num to n in cuphycontroller_F08_*.yaml and other cor-
responding files.

cell_group: 1
cell_group_num: n
fix_beta_dl: 0

For example, for 8C:

1.5. cuBB Quickstart Guide 333



Aerial CUDA-Accelerated RAN, Release 25-1

cell_group: 1
cell_group_num: 8
fix_beta_dl: 0

Update flow lists on both cuphycontroller and ru-emulator config:

sed -i "s/eAxC_UL:.*/eAxC_UL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_DL:.*/eAxC_DL: \\[0,1,2,3\\]/" ${cuBB_SDK}/cuPHY-CP/ru-emulator/config/
↪→config.yaml
sed -i "s/eAxC_prach_list:.*/eAxC_prach_list: \\[5,6,7,10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→ru-emulator/config/config.yaml

sed -i "s/\\[.*//g" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/cuphycontroller_F08_
↪→CG1.yaml
sed -i "s/eAxC_id_.*/&\\[0, 1, 2, 3\\]/" ${cuBB_SDK}/cuPHY-CP/cuphycontroller/config/
↪→cuphycontroller_F08_CG1.yaml
sed -i "s/eAxC_id_prach.*/eAxC_id_prach: \\[5, 6, 7, 10\\]/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml

Run cuphycontroller, testMac for > nC and ru-emulator for > nC. For example, for 8C:

sudo ./cuPHY-CP/ru-emulator/ru_emulator/ru_emulator F08 8C 14
sudo -E ./cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf F08_CG1
sudo ./cuPHY-CP/testMAC/testMAC/test_mac F08 8C 14

After testMac has created the gRPC Server and after you see the following logs on the testMac console, you can issue the
OAM commands from the OAM window:

gRPC Server listening on 0.0.0.0:50052
20:33:56.124414 C [NVIPC:SHM] shm_ipc_open: forward_enable=0 fw_max_msg_buf_count=0␣
↪→fw_max_data_buf_count=0
20:33:56.124434 C [MAC.PROC] set_launch_pattern_and_configs: fapi_type=1 tb_loc=1
20:33:56.124439 C [MAC.PROC] test_mac: create SCF FAPI interface

Execute the OAM commands for testMac from a OAM window:
• CONFIG.req command for 1 cell at a time. cmd=3 is for CONFIG.req
• Start cell-0 (cmd=1)
• Repeat the above sequence for all cells

export cuBB_SDK=$(pwd)
cd build/cuPHY-CP/cuphyoam/
#Note that the config&start of cells can be in any order
for i in {0..7}; do python3 $cuBB_SDK/cuPHY-CP/cuphyoam/examples/aerial_cell_ctrl_cmd.
↪→py --server_ip localhost --cell_id $i --cmd 3 && sleep 3 && python3 $cuBB_SDK/cuPHY-
↪→CP/cuphyoam/examples/aerial_cell_ctrl_cmd.py --server_ip localhost --cell_id $i --
↪→cmd 1; done; //Send CONFIG.req and Start.req for cell 0~7

# testMac console
20:34:22.124683 C [MAC.SCF] cell_init: cell_id=0 fapi_type=SCF global_tick=-1␣

↪→first_init=1
20:34:26.124793 C [MAC.SCF] cell_init: cell_id=1 fapi_type=SCF global_tick=-1␣

↪→first_init=1
20:34:28.124858 C [MAC.SCF] cell_start: cell_id=0 fapi_type=SCF global_tick=-1

(continues on next page)

334 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
04:55:13.040024 Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps 400 Slots |␣
↪→Prmb 100 | HARQ 12000 | SR 0 | CSI1 2400 | CSI2 2400 | ERR 0 | INV 0
04:55:13.040037 Cell 1 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040045 Cell 2 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040051 Cell 3 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040058 Cell 4 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040065 Cell 5 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040069 Cell 6 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0
04:55:13.040074 Cell 7 | DL 829.36 Mbps 1600 Slots| UL 122.92 Mbps 400 Slots |␣
↪→Prmb 0 | HARQ 0 | SR 0 | CSI1 0 | CSI2 0 | ERR 0 | INV 0

# cuphycontroller console
04:55:13.040004 C [SCF.PHY] Cell 0 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040018 C [SCF.PHY] Cell 1 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040023 C [SCF.PHY] Cell 2 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040027 C [SCF.PHY] Cell 3 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040033 C [SCF.PHY] Cell 4 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040037 C [SCF.PHY] Cell 5 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040044 C [SCF.PHY] Cell 6 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000
04:55:13.040051 C [SCF.PHY] Cell 7 | DL 829.36 Mbps 1600 Slots | UL 122.92 Mbps␣

↪→ 400 Slots CRC 0 ( 0) | Tick 142000

How to Get Aerial Metrics

Run the following on gNB Server#1. Make sure -DAERIAL_METRICS=1 added in cmake config:

curl localhost:8081/metrics

Set the Prometheus thread to a proper CPU core number. For testing on GH setup, change the F08 config file so that
DPDK-related metrics are updated. Also need to set ‘ul_rx_pkt_tracing_level’ to 2 for RX packets/bytes metrics, then
launch cuphycontroller:

sed -i "s/ul_rx_pkt_tracing_level.*/ul_rx_pkt_tracing_level: 2/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml
sed -i "s/prometheus_thread.*/prometheus_thread: 23/" ${cuBB_SDK}/cuPHY-CP/
↪→cuphycontroller/config/cuphycontroller_F08_CG1.yaml
sudo -E ${cuBB_SDK}/build/cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf F08_
↪→CG1

Do NOT start test_mac yet. Query the metrics. All metrics should be 0 except for:
• aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns

1.5. cuBB Quickstart Guide 335



Aerial CUDA-Accelerated RAN, Release 25-1

• aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns
Launch RU emulator:

sudo ${cuBB_SDK}/build/cuPHY-CP/ru-emulator/ru_emulator/ru_emulator F08 3C_59

Run testMAC with 30000 slots:

sed -i "s/test_slots.*/test_slots: 30000/" ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_
↪→mac_config.yaml
sudo -E ${cuBB_SDK}/build/cuPHY-CP/testMAC/testMAC/test_mac F08 3C_59

Let the test finish. Wait until you see that the test_mac output shows 30000 slots finished:

13:16:37.244835 C [MAC.FAPI] Finished running 30000 slots test

Don’t kill the cuphycontroller yet. Query the metrics again, see the example log as follows:
PeerMetrics TX packets/bytes: .. code-block:: bash

…
# HELP aerial_cuphycp_uplane_tx_bytes_total Aerial cuPHY-CP U-plane TX bytes # TYPE
aerial_cuphycp_uplane_tx_bytes_total counter aerial_cuphycp_uplane_tx_bytes_total{cell=”3”}
7927007712 aerial_cuphycp_uplane_tx_bytes_total{cell=”2”} 7927007712
aerial_cuphycp_uplane_tx_bytes_total{cell=”1”} 7927007712 # HELP
aerial_cuphycp_uplane_tx_packets_total Aerial cuPHY-CP U-plane TX packets # TYPE
aerial_cuphycp_uplane_tx_packets_total counter aerial_cuphycp_uplane_tx_packets_total{cell=”3”}
6593992 aerial_cuphycp_uplane_tx_packets_total{cell=”2”} 6593992 aerial_cuphycp_uplane_tx_packets_total{cell=”1”}
6593992

PeerMetrics RX packets/bytes: .. code-block:: bash
…
# HELP aerial_cuphycp_uplane_rx_bytes_total Aerial cuPHY-CP U-plane RX bytes # TYPE
aerial_cuphycp_uplane_rx_bytes_total counter aerial_cuphycp_uplane_rx_bytes_total{cell=”3”}
2082216802 aerial_cuphycp_uplane_rx_bytes_total{cell=”2”} 2087392336
aerial_cuphycp_uplane_rx_bytes_total{cell=”1”} 2084545080 # HELP
aerial_cuphycp_uplane_rx_packets_total Aerial cuPHY-CP U-plane RX packets # TYPE
aerial_cuphycp_uplane_rx_packets_total counter aerial_cuphycp_uplane_rx_packets_total{cell=”3”}
1597904 aerial_cuphycp_uplane_rx_packets_total{cell=”2”} 1597904 aerial_cuphycp_uplane_rx_packets_total{cell=”1”}
1597904

CellMetrics pusch RX transport block bytes/total number/crc error: .. code-block:: bash
…
# HELP aerial_cuphycp_pusch_rx_tb_bytes_total Aerial cuPHY-CP total num-
ber of transport block bytes received in the PUSCH channel # TYPE
aerial_cuphycp_pusch_rx_tb_bytes_total counter aerial_cuphycp_pusch_rx_tb_bytes_total{cell=”3”}
320986968 aerial_cuphycp_pusch_rx_tb_bytes_total{cell=”2”} 320986968
aerial_cuphycp_pusch_rx_tb_bytes_total{cell=”1”} 320986968 # HELP aerial_cuphycp_pusch_rx_tb_total
Aerial cuPHY-CP total number of transport blocks received in the PUSCH channel # TYPE
aerial_cuphycp_pusch_rx_tb_total counter aerial_cuphycp_pusch_rx_tb_total{cell=”3”} 31332
aerial_cuphycp_pusch_rx_tb_total{cell=”2”} 31332 aerial_cuphycp_pusch_rx_tb_total{cell=”1”}
31332 # HELP aerial_cuphycp_pusch_rx_tb_crc_error_total Aerial cuPHY-
CP total number of transport blocks received with CRC errors in the
PUSCH channel # TYPE aerial_cuphycp_pusch_rx_tb_crc_error_total counter

336 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

aerial_cuphycp_pusch_rx_tb_crc_error_total{cell=”3”} 0 aerial_cuphycp_pusch_rx_tb_crc_error_total{cell=”2”}
0 aerial_cuphycp_pusch_rx_tb_crc_error_total{cell=”1”} 0

CellMetrics pusch RX transport crc error(non-zero value with negtive TC 7532): .. code-block:: bash
… # HELP aerial_cuphycp_pusch_rx_tb_crc_error_total Aerial cuPHY-CP total number of transport blocks
received with CRC errors in the PUSCH channel # TYPE aerial_cuphycp_pusch_rx_tb_crc_error_total
counter aerial_cuphycp_pusch_rx_tb_crc_error_total{cell=”1”} 1500

CellMetrics pusch TX transport block bytes/total number: .. code-block:: bash
…
# HELP aerial_cuphy_pdsch_tx_tb_bytes_total Aerial cuPHY-CP total num-
ber of transport block bytes transmitted in the PDSCH channel # TYPE
aerial_cuphy_pdsch_tx_tb_bytes_total counter aerial_cuphy_pdsch_tx_tb_bytes_total{cell=”3”}
2519691828 aerial_cuphy_pdsch_tx_tb_bytes_total{cell=”2”} 2519691828
aerial_cuphy_pdsch_tx_tb_bytes_total{cell=”1”} 2519691828 # HELP aerial_cuphy_pdsch_tx_tb_total
Aerial cuPHY-CP total number of transport blocks transmitted in the PDSCH channel #
TYPE aerial_cuphy_pdsch_tx_tb_total counter aerial_cuphy_pdsch_tx_tb_total{cell=”3”} 125316
aerial_cuphy_pdsch_tx_tb_total{cell=”2”} 125316 aerial_cuphy_pdsch_tx_tb_total{cell=”1”} 125316

NICMetrics (error related metrics, value 0 is expected) .. code-block:: bash
…
# HELP aerial_cuphycp_net_rx_dropped_packets_total Aerial cuPHY-CP RX pack-
ets dropped by the HW # TYPE aerial_cuphycp_net_rx_dropped_packets_total
counter aerial_cuphycp_net_rx_dropped_packets_total{nic=”0000:01:00.0”} 0
# HELP aerial_cuphycp_net_rx_failed_packets_total Aerial cuPHY-CP er-
roneous RX packets # TYPE aerial_cuphycp_net_rx_failed_packets_total
counter aerial_cuphycp_net_rx_failed_packets_total{nic=”0000:01:00.0”} 0 #
HELP aerial_cuphycp_net_rx_nombuf_packets_total Aerial cuPHY-CP RX
mbuf allocation failures # TYPE aerial_cuphycp_net_rx_nombuf_packets_total
counter aerial_cuphycp_net_rx_nombuf_packets_total{nic=”0000:01:00.0”} 0
# HELP aerial_cuphycp_net_tx_failed_packets_total Aerial cuPHY-CP failed
TX packets # TYPE aerial_cuphycp_net_tx_failed_packets_total counter
aerial_cuphycp_net_tx_failed_packets_total{nic=”0000:01:00.0”} 0 # HELP
aerial_cuphycp_net_tx_accu_sched_missed_interrupt_errors_total Aerial cuPHY-CP accurate TX schedul-
ing missed service interrupts # TYPE aerial_cuphycp_net_tx_accu_sched_missed_interrupt_errors_total
counter aerial_cuphycp_net_tx_accu_sched_missed_interrupt_errors_total{nic=”0000:01:00.0”} 0 #
HELP aerial_cuphycp_net_tx_accu_sched_rearm_queue_errors_total Aerial cuPHY-CP TX schedul-
ing rearm queue errors # TYPE aerial_cuphycp_net_tx_accu_sched_rearm_queue_errors_total
counter aerial_cuphycp_net_tx_accu_sched_rearm_queue_errors_total{nic=”0000:01:00.0”} 0 #
HELP aerial_cuphycp_net_tx_accu_sched_clock_queue_errors_total Aerial cuPHY-CP TX schedul-
ing clock queue errors # TYPE aerial_cuphycp_net_tx_accu_sched_clock_queue_errors_total counter
aerial_cuphycp_net_tx_accu_sched_clock_queue_errors_total{nic=”0000:01:00.0”} 0 # HELP
aerial_cuphycp_net_tx_accu_sched_timestamp_past_errors_total Aerial cuPHY-CP TX scheduling
timestamp in the past # TYPE aerial_cuphycp_net_tx_accu_sched_timestamp_past_errors_total counter
aerial_cuphycp_net_tx_accu_sched_timestamp_past_errors_total{nic=”0000:01:00.0”} 0 # HELP
aerial_cuphycp_net_tx_accu_sched_timestamp_future_errors_total Aerial cuPHY-CP TX scheduling
timestamp in too distant future # TYPE aerial_cuphycp_net_tx_accu_sched_timestamp_future_errors_total
counter aerial_cuphycp_net_tx_accu_sched_timestamp_future_errors_total{nic=”0000:01:00.0”}
0 # HELP aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns Aerial cuPHY-CP TX
scheduling timestamp jitter # TYPE aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns
gauge aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns{nic=”0000:01:00.0”} 0 # HELP
aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns Aerial cuPHY-CP TX scheduling

1.5. cuBB Quickstart Guide 337



Aerial CUDA-Accelerated RAN, Release 25-1

timestamp wander # TYPE aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns gauge
aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns{nic=”0000:01:00.0”} 0

Run an Additional Logging Stream Container

Note

The nvlog_observer and nvlog_collect are deprecated in 23-1.

1) By default the logs are stored in ‘/tmp’ location. You can set the environment variable AERIAL_LOG_PATH to
define a customized logfile path.

2) The moment the log size crosses 20GB, a new file gets created. Like phy.log, phy.log.1, phy.log.2 … phy.log.7.

Run Multiple L2 Instances with Single L1 Instance

Rel-23-3 support static cell allocation for different L2 instances.
There’s a known limitation that all cells need to be configured (by FAPI CONFIG.req) before any cell starts scheduling.
With the duplicate Cell Config.request feature introduced in 23-4, the dynamic L2 instances can be supported without
the above limitation but the cell config on each L2 instance must be the same.

Note

H2D copy thread must be disabled as below when running multiple L2 instances due to a known issue.
sed -i 's/enable_h2d_copy_thread:.*/enable_h2d_copy_thread: 0/g' ${cuBB_SDK}/cuPHY-
↪→CP/cuphycontroller/config/cuphycontroller_XXX.yaml

Example: Run two L2 instances with 4 cells for each and one L1 instance with 8 cells.
1) Assign a different “prefix” in nvipc config for each L2 instance. The “prefix” is a string whose length should be less

than 32.

# nvipc config yaml for each L2 instance

# For L2 instance 0: test_mac_config.yaml
prefix: nvipc

# For L2 instance 1: test_mac_config_1.yaml
prefix: nvipc1

The first testMAC instance uses the default test_mac_config.yaml. After it is configured properly, make a copy of
test_mac_config.yaml and configure it for the second testMAC instance. To run multiple testMAC instances on the
same machine, CPU cores, logger name, and OAM server port must be changed. The following are the example
commands to configure the 2nd testMAC instance:

cp ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config.yaml ${cuBB_SDK}/cuPHY-CP/
↪→testMAC/testMAC/test_mac_config_1.yaml
sed -i 's/prefix:.*/prefix: nvipc1/g' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_
↪→mac_config_1.yaml
sed -i 's/log_name:.*/log_name: testmac1.log/g' ${cuBB_SDK}/cuPHY-CP/testMAC/

(continues on next page)

338 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→testMAC/test_mac_config_1.yaml
sed -i 's/oam_server_addr:.*/oam_server_addr: 0.0.0.0:50053/g' ${cuBB_SDK}/cuPHY-
↪→CP/testMAC/testMAC/test_mac_config_1.yaml
sed -i '/sched_thread_config/{ N; N; N; s/cpu_affinity:[^\n]*/cpu_affinity: 14/g}
↪→' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config_1.yaml
sed -i '/recv_thread_config/{ N; N; N; s/cpu_affinity:[^\n]*/cpu_affinity: 15/g}'
↪→${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config_1.yaml
sed -i '/builder_thread_config/{ N; N; N; s/cpu_affinity:[^\n]*/cpu_affinity: 16/
↪→g}' ${cuBB_SDK}/cuPHY-CP/testMAC/testMAC/test_mac_config_1.yaml

2) Switch nvipc config to nvipc_multi_instances.yaml in L1.

# l2_adapter_config_XXX.yaml
nvipc_config_file: nvipc_multi_instances.yaml

3) Config “prefix” in L1 and assign L1 cells for each L2 instance.
Assume 8 cells are configured in cuphycontroller_XXX.yaml, the indexes for them are 0 ~ 7.

L1 cells: 0 ~ 7
The 1st L2 instance cells: 0 ~ 3
The 2nd L2 instance cells: 4 ~ 7

Then configure:

# nvipc_multi_instances.yaml
transport:
- transport_id: 0
phy_cells: [0, 1, 2, 3]
type: shm
shm_config:
prefix: nvipc
...

- transport_id: 1
phy_cells: [4, 5, 6, 7]
type: shm
shm_config:
prefix: nvipc1
...

The cell_id map between L1 and L2 is maintained in cuphycontroller:

1.5. cuBB Quickstart Guide 339



Aerial CUDA-Accelerated RAN, Release 25-1

4) Run the test.
Use F08 8C_60 for example:

sudo ./ru_emulator F08 8C_60

sudo -E ./cuphycontroller_scf F08_CG1

# Run the 1st test_mac instance with default config file: test_mac_config.yaml
sudo ./test_mac F08 8C_60 --cells 0x0F

# Run the 2nd test_mac instance with another config file: test_mac_config_1.yaml
sudo ./test_mac F08 8C_60 --cells 0xF0 --config test_mac_config_1.yaml

5) Review the 8 cells of throughput in the L1 and 4 cells of throughput in each L2 instance.

340 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

OAM Commands in Multiple L2 Instances

OAM commands do not change in the case of multiple L2 instances. Note the following:
• The “schedule_total_time” tolerance in Multi-L2 cases is a bit lower than Single-L2 cases. Please set sched-

ule_total_time of Multi-L2 case to at least 20us lower than the same case for Single-L2. Recommended to set
to 400000 for functionality test.
The minor difference in FAPI timing tolerance is expected because there are multiple NVIPC instances working
in difference processes and additional SLOT.ind messages are added.

• There are two types of cell IDs used in L1:
– FAPI cell_id: cell instance index in each app. It starts from 0 and is unique in each L1/L2 app instance (but

can be duplicated in different L2 app instances). It is also used as cell_id / handle_id in FAPI message.
– mplane_id: an arbitrary integer value that is configurable in cuphycontroller_xxx.yaml and is used in cu-

PHYDriver.
The “cell_id” in OAM commands is the mplane_id not the FAPI cell_id.

# cuphycontroller_XXX.yaml

cells:
- name: O-RU 0 # FAPI cell_id is the cell instance index. For the first cell,␣

↪→FAPI cell_id = 0
cell_id: 1 # Here "cell_id" is actually "mplane_id" in source code.␣

↪→Current default config is: mplane_id = FAPI cell_id + 1

In the following OAM command example, pass mplane_id = 1 to select the first cell.

# Usage: aerial_cell_param_net_update.py cell_id dst_mac_addr vlan_tci

cd $cuBB_SDK/build/cuPHY-CP/cuphyoam && python3 $cuBB_SDK/cuPHY-CP/cuphyoam/
↪→examples/aerial_cell_param_net_update.py 1 20:04:9B:9E:27:B3 E002

UL FH Pcap Capture Feature

The UL FH Pcap Capture Feature is supported starting in version 25-1 on the Grace Hopper platform.

Configuration

The feature requires a dedicated CPU core for the capture thread. Configure the following parameters in the cuPHY-
Controller config file:

ul_pcap_capture_enable: 1
ul_pcap_capture_thread_cpu_affinity: 19
ul_pcap_capture_thread_sched_priority: 95

1.5. cuBB Quickstart Guide 341



Aerial CUDA-Accelerated RAN, Release 25-1

Testing the Feature

Testing requires using OAM commands on both the DU and RU sides. For the below test, you could run a multi-cell
performance pattern like 20C 59C peak pattern.
For the below scripts, please add –build_dir to the command if you are using a build directory other than the default
directory build.$(uname -m).

DU Side Commands

After launching cuPHYController, open a new shell instance to run the following command to arm the UL FH Pcap
capture for specific cells:

# Enable for cell 0
./testBenches/phase4_test_scripts/run_UlPcap.sh --cell_id 0 --cmd 1
# Sets cell_mask to 0x00000001

# Enable for cell 1
./testBenches/phase4_test_scripts/run_UlPcap.sh --cell_id 1 --cmd 1
# Sets cell_mask to 0x00000003

# Set bitmask for cell 1
./testBenches/phase4_test_scripts/run_UlPcap.sh --cell_mask 2
# Sets cell_mask to 0x00000002

# Set bitmask for cells 0 and 1
./testBenches/phase4_test_scripts/run_UlPcap.sh --cell_mask 3
# Sets cell_mask to 0x00000003 directly with one command

Note: That multiple cells can be armed at the same time, but it has not been profiled for performance.
This will print a similar message as the following message on the DU side:

UL PCAP gRPC command received to arm cell 0 for the next CRC error for the cell. Cell␣
↪→bitmask updated from 0 to 1

The DU will arm the capturing for the UL FH Pcap for cell 0. On the next CRC error, the DU will flush the UL FH Pcap
and save it to a file following this naming convention:

Timestamp_Frame_Subframe_Slot_Cell.pcap
%Y%m%d_%H%M%S_F%03d_SF%02d_SL%d_C%d.pcap
i.e. 20250214_071145_F000_SF02_SL0_C0.pcap

RU Side Commands to force CRC errors

Here are two ways to trigger UL FH Pcap Capture by forcing RU to send irregular slots IQ samples:
Enable the oam_cell_ctrl_cmd: 1 in the RU Emulator config.yaml

1. Drop packets to force order kernel timeout and CRC errors:

# Drop single PUSCH symbol for cell 1
./testBenches/phase4_test_scripts/run_UlUplaneDrop.sh --cell_id 1 --channel_id 1 --
↪→single_drop 1

2. Send packets with zero IQ samples to force CRC failures:

342 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

# Send zero U-plane for cell 0, channel 2
./testBenches/phase4_test_scripts/run_UlZeroUplane.sh --cell_id 0 --channel_id 2

The RU commands allow you to simulate different error conditions to verify the pcap capture functionality.
Alternatively, you can use the following command to forcefully flush the pcap capture buffer if it is armed with the below
command:

# Force flush the pcap capture buffer
./testBenches/phase4_test_scripts/run_UlPcapFlush.sh --cell_id 0

On the DU, when a PCAP file is being flushed, you will see the following message related to shmlogging:

07:15:11.219018 CON UlPhyDriver06 0 [DRV.PUSCH] Cell 0 Trigger Pcap flush for SFN 69␣
↪→Slot 15
07:15:11.221383 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[0]=0x0
07:15:11.221383 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[1]=0x0
07:15:11.221384 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[2]=0x0
07:15:11.221384 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[3]=0x0
07:15:11.221385 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[4]=0x0
07:15:11.221385 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[5]=0x0
07:15:11.221386 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[6]=0x0
07:15:11.221386 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: page_start_
↪→offset[7]=0x0
07:15:11.221387 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: break_offset: page_
↪→start_offset[2]=0x0
07:15:11.223049 CON 29565 0 [NVIPC.SHMLOG] collect_file_log: tmp_file_size=0x0 total_
↪→saved=0x0 total_shm_offset=0x862B4C half_cache_size=0x1000000
07:15:11.225831 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: tmp_file_logs=0x0␣
↪→shm_cache_logs=0x862B4C shm_cache_size=0x2000000
07:15:11.226671 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: copy block 3:␣
↪→nbytes=0x862B4C w_pos=0x0 shm_cache_offset=0x0
07:15:11.393122 CON 29565 0 [NVIPC.SHMLOG] shmlogger_collect_ex: successfully␣
↪→converted pcap logs to ./ul_crc_pcap, total_size=0x862B4C=8792908 pcap_
↪→size=8664932=8 MB

Check the pcap file generated to contain the packets for the SFN,Slot.

Converting 3GPP SFN/Slot to ORAN Frame/Subframe/Slot

When analyzing the pcap files, you’ll need to convert between 3GPP and ORAN timing formats:
3GPP Format:

• SFN (System Frame Number): 0-1023
• Slot: 0-19

ORAN Format:
• Frame: SFN % 256 (8 bits)

1.5. cuBB Quickstart Guide 343



Aerial CUDA-Accelerated RAN, Release 25-1

• Subframe: Slot / 2
• Slot: Slot % 2

Example Conversion:
For 3GPP SFN=260, Slot=15:

ORAN Frame = 260 % 256 = 4
ORAN Subframe = 15 / 2 = 7
ORAN Slot = 15 % 2 = 1

Result: Frame=4, Subframe=7, Slot=1

1.5.5 Running cuBB End-to-End Perf tests

Prerequisites

The following instructions assume the system configuration and Aerial cuBB installation are done. If not, see the cuBB
Install Guide to complete the installation or upgrade process.

1.5.6 Step A1: Build and prepare DU Compute node

• Build the project using the instructions below.

$cuBB_SDK/testBenches/phase4_test_scripts/build_aerial_sdk.sh

• Then configure DU setup (NIC interface, CPU core assignment, time window). Use option (-m 1) to allocate
additional cores needed for muMIMO

$cuBB_SDK/testBenches/phase4_test_scripts/setup1_DU.sh -m 1

• Run the RU Setup

$cuBB_SDK/testBenches/phase4_test_scripts/setup2_RU.sh -m 1

• Run the test Setup

$cuBB_SDK/testBenches/phase4_test_scripts/test_config.sh '<test pattern>' --num-cells=
↪→'<number of cells>'

1.5.7 Step A2: Build and prepare O-RU Compute node

• Build the project using the instructions below.

$cuBB_SDK/testBenches/phase4_test_scripts/build_aerial_sdk.sh

• Then configure DU setup (NIC interface, CPU core assignment, time window). Use option (-m 1) to allocate
additional cores needed for muMIMO

$cuBB_SDK/testBenches/phase4_test_scripts/setup1_DU.sh -m 1

• Run the RU Setup

344 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

$cuBB_SDK/testBenches/phase4_test_scripts/setup2_RU.sh -m 1

• Overwrite test_config_summary.txt from DU Compute node to the RU Compute node. test_config_summary.txt
can be found in the below folder on both the nodes.

$cuBB_SDK/testBenches/phase4_test_scripts/test_config_summary.txt

• Run the test Setup

$cuBB_SDK/testBenches/phase4_test_scripts/test_config.sh '<test pattern>' --num-cells=
↪→'<number of cells>'

1.5.8 Step A3: Run the RU-Emulator (On RU compute node)

$cuBB_SDK/testBenches/phase4_test_scripts/run1_RU.sh

1.5.9 Step A4: Run the cuphycontroller (On DU compute node)

$cuBB_SDK/testBenches/phase4_test_scripts/run2_cuPHYcontroller.sh

1.5.10 Step A5: Run the testMAC (On DU compute node)

$cuBB_SDK/testBenches/phase4_test_scripts/run3_testMAC.sh

Note

Test patterns 66c and 67c can be tested with max 3 cells.

1.5.11 E2E gNodeB on MIG

This page covers how to set up E2E gNodeB on MIG.

Setting up MIG for Aerial

Check GPU Device availability

To check the available GPUs on the system and get the GPU-ID, run the nvidia-smi -L command.

$ nvidia-smi -L
GPU 0: NVIDIA GH200 480GB (UUID: GPU-51c12aab-5ee1-2f10-a4b7-6baacfec5e31)

1.5. cuBB Quickstart Guide 345



Aerial CUDA-Accelerated RAN, Release 25-1

Partition GPUs

1. Run the nvidia-smi -i <GPU_ID> -mig 1 command to enable MIG mode on the GPU(s).

Note

If -i <GPU_ID> is not specified, then MIG mode is applied to all the GPUs on the system.

$ sudo nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000009:01:00.0
All done.

2. Check the available partition options using the nvidia-smi mig -lgip command.
The following example displays the results from GH.

$ sudo nvidia-smi mig -lgip
+-----------------------------------------------------------------------------+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
|=============================================================================|
| 0 MIG 1g.12gb 19 7/7 11.00 No 16 1 0 |
| 1 1 0 |
+-----------------------------------------------------------------------------+
| 0 MIG 1g.12gb+me 20 1/1 11.00 No 16 1 0 |
| 1 1 1 |
+-----------------------------------------------------------------------------+
| 0 MIG 1g.24gb 15 4/4 23.00 No 26 1 0 |
| 1 1 0 |
+-----------------------------------------------------------------------------+
| 0 MIG 2g.24gb 14 3/3 23.00 No 32 2 0 |
| 2 2 0 |
+-----------------------------------------------------------------------------+
| 0 MIG 3g.48gb 9 2/2 46.50 No 60 3 0 |
| 3 3 0 |
+-----------------------------------------------------------------------------+
| 0 MIG 4g.48gb 5 1/1 46.50 No 64 4 0 |
| 4 4 0 |
+-----------------------------------------------------------------------------+
| 0 MIG 7g.96gb 0 1/1 93.00 No 132 7 0 |
| 8 7 1 |
+-----------------------------------------------------------------------------+

3. Slice the GPU using the nvidia-smi mig -cgi <PROFILE> -C command.
The following example uses one Profile with 4g and one with 3g.

$ sudo nvidia-smi mig -cgi 9,5 -C
Successfully created GPU instance ID 2 on GPU 0 using profile MIG 3g.48gb (ID ␣
↪→9)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 2 using␣
↪→profile MIG 3g.48gb (ID 2)
Successfully created GPU instance ID 1 on GPU 0 using profile MIG 4g.48gb (ID ␣
↪→5)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 1 using␣
↪→profile MIG 4g.48gb (ID 3)

346 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

4. Check the GPU partitions using the nvidia-smi -L command.
The following example displays the results from GH.

$ nvidia-smi -L
GPU 0: NVIDIA GH200 480GB (UUID: GPU-51c12aab-5ee1-2f10-a4b7-6baacfec5e31)
MIG 4g.48gb Device 0: (UUID: MIG-e9f0fa8c-548f-5fc5-aa58-51ef34c2816a)
MIG 3g.48gb Device 1: (UUID: MIG-fcc563dc-5c8d-5de2-a448-439bde80400c)

Note

MIG mode is not persistent over reboots, so you may need to run above commands after each reboot.

Disabling MIG

To disable MIG , use the nvidia-smi -i <GPU_ID> -mig 0 command.

Bringing up cuBB with a MIG Instance

Start the cuBB Container

To start the L1 container with a specific MIG instance, pass the CUDA_VISIBLE_DEVICES variable argument speci-
fying the MIG instance UUID to docker run.

Tip

Run nvidia-smi -L (as described in section above) to get UUIDs for MIG instances.

The following example command launches the cuBB container with the MIG-3 instance.

$ sudo docker run --gpus all --restart unless-stopped -dP --network host --shm-
↪→size=4096m --privileged -it --device=/dev/gdrdrv:/dev/gdrdrv -v /lib/modules:/lib/
↪→modules -v /dev/hugepages:/dev/hugepages --userns=host --ipc=host -v /usr/src:/usr/
↪→src -v /home/aerial/nfs:/root -v /home/aerial/nfs:/cuBBSrc -v /home/aerial/nfs:/
↪→home/aerial/nfs -e CUDA_VISIBLE_DEVICES=<UUID of MIG-3> --name 25-1-mig nvidia:
↪→Aerial-cuBB-container-ubuntu22.04-25.01.0-Rel-25-1.284-aarch64 bash

If successful, the above command creates a container with the name “25-1-mig”.

Start L1 Binaries

1. Enter the cuBB container by running the following command.

``docker exec -it 25-1-mig /bin/bash``

2. Create the bringup.sh script as shown below.

#!/bin/bash

# This script to be used after getting into the docker image

(continues on next page)

1.5. cuBB Quickstart Guide 347



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

export cuBB_SDK=$(pwd)

mkdir build

cd build

cmake .. -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native

# Compile the code

make -j $(nproc --all)

export CUDA_VISIBLE_DEVICES=$(nvidia-smi -L|grep 'MIG 3g\.'| sed -n 's/.*(UUID: \
↪→(.*\))/\1/p')

echo $CUDA_VISIBLE_DEVICES

export CUDA_DEVICE_MAX_CONNECTIONS=8

export CUDA_MPS_PIPE_DIRECTORY=/tmp/$CUDA_VISIBLE_DEVICES

mkdir -p $CUDA_MPS_PIPE_DIRECTORY

export CUDA_MPS_LOG_DIRECTORY=/var

# Stop existing MPS

echo "Stop existing mps"

sudo -E echo quit | sudo -E nvidia-cuda-mps-control

# Start MPS

echo "Start mps"

sudo -E nvidia-cuda-mps-control -d

sudo -E echo start_server -uid 0 | sudo -E nvidia-cuda-mps-control

exit 0

3. Run the bringup.sh script.
4. Use nvidia-smi to confirm that bringup.sh has started the MPS server process:

$ nvidia-smi
+---------------------------------------------------------------------------------
↪→--------+
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version:␣
↪→12.8 |
|-----------------------------------------+------------------------+--------------
↪→--------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile␣
↪→Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util ␣
↪→Compute M. |

(continues on next page)

348 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
| | | ␣
↪→ MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GH200 480GB On | 00000009:01:00.0 Off | ␣
↪→ On |
| N/A 38C P0 118W / 900W | N/A | N/A ␣
↪→Default |
| | | ␣
↪→Enabled |
+-----------------------------------------+------------------------+--------------
↪→--------+

+---------------------------------------------------------------------------------
↪→--------+
| MIG devices: ␣
↪→ |
+------------------+----------------------------------+-----------+---------------
↪→--------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared␣
↪→ |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC ␣
↪→OFA JPG |
| | | ECC| ␣
↪→ |
|==================+==================================+===========+=======================|
| 0 1 0 0 | 58MiB / 47616MiB | 64 0 | 4 0 4 ␣
↪→ 0 4 |
| | 0MiB / 0MiB | | ␣
↪→ |
+------------------+----------------------------------+-----------+---------------
↪→--------+
| 0 2 0 1 | 172MiB / 47616MiB | 60 0 | 3 0 3 ␣
↪→ 0 3 |
| | 0MiB / 0MiB | | ␣
↪→ |
+------------------+----------------------------------+-----------+---------------
↪→--------+

+---------------------------------------------------------------------------------
↪→--------+
| Processes: ␣
↪→ |
| GPU GI CI PID Type Process name ␣
↪→GPU Memory |
| ID ID ␣
↪→Usage |
|=========================================================================================|
| 0 2 0 493989 C nvidia-cuda-mps-server ␣
↪→ 120MiB |
+---------------------------------------------------------------------------------
↪→--------+

5. Start L1 binaries using the below command.

Note

1.5. cuBB Quickstart Guide 349



Aerial CUDA-Accelerated RAN, Release 25-1

The CUDA_VISIBLE_DEVICES=<MIG-UUID> value can be obtained from the nvidia-smi -L com-
mand (as described in section above).

export CUDA_VISIBLE_DEVICES=<UUID of MIG-3> && export CUDA_MPS_PIPE_DIRECTORY=/
↪→tmp/$CUDA_VISIBLE_DEVICES && export CUDA_MPS_LOG_DIRECTORY=/var && export CUDA_
↪→DEVICE_MAX_CONNECTIONS=8 && sudo -E stdbuf -i0 -o0 -e0 /opt/nvidia/cuBB/build/
↪→cuPHY-CP/cuphycontroller/examples/cuphycontroller_scf P5G_FXN_GH

Both L1 and MPS server processes should now be running on GPU instance 2, which corresponds to MIG-3.

$ nvidia-smi
+---------------------------------------------------------------------------------
↪→--------+
| NVIDIA-SMI 570.124.06 Driver Version: 570.124.06 CUDA Version:␣
↪→12.8 |
|-----------------------------------------+------------------------+--------------
↪→--------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile␣
↪→Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util ␣
↪→Compute M. |
| | | ␣
↪→ MIG M. |
|=========================================+========================+======================|
| 0 NVIDIA GH200 480GB On | 00000009:01:00.0 Off | ␣
↪→ On |
| N/A 42C P0 117W / 900W | 31209MiB / 97871MiB | N/A ␣
↪→Default |
| | | ␣
↪→Enabled |
+-----------------------------------------+------------------------+--------------
↪→--------+

+---------------------------------------------------------------------------------
↪→--------+
| MIG devices: ␣
↪→ |
+------------------+----------------------------------+-----------+---------------
↪→--------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared␣
↪→ |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC ␣
↪→OFA JPG |
| | | ECC| ␣
↪→ |
|==================+==================================+===========+=======================|
| 0 1 0 0 | 58MiB / 47616MiB | 64 0 | 4 0 4 ␣
↪→ 0 4 |
| | 0MiB / 0MiB | | ␣
↪→ |
+------------------+----------------------------------+-----------+---------------
↪→--------+
| 0 2 0 1 | 31151MiB / 47616MiB | 60 0 | 3 0 3 ␣
↪→ 0 3 |
| | 0MiB / 0MiB | | ␣
↪→ |

(continues on next page)

350 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
+------------------+----------------------------------+-----------+---------------
↪→--------+

+---------------------------------------------------------------------------------
↪→--------+
| Processes: ␣
↪→ |
| GPU GI CI PID Type Process name ␣
↪→GPU Memory |
| ID ID ␣
↪→Usage |
|=========================================================================================|
| 0 2 0 493989 C nvidia-cuda-mps-server ␣
↪→ 120MiB |
| 0 2 0 494009 M+C .../examples/cuphycontroller_scf ␣
↪→30958MiB |
+---------------------------------------------------------------------------------
↪→--------+

Starting LLM on MIG

Execute the following Docker command to start the LLM on MIG:

sudo docker run --cpuset-cpus="52-70" --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=
↪→<UUID of MIG 4 instance> --rm -it -p 8000:8000 nvcr.io/miicz8azigqf/fix_mid_ans_tmo_
↪→async_rag_gh200_llama3-70b-int4_with_engine:0.10.0

Adding Routes on CN and PDN

Adding a PDN Route on CN

1. Navigate to the /sbin folder on the CN machine and create a script named add-route.sh.
2. Add the following contents to the add-route.sh script. The PDN server IP is given as 169.254.200.1;

modify this value as needed based on your PDN IP setup.

#!/bin/bash

container_id=`docker ps | grep dataplane | awk '{print$1}'`

echo "*************** Adding route to PDN inside VPP ***************"
echo -e "\n"
docker exec -it $container_id bash -c "vppctl ip route add 0.0.0.0/0 via 169.254.
↪→200.1 net1"

echo -e "\n"
echo "*************** Checking added route ***************"
echo -e "\n"
docker exec -it $container_id bash -c "vppctl show ip fib"

3. Provide full permissions permissions for the script: chmod 777 add-route.sh

4. Run the script: ./add-route.sh.

1.5. cuBB Quickstart Guide 351



Aerial CUDA-Accelerated RAN, Release 25-1

Note

This route may get deleted at some point, in which case you will need to run the add-route.sh script again.
If CUE cannot connect to internet, this is an indication that the route was deleted on the CN.

Adding Routes on PDN to enable Internet

The PDN server has 2 IP addresses:
• PDN VM Interface

– IP: 192.168.122.11
– Interface name: enp6s0

• PDN server Interface: The IP of this interface is configured on the CN machine.
– IP: 169.254.200.1
– Interface name: enp1s0

1. Add the first route for a UE IP range of 21.21.21.*.

iptables -t nat -A POSTROUTING -s 21.21.21.0/24 -p all -j SNAT --to-source 192.
↪→168.122.11

2. Create a script named internet_enable.sh with the content below.

Note

Ensure the WANIF and LANIF are set properly.

#! /bin/bash

IPTABLES=/sbin/iptables

WANIF='enp6s0'

LANIF='enp1s0'

# enable ip forwarding in the kernel

echo 'Enabling Kernel IP forwarding...'

/bin/echo 1 > /proc/sys/net/ipv4/ip_forward

# flush rules and delete chains

echo 'Flushing rules and deleting existing chains...'

$IPTABLES -F

$IPTABLES -X

# enable masquerading to allow LAN internet access

(continues on next page)

352 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
echo 'Enabling IP Masquerading and other rules...'

$IPTABLES -t nat -A POSTROUTING -o $LANIF -j MASQUERADE

$IPTABLES -A FORWARD -i $LANIF -o $WANIF -m state --state RELATED,ESTABLISHED -j␣
↪→ACCEPT

$IPTABLES -A FORWARD -i $WANIF -o $LANIF -j ACCEPT

$IPTABLES -t nat -A POSTROUTING -o $WANIF -j MASQUERADE

$IPTABLES -A FORWARD -i $WANIF -o $LANIF -m state --state RELATED,ESTABLISHED -j␣
↪→ACCEPT

$IPTABLES -A FORWARD -i $LANIF -o $WANIF -j ACCEPT

echo 'Done.'
$IPTABLES -X

# enable masquerading to allow LAN internet access

echo 'Enabling IP Masquerading and other rules...'

$IPTABLES -t nat -A POSTROUTING -o $LANIF -j MASQUERADE

$IPTABLES -A FORWARD -i $LANIF -o $WANIF -m state --state RELATED,ESTABLISHED -j␣
↪→ACCEPT

$IPTABLES -A FORWARD -i $WANIF -o $LANIF -j ACCEPT

$IPTABLES -t nat -A POSTROUTING -o $WANIF -j MASQUERADE

$IPTABLES -A FORWARD -i $WANIF -o $LANIF -m state --state RELATED,ESTABLISHED -j␣
↪→ACCEPT

$IPTABLES -A FORWARD -i $LANIF -o $WANIF -j ACCEPT

echo 'Done.'

3. Provide full permissions permissions for the script: chmod 777 internet_enable.sh

4. Run the script: ./internet_enable.sh

Note

You may need to add a proper nameserver entry in /etc/netplan/00-installer-config.yaml to ping
the outside Internet. To get the DNS Server name, use the following command:
aerial@iperf-cn-vm:~$ systemd-resolve --status | grep "DNS Servers"
DNS Servers: 10.110.8.18

1.5. cuBB Quickstart Guide 353



Aerial CUDA-Accelerated RAN, Release 25-1

1.5.12 Active-Standby Fronthaul Port Failover

This page covers how to perform active-standby fronthaul port failover tests.

Test Configuration

• One active port and one redundant/standby port on the NIC:
– Cell capacity is restricted to the BW supported by one NIC port (200Gbps).
– In case of port failure, the L1 controller switches to the redundant/standby port and the cell should not stop

during the port failover.

Test Procedure

The following test procedure ensures the functionality in Aerial Connection Manager and verifies that the FH driver
supports this requirement. To simulate port failure, a script on the FH switch enables and disables the specific port. The
test can be done using cuBB with the FH switch or the actual E2E setup: For example, TestMAC <-> cuPHYController
<-> FH switch (SN3750) <-> RU emulator.

1. Configure the cuphycontroller.yaml file.

Note

The examples below assume the following:

354 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

• Default port: ifname: ‘aerial00’; PCIe address: ‘0000:01:00.0’
• Backup port: ifname: ‘aerial01’; pcie address: ‘0000:01:00.1’

a. Add both NIC ports in the cuphycontroller.yaml file. The first port is used as the default port for
C/U-plane traffic by setting the ‘nic’ in all cells ['cuphydriver_config']['cells'][]['nic']
as ‘0000:01:00.0’.

cuphydriver_config:
...
nics:

- nic: '0000:01:00.0'
mtu: 1514
cpu_mbufs: 196608
uplane_tx_handles: 64
txq_count: 60
rxq_count: 20
txq_size: 8192
rxq_size: 16384
gpu: 0
- nic: '0000:01:00.1'
mtu: 1514
cpu_mbufs: 196608
uplane_tx_handles: 64
txq_count: 60
rxq_count: 20
txq_size: 8192
rxq_size: 16384
gpu: 0

b. Enable the ‘cus_port_failover’ flag in the cuphycontroller.yaml file.

cuphydriver_config:
...
cus_port_failover: 1

c. Set the default port and backup port in $cuBB_SDK/cuPHY-CP/cuphyoam/src/cus_conn_mgr.
cpp#L46 (The line number may be different due to release version). You will need to rebuild after the code
change.

std::string if_names[] = {"aerial00", "aerial01"}; // First one is the␣
↪→default port, the second one is backup port

2. Start the cuphycontroller.
The following is example output of the connection manager from the cuphycontroller console on startup:

11:05:51.677624 WRN 56926 0 [OAM.CUSConnMgr] AerialCUSConnMgr started...
11:05:51.677624 WRN 56926 0 [OAM.CUSConnMgr] Default port: 'aerial00', backup␣
↪→port: 'aerial01'
11:05:51.677688 WRN 56926 0 [OAM.CUSConnMgr] Interface 'aerial00' index is: 2
11:05:51.677693 WRN 56926 0 [OAM.CUSConnMgr] Interface 'aerial01' index is: 5
11:05:51.677693 WRN 56926 0 [OAM.CUSConnMgr] Default CUS port index is: 2
11:05:51.678065 WRN 56926 0 [OAM.CUSConnMgr] Interface idx 2 PCIe address is:␣
↪→0000:01:00.0
11:05:51.678170 WRN 56926 0 [OAM.CUSConnMgr] Interface idx 5 PCIe address is:␣
↪→0000:01:00.1

(continues on next page)

1.5. cuBB Quickstart Guide 355



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
11:05:51.678180 WRN 56926 0 [OAM.CUSConnMgr] Listening for link down events...
11:05:51.678272 WRN 56926 0 [OAM.CUSConnMgr] Link up event detected on interface␣
↪→index: 2
11:05:51.678280 WRN 56926 0 [OAM.CUSConnMgr] Link up event detected on interface␣
↪→index: 5

The Aerial Connection Manager will monitor for port failure (i.e. link down events).
4. Execute the FH port failover script on the FH switch:

a. MAC address remapping
b. Apply port active rules

When port failure happens, Aerial Connection Manager will do the following:
a. Change the FH port to the redundant/standby port.
b. Reconfigure ptp4l to the redundant/standby port and restart the ptp4l daemon.

5. Check if the CUS-plane switch completes and determine the impact on the C/U-plane (i.e. whether FH packets
are dropped/early/on-time/late).
The following is example output from the cuphycontroller console when a link down event is detected with the
‘aerial00’ default port:

11:11:03.068607 WRN 56926 0 [OAM.CUSConnMgr] Link down event detected on␣
↪→interface index: 2
11:11:03.195914 WRN 56926 0 [OAM.CUSConnMgr] ptp4l service restarted successfully.
11:11:03.195916 WRN 56926 0 [OAM.CUSConnMgr] Successfully switch CUS port to␣
↪→interface aerial01
11:11:03.195916 WRN 56926 0 [OAM.CUSConnMgr] CU Plane port failover took 109857␣
↪→nanoseconds.
11:11:03.195916 WRN 56926 0 [OAM.CUSConnMgr] CUS Plane port failover took␣
↪→127309590 nanoseconds.

FH Switch Test Script

The following test script is verified on the Spectrum SN3750 switch:
• The default active NIC port is connected to the swp7 port on the switch.
• The standby NIC port is connected to the swp8 port on the switch.

Use the test script as follows: sudo ./failover -port1 swp7 -port2 swp8 -iter 1 -interval
0.1 -wait 20

#!/usr/bin/python3

import sys
import os
import json
import subprocess
import argparse
import time
import datetime

def setup_arg_parser():

(continues on next page)

356 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
cfg = argparse.ArgumentParser()
cfg.add_argument("-port1", help="port1 (primary FH port)", required=True)
cfg.add_argument("-port2", help="port2 (Failover FH port)", required=True)
cfg.add_argument("-iter", help="number of ping pong iterations", required=True)
cfg.add_argument("-interval", help="polling interval in seconds, e.g. 0.1",␣

↪→required=True)
cfg.add_argument("-wait", help="wait between ping pong iterations", required=True)

return cfg

def get_port_state(port):
cmd = 'nv show interface {} link state --output json'.format(port)
out = subprocess.check_output(cmd.split())
j1 = json.loads(out)
port_state = list(j1.keys())[0]

return port_state

def get_port_ptp_counter(port):
#cmd = 'nv show interface {} counters ptp --output json'.format(port)
cmd = 'ptpctl -j show interface ethernet {} counters'.format(port)
out = subprocess.check_output(cmd.split())
j1 = json.loads(out)
delay_resp_tx_cnt = j1['delay-resp']['transmitted']

return delay_resp_tx_cnt

def prepare_ports(port1, port2):
# get port1 and port2 link state
port1_state = get_port_state(port1)
port2_state = get_port_state(port2)

# if both ports are down, bring both up, and pick port1 to be brought down
# if both ports are up, pick port1 to be brought down
if port1_state == port2_state:

if port1_state == 'down':
os.system('ip link set up {}'.format(port1))
os.system('ip link set up {}'.format(port2))
time.sleep(3)

port_to_fail = port1
failover_port = port2

else:
# if port1 is up and port2 is down, bring up port2 and pick port1 to be down
# if port1 is down and port2 is up, bring up port1 and pick port2 to be down
if port1_state == 'up':

os.system('ip link set up {}'.format(port2))
time.sleep(3)
port_to_fail = port1
failover_port = port2

else:
os.system('ip link set up {}'.format(port1))
time.sleep(3)
port_to_fail = port2
failover_port = port1

print('Preparing ports: failover from {} to {}'.format(port_to_fail, failover_
↪→port))

(continues on next page)

1.5. cuBB Quickstart Guide 357



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
return port_to_fail, failover_port

def start_sequence(port_to_fail, failover_port, interval):
# ensure both ports are up
p1_state = get_port_state(port_to_fail)
p2_state = get_port_state(failover_port)
if p1_state == 'down' or p2_state == 'down':

print('Not both ports are up, abort.')
sys.exit(1)

# take failover_port ptp counter snapshot
delay_resp_tx_cnt = get_port_ptp_counter(failover_port)
new_cnt = delay_resp_tx_cnt

# bring down port_to_fail and log in syslog
os.system('ip link set down {}'.format(port_to_fail))
os.system('logger \"{} is shutdown\"'.format(port_to_fail))

# update mac address translation: hack
acl_path = '/etc/cumulus/acl/policy.d/50_nvue.rules'
if port_to_fail == 'swp7':

os.system('cp port2_active.rules {}'.format(acl_path))
else:

os.system('cp port1_active.rules {}'.format(acl_path))
os.system('cl-acltool -i')
os.system('logger \"Updated mac translation\"')

# start polling for failover port counter change
print(datetime.datetime.now())
while new_cnt == delay_resp_tx_cnt:

time.sleep(float(interval))
new_cnt = get_port_ptp_counter(failover_port)

print(datetime.datetime.now())

# log counter change to syslog
os.system('logger \"{} ptp is locked\"'.format(failover_port))

if __name__ == '__main__':
parser = setup_arg_parser()
cfg = parser.parse_args(sys.argv[1:])

port1 = cfg.port1
port2 = cfg.port2
for i in range(int(cfg.iter)):

port_to_fail, failover_port = prepare_ports(port1, port2)
msg = 'Iteration {} start, failover from {} to {}'.format(i, port_to_fail,␣

↪→failover_port)
print(msg)
os.system('logger \"{}\"'.format(msg))
start_sequence(port_to_fail, failover_port, cfg.interval)
print('Iteration {} finished, waiting to start next sequence'.format(i))
time.sleep(int(cfg.wait))
port1 = port_to_fail
port2 = failover_port

os.system('ip link set up {}'.format(port1))
FH switch rule changes
swp3: RU emulator NIC port is connected to the switch's swp3 port.

(continues on next page)

358 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
94:6d:ae:f5:ab:98 is the MAC address of the the default port.
94:6d:ae:f5:ab:99 is the MAC address of the standby port.
port2_active.rules
# Auto-generated by NVUE!
# Any local modifications will prevent NVUE from re-generating this file.
# md5sum: 4e39a3b53931b61cc128e47ce2ca6d2c

[iptables]

[ip6tables]

[ebtables]

## ACL ru-in in dir inbound on interface swp3 ##
# rule-id #1: #
-t nat -A PREROUTING -i swp3 --comment rule_id:1,acl_name:ru-in,dir:inbound,interface_
↪→id:swp3 -d 94:6d:ae:f5:ab:98/ff:ff:ff:ff:ff:ff -j dnat --to-destination 94:6d:ae:f5:
↪→ab:99

## ACL ru-out in dir outbound on interface swp3 ##
# rule-id #1: #
-t nat -A POSTROUTING -o swp3 --comment rule_id:1,acl_name:ru-out,dir:outbound,
↪→interface_id:swp3 -s 94:6d:ae:f5:ab:98/ff:ff:ff:ff:ff:ff -j snat --to-source 94:6d:
↪→ae:f5:ab:98
# rule-id #2: #
-t nat -A POSTROUTING -o swp3 --comment rule_id:2,acl_name:ru-out,dir:outbound,
↪→interface_id:swp3 -s 94:6d:ae:f5:ab:99/ff:ff:ff:ff:ff:ff -j snat --to-source 94:6d:
↪→ae:f5:ab:98
port1_active.rules
# Auto-generated by NVUE!
# Any local modifications will prevent NVUE from re-generating this file.
# md5sum: 4e39a3b53931b61cc128e47ce2ca6d2c

[iptables]

[ip6tables]

[ebtables]

## ACL ru-in in dir inbound on interface swp3 ##
# rule-id #1: #
-t nat -A PREROUTING -i swp3 --comment rule_id:1,acl_name:ru-in,dir:inbound,interface_
↪→id:swp3 -d 94:6d:ae:f5:ab:98/ff:ff:ff:ff:ff:ff -j dnat --to-destination 94:6d:ae:f5:
↪→ab:98

## ACL ru-out in dir outbound on interface swp3 ##
# rule-id #1: #

(continues on next page)

1.5. cuBB Quickstart Guide 359



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
-t nat -A POSTROUTING -o swp3 --comment rule_id:1,acl_name:ru-out,dir:outbound,
↪→interface_id:swp3 -s 94:6d:ae:f5:ab:98/ff:ff:ff:ff:ff:ff -j snat --to-source 94:6d:
↪→ae:f5:ab:98
# rule-id #2: #
-t nat -A POSTROUTING -o swp3 --comment rule_id:2,acl_name:ru-out,dir:outbound,
↪→interface_id:swp3 -s 94:6d:ae:f5:ab:99/ff:ff:ff:ff:ff:ff -j snat --to-source 94:6d:
↪→ae:f5:ab:98

1.6 cuBB Integration Guide

The cuBB Integration Guide contains the following sections:

NVIPC An API specification for NVIPC, an NVIDIA messaging standard for communication between two pro-
cesses on the same system.

SCF
FAPI

Outlines support for FAPI specification in Aerial cuBB.

1.6.1 NVIPC

NVIPC is a messaging system for communication between two processes on the same system. It solves two problems:
• How to transfer messages between two processes
• How to notify a receiver when sending is finished

NVIPC Overview

This section provides an overview of NVIPC messaging functionality.

360 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

NVIPC Message Transfer

To achieve low-latency and high performance, NVIPC uses lock-free memory pools and lock-free queues to deliver the
messages. The message transfer module architecture is as below.

NVIPC API Definitions

An NVIPC message is divided into two parts:
• MSG: Handled in control logic which runs in CPU thread.
• DATA: Handled with high performance computing which runs in CPU thread or GPU context.

A struct nv_ipc_msg_t is defined to represent a generic NVIPC message, as shown below.

typedef struct
{

int32_t msg_id; // IPC message ID
int32_t cell_id; // Cell ID
int32_t msg_len; // MSG part length
int32_t data_len; // DATA part length
int32_t data_pool; // DATA memory pool ID
void* msg_buf; // MSG buffer pointer
void* data_buf; // DATA buffer pointer

} nv_ipc_msg_t;

The MSG part and DATA part are stored in different buffers. MSG part presence is mandatory, DATA part presence is
optional. data_buf is null when there is no DATA part present.
NVIPC creates multiple memory pools at initial to manage the MSG part and DATA part buffers. An enum type
nv_ipc_mempool_id_t is defined as the memory pool indicator. MSG buffer is allocated from CPU shared memory
pool. DATA buffer can be allocated from CPU shared memory pool or CUDA shared memory pool.

1.6. cuBB Integration Guide 361



Aerial CUDA-Accelerated RAN, Release 25-1

typedef enum
{

NV_IPC_MEMPOOL_CPU_MSG = 0, // CPU SHM pool for MSG part
NV_IPC_MEMPOOL_CPU_DATA = 1, // CPU SHM pool for DATA part
NV_IPC_MEMPOOL_CPU_LARGE = 2, // CPU SHM pool for large DATA part
NV_IPC_MEMPOOL_CUDA_DATA = 3, // CUDA SHM pool for DATA part
NV_IPC_MEMPOOL_GPU_DATA = 4, // CUDA SHM pool which supports GDR copy
NV_IPC_MEMPOOL_NUM = 5

} nv_ipc_mempool_id_t;

And a series of APIs are defined in struct

struct nv_ipc_t
{

// De-initiate and destroy the nv_ipc_t instance
int (*ipc_destroy)(nv_ipc_t* ipc);

// Memory allocate/release for TX side
int (*tx_allocate)(nv_ipc_t* ipc, nv_ipc_msg_t* msg, uint32_t options);
int (*tx_release)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

// Memory allocate/release for RX side
int (*rx_allocate)(nv_ipc_t* ipc, nv_ipc_msg_t* msg, uint32_t options);
int (*rx_release)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

// Send a ipc_msg_t message. Return -1 if failed
int (*tx_send_msg)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

// Call tx_tti_sem_post() at the end of a TTI
int (*tx_tti_sem_post)(nv_ipc_t* ipc);

// Call rx_tti_sem_wait() and then receive all messages in a TTI
int (*rx_tti_sem_wait)(nv_ipc_t* ipc);

// Get a ipc_msg_t message. Return -1 if no available.
int (*rx_recv_msg)(nv_ipc_t* ipc, nv_ipc_msg_t* msg);

// Get SHM event FD or UDP socket FD for epoll
int (*get_fd)(nv_ipc_t* ipc);

// Write tx_fd to notify the event, Only need for SHM
int (*notify)(nv_ipc_t* ipc, int value);

// Read rx_fd to clear the event. Only need for SHM
int (*get_value)(nv_ipc_t* ipc);

// CUDA memory copy function
int (*cuda_memcpy_to_host)(nv_ipc_t* ipc, void* host, const void* device, size_t␣

↪→size);
int (*cuda_memcpy_to_device)(nv_ipc_t* ipc, void* device, const void* host, size_

↪→t size);

// GDR copy function
int (*gdr_memcpy_to_host)(nv_ipc_t* ipc, void* host, const void* device, size_t␣

↪→size);
int (*gdr_memcpy_to_device)(nv_ipc_t* ipc, void* device, const void* host, size_t␣

↪→size);
};

362 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Lock-Free Data Structures

A lock-free queue named “array queue” is implemented in NVIPC. The array queue has the following features:
• FIFO (first in first out).
• Lock-free: supports multiple producers and multiple consumers without lock.
• Finite size: max length is defined at initial: N.
• Valid values are integers: 0, 1, …, N-1, can be used as the node index/pointer.
• Doesn’t support duplicate values.

Based on the lock-free array queue, generic memory pools and ring queues are implemented, and they are also lock-free:
• Memory pool: array queue + memory buffer array
• FIFO ring queue: array queue + element node array

NVIPC Memory Pools

Several shared memory pools are implemented in NVIPC. They are accessible by both the primary process and the
secondary process. Each memory pool is an array of fixed size buffers. Buffer size and pool length (buffer count) are
configurable by yaml file. If the buffer size or pool length is configured to 0, that memory pool will not be created. Below
is the default NVIPC memory pools configuration which is used in cuPHY-CP.

Memory Pool ID SHM file name at /dev/shm/ Comment
NV_IPC_MEMPOOL_CPU_MSG <prefix>_cpu_msg CPU memory for transfer

MSG part.
NV_IPC_MEMPOOL_CPU_DATA <prefix>_cpu_data CPU memory for transfer

DATA part.
NV_IPC_MEMPOOL_CPU_LARGE <prefix>_cpu_large CPU memory for transfer

large DATA part.
NV_IPC_MEMPOOL_CUDA_DATA <prefix>_cuda_data GPU memory. Not used.
NV_IPC_MEMPOOL_GPU_DATA <prefix>_gpu_data GPU memory with GDR

copy. Not used.

After NVIPC primary app initialized, the SHM files will present in /dev/shm/ folder.

Bi-Directional Message Queues

Two ring queues will be created to deliver the message buffer indices. The TX ring in sender app and RX ring in receiver
app are the same ring in shared memory of the system. Both DL and UL ring queues are stored in the same shared
memory file.

SHM file name at /
dev/shm/

Internal code name IPC direction PHY /PRIMARY MAC /SEC-
ONDARY

<prefix>_shm <prefix>_ring_m2s Uplink TX RX
<prefix>_shm <prefix>_ring_s2m Downlink RX TX

1.6. cuBB Integration Guide 363



Aerial CUDA-Accelerated RAN, Release 25-1

NVIPC message notification

NVIPC uses Linux event_fd to make notifications. It supports multiple I/O with select /poll/epollmechanism.
The message notification module architecture is as below.

Each process creates an event_fd file descriptor efd_rx for incoming message notification and share it with peer
process. The local efd_rx for receiving is shared as efd_tx for sending in peer side. Receiver process can call
get_fd() to get the I/O descriptor and use poll/epoll to get the notification. Besides, the event_fd is initiated with
EFD_SEMAPHORE flag so it can work like a semaphore. NVIPC provides both event/select style and semaphore style
notification APIs.

NVIPC message flow

A typical message transfer flow is shown below.

364 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Since the memory pools and ring queues support lockless concurrency, the use of notification APIs is not mandatory. If
users don’t want to use notification, the receiver should poll the incoming message queue by keep dequeueing from the
lock-free queue. rx_recv_msg() function returns -1 when the queue is empty.

NVIPC Integration

Configuration

NVIPC provides load_nv_ipc_yaml_config function to load configuration parameters from a YAML file. Since NVIPC
shared memory is created by primary app, the primary app must be provided with full configuration parameters while the
secondary app only needs to provide minimal configuration parameters.
Reference NVIPC yaml configuration files and integration code example are provided in <aerial_sdk>/cuPHY-
CP/gt_common_libs/nvIPC/tests/example Below are the yaml configuration files for primary and secondary applications.

Primary Application Configuration

# Transport settings for L1 / primary NVIPC
transport:

type: shm
shm_config:
prefix: nvipc
cuda_device_id: 0
ring_len: 8192
mempool_size:

cpu_msg:
buf_size: 8192

(continues on next page)

1.6. cuBB Integration Guide 365



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
pool_len: 4096

cpu_data:
buf_size: 576000
pool_len: 1024

cpu_large:
buf_size: 4096000
pool_len: 64

cuda_data:
buf_size: 307200
pool_len: 1024

app_config:
grpc_forward: 0
debug_timing: 0
pcap_enable: 0
pcap_shm_caching_cpu_core: 17 # CPU core of pcap shared memory caching thread
pcap_file_saving_cpu_core: 17 # CPU core of pcap file saving thread
pcap_cache_size_bits: 29 # 2^29 = 512MB, size of /dev/shm/${prefix}_pcap
pcap_file_size_bits: 31 # 2^31 = 2GB, max size of /var/log/aerial/${prefix}_pcap.␣

↪→Requires pcap_file_size_bits > pcap_cache_size_bits.
pcap_max_data_size: 8000 # Max DL/UL FAPI data size to capture reduce pcap size.
msg_filter: [] # Example: [0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x80, 0x81, 0x82,␣

↪→0x83, 0x84, 0x85]
cell_filter: [] # Example: [0, 1, 2, 3]

Secondary Application Configuration

# Transport settings for L2 / secondary NVIPC
transport:

type: shm
shm_config:
prefix: nvipc

Optional NVIPC Logger Configuration

To enable logger for nvipc in case where nvlog is not initialized (with nvipc_config.yaml), the following log configuration
can be added to the nvipc yaml configuration file to enable logger for nvipc.

nvipc_log:
# Log level: 0 - NONE, 1 - FATAL, 2 - ERROR, 3 - CONSOLE, 4 - WARNING, 5 - INFO, 6 -

↪→ DEBUG, 7 - VERBOSE
log_level: 3 # Can set to 5 when debug, but set to <=3 in production.

# Below are FMT log configurations. Only available when NVIPC_FMTLOG_ENABLE=ON
# Log file path and file name prefix
fmt_log_path: "/var/log/aerial"
fmt_log_name: "nvipc"
# Maximum FMT log file size. Unit: MB.
fmt_log_max_size: 128

366 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Initiation

Here is the reference code for initialization. The NVIPC primary process is responsible to create and initiate SHM pools,
ring queues. The NVIPC secondary process looks up the created pools and queues. In Aerial L1 is the primary process,
L2 should be configured as the secondary process.

// Create configuration
nv_ipc_config_t config;

// Select module_type for primary or secondary process
nv_ipc_module_t module_type = NV_IPC_MODULE_PRIMARY/SECONDARY;

// Recommended initialization: load nvipc configurations from yaml file
load_nv_ipc_yaml_config(&config, yaml_path, module_type);

// Create IPC interface: nv_ipc_t ipc
nv_ipc_t* ipc;
if ((ipc = create_nv_ipc_interface(&config)) == NULL) {

NVLOGE(TAG, "%s: create IPC interface failed\n", __func__);
return -1;

}

After successfully created IPC interface, some shared memory files can be seen in /dev/shm/ folder. For example, if
<prefix>=”nvipc”:

ls -al /dev/shm/nvipc*
nvipc_shm
nvipc_cpu_msg
nvipc_cpu_data
nvipc_cpu_large

De-Initialization

Below example code is for de-initialization.

if (ipc->ipc_destroy(ipc) < 0) {
NVLOGE(TAG, "%s close IPC interface failed\n", __func__);

}

Sending

The procedure for sending is as follows:

allocate buffers -> fill content -> send.

When filling content, for CUDA memory, the data_buf is a CUDA memory pointer which can’t be accessed directly
in CPU memory space. The NVIPC APIs provide basic memcpy functions to copy between CPU memory and CUDA
memory. For more CUDA operation, users can directly access the GPU memory buffer with CUDA APIs.

// Allocate NVIPC buffer for TX message
// Define data_pool type before call tx_allocate. Options: CPU_MSG, CPU_DATA, CUDA_
↪→DATA
nv_ipc_msg_t send_msg;

(continues on next page)

1.6. cuBB Integration Guide 367



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
send_msg.data_pool = NV_IPC_MEMPOOL_CPU_DATA;
if (ipc->tx_allocate(ipc, &send_msg, 0) != 0) {

NVLOGE(TAG, "%s error: allocate buffer failed\n", __func__);
return -1;

}

// Fill the MSG content
int8_t fapi_msg[SHM_MSG_BUF_SIZE];
memcpy(send_msg.msg_buf, fapi_msg, fapi_len);

// Fill the nv_ipc_msg_t struct
send_msg.msg_id = fapi_msg_id; // Optional: FAPI message ID
send_msg.msg_len = fapi_msg_len; // Max length is the MSG buffer size, configurable
send_msg.data_len = fapi_data_len; // Max length is the MSG buffer size, configurable

// Fill the DATA content if data exist.
int8_t fapi_data[SHM_MSG_DATA_SIZE];
if (send_msg.data_pool == NV_IPC_MEMPOOL_CPU_DATA) { // CPU_DATA case

memcpy(send_msg.data_buf, fapi_data, send_msg.data_len);
} else if (send_msg.data_pool == NV_IPC_MEMPOOL_CUDA_DATA) { // CUDA_DATA case

if (ipc->cuda_memcpy_to_device(ipc, send_msg.data_buf, fapi_data, send_msg.data_
↪→len) < 0){

NVLOGE(TAG, "%s CUDA copy failed\n", __func__);
}

} else { // NO_DATA case
// NO data, do nothing

}

// Send the message
if (ipc->tx_send_msg(ipc, &send_msg) < 0){

NVLOGE(TAG, "%s error: send message failed\n", __func__);
// May need future retry or release the send_msg buffers
// If it fails, check configuration: ring queue length > memory pool length

}

Receive

The procedure for sending is as follows: .. code-block:

receive -> handle message -> release buffers

nv_ipc_msg_t recv_msg;
if (ipc->rx_recv_msg(ipc, &recv_msg) < 0) {

LOGV(TAG, "%s: no more message available\n", __func__);
return -1;

}

// Example: Handle MSG part
int8_t fapi_msg[SHM_MSG_BUF_SIZE];
memcpy(fapi_msg, recv_msg.msg_buf, recv_msg.msg_len);

// Example: Handle DATA part
int8_t fapi_data[SHM_MSG_BUF_SIZE];
if (recv_msg.data_pool == NV_IPC_MEMPOOL_CPU_DATA) { // CPU_DATA case

(continues on next page)

368 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
memcpy(fapi_data, recv_msg.data_buf, &recv_msg.data_len);

} else if (recv_msg.data_pool == NV_IPC_MEMPOOL_CUDA_DATA) { // CUDA_DATA case
if (ipc->cuda_memcpy_to_host(ipc, fapi_data, recv_msg.data_buf, recv_msg.data_

↪→len) < 0){
LOGE(TAG, "%s CUDA copy failed\n", __func__);

}
} else { // NO_DATA case

// NO data, do nothing
}

if (ipc->rx_release(ipc, &recv_msg) < 0){
LOGW(TAG, "%s: release error\n", __func__);

}

Notification

Two styles of notification APIs are provided: semaphore style and event_fd style. Each NVIPC process can choose
any type no matter what the peer process chooses, but keep using one type in one process.
In low level of the SHM IPC library event_fd is implemented. The semaphore API interface is a wrapper of the
event_fd implementation.
The APIs are ready to use after IPC interface successfully created by create_nv_ipc_interface().
For semaphore tyles, it’s easy to use:

• Receiver:

ipc->tx_tti_sem_wait(ipc);

• Sender:

ipc->tx_tti_sem_post(ipc);

For event_fd style, user should get the fd and use epoll functions to listen to I/O events.
• Receiver:

struct epoll_event ev, events[MAX_EVENTS];
int epoll_fd = epoll_create1(0);
if (epoll_fd == -1) {

NVLOGE(TAG, "%s epoll_create failed\n", __func__);
}
int ipc_rx_event_fd = ipc->get_fd(ipc); // IPC notification API: get_fd()
ev.events = EPOLLIN;
ev.data.fd = ipc_rx_event_fd;
if (epoll_ctl(epoll_fd, EPOLL_CTL_ADD, ev.data.fd, &ev) == -1) {

NVLOGE(TAG, "%s epoll_ctl failed\n", __func__);
}
while (1) {

int nfds = epoll_wait(epoll_fd, events, MAX_EVENTS, -1);
if (nfds == -1) {

NVLOGE(TAG, "epoll_wait notified: nfds =%d\n", nfds);
}
for (int n = 0; n < nfds; ++n) {

if (events[n].data.fd == ipc_rx_event_fd) {

(continues on next page)

1.6. cuBB Integration Guide 369



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
ipc->get_value(ipc); // IPC notification API: get_value()
// Receive incoming message here

}
}

}
close(epoll_fd);

• Sender:

ipc->notify(ipc, 1); // IPC notification API: notify()

1.6.2 SCF FAPI Support

Aerial cuBB supports the 5G FAPI 222.10.02 defined by the Small Cell Forum. This release supports most of the control
interface (P5) and data path interface (P7) SCF messages.

SCF FAPI Messages Supported

The table below summarizes the status of the SCF FAPI messages supported.

SCF Messages PDU Types SCF L2
Adapter

SCF Test-
MAC

E2E with SCF
TestMAC and RU
Emulator

DL_TTI.request PDCCH[9] Y Y Y
PDSCH[7] Y Y Y
CSI-RS[9] Y Y Y[3]

SSB[9] Y Y Y
UL_TTI.request PRACH Y Y Y

PUSCH[7] Y Y Y
PUCCH[9] Y Y Y
SRS[5][6][10] Y Y Y

UL_DCI.request PDCCH:sup`[9]` Y Y Y
SLOT errors N N N
TX_Data.request[1] PDSCH Y Y Y
Rx_Data.indication[1] PUSCH (also contains RNTI,

HARQ Id, UL_CQI, Timing
adv, RSSI)

Y Y Y

CRC.indication CRC Y Y Y
UCI.indiaction PUSCH[8] Y Y Y

PUCCH format 0,1 Y Y Y
PUCCH format 2,3,4 Y Y PF2 and PF3 only
SR for format 0,1 Y Y Y
SR for format 2,3,4 Y Y Y[4]

HARQ for format 0,1 Y Y Y
HARQ for format 2,3,4 Y Y PF2 and PF3 only
CSI part 1 Y Y Y
CSI part 2 Y Y PUSCH only

continues on next page

370 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 35 – continued from previous page
SCF Messages PDU Types SCF L2

Adapter
SCF Test-
MAC

E2E with SCF
TestMAC and RU
Emulator

RSSI and UL SINR metrics Y Y PUSCH, UCI
on PUSCH and
PF0,1,2,3

SRS.indication[5][6][10] SRS Y Y Y
RACH.indication PRACH Y Y Y
Config.request[2] Y Y
Config.response Y Y
Start.request Y Y
Stop.request Y Y
Stop.indication Y Y
Error.indication Y Y
Param.request N N
Param.response N N

Note[1]: The SCF implementation is based on SCF_222.10.02, but with the following exceptions:
• PDU Length of TX_DATA.request and RX_DATA.indication are changed to 32-bits. This is defined in

SCF_222.10.03.
• The implementation supports multiple UE per TTI when the TLV tag is 2 in each PDU. However, the offset value

in the TLV is ignored and L1 assumes all TBs in that slot placed in a flat buffer one after the other.
• TheRX_DATA.indication FAPI message contains the MAC PDU (TB data) in thedata_buf of the NVIPC

message.

1.6. cuBB Integration Guide 371



Aerial CUDA-Accelerated RAN, Release 25-1

Field Type Description
TX_DATA.request
PDU Length

uint16_t The total length (in bytes)
of the PDU description and
PDU data, without the padding
bytes. Value: 0 → 65535
Change type to uint32_t, value
range is: 0 ~ 2^32 -1
[NVIDIA change]: Use it as
the PDU data (TB data) size
without the PDU description.

RX_DATA.Indication
PDU Length

uint16_t

The length of PDU in bytes. A
length of 0 indicates a CRC or
decoding error.
Value: 0 → 65535

Change type to uint32_t, value
range is: 0 ~ 2^32 -1

RX_DATA.Indication
PDU

Variable The contents of PDU. This will
be a MAC PDU.
[NVIDIA workaround]: Re-
moved this field, do not parse
it in wireshark dissector. For
SCF_222.10.04, although the
tag value is set to 1, the MAC
PDU is still delivered in a sep-
arate NVIPC buffer.

UL_TTI.request
SRFlag

uint8_t Indicates SR. Only valid for
format 0 and 1.
[NVIDIA workaround]: En-
hance to use it as BitLenSr for
format 2, 3, 4.

Note[2]: Precoding Matrix (Table 3-33) with vendor tag 0xA011 is supported. Digital beam table (Table 3-32) is not
supported.
Note[3]: For NZP CSI-RS, only 4 antennas and single CSI-RS PDU.
Note[4]: The current implementation supports multi-bit SR over PUCCH format 2, 3, and 1. Because SCF FAPI 10.02
doesn’t provide any field explicitly suggesting the bit length of the SR in the PUCCH_PDU of UL_TTI.request, use
the SRFlag field to provide the SR bit length. For example, if the desired SR bit length is 3, set SRFlag = 3.
Note[5]: SRS.indication and SRS PDU in UL_TTI.request are supported according to SCF FAPI 222.10.02.
SRS can be enabled when flag enable_srs is set in the cuphycontroller_xxx.yaml file i.e. enable_srs: 1.
Note[6]: SRS.indication and SRS PDU in UL_TTI.request are also supported according to SCF FAPI
222.10.04, which needs to be enabled with the “-DSCF_FAPI_10_04=ON” build option and flag enable_srs is set
in the cuphycontroller_xxx.yaml file i.e. enable_srs: 1, as described in Running cuBB End-to-End.

• The format of the SRS.indication message is given in SCF FAPI 222.10.04 Table 3-129; the report TLV is
defined in Table 3-130.

• The supported report type is Normalized Channel I/Q Matrix defined in Table 3.132 for codebook or nonCodebook
SRS usage.

372 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

• The SRS Report TLV tag is 1 (customized value), the length is the actual report size in bytes without padding, the
value field has the offset (in bytes) into the data_buf portion of NVIPC message for each SRS PDU. The report
data is placed in the data_buf portion of the NVIPC message for all SRS PDUs.

• In case of wideband SRS, it is possible that the data_buf portion of NVIPC message carrying SRS.indication does
not have enough space to accomodate SRS channel vectors for all the SRS PDUs. In this case, Aerial supports
splitting of SRS.indication into multiple message. This feature can be enabled using CONFIG TLV 0x102B /
indicationInstancesPerSlot as defined in 5G FAPI 222.10.04 specification table 3-36 for PHY configuration. If this
TLV is not enabled by L2 and SRS.indication cannot accomodate all the SRS channel vectors, the SRS.indication
will carry partial SRS information. On processing such a SRS PDU, an error indication with error code 0x35 is
sent to L2 indicating partial SRS indication.

• Table 3.131 FAPIv3 Beamforming report, with PRG-level resolution for beamManagement SRS usage is also
supported. The SRS Report TLV tag is 2 (customized value), is defined for encoding the SINR reports in the
msg_buf at an offset of 32 bit from the value field, the length is the actual report size in bytes without padding.
Also, currently PRG size of 2 is only supported.

• A combination Usage beamManagement + codebook & beamManagement + non-codebook is also supported.
• A user defined parameter srsChestBufferIndex is added in FAPI 10.04 version of the PDU’s. More deatils

in “Note 10”.
Note[7]: If flag mMIMO_enable is set in the cuphycontroller_xxx.yaml file i.e. mMIMO_enable: 1 to enable
Dynamic Beamforming, indicates that the L2 shall encode the TX Precoding and Beamforming PDU & RX Beamforming
PDU to include fields for numPRGs, prgSize and digBFInterface but L2 shall not encode the beamIdx because when
Dynamic Beamforming is used, L2 does not have information available for beamIds but L2 needs to provide the remaining
information in the PDU to L1. Dynamic Beamforming: digBFInterfaces = 0 in Tx Precoding and Beamforming
PDU & Rx Beamforming PDU and futher parameters should not be encoded for i.e. PMidx, beamIdx for Tx
Precoding and Beamforming PDU and beamIdx for Rx Beamforming PDU. This is due to the limitation
in the size of the NVIPC msg_buf containing DL_TTI PDU’s.
Note[8]: To get HARQ values in UCI.indication for UCI on PUSCH, before complete PUSCH slot processing,
L2 should include PHY configurationTLV 0x102B (indicationInstancesPerSlot) with UCI.indication set to 2, according
to Table 3-36 in SCF FAPI 222.10.04. If UCI.indication set to 2 in config.request for any cell the early HARQ feature
will get activated for all cells.
Note[9]: For application of static beam weights that are received in FAPI 10.02 Table 3-61 Digital beam
Table (DBT) PDU in Cell_Config request for the beamId’s sent in Tx Precoding and Beamforming PDU
& Rx Beamforming PDU, the flag enable_beam_forming should be set in l2_adapter_config_xxx.yaml. For
Static Beamforming: digBFInterfaces != 0 in Tx Precoding and Beamforming PDU & Rx Beamforming PDU. Allowed
range of BeamId for Static Beamforming weights application is 1 to 1024 rest of the BeamId’s are used with Dynamic
Beamforming weights.
Note[10]: Below are the changes implemented for SRS buffer indexing which is expected to be handled from L2.

• L1 would pre-allocate a fixed size of total_num_srs_chest_buffers buffers to store the SRS Channel
Estimates across all cells.

• Value of total_num_srs_chest_buffers can be controlled via cuphycontroller_xxx.yaml
• Maximum value of total_num_srs_chest_buffers is 6144.
• L2 can configure TLV 0xA019 - NUM_SRS_CHEST_BUFFERS (uint32_t) to configure number of SRS channel

estimate buffers per cell.
1. 64T64R Cell:

L2 can configure up to 1024 buffers per cell. L2 can logically have 0 to 1023 buffer indexes for that
perticular 64T64R cell

2. 4T4R Cell:

1.6. cuBB Integration Guide 373



Aerial CUDA-Accelerated RAN, Release 25-1

L2 can configure up to 256 buffers per cell. L2 can logically have 0 to 255 buffer indexes for that
perticular 4T4R cell

• L2 should manage these buffer indexes among all the active UE’s.
• L2 should specify the buffer index in UL_TTI SRS PDU in the field srsChestBufferIndex.
• L1 will respond with the same buffer Index (srsChestBufferIndex) in the corresponding SRS.IND.
• L2 also needs to specify the SRS CH_EST buffer index in the srsChestBufferIndex field of DLBFW_CVI.request/

ULBFW_CVI.request which it wants L1 to use as an input for Dynamic Beamforming weights calculation.
• If L2 configures same buffer Index (srsChestBufferIndex) for any SRS PDU for which corresponding buffer

SRS.INDICATION is not received earlier, the error indication will be reported in that case.
• If L2 sends SRS buffer Index (srsChestBufferIndex) in DLBFW_CVI.request/ ULBFW_CVI.request for which

SRS.INDICATION is not yet sent, error will be reported in cuPHY and same will be dropped.

Vendor Specific Message

A new vendor specific message SLOT.response was added after the 22-4 release. Before the 22-4 release, L2 has to
set an event using the nvIPC notify function to inform L1 about “EOM” after sending the last FAPI message. This works
well for single cell and when all FAPI messages are on time. L1 also uses the nvIPC notify function to set an event after
sending each message.
The new SLOT.response FAPI message is used by L2 as the last FAPI message for each cell in each slot. It has the
following advantages:

• It works as “EOM” for each cell in each slot.
• Each cell sends a SLOT.response as the last FAPI message of each slot.
• L2 should send SLOT.response even in empty slots (i.e. slots that have no scheduling).
• A “Dummy” or empty DL/UL TTI are optional/not-required.
• The notify event from L2 is optional/not-required.

The SLOT.response message format is shown below:

/************************************************
* Slot.response
***********************************************/

typedef struct

{
scf_fapi_body_header_t msg_hdr;
uint16_t sfn;
uint16_t slot;

} __attribute__ ((__packed__)) scf_fapi_slot_rsp_t;

Message-id 0x8F is used for this message
{ …
SCF_FAPI_RX_PRACH_INTEFERNCE_INDICATION = 0x8E,

SCF_FAPI_SLOT_RESPONSE = 0x8F,
SCF_FAPI_RESV_2_END = 0xFF,

} scf_fapi_message_id_e;

L1 continues to send a notify event after all FAPI messages to L2 to minimize impact␣
↪→on L2.

374 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Message Sequence

An example message sequence is shown below:

Note

On receiving the first SLOT.indication, L2 is unable to send SLOT.response for 2-3 slots because it has a slot advance
of 3 .

1.6. cuBB Integration Guide 375



Aerial CUDA-Accelerated RAN, Release 25-1

Impact of Late Messages

• All messages are late for a cell (DL_TTI+TX_DATA+UL_DCI or UL_TTI)
– All messages are dropped for the said cell. No impact on other cells.

• DL_TTI arrived on time but TX_DATA.request is late for a cell
– This is considered as a partial slot. Due to cell grouping, PDSCH & DL-PDCCH is dropped for all cells.

• UL_TTI is late for a cell
– ULSCH is not processed for the said cell. No impact on other cells.

• UL_DCI is late for a cell
– UL-PDCCH is not processed for the said cell. No impact on other cells.

• SLOT.response is late for a cell
– All FAPI messages received in time will be processed for the cell.

How to Enable or Disable SLOT.response

This feature is enabled by default in L1 after the 23-1 release. When integrating with L2, L2 is required to send this
vendor-specific message in the manner described above.
Option ENABLE_L2_SLT_RSP should be configured with the same value in L1, L2 and libnvipc.so standalone build for
L2. Refer to cuBB Quickstart Guide for details.
If L2 doesn’t support the SLOT.response message, disable this feature by setting the “-
ENABLE_L2_SLT_RSP=OFF” flag in the cmake command:

cmake <existing flags> -DENABLE_L2_SLT_RSP=OFF

Once the feature is enabled, the following is true:
• L2 has to send a vendor-specific SLOT.response message as the last FAPI message for each cell.

– L2 to send this message even in empty slot (where nothing is scheduled).
• allowed_fapi_latency is deprecated and presumed to be 0.

– L2 to complete sending all FAPI messages within the 500 us time-budget marked by SLOT.indication
from L1.

– Late FAPI messages will be dropped.
• A “Dummy” DL/UL TTI messages in empty slots is optional.
• A notify event after sending all FAPI messages is optional.

– ipc_sync_mode in the L2 Adapter config file is deprecated.
• L1 will continue to send a Notify event after all FAPI messages to minimize impact on L2.

376 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Dynamic Beamforming for 64T64R

• To enable this feature in Aerial software, flag mMIMO_enable should be set/introduced in the cuphycon-
troller_xxx.yaml file i.e. mMIMO_enable: 1.

• Two additional TLVs are required in CONFIG.req:
– TLV 0xA016 denoting NUM_TX_PORT (uint8_t)

∗ This field specifies the number of DL BB ports for PHY. 5G FAPI 222.10.04 described the field
numTxAnt and numRxAnt in Table 3-37 as - ‘numTxAnt cannot exceed the number of DL BB ports
for the PHY’. Hence the fields in table 3-37 represent the logical antenna ports.

∗ 5G FAPI 223 describes baseband ports as a mapping between layers to RU TX/RX ports. PHY
needs to know the BB ports from L2 (see Fig 3-3 in SCF-223.2.0.4).

∗ This field will be used by PHY to read the number of DL BB ports.
∗ If the TLV is not received from L2 and flag mMIMO_enable is set in the cuphycontroller_xxx.yaml

file i.e. mMIMO_enable: 1, the default value for number of DL BB ports is set to 8.
– TLV 0xA017 denoting NUM_RX_PORT (uint8_t)

∗ This field specifies the number of UL BB ports for PHY. 5G FAPI 222.10.04 described the field
numTxAnt and numRxAnt in Table 3-37 as - ‘numRxAnt cannot exceed the number of UL BB ports
for the PHY’. Hence the fields in table 3-37 represent the logical antenna ports.

∗ 5G FAPI 223 describes baseband ports as a mapping between layers to RU TX/RX ports. PHY
needs to know the BB ports from L2 (see Fig 3-3 in SCF-223.2.0.4).

∗ This field will be used by PHY to read the number of UL BB ports
∗ If the TLV is not received from L2 and flag mMIMO_enable is set in the cuphycontroller_xxx.yaml

file i.e. mMIMO_enable: 1, the default value for number of UL BB ports is set to 4.
• DL & UL TTI have an additional field added for TRP scheme. See Note-6 in SCF FAPI Messages supported

section
• Dynamic Beamforming is supported for PDSCH and PUSCH only
• A UE that is scheduled for SRS on S-slot should not be scheduled for dynamic beamforming of PDSCH and

PUSCH in subsequent D & U slots until SRS indication for the UE is received. This prevents a race condition
between L1 and L2 where the SRS channel vectors have been updated in the GPU hosted memory, but the latest
SRS channel vectors are yet to be sent to L2. In this case, L2 might make a scheduling decision based on stale SRS
channel vectors and the BFW calculation might happen with refreshed SRS channel vectors.

Two new FAPI messages have been defined from L2 to L1 to implement beamforming weight calculation in L1 as follows:
• SCF_FAPI_DL_BFW_CVI_REQUEST = 0x90
• SCF_FAPI_UL_BFW_CVI_REQUEST = 0x91

Structure of the FAPI message from L2 to L1 for beamforming weight calculation are as below. The same message struc-
ture is used for DL(PDSCH) and UL(PUSCH). When used for DL(PDSCH), it is referred to as DLBFW_CVI.request
and when used for UL(PUSCH), it is referred to as ULBFW_CVI.request.
Table 3-1001 DLBFW_CVI.request message body

1.6. cuBB Integration Guide 377



Aerial CUDA-Accelerated RAN, Release 25-1

Table 3-1002 DLBFW CVI PDU

378 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Timeline for receiving DLBFW_CVI.request and ULBFW_CVI.request is as shown below:
Downlink timeline for slot N

1.6. cuBB Integration Guide 379



Aerial CUDA-Accelerated RAN, Release 25-1

Uplink timeline for slot N - PUSCH/PUCCH/PRACH

Static Beamforming for 64T64R

• One additional TLV is required in CONFIG.req:
– TLV 0xA010 DIGITAL_BEAM_TABLE_PDU (uint8_t)

This TLV is used in Cell_Config request when DBT PDU needs to be encoded, which contains the static beam-
forming weights that will be used for certain channels.

• The “fixed RTW” and their corresponding weights come from FAPI 10.02 Table 3-61 Digital beam Table (DBT)
PDU.

• A new bigger NVIPC buffer pool (cpu_large: {buf_size: 4096000, pool_len: 64}) is defined
to store the entire DBT PDU in a single buffer. The same should be used for encoding and sending FAPI 10.02
Table 3-61 Digital beam Table (DBT) PDU.

• DBT PDU can only be processed or stored when enable_beam_forming is set in
l2_adapter_config_xxx.yaml.

Additional Aerial Specific Error Codes Reported in ERROR.indication from L1 to L2

Additional Aerial specific error codes have been added, starting from value 0x33, and L2 may receive these error codes
in ERROR.indication message from L1 to L2. The following is an example:

SCF_ERROR_CODE_FAPI_END = 0x32,

//Vendor specific error codes ---- begin

SCF_ERROR_CODE_L1_PROC_OBJ_UNAVAILABLE_ERR = 0x33,

SCF_ERROR_CODE_MSG_LATE_SLOT_ERR = 0x34, //Indicates that L1's timer thread␣

(continues on next page)

380 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→did not wake up on the slot boundary and slot indication for the indicated SFN,slot␣
↪→is late and will not be sent from L1 to L2

SCF_ERROR_CODE_PARTIAL_SRS_IND_ERR = 0x35, //Indicates partial SRS indication

SCF_ERROR_CODE_L1_DL_CPLANE_TX_ERROR = 0x36, //Indicates a DL C-plane trasmission␣
↪→error (Timing/Functional)

SCF_ERROR_CODE_L1_UL_CPLANE_TX_ERROR = 0x37, //Indicates a UL C-plane trasmission␣
↪→error (Timing/Functional)

SCF_ERROR_CODE_L1_DL_GPU_ERROR = 0x38, //Indicates a DL GPU pipeline processing␣
↪→error

SCF_ERROR_CODE_L1_DL_CPU_TASK_ERROR = 0x39, //Indicates a DL CPU Task incompletion␣
↪→error

SCF_ERROR_CODE_L1_UL_CPU_TASK_ERROR = 0x3A, //Indicates a UL CPU Task incompletion␣
↪→error

SCF_ERROR_CODE_L1_P1_EXIT_ERROR = 0x3B, //Indicates Part 1 of the error␣
↪→indication during L1 app exit process

SCF_ERROR_CODE_L1_P2_EXIT_ERROR = 0x3C, //Indicates Part 2 of the error␣
↪→indication during L1 app exit process post cudaDeviceSynchronize if CUDA coredump␣
↪→env variables are set

SCF_ERROR_CODE_L1_DL_CH_ERROR = 0x3D, //Indicates DL channel run (CPU/GPU)␣
↪→error

SCF_ERROR_CODE_L1_UL_CH_ERROR = 0x3E //Indicates UL channel run (CPU/GPU)␣
↪→error

1.7 cuBB Developer Guide

1.7.1 cuBB Software Architecture Overview

The cuPHY library software stack is shown in the figure below. It consists of L2 adapter, cuPHY driver, cuPHY CUDA
kernels that process PHY channels and cuPHY controller.
The interface between the L2 and L1 goes through nvipc interface, which is provided as a separate library. L2 and L1
communicate using FAPI protocol [6]. L2 adapter takes in slot commands from the L2 and translates them into L1 tasks,
which are then consumed by cuPHY driver. Similarly, L1 task results are sent from cuPHY driver to L2 adapter, which
are then communicated to L2.
The user transport block (TB) data in both DL and UL directions go through the same nvipc interface. The data exchange
directly happens between cuPHY and L2 with the control of cuPHY driver.
cuPHY driver controls execution of cuPHY L1 kernels and manages the movement of data in and out of these kernels.
The interface between the cuPHY L1 kernels and the NIC is also managed by the cuPHY driver by using the FH driver,
that is provided as a library.
cuPHY controller is the main application that initializes the cell configurations, FH buffers and configures all threads that
are used by L1 control tasks.

1.7. cuBB Developer Guide 381



Aerial CUDA-Accelerated RAN, Release 25-1

The functionality of each of these components is explained in more detail in the Components section.

Fig. 1: cuPHY Software Stack

1.7.2 Aerial cuPHY Components

L2 Adapter

The L2 Adapter is the interface between the L1 and the L2, which translates SCF FAPI commands to slot commands.
The slot commands are received by cuPHY driver to initiate cuPHY tasks. It makes use of nvipc library to transport
messages and data between L1 and L2. It is also responsible for sending slot indications to drive the timing of the L1-L2
interface. L2 Adapter keeps track of the slot timing and it can drop messages received from L2 if they are received late.

382 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

cuPHY Driver

The cuPHY driver is responsible for orchestrating the work on the GPU and the FH by using cuPHY and FH libraries.
It processes L2 slot commands generated by L2 adapter to launch tasks and communicates cuPHY outputs (e.g. CRC
indication, UCI indication, measurement reports, etc.) back to L2. It uses L2 adapter FAPI message handler library to
communicate with L2.
cuPHY driver configures and initiates DL and UL cuPHY tasks, which in turn launch CUDA kernels on the GPU. These
processes are managed at the slot level. The cuPHY driver also controls CUDA kernels responsible for transmission and
reception of user plane (U-plane) packets to and from the NIC interface. The CUDA kernels launched by the driver take
care of re-ordering and decompression of UL packets and compression of DL packets. The DL packets are transmitted
by GPU initiated communications after the compression.
cuPHY driver interacts with the FH interface using ORAN compliant FH library to coordinate transmission of FH control
plane (C-plane) packets. The transmission of C-plane packets is done via DPDK library calls (CPU initiated communi-
cation). The U-plane packets are communicated through transmit and receive queues created by the cuphycontroller.

FH Driver Library

The FH library ensures timely transmission and reception of FH packets between the O-DU and O-RU. It uses accurate
send scheduling functions of the NIC to comply with the timing requirements of the O-RAN FH specification.
The FH driver maintains the context and connection per eAxCid. It is responsible of encoding and decoding of FH
commands for U-plane and C-plane messages.
The FAPI commands received from the L2 trigger processing of DL or UL slots. C-plane messages are for both DL and
UL generated on the CPU and communicated to the O-RU through the NIC interface with DPDK. The payload of DL
U-plane packets are prepared on the GPU and sent to the NIC interface from the memory pool on the GPU with the
DOCA GPU NetIO library. The flow of DL C-plane and U-plane packets is illustrated in the below figure.
As shown in the above figure, UL U-plane packets received from the O-RU are directly copied to GPU memory from the
NIC interface with the DOCA GPU NetIO library. The UL data is decompressed and processed by GPU kernels. After
the UL kernels are completed, the decoded UL data transport blocks are sent to the L2.

cuPHY Controller

The cuPHY controller is the main application that initializes the system with the desired configuration. During the start-
up process, cuPHY controller creates a new context (memory resources, tasks) for each new connection with a O-RU,
identified by MAC address, VLAN ID and set of eAxCids. It starts cuphydriver DL/UL worker threads and assigns them
to CPU cores as configured in the yaml file. It also prepares GPU resources and initiates FH driver and NIC class objects.
cuPHY controller prepares L1 according to the desired gNB configuration. It can also bring a carrier in and out of service
with the cell lifecycle management functionality.

cuPHY

cuPHY is a CUDA implementation of 5G PHY layer signal processing functions. The cuPHY library supports all 5G
NR PHY channels in compliance with 3GPP Release 15 specification. As shown in the below figure, cuPHY library
corresponds to upper PHY stack according to O-RAN 7.2x split option [8].
cuPHY is optimized to take advantage of the massive parallel processing capability of the GPU architecture by running
the workloads in parallel when possible. cuPHY driver orchestrates signal processing tasks running on the GPU. These
tasks are organized according to the PHY layer channel type, e.g. PDSCH, PUSCH, SSB, etc. A task related to a given
channel is termed as pipeline. For example, PDSCH channel is processed in PDSCH pipeline and the PUSCH channel is
processed in PUSCH pipeline. Each pipeline includes a series of functions related to the specific pipeline and consists of

1.7. cuBB Developer Guide 383



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 2: User and Control Plane Data Flow through cuPHY driver and cuPHY tasks

384 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 3: Flow of packets on the FH

Fig. 4: cuPHY library within 5G NR software stack

1.7. cuBB Developer Guide 385



Aerial CUDA-Accelerated RAN, Release 25-1

multiple CUDA kernels. Each pipeline is capable of running signal processing workloads for multiple cells. The pipelines
are dynamically managed for each slot by cuPHY driver with channel aggregate objects. The group of cuPHY channel
pipelines that is executed in a given time slot depends on what is scheduled by the L2 in that time slot.
The cuPHY library exposes a set of APIs per PHY channel to create, destroy, setup, configure and run each pipeline as
shown in the following figure. L2 adapter translates SCF FAPI messages and other system configurations and cuPHY
driver invokes associated cuPHY APIs for each slot. The API’s shown as grey such as (Re)-Config, StateUpdate are not
currently supported.

Fig. 5: cuPHY API interface

The following are descriptions of the APIs in the above figure:
• Create: performs pipeline construction time operations, such as PHY

and CUDA object instantiation, memory allocations, etc.
• Destroy: executes teardown procedures of a pipeline and frees

allocated resources.
• Setup: sets up PHY descriptors with slot information and batching

needed to execute the pipeline.
• Run: launches a pipeline.

The following sections provide more details on the implementation of each cuPHY channel pipeline.

PDSCH Pipeline

The PDSCH pipeline receives configuration parameters for each cell and the UE and the corresponding DL transport
blocks (TBs). After completing the encoding of the PDSCH channel, the pipeline outputs IQ samples mapped to the
resource elements (REs) allocated to the PDSCH. The PDSCH pipeline consists of multiple CUDA kernels, which are
launched with CUDA graph functionality to reduce the kernel launch overhead. The diagram of the CUDA graph used
by PDSCH pipeline is shown in the following figure. The green boxes represent CUDA kernels and the orange boxes
represent input and output buffers.
The PDSCH pipeline contains the following components:

• CRC calculation of the TBs and code-blocks (CBs)

386 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 6: Graph Diagram of the PDSCH Pipeline

• LDPC encoding
• Fused Rate Matching and Modulation Mapper
• DMRS generation

The CRC calculation component performs the code block segmentation and the CRC calculation. The CRC is calculated
first for each TB and then for each CB. The fused rate matching and modulation component performs rate-matching,
scrambling, layer-mapping, pre-coding and modulation. This component is also aware of which resource elements it
should skip if CSI-RS is configured.
The PDSCH pipeline involves the following kernels:

• prepare_crc_buffers
• crcDownlinkPdschTransportBlockKernel
• crcDownlinkPdschCodeBlocksKernel
• ldpc_encode_in_bit_kernel
• fused_dl_rm_and_modulation
• fused_dmrs

Kernels exercised only if CSI-RS parameters are present are as follows:
• zero_memset_kernel
• genCsirsReMap
• postProcessCsirsReMap

The cuPHY PDSCH transmit pipeline populates parts of a 3D tensor buffer of I/Q samples in GPU memory, where each
sample is a complex number using fp16, i.e. each sample is a __half2 using x for the real part and y for the imaginary
part. The output 3D tensor buffer is allocated by the cuPHY driver when the application is first launched and it is reset
for every slot (i.e., between successive PDSCH launches) by the cuPHY driver. Here, re-setting the buffer means, it is
initialized to all zero values.
The output tensor contains 14 symbols on time domain (x-axis), 273 PRBs (Physical Resource Blocks) on frequency
domain (y-axis), and up to 16 layers on spatial domain (z-axis). For the y-axis, each PRB contains 12 REs, and each
RE is a __half2 data. Contiguous PRBs for the same OFDM symbol and spatial layer are allocated next to each other
on memory. The resources are mapped in memory in the following order: frequency domain, time domain and then the
spatial domain (or layer domain). This is the maximum size of the output buffer needed for a cell per slot.

1.7. cuBB Developer Guide 387



Aerial CUDA-Accelerated RAN, Release 25-1

The PDSCH only fills in parts of that buffer, i.e., its allocated PRBs, based on various configuration parameters it receives
that vary over time. Parts of the slot can be filled by other downlink control channels. From a PDSCH standpoint, only
the two fused_* kernels listed above, fused_dl_rm_and_modulation and fused_dmrs write to the output buffer. The fused
rate-matching and modulation kernel writes data part of the I/Q samples, while the DMRS kernel only writes the DMRS
symbols, i.e., only 1 or 2 contiguous symbols in the x-dimension. Note that, unlike other components, DMRS is not
dependent on any of the previous pipeline stages.
The PDSCH pipeline expects pre-populated structs cuphyPdschStatPrms_t (cuPHY PDSCH static parameters) and cu-
phyPdschDynPrms_t (cuPHY PDSCH dynamic parameters) that include the input data and the necessary configuration
parameters.
The TB data input can exist either in CPU or GPU memory depending on the cuphyPdschDataIn_t.pBufferType. If
this is GPU_BUFFER, then the host to device (H2D) memory copies for that data can happen before PDSCH setup is
executed for each cell. This is called prepone H2D copy and it can be configured by setting the prepone_h2d_copy flag
in the l2_adapter_config_*.yaml file. If prepone H2D copy is not enabled, the copy operations happen as part of PDSCH
setup. It is highly recommended that the prepone H2D copy should be enabled to achieve high capacity in a multiple cell
scenario.
The way LDPC kernels are initiated can change when multiple TBs are configured on PDSCH. If the LDPC configuration
parameters are identical across TBs, PDSCH launches a single LDPC kernel for all TBs (as it is the case for the other
PDSCH components). If the LDPC configuration parameters vary across the TBs, then multiple LDPC kernels are
launched, one for each unique configuration parameters set. Each LDPC kernel is launched on a separate CUDA stream.
The PDSCH CUDA graph contains only kernel nodes and has the layout shown in the PDSCH graph
diagram shown above. As it is not possible to dynamically change the graph geometry at runtime,
PDSCH_MAX_HET_LDPC_CONFIGS_SUPPORTED potential LDPC kernel nodes are created. Depending on the
LDPC configuration parameters and the number of TBs, only a subset of these kernels perform LDPC encoding. The
remaining nodes are disabled at runtime if needed per PDSCH. The DMRS kernel node is not dependent on any of the
other PDSCH kernels. Therefore, it can be placed anywhere in the graph. The three kernels preceding the DMRS in the
graph are only exercised if CSI-RS parameters are present (or CSI-RS is configured). These kernels compute information
needed by the fused rate matching and modulation kernel about the REs that need to be skipped.

PDCCH Pipeline

The cuPHY PDCCH channel processing involves the following kernels:
• encodeRateMatchMultipleDCIsKernel
• genScramblingSeqKernel
• genPdcchTfSignalKernel

When running in graphs mode, the CUDA graph launched on every slot contains only kernel nodes and its current layout
is as depicted in the below figure.

Fig. 7: cuPHY PDCCH graph layout

PDCCH kernel takes static and dynamic parameters as in PDSCH.
Notes on PDCCH configuration and dataset conventions:

• The PdcchParams dataset contains the coreset parameters for a given cell. Dataset DciParams_coreset_0_dci_0
contains the DCI parameters for the first DCI of coreset 0. There is a separate dataset for every DCI in a cell with

388 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

the naming convention: DciParams_coreset_<i>_dci_<j>, where i has values from 0 up to (number of coresets –
1), while j starts from 0 for every coreset i and goes up to (PdcchParams[i].numDlDci – 1) for that coreset.

• Dataset DciPayload_coreset_0_dci_0 contains the DCI payload, in bytes, for the first DCI of coreset 0. It follows
the naming convention mentioned above DciParams_coreset_0_dci_0.

• Dataset(s) DciPmW_coreset_i_dci_j hold the precoding matrix for a given DCI, coreset pair, if it has precoding
enabled.

• X_tf_fp16 is the 3D output tensor for that cell and is used for reference checks in the various PDCCH examples.
• X_tf_cSamples_bfp* datasets that contain compressed data are not used in cuPHY, since compression happens in

cuphydriver after all cuPHY processing for all downlink channels scheduled in a slot has completed.

SSB Pipeline

The cuPHY SS Block channel processing involves the following kernels:
• encodeRateMatchMultipleSSBsKernel
• ssbModTfSigKernel

When running in graphs mode, the CUDA graph launched on every slot contains only these two kernel nodes connected
in sequence.
Notes on SSB configuration and dataset conventions:

• The SSTxParams dataset contains all the nSsb, SSB parameters for a given cell.
• SSB bursts cannot be multiplexed in frequency domain, they can only be multiplexed in time domain.
• nSsb datasets contains the number of SSBs in a cell, this is also the size of the SSTxParams dataset.
• x_mib contains the Master Information Block (MIB) for each SSB in the cell as an uint32_t element; only the least

significant 24-bits of each element are valid.
• Dataset(s) Ssb_PM_W* contain the precoding matrices if precoding is enabled for a given SSB.
• X_tf_fp16 is the 3D output tensor for that cell and is used for reference checks in the various SSB examples.

Every I/Q sample there is stored as __half2c.
X_tf is similar to X_tf_fp16 but every I/Q sample there is stored as float2 instead of __half2; not currently used
in cuPHY.

• X_tf_cSamples_bfp* datasets hold the output compressed and are not used in cuPHY as compression is applied as
part of the cuphydriver.

CSI-RS Pipeline

The cuPHY CSI-RS channel processing involves the following kernels:
• genScramblingKernel
• genCsirsTfSignalKernel

When running in graphs mode, the CUDA graph launched on every slot contains only these two kernel nodes connected
in sequence.
Notes on CSI-RS configuration and dataset conventions:

• CsirsParamsList contains configuration parameters which are used for non-zero power signal generation (e.g., NZP,
TRS).

1.7. cuBB Developer Guide 389



Aerial CUDA-Accelerated RAN, Release 25-1

• Please note that CsirsParamsList dataset can have multiple elements. All elements in the dataset can be processed
with single setup/run call.

• X_tf_fp16 is the 3D reference output tensor for that cell and is used for reference checks in the various CSI-RS
examples. Every I/Q sample there is stored as __half2c.

• X_tf is similar to X_tf_fp16 but every I/Q sample there is stored as float2 instead of __half2; not currently used
in cuPHY.

• X_tf_cSamples_bfp* datasets hold the output compressed and are not used in cuPHY as compression is applied as
part of cuphydriver.

• X_tf_remap is reference output for RE Map, this is not used currently as current implementation only generates
NZP signal.

• Dataset(s) Csirs_PM_W* contain precoding matrices and are used if precoding is enabled.

PUSCH Pipeline

The PUSCH pipeline includes the following components (which are illustrated in the PUSCH Pipeline Front End and
PUSCH and CSI Part 1 Decoding figures):

• Least squares (LS) channel estimation
• Minimum Mean Square Error (MMSE) channel estimation
• Noise and interference covariance estimation
• Shrinkage and whitening
• Channel Equalization
• Carrier frequency offset (CFO) estimation and CFO averaging
• Timing offset (TO) estimation and averaging.
• Received signal strength indicator (RSSI) estimation and averaging
• Noise variance estimation
• Received signal received power (RSRP) estimation and averaging
• SNR estimation
• De-rate matching
• LDPC backend

If CSI part 2 is configured, the following components are also used (these components are illustrated in the PUSCH and
CSI Part 1 Decoding and PUSCH and CSI Part 2 Decoding figures):

• Simplex decoder or RM decoder or Polar decoder (for CSI decoding of CSI part 1 depending on the UCI payload
size)

• CSI part 2 de-scrambling and de-rate matching
• Simplex decoder or RM decoder or Polar decoder (for CSI decoding of CSI part 2 depending on the UCI payload

size)
The PUSCH pipeline receives IQ samples, which are provided by order and decompression kernels. The received IQ data
is stored in the address cuphyPuschDataIn_t PhyPuschAggr::DataIn.pTDataRx as the cuphyTensorPrm_t type. The IQ
samples are represented by half precision (16-bits) real and imaginary values. The size of the input buffer is multiplication
of number of maximum PRBs (273), number of subcarriers per PRB (12), number of OFDM symbols per slot (14) and
number of maximum antenna ports per cell (16). This buffer is created for each cell.

390 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 8: Graph Diagram of the PUSCH Pipeline Front End

1.7. cuBB Developer Guide 391



Aerial CUDA-Accelerated RAN, Release 25-1

Channel Estimation

First Stage
(LS CE)

Input Buffer PhyPuschAggr::DataIn.pTDataRx
Data type CUPHY_C_16_F: tensor vector of IQ samples
Dimensions [(ORAN_MAX_PRB*CUPHY_N_TONES_PER_PRB),

OFDM_SYMBOLS_PER_SLOT,
MAX_AP_PER_SLOT]:
[(273*12),14,16]

Description IQ samples of the input data received from the FH for an
UL slot. The I/Q data are represented in half precision
float.

Output Buffer PuschRx::m_tRefDmrsLSEstVec[i]
Note: The index i refers to a PRB range.

Data type CUPHY_C_32_F: float complex IQ samples
Dimensions [(CUPHY_N_TONES_PER_PRB*(number_of

PRBs)/2), NUM_LAYERS, NUM_ANTENNAS,
NH]:
[(12*(number of PRBs)/2), (number of layers), (number
of RX antennas), (number of DMRS symbols)]

Description IQ samples of the initial channel estimates on DMRS
symbols. The I/Q data are represented in half precision
float.

Output Buffer PuschRx::m_tRefDmrsAccumVec[i]
Note: the index i refers to a PRB range.

Data Type CUPHY_C_32_F: float complex IQ samples
Dimensions [1,2]: Two dimensions for one active and one non-

active buffer
Description Holds summation of conj(H_ls[k])*H_ls[k+1]

in a given PRB range, which is then used to calculate mean
delay in the next stage. The index k refers to the subcar-
rier index in a given PRB range. conj() represents the
conjugation function.

Channel estimation (CE) consists of two stages: least-squares (LS) CE and minimum-mean-square (MMSE) CE.
The first LS CE stage invokes a kernel windowedChEstPreNoDftSOfdmKernel(). DMRS symbols are used to
obtain initial channel estimate on DMRS REs and to calculate mean delay of the channel impulse response (CIR). The
mean delay and the initial estimates are then used to obtain channel estimates in data REs on the second stage with MMSE
filtering operation.
The second stage invokes a dispatch kernel chEstFilterNoDftSOfdmDispatchKernel() to support
different configurations. The dispatch kernel first calculates mean channel delay by using the stored value
m_tRefDmrsAccumVec from the first stage. It then chooses an appropriate kernel depending on number of PRBs
in the given PUSCH allocation and number of consecutive DMRS symbols (drvdUeGrpPrms.dmrsMaxLen). The
MMSE filtering operation is done by a kernel windowedChEstFilterNoDftSOfdmKernel().
The component-level unit test of cuphy_ex_ch_est based on the testbench of cuPHY PUSCH pipeline can be used
to verify the functional correctness of the existing or new PUSCH DMRS channel estimation implemented in CUDA

392 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

against the 5GModel-generated references. There are several major steps to exploiting cuphy_ex_ch_est:
1. Generate staticApiDataset to include static parameters for PUSCH pipeline, dynApiDataset to include

dynamic parameters for PUSCH pipeline, and evalDataset to include 5GModel-generated references for the
evaluation purpose from cuPHY PUSCH TVs.

2. Create the object puschRx of C++ class PuschRx, which encapsulates the main functionalities, structs, and
internal parameters corresponding to cuPHY PUSCH pipeline from staticApiDataset and initialize its internal static
parameters.

3. Call expandFrontEndParameters() of puschRx to initialize the array of struct cuphyPuschRxUe-
GrpPrms_t ``in CPU by using ``dynApiDataset; allocate GPU device-memory buffers for each
UE group to hold input I/Q samples (i.e., tInfoDataRx) and channel estimation results (e.g., tInfoHEst,
tInfoDmrsLSEst).

4. Call cuphyPuschRxChEstGetDescrInfo() to calculate the sizes of puschRxChEstStatDescr_t
and puschRxChEstDynDescr_t; create the corresponding CPU/GPU buffers to hold static and dynamic
parameters (descriptors) (i.e., puschRxChEstStatDescr_t and puschRxChEstDynDescr_t) used di-
rectly as inputs to channel estimation kernels.

5. Call cuphyCreatePuschRxChEst() to create a channel estimation object of C++ class puschRxChEst
and the corresponding handler puschRxChEstHndl, initialize puschRxChEstStatDescr_t, and return a
status code indicating whether the operation was successful or not; copy the contents of puschRxChEstStat-
Descr_t from CPU buffers to GPU buffers.

6. Call cuphySetupPuschRxChEst() to populate the puschRxChEstDynDescr_t from cuphy-
PuschRxUeGrpPrms_t and other parameters, select/configurate the kernels to be used, and create kernel
launch configurations cuphyPuschRxChEstLaunchCfgs_t to include kernel node parameters and kernel
input arguments; copy the contents of cuphyPuschRxUeGrpPrms_t and puschRxChEstDynDescr_t
from CPU buffers to GPU buffers.

7. Launch channel estimation kernels based oncuphyPuschRxChEstLaunchCfgs_t to read input I/Q samples,
perform channel estimation, and generate channel estimation results.

8. Destroy the channel estimation object and release the corresponding resources by calling cuphyDestroy-
PuschRxChEst();

9. Evaluate the channel estimation results by comparing GPU outputs with 5GModel-generated references and report
the accuracy of the results.

Second Stage
(MMSE CE)

Input Buffer PuschRx:: m_tRefDmrsLSEstVec[i]

Input Buffer PuschRx:: m_tRefDmrsAccumVec[i]
Description Refer to the First Stage (LS CE) table
Input CE Filters statDescr.tPr mFreqInterpCoefsSmall

statDescr.tPrmFreqInterpCoefs
statDescr.tPrmFreqInterpCoefs4

Description Interpolation filter coefficients depending on the number of PRBs
Data type CUPHY_C_32_F: float complex IQ samples

continues on next page

1.7. cuBB Developer Guide 393



Aerial CUDA-Accelerated RAN, Release 25-1

Table 36 – continued from previous page

Second Stage
(MMSE CE)

Dimensions [(N_TOTAL_DMRS_INTERP_GRID_TONES_PER_CLUSTER +
N_INTER_DMRS_GRID_FREQ_SHIFT), N_TOTAL_DMRS_GRID_TONES_PER_CLUSTER,
3], 3 filters: 1 for middle, 1 lower edge and 1 upper edge
tPrmFreqInterpCoefs: [49, 48, 3]
tPrmFreqInterpCoefs4: [25, 25, 3]
tPrmFreqInterpCoefsSmall: [37, 18, 3]

Description These CE filters are used to do frequence=domain interpolation and remove FOCC ef-
fect. The filter coefficients are different depending on PRB count and PRB location (i.e.
edge PRBs have different filter coefficients from central PRBs). These coefficients can
be calculated by 5GModel or obtained directly from any cuPHY PUSCH test vectors or
cuPhyChEstCoeffs.h5 in aerial_sdk/testVectors.

Input CE Sequences statDescr.tPrmShiftSeq
statDescr.tPrmShiftSeq4
statDescr.tPrmUnShiftSeq statDescr.tPrmUnShiftSeq4

Data type CUPHY_C_16_F: float complex IQ samples
Dimensions [(N_DATA_PRB*N_DMRS_GRID_TONES_PER_PRB), 1]

tPrmShiftSeq: [48, 1]
tPrmShiftSeq4: [24, 1]
[(N_DATA_P RB*N_DMRS_INTERP_TONES_PER_GRID*N_DMRS_GRIDS_PER_PRB
+ N_INTER_DMRS_GRID_FREQ_SHIFT), 1]
tPrmUnShiftSeq: [97, 1]tPrmUnShiftSeq4: [49, 1]

Description These CE sequences are used to shift (and unshift) the estimated channel impulse re-
sponses for the filtering purpose. These sequences can be calculated by 5GModel or
obtained directly from any cuPHY PUSCH test vectors or cuPhyChEstCoeffs.h5
in aerial_sdk/testVectors. These sequences are only used in the single-stage
CE but not two-stage CE which calculates CE sequences online

Output Buffer PuschRx::m_tRefHEstVec[i]
Note: the index i refers to a PRB range (or UE group)

Data type CUPHY_C_32_F: float complex IQ samples
Dimensions [NUM_ANTENNAS, NUM_LAYERS, NF, NH]:

[(number of RX antennas), (number of layers), (12*(number of PRBs)), (number of
DMRS symbols)]

Description Estimates of the received channel on the DMRS symbols.

394 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Noise and Interference Covariance Estimation

Input
Buffer

Receives outputs of channel estimation kernel as input.

Output
Buffer

PuschRx:: m_tRefNoiseVarPreEq

Data type CUPHY_R_32_F: float real values
Dimen-
sions

[1, NUM_UE_GROUPS]

Descrip-
tion

Estimates of the noise variance pre-equalization per UE group (or PRB range).

Output
Buffer

PuschRx:: m_tRefLwInvVec[i]
Note: the index i refers to a PRB range (or UE group)

Data Type CUPHY_C_32_F: float complex IQ samples
Dimen-
sions

[NUM_ANTENNAS, NUM_ANTENNAS, numPRB]:
[(number of RX antennas), (number of RX antennas),(number of PRBs)]

Descrip-
tion

Inverse Cholesky factor of noise-interference tensor information.

Carrier Frequency and Timing Offset Estimation

The carrier frequency offset (CFO) is caused by local oscillators at the UE / RU drifting from the nominal carrier fre-
quency. In the case of UE, the offset will be independent for each UE (but the same for all RF streams). At the RU, the
offset is expected to be equal for all RF streams.
CFO can have the following effects on the received signal:

• Inter-carrier interference (ICI), whereby sub-carriers are not orthogonal
• A linear phase rotation observed along different symbols (i.e. in the time domain)

CFO estimation is typically based on repetitions over the time domain that allow estimation of the phase rotation. Phase
rotation requires a complex multiplication at the equalizer stage, while mitigation of ICI requires a time domain operation
or a matrix multiplication. ICI mitigation is not implemented in Aerial.
CFO estimator in Aerial uses channel estimates of the DMRS symbols to calculate a correction factor for the CFO. The
algorithm currently supports multiple CFO corrections from multiple UEs multiplexed in FDM mode. It has the following
limitations:

• It is not possible to estimate and compensate for different CFOs originating from multiple UEs multiplexed in CDM
mode (e.g. MU-MIMO).

• CFO compensation is only applied to PUSCH. It requires at least 2 DMRS symbols. If more than two DMRS
symbols are available, only 2 are used.

• Maximum CFO correction is limited to 1
2L∆f , where L is the maximum separation between the DMRS symbols

and ∆f is the subcarrier spacing.
• Only phase correction is applied. ICI resulting from CFO is not compensated.

In the following, we formulate the adopted solution for CFO compensation. We assume a single UE for simplicity. The

1.7. cuBB Developer Guide 395



Aerial CUDA-Accelerated RAN, Release 25-1

received OFDM signal can be represented as

yn =

(
1

N

)[
K∑

k=−K

XkHke
j2πn(k+ε)

N

]
+ ωn, n = 0, 1, . . . , N − 1

Where n is the time sample index and k is the subcarrier index. Xk is the transmitted QAM symbol and Hk is the channel
coefficient on the subcarrier k. ϵ is the CFO.
After the FFT, we obtain the following:

Yk = (XkHk)

{
sin(πϵ)

N sin
(
πϵ
N

)} e
jπε(N−1)

N + Ik + Wk

The term Ik denotes ICI and is given by

Yk =

K∑
l=−K, l ̸=k

(XlHl)

 sin(πϵ)
N sin

(
π(l−k+ϵ)

N

)
 e

jπε(N−1)
N e−

jπε(l−k)
N

ICI degrades the EVM of the received signal, can be expressed as follows (for a normalized signal/channel):

EVM = E
[∣∣I2k ∣∣] = K∑

l=−K, l ̸=k

E
[
|Hl|2

] sin2(πϵ)(
N sin

(
π(l−k+ϵ)

N

))2

Moreover, CFO causes a linear phase variation in the received symbols as follows:

Y2k = Y1ke
j2πϵ

Where Y1k and Y2k are the received signal on subcarrier k on symbols 1 and 2, respectively. Note that the symbol indices
do not correspond to their actual placement in the slot (i.e. they may not be consecutive in the slot).
A maximum likelihood estimator for CFO can be obtained as [12]:

ϵ̂ =

(
1

2

)
tan−1

{∑
k∈ki

Im [Y2kY
∗
1k]∑

k∈ki
Re [Y2kY ∗

1k]

}
Where ki is the set of REs allocated in a PUSCH transmission.
The maximum correctable offset is 0.5/L, where L is the time domain separation between the symbols. Aerial algorithm
uses DMRS symbols for CFO estimation, which requires at least two DMRS symbols to be configured in a slot.
The preamble detection algorithm of PRACH is capable of handling the maximum CFO without any additional CFO
correction. Detection of PUCCH is less sensitive to CFO due to lower modulation order (QPSK) and in some cases
shorter duration. PUCCH receiver algorithm does not include CFO correction. If required, CFO correction can be
implemented for PUCCH reception in the future.
Timing offset (TO) is caused by a timing misalignment between the UE and the gNB. It results in excess delay of the
channel impulse response (CIR). A large enough TO may also result in signal distortion if it causes the CIR to exceed the
cyclic prefix.
Assuming that the duration of the CIR + TO is smaller than the cyclic prefix, a TO will manifest itself as a linear phase
along the frequency domain, denoted as

Yk = (XkHk) e
− jπτ0k

N + Wk, n = 0, 1, . . . , N − 1

Denote the DMRS channel estimates as for the p-th antenna, l-th layer, k1-th PRB and k2-th RE within PRB k, k2 ∈
{0, 1, . . . , 10} by Ĥ p,l,k1,k2,nd

with nd as the symbol index out of D DMRS symbols in a slot. We can obtain the
normalized timing offset as

T̂ = − 1

2π
phase(R)

396 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

where

R =
∑

k, l, k1, k2, nd

Hp,l,k1,k2, nd
H∗

p,l,k1,k2+1, nd

The absolute timing offset in seconds can be obtained as

t̂ =
1

15000 × 2µ
T̂

where µ = {0, 1, 2, 3, 4} is the numerology parameter corresponding to {15, 30, 60, 120, 240} kHz sub carrier fre-
quency spacing.

Input Buffers PuschRx::m_tRefHEstVec[i]
This buffer is received from Channel Estimation kernel.
Note: the index i refers to a PRB range (or UE group).

Output Buffer PuschRx:: m_tRefCfoEstVec[i]
Note: the index i refers to a PRB range (or UE group)

Data Type CUPHY_R_32_F: float real values
Dimensions [MAX_ND_SUPPORTED, (number of UEs)]:

[14, (number of UEs)]
Description CFO estimate vector.

Output Buffer PuschRx:: m_tRefCfoHz
Data Type CUPHY_R_32_F: float real values.
Dimensions [1, (number of UEs)]
Descriptions CFO estimate values in Hz.

Output Buffer PuschRx:: m_tRefTaEst
Data Type CUPHY_R_32_F: float real values.
Dimensions [1, (number of UEs)]
Descriptions Timing offset estimates.

Output Buffer PuschRx:: m_tRefCfoPhaseRot
Data Type CUPHY_C_32_F: float complex values.
Dimensions [CUPHY_PUSCH_RX_MAX_N_TIME_CH_EST,

CUPHY_PUSCH_RX_MAX_N_LAYERS_PER_UE_GROUP,
MAX_N_USER_GROUPS_SUPPORTED]
[(max number of channel estimates in time, =4), (max layers per UE group, =8), (max UE
groups, =128)]

Descriptions Carrier offset phase rotation values

Output Buffer PuschRx:: m_tRefTaPhaseRot
Data Type CUPHY_C_32_F: float complex values.
Dimensions [1, CUPHY_PUSCH_RX_MAX_N_LAYERS_PER_UE_GROUP] : [1, (max layers per UE

group, =8)]
Descriptions Carrier offset phase rotation values

1.7. cuBB Developer Guide 397



Aerial CUDA-Accelerated RAN, Release 25-1

Soft De-mapper

After equalization, the LLR of each bit is calculated according to the following table for the QAM symbol: Zr + Zj

whereZr andZj are the real and imaginary components of the symbol. The LLR of each bit will be scaled by postEqMSE
of each symbol as the output of the soft-demapper.

4QAM

A

1√
2

LLR of Real Bits

λc0 = Zr

LLR of Imaginary Bits

λc0 = Zi

16QAM

A

1√
10

LLR of Real Bits

λc0 = Zr

λc1 = − |Zr|+ 2A

LLR of Imaginary Bits

λc0 = Zi

λc1 = − |Zi|+ 2A

64QAM

A

1√
42

LLR of Real Bits

λc0 = Zr

λc1 = − |Zr|+ 4A

λc2 = − ||Zr| − 4A|+ 2A

LLR of Imaginary Bits

λc0 = Zi

λc1 = − |Zi|+ 4A

λc2 = − ||Zi| − 4A|+ 2A

398 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

256QAM

A

1√
170

LLR of Real Bits

λc0 = Zr

λc1 = − |Zr|+ 8A

λc2 = − ||Zr| − 8A|+ 4A

λc3 = − |||Zr| − 8A| − 4A|+ 2A

LLR of Imaginary Bits

λc0 = Zi

λc1 = − |Zi|+ 8A

λc2 = − ||Zi| − 8A|+ 4A

λc3 = − |||Zi| − 8A| − 4A|+ 2A

Channel Equal-
ization Coeffi-
cients Computa-
tion Kernel
Input Buffers PuschRx::m_tRefHEstVec[i], PuschRx::m_tRefLwInvVec[i], PuschRx::

m_tRefCfoEstVec[i]
These buffers are received from Noise and Interference Covariance Estimation, Channel Esti-
mation and CFO Estimation kernels.
Note: The index i refers to a PRB range (or UE group).

Output Buffer PuschRx:: m_tRefReeDiagInvVec[i]
Note: The index i refers to a PRB range (or UE group)

Data Type CUPHY_R_32_F: float real values
Dimensions [CUPHY_N_TONES_PER_PRB, NUM_LAYERS, NUM_PRBS, nTimeChEq

]:
[12*(number of PRBs), (number of layers), (number of PRBs), (number of time domain esti-
mates)]

Description Channel equalizer residual error vector.

Output Buffer PuschRx:: m_tRefCoefVec[i]
Note: The index i refers to a PRB range (or UE group)

Data Type CUPHY_C_32_F: float complex IQ samples
Dimensions [NUM_ANTENNAS, CUPHY_N_TONES_PER_PRB, NUM_LAYERS, NUM_PRBS, NH

]:
[(number of RX antennas), 12*(number of PRBs), (number of layers), (number of PRBs), (num-
ber of DMRS positions)]

Descriptions Channel equalizer coefficients.

1.7. cuBB Developer Guide 399



Aerial CUDA-Accelerated RAN, Release 25-1

Channel
Equalization
MMSE Soft
De-mapping
Kernel
Input Buffers PuschRx:: m_tRefCoefVec[i], PuschRx::m_tRefCfoEstVec[i], PuschRx::

m_tRefReeDiagInvVec[i]
PuschRx:: m_drvdUeGrpPrmsCpu[i].tInfoDataRx
These buffers are received from Noise and Interference Covariance Estimation, Channel Estimation
and CFO Estimation kernels.
Note: the index i refers to a PRB range (or UE group).

Output Buffer PuschRx:: m_tRefDataEqVec[i]
Note: the index i refers to a PRB range (or UE group)

Data Type CUPHY_C_16_F: tensor vector of half float IQ samples.
Dimensions [NUM_LAYERS, NF, NUM_DATA_SYMS

]:
[(number of layers), 12*(number of PRBs), (number of data OFDM symbols)]

Description Equalized QAM data symbols.

Output Buffer PuschRx:: m_tRefLLRVec[i]
Note: the index i refers to a PRB range (or UE group)

Data Type CUPHY_R_16_F : tensor vector of half float real samples.
Dimensions [CUPHY_QAM_256, NUM_LAYERS, NF, NUM_DATA_SYMBOLS

]:
[(number of bits for 256QAM = 8), (number of layers), (number of layers), 12*(number of PRBs),
(number of data OFDM symbols)]

D escriptions Output LLRs or softbits. Used if UCI on PUSCH is enabled.

Output Buffer PuschRx:: m_tRefLLRCdm1Vec[i]
Note: the refers to a PRB range (or UE group)index i

Data Type CUPHY_R_16_F: tensor vector of half float real samples.
Dimensions [CUPHY_QAM_256, NUM_LAYERS, NF, NUM_DATA_SYMBOLS

]:
[(number of bits for 256QAM = 8), (number of layers), (number of layers), 12*(number of PRBs),
(number of data OFDM symbols)]

D escriptions Output LLRs or softbits. Used if there is no UCI on PUSCH.

De-rate matching and Descrambling

Input
Buffer

PuschRx::m_tRefLLRVec[i] or PuschRx::m_tRefLLRCdm1Vec[i],
PuschRx::m_pTbPrmsGpu

Output
Buffer

PuschRx::m_pHarqBuffers

Data type uint8_t
Dimen-
sions

Function of TB size and number of TBs.

Descrip-
tion

Rate-matching/descrambling output. It is on a host pinned GPU memory. It is mapped to
PhyPuschAggr::DataInOut.pHarqBuffersInOut

400 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

RSSI Estimation

The RSSI is calculated from the received signal by first calculating the received signal power on each RE and each receive
antenna. The total power is then calculated by summation of received power across the frequency resources and receive
antennas. The RSSI is then obtained by averaging over DMRS symbols as defined in the SCF FAPI specification.
The RSSI is calculated as

RRSSI =
1

D

∑
p, k, nd

Yp, k, nd
Y ∗
p, k, nd

where Yp, k, nd
is the received signal of the p`-th receive antenna, the k-th subcarrier and the nd`-th OFDM symbol of the

d-th DMRS symbol.

Input
Buffer

PuschRx:: m_drvdUeGrpPrmsCpu[i].tInfoDataRx

Output
Buffer

PuschRx:: m_tRefRssiFull

Data
type

CUPHY_R_32_F : tensor vector of float real samples.

Dimen-
sions

[MAX_ND_SUPPORTED, MAX_N_ANTENNAS_SUPPORTED
, nUEgroups]:
[(max number of time domain estimates, =14), (max number of antennas, =64), (number of UE groups)]

De-
scrip-
tion

Measured RSSI (per symbol, per antenna, per UE group).

Output
Buffer

PuschRx:: m_tRefRssi

Data
type

CUPHY_R_32_F : tensor vector of float real samples.

Dimen-
sions

[1, nUEgroups]:[1, (number of UE groups)]

De-
scrip-
tion

Measured RSSI per UE group.

RSRP and SINR Estimation

The RSRP is calculated as

RRSRP =
1

PKD

∑
p, l, k, nd

Hp,l,k,nd
H∗

p,l,k, nd

Where Hp,l,k,nd
is the estimated channel frequency response of the

p-th receive antenna, l-th layer, k-th subcarrier and nd-th OFDM symbol of the D DMRS symbols. In the equation, P is
the total number of receive antennas, K is the total number of subcarriers and D is the total number of DMRS symbols
in a slot.
In order to obtain an SINR estimation, we first obtain the noise signal as

r̃ p,kDMRS ,nd
= Yp,kDMRS ,nd

−
∑
l

Hp,l,kDMRS ,nd
XDMRS, l

1.7. cuBB Developer Guide 401



Aerial CUDA-Accelerated RAN, Release 25-1

Where Yp,kDMRS ,nd
is the received signal of the p-th receive antenna, the kDMRS-th DMRS subcarier and the nd-th

DMRS symbol. Hp,l,kDMRS ,nd
is the estimated channel response of the p-the receive antenna, l-th layer, kDMRS-th

DMRS subcarrier and the nd -th OFDM symbol of the d-th DMRS symbol. XDMRS,l is the DMRS symbol of the l-th
layer.
The noise variance can then be estimated as

σ2
noise =

1

PKDMRSD

∑
p,k,nd

r̃ p,kDMRS ,nd
r̃∗ p,kDMRS ,nd

Where P is the total number of receive antennas and KDMRS is the total number of subcarriers in a DMRS symbol. In
order to compensate for the reduction in the noise power estimation caused by the channel estimation filter, a correction
factor (not shown here) is added to the noise variance. The SINR can then be obtained by SINR = 1

σ2
noise

Input Buffer PuschRx::m_tRefHEstVec[i], PuschRx:: m_tRefReeDiagInvVec[i], PuschRx::
m_tRefNoiseVarPreEq

Output
Buffer

PuschRx:: m_tRefRsrp

Data type CUPHY_R_32_F : tensor vector of float real samples.
Dimensions [1, nUEgroups]:[1, (number of UE groups)]
Description RSRP values across UEs.

Output
Buffer

PuschRx:: m_tRefNoiseVarPostEq

Data type CUPHY_R_32_F : tensor vector of float real samples.
Dimensions [1, nUEgroups]:[1, (number of UE groups)]
Description Post-equalization noise variances across UEs

Output
Buffer

PuschRx:: m_tRefSinrPreEq

Data type CUPHY_R_32_F : tensor vector of float real samples.
Dimensions [1, nUEgroups]:[1, (number of UE groups)]
Description Pre-equalization SINR values across UEs.

Output
Buffer

PuschRx:: m_tRefSinrPostEq

Data type CUPHY_R_32_F : tensor vector of float real samples.
Dimensions [1, nUEgroups]:[1, (number of UE groups)]
Description Post-equalization SINR values across UEs.

UCI on PUSCH Decoder

If UCI is configured on PUSCH channel, output of the soft-demapper first goes through de-segmentation to sepa-
rate HARQ, CSI part 1 and CSI part 2 and SCH softbits (or LLRs). This initial step is done by the kernel uciOn-
PuschSegLLRs0Kernel().
If CSI-part2 is present, CSI-part2 control kernel is launched as shown in the figure below as a dashed box. This kernel
determines the number of CSI-part2 bits and rate-matched bits and selects the correct decoder kernels and initiates their
setup functions.
De-segmentation of CSI-part2 payload is done by uciOnPuschSegLLRs2Kernel() kernel, which separates CSI-part2 UCI
and SCH softbits.

402 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

UCI on PUSCH De- segmentation of First
Phase
Input Buffer PuschRx:: m_tPrmLLRVec[i]

Output Buffer PuschRx::m_pTbPrmsGpu->pUePrmsGpu[i].d_harqLLrs;
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description HARQ soft bits.

Output Buffer PuschRx::m_pTbPrmsGpu->pUePrmsGpu[ueIdx].d_csi1LLRs;
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description CSI part 1 soft bits.

Output Buffer PuschRx::m_pTbPrmsGpu->pUePrmsGpu[i].
d_schAndCsi2LLRs

Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Shared channel (SCH) and CSI part 2 soft bits.

Fig. 9: Graph Diagram of the PUSCH and CSI Part 1 Decoding

1.7. cuBB Developer Guide 403



Aerial CUDA-Accelerated RAN, Release 25-1

UCI on PUSCHDe- segmentation
of Second Phase
Input Buffer PuschRx:: m_tPrmLLRVec[i]

Output Buffer P uschRx::m_pTbPrmsGpu->pUePrmsGpu[i].d_schAndCsi2LLRs;
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to SCH softbits

Output Buffer PuschRx::m_pTbPrmsGpu->pUePrmsGpu[i].d_schAndCsi2LLRs +
PuschRx::m_pTbPrmsGpu->pUePrmsGpu[i].G;

Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to CSI part2 softbits

Fig. 10: Graph Diagram of the PUSCH and CSI Part 2 Decoding

Simplex Decoder

The simplex decoder implements maximum likelihood (ML) decoder. It receives input LLRs and outputs estimated
codewords. It also reports HARQ DTX status.

404 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Input Buffer PuschRx:: m_pSpxCwPrmsCpu[spxCwIdx].d_LLRs
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to input LLRs

Output Buffer PuschRx:: m_pSpxCwPrmsCpu[spxCwIdx].d_cbEst
Data type uint32_t*
Dimensions Single dimensional array, the size depending on the payload.
Description Decoded UCI payload.

Output Buffer PuschRx:: m_pSpxCwPrmsCpu[spxCwIdx].d_DTXStatus
Data type Uint8_t*
Dimensions Parameter.
Description Pointer to HARQ detection status.

Reed Muller (RM) Decoder

The RM decoder implements maximum likelihood (ML) decoder. It receives input LLRs and outputs estimated code-
words. It also reports HARQ DTX status.

Input Buffer PuschRx:: m_pSpxCwPrmsCpu[rmCwIdx].d_LLRs
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to input LLRs

Output Buffer PuschRx:: m_pSpxCwPrmsCpu[rmCwIdx].d_cbEst
Data type uint32_t*
Dimensions Single dimensional array, the size depending on the payload.
Description Decoded UCI payload.

Output Buffer PuschRx:: m_pSpxCwPrmsCpu[rmCwIdx].d_DTXStatus
Data type Uint8_t*
Dimensions Parameter.
Description Pointer to HARQ detection status.

Polar Decoder

Polar decoder uses CRC aided list decoder with tree pruning. There are many variants of the decoding algorithm that is
used in decoding of Polar codes. Please see [2, 3] for some of the related work. The exact implementation in cuPHY is
optimized for the GPU architecture.
The tree-pruning algorithms combine leaf nodes together, which is a better data structure for execute decoding in parallel.
Hence it is more suitable for GPU architecture. There are different methods of forming leaf nodes in the tree pruning
algorithm. In our implementation we use rate-0 and rate-1 leaf codewords. In rate-0 leaf nodes, multiple bits are always
frozen and are zero, whereas there are no frozen bits in rate-1 leaf nodes. In rate-1 codewords, LLRs can be decoded in
parallel.
Tree pruning is done by compCwTreeTypesKernel()before the input LLRs are received by the Polar Decoder kernel.
If the list size is equal to 1, polarDecoderKernel(), if the list size is greater than 1, listPolarDecoderKernel()is run.

1.7. cuBB Developer Guide 405



Aerial CUDA-Accelerated RAN, Release 25-1

Input Buffer PuschRx:: m_cwTreeLLRsAddrVec
Data type __half*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to codeword tree of LLR addresses.

Output Buffer PuschRx:: m_cbEstAddrVec
Data type uint32_t*
Dimensions Single dimensional array, the size depending on the payload.
Description Pointer to estimated CB addresses.

LDPC Decoder

LDPC decoder is implemented with normalized layered min-sum algorithm [1] and it uses short float (FP16) data type
as log-likehood ratio (LLR) metrics.

Input
Buffer

PuschRx:: m_LDPCDecodeDescSet.llr_input[m_LDPCDecodeDescSet .num_tbs]
The first address is also mapped to PuschRx::m_pHarqBuffers[ueIdx]

Data
type

cuphyTransportBlockLLRDesc_t

Di-
men-
sions

Single dimensional array, the size depending on the number of valid TB descriptors. The max size is 32.

De-
scrip-
tion

Input LLR buffers.

Out-
put
Buffer

PuschRx:: m_LDPCDecodeDescSet.tb_output[m_LDPCDecodeDescSet .num_tbs]
The first address is also mapped to PuschRx::d_LDPCOut + offset
Offset is a function of UE index and number of codewords per UE.

Data
type

cuphyTransportBlockDataDesc_t

Di-
men-
sions

Single dimensional array, the size depending on the number of valid TB descriptors.

De-
scrip-
tion

Pointer to estimated TB addresses.

406 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

CRC Decoder

Code Block CRC Decoder Kernel
Input Buffer PuschRx::d_pLDPCOut, PuschRx:: m_pTbPrmsGpu
Descriptions LDPC decoder output and TB parameters needed to decode the CRC.

Output Buffer PuschRx:: m_outputPrms.pCbCrcsDevice;
Data type uint32_t
Dimensions [1, total number of CBs (across UEs)]
Description CRC output.

Output Buffer PuschRx:: m_outputPrms.pTbPayloadsDevice
Data type Uint8_t
Dimensions [1, total number of TB payload bytes]
Description TB payload.
Transport Block CRC Decoder Kernel
Input Buffer PuschRx:: m_outputPrms.pTbPayloadsDevice, PuschRx::

m_pTbPrmsGpu

Output Buffer PuschRx:: m_outputPrms.pTbCrcsDevice
Data Type uint32_t
Dimensions [1, total number of TBs (across UEs)]
Description TB CRC output.

PUCCH Pipeline

The PUCCH pipeline can be divided into logical stages. The first, front-end processing, is unique for each PUCCH format
and involves descrambling and demodulation to recover transmitted symbols. For formats 0 and 1, this is the only stage
performed as there is no decoding necessary to recover data. For formats 2 and 3, this is followed by decoding. Here, the
kernels used are the same as those in PUSCH for the same decoding type. Finally, the decoded data is segmented into
HARQ, SR and CSI payloads.
The kernels responsible for front-end processing are as follows:

• pucchF0RxKernel
• pucchF1RxKernel
• pucchF2RxKernel
• pucchF3RxKernel

With each corresponding to formats 0 through 3 respectively. For formats 0 and 1, hard decisions are made as part of
demodulation to recover 1 or 2 payload bits, depending on specific configuration. For formats 2 and 3, LLRs are recovered
from demodulation and used for decoding. Each front-end processing kernel also calculates RSSI, and RSRP and uses
DMRS to perform SINR, interference, and timing advance estimation.
For formats 2 and 3, payloads less than 12 bits in length are handled by the Reed Muller decoder kernel . Payloads of 12
bits and larger are handled by a de-rate matching and de-interleaving kernel (polSegDeRmDeItlKernel) and then
processed by the polar decoder kernel.
Finally, formats 2 and 3 decoded payloads are segmented by a segmentation kernel (pucchF234UciSegKernel) to
recover the corresponding HARQ, SR, and CSI payloads.

1.7. cuBB Developer Guide 407



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 11: Graph Diagram of the PUCCH Pipeline

Input Buffer PucchRx::m_tPrmDataRxBufCpu[i].tInfoDataRx
Data type CUPHY_C_16_F : tensor vector of IQ samples
Dimensions [(ORAN_MAX_PRB*CUPHY_N_TONES_PER_PRB),

OFDM_SYMBOLS_PER_SLOT, MAX_AP_PER_SLOT]

Output Buffer PucchRx::m_outputPrms.pF0UciOutGpu
Data type cuphyPucchF0F1UciOut_t*
Dimensions Single dimensional array of length equal to the number of format 0 UCIs
Description HARQ values and estimator measurements, including SINR, Interference, RSSI, RSRP

(in dB) and timing advance (in uSec) per UCI

Output Buffer PucchRx::m_outputPrms.pF0UciOutGpu
Data type cuphyPucchF0F1UciOut_t*
Dimensions Single dimensional array of length equal to the number of format 1 UCIs
Description HARQ values and estimator measurements, including SINR, Interference, RSSI, RSRP

(in dB) and timing advance (in uSec) per UCI

Output Buffer PucchRx:: m_tSinr
Data type CUPHY_R_32_F : tensor vector of float values.
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured SINR per UCI (in dB)

Output Buffer PucchRx:: m_tRssi
Data type CUPHY_R_32_F : tensor vector of float values.
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured RSSI per UCI (in dB)

Output Buffer PucchRx:: m_tRsrp
Data type CUPHY_R_32_F : tensor vector of float values.

continues on next page

408 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 38 – continued from previous page
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured RSRP per UCI (in dB)

Output Buffer PucchRx:: m_tInterf
Data type CUPHY_R_32_F : tensor vector of float values.
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured Interference per UCI (in dB)

Output Buffer PucchRx:: m_tNoiseVar
Data type CUPHY_R_32_F : tensor vector of float values.
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured Noise Variance per UCI (in dB)

Output Buffer PucchRx:: m_tTaEst
Data type CUPHY_R_32_F : tensor vector of float values.
Dimensions [(number of format 2 & 3 UCIs)]
Description Measured Timing Advance per UCI (in uSec)

Output Buffer PucchRx::m_tUciPayload
Data type CUPHY_R_8U : tensor vector of unsigned bytes
Dimensions [(total number payload bytes for format 2 & 3 UCIs rounded up to 4-byte words for each

payload)]
Description Format 2 & 3 UCI payloads rounded to 4-byte words. If 1 UCI has HARQ & CSI-P1

of 1 bit each, they will each get a 4-byte word for a total of 8 bytes.

Output Buffer PucchRx:: m_tHarqDetectionStatus
Data type CUPHY_R_8U : tensor vector of unsigned bytes
Dimensions [(number of format 2 & 3 UCIs)]
Description HARQ detection status

Output Buffer PucchRx:: m_tCsiP1DetectionStatus
Data type CUPHY_R_8U : tensor vector of unsigned bytes
Dimensions [(number of format 2 & 3 UCIs)]
Description CSI Part 1 detection status

Output Buffer PucchRx:: m_tCsiP2DetectionStatus
Data type CUPHY_R_8U : tensor vector of unsigned bytes
Dimensions [(number of format 2 & 3 UCIs)]
Description CSI Part 2 detection status

PRACH Pipeline

The PRACH pipeline uses IQ samples segmented for each occasion and performs detection and estimation for configured
PRACH signals. This process operates across a number of kernels as follows:

1. The prach_compute_correlation kernel takes input IQ data and performs averaging among repetitions followed by
a time-domain correlation (done in frequency domain) against a reference version of the expected PRACH signal.
This kernel simultaneously operates on each PRACH occasion.

2. An inverse FFT kernel transforms the frequency domain correlation results to time domain. A separate kernel
operates on each occasion.

3. The prach_compute_pdp kernel performs non-coherent combining of correlation results for each preamble zone.

1.7. cuBB Developer Guide 409



Aerial CUDA-Accelerated RAN, Release 25-1

It then calculates power and the peak index and value for each preamble zone.
4. The prach_search_pdp kernel computes preamble and noise power estimates and reports the preamble index with

peak power. It also does threshold-based detection declaration.
There is also a separate set of kernels as part of the PRACH pipeline for performing RSSI calculations.

1. The memsetRssi kernel clears a device buffer used in computing RSSI.
2. The prach_compute_rssi kernel computes RSSI for each PRACH occasion both for each antenna and average

power over all antennas
3. The memcpyRssi kernel stores the RSSI results in host-accessible memory

Fig. 12: Graph Diagram of the PRACH Pipeline

Input Buffer PrachRx:: h_dynParam[i].dataRx
Data type CUPHY_C_16_F : tensor for each occasion buffer
Dimensions [(Preamble length+5)*Number of repetitions , N_ant]

Output Buffer PrachRx:: numDetectedPrmb
Data type CUPHY_R_32U : tensor vector of uint32
Dimensions [1, PRACH_MAX_OCCASIONS_AGGR]
Description Number of detected preambles for each occasion

Output Buffer PrachRx:: prmbIndexEstimates
continues on next page

410 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 39 – continued from previous page
Data type CUPHY_R_32U : tensor vector of uint32
Dimensions [PRACH_MAX_NUM_PREAMBLES, PRACH_MAX_OCCASIONS_AGGR]
Description Detected preamble index for each preamble and occasion

Output Buffer PrachRx:: prmbDelayEstimates
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [PRACH_MAX_NUM_PREAMBLES, PRACH_MAX_OCCASIONS_AGGR]
Description Delay estimate for each preamble and occasion

Output Buffer PrachRx:: prmbPowerEstimates
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [PRACH_MAX_NUM_PREAMBLES, PRACH_MAX_OCCASIONS_AGGR]
Description Power estimate for each preamble and occasion

Output Buffer PrachRx:: antRssi
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [N_ant, PRACH_MAX_OCCASIONS_AGGR]
Description RSSI for each antenna and occasion

Output Buffer PrachRx:: rssi
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [1, PRACH_MAX_OCCASIONS_AGGR]
Description RSSI for each occasion

Output Buffer PrachRx:: interference
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [1, PRACH_MAX_OCCASIONS_AGGR]
Description Interference for each occasion

Output Buffer PrachRx:: prmbPowerEstimates
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [PRACH_MAX_NUM_PREAMBLES, PRACH_MAX_OCCASIONS_AGGR]
Description Power estimate for each preamble and occasion

Output Buffer PrachRx:: antRssi
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [N_ant, PRACH_MAX_OCCASIONS_AGGR]
Description RSSI for each antenna and occasion

Output Buffer PrachRx:: rssi
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [1, PRACH_MAX_OCCASIONS_AGGR]
Description RSSI for each occasion

Output Buffer PrachRx:: interference
Data type CUPHY_R_32_F : tensor vector of float values
Dimensions [1, PRACH_MAX_OCCASIONS_AGGR]
Description Interference for each occasion

1.7. cuBB Developer Guide 411



Aerial CUDA-Accelerated RAN, Release 25-1

SRS Pipeline Overview

The SRS Pipeline implements the signal reference symbol (SRS) channel estimation for cellular uplink transmissions. The
module takes received IQ samples from the gNB O-RU antennas as input and outputs the estimated channel coefficients
for each subcarrier and antenna port. The module supports different bandwidths, and transmission modes as specified by
the 3GPP standards.

SRS Pipeline Lifecycle

The SRS Pipeline module consists of a C++ class, srsChEst that encapsulates the main functionality and a C API that
provides an interface for external applications. The C API consists of four functions: cuphyCreateSrsRx(), cuphySetup-
SrsRx(), cuphyRunSrsRx(), and cuphyDestroySrsRx(). Each of these functions corresponds to a phase in the pipeline
lifecycle responsible for creating, configuring, running, and destroying the SRS Pipeline instance respectively.

412 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

SRS Pipeline Execution

The SRS pipeline supports graph execution, however the graph simply consists of a single node for the channel estimation
kernel.

cuphyCreateSrsRx()

This function creates an instance of the SRS Pipeline and initializes its internal parameters and memory. The function
takes a pointer to a structure of type cuphySrsStatPrms_t as input, which contains configuration parameters for the
SRS Pipeline that are expected to be constant for the pipeline’s existence and that determine upper bounds for memory
sizing, such as the number of antennas, and subcarriers spacing. The function returns a handle to the pipeline object,
cuphySrsRxHndl_t, which represents the SRS Pipeline instance and holds its state information. The function also
performs some sanity checks on the input parameters.

cuphySetupSrsRx()

This function configures the SRS Pipeline instance with the specific parameters for each transmission. The function
takes a pointer to the SRS Pipeline instance and a pointer to a structure of type cuphySrsDynPrms_t as input. The
structure contains the dynamic parameters for the SRS Pipeline, such as the PRBs in use, SRS configuration index, and
SRS hopping bandwidth. The function populates descriptors for use by the SRS channel estimation kernel from the input
data structure and sets up pointers for input and output data to prepare for processing. The function returns a status code
indicating whether the operation was successful or not.

cuphyRunSrsRx()

This function runs the SRS Pipeline processing on a given set of IQ samples. The function takes a pointer to the SRS
Pipeline instance. Input data locations were configured during the setup process described in cuphySrsDataIn_t as part
of the cuphySrsDynPrms_t structure. This function will launch a kernel configured to read from those locations to
perform channel estimation, including: - Extract the SRS symbols from the frequency domain samples based on the SRS
configuration index and hopping bandwidth - Applies phase rotation and scaling to the SRS symbols to compensate for
the channel effect - Estimates the channel coefficients for each subcarrier and antenna port using the SRS symbols and the
known SRS sequences - Averages the channel estimates over multiple SRS symbols to reduce the noise
The kernel will output the channel estimates according to the cuphySrsDataOut_t structure provided as part of cu-
phySrsDynPrms_t in the setup process. The run function also returns a status code indicating whether the processing
was successful or not.

1.7. cuBB Developer Guide 413



Aerial CUDA-Accelerated RAN, Release 25-1

414 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

cuphyDestroySrsRx()

This function destroys the SRS Pipeline instance and frees its resources. The function takes a pointer to the SRS Pipeline
instance as input and releases its memory. The function returns a status code indicating whether the operation was
successful or not.

Input and Output Data

Input Buffer SrsRx:: m_hPrmDataRx[i].pTDataRx
Data type array of per-cell tensors of IQ samples of element type CUPHY_C_16_F
Dimensions [(ORAN_MAX_PRB*CUPHY_N_TONES_PER_PRB), OFDM_SYMBOLS_PER_SLOT,

MAX_AP_PER_SLOT]

Output Buffer SrsRx::m_outputPrms.h_chEstBuffInfo
Data type cuphySrsChEstBuffInfo_t*
Dimensions Array of per-user structures containing a tensor of [nPrbGrpEsts, nGnbAnts, nUeAnts] each

element being CUPHY_C_16_F a scalar indicating start PRB group & PRB group size
Description Buffer describing the channel estimate results from SRS

Output Buffer SrsRx::m_outputPrms.h_srsReports
Data type cuphySrsReport_t*
Dimensions Array of per-user structures
Description Structure contains per-user estimates including timing, signal, and noise estimates

Output Buffer SrsRx::m_outputPrms.h_rbSnrBuffer
continues on next page

1.7. cuBB Developer Guide 415



Aerial CUDA-Accelerated RAN, Release 25-1

Table 40 – continued from previous page
Data type Floating point array SINRs
Dimensions [m_nPrbs* m_nSrsUes]
Description Array containing per-RB SNR estimates

Output Buffer SrsRx::m_outputPrms.h_rbSnrBuffOffsets
Data type Array of 32-bit unsigned integers
Dimensions [m_nSrsUes]
Description Single dimensional array containing per-user offset into h_rbSnrBuffer

Output Buffer SrsRx::m_outputPrms.h_srsChEstToL2
Data type cuphySrsChEstToL2_t*
Dimensions Array of pointers to per-user buffers. Each buffer is of dimension [nPrbGrpEsts, nGnbAnts,

nUeAnts] with each element being represented as float2 a scalar indicating start PRB group &
PRB group size

Description This and h_chEstBuffInfo above describe the same channel estimates but this one is in CPU
memory using complex FP32 and the other is in GPU memory using FP16.

Memory Management

The SRS Pipeline uses different kinds of memory for its operation, and the caller is responsible for allocating and freeing
some of them. The following table summarizes the types of memory used by the pipeline, their ownership, lifetime, and
location.

Memory Type Ownership Lifetime Loca-
tion

Description

Pipeline Working Pipeline Allocated during cuphyCre-
ateSrsRx() and freed during
cuphyDestroySrsRx()

CPU
&
GPU

Memory used by pipeline for
its internal processing, such
as intermediate buffers, coef-
ficients, etc.

cuphySrsStatPrms_t Caller Only valid during cuphyCre-
ateSrsRx()

CPU Memory used to store the
static parameters of the
pipeline, such as number of
antennas, channels, etc.

cuphySrsDynPrms_t Caller Only valid during cuphySe-
tupSrsRx()

CPU Memory used to store the
dynamic parameters of the
pipeline, such as SRS band-
width configuration, input
data pointers, output buffer
pointers, etc.

cuphySrsDataIn_t Caller Valid during cuphyRun-
SrsRx()

GPU Memory used to store the in-
put data for pipeline, such as
IQ sa.mples from the anten-
nas

cuphySrsDataOut_t Caller Valid after cuphyRunSrsRx() GPU Memory used to store the
output data from the pipeline,
such as channel estimates.

The caller should ensure that the memory allocated for the input and output data is sufficient for the pipeline’s operation,
and that the pointers are correctly set in the dynamic configuration parameters. The pipeline may not check the validity or

416 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

size of the memory. It is assumed to be consistent with the static and dynamic parameters. The caller should also ensure
that the memory is not modified by other processes while the pipeline is using it.

SRS channel estimation algorithms

The current pipeline implementation performs MMSE channel estimation based on the received SRS signals. The channel
estimation algorithm consists of the following steps:

• Load received SRS subcarriers, remove ZC cover-code and average repetitions
• Remove cyclic shifts and apply wide filter to estimate channel
• Estimate delay phase ramp
• Remove delay phase ramp from received signal by multiplying with a shift sequence
• Remove cyclic shifts and apply narrow filter to estimate channel
• Average estimates. Estimate energy and noise
• Calculate correlation w.r.t. cyclic shift in use and not in-use: sum over, PRB, antenna, cyclic shift

The pipeline saves the channel estimate, the signal energy, the noise variance, and the correlation values to the output
buffers to be made available for use elsewhere.

Performance Optimization

The cuPHY library is designed to accelerate PHY layer functionality of commercial grade 5G gNB DU. Software opti-
mizations ensure reduced latency and scalable performance with the increased number of cells. We can categorize them
as:

• Use of CUDA Graphs: The cuPHY library makes use of CUDA graph feature to reduce kernel launch latency.
The CUDA kernels implementing signal processing components within each cuPHY physical layer channel pipeline
are represented as nodes in a CUDA graph and the inter-component dependencies as edges between nodes. Since
graph creation is expensive, a base graph with the worst case topology is created during initialization of channel
pipelines where there are several specializations of component kernels. When the channel is scheduled for a given
slot only the necessary subset of graph nodes are updated and enabled.

• Use of MPS (Multi-Process Service): The cuPHY driver creates multiple MPS contexts, each with an upper limit
to the maximum number of SMs (Streaming Multiprocessors) that can be used by kernels launched there. MPS
contexts for control channels (e.g. PUCCH, PDCCH) usually have significantly lower SM limits compared to MPS
contexts for shared channels due to the expected computation load. Each MPS context also has one or more CUDA
streams associated with it, with potentially different CUDA stream priorities.

• Kernel fusion: the cuPHY implementation may fuse functionality from different processing steps into a single
CUDA kernel for improved performance. For example, the rate matching, scrambling and modulation processing
steps of the downlink shared channel are all performed in a single kernel. The motivation for these customizations
is to reduce memory access latency and therefore improve performance. For example, assume that there are two
kernels that are run in sequence. The first kernel makes a computation, writes the output to the global memory
and the second kernel needs to read this output from the global memory to continue the computation. In this case,
fusing these two kernels can reduce the number of accesses to the global memory, which has higher latency.

• Optimization of L1-L2 data flow: Data flow between the L2 and L1, and between the L1 and the FH are important
for optimization of the latency. Data TB payloads for PDSCH channel need to be copied from L2 to L1 whenever a
PDSCH channel is scheduled by the L2. The size of TBs increases with higher data throughput and the number of
TBs also can also increase with the number of cells and the number of UEs scheduled on a given time slot. cuPHY
library pipelines the TB H2D (host to device) copy to run in parallel with PDSCH channel setup processing. Such
pipelining hides the TB H2D copy latency reducing overall PDSCH completion time.

1.7. cuBB Developer Guide 417



Aerial CUDA-Accelerated RAN, Release 25-1

Running cuPHY Examples

The cuPHY library includes example programs that can be used to test cuPHY channel pipelines and components. How
to run cuPHY channel pipelines are explained in Aerial Release Guide Document in the section “Running the cuPHY
Examples”. Please refer to the release guide on how to run the cuPHY channel pipelines. In running these examples, note
that recent cuPHY implementation uses graphs mode to improve performance.
cuPHY library also includes examples for its components. Some examples are provided below.
Uplink channel estimation

cuPHY/build/examples/ch_est/cuphy_ex_ch_est -i ~/<tv_name>.h5

Sample test run:

cuPHY/build/examples/ch_est/cuphy_ex_ch_est -i
TVnr_7550_PUSCH_gNB_CUPHY_s0p0.h5

UE group 0: ChEst SNR: 138.507 dB
ChEst test vector TVnr_7550_PUSCH_gNB_CUPHY_s0p0.h5 PASSED
22:53:17.726075 datasets.cpp:974 WRN[90935 ] [CUPHY.PUSCH_RX] LDPC throughput mode␣
↪→disabled
22:53:17.943272 cuphy.hpp:84 WRN[90935 ] [CUPHY.MEMFOOT]cuphyMemoryFootprint - GPU␣
↪→allocation:
684.864 MiB for cuPHY PUSCH channel object (0x7ffc16f09f90).
22:53:17.943273 pusch_rx.cpp:1188 WRN[90935 ] [CUPHY.PUSCH_RX] PuschRx:
Running with eqCoeffAlgo 3

Simplex decoder

cuPHY/build/examples/simplex_decoder/cuphy_ex_simplex_decoder -i ~/<tv_name>.h5

Sample test run:

cuPHY/build/examples/simplex_decoder/cuphy_ex_simplex_decoder -i
TVnr_61123_SIMPLEX_gNB_CUPHY_s0p0.h5
AERIAL_LOG_PATH unset
Using default log path
Log file set to /tmp/simplex_decoder.log
22:57:29.115870 WRN 92956 0 [NVLOG.CPP] Using
/opt/nvidia/cuBB/cuPHY/nvlog/config/nvlog_config.yaml for nvlog configuration
22:57:33.455795 WRN 92956 0 [CUPHY.PUSCH_RX] Simplex code: found 0 mismatches out of␣
↪→1 codeblocks

Exiting bg_fmtlog_collector - log queue ever was full: 0

PUSCH de-rate match

cuPHY/build/examples/pusch_rateMatch/cuphy_ex_rateMatch -i ~/<tv_name>.h5

Sample test run:

cuPHY/build/examples/pusch_rateMatch/cuphy_ex_pusch_rateMatch -i
TVnr_7143_PUSCH_gNB_CUPHY_s0p0.h5

AERIAL_LOG_PATH unset
Using default log path
Log file set to /tmp/pusch_rateMatch.log

(continues on next page)

418 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
22:58:20.673934 WRN 93384 0 [NVLOG.CPP] Using cuPHY/nvlog/config/nvlog_config.yaml
for nvlog configuration
22:58:20.896254 WRN 93384 0 [CUPHY.PUSCH_RX] LDPC throughput mode disabled
nUes 1, nUeGrps 1
nMaxCbsPerTb 3 num_CBs 3
uciOnPuschFlag OFF
nMaxTbs 1 nMaxCbsPerTb 3 maxBytesRateMatch 156672
22:58:21.037299 WRN 93384 0 [CUPHY.MEMFOOT] cuphyMemoryFootprint - GPU
allocation: 684.864 MiB for cuPHY PUSCH channel object (0x7ffe23b0f690).
22:58:21.037302 WRN 93384 0 [CUPHY.PUSCH_RX] PuschRx: Running with eqCoeffAlgo 3
22:58:21.037810 WRN 93384 0 [CUPHY.PUSCH_RX] detected 0 mismatches out
of 65280 rateMatchedLLRs
Exiting bg_fmtlog_collector - log queue ever was full: 0

1.7.3 Test MAC and RU Emulator Architecture Overview

TestMAC and RU emulator are the tools that are used by developers to test the system in a controlled environment. Test-
MAC functions as the L2/L1 interface, which schedules packets according to a predefined launch pattern. RU emulator
is a basic implementation of ORAN FH interface. Its functions include verifying the timing of FH packets, checking the
integrity of DL IQ samples and scheduling the transmission of UL IQ samples.
Functional blocks of TestMAC are displayed in the following figure. TestMAC is responsible for scheduling DL packets
and validating received UL messages. TestMAC uses a predefined launch pattern for scheduling. The launch pattern
defines the TDD pattern across multiple frames and the test vectors (TVs) used on each slot. The test vectors contain the
L1 configuration for each PHY channel in a given slot. TestMAC obtains the slot timing from L1 via L2 adapter. The
timing is indicated by the slot indication message. TestMAC prepares the FAPI message according to the L1 configuration
contained in the TV. If a given slot is an UL, TestMAC parses the corresponding TV and compares the received data with
the expected values included in the TV.
The RU emulator has the following functions:

• Validation of timing of the transmitted packets by the DU (DL u-plane, DL c-plane, UL c-plane)
• Validation of the transmitted IQ samples or DL u-plane payload data
• Transmission of UL u-plane packets as a response to UL c-plane messages

The logic used by RU emulator to process received packets is displayed in the following figure. If the received packet is
a U-plane, RU emulator will continue parsing the packet header to retrieve eAxC id, frame number, subframe number,
slot id, startSym index, number of smybols, start PRB index and number of PRBs. It then compares the payload with
the corresponding data included in the TV. If the received packet is a C-plane message for an UL packet, they are again
parsed to extract the information for the UL data allocation same as for DL packets. RU emulator then transmits the UL
u-plane data symbol by symbol and it uses accurate send scheduling function.
RU emulator needs the cuphycontroller configuration to obtain PCI address of the NIC interface, MAC address of the
peer system, cell configurations, VLAN ID and eAxCid values for each cell. It also uses launch pattern file to understand
the TDD pattern and the L1 configuraiton for each slot.

1.7. cuBB Developer Guide 419



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 13: Test MAC functionality

Fig. 14: RU Emulator received packet processing

420 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

1.7.4 5G MATLAB Models for Testing and Validation

Aerial CUDA-Accelerated RAN includes a simulation model called nr_sim that is written in Matlab matching with the
CUDA implementation in cuPHY library. It can be found under $cuBB_SDK/5GModel/nr_matlab. It serves as a refer-
ence model for Aerial design and verification, which covers from L1/L2 FAPI interface to O-DU/O-RU FH interface.
A high level function block diagram of the nr_sim is shown in the following figure. The core of nrSim is the simulation
engine nrSimulator.m, which includes Matlab models for gNB transmitter and receiver, MIMO fading channel and UE
transmitter. nrSimulator.m can be called by runSim.m with external configuration mode or by runRegression.m with
internal configuration mode.

Fig. 15: nr_sim functionality

The simulator provides three major features: waveform compliance test, test vector generation and PHY performance
simulation.

1.7. cuBB Developer Guide 421



Aerial CUDA-Accelerated RAN, Release 25-1

Waveform compliance test

The purpose of waveform compliance test is to make sure our understanding of 3GPP standards regarding signal waveform
generation is correct. It is achieved by checking nrSim generated signal against Matlab 5G Toolbox generated signal.

Fig. 16: Waveform compliance test

Test Vector Generation

nrSim can generate test vectors for L2/L1 FAPI PDU, cuPHY channel pipeline API parameters, cuPHY channel pipeline
output and the compressed samples in a slot.
Two types of test vectors will be generated for each test case configuration.

• FAPI test vector including FAPI PDU for all the channels in this slot and FH compressed samples for this slot.
There is only one FAPI TV per slot.

• cuPHY test vector including cuPHY parameters and input/output for a cuPHY channel pipeline call. There can be
multiple cuPHY TVs per slot.

422 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 17: Test vector generation

PHY Performance Simulation

The purpose of this test is to make sure that Aerial PHY performance can meet 3GPP requirement by checking nrSim
performance simulation results with the same channel condition and test configuration specified by the 3GPP standard.

nrSim Configuration

The input to the simulation engine nrSimulator.m is a single data structure SysPar, which includes all the 3GPP related
configurations and simulation control related configurations. The outputs of nrSimulatior include SysPar, UE (array of
structures for all UEs) and gNB (structure for gNB).
[SysPar, UE, gNB] = nrSimulator(SysPar)
Matlab functions listed in the table below generate the default configuration for the parameters in SysPar.

Data Struc-
ture

Field Description Matlab function for
default configura-
tion

SysPar testAlloc Specify DL/UL direction and the number of each type of
channels allocated for the slot

initSysPar

carrier Specify carrier level configuration cfgCarrier
ssb Specify SSB configuration cfgSsb
pdcch Specify PDCCH channel configuration cfgPdcch
pdsch Specify PDSCH channel configuration cfgPdsch
csirs Specify CSIRS channel configuration cfgCsirs
prach Specify PRACH channel configuration cfgPrach
pucch Specify PUCCH channel configuration cfgPucch
pusch Specify PUSCH channel configuration cfgPusch
srs Specify SRS channel configuration cfgSrs
Chan Specify MIMO fading channel configuration cfgChan

continues on next page

1.7. cuBB Developer Guide 423



Aerial CUDA-Accelerated RAN, Release 25-1

Table 42 – continued from previous page
Data Struc-
ture

Field Description Matlab function for
default configura-
tion

SimCtrl Specify Simulation control parameters cfgSimCtrl

Configuration options for the testAlloc is summarized in the table below. DL and UL fields indicate if the test is for a DL
or an UL slot. The remaining fields hold the number of PHY channel allocations for the test. A given test can include
multiple combinations of PHY channels, i.e. 1 SSB allocation, 4 PDCCH allocations, 4 PDSCH allocations, etc.

Data str ucture Field Description
tes tAlloc Dl Enable DL test

Ul Enable UL test
Ssb Enable SSB allocation
Pdcch Number of PDCCH channels in a slot
Pdsch Number of PDSCH channels in a slot
Csirs Number of CSIRS channels in a slot
Prach Number of PRACH channels in a slot
Pucch Number of PUCCH channels in a slot
Pusch Number of PUSCH channels in a slot
Srs Number of SRS channels in a slot

SysPar definition for 3GPP carrier and slot configuration with each channel is mostly based on SCF-FAPI specification.
The Chan configuration refers to MIMO fading channel model.

Data str ucture Field Description
Chan Type AWGN, TDLx-xx-xxx (3GPP MIMO fading channel)

SNR Channel SNR in dB
Delay Channel propagation delay in second
CFO Carrier frequency offset in Hz
Use5Gtoolbox Reserved
gain Reserved

The SimCtrl structure includes global configuration settings that are used in the simulation.

Datastruc-
ture

Field Sub-field Description

SimCtrl N_UE Number of UEs
N_frame Number of frames per run
N_slot_run Number of slots in a frame to run. (0: run all slots in a frame)
timeDomain-
Sim

Enable time domain simulation (required for applying fading chan-
nel model, delay and CFO)

plotFigure tfGrid Plot time/freq domain signal
constellation Plot constellation before and after equalizer

genTV Enable Enable TV generation at gNB side
enableUE Enable TV generation at UE side
tvDirName Name for TV directory

continues on next page

424 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Table 43 – continued from previous page
Datastruc-
ture

Field Sub-field Description

cuPHY Enable cuPHY TV in h5 format
FAPI Enable FAPI TV in h5 format
FAPIyaml Enable FAPI TV in yaml format
slotIdx Indices of slots on which TV will be generated
forceS-
lotIdxFlag

Force slot index = slotIdx(1) for every slot

bypassComp Bypass FH sample compression
idx Reserved
TVname Prefix for the name of TVs
fp16AlgoSel 0: Use half function (Matlab fixed point toolbox required)

1: Use vpf16 function (Matlab fixed point toolbox not required)
CFOflag Enable CFO correction
en-
ableRssiMeas

Enable RSSI measurement

capSamp Reserved
result Reserved

nrSim Usage

For different test and simulation purpose, nrSim provides two modes to change the configurations and run the Matlab
model.

• External configuration mode (runSim): This mode is to use an external configuration file in yaml format to update
the parameters. nrSim will read this yaml configuration file and set the SysPar parameters accordingly. It is
recommended that non matlab developer uses this mode to generate test vectors which requires no change to the
Matlab code.

• Internal configuration mode (runRegression): This mode is to change the SysPar parameters directly in the Matlab
code between initSysPar and nrSimulator. Matlab developer can pre-define a set of configuration used by compli-
ance test, test vector generation and PHY performance simulation. Multiple runs can be performed in this mode
with different configurations.

Matlab Environment Preparation

Matlab version:
• R2020a or later

Matlab licenses:
• MATLAB
• Communications Toolbox
• DSP System Toolbox
• Signal Processing Toolbox
• Fixed-Point Designer (optional)

– Call half function to accelerate testing/simulation
– Can be disabled by setting SimCtrl.fp16AlgoSel = 1

1.7. cuBB Developer Guide 425



Aerial CUDA-Accelerated RAN, Release 25-1

• Parallel Computing Toolbox (optional)
– Accelerate testing/simulation automatically

• 5G Toolbox (optional)
– Not required for TV generation
– Required for waveform compliance test and performance simulation

Preparation:
• After download the source code, launch Matlab on the directory of nr_matlab and run startup to add all sub-

directories into Matlab search path.

External Configuration Mode (runSim)

1) Find the yaml configuration template file cfg_template.yaml under nr_matlab. If it is missing, run genCfgTemplate
to generate it.

2) Use a text editor to change the parameters in the yaml file. Basically cfg_template.yaml is a yaml (text) version
of SysPar data structure. Please refer to section 3 for the description of SysPar parameters. After change is done,
save it to another file name, for example, cfg_test.yaml.

3) Run runSim(cfg_filename, tv_filename), for example, runSim(cfg_test.yaml, my_test). nrSim will read
cfg_test.yaml file, update SysPar accordingly, run nrSimulator and generate test vector files with name starting with
my_test. The generated TV files are stored under the folder named by SysPar.SimCtrl. tvDirName, for example,
GPU_test_input.

4) Another option is to use runSim(cfg_filename, test,tv_filename),
Notes:

• This mode only supports test vector generation with SimCtrl.genTV.enable set to 1. It does not support waveform
compliance test and PHY performance test.

• If SimCtrl.plotFigure.tfGrid is set to 1, the time/freq signal in a frame or the specified number of slots in a frame
(controlled by N_slot_run) can be plotted to provide visualized channel allocations.

• Non Matlab developer can write script in any language to modify the yaml template file and automatically generate
a number of different yaml configuration files for different testing purpose.

Internal Configuration Mode (runRegression)

Instead of updating configuration through the external YAML configuration file case by case, the internal configuration
mode changes SysPar parameters directly inside the Matlab code, which allows Matlab developers to define and exe-
cute a batch of test cases more efficiently. The main function for this mode is runRegression, which supports a flexible
combination of testSet, channelSet and caseSet as the input arguments.
runRegression(testSet, channelSet, caseSet)

Argument Values Value Selec-
tion

testSet Compliance, TestVector, Performance, allTests Multiple
chan-
nelSet

ssb, pdcch, pdsch, csirs, dlmix, allDL, prach, pucch, pusch,
srs, ulmix, allUL, allChannels

Multiple

caseSet full, compact, selected Single

426 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Here are some example commands.
• Full regression test for all channels

runRegression({‘allTests’}, {‘allChannels’}, ‘full’)
• Waveform compliance test and test vector generation for pdcch and pdsch channels with compact set

runRegression({‘Compliance’, ‘TestVector’}, {‘pdcch’, ‘pdsch’}, ‘compact’)
• PHY performance simulation for PRACH channel

runRegression({‘Performance’}, {‘prach’}, ‘full’)
The test cases for each channel are defined in the Matlab file testCompGenTV_xxxx.m, where xxxx is the channel name.
Matlab developer can modify the Matlab file to create and assign test cases for full set, compact set and selected set.

• full set includes all the test cases which can be generated by nrSim and pass waveform compliance test against 5G
Toolbox.

• compact set includes a subset of full set test cases which are supported by cuPHY implementation. TVs from
Compact set can be used for nightly CICD regression test.

• selected set includes a subset of compact set test cases which are essential for cuPHY verification. TVs from
Selected set can be used for merge request (MR) CICD regression test.

Notes:
• testCompGenTV_dlmix and testCompGenTV_ulmix supports multi-channel multi-slot TV generation without

waveform compliance check.
• testPerformance_prach, testPerformance_pusch and testPerformance_pucch support PHY performance test for

PRACH (format 0/B4), PUSCH (non-UCI) and PUCCH (format 0/1).
Below is an example of full regression test summary with Matlab command
runRegression({allTests}, {‘allChannels’}, ‘full’)

Fig. 18: An example output of a full regression test summary

1.7. cuBB Developer Guide 427



Aerial CUDA-Accelerated RAN, Release 25-1

1.7.5 AI/ML Components for PUSCH Channel Estimation

PUSCH Channel Estimation can load the TrTEnginemodel and run it as part of the PUSCH-RX pipeline. This channel
estimation mode can work for 1UE and 1 Cell.

How to Enable and Run the TrTEngine Model

Follow these steps to enable the TrTEngine model as part of the PUSCH-RX pipeline:
1. Enable TrTEng in the cuphycontroller top-level YAML. For example, you use the following setting in

cuphycontroller_nrSim_SCF_CG1.yaml:

puschrx_chest_factory_settings_filename: /opt/nvidia/cuBB/cuPHY/examples/ch_
↪→est/chest_trt.yaml

2. Change the testMAC validation value to 1 in test_mac.yaml:

validate_enable: 1

TrTEngine YAML File Example

The following is an example of the TrTEngine YAML file. The names of the input/output tensors might differ depending
on the AI model. Depending on the chosen location, the path and engine filename might also be different.
The dimensions of the input and outputs are shown in the YAML file below.

---

chest_factory: trtengine

file: /opt/nvidia/cuBB/cuPHY/examples/ch_est/channel_estimator_fp16-True_tf32-True.
↪→engine

max_batch_size: 1

inputs:
- name: z
dataType: 0 # CUPHY_R_32F
dims: [1638, 4, 4, 2, 2] # subcarriers, layers, antennas, symbols, real&imag

outputs:
- name: zout
dataType: 0 # CUPHY_R_32F
dims: [4, 4, 3276, 2, 2] # antennas, layers, subcarriers, symbols, real&imag

...

428 Chapter 1. Aerial cuBB



Aerial CUDA-Accelerated RAN, Release 25-1

Example Python Script

The torch_to_trt_chest_example.py example script takes a PyAerial-based model and compiles it into a
TrTEngine that can run in cuPHY.

Prerequisites

Before using this script, ensure the model to be compiled accepts inputs from the PyAerial Least Squares Channel Esti-
mator (algo=3) and outputs an estimate with the same shape as the PyAerial MMSE Estimator (algo=1).

• INPUT: [batch, subcarriers, layers, rx antennas, symbols, 2]

• OUTPUT: [batch, rx antennas, layers, subcarriers, symbols, 2]

Note

The output should have 2x more subcarriers than the input.

How to Execute the Script

1. Copy the model definition in PyTorch or TensorFlow to this script. This example uses a PyTorch model; refer to
the Notes section below for more information on using TensorFlow.

2. Load the trained model weights.
3. Select the desired input type:
• “<use_tvs> = True”: Test Vectors for cuPHY validation
• “<use_tvs> = False”: A channel generated with Sionna and estimated with PyAerial
• Optionally, any other input and output can be saved and used with the model as long as the dimensions match the

input and output.
4. Provide the model as an argument to the check_results() function.

Note

This function should not be modified because it emulates the steps in cuPHY.

5. Compare the MSE of the model provided with the MSE of LS. This should give an indication of whether the model
is working properly. The results for the example model (depending on the input type) are the following:

a. Using TVs, the MSEs obtained for LS and the model are as follows:
• LS = -7.6 dB; ML: -14.1 dB (tv = 7201)
• LS = -7.6 dB; ML: -13.4 dB (tv = 7217)

b. Using Sionna channels, the MSEs obtained are as follows:
• LS = -20.0 dB; ML = -24.8 dB

6. Later in the script, the model should be exported to ONNX and evaluated again. Results should match the previous
numbers.

7. The model is compiled to TrT using polygraphy. The results should again match the ones previously obtained.

1.7. cuBB Developer Guide 429



Aerial CUDA-Accelerated RAN, Release 25-1

Notes

• This script can be executed end-to-end without modification, and the provided values should appear in the respective
steps.

• Any pre- or post-processing applied to the input data should be included inside the model. This limits the operations
allowed in the model.

– Refer to the PyTorch ONNX documentation for supported operations when exporting to ONNX with Py-
Torch.

– Refer to the TensorFlow ONNX documentation for supported operations when exporting to ONNX with
TensorFlow.

∗ Note further that “The current implementation only works for graphs that do not contain any control flow
or embedding related ops,” as described in the TensorFlow GitHub documentation.

– Refer to the ONNX-TensorRT documentation for supported operations when compiling to TRT.
– If the model cannot be adjusted to work without a given forbidden operation, then a possible workaround is

to use a plugin (e.g. a TensorRT DFT plugin).
• The batch dimension is used to stack the estimations of multiple users.
• If you’re using a TensorFlow model instead of PyTorch, you will need to determine how to export the model to

ONNX. One option is tf2onnx, which is available in PyPI.
• MD5 sums:

– channel_estimator.onnx: 64af9b805c9c7e7d831a93dbb4a646ad (repeatable)
– channel_estimator_fp16-True_tf32-True.engine: 2170dd84c2e64470b3f221ca6a310ef3

(not repeatable)
• Dependencies information:

– mamba install numpy pytorch torchvision torchaudio pytorch-cuda=12.4 -c
pytorch -c nvidia

– pip install ipykernel polygraphy onnx nvidia-pyindex nvidia-tensorrt

– Ensure that the container version of TRT matches the Python version: pip install tensorrt==10.3
onnx2torch

1.7.6 References

[1] 3GPP, “NR; Physical channels and modulation,” 3GPP TR 38.211, v15.4.0.
[2] 3GPP, “NR; Multiplexing and channel coding,” 3GPP TR 38.212, v15.4.0.
[3] 3GPP, “NR; Physical layer procedures for control,” 3GPP TR 38.213, v15.4.0.
[4] 3GPP, “NR; Physical layer procedures for data,” 3GPP TR 38.214, v15.4.0.
[5] 3GPP, “NR; Physical layer measurements,” 3GPP TR 38.215, v15.4.0.
[6] Small cell forum, “SCF 222 5G FAPI PHY API,” v10.02, March 2020.
[7] NVIDIA GPU Direct RDMA, https://developer.nvidia.com/gpudirect.
[8] O-RAN Working Group 4 (Open Fronthaul Interfaces WG), Control, User and Synchronization Plane Specification,
O-RAN.WG4.CUS.0-v07.02.

430 Chapter 1. Aerial cuBB

https://pytorch.org/docs/stable/onnx.html
https://onnxruntime.ai/docs/tutorials/tf-get-started.html
https://docs.nvidia.com/deeplearning/tensorrt/quick-start-guide/index.html#onnx-export
https://github.com/Alexey-Kamenev/tensorrt-dft-plugins
https://developer.nvidia.com/gpudirect


Aerial CUDA-Accelerated RAN, Release 25-1

[9] Jinghu Chen and M. P. C. Fossorier, “Near optimum universal belief propagation based decoding of low-density parity
check codes,” in IEEE Transactions on Communications, vol. 50, no. 3, pp. 406-414, March 2002.
[10] K. Chen, B. Li, H. Shen, J. Jin and D. Tse, “Reduce the Complexity of List Decoding of Polar Codes by Tree-
Pruning,” in IEEE Communications Letters, vol. 20, no. 2, pp. 204-207, Feb. 2016.
[11] G. Sarkis, P. Giard, A. Vardy, C. Thibeault and W. J. Gross, “Fast List Decoders for Polar Codes,” in IEEE Journal
on Selected Areas in Communications, vol. 34, no. 2, pp. 318-328, Feb. 2016.
Aerial CUDA-Accelerated RAN is a set of software defined libraries that are optimized to run 5G gNB workloads on
GPU. These libraries include cuPHY, cuMAC and pyAerial. In this section, we focus on layer-1 (L1), or physical (PHY)
layer of 5G gNB software stack as defined by 3GPP [1-5].
cuPHY is the 5G L1 library of the Aerial CUDA-Accelerated RAN. It is designed as an inline accelerator to run on
NVIDIA GPUs and it does not require any additional hardware accelerator. It is implemented according to the O-RAN
7.2 split option [8]. cuPHY library takes advantage of massively parallel GPU architecture to accelerate computationally
heavy signal processing tasks. It also makes use of fast GPU I/O interface between the NVIDIA Bluefield-3 (BF3) NIC
and GPU (GPU Direct RDMA [7]) to improve the latency.
BF3 NIC provides the fronthaul (FH) connectivity in addition to the IEEE 1588 compliant timing synchronization. The
BF3 NIC also has a built-in SyncE and eCPRI windowing functionality, which meets G.8273.2 timing requirements.
In the following, we first give an overview of cuPHY library software stack. cuPHY library consists of L1 controller
components running on the CPU and PHY layer functions running on the GPU. After providing the overview, we will go
into details of each component and explain how L1 controller components interact with each other and L2. Finally, we
will go over the PHY layer signal processing functions, which are accelerated as CUDA kernel implementations.

Fig. 19: Aerial CUDA-Accelerated Software Stack within 5G gNB DU

1.8 Glossary

Term or Abbrevia-
tion

Definition

3GPP Third Generation Partnership Project
5G NR Fifth generation new radio
Aerial Software suite that accelerates 5G RAN functions with the GPU

continues on next page

1.8. Glossary 431



Aerial CUDA-Accelerated RAN, Release 25-1

Table 45 – continued from previous page
Term or Abbrevia-
tion

Definition

CB Code Block
CORESET Control Resource Set
CSI Channel State Information
CSI-RS Channel State Information Reference Signal
cuBB CUDA GPU software libraries/tools that accelerate 5G RAN compute-intensive pro-

cessing
cuMAC CUDA-based platform for accelerating 5G/6G MAC layer scheduler functions with

NVIDIA GPUs
cuPHY CUDA 5G PHY layer software library of the cuBB
cuPHY-CP cuPHY control-plane software
CDM/FDM/TDM Code-division multiplexing, Frequency Division Multiplexing, Time-Division Multi-

plexing
CMake CMake is a software tool for configuring the makefiles for building the CUDA examples
CUDA Compute Unified Device Architecture
CX6-DX Mellanox ConnectX6-DX NIC
DCI Downlink Control Information
DL Downlink
DMRS Demodulation Reference Signal
DOCA A software framework that helps developers create applications and services on top of

the NVIDIA BlueField networking platform
DPDK Data Plane Development Kit
DU or O-DU O-RAN Distributed Unit (a logical node hosting RLC/MAC/High-PHY layers based on

a lower layer functional split.)
eAxC Extended Antenna Carrier: a data flow for a single antenna (or spatial stream) for a single

carrier in a single sector
eCPRI Enhanced Common Public Radio Interface
FAPI Functional Application Programming Interface
FH Fronthaul
GDR GPUDirect RDMA
H2D Host-to-device memory
HDF5 A data file format used for storing test vectors. The HDF5 software library provides

functions for reading and writing the test vector files
LDPC Low-Density Parity Check Code
MIB Master Information Block
MU-MIMO Multi-User Multiple Input - Multiple Output
NIC Network interface card
O-RAN Open Radio Access Network
PBCH Physical Broadcast Channel
PDCCH Physical Downlink Control Channel
PDSCH Physical Downlink Shared Channel
PUCCH Physical Uplink Control Channel
PRACH Physical Random Access Channel
PRB Physical Resource Block
PUSCH Physical Uplink Shared Channel
RAN Radio Access Network
RE Resource Element
REG Resource Element Group
RB Resource Block
RM Reed-Muller

continues on next page

432 Chapter 1. Aerial cuBB

https://cmake.org/


Aerial CUDA-Accelerated RAN, Release 25-1

Table 45 – continued from previous page
Term or Abbrevia-
tion

Definition

RU or O-RU O-RAN Radio Unit: a logical node hosting Low-PHY layer and RF processing based on
a lower layer functional split

SCF Small Cell Forum
SIB/SIB1 System Information Block
SSB Synchronization Signal Block
SU-MIMO Single-User Multiple Input - Multiple Output
SyncE Synchronous Ethernet: An ITU-T standard to provide a synchronization signal to net-

work resources
TB Transport Block
TTI Transmission Time Interval
TV Test Vector
UCI Uplink Control Information
UE-EM UE Emulator Test Equipment
UL Uplink

1.8. Glossary 433



Aerial CUDA-Accelerated RAN, Release 25-1

434 Chapter 1. Aerial cuBB



CHAPTER

TWO

AERIAL CUMAC

2.1 Getting Started with cuMAC

All cuMAC data structures and scheduler module classes are included in the name space cumac
The header files api.h and cumac.h should be included in the application program of cuMAC

2.1.1 Data Flow

A diagram of cuMAC data flow for both CPU MAC scheduler host and GPU execution is given in follwoing figure:

Fig. 1: cuMAC multi-cell scheduler execution data flow

Each cuMAC scheduler module (UE selection, PRB allocation, layer selection, MCS selection, etc.) is implemented as a
C++ class, consisting of constructors with different combinations of input arguments, a destructor, a setup () function to
set up the CUDA kernels in each TTI and a run () function to execute the scheduling algorithms in each TTI.

435



Aerial CUDA-Accelerated RAN, Release 25-1

All parameters and data buffers required by the cuMAC scheduler modules are wrapped into three cuMAC API data
structures, including cumacCellGrpUeStatus, cumacCellGrpPrms, and cumacSchdSol. Each of these data structures con-
tains a number of constant parameters, and a number of data buffers whose memories are allocated on GPU.
In the initialization phase, the objects of all cuMAC scheduler modules are created using their corresponding constructors.
Meanwhile, the above-mentioned three API data structures are also created, with their constant parameters being properly
set up and data buffers getting memory allocations on GPU.
In the per-TTI execution, the CPU MAC scheduler host first prepares all the required data in GPU memory for the three
API data structures. Then the setup () function of each cuMAC scheduler module is called 1) to pass the required constant
parameters and addresses of the data buffer GPU memories from the API data structures to the scheduler module objects,
and 2) to complete the internal configuration of the CUDA kernels. Next, the run () function of each schedule module
is called to execute the scheduling algorithms and obtain the scheduling solutions. Finally, the CPU MAC host transfers
the computed scheduling solutions from GPU to CPU and applies them in the system.

2.1.2 Quick Setup

Prerequisites

The following instructions assume the system configuration and Aerial cuBB installation are done. If not, see the cuBB
Install Guide to complete the installation or upgrade process.
After powering on the system, use the following command to verify that the GPU is in the correct state:

# Verify GPU is detected and CUDA driver version matches the release manifest.

$ nvidia-smi

Set Up the Host Environment

Set up the environment by following the cuBB Installation Guide for the server type you are using.

Launch the cuBB Container

Use the following command to launch the cuBB container:

$ sudo docker exec -it cuBB /bin/bash

Build Aerial cuMAC in the Container

Build cuMAC in the cuBB container using the following commands:

$ cd /opt/nvidia/cuBB/cuMAC
$ cmake -Bbuild -GNinja
$ cmake --build build

436 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

2.2 cuMAC API Reference

2.2.1 cuMAC API Data Structures

CumacCellGrpPrms

API data structure containing cell group information of the coordinated cells.

Field Type Description
nUe uint16_t Total number of selected UEs in a TTI of all coordinated cells.

Value: 0 -> 65535
nActiveUe uint16_t Total number of active UEs of all coordinated cells.

Value: 0 -> 65535
numUeSchd-
PerCellTTI

uint8_t Number of UEs selected/scheduled per TTI per cell.
Value: 0 -> 255

nCell uint16_t Total number of coordinated cells.
Value: 0 -> 65535

nPrbGrp uint16_t Total number of PRGs per cell.
Value: 0 -> 65535

nBsAnt uint8_t Number of BS antenna ports.
Value: 0 -> 255

nUeAnt uint8_t Number of UE antenna ports.
Value: 0 -> 255

W float Frequency bandwidth (Hz) of a PRG.
Value: 12 * subcarrier spacing * number of PRBs per PRG

sigmaSqrd float Noise variance.
Value: noise variance value in watts

precod-
ingScheme

uint8_t Precoder type.
Value:
0: No precoding
1: SVD precoder

receiver-
Scheme

uint8_t Receiver/equalizer type.
Value: Currently only support 1: MMSE-IRC receiver

allocType uint8_t PRG allocation type.
Value:
0: non-consecutive type-0 allocation
1: consecutive type-1 allocation

betaCoeff float Coefficient for adjusting the cell-edge UEs’ performance in multi-cell
scheduling
Value: non-negative real number. The default value is 1.0, representing
the classic proportional-fairness scheduling.

sinValThr float Singular value threshold for layer selection.
Value: in (0, 1). Default value is 0.1

prioWeight-
Step

uint16_t For priority-weight based scheduling algorithm. Step size for UE priority
weight increment per TTI if UE does not get scheduled.
Value: default 100

cellId uint16_t[nCell] IDs of coordinated cells.
One dimensional array.
Value of each element:
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
cellId[cIdx] is the ID of the cIdx-th coordinated cell

continues on next page

2.2. cuMAC API Reference 437



Aerial CUDA-Accelerated RAN, Release 25-1

Table 1 – continued from previous page
Field Type Description
cellAssoc uint8_t[nCell* nUe] Cell-UE association indication for all the selected UEs of the coordinated

cells.
One dimensional array.
Value of each element:
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the coordinated
cells. cellAssoc[cIdx*nUe + uIdx] == 1 means the uIdx-th selected UE
is associated with cIdx-th coordinated cell, 0 otherwise.

cellAsso-
cActUe

uint8_t[nCell* nAc-
tiveUe]

Cell-UE association indication for all active UEs of the coordinated cells.
One dimensional array.
Value of each element:
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
Denote uIdx = 0, 1, …, nActiveUe-1 as the global active UE index in the
coordinated cells.
cellAssocActUe[cIdx*nUe + uIdx] == 1 means the uIdx-th active UE is
associated with cIdx-th coordinated cell, 0 otherwise.

prgMsk uint8_t[nCell] [nPrb-
Grp]

Per-cell bit map for the availability of each PRG for allocation
Two-dimensional array.
Value of each element:
Denote cIdx = 0, 1, … nCell-1 as the coordinated cell index
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index
prgMsk[cIdx][prgIdx] is the availability indicator for the prgIdx-th PRG
in the cIdx-th coordinated cell
0 - unavailable, 1 - available

postEqSinr float[nActiveUe*
nPrbGrp*nUeAnt]

Array of the per-PRG per-layer post-equalizer SINRs of all active UEs in
the coordinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global active UE index in the
coordinated cells.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
postEqSinr[uIdx*nPrbGrp* nUeAnt + prgIdx*nUeAnt + layerIdx] is the
uIdx-th active UE’s post-equalizer SINR on the prgIdx-th PRG and the
layerIdx-th layer.

wbSinr float[nActiveUe*
nUeAnt]

Array of wideband per-layer post-equalizer SINRs of all active UEs in the
coordinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global active UE index in the
coordinated cells.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
wbSinr[uIdx*nUeAnt + layerIdx] is the uIdx-th active UE’s wideband
post-equalizer SINR on the layerIdx-th layer.

continues on next page

438 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Table 1 – continued from previous page
Field Type Description
FP32:
estH_fr
or
FP16:
estH_fr_half

FP32:
cuComplex[nCell]
[nUe*nPrbGrp*
nBsAnt*nUeAnt]
Or
FP16:
__nv_bfloat162
[nCell][nUe* nPrb-
Grp*nBsAnt*
nUeAnt]

Per-cell array of the narrow-band SRS channel estimate coefficients for
the selected UEs in the coordinated cells.
Two-dimensional array: the 1st dimension is for cells, and the 2nd dimen-
sion is for UEs, PRGs, and antenna ports.
Value of each element:
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the coordinated
cells.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote bsAntIdx = 0, 1, …, nBsAnt-1 as the BS antenna port index
Denote ueAntIdx = 0, 1, …, nUeAnt as the UE antenna port index
estH_fr[cIdx][uIdx* nPrbGrp*nBsAnt*nUeAnt + prgIdx* nB-
sAnt*nUeAnt + bsAntIdx*nUeAnt + ueAntIdx] is the complex
channel coefficient between the cIdx-th cell and the uIdx-th selected UE
in the cell group on the prgIdx-th PRG, the bsAntIdx-th BS antenna port
and the ueAntIdx-th UE antenna port.
(The above applies to the FP16 version as well)

prdMat cuComplex[nUe*
nPrbGrp* nBsAnt*
nBsAnt]

Array of the precoder/beamforming weights for the selected UEs in the
coordinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the coordinated
cells.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote inPortIdx = 0, 1, …, nBsAnt-1 as the precoder input port index
Denote outPortIdx = 0, 1, …, nBsAnt-1 as the precoder output port index
prdMat[uIdx*nPrbGrp* nBsAnt*nBsAnt + prgIdx* nBsAnt*nBsAnt +
inPortIdx *nBsAnt + outPortIdx] is the precoder/beamforming weight of
the uIdx-th selected UE in the coordinated cells on the prgIdx-th PRG and
between the inPortIdx-th input port and the outPortIdx-th output port.

detMat cuComplex[nUe*
nPrbGrp* nUeAnt*
nUeAnt]

Array of the detector/beamforming weights for the selected UEs in the
coordinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the coordinated
cells.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote inPortIdx = 0, 1, …, nUeAnt-1 as the detector input port index.
Denote outPortIdx = 0, 1, …, nUeAnt-1 as the detector output port index.
detMat[uIdx*nPrbGrp*nUeAnt*nUeAnt + prgIdx*nUeAnt*nUeAnt +
inPortIdx*nUeAnt + outPortIdx] is the detector weight of the uIdx-th se-
lected UE on the prgIdx-th PRG and between the inPortIdx-th input port
and the outPortIdx-th output port.

continues on next page

2.2. cuMAC API Reference 439



Aerial CUDA-Accelerated RAN, Release 25-1

Table 1 – continued from previous page
Field Type Description
sinVal float[nUe* nPrb-

Grp*nUeAnt]
Array of the per-UE, per-PRG, per-layer singular values obtained from
SVD.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the 0-based UE index for the selected
UEs in the coordinated cells.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
sinVal[uIdx*nPrbGrp*nUeAnt + prgIdx*nUeAnt + layerIdx] is the UE
uIdx’s layerIdx-th largest singular value on PRG prgIdx
For each UE and on each PRG, the singular values are stored in descend-
ing order.

cumacCellGrpUeStatus

API data structure containing the per-UE information of the coordinated cell group.

Field Type Description
avgRates float[nUe] Array of the long-term average data rates of the selected UEs in

the coordinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the
coordinated cells.
avgRates[uIdx] is the long-term average throughput of the uIdx-th
selected UE in the coordinated cells.

avgRate-
sActUe

float[nActiveUe] Array of the long-term average data rates of all active UEs in the
coordinated cells
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global active UE index
in the coordinated cells.
avgRatesActUe[uIdx] is the long-term average throughput of the
uIdx-th active UE in the coordinated cells.

prioWeigh-
tActUe

uint16_t [nActiveUe] For priority-based UE selection. Priority weights of all active UEs
in the coordinated cells
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global UE index for
all active UEs in the coordinated cells.
prioWeightActUe[uIdx] is the uIdx-th active UE’s priority weight.
0xFFFF indicates an invalid element.

continues on next page

440 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Table 2 – continued from previous page
Field Type Description
tbErrLast int8_t[nUe] Array of the selected UEs’ transport block (TB) decoding error

indicators of the last transmissions
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the
coordinated cells.
tbErrLast[uIdx] is the uIdx-th selected UE’s TB decoding error
indicator of the last transmission.
-1 - the last transmission is not a new transmission (is a re-
transmission)
0 - decoded correctly
1 - decoding error
** Note that if the last transmission of a UE is not a new trans-
mission, tbErrLast of that UE should be set to -1.

tbErrLas-
tActUe

int8_t[nActiveUe] TB decoding error indicators of all active UEs in the coordinated
cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global UE index for
all active UEs in the coordinated cells.
tbErrLastActUe[uIdx] is the uIdx-th active UE’s TB decoding er-
ror indicator:
-1 - the last transmission is not a new transmission (is a re-
transmission)
0 - decoded correctly
1 - decoding error
** Note that if the last transmission of a UE is not a new trans-
mission, tbErrLastActUe of that UE should be set to -1.

new-
DataActUe

int8_t[nActiveUe] Indicators of initial transmission/retransmission for all active UEs.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the global UE index for
all active UEs in the coordinated cells.
newDataActUe[uIdx] is the indicator of initial transmis-
sion/retransmission for the uIdx-th active UE in the coordinated
cells
0 – retransmission
1 - new data/initial transmission
-1 indicates an invalid element

allocSol-
LastTx

For type-0 PRG allocation:
int16 _t[nCell*nPrbGrp]
For type-1 PRG allocation:
int16_t[2*nUe]

The PRG allocation solution of the last transmission of the se-
lected/scheduled UEs in the coordinated cells
Format referring to the description for allocSol in the cumacSchd-
Sol structure

mcsSelSol-
LastTx

int16_t[nUe] MCS selection solution of the last transmission of the se-
lected/scheduled UEs in the coordinated cells.
Format referring to the description for mcsSelSol
in the cumacSchdSol structure

continues on next page

2.2. cuMAC API Reference 441



Aerial CUDA-Accelerated RAN, Release 25-1

Table 2 – continued from previous page
Field Type Description
layerSelSol-
LastTx

uint8_t[nUe] Layer selection solution of the last transmission of the se-
lected/scheduled UEs in the coordinated cells.
Format referring to the description for layerSelSol in the cumac-
SchdSol structure

cumacSchdSol

API data structure containing the scheduling solutions.

Field Type Description
setSchdUePer-
CellTTI

uint16_t[nCell* nu-
mUeSchdPerCellTTI]

Set of global IDs of the selected UEs per cell per TTI.
One dimensional array.
Value of each element:
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
Denote i = 0, 1, …, numUeSchdPerCellTTI-1 as the i-th selected
UE in a given cell.
setSchdUePerCel lTTI[cIdx*numUeSchdPerCellTTI + i] is
within {0, 1, …, nActiveUe-1} and represents the global active
UE index of the i-th selected UE in the cIdx-th coordinated cell.

allocSol For type-0 PRG allocation:
int1 6_t[nCell*nPrbGrp]
For type-1 PRG allocation:
int16_t[2*nUe]

PRB group allocation solution for the selected UEs per TTI in the
coordinated cells
One dimensional array.
Value of each element:
For type-0 PRG allocation:
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote cIdx = 0, 1, …, nCell-1 as the coordinated cell index.
allocSol[prgIdx*nCell + cIdx] indicates the selected UE index (0,
1, …, nUe-1) that the prgIdx-th PRG is allocated to in the cIdx-th
coordinated cell.
-1 indicates that a given PRG in a cell is not allocated to any UE.
For type-1 PRG allocation:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the
coordinated cells.
allocSol[2*uIdx] is the starting PRG index of the uIdx-th selected
UE.
allocSol[2*uIdx + 1] is the ending PRG index of the uIdx-th se-
lected UE plus one.
-1 indicates that a given UE is not being allocated to any PRG.

pfMetricArr float[array_size]
array_size = nCell *
the minimum power of 2 that
is no less than nPrbGrp*n
umUeSchdPerCellTTI

Array to store the computed PF metrics per UE and per PRG.
Only used for type-1 PRG allocation.
One dimensional array.
GPU memory allocated for CUDA kernel execution. Not used
externally.
Memory should be allocated when initializing the cuMAC API.
Value of each element: floating-type value of a computed PF met-
ric.

continues on next page

442 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Table 3 – continued from previous page
Field Type Description
pfIdArr uint16_t [array_size]

array_size = nCell *
the minimum power of 2 that
is no less than nPrbGrp*n
umUeSchdPerCellTTI

Array to indicate the PRG and UE indices of the sorted PF metrics.
Only used for type-1 PRG allocation.
One dimensional array.
GPU memory allocated for CUDA kernel execution. Not used
externally.
Memory should be allocated when initializing the cuMAC API.
Value of each element: 0 -> 65535

mcsSelSol int16_t[nUe] MCS selection solution for the selected UEs per TTI in the coor-
dinated cells
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the
coordinated cells.
mcsSelSol[uIdx] indicates the MCS level for the uIdx-th selected
UE in the coordinated cells.
Range of each element:
0, 1, …, 27 (Currently only support Table 5.1.3.1-2: MCS index
table 2, 3GPP TS 38.214).
-1 indicates an element is invalid.

layerSelSol uint8_t[nUe] Layer selection solution for the selected UEs per TTI in the coor-
dinated cells.
One dimensional array.
Value of each element:
Denote uIdx = 0, 1, …, nUe-1 as the selected UE index in the
coordinated cells.
layerSelSol[uIdx] indicates the number of layers selected for the
uIdx-th selected UE in the coordinated cells.
Range of each element: 0, 1, …, nUeAnt-1
The selected layers have singular values descending from the
largest one.

2.2.2 cuMAC Scheduler Module API

Multi-cell proportional-fairness UE down-selection

Wrapper class and public member functions:

class cumac::multiCellUeSelection

public:

// constructor
multiCellUeSelection();

// destructor
~multiCellUeSelection();

// setup() function for per-TTI algorithm execution
void setup(cumac::cumacCellGrpUeStatus\* cellGrpUeStatus,

cumac::cumacSchdSol\* schdSol,

(continues on next page)

2.2. cuMAC API Reference 443



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
cumac::cumacCellGrpPrms\* cellGrpPrms,
uint8_t in_enableHarq,
cudaStream_t strm);

// requires external synchronization
// set in_enableHarq to 1 if HARQ is enabled; 0 otherwise

// run() function for per-TTI algorithm execution
void run(cudaStream_t strm);
// requires external synchronization

// parameter/data buffer logging function for debugging purpose
void debugLog();
// for debugging only, printing out dynamic descriptor parameters

Multi-cell proportional-fairness PRB scheduler

Wrapper class and public member functions:

class cumac::multiCellScheduler

public:
// constructor
multiCellScheduler();

// destructor
~multiCellScheduler();

// setup() function for per-TTI algorithm execution
void setup(cumac::cumacCellGrpUeStatus\* cellGrpUeStatus,

cumac::cumacSchdSol\* schdSol,
cumac::cumacCellGrpPrms\* cellGrpPrms,
uint8_t in_DL,
uint8_t in_columnMajor,
uint8_t in_halfPrecision,
uint8_t in_lightWeight,
cudaStream_t strm);

// set in_DL to 1 if setup for DL scheduling; 0 otherwise
// in_columnMajor: 0 - row-major channel access, 1 - column-major channel access
// in_halfPrecision: 0 - call FP32 floating type kernel, 1 - call FP16 (bfloat162)␣
↪→half-precision kernel
// in_lightWeight: 0 - call heavy-weight kernel, 1 - call light-weight kernel
// in_enableHarq: 0 - HARQ disabled, 1 - HARQ enabled
// requires external synchronization

// run() function for per-TTI algorithm execution
void run(cudaStream_t strm);
// requires external synchronization

// parameter/data buffer logging function for debugging purpose
void debugLog();
// for debugging only, printing out dynamic descriptor parameters

444 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Multi-cell layer selection

Wrapper class and public member functions:

class cumac::multiCellLayerSel

public:
// constructor
multiCellLayerSel();

// desctructor
~multiCellLayerSel();

// setup() function for per-TTI algorithm execution
void setup(cumacCellGrpUeStatus\* cellGrpUeStatus,

cumacSchdSol\* schdSol,
cumacCellGrpPrms\* cellGrpPrms,
uint8_t in_enableHarq,
cudaStream_t strm);

// in_enableHarq: 0 - HARQ disabled, 1 - HARQ enabled
// requires external synchronization

// run() function for per-TTI algorithm execution
void run(cudaStream_t strm);
// requires external synchronization

// parameter/data buffer logging function for debugging purpose
void debugLog();
// for debugging only, printing out dynamic descriptor parameters

Multi-cell MCS selection + outer-loop link adaptation (OLLA)

Wrapper class and public member functions:

class cumac::mcsSelectionLUT

public:
// constructor
mcsSelectionLUT(uint16_t nActiveUe, cudaStream_t strm);
// requires external synchronization
// uint16_t nActiveUe is the (maximum) total number of active UEs in all
coordinated cells

// destructor
~mcsSelectionLUT();

// setup() function for per-TTI algorithm execution
void setup(cumacCellGrpUeStatus\* cellGrpUeStatus,

cumacSchdSol\* schdSol,
cumacCellGrpPrms\* cellGrpPrms,
uint8_t in_DL,
uint8_t in_baseline,
cudaStream_t strm);

// in_DL: 0 - UL, 1 - DL
// in_baseline: 0 - not using baseline algorithm, 1 - using baseline
algorithm

(continues on next page)

2.2. cuMAC API Reference 445



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
// requires external synchronization

// run() function for per-TTI algorithm execution
void run(cudaStream_t strm);

// parameter/data buffer logging function for debugging purpose
void debugLog();
// for debugging only, printing out dynamic descriptor parameters

Outer-loop link adaptation (OLLA) data structure:

// structure containing outer-loop link adaptation algorithm parameters
struct ollaParam {

float delta; // offset to SINR estimation
float delta_ini; // initial value for delta parameter
float delta_up; // step size for increasing delta parameter
float delta_down; // step size for decreasing delta parameter

};

2.3 Examples

2.3.1 4T4R Scheduler Performance Test

cuMAC contains a testbench (/opt/nvidia/cuBB/cuMAC/examples/multiCellSchedulerUeSelection)
for performing simplified system-level simulations to evaluate the performance of the 4T4R scheduler algorithm im-
plementations. For each simulation, the testbench runs for a given number of contiguous time slots, and in each slot
executes scheduling algorithms sequentially in the following order: UE selection > PRG allocation > layer selection >
MCS selection. The parameter setup for the simulation is configured using the file /opt/nvidia/cuBB/cuMAC/
examples/parameters.h. Parameters like the simulation duration numSimChnRlz, the number of cells
numCellConst, and the number of gNB/UE antennas nBsAntConst / nUeAntConst, among others, can
be adjusted in this file to meet the specific simulation requirements. KPIs such as the sum cell throughput, per-UE
throughput, and proportional fairness metrics can be obtained from the simulations for analyzing the scheduler algorithms’
performance. This testbench supports running different 4T4R scheduler algorithms on GPU and CPU, e.g., a multi-cell
scheduler running on GPU versus a single-cell scheduler running on CPU. It enables the comparison of different
algorithms’ performance through a single simulation run. An example figure with the cell sum throughput curves of the
multi-cell and single-cell schedulers is provided below:
This testbench can be also used to validate the GPU/CUDA algorithm implementations against the CPU C++ versions
of the same algorithm. This can be done by configuring the same scheduler algorithm for both GPU and CPU in the
simulation. At the end of the simulation, the gaps between the GPU and CPU performance curves are evaluated. The
testbench returns 0 (success) if the performance curve gaps are less than the tolerance threshold; otherwise, it returns 1
(failure).
After building cuMAC, use the following command to check input arguments of the testbench:

./opt/nvidia/cuBB/cuMAC/build/examples/multiCellSchedulerUeSelection/
↪→multiCellSchedulerUeSelection -h

The testbench currently supports two different channel modeling approaches in the system simulations, including a time-
correlated Rayleigh fading model and a GPU-accelerated TDL channel model. Use the input argument -f 0 or -f 1
to specify the desired channel model: -f 0 for Rayleigh fading and -f 1 for the TDL channel model.
To run system simulation with the DL/UL scheduler pipeline:

446 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 2: Cell sum throughput curves comparison: multi-cell scheduler vs. single-cell scheduler

2.3. Examples 447



Aerial CUDA-Accelerated RAN, Release 25-1

• Configure simulation parameters in the /opt/nvidia/cuBB/cuMAC/examples/parameters.h file.
• Build cuMAC under /opt/nvidia/cuBB/cuMAC.
• Run simulation with the DL/UL scheduler pipeline:

./opt/nvidia/cuBB/cuMAC/build/examples/multiCellSchedulerUeSelection/
↪→multiCellSchedulerUeSelection -d [0 or 1 for DL/UL] -f [0 or 1 for channel␣
↪→model] -b [0 or 1 for CPU algorithm choice] -p [0 or 1 for FP32/FP16 on GPU]

Passing criteria:
Performance curves achieved by GPU and CPU scheduler implementations should match: testbench returns 0 (PASS) or
1 (FAIL)
Two types of performance curves are considered:

• Sum throughput of all cells
• CDF of per-UE throughput

2.3.2 cuMAC Test Vector Generation

cuMAC supports the generation of HDF5 test vectors using the multiCellSchedulerUeSelection sys-
tem simulation testbench. Each test vector contains parameters and data arrays defined in the cuMAC API struc-
tures (/opt/nvidia/cuBB/cuMAC/src/api.h): cumacCellGrpUeStatus, cumacCellGrpPrms, and
cumacSchdSol. When a simulation with the testbench is completed (after a configured number of time slots), a
HDF5 test vector file is created, with data collected from the last simulated slot.
A number of pre-generated test vectors are located in the /opt/nvidia/cuBB/cuMAC/testVectors directory.
To enable the test vector generation, use the input argument -t 1 with the multiCellSchedulerUeSelection
testbench along with other input arguments.
For example:

• Generate a DL test vector:

./opt/nvidia/cuBB/cuMAC/build/examples/multiCellSchedulerUeSelection/
↪→multiCellSchedulerUeSelection -t 1

• Generate a UL test vector:

./opt/nvidia/cuBB/cuMAC/build/examples/multiCellSchedulerUeSelection/
↪→multiCellSchedulerUeSelection -d 0 -t 1

2.3.3 Test Vector Loading Test

cuMAC has a testbench (/opt/nvidia/cuBB/cuMAC/examples/tvLoadingTest) to load pre-generated
HDF5 test vectors and call the DL/UL scheduler modules/pipeline to compute scheduling solutions based on the in-
put data contained in the test vector. This testbench can be used to verify the implementation correctness of GPU/CUDA
scheduler algorithms by comparing the solutions computed from both GPU and CPU versions of the same algorithms.
Basically, given the same input data from a test vector, GPU and CPU implementations of the same scheduler algorithms
should produce the same output solution.
Two types of tests are supported:

• Per DL/UL scheduler module test: UE selection, PRG allocation, layer selection, and MCS selection

448 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

• Complete DL/UL scheduler pipeline test
After building cumac, use the following command to check input arguments of the testbench:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -h

• Per scheduler module tests:
– DL UE selection:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 1 -m 01000

– DL PRG allocation:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 1 -m 00100

– DL layer selection:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 1 -m 00010

– DL MCS selection:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 1 -m 00001

– UL scheduler modules can be tested by setting input argument: -d 0

• Complete DL/UL scheduler pipeline tests
– DL/UL scheduler modules executed sequentially: UE selection > PRG allocation > layer selection > MCS

selection
– DL scheduler pipeline:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 1 -m 01111

– UL scheduler pipeline:

./opt/nvidia/cuBB/cuMAC/build/examples/tvLoadingTest/tvLoadingTest -i [path␣
↪→to TV] -g 2 -d 0 -m 01111

Passing criteria:
Solutions computed by CPU and GPU should match exactly: testbench returns 0 (PASS) or 1 (FAIL)

2.3.4 DRL MCS Selection Test

Aerial cuMAC introduced a new DRL-based MCS selection module that can be used as part of the 4T4R multi-cell
scheduler (to replace the basic OLLA algorithm for MCS selection). A testbench designed for testing the DRL MCS
selection module is available under /opt/nvidia/cuBB/cuMAC/examples/drlMcsSelection. Along with
the testbench, there is a pre-trained neural network for MCS selection inference saved in a model.onnx file under
/opt/nvidia/cuBB/cuMAC/testVectors/trtEngine and a number of pre-generated HDF5 test vectors
under /opt/nvidia/cuBB/cuMAC/testVectors/mlSim.

2.3. Examples 449



Aerial CUDA-Accelerated RAN, Release 25-1

To check all supported input arguments to this testbench, use the following command: ./opt/nvidia/cuBB/
cuMAC/build/examples/drlMcsSelection/drlMcsSelection -h.
For a test run of the testbench using the test vectors, use the following command: ./opt/nvidia/cuBB/
cuMAC/build/examples/drlMcsSelection/drlMcsSelection -i [path to /opt/nvidia/
cuBB/cuMAC/testVectors/mlSim] -m [path to /opt/nvidia/cuBB/cuMAC/testVectors/
trtEngine/model.onnx] -g [GPU device index].
If the test passes, the following messages will be printed at the end of the program:

...

Test based on the provided HDF5 test vectors

=========================================
Event queue lengths: (UE 0, 49) (UE 1, 49) (UE 2, 49) (UE 3, 49) (UE 4, 49) (UE 5, 49)

=========================================
Start per time slot processing:
=========================================
Testing complete
PASSED!

For a test run without test vectors (using the default test scenario setup), use the following command: ./opt/
nvidia/cuBB/cuMAC/build/examples/drlMcsSelection/drlMcsSelection -m [path to /
opt/nvidia/cuBB/cuMAC/testVectors/trtEngine/model.onnx] -g [GPU device index].
If the test passes, the following messages will be printed at the end of the program:

...

=========================================
Event queue lengths: (UE 0, 61) (UE 1, 61) (UE 2, 61) (UE 3, 61) (UE 4, 61) (UE 5, 61)

=========================================
Start per time slot processing:
Slot #0 - selected MCS: (UE 0, 0) (UE 1, 0) (UE 2, 0) (UE 3, 0) (UE 4, 0) (UE 5, 0)
Slot #27 - selected MCS: (UE 0, 0) (UE 1, 0) (UE 2, 0) (UE 3, 0) (UE 4, 0) (UE 5, 0)
Slot #56 - selected MCS: (UE 0, 3) (UE 1, 0) (UE 2, 1) (UE 3, 2) (UE 4, 3) (UE 5, 0)

...
=========================================
Testing complete
PASSED!

2.3.5 64T64R MU-MIMO Scheduler Test

Aerial cuMAC 25-1 Release includes an initial CUDA-based 64T64R MU-MIMO scheduler implementation. A
testbench is available under /opt/nvidia/cuBB/cuMAC/examples/multiCellMuMimoScheduler
for checking the computed MU-MIMO scheduling solution. Currently there is an HDF5 test vector
file TV_AODT_64TR_MUMIMO_3PC_DL_HARQ.h5 available under /opt/nvidia/cuBB/cuMAC/
testVectors/aodt that was pre-generated using the AODT platform. When the test runs, the testbench
checks if the computed solutions from the MU-MIMO scheduler modules match with the reference results saved in the
test vector.

450 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

To check all supported input arguments to this testbench, use the following command: ./opt/nvidia/cuBB/
cuMAC/build/examples/multiCellMuMimoScheduler/multiCellMuMimoScheduler -h.
For a test run of the testbench using the pre-generated test vector, follow the steps below:

• Modify the following fields in the /opt/nvidia/cuBB/cuMAC/examples/parameters.h configura-
tion file (keep default values for fields not listed below)

– gpuDeviceIdx should be set to the GPU device index on the test equipment
– numCellConst should be set to 3
– numActiveUePerCellConst should be set to 100
– nBsAntConst should be set to 64
– gpuAllocTypeConst should be set to 1
– nPrbsPerGrpConst should be set to 2
– nPrbGrpsConst should be set to 136

• Build cuMAC under /opt/nvidia/cuBB/cuMAC.
• Run the 64TR MU-MIMO scheduler test using the following command: ./opt/nvidia/cuBB/cuMAC/
build/examples/multiCellMuMimoScheduler/multiCellMuMimoScheduler -i [path
to /opt/nvidia/cuBB/cuMAC/testVectors/asim/TV_cumac_64TR_2PC_DL.h5] -a 1 -r
1.

If the test passes, you would be able to see the following prints at the end:

cuMAC 64TR MU-MIMO scheduler pipeline test: Downlink
cuMAC 64TR MU-MIMO scheduler pipeline test: Running on GPU device 2
Multi-cell scheduler, Type-1 allocate
nBsAnt X nUeAnt = 64 X 4
UE sorting setup completed
UE sorting run completed
UE grouping setup completed
UE grouping run completed
MCS selection setup completed
MCS selection run completed
sortedUeList solution check: PASS
muMimoInd solution check: PASS
setSchdUePerCellTTI solution check: PASS
allocSol solution check: PASS
layerSelSol solution check: PASS
layerSelUegSol solution check: PASS
nSCID solution check: PASS
rsrpCurrTx solution check: PASS
rsrpLastTx solution check: PASS
mcsSelSol solution check: PASS
ollaParamActUe update check: PASS
Summary - cuMAC multi-cell MU-MIMO scheduler solution check: PASS

When the testbench returns, the computed MU-MIMO scheduling solutions are saved in a result HDF5 file
TV_cumac_result_64TR_3PC_DL.h5.
To check the computed solutions, manually open the result HDF5 file using the following tools:

• To check all dataset names in the HDF5 file, use command: h5ls TV_cumac_result_64TR_3PC_DL.h5

• To open a dataset in the HDF5 file, use command: h5dump -d [dataset name]
TV_cumac_result_64TR_3PC_DL.h5

2.3. Examples 451



Aerial CUDA-Accelerated RAN, Release 25-1

The dataset names of the MU-MIMO scheduling solutions are as follows:
• UE down-selection: setSchdUePerCellTTI
• PRBG (PRB group) allocation: allocSol
• layer allocation: layerSelSol
• MCS selection: mcsSelSol
• nSCID allocation: nSCID

All input data to the MU-MIMO scheduler can be checked as well using the tool h5dump.
For detailed definitions and formats of the data fields, refer to the cuMAC API reference section.

2.4 cuMAC-CP integration guide

CUDA RAN MAC Scheduler Control Plane (cuMAC-CP) is a process which provides an interface between 5G/6G
L2 (MAC Scheduler Functions) and Aerial cuMAC library, with scheduler functions accelerated on GPU. It accepts
L2/MAC scheduling request per cell, translates to cuMAC tasks and call cuMAC lib APIs to process on GPU. After
processing is finished, it returns the scheduling results to L2/MAC by response message per cell.
Below is the cuMAC-CP architecture diagram.

cuMAC-CP has 1 receiver thread and multiple worker threads which need to be bound to dedicated CPU cores. The
thread model is as below. CPU core numbers are configurable by yaml file (24-2 release supports only 1 worker thread
per core).

452 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

The receiver thread allocates a cumac_task object and necessary data buffers for each slot. Once cuMAC-CP received
schedule request messages from L2/MAC for all cells, the receiver thread assemblies them into cell group, populates
the cumac_task object and pushes it into the lock-free task queue, then increase the semaphore to notify the worker
threads.
All worker threads wait on the same semaphore after initialization. Every time the semaphore is increased by the receiver
thread, one worker thread will get the semaphore, dequeue cuMAC task and call cuMAC lib APIs to process it. After
processing is finished, the worker thread creates per cell response messages and sends them to L2. Below is the program
flow chart.

2.4. cuMAC-CP integration guide 453



Aerial CUDA-Accelerated RAN, Release 25-1

2.4.1 cuMAC-CP API Procedures

This section gives an overview of the procedures which use the cuMAC-CP API. These procedures are split into two
groups: configuration procedures and slot procedures. Configuration procedures handle the management of the cuMAC-
CP resource initialization or re-initialization and are expected to occur infrequently. Slot procedures determine the struc-
ture of each slot and operate with a periodicity based on the sub-carrier spacing numerology, namely 125us, 250us, 500us
or 1ms periodicity.

Configuration Procedures

The following are configuration procedures supported by the cuMAC-CP API:
• Initialization

cuMAC-CP have implemented three states for each cell: IDLE, CONFIGURED and RUNNING. The status transition
of a cell can be executed by configuration procedures as shown in the figure below.

454 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

According to the above figure, the supported configuration messages for each state are listed in the table below.

Idle State Configured State Running State
CONFIG.request CONFIG.request STOP.request

START.request

Initialization procedure

The initialization procedure includes 2 steps, as illustrated in the following sequence chart:
• Each cell should send a CONFIG.request message and expect to receive a CONFIG.response message.
• Each cell should send a START.request message and expect to receive a START.response message.

2.4. cuMAC-CP integration guide 455



Aerial CUDA-Accelerated RAN, Release 25-1

Note the following:
• For each cell, START.request should be sent after receiving CONFIG.response.
• Different cells are independent from each other so message order between different cells is not mandatory.
• After receiving CONFIG.request for all cells, cuMAC-CP will calculate required memory size and allocate

GPU memory for the whole cell group. The parameters used in SLOT messages should be the same as in the
CONFIG.request.

• All cells are to be initialized before starting slot procedures. SLOT messages which are sent before all cells initial-
ized will be ignored.

456 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Termination procedure

For each cell, L2 sends STOP.request and expects to receive STOP.response. The target cell will be disabled in
cuMAC-CP.

SLOT procedures

After all slots are initialized, L2 can start sending SLOT messages. Currently there are 2 messages to send for each
cell: SCH_TTI.request and SCH_TTI.response. cuMAC-CP will wait for all enabled cells message finishing
then populate a cumac_task structure and process it. If successfully processed, cuMAC-CP will send a SCH_TTI.
response to L2 for each cell.

2.4. cuMAC-CP integration guide 457



Aerial CUDA-Accelerated RAN, Release 25-1

2.4.2 cuMAC-CP API Messages

This section provides a description of the cuMAC-CP API message formats. It defines the PHY API message header,
the message bodies and the error codes associated with the cuMAC-CP API.
The cuMAC-CP API messages include 2 kinds: configuration procedure messages and slot procedure messages. Both
kinds of messages start with the generic header as below table

Field Type Description
message_count uint8_t Number of messages included in PHY API message
handle_id uint8_t An opaque handle (purpose not defined, however, usages may include a

PHY ID or Carrier ID)
type_id uint16_t Message type ID
body_len uint32_t Length of message body (bytes)

All the message IDs are listed as below.

458 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Message Value Message Body Definition
CONFIG.request 0x02
CONFIG.response 0x03
START.request 0x04
STOP.request 0x05
STOP.response 0x06
ERROR.indication 0x07 TODO
START.response 0x08
RESERVED 0x09-0x7F
SCH_TTI.request 0x82
TTI_END 0x83
SCH_TTI.response 0x8F
TTI_ERR.indication 0x90 TODO
RESERVED 0x91-0xFF

Configuration Procedure Messages

Configuration procedure messages are followed by configuration message bodies.

CONFIG.request

The CONFIG.request message body is defined in cuMAC per cell message definition.

Field Type Description
nMaxCell uint8_t A constant integer for the maximum number of cells in the cell group.

Value: 0 -> 255
nMaxActUePerCell uint16_t A constant integer for the maximum number of active UEs per cell.

Value: 0 -> 65535
nMaxSchUePerCell uint8_t A constant integer for the maximum number of UEs that can be scheduled

per TTI per cell.
Value: 0 -> 255

nMaxPrg uint16_t A constant integer for the maximum number of PRGs for allocation in
each cell
Value: 0 -> 65535

nPrbPerPrg uint8_t A constant integer for the number of PRBs per PRG (PRB group)
Value: 0 -> 255

nMaxBsAnt uint8_t A constant integer for the maximum number of BS antenna ports.
Value: 0 -> 255

nMaxUeAnt uint8_t A constant integer for the maximum number of UE antenna ports.
Value: 0 -> 255

scSpacing uint32_t Subcarrier spacing of the carrier.
Value: 15000, 30000, 60000, 120000 (Hz)

allocType uint8_t Indicator for type-0 or type-1 PRG allocation.
Value:
0: type-0 allocation
1: type-1 allocation

continues on next page

2.4. cuMAC-CP integration guide 459



Aerial CUDA-Accelerated RAN, Release 25-1

Table 5 – continued from previous page
Field Type Description
precoderType uint8_t Indicator for the precoder type.

Value:
0: No precoding
1: SVD precoding

receiverType uint8_t Indicator for the receiver type.
Value:
0: MMSE receiver
1: MMSE-IRC receiver

colMajChanAccess uint8_t Indicator for whether the estimated narrow-band SRS channel matrices
are stored in column-major order or in row-major order.
Value:
0: row-major
1: column-major

betaCoeff float Coefficient for adjusting the cell-edge UEs’ performance in multi-cell
scheduling.
Value: non-negative real number. The default value is 1.0, representing
pure proportional-fairness scheduling.

sinValThr float Singular value threshold for layer selection.
Value: in (0, 1). Default value is 0.1

corrThr float Channel vector correlation value threshold for layer selection.
Value: in (0, 1). Default value is 0.5

prioWeightStep uint16_t Step size for UE priority weight increment per TTI if UE does not get
scheduled. For priority-based UE selection.
Value: 0 -> 65535. Default is 100

CONFIG.response

The message body is as below.

Field Type Description
error_code uint8_t 0: no error. Other: TBD

START.request

The message body is as below.

Field Type Description
start_param uint8_t Reserved, not used yet.

460 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

START.response

The message body is as below.

Field Type Description
error_code uint8_t 0: no error. Other: TBD

Slot procedure messages

Slot procedures have an additional SFN/SLOT header as below table, then followed by slot message bodies.

Name Type Description
sfn uint16_t SFN number
slot uint16_t SLOT number

SCH_TTI.request

Field Type Description
taskBitMask uint32_t Indicate which cuMAC tasks to be scheduled. Each bit represents 1 task

type:
0x01: multiCellUeSelection
0x02: multiCellScheduler
0x04: multiCellLayerSel
0x08: mcsSelectionLUT
Value: 0x1, 0x3, 0x7, 0xF

cellID uint16_t Cell ID.
Value: 0 -> 65535

ULDLSch uint8_t Indication for UL/DL scheduling.
Value:
0: UL scheduling
1: DL scheduling

nActiveUe uint16_t Total number of active UEs in the cell.
Value: 0 -> 65535

nSrsUe uint16_t The number of UEs in the cell that have refreshed SRS channel estimates.
Value: 0 -> 65535

nPrbGrp uint16_t The number of PRGs that can be allocated for the current TTI, excluding
the PRGs reserved for HARQ re-transmissions.
Value: 0 -> nMaxPrg

nBsAnt uint8_t Number of BS antenna ports.
Value: 0 -> nMaxBsAnt

nUeAnt uint8_t Number of UE antenna ports.
Value: 0 -> nMaxUeAnt

sigmaSqrd float Noise variance.
Value: noise variance value in watts

continues on next page

2.4. cuMAC-CP integration guide 461



Aerial CUDA-Accelerated RAN, Release 25-1

Table 6 – continued from previous page
Field Type Description
offsets struct Buffer offset for each data:

0xFFFFFFFF: buffer not used (Invalid).
Other: buffer offset based on nvipc data_buf

The data buffers are populated in NVIPC DATA buffer. The “offsets” structure defines the buffer offsets of all the buffers.
Note: not all buffers are used. The offsets of not used buffers should be set to 0xFFFFFFFF. For each task type, the
required buffers are listed in the following tables.

Offset name Offset Type Buffer description
CRNTI uint32_t C-RNTIs of all active UEs in the cell
srsCRNTI uint32_t C-RNTIs of the UEs that have refreshed SRS channel estimates in

the cell.
prgMsk uint32_t Bit map for the availability of each PRG for allocation
postEqSinr uint32_t Array of the per-PRG per-layer post-equalizer SINRs of all active

UEs in the cell
wbSinr uint32_t Array of wideband per-layer post-equalizer SINRs of all active

UEs in the cell
estH_fr uint32_t For FP32. Array of the subband (per-PRG) SRS channel estimate

coefficients for all active UEs in the cell
estH_fr_half uint32_t For FP16. Array of the subband (per-PRG) SRS channel estimate

coefficients for all active UEs in the cell
prdMat uint32_t Array of the precoder/beamforming weights for all active UEs in

the cell
detMat uint32_t Array of the detector/beamforming weights for all active UEs in

the cell
sinVal uint32_t Array of the per-UE, per-PRG, per-layer singular values obtained

from the SVD of the channel matrix
avgRatesActUe uint32_t Array of the long-term average data rates of all active UEs in the

cell
prioWeightActUe uint32_t For priority-based UE selection. Priority weights of all active UEs

in the cell
tbErrLastActUe uint32_t TB decoding error indicators of all active UEs in the cell
newDataActUe uint32_t Indicators of initial transmission/retransmission for all active UEs

in the cell
allocSolLastTxActUe uint32_t The PRG allocation solution for the last transmissions of all active

UEs in the cell
mcsSelSolLastTxActUe uint32_t MCS selection solution for the last transmissions of all active UEs

in the cell
layerSelSolLastTxActUe uint32_t Layer selection solution for the last transmissions of all active UEs

in the cell

The data buffer details are described below.

462 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Field Type Description
CRNTI uint16_t[nActiveUe] C-RNTIs of all active UEs in the cell.

Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
CRNTI[uIdx] is the uIdx-th active UE’s C-RNTI.

srsCRNTI uint16_t[nSrsUe] C-RNTIs of the UEs that have refreshed SRS channel estimates in
the cell.
Value of each element:
Denote uIdx = 0, 1, …, nSrsUe-1 as the index of the UE with
refreshed SRS in the cell.
srsCRNTI[uIdx] is the uIdx-th UE’s C-RNTI.

prgMsk uint8_t[nPrbGrp] Bit map indicating the availability of each PRG for allocation.
Value of each element:
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index
prgMsk[prgIdx] is the availability indicator for the prgIdx-th PRG.
0 - unavailable, 1 - available

postEqSinr float[nActiveUe* nPrb-
Grp*nUeAnt]

Array of the per-PRG per-layer post-equalizer SINRs of all active
UEs in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
post EqSinr[uIdx*nPrbGrp*nUeAnt + prgIdx*nUeAnt + lay-
erIdx] is the uIdx-th active UE’s post-equalizer SINR on the
prgIdx-th PRG and the layerIdx-th layer.

wbSinr float[nActiveUe*nUeAnt] Array of wideband per-layer post-equalizer SINRs of all active
UEs in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
wbSinr[uIdx*nUeAnt + layerIdx] is the uIdx-th active UE’s wide-
band post-equalizer SINR on the layerIdx-th layer.

For FP32:
estH_fr
For FP16:
estH_fr_half

For FP32:
cuCom-
plex[nSrsUe*nPrbGrp*
nBsAnt*nUeAnt]
For FP16:
__nv_bfloat162[nSrsUe*
nPrbGrp*nBsAnt*nUeAnt]

Array of the refreshed subband (per-PRG) SRS channel estimates
in the cell.
Value of each element:
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote uIdx = 0, 1, …, nSrsUe-1 as the index of the UE with
refreshed SRS in the cell.
Denote bsAntIdx = 0, 1, …, nBsAnt-1 as the BS antenna port
index
Denote ueAntIdx = 0, 1, …, nUeAnt as the UE antenna port index
estH_fr[p rgIdx*nSrsUe*nBsAnt*nUeAnt +
uIdx*nBsAnt*nUeAnt + bsAntIdx*nUeAnt + ueAntIdx] is
the complex channel coefficient for the uIdx-th UE on the prgIdx-
th PRG, the bsAntIdx-th BS antenna port and the ueAntIdx-th
UE antenna port.
(The above applies to the FP16 version as well)

continues on next page

2.4. cuMAC-CP integration guide 463



Aerial CUDA-Accelerated RAN, Release 25-1

Table 8 – continued from previous page
Field Type Description
prdMat For DL:

cuCom-
plex[nSrsUe*nPrbGrp*
nBsAnt*nBsAnt]
For UL:
cuCom-
plex[nSrsUe*nPrbGrp*
nUeAnt*nUeAnt]

Array of the precoder/beamforming weights for the UEs that have
refreshed SRS channel estimates in the cell.
Value of each element:
(for DL)
Denote uIdx = 0, 1, …, nSrsUe-1 as the index of the UE with
refreshed SRS in the cell.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote inPortIdx = 0, 1, …, nBsAnt-1 as the precoder input port
index
Denote outPortIdx = 0, 1, …, nBsAnt-1 as the precoder output
port index
prdMat[ uIdx*nPrbGrp*nBsAnt*nBsAnt + prgIdx* nB-
sAnt*nBsAnt + inPortIdx*nBsAnt + outPortIdx] is the pre-
coder/beamforming weight of the uIdx-th UE on the prgIdx-th
PRG and between the inPortIdx-th input port and the outPortIdx-
th output port.
(for UL, replace nBsAnt by nUeAnt in above description)

detMat For DL:
cuComplex[nSrsUe* nPrb-
Grp*nUeAnt*nUeAnt]
For UL:
cuComplex[nSrsUe* nPrb-
Grp*nBsAnt*nBsAnt]

Array of the detector/beamforming weights for the UEs that have
refreshed SRS channel estimates in the cell.
Value of each element:
(for DL)
Denote uIdx = 0, 1, …, nSrsUe-1 as the index of the UE with
refreshed SRS in the cell.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote inPortIdx = 0, 1, …, nUeAnt-1 as the detector input port
index.
Denote outPortIdx = 0, 1, …, nUeAnt-1 as the detector output
port index.
detMat[ uIdx*nPrbGrp*nUeAnt*nUeAnt +
prgIdx*nUeAnt*nUeAnt + inPortIdx*nUeAnt + outPortIdx]
is the detector weight of the uIdx-th UE on the prgIdx-th PRG
and between the inPortIdx-th input port and the outPortIdx-th
output port.
(for UL, replace nUeAnt by nBsAnt in above description)

sinVal float[nSrsUe*nPrbGrp*nUeAnt]Array of the per-UE, per-PRG, per-layer singular values obtained
from the SVD of the refreshed SRS channel matrices.
Value of each element:
Denote uIdx = 0, 1, …, nSrsUe-1 as the index of the UE with
refreshed SRS in the cell.
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
Denote layerIdx = 0, 1, …, nUeAnt-1 as the layer index.
sinVal[uIdx*nPrbGrp*nUeAnt + prgIdx*nUeAnt + layerIdx] is
the uIdx-th UE’s layerIdx-th largest singular value on the prgIdx-th
PRG.
For each UE and on each PRG, the singular values are stored in
descending order.

continues on next page

464 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Table 8 – continued from previous page
Field Type Description
avgRate-
sActUe

float[nActiveUe] Array of the long-term average data rates of all active UEs in the
cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
avgRatesActUe[uIdx] is the long-term average throughput of the
uIdx-th active UE in the cell.

prioWeigh-
tActUe

uint16_t[nActiveUe] For priority-based UE selection. Priority weights of all active UEs
in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
prioWeightActUe[uIdx] is the uIdx-th active UE’s priority weight.
0xFFFF indicates an invalid element.

tbErrLas-
tActUe

int8_t[nActiveUe] TB decoding error indicators of all active UEs in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
tbErrLastActUe[uIdx] is the uIdx-th active UE’s TB decoding er-
ror indicator:
-1 - the last transmission is not a new transmission (is a re-
transmission)
0 - decoded correctly
1 - decoding error
** Note that if the last transmission of a UE is not a new trans-
mission, tbErrLastActUe of that UE should be set to -1.

new-
DataActUe

int8_t[nActiveUe] Indicators of initial transmission/retransmission for all active UEs
in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
newDataActUe[uIdx] is the indicator of initial transmis-
sion/retransmission for the uIdx-th active UE in the cell.
0 – retransmission
1 - new data/initial transmission
-1 indicates an invalid element

continues on next page

2.4. cuMAC-CP integration guide 465



Aerial CUDA-Accelerated RAN, Release 25-1

Table 8 – continued from previous page
Field Type Description
allocSolLast-
TxActUe

For type-0 PRG allocation:
int16_t[nPrbGrp]
For type-1 PRG allocation:
int16_t[2*nActiveUe]

The PRG allocation solution for the last transmissions of all active
UEs in the cell.
Value of each element:
For type-0 PRG allocation:
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
allocSolLastTxActUe[prgIdx] indicates the active UE index (0, 1,
…, nActiveUe-1) that the prgIdx-th PRG is allocated to.
-1 indicates that a given PRG is not allocated to any UE.
For type-1 PRG allocation:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
allocSolLastTxActUe[2*uIdx] is the starting PRG index of the
uIdx-th active UE.
allocSolLastTxActUe[2*uIdx + 1] is the ending PRG index of the
uIdx-th active UE.
-1 indicates that a given UE is not being allocated to any PRG.

mcsSelSol-
LastTxActUe

int16_t[nActiveUe] MCS selection solution for the last transmissions of all active UEs
in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
mcsSelSolLastTxActUe[uIdx] indicates the MCS level for the
uIdx-th active UE in the cell.
Range of each element:
0, 1, …, 27 (Currently only support Table 5.1.3.1-2: MCS index
table 2, 3GPP TS 38.214).
-1 indicates an element is invalid.

layerSelSol-
LastTxActUe

uint8_t[nActiveUe] Layer selection solution for the last transmissions of all active UEs
in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index in the
cell.
layerSelSolLastTxActUe[uIdx] indicates the number of layers se-
lected for the uIdx-th active UE in the cell.
Range of each element: 0, 1, …, nUeAnt-1
The selected layers have singular values descending from the
largest one.

The following are required data buffers for each cuMAC task type, which is defined by taskBitMask.

Task
Type

cuMAC module
name

Required data for L2 to pass to cuMAC-CP

0x01 multiCellUeSelection prgMsk, wbSinr, avgRatesActUe.
0x02 multiCellScheduler All TaskType=0x01 buffers and postEqSinr, sinVal, estH_fr, detMat, prd-

Mat.
0x04 multiCellLayerSel All TaskType=0x02 buffers.
0x08 mcsSelectionLUT All TaskType=0x04 buffers and tbErrLastActUe.

466 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

TTI_END

Name Type Description
end_param uint8_t Reserved, not used yet.

SCH_TTI.response

This message is used to return scheduling results to L2. The results are populated in NVIPC DATA buffer,

Name Type Description
offsets struct Buffer offset for each data:

0xFFFFFFFF: buffer not used (Invalid).
Other: buffer offset based on nvipc data_buf

The data buffers are populated in NVIPC DATA buffer. The “offsets” structure defines the buffer offsets of all the buffers.
Note: not all buffers are used. The offset of not used buffers should be set to 0xFFFFFFFF.

Offset Name Offset Type Buffer description
setSchdUePerCellTTI uint32_t Set of IDs of the selected UEs for the cell
allocSol uint32_t PRB group allocation solution for all active UEs in the cell
layerSelSol uint32_t Layer selection solution for all active UEs in the cell
mcsSelSol uint32_t MCS selection solution for all active UEs in the cell

The data buffers details are as below.

Field Type Description
setSchdUePer-
CellTTI

uint16_t [nMaxSchUePer-
Cell]

Set of IDs of the selected UEs for the cell.
Value of each element:
Denote i = 0, 1, …, nMaxSchUePerCell-1 as the i-th se-
lected UE for the cell.
setSchdUePerCellTTI[i] is within {0, 1, …, nActiveUe-1}
and represents the active UE index of the i-th selected UE.

continues on next page

2.4. cuMAC-CP integration guide 467



Aerial CUDA-Accelerated RAN, Release 25-1

Table 10 – continued from previous page
Field Type Description
allocSol For type-0 PRG allocation:

int16_t[nPrbGrp]
For type-1 PRG allocation:
int16_t[2*nActiveUe]

PRB group allocation solution for all active UEs in the cell.
Value of each element:
For type-0 PRG allocation:
Denote prgIdx = 0, 1, …, nPrbGrp-1 as the PRG index.
allocSol[prgIdx] indicates the active UE index (0, 1, …,
nActiveUe-1) that the prgIdx-th PRG is allocated to.
-1 indicates that a given PRG is not allocated to any UE.
For type-1 PRG allocation:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index
in the cell.
allocSol[2*uIdx] is the starting PRG index of the uIdx-th
active UE.
allocSol[2*uIdx + 1] is the ending PRG index of the uIdx-
th active UE.
-1 indicates that a given UE is not being allocated to any
PRG.

mcsSelSol int16_t[nActiveUe] MCS selection solution for all active UEs in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index
in the cell.
mcsSelSol[uIdx] indicates the MCS level for the uIdx-th
active UE in the cell.
Range of each element:
0, 1, …, 27 (Currently only support Table 5.1.3.1-2: MCS
index table 2, 3GPP TS 38.214).
-1 indicates an element is invalid.

layerSelSol uint8_t[nActiveUe] Layer selection solution for all active UEs in the cell.
Value of each element:
Denote uIdx = 0, 1, …, nActiveUe-1 as the active UE index
in the cell.
layerSelSol[uIdx] indicates the number of layers selected
for the uIdx-th active UE in the cell.
Range of each element: 0, 1, …, nUeAnt-1
The selected layers have singular values descending from
the largest one.

TTI_ERR.indication

Name Type Description
msg_id in t32_t SFN number
error_code in t32_t 0: no error. Other: TBD
reason_code in t32_t 0: no error. Other: TBD

468 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

2.4.3 L2 integration notes

NVIPC integration

Refer to <aerial_sdk>/cuPHY-CP/gt_common_libs/README.md for L2 to copy NVIPC source and build
libnvipc.so for L2.
Recommend L2 to copy the <aerial_sdk>/cuPHY-CP/gt_common_libs/nvIPC/tests/example/
nvipc_secondary.yaml configure the prefix to the same value with prefix in <aerial_sdk>/
cuMAC-CP/config/cumac_cp.yaml.

# Transport settings for L2 / secondary NVIPC
transport:

type: shm
shm_config:
prefix: cumac

Refer to Aerial NVIPC section for NVIPC technical details.

cuMAC message definitions

Public header file for cuMAC message definitions is <aerial_sdk>/cuMAC-CP/lib/cumac_msg.h. Copy it to
L2 and include it in L2 source.
Supports 4 cuMAC modules in functionality:

• multiCellUeSelection
• multiCellScheduler
• multiCellLayerSel
• mcsSelectionLUT

Note: These modules have sequential dependencies: subsequent module depends on the output of the previous modules.

2.4.4 cuMAC-CP Tests

Basic cuMAC-CP Standalone Test

This section describes how to run the TestMAC + cuMAC-CP standalone test.

Configuration Files

cumac_cp.yaml

Configure cell number and CPU core assignments for cuMAC-CP:

# CPU core shared by all low-priority threads
low_priority_core: 19

recv_thread_config:
name: cumac_cp_recv
cpu_affinity: 25

(continues on next page)

2.4. cuMAC-CP integration guide 469



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sched_priority: 95

# cuMAC task worker cores
worker_cores: [31, 32, 33, 34, 35, 36, 37, 38]

# Total cell number
cell_num: 8

test_cumac_config.yaml

Configure cuMAC settings and CPU cores for testMAC:

recv_thread_config:
name: cumac_recv
cpu_affinity: 43
sched_priority: 95

sched_thread_config:
name: cumac_sched
cpu_affinity: 39
sched_priority: 96

builder_thread_config:
name: cumac_builder
cpu_affinity: 39
sched_priority: 95

# Worker thread cores, can be used for both outgoing message building and incoming␣
↪→message handling
worker_cores: [26, 27, 28, 29]

# Run test_mac + cumac_cp only without depending on L1
cumac_cp_standalone: 1

test_mac_config.yaml

Enable cuMAC-CP test configuration:

# Set to yaml file like test_cumac_config.yaml to enable cuMAC-CP test
test_cumac_config_file: test_cumac_config.yaml

Test Execution

Generate Test Vectors

Configure proper parameters per requirements. Below is an example test for 8 cells.

cd $cuBB_SDK
sed -i 's/#define numCellConst[ ]*.*/#define numCellConst 8/g' cuMAC/examples/
↪→parameters.h

(continues on next page)

470 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
sed -i 's/#define gpuDeviceIdx[ ]*.*/#define gpuDeviceIdx 0/g' cuMAC/examples/
↪→parameters.h
sed -i 's/#define cpuGpuPerfGapSumRConst[ ]*.*/#define cpuGpuPerfGapSumRConst 0.03/g'␣
↪→cuMAC/examples/parameters.h
sed -i 's/#define cpuGpuPerfGapPerUeConst[ ]*.*/#define cpuGpuPerfGapPerUeConst 0.01/g
↪→' cuMAC/examples/parameters.h
sed -i 's/#define gpuAllocTypeConst[ ]*.*/#define gpuAllocTypeConst 0/g' cuMAC/
↪→examples/parameters.h
sed -i 's/#define cpuAllocTypeConst[ ]*.*/#define cpuAllocTypeConst 0/g' cuMAC/
↪→examples/parameters.h

Generate per cell and per group TVs for cuMAC-CP:

mkdir $cuBB_SDK/testVectors/cumac
cd $cuBB_SDK/testVectors/cumac
sudo $cuBB_SDK/build/cuMAC/examples/multiCellSchedulerUeSelection/
↪→multiCellSchedulerUeSelection -t 3

Run the Tests

Execute the tests in the following order:

# 1. Run cumac_cp
sudo $cuBB_SDK/build/cuMAC-CP/cumac_cp

# 2. Run test_mac
sudo $cuBB_SDK/build/cuPHY-CP/testMAC/testMAC/test_mac F08 8C_60c

Expected Output

cumac_cp Output

Example console output:

16:11:36.999875 WRN 27518 0 25 [CUMCP.HANDLER] Cell 0 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999876 WRN 27518 0 25 [CUMCP.HANDLER] Cell 1 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 2 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 3 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 4 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 5 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 6 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000
16:11:36.999877 WRN 27518 0 25 [CUMCP.HANDLER] Cell 7 | CUMAC 2000 | ERR 0 | Slots␣
↪→4000

2.4. cuMAC-CP integration guide 471



Aerial CUDA-Accelerated RAN, Release 25-1

test_mac Output

Example console output:

16:11:37.000364 WRN 27533 0 39 [CUMAC.HANDLER] Cell 0 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000364 WRN 27533 0 39 [CUMAC.HANDLER] Cell 1 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000364 WRN 27533 0 39 [CUMAC.HANDLER] Cell 2 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000364 WRN 27533 0 39 [CUMAC.HANDLER] Cell 3 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000365 WRN 27533 0 39 [CUMAC.HANDLER] Cell 4 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000365 WRN 27533 0 39 [CUMAC.HANDLER] Cell 5 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000365 WRN 27533 0 39 [CUMAC.HANDLER] Cell 6 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000
16:11:37.000365 WRN 27533 0 39 [CUMAC.HANDLER] Cell 7 | CUMAC 2000 | ERR 0 | INV 0 |␣
↪→Slots 4000

cuMAC-CP + cuBB Test

This section describes how to run the cuMAC-CP (cumac_cp) + cuBB (test_mac + cuphycontroller_scf + ru_emulator)
test.
Refer to “Running cuBB End-to-End cuBB” section for cuBB test instructions.
For cuMAC-CP part, follow about cuMAC-CP standalone test instructions but have below differences:

Configure cumac_cp_standalone to 0

# Run cumac_cp + cuBB (test_mac + cuphycontroller_scf + ru_emulator) tests
cumac_cp_standalone: 0

Enabled MPS

Since cumac_cp and cuphycontroller_scf both use the same GPU, MPS need to be enabled for both of them.
Firstly start MPS server

# Export MPS variables
export CUDA_DEVICE_MAX_CONNECTIONS=8
export CUDA_MPS_PIPE_DIRECTORY=/var
export CUDA_MPS_LOG_DIRECTORY=/var

# Stop existing MPS
sudo -E echo quit | sudo -E nvidia-cuda-mps-control

# Start MPS
sudo -E nvidia-cuda-mps-control -d
sudo -E echo start_server -uid 0 | sudo -E nvidia-cuda-mps-control

Then export the MPS variables for cumac_cp and cuphycontroller_scf before running them.

472 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

# Export variables
export CUDA_DEVICE_MAX_CONNECTIONS=8
export CUDA_MPS_PIPE_DIRECTORY=/var
export CUDA_MPS_LOG_DIRECTORY=/var

Additional Configuration Options

TestMAC Module Selection

Configure task_bitmask in test_cumac_config.yaml to select cuMAC modules:

# CUMAC task bitmask:
# b0 - multiCellUeSelection
# b1 - multiCellScheduler
# b2 - multiCellLayerSel
# b3 - mcsSelectionLUT
task_bitmask: 0xF # Enable all modules

Note: These modules have sequential dependencies: subsequent module depends on the output of the previous modules.
So the valid task_bitmask values are 0x1, 0x3, 0x7, 0xF.

task_bitmask: 0x1 # Enable multiCellUeSelection
task_bitmask: 0x3 # Enable multiCellUeSelection, multiCellScheduler
task_bitmask: 0x7 # Enable multiCellUeSelection, multiCellScheduler, multiCellLayerSel
task_bitmask: 0xF # Enable all the 4 modules

When INFO level logging is enabled, task bitmask and processing timing can be viewed in /tmp/cumac_cp.log.

Debug Options

Buffer dumping can be enabled in cuMAC-CP via debug_option. Note that this will impact timing and performance, so
use only during debugging.
Aerial cuMAC is a CUDA-based platform designed to accelerate 5G/6G MAC layer scheduler functions using NVIDIA
GPUs. It enhances the spectral efficiency of 5G/6G cellular networks by integrating GPU computing and AI/ML tech-
niques into scheduling algorithm design.
The current cuMAC implementation supports various L2/MAC scheduler functions, including UE sorting and selection
per TTI, MU-MIMO user grouping, PRB allocation, layer selection, link adaptation (MCS selection), and dynamic beam-
forming. These functions are specifically designed for joint scheduling across multiple cell sites within a coordinated cell
group.
cuMAC provides a C++ API for offloading supported L2/MAC scheduler functions from the L2 stack host to GPUs,
enabling enhanced scheduler performance and acceleration.
cuMAC is the main component of the Aerial L2 scheduler acceleration solution. The figure above illustrates the over-
all data flow of the scheduler acceleration. The full solution consists of the following components: 1) Aerial Scheduler
Acceleration API, which is a per-cell message passing-based interface between the 3rd party L2 stack on DU/CU and
cuMAC-CP, 2) cuMAC-CP, 3) cell group-based cuMAC API, and 4)cuMAC multi-cell scheduler (cuMAC-sch) mod-
ules.
The 3rd party L2 stack sits on the CPU and contains a single-cell L2 scheduler for each individual cell under its control.
To offload L2 scheduling to GPU for acceleration/performance purposes, in each time slot (TTI), the L2 stack host sends
per-cell request messages to cuMAC-CP through the Aerial Scheduler Acceleration API, which consists of required
scheduling input & config. information from each single-cell scheduler. Upon receiving the per-cell request messages,

2.4. cuMAC-CP integration guide 473



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 3: Aerial L2 scheduler acceleration data flow chart

474 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

cuMAC-CP integrates all scheduler input information from those (coordinated) cells into the cuMAC API cell group
data structures and populates the GPU data buffers contained in these structures. Next, the cuMAC multi-cell scheduler
(cuMAC-sch) modules are called by cuMAC-CP through cuMAC API to compute scheduling solutions for the given time
slot (TTI). After the cuMAC-sch modules complete the computation and the scheduling solutions become available in
the GPU memory, cuMAC-CP converts them into per-cell response messages and sends them back to the L2 stack host
on CPU through the Aerial Scheduler Acceleration API. Finally, the L2 stack host uses the obtained solutions to schedule
the cells under its control.
When there are multiple coordinated cell groups, a separate set of Aerial Scheduler Acceleration API, cuMAC-CP,
cuMAC API and cuMAC instances should be constructed and maintained for each cell group.
Implementation Details

• Multi-cell scheduling - All cuMAC scheduling algorithms are implemented as CUDA kernels that are executed
by GPU and jointly compute the scheduling solutions (PRB allocation, MCS selection, layer selection, etc.) for a
group of cells at the same time. The algorithms can be constrained to single cell scheduling by configuring a single
cell in the cell group. A comparison between the single-cell scheduler and multi-cell scheduler approaches is given
in the below figure.

Fig. 4: Single-cell scheduler approach vs. multi-cell scheduler approach

• Scheduling algorithm CUDA implementation
– PF UE down-selection algorithm - cuMAC offers a PF-based UE selection algorithm to down-select a

subset of UEs for new transmissions or HARQ re-transmissions in each TTI from the pool of all active UEs
in each cell of a cell group. The association of UEs and cells in the cell group is an input to the UE selection
module. When selecting UEs for each cell in each TTI, the UE selection algorithm first assigns a priority
weight to each active UE in a cell and then sorts all active UEs in descending order of the priority weight.
The subset of UEs that have the highest priority weights in each cell are selected for scheduling in a TTI. The
number of selected UEs per cell is an input parameter to this module. HARQ re-transmissions are always
assigned with the highest priority weight. For the new-transmission UEs, their priority weights are the PF
metrics, calculated as the ratio of each UE’s long-term average throughput and its instantaneous achievable
data rate. The UE selection algorithm is implemented as CUDA kernels that run on GPU and jointly select
UEs for all cells in a cell group at the same time.

– PF PRB allocation algorithms - cuMAC offers algorithms to perform channel-aware and frequency-
selective PRB allocation among a group of cells and their connected active UEs on a per-TTI basis. The
input arguments to the PRB allocation algorithms include the narrow-band SRS channel estimates (MIMO
channel matrices) per cell-UE link, the association solutions between cells and UEs, and other UE status
and cell group parameters. The output is the PRB allocation solution for the cell group, whose data format

2.4. cuMAC-CP integration guide 475



Aerial CUDA-Accelerated RAN, Release 25-1

depends on the type of allocation: 1) for type-0 allocation, a per UE binary bitmap indicating whether each
PRB is allocated to the UE, and 2) for type-1 allocation, with 2 elements per UE indicating the starting and
ending PRB indices for the UE’s allocation. Two versions of the PRB allocation algorithms are provided, one
for single cell scheduling and the other for multi-cell joint scheduling. A major difference between the two
versions is that the multi-cell algorithm considers the impact of inter-cell interference in the evaluation of
per-PRB SINRs, which can be derived from the narrow-band SRS channel estimates. The single-cell version
does not explicitly consider inter-cell interference and only utilizes information restricted to each individual
cell. The multi-cell algorithm can lead to a globally optimized resource allocation in a cell group by leveraging
all available information from the coordinated multiple cells. A prototyping CUDA kernel implementation
of PRB allocation algorithms is provided in the figure below.

– Layer selection algorithm - cuMAC offers layer selection algorithms that choose the best set of layers for
transmission for a UE based on the singular value distribution across the UE’s multiple layers. A predeter-
mined singular value threshold is used to find the number of layers (with descending singular values) that
can be supported on each subband (PRB group). Then the minimum number of layers across all allocated
subbands to the UE is chosen as the optimal layer selection solution. Input arguments to the layer selection al-
gorithms include the PRB allocation solution per UE, the singular values of each UE’s channel on its allocated
subbands, the association solutions between cells and UEs, and other UE status and cell group parameters.
The output is the per-UE layer selection solution. The layer selection algorithm is implemented as CUDA
kernels that run on GPU and jointly select layers for all UEs in a cell group at the same time.

– MCS selection algorithm - cuMAC offers MCS selection algorithms that choose the best feasible MCS
(highest level that can meet a given BLER target) per UE based on a given PRB allocation solution. An
outer-loop link adaptation algorithm is integrated internally to the MCS selection algorithm, which offsets the
SINR estimates based on previous transport block decoding results per UE link. Input arguments to the MCS
selection algorithms include the PRB allocation solution per UE, the narrow-band SRS channel estimates
(MIMO channel matrices) per cell-UE link, the association solutions between cells and UEs, the decoding
results of the last transport block for each UE, and other UE status and cell group parameters. The output is
the per-UE MCS selection solution. The MCS selection algorithm is implemented as CUDA kernels that run
on GPU and jointly select MCS for all UEs in a cell group at the same time.

– 64T64R MU-MIMO scheduling - cuMAC has a CUDA-based implementation of 64T64R MU-MIMO
scheduler that consists of three components: 1) UE sorting, 2) MU-MIMO UE grouping and 3) MCS selec-
tion. The UE sorting module sorts all active UEs in each cell considering the proportional-fairness (PF) metric
per UE, the feasibility for MU-MIMO transmission (based on a threshold for the SRS wideband SNR), and
the HARQ re-transmission status of each UE. The UE grouping module uses a channel semi-orthogonality-
based algorithm to determine the candidate MU-MIMO UE groups for each cell based on the SRS channel
estimates, selects the UEs/UE groups for the current TTI, and allocates PRBs to the selected UEs/UE groups.
The MCS selection for each selected UE is done using the SINR-to-MCS mapping table with calibrations
from the OLLA algorithm and computed beamforming gains.

– Support for HARQ - all the above cuMAC scheduler algorithms can support HARQ re-transmissions with
non-adaptative mode, i.e., reusing the same number of PRBs, number of layers and MCS level of the initial
transmission for re-transmissions.

• CPU reference code - CPU C++ implementation of the above algorithms is also provided for verification and
performance evaluation purposes.

• DifferentCSI types - cuMAC offers scheduler algorithm CUDA kernels to work with different CSI types, including
SRS channel coefficient estimates and CSI-RS based channel quality information.

• Support for FP32 and FP16 - cuMAC offers scheduler algorithm CUDA kernels implemented in FP32 and FP16.
Using FP16 kernels can help reduce scheduler latency with a minor performance loss.

476 Chapter 2. Aerial cuMAC



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 5: A prototyping CUDA kernel implementation of PRB allocation algorithms

2.4. cuMAC-CP integration guide 477



Aerial CUDA-Accelerated RAN, Release 25-1

478 Chapter 2. Aerial cuMAC



CHAPTER

THREE

AERIAL DATA LAKE

6G will be artificial intelligence (AI) native. AI and machine learning (ML) will extend through all aspects of next
generation networks from the radio, baseband processing, the network core including system management, orchestration
and dynamic optimization processes. GPU hardware, together with programming frameworks will be essential to realize
this vision of a software defined native-AI communication infrastructure.
The application of AI/ML in the physical layer has particularly been a hot research topic.
There is no AI without data. While the synthetic data generation capabilities of Aerial Omniverse Digital Twin (AODT)
and Sionna/SionnaRT are essential aspects of a research project, availability of over-the-air (OTA) waveform data from
real-time systems is equally important. This is the role of Aerial Data Lake. It is a data capture platform supporting
the capture of OTA radio frequency (RF) data from virtual radio access network (vRAN) networks built on the Aerial
CUDA-Accelerated RAN. Aerial Data Lake consists of a data capture application (app) running on the base station (BS)
distributed unit (DU), a database of samples collected by the app, and an application programming interface (API) for
accessing the database.

3.1 Target Audience

Industry and university researchers and developers looking to bring ML to the physical layer with the end goal of bench-
marking on OTA testbeds like NVIDIA ARC-OTA or other GPU-based BSs.

3.2 Key Features

Aerial Data Lake has the following features:
Real-time capture of RF data from OTA testbed

• Aerial Data Lake is designed to operate with gnBs built on the Aerial CUDA-Accelerated RAN and that employ the
Small Cell Forum FAPI interface between L2 and L1. One example system being the NVIDIA ARC-OTA network
testbed. I/Q samples from O-RUs connected to the GPU platform via a O-RAN 7.2x split fronthaul interface are
delivered to the host CPU and exported to the Aerial Data Lake database.

Aerial Data Lake APIs to access the RF database
• The data passed to the layer-2 via RX_Data.Indication and UL_TTI.Request are exported to the database. The

fields in these data structures form the basis of the database access APIs.
Scalable and time coherent over arbitrary number of BSs

• The data collection app runs on the same CPU that supports the DU. It runs on a single core, and the database runs
on free cores. Because each BS is responsible for collecting its own uplink data, the collection process scales as
more BSs are added to the network testbed. Database entires are time-stamped so data collected over multiple BSs
can be used in a training flow in a time-coherent manner.

479



Aerial CUDA-Accelerated RAN, Release 25-1

Use in conjunction with pyAerial to generate training data for neural network physical layer designs
• Aerial Data Lake can be used in conjunction with the NVIDIA pyAerial CUDA-Accelerated Python L1 library.

Using the Data Lake database APIs, pyAerial can access RF samples in a Data Lake database and transform those
samples into training data for all the signal processing functions in an uplink or downlink pipeline.

3.3 Design

Aerial Data Lake sits beside the Aerial L1 and copies out data that would be useful for machine learning into an external
database.

Fig. 1: Figure 1: The Aerial Data Lake data capture platform as part of the gNB.

Uplink I/Q data from one or more O-RAN radio units (O-RUs) is delivered to GPU memory where it is both processed
by the Aerial L1 PUSCH baseband pipeline and delivered to host CPU memory. The Aerial Data Lake collector process
writes the I/Q samples to the Aerial Data Lake database in the fh table. The fh table has columns for SFN, Slot, IQ
samples as fhData, and the start time of that SFN.slot as TsTaiNs.
The collector app saves data that the L2 sent to L1 to describe UL OTA transmissions in UL_TTI.Request messages as
well as data returned to the L2 via RX_Data.Indication and CRC.Indication. This data is then written to the fapi database
table. These messages and the fields within them are described in SCF 5G FAPI PHY Spec version 10.02, sections 3.4.3,
3.4.7, and 3.4.8.
Each gNB in a network testbed collects data from all O-RUs associated with it. That is, data collection over the span of
a network is performed in a distributed manner, each gNB is building its own local database. Training can be performed
locally at each gNB, and site-specific optimizations can be realized with this approach. Since the data in a database is
time-stamped, the local databases can be consolidated at a centralized compute resource and training performed using the
time aligned aggregated data. In cases where the aerial pusch pipeline was unable to decode due to channel conditions,

480 Chapter 3. Aerial Data Lake

https://scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php


Aerial CUDA-Accelerated RAN, Release 25-1

retransmissions can be used as ground truth as long as one of the retransmissions succeeds, allowing the user to test
algorithms with better performance than the originals.
The Aerial Data Lake database storage requirements depend on the number of O-RUs, the antenna configuration of the
O-RU, the carrier bandwidth, the TDD pattern and the number of samples to be collected. Collecting IQ samples of 1
million tranmissions from a single RU 4T4R O-RU employing a single 100MHz carrier will consume approximately 660
GB of storage.
Aerial Data Lake database comprises the fronthaul RF data. However, for many training applications access to data at
other nodes in the receive pipeline is required. A pyAerial pipeline, together with the Data Lake database APIs, can access
samples from an Aerial Data Lake database and transform that data into training data for any function in the pipeline.
Figure 2 illustrates data ingress from a Data Lake database into a pyAerial pipeline and using standard Python file I/O to
generate training data for a soft de-mapper.

Fig. 2: Figure 2: pyAerial is used in conjunction with the NVIDIA data collection platform, namely, Aerial Data Lake to
build training data sets for any node in the layer-1 downlink or uplink signal processing pipeline. The example shows a
Data Lake database of over-the-air samples transformed into training data for a neural network soft de-mapper.

3.4 Installation

Aerial Data Lake is compiled by default as part of cuphycontoller. If you would like to record fresh data every time
cuphycontroller is started, see the section on Fresh Data.
Start by installing Clickhouse database on the server collecting the data. The command below will download and run an
instance of the clickhouse server in a docker container.

docker run -d \
--network=host \
-v $(realpath ./ch_data):/var/lib/clickhouse/ \
-v $(realpath ./ch_logs):/var/log/clickhouse-server/ \
--cap-add=SYS_NICE --cap-add=NET_ADMIN --cap-add=IPC_LOCK \
--name my-clickhouse-server --ulimit nofile=262144:262144 clickhouse/clickhouse-server

By default clickhouse will not drop large tables, and will return an error if attempted. The clickhouse-cpp library does
not return exceptions so to avoid what looks like a cuphycontroller crash we recommend allowing it to drop large tables
using the following command:

3.4. Installation 481

https://clickhouse.com/docs/en/install


Aerial CUDA-Accelerated RAN, Release 25-1

sudo touch './ch_data/flags/force_drop_table' && sudo chmod 666 './ch_data/flags/
↪→force_drop_table'

3.5 Usage

In the cuphycontoller adapter yaml configuration file, enable data collection by specifying a core then start cuphycontroller
as usual. The core should be on the same NUMA node as the rest of cuphycontroller, i.e. should follow the same pattern
as the rest of the cores. An example of this can be found commented out in cuphycontroller_P5G_FXN_R750.yaml.

cuphydriver_config:
# Fields added for data collection

datalake_core: 19 # Core on which data collection runs. E.g isolated odd on R750,␣
↪→any isolated core on gigabyte
datalake_address: localhost
datalake_samples: 1000000 # Number of samples to collect for each UE/RNTI. Defaults␣

↪→to 1M

When enabled the DataLake object is created and DataLake::dbInit() initializes the two tables in the database. After
cuphycontroller runs the PUSCH pipeline, cupycontroller calls DataLake::notify() with the addresses of the data to be
saved, which DataLake then saves. When DataLake::waitForLakeData wakes up it calls DataLake::dbInsert() which
appends data to respective Clickhouse columns, then sleeps waiting for more data. Once 50 PUSCH transmissions have
been stored or a total of datalake_samples have been recived the columns are appended to a Clickhouse::Block and inserted
into the respective table.

3.6 Multi-Cell

Datalakes can be configured to capture data from multiple cells controlled by the same L1. The Jupyter notebook data-
lake_pusch_multicell.ipynb shows an example of using data captured from multiple cells. To capture the data for this
example, cell 41 was controlled by testmac and cell 51 was controlled by a real L2. In order to do this the cuphycon-
troller L2 interface needs to be configured to work with two cells and L2s, and testmac needs to be configured to use
/dev/shm/nvipc1 rather than /dev/shm/nvipc. L2 should use the slot pattern DDDSU. Core allocations will need to be
adjusted to suite the server being used.

3.7 Using Data Lake in Notebooks

Follow pyAerial instructions to build and launch that container. It must be run on a server with a GPU.

Three example notebooks are included:
- datalake_channel_estimation.ipynb performs channel estimation and plots the result.
- datalake_pusch_decoding.ipynb goes futher and runs the full PUSCH decoding pipeline, both a fused version
and a version built up of constituent parts.
- datalake_pusch_multicell.ipynb shows an exmple of trying to decode the same transmissions from multiple UEs
across two cells.

See the pyAerial examples section for details.

482 Chapter 3. Aerial Data Lake



Aerial CUDA-Accelerated RAN, Release 25-1

3.8 Database Administration

Note

These instructions assume that the cuBB container has been installed and started as in Installing and Upgrading
Aerial cuBB
and that the clickhouse server has been installed as in the section on Installation
In the following examples this denotes a bash prompt:

$

and this denotes a clickhouse client prompt
aerial-gnb :)

3.8.1 Database Import

There are example fapi and fh tables included in Aerial CUDA-Accelerated RAN container. These tables can be imported
into the clickhouse database by copying them from the container to the clickhouse user_files folder, then using the client
to import them:

$ docker cp cuBB:/opt/nvidia/cuBB/pyaerial/notebooks/data/fh.parquet .
$ docker cp cuBB:/opt/nvidia/cuBB/pyaerial/notebooks/data/fapi.parquet .
$ sudo cp *.parquet ./ch_data/user_files/

A clickhouse client is needed to interact with the server. To download it and run it do the following:

curl https://clickhouse.com/ | sh
./clickhouse client

aerial@aerial-gnb:~$ ./clickhouse client
ClickHouse client version 24.3.1.1159 (official build).
Connecting to localhost:9000 as user default.
Connected to ClickHouse server version 24.3.1.

aerial-gnb :)

This is the clickhouse client prompt. Use the client to import the sample data into the clickhouse server using these
commands:

aerial-gnb :) create table fh ENGINE = MergeTree primary key TsTaiNs settings allow_
↪→nullable_key=1 as select * from file('fh.parquet',Parquet)
aerial-gnb :) create table fapi ENGINE = MergeTree primary key TsTaiNs settings allow_
↪→nullable_key=1 as select * from file('fapi.parquet',Parquet)

Now check that they have been imported:

aerial-gnb :) select table, formatReadableSize(sum(bytes)) as size from system.parts␣
↪→group by table

The output will look similar to this:

3.8. Database Administration 483



Aerial CUDA-Accelerated RAN, Release 25-1

SELECT
`table`,
formatReadableSize(sum(bytes)) AS size

FROM system.parts
GROUP BY `table`

Query id: 95451ea7-6ea9-4eec-b297-15de78036ada

┌─table───────────────────┬─size───────┐
│ fh │ 5.55 MiB │
│ fapi │ 3.88 KiB │
└─────────────────────────┴────────────┘

You now have three slots of PUSCH transmissions from 5-6 real UEs recieved by two cells loaded in the database and
can run the example notebooks.

3.8.2 Database Queries

To show some information about the entries (rows) you can run the following at the clickhouse client prompt:
Show counts of transmissions for all RNTIs

aerial-gnb :) select rnti, count(*) from fapi group by rnti

Output:

SELECT
rnti,
count(*)

FROM fapi
GROUP BY rnti

Query id: 603141a2-bc02-4950-8e9e-1d3f366263c6

┌──rnti─┬─count()─┐
│ 1624 │ 3 │
│ 20000 │ 3 │
│ 20216 │ 3 │
│ 47905 │ 2 │
│ 53137 │ 2 │
│ 57375 │ 3 │
│ 62290 │ 3 │
└───────┴─────────┘

Show select information from all rows of the fapi table

aerial-rf-gnb :) from fapi select TsTaiNs,SFN,Slot,nUEs,rbStart,rbSize,tbCrcStatus,
↪→CQI order by TsTaiNs,rbStart

Output:

SELECT
TsTaiNs,
SFN,
Slot,
nUEs,

(continues on next page)

484 Chapter 3. Aerial Data Lake



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
rbStart,
rbSize,
tbCrcStatus,
CQI

FROM fapi
ORDER BY

TsTaiNs ASC,
rbStart ASC

Query id: f42d9192-1de1-4cc6-b3eb-932b22ecab3e

┌───────────────────────TsTaiNs─┬─SFN─┬─Slot─┬─nUEs─┬─rbStart─┬─rbSize─┬─tbCrcStatus─┬───────CQI─┐
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 0 │ 8 │ 1␣
↪→│ -7.352562 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 0 │ 5 │ 0␣
↪→│ 31.75534 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 5 │ 5 │ 0␣
↪→│ 30.275444 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 10 │ 5 │ 0␣
↪→│ 31.334328 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 15 │ 5 │ 0␣
↪→│ 30.117304 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 20 │ 5 │ 0␣
↪→│ 29.439499 │
│ 2024-07-19 10:42:46.272000000 │ 391 │ 4 │ 7 │ 25 │ 248 │ 0␣
↪→│ 25.331459 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 0 │ 8 │ 1␣
↪→│ -7.845479 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 0 │ 5 │ 0␣
↪→│ 29.412682 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 5 │ 5 │ 0␣
↪→│ 30.186537 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 10 │ 5 │ 0␣
↪→│ 30.366463 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 15 │ 5 │ 0␣
↪→│ 29.590645 │
│ 2024-07-19 10:42:47.292000000 │ 493 │ 4 │ 6 │ 20 │ 253 │ 0␣
↪→│ 28.494812 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 0 │ 8 │ 1␣
↪→│ -8.030928 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 0 │ 5 │ 0␣
↪→│ 31.359173 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 5 │ 5 │ 0␣
↪→│ 30.353489 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 10 │ 5 │ 0␣
↪→│ 29.3033 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 15 │ 5 │ 0␣
↪→│ 28.298597 │
│ 2024-07-19 10:42:48.212000000 │ 585 │ 4 │ 6 │ 20 │ 253 │ 0␣
↪→│ 26.621593 │
└───────────────────────────────┴─────┴──────┴──────┴─────────┴────────┴─────────────┴───────────┘

19 rows in set. Elapsed: 0.002 sec.

Show start times of fh table

3.8. Database Administration 485



Aerial CUDA-Accelerated RAN, Release 25-1

aerial-rf-gnb :) from fh select TsTaiNs,TsSwNs,SFN,Slot,CellId,nUEs

Output:

SELECT
TsTaiNs,
TsSwNs,
SFN,
Slot,
CellId,
nUEs

FROM fh

Query id: 6926d88e-6e9c-4818-b127-aef96913cfc0

┌───────────────────────TsTaiNs─┬────────────────────────TsSwNs─┬─SFN─┬─Slot─┬─CellId─┬─nUEs─┐
│ 2024-07-19 10:42:46.272000000 │ 2024-07-19 10:42:46.273113183 │ 391 │ 4 │ 41␣
↪→│ 7 │
│ 2024-07-19 10:42:46.272000000 │ 2024-07-19 10:42:46.273113183 │ 391 │ 4 │ 51␣
↪→│ 7 │
│ 2024-07-19 10:42:47.292000000 │ 2024-07-19 10:42:47.293139202 │ 493 │ 4 │ 41␣
↪→│ 6 │
│ 2024-07-19 10:42:47.292000000 │ 2024-07-19 10:42:47.293139202 │ 493 │ 4 │ 51␣
↪→│ 6 │
│ 2024-07-19 10:42:48.212000000 │ 2024-07-19 10:42:48.213139622 │ 585 │ 4 │ 41␣
↪→│ 6 │
│ 2024-07-19 10:42:48.212000000 │ 2024-07-19 10:42:48.213139622 │ 585 │ 4 │ 51␣
↪→│ 6 │
└───────────────────────────────┴───────────────────────────────┴─────┴──────┴────────┴──────┘

6 rows in set. Elapsed: 0.002 sec.

3.8.3 Fresh Data

The database of IQ samples grows quite quickly. If you want to get fresh data on every run, you can automatically remove
the tables by uncommenting the following lines in cuPHY-CP/data_lakes/data_lakes.cpp:

//dbClient->Execute("DROP TABLE IF EXISTS fapi");
//dbClient->Execute("DROP TABLE IF EXISTS fh");

3.8.4 Dropping Data

You can manually drop all of the data from the database with these commands:

aerial-gnb :) drop table fh
aerial-gnb :) drop table fapi

486 Chapter 3. Aerial Data Lake



Aerial CUDA-Accelerated RAN, Release 25-1

3.8.5 Notes and Known Limitations

Currently datalake converts complex half floating point values to floats in c++ which takes ~2ms per cell. During that
time, when samples are being inserted into the database, PUSCH notifications can be missed and a note will be printed
in the phy log:

[CTL.DATA_LAKE] Notify not called for 39.4 dbInsert busy

3.8. Database Administration 487



Aerial CUDA-Accelerated RAN, Release 25-1

488 Chapter 3. Aerial Data Lake



CHAPTER

FOUR

PYAERIAL

PyAerial provides a Python API towards the 5G signal processing functionality included in the Aerial cuPHY library.

4.1 Overview

As 6G research gains momentum, and with many new technologies in its purvue, one thing is clear, AI/ML will feature
prominently in the next generation RAN. It will play a pivotal role in realizing all parts of the network infrastructure
from the radio units, baseband processing, the network core including system management, orchestration and dynamic
optimization processes. GPU hardware, together with programming frameworks will be essential to realize this vision of
a software defined native-AI communication infrastructure.
The application of AI/ML in the physical layer has in particular been a hot research topic. There is a lot of emphasis on
neural network architectures and optimization strategies mostly performed in the context of simulation. The next step for
the research community and commercial system developers is to bring AI/ML applied in layer-1 to reality in over-the-air
real-time testbeds and operator-network scale systems.
This is where pyAerial enters the picture. pyAerial is a Python library of physical layer components that can be used as
part of the workflow in taking a design from simulation to real-time operation. It helps with end-to-end verification of
a neural network integration into a PHY pipeline and helps bridge the gap from the world of training and simulation in
TensorFlow/PyTorch to real-time operation in an over-the-air testbed.
The pyAerial library provides a Python-callable bit-accurate GPU-accelerated library for all of the signal processing
CUDA kernels in the NVIDIA cuBB layer-1 PDSCH and PUSCH pipelines. In other words, the pyAerial Python classes
behave in a numerically identical manner to the kernels employed in cuBB because a pyAerial class employs the exact
same CUDA code as the corresponding cuBB kernel: it is the CUDA kernel but with a Python API.
Using pyAerial library components complete layer-1 pipelines can be composed in Python. User code or inference
engines, from NVIDIA TensorRT, or custom CUDA code, can be included in the datapath as shown in the lower part of
Figure 1. This rapid prototyping design and verification flow is used for dataplane functional performance evaluation. It
is a step in the workflow for verifying a physical layer design prior to deployment in a real-time over-the-air GPU base
station.
pyAerial can also be used in conjunction with the NVIDIA data collection platformAerial Data Lake. An Aerial Data Lake
database consists of RF samples from a 7.2x fronthaul interface together with L2 meta-information to enable database
search and query operations. A pyAerial pipeline can access samples from Aerial Data Lake database using the Data Lake
Python APIs, and transform that data into training data for any function in the pipeline. Figure 2 illustrates data ingress
from a Data Lake database into a pyAerial pipeline and using standard Python file I/O to generate training data for a soft
de-mapper.

489



Aerial CUDA-Accelerated RAN, Release 25-1

4.1.1 Key Features

pyAerial has the following key features:
Feature 1: Productive Python for rapid prototyping of layer-1 pipelines
pyAerial library components are CUDA kernels with Python bindings. The productive environment of Python permits
the rapid assembly of signal processing pipelines in Python. All of the analytic and visualization aspects of Python can
be used for performance characterization, signal visualization and debugging.
Feature 2: Simulate machine learning in the physical layer before over-the-air operation
With the goal of going from model training and simulation in TensorFlow or PyTorch to real-time over-the-air operation,
pyAerial provides a convenient way to verify, evaluate and benchmark your physical layer prior to deployment in an OTA
testbed.
Feature 3: Fast simulation with CUDA optimized kernels
pyAerial library components are CUDA under the hood. Simulation is fast on a GPU. When you are simulating the
coding chain, including for example an LDPC decoder, optimized CUDA code is implementing these computationally
heavy functions.
Feature 4: Generate data sets for any node in layer-1 uplink or downlink pipeline
pyAerial is designed to be used in conjunction with the NVIDIA data collection platform Aerial Data Lake. pyAerial can
access RF samples in a Data Lake database and transform those samples into training data for all of the signal processing
functions in and uplink or downlink pipeline.
Feature 5: Bit accurate simulation
Because pyAerial is Python running on CUDA, the performance you observe in BLER and other characterization metrics
is what is identical to the performance of the real-time over-the-air system.

4.1.2 Target Audience

Industry and university researchers and developers looking to bring machine learning to the physical layer with the end
goal of benchmarking on over-the-air testbeds like NVIDIA ARC-OTA or other GPU-based base stations.

4.1.3 Value Proposition

Fast bit-accurate GPU accelerated simulation of neural-network downlink and uplink signal processing pipelines. Rapid
prototyping and functional verification of a real-time layer-1 in preparation for real-time deployment. Convenient Python
environment aids debugging and provides easy access to all nodes in the pipeline for visualization and analysis. Easy
to use Python environment for producing BLER and other statistics of interest for a real-time bit-accurate GPU layer-
1 implementation. Transform RF sample captures for over-the-air captures into data for training layer-1 functions or
compositions of multiple functions.

490 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Fig. 1: Figure 1: Using pyAerial to verify a neural pipeline context of a full uplink pipeline. This is one of the verification
steps to moving to real-time operation over-the-air on a GPU base station.

Fig. 2: Figure 2: pyAerial is used in conjunction with the NVIDIA data collection platform Aerial Data Lake to build
training data sets for any node in the layer-1 downlink or uplink signal processing pipeline. The example shows a Data
Lake database of over-the-air samples transformed into training data for a neural network soft de-mapper, using pyAerial.
Data gets extracted at the input and output of the de-mapper, and stored in the database.

4.1. Overview 491



Aerial CUDA-Accelerated RAN, Release 25-1

4.1.4 Release Notes

Release version: 25-1
• New in this release:

– CuPy-based API, in addition to the existing Numpy-based API
∗ Significantly reduce copies between GPU and host memory
∗ Improve interoperability with other frameworks supporting the CUDA array interface (PyTorch, Numba,

etc.)
– Configuration classes for configuring pyAerial pipelines and components
– SRS transmitter and receiver pipelines
– SRS example notebook
– CRC encoding

• Supported configurations:
– AX800, A100X and A100 GPUs with the x86 platform.

∗ CUDA Toolkit: 12.8
∗ GPU Driver: 570.124.06

– Limited support on the Grace Hopper platform: The pyAerial Python package is supported, but the container
does not include TensorFlow or Sionna. Thus, for example only the Aerial Data Lake example notebooks can
be run on the Grace Hopper platform.

• Complete list of supported features:
– Python API to the cuPHY library. This includes currently the following features:

∗ PUSCH receiver pipeline
∗ PDSCH transmission pipeline
∗ CSI-RS transmission pipeline
∗ Channel estimation (note: The RKHS algorithm supported by cuPHY is currently not exposed through

the pyAerial API)
∗ Noise and interference estimation
∗ Channel equalization and soft demapping
∗ RSRP and pre- and post-equalizer SINR estimation
∗ Carrier frequency offset and timing advance estimation
∗ LDPC encoding
∗ LDPC decoding
∗ LDPC rate matching and derate matching
∗ CRC encoding
∗ CRC checking
∗ SRS transmission pipeline
∗ SRS channel estimation
∗ TensorRT inference engine

492 Chapter 4. pyAerial

https://cupy.dev/
https://docs.cupy.dev/en/stable/user_guide/interoperability.html


Aerial CUDA-Accelerated RAN, Release 25-1

– OFDM fading channel simulation

4.2 Getting Started with pyAerial

4.2.1 Pre-requisites

Running pyAerial requires its own container, which also contains machine learning tools commonly used together with
pyAerial:

• NVIDIA Sionna (version 0.19.0)
• NVIDIA TensorRT (version 10.6.0)
• TensorFlow (version 2.15.1)

To create and launch the pyAerial container, the following are needed:
• NVIDIA Aerial CUDA-Accelerated RAN container, see instructions here.
• Docker installation, see instructions here.
• HPC Container Maker (HPCCM) installation

The source code needs to be copied from the NVIDIA Aerial CUDA-Accelerated RAN container to a directory outside
the container. The source code can be copied into the cuBB directory as follows (for example, see the note below):

docker run --rm -d --name cuBB <container image file>
docker cp cuBB:/opt/nvidia/cuBB cuBB
docker stop cuBB
cd cuBB

Note

The first command above can be omitted if the container is already running. Similarly, the stop command can be
omitted if one wishes to keep the cuBB container running. The above example is showing one way of copying the
source code from within the container into a directory outside the container.

The HPC Container Maker can be installed as follows:

pip install hpccm

4.2.2 Installing pyAerial

Once the above pre-requisites are fulfilled, the pyAerial container is built using the following script:

export cuBB_SDK=`pwd`
AERIAL_BASE_IMAGE=<container image file> $cuBB_SDK/pyaerial/container/build.sh

The container can then be launched using the following script:

$cuBB_SDK/pyaerial/container/run.sh

Once the container is running, pyAerial can be built and installed as follows (these commands are issued inside the pyAerial
container):

4.2. Getting Started with pyAerial 493

https://developer.nvidia.com/sionna
https://developer.nvidia.com/tensorrt
https://www.tensorflow.org/
https://www.docker.com/
https://github.com/NVIDIA/hpc-container-maker


Aerial CUDA-Accelerated RAN, Release 25-1

cd $cuBB_SDK
cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -DNVIPC_
↪→FMTLOG_ENABLE=OFF -DASIM_CUPHY_SRS_OUTPUT_FP32=ON
cmake --build build -t _pycuphy pycuphycpp
./pyaerial/scripts/install_dev_pkg.sh

Note

Note that pyAerial, similarly to Aerial cuPHY, is by default built for GPUs with compute capabilities 8.0 or 9.0, and
these are also what pyAerial has been tested against. There is no guarantee that pyAerial will work correctly with other
GPUs. However, pyAerial can be built for other compute capabilities with an additional cmake option, for example
for CC 8.9:
cmake -Bbuild -GNinja -DCMAKE_TOOLCHAIN_FILE=cuPHY/cmake/toolchains/native -DNVIPC_
↪→FMTLOG_ENABLE=OFF -DCMAKE_CUDA_ARCHITECTURES="89"

4.2.3 Testing the installation

To test that the installation works, the example Jupyter notebooks can be run as described below. Alternatively, the unit
tests can be run as follows:

$cuBB_SDK/pyaerial/scripts/run_unit_tests.sh

Note : Unit tests are based on Aerial CUDA-Accelerated RAN test vectors. Those need to be mounted within the pyAerial
container, and environment variable TEST_VECTOR_DIR set to point to the test vector directory. Refer to the Aerial
CUDA-Accelerated RAN documentation on how to generate the test vectors.
One simple way to test the installation is to run (within the pyAerial container):

python3 -c "import aerial"

which should pass without errors.

4.2.4 Running the example Jupyter notebooks

NVIDIA pyAerial contains a number of example notebooks in Jupyter notebook format. The Jupyter notebooks can be
run interactively within the pyAerial container using JupyterLab. This is done by starting a JupyterLab server as follows:

cd $cuBB_SDK/pyaerial/notebooks
jupyter lab --ip=0.0.0.0

and then pointing the browser to the given address. Note that the Aerial Data Lake notebooks require require the example
database to be created first. Refer to Aerial Data Lake documentation on how to start the clickhouse server and create
the example database.
Pre-executed versions of the notebooks are found here: Examples of Using pyAerial.

494 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3 Examples of Using pyAerial

We provide a number of examples of using NVIDIA pyAerial for GPU-accelerated 5G NR signal processing, and for
machine learning experiments. The examples are in Jupyter notebook format. The notebooks here are pre-executed, but
they can be also interactively run following the instructions in Getting Started with pyAerial.

Note

Note that when running the notebooks, exceptions are not always displayed in Jupyter notebooks the way that it would
be if a python script had been run, so in some cases it can be easier to convert the notebook to a script and run that.
This can be done as follows:
jupyter nbconvert --to script <notebook_name>.ipynb

To interact with the data and code in place, specific lines can be debugged by adding breakpoint() inline.

4.3.1 Running a PUSCH link simulation

The first example shows how to use pyAerial for modeling 5G NR compliant PUSCH transmission and reception. In
this example, the whole PUSCH pipeline is modeled within pyAerial, using the cuPHY library as a backend for GPU
acceleration.
The notebook shows two ways of running the PUSCH receiver pipeline: In the first, the user only needs to make a single
call using the Python API, and the whole PUSCH receiver is run. In the other, the PUSCH receiver pipeline is split into
its different receiver components, each called separately using the Python API. This approach enables replacing any of the
PUSCH receiver components for example by an AI/ML model, and benchmarking that against the conventional receiver.
NVIDIA Sionna is used in the example for radio channel modeling.

Using pyAerial to run a PUSCH link simulation

This example shows how to use the pyAerial cuPHY Python bindings to run a PUSCH link simulation. PUSCH transmit-
ter is emulated by PDSCH transmission with properly chosen parameters, that way making it a 5G NR compliant PUSCH
transmission. Building a PUSCH receiver using pyAerial is demonstrated in two ways, first by using a fully fused, com-
plete, PUSCH receiver called from Python using just a single function call. The same is then achieved by building the
complete PUSCH receiver using individual separate Python function calls to individual PUSCH receiver components.
The NVIDIA Sionna library is utilized for simulating the radio channel based on 3GPP channel models.

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

4.3. Examples of Using pyAerial 495

https://nvlabs.github.io/sionna/


Aerial CUDA-Accelerated RAN, Release 25-1

Imports

[2]: %matplotlib widget
import datetime
from collections import defaultdict
import os
import time
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.

import numpy as np
import cupy as cp
import sionna
import tensorflow as tf

from aerial.phy5g.pdsch import PdschTx
from aerial.phy5g.pdsch import PdschTxPipelineFactory
from aerial.phy5g.pusch import PuschRx
from aerial.phy5g.pusch import PuschRxPipelineFactory
from aerial.phy5g.pusch import SeparablePuschRx
from aerial.phy5g.pusch import SeparablePuschRxPipelineFactory
from aerial.phy5g.config import AerialPuschRxConfig
from aerial.phy5g.config import AerialPdschTxConfig
from aerial.phy5g.config import PdschConfig
from aerial.phy5g.config import PdschUeConfig
from aerial.phy5g.config import PdschCwConfig
from aerial.phy5g.config import PuschConfig
from aerial.phy5g.config import PuschUeConfig
from aerial.phy5g.ldpc import get_mcs
from aerial.phy5g.ldpc import get_tb_size
from aerial.phy5g.ldpc import random_tb
from aerial.util.cuda import get_cuda_stream
from aerial.pycuphy.types import PuschLdpcKernelLaunch
from simulation_monitor import SimulationMonitor

# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

Parameters

Set simulation parameters, numerology, PUSCH parameters and channel parameters here.

[3]: # Simulation parameters.
use_cupy = True # Use NumPy or CuPy - with NumPy there are H2D/D2H copies between␣
↪→every PUSCH receiver component, resulting in slower simulation.
esno_db_range = np.arange(-5.4, -4.4, 0.2)
num_slots = 10000
min_num_tb_errors = 250

# Numerology and frame structure. See TS 38.211.
num_ofdm_symbols = 14

(continues on next page)

496 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
fft_size = 4096
cyclic_prefix_length = 288
subcarrier_spacing = 30e3
num_guard_subcarriers = (410, 410)
num_slots_per_frame = 20

# System/gNB configuration
num_tx_ant = 1 # UE antennas
num_rx_ant = 2 # gNB antennas
cell_id = 41 # Physical cell ID
enable_pusch_tdi = 0 # Enable time interpolation for equalizer coefficients
eq_coeff_algo = 1 # Equalizer algorithm

# PUSCH configuration
rnti = 1234 # UE RNTI
scid = 0 # DMRS scrambling ID
data_scid = 0 # Data scrambling ID
layers = 1 # Number of layers
mcs_index = 2 # MCS index as per TS 38.214 table. Note: Es/No range may␣
↪→need to be changed too to get meaningful results.
mcs_table = 0 # MCS table index
dmrs_ports = 1 # Used DMRS port.
start_prb = 0 # Start PRB index.
num_prbs = 273 # Number of allocated PRBs.
start_sym = 2 # Start symbol index.
num_symbols = 12 # Number of symbols.
dmrs_scrm_id = 41 # DMRS scrambling ID
dmrs_syms = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] # Indicates which symbols are␣
↪→used for DMRS.
dmrs_max_len = 1
dmrs_add_ln_pos = 0
num_dmrs_cdm_grps_no_data = 2
mod_order, code_rate = get_mcs(mcs_index, mcs_table+1) # Different indexing for MCS␣
↪→table.
tb_size = get_tb_size(mod_order, code_rate, dmrs_syms, num_prbs, start_sym, num_
↪→symbols, layers) # TB size in bits

# Channel parameters
carrier_frequency = 3.5e9 # Carrier frequency in Hz.
delay_spread = 100e-9 # Nominal delay spread in [s]. Please see the CDL␣
↪→documentation

# about how to choose this value.
link_direction = "uplink"
channel_model = "Rayleigh" # Channel model: Suitable values:

# "Rayleigh" - Rayleigh block fading channel model (sionna.
↪→channel.RayleighBlockFading)

# "CDL-x", where x is one of ["A", "B", "C", "D", "E"] -␣
↪→for 3GPP CDL channel models

# as per TR 38.901.
speed = 0.8333 # UE speed [m/s]. The direction of travel will chosen␣
↪→randomly within the x-y plane.

4.3. Examples of Using pyAerial 497



Aerial CUDA-Accelerated RAN, Release 25-1

Create the pipelines

As mentioned, PUSCH transmission is emulated here by the PDSCH transmission chain. Note that the static cell param-
eters and static PUSCH parameters are given upon creating the PUSCH transmission/reception objects. Dynamically
(per slot) changing parameters are however set when actually running the transmission/reception, see further below.

[4]: cuda_stream = get_cuda_stream()

# PDSCH configuration objects. PDSCH transmitter emulates PUSCH transmission here.
# Note that default values are used for some parameters not given here.
pdsch_cw_config = PdschCwConfig(

mcs_table=mcs_table,
mcs_index=mcs_index,
code_rate=int(code_rate * 10),
mod_order=mod_order

)
pdsch_ue_config = PdschUeConfig(

cw_configs=[pdsch_cw_config],
scid=scid,
layers=layers,
dmrs_ports=dmrs_ports,
rnti=rnti,
data_scid=data_scid

)
pdsch_config = PdschConfig(

ue_configs=[pdsch_ue_config],
num_dmrs_cdm_grps_no_data=num_dmrs_cdm_grps_no_data,
dmrs_scrm_id=dmrs_scrm_id,
start_prb=start_prb,
num_prbs=num_prbs,
dmrs_syms=dmrs_syms,
start_sym=start_sym,
num_symbols=num_symbols

)

pdsch_tx_config = AerialPdschTxConfig(
cell_id=cell_id,
num_tx_ant=num_tx_ant

)

# Transmitter pipeline.
tx_pipeline = PdschTxPipelineFactory().create(pdsch_tx_config, cuda_stream)

# PUSCH configuration objects. Note that default values are used for some parameters
# not given here.
pusch_ue_config = PuschUeConfig(

scid=scid,
layers=layers,
dmrs_ports=dmrs_ports,
rnti=rnti,
data_scid=data_scid,
mcs_table=mcs_table,
mcs_index=mcs_index,
code_rate=int(code_rate * 10),
mod_order=mod_order,
tb_size=tb_size // 8

)

(continues on next page)

498 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=num_dmrs_cdm_grps_no_data,
dmrs_scrm_id=dmrs_scrm_id,
start_prb=start_prb,
num_prbs=num_prbs,
dmrs_syms=dmrs_syms,
dmrs_max_len=dmrs_max_len,
dmrs_add_ln_pos=dmrs_add_ln_pos,
start_sym=start_sym,
num_symbols=num_symbols

)]

pusch_rx_config = AerialPuschRxConfig(
cell_id=cell_id,
num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
ldpc_kernel_launch=PuschLdpcKernelLaunch.PUSCH_RX_LDPC_STREAM_SEQUENTIAL

)

cases = {
"Fused": PuschRxPipelineFactory,
"Separable": SeparablePuschRxPipelineFactory

}

pipelines = {}
for name, factory in cases.items():

pipelines[name] = factory().create(pusch_rx_config, cuda_stream)

Channel generation using Sionna

Simulating the transmission through the radio channel takes advantage of the channel model implementations available in
NVIDIA Sionna. In Sionna, the transmission can be simulated directly in frequency domain by defining a resource grid.
In our case, reference signal patterns and data carrying resource elements are defined elsewhere within the Aerial code,
hence we define resource grid as a simple dummy grid containing only data symbols.
See also: Sionna documentation

[5]: # Define the resource grid.
resource_grid = sionna.ofdm.ResourceGrid(

num_ofdm_symbols=num_ofdm_symbols,
fft_size=fft_size,
subcarrier_spacing=subcarrier_spacing,
num_tx=1,
num_streams_per_tx=1,
cyclic_prefix_length=cyclic_prefix_length,
num_guard_carriers=num_guard_subcarriers,
dc_null=False,
pilot_pattern=None,
pilot_ofdm_symbol_indices=None

)
resource_grid_mapper = sionna.ofdm.ResourceGridMapper(resource_grid)
remove_guard_subcarriers = sionna.ofdm.RemoveNulledSubcarriers(resource_grid)

(continues on next page)

4.3. Examples of Using pyAerial 499

https://nvlabs.github.io/sionna/index.html


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Define the antenna arrays.
ue_array = sionna.channel.tr38901.Antenna(

polarization="single",
polarization_type="V",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)
gnb_array = sionna.channel.tr38901.AntennaArray(

num_rows=1,
num_cols=int(num_rx_ant/2),
polarization="dual",
polarization_type="cross",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)

if channel_model == "Rayleigh":
ch_model = sionna.channel.RayleighBlockFading(

num_rx=1,
num_rx_ant=num_rx_ant,
num_tx=1,
num_tx_ant=num_tx_ant

)

elif "CDL" in channel_model:
cdl_model = channel_model[-1]

# Configure a channel impulse reponse (CIR) generator for the CDL model.
ch_model = sionna.channel.tr38901.CDL(

cdl_model,
delay_spread,
carrier_frequency,
ue_array,
gnb_array,
link_direction,
min_speed=speed

)
else:

raise ValueError(f"Invalid channel model {channel_model}!")

channel = sionna.channel.OFDMChannel(
ch_model,
resource_grid,
add_awgn=True,
normalize_channel=True,
return_channel=False

)

def apply_channel(tx_tensor, No):
"""Transmit the Tx tensor through the radio channel."""
# Add batch and num_tx dimensions that Sionna expects and reshape.
tx_tensor = tf.transpose(tx_tensor, (2, 1, 0))
tx_tensor = tf.reshape(tx_tensor, (1, -1))[None, None]
tx_tensor = resource_grid_mapper(tx_tensor)
rx_tensor = channel((tx_tensor, No))
rx_tensor = remove_guard_subcarriers(rx_tensor)

(continues on next page)

500 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
rx_tensor = rx_tensor[0, 0]
rx_tensor = tf.transpose(rx_tensor, (2, 1, 0))
return rx_tensor

Run the actual simulation

Here we loop across the Es/No range, and simulate a number of slots for each Es/No value. A single transport block is
simulated within a slot. The simulation starts over from the next Es/No value when a minimum number of transport block
errors is reached.

[6]: monitor = SimulationMonitor(cases, esno_db_range)
exec_times = dict.fromkeys(cases, 0)

# Loop the Es/No range.
bler = []
for esno_db in esno_db_range:

monitor.step(esno_db)
num_tb_errors = defaultdict(int)

# Run multiple slots and compute BLER.
for slot_idx in range(num_slots):

slot_number = slot_idx % num_slots_per_frame

# Get random transport block.
tb_input_np = random_tb(mod_order, code_rate, dmrs_syms, num_prbs, start_sym,␣

↪→num_symbols, layers)

if use_cupy:
tb_input = cp.array(tb_input_np, dtype=cp.uint8, order='F')

else:
tb_input = tb_input_np

# Transmit PUSCH. This is where we set the dynamically changing parameters.
# Input parameters are given as lists as the interface supports multiple UEs.
tx_tensor = tx_pipeline(

slot=slot_number,
tb_inputs=[tb_input],
config=[pdsch_config]

)

# Channel transmission using TF and Sionna. Note: Some conversions are␣
↪→necessary if we are

# using NumPy-based API.
No = pow(10., -esno_db / 10.)
if use_cupy:

tx_tensor = tf.experimental.dlpack.from_dlpack(tx_tensor.toDlpack())
rx_tensor = apply_channel(tx_tensor, No)

if use_cupy:
rx_tensor = tf.experimental.dlpack.to_dlpack(rx_tensor)
rx_tensor = cp.from_dlpack(rx_tensor)

else:
rx_tensor = np.array(rx_tensor)

# Run the PUSCH receiver pipelines.
(continues on next page)

4.3. Examples of Using pyAerial 501



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# Note that this is where we set the dynamically changing parameters.
for name, pipeline in pipelines.items():

start_time = time.time()
tb_crcs, tbs = pipeline(

slot=slot_number,
rx_slot=rx_tensor,
config=pusch_configs

)
exec_times[name] += time.time() - start_time
num_tb_errors[name] += int(np.array_equal(tbs[0], tb_input_np) == False)

monitor.update(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
if (np.array(list(num_tb_errors.values())) >= min_num_tb_errors).all():

break # Next Es/No value.

monitor.finish_step(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
monitor.finish()

Fused Separable
-------------------- --------------------

Es/No (dB) TBs TB Errors BLER TB Errors BLER ms/TB
==================== ==================== ==================== ========

-5.40 250 250 1.0000 250 1.0000 25.8
-5.20 255 251 0.9843 250 0.9804 23.6
-5.00 566 262 0.4629 250 0.4417 23.4
-4.80 10000 141 0.0141 148 0.0148 23.6
-4.60 10000 1 0.0001 0 0.0000 23.5

502 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

[7]: exec_times = {k : v / (num_slots * len(esno_db_range)) for k, v in exec_times.items()}
print("Average execution times:")
for name, exec_time in exec_times.items():

print(f"{name}: {exec_time * 1000: .2f} ms.")

Average execution times:
Fused: 0.36 ms.
Separable: 1.02 ms.

4.3. Examples of Using pyAerial 503



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.2 LDPC encoding-decoding chain

The second example gives an example of using cuPHY’s GPU accelerated 5G NR LDPC encoding and decoding chain
(including also rate matching) modules through the pyAerial Python API. The encoding/decoding modules are expected to
be useful for example in AI/ML model validation when implementing some parts of the receiver using machine learning.

Using pyAerial for LDPC encoding-decoding chain

This example shows how to use the pyAerial Python bindings to run 5G NR LDPC encoding, rate matching and decoding.
Information bits, i.e. a transport block, get segmented into code blocks, LDPC encoded and rate matched onto the
available time-frequency resources (resource elements), all following TS 38.212 precisely. The bits are then transmitted
over an AWGN channel using QPSK modulation. At the receiver side, log likelihood ratios are extracted from the received
symbols, (de)rate matching is performed and LDPC decoder is run to get the transmitted information bits. Finally, the
code blocks are concatenated back into a received transport block.
pyAerial utilizes the cuPHY library underneath for all components. In this example however, CRCs are just random
blocks of bits in this example as we can compare the transmitted and received bits directly to compute block error rates.
The NVIDIA Sionna library is utilized for simulating the radio channel.

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

Imports

[2]: %matplotlib widget
from cuda import cudart
from collections import defaultdict
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.

import numpy as np
import sionna
import tensorflow as tf

from aerial.phy5g.ldpc import LdpcEncoder
from aerial.phy5g.ldpc import LdpcDecoder
from aerial.phy5g.ldpc import LdpcRateMatch
from aerial.phy5g.ldpc import LdpcDeRateMatch
from aerial.phy5g.ldpc import CrcEncoder
from aerial.phy5g.ldpc import CrcChecker
from aerial.phy5g.ldpc import get_mcs
from aerial.phy5g.ldpc import random_tb
from simulation_monitor import SimulationMonitor

# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

(continues on next page)

504 Chapter 4. pyAerial

https://nvlabs.github.io/sionna/


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
from tensorflow.python.ops.numpy_ops import np_config
np_config.enable_numpy_behavior()

Parameters

Set simulation parameters, some numerology parameters, enable/disable scrambling etc.

[3]: # Simulation parameters.
esno_db_range = np.arange(8.1, 8.8, 0.1)
num_slots = 10000
min_num_tb_errors = 250

# Numerology and frame structure. See TS 38.211.
num_prb = 100 # Number of allocated PRBs. This is used to compute the␣
↪→transport block

# as well as the rate matching length.
start_sym = 0 # PxSCH start symbol
num_symbols = 14 # Number of symbols in a slot.
num_slots_per_frame = 20 # Number of slots in a single frame.
num_layers = 1
dmrs_sym = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]

# Rate matching procedure includes scrambling if this flag is set.
enable_scrambling = True

# The scrambling initialization value is computed as per TS 38.211
# using the RNTI and data scrambling ID.
rnti = 20000 # UE RNTI
data_scid = 41 # Data scrambling ID
cinit = (rnti << 15) + data_scid

rv = 0 # Redundancy version
mcs = 9 # MCS index as per TS 38.214 table. Note: Es/No range may␣
↪→need to be changed too to get meaningful results.

mod_order, code_rate = get_mcs(mcs)
code_rate /= 1024.

Create the LDPC coding chain objects

The LDPC coding chain objects are created here. This includes the following:
• CrcEncoder which takes the information bits, i.e. the transport block, attaches a transport block CRC into it,

segments the TB into code blocks and adds code block CRCs.
• LdpcEncoder which takes the code blocks from CrcEncoder as its input, and outputs LDPC encoded code

blocks.
• LdpcRateMatchwhich takes encoded code blocks as its input and outputs a rate matched (and optionally scram-

bled) stream of bits.
• LdpcDerateMatchwhich takes the received stream of log-likelihood ratios (LLRs) as its input and outputs der-

ate matched code blocks of LLRs which can be fed to the LDPC decoding. This block performs also descrambling
if scrambling is enabled in the pipeline.

4.3. Examples of Using pyAerial 505



Aerial CUDA-Accelerated RAN, Release 25-1

• LdpcDecoder which takes the output of LDPC derate matching and decodes the LLRs into code blocks that
can then be further concatenated into a received transport block.

• CrcChecker which takes the output of the LDPC decoding block, checks and removes code block CRCs, con-
catenates code blocks into a full transport block, and finally checks and removed the transport block CRC.

All components are based on TS 38.212 and thus can be used for transmitting/receiving 5G NR compliant bit streams.
Also the Sionna channel components and modulation mapper are created here.

[4]: # Create also the CUDA stream that running the objects requires.
cudart.cudaSetDevice(0)
cuda_stream = cudart.cudaStreamCreate()[1]
cudart.cudaStreamSynchronize(cuda_stream)

# Create the Aerial Python LDPC objects.
crc_encoder = CrcEncoder(cuda_stream=cuda_stream)
ldpc_encoder = LdpcEncoder(cuda_stream=cuda_stream)
ldpc_decoder = LdpcDecoder(cuda_stream=cuda_stream)
ldpc_rate_match = LdpcRateMatch(enable_scrambling=enable_scrambling, cuda_stream=cuda_
↪→stream)
ldpc_derate_match = LdpcDeRateMatch(enable_scrambling=enable_scrambling, cuda_
↪→stream=cuda_stream)
crc_checker = CrcChecker(cuda_stream=cuda_stream)

# Create the Sionna modulation mapper/demapper and the AWGN channel.
mapper = sionna.mapping.Mapper("qam", mod_order)
demapper = sionna.mapping.Demapper("app", "qam", mod_order)
channel = sionna.channel.AWGN()

Main simulation loop

[5]: case = "LDPC decoding perf."
monitor = SimulationMonitor([case], esno_db_range)

# Loop the Es/No range.
for esno_db in esno_db_range:

monitor.step(esno_db)
num_tb_errors = defaultdict(int)

# Run multiple slots and compute BLER.
for slot_idx in range(num_slots):

slot_number = slot_idx % num_slots_per_frame

# Generate a random transport block (in bits).
transport_block = random_tb(

mod_order=mod_order,
code_rate=code_rate * 1024,
dmrs_syms=dmrs_sym,
num_prbs=num_prb,
start_sym=start_sym,
num_symbols=num_symbols,
num_layers=num_layers,
return_bits=False

)

(continues on next page)

506 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
tb_size = transport_block.shape[0] * 8

# Run transport block CRC encoding, code block segmentation and code block␣
↪→CRC encoding.

code_blocks = crc_encoder.encode(
tb_input=transport_block,
tb_sizes=[tb_size],
code_rates=[code_rate]

)

# Run the LDPC encoding. The LDPC encoder takes a K x C array as its input,␣
↪→where K is the number of bits per code

# block and C is the number of code blocks. Its output is N x C where N is␣
↪→the number of coded bits per code block.

# If there is more than one code block, a code block CRC (random in this case␣
↪→as we do not need an actual CRC) is

# attached to
coded_bits = ldpc_encoder.encode(

input_data=code_blocks,
tb_size=tb_size,
code_rate=code_rate,
redundancy_version=rv

)

# Run rate matching. This needs rate matching length as its input, meaning␣
↪→the number of bits that can be

# transmitted within the allocated resource elements. The input data is fed␣
↪→as 32-bit floats.

num_data_sym = (np.array(dmrs_sym[start_sym:start_sym + num_symbols]) == 0).
↪→sum()

rate_match_len = num_data_sym * num_prb * 12 * num_layers * mod_order
rate_matched_bits = ldpc_rate_match.rate_match(

input_data=coded_bits,
tb_size=tb_size,
code_rate=code_rate,
rate_match_len=rate_match_len,
mod_order=mod_order,
num_layers=num_layers,
redundancy_version=rv,
cinit=cinit

)

# Map the bits to symbols and transmit through an AWGN channel. All this in␣
↪→Sionna.

no = sionna.utils.ebnodb2no(esno_db, num_bits_per_symbol=1, coderate=1)
tx_symbols = mapper(rate_matched_bits[None])
rx_symbols = channel([tx_symbols, no])
llr = -1. * demapper([rx_symbols, no])[0, :].numpy()[:, None]

# Run receiver side (de)rate matching. The input is the received array of␣
↪→bits directly, and the output

# is a NumPy array of size N x C of log likelihood ratios, represented as 32-
↪→bit floats. Descrambling

# is also performed here in case scrambling is enabled.
derate_matched_bits = ldpc_derate_match.derate_match(

input_llrs=[llr],
tb_sizes=[tb_size],

(continues on next page)

4.3. Examples of Using pyAerial 507



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
code_rates=[code_rate],
rate_match_lengths=[rate_match_len],
mod_orders=[mod_order],
num_layers=[num_layers],
redundancy_versions=[rv],
ndis=[1],
cinits=[cinit]

)

# Run LDPC decoding. The decoder takes the derate matching output as its␣
↪→input and returns

decoded_bits = ldpc_decoder.decode(
input_llrs=derate_matched_bits,
tb_sizes=[tb_size],
code_rates=[code_rate],
redundancy_versions=[rv],
rate_match_lengths=[rate_match_len]

)

# Combine code blocks into a transport block. CRC ignored as it was just␣
↪→random bits in this example.

decoded_tb, _ = crc_checker.check_crc(
input_bits=decoded_bits,
tb_sizes=[tb_size],
code_rates=[code_rate]

)

tb_error = not np.array_equal(decoded_tb[0], transport_block)
num_tb_errors[case] += tb_error
monitor.update(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
if (np.array(list(num_tb_errors.values())) >= min_num_tb_errors).all():

break # Next Es/No value.

monitor.finish_step(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
monitor.finish()

LDPC decoding perf.
--------------------

Es/No (dB) TBs TB Errors BLER ms/TB
==================== ==================== ========

8.10 250 250 1.0000 22.2
8.20 252 250 0.9921 16.5
8.30 311 250 0.8039 16.4
8.40 756 250 0.3307 16.4
8.50 4164 250 0.0600 16.4
8.60 10000 52 0.0052 16.5
8.70 10000 3 0.0003 16.5
8.80 10000 0 0.0000 16.4

508 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.3 Sounding reference signal transmission and reception

This example shows how to use the pyAerial sounding reference signal (SRS) transmission and reception pipelines. The
SRS transmission pipeline is used to generate SRS signals from a UE following the 3GPP specifications. The SRS trans-
missions are then fed through the radio channel, and the SRS receiver pipeline is used to obtain the channel sounding
estimates. Both pipelines utilize cuPHY as their backend.
NVIDIA Sionna is used in the example for radio channel modeling.

Using pyAerial to run 5G sounding reference signal transmission and reception

This example shows how to use the pyAerial cuPHY Python bindings to run sounding reference signal (SRS) transmission
and reception using the pyAerial SRS transmitter and receiver pipelines.
The NVIDIA Sionna library is utilized for simulating the radio channel based on 3GPP channel models.

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

4.3. Examples of Using pyAerial 509

https://nvlabs.github.io/sionna/


Aerial CUDA-Accelerated RAN, Release 25-1

Imports

[2]: %matplotlib widget
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.

import cupy as cp
import numpy as np
import matplotlib.pyplot as plt
import sionna
import tensorflow as tf

from aerial.phy5g.srs import SrsTx
from aerial.phy5g.srs import SrsRx
from aerial.phy5g.srs import SrsTxConfig
from aerial.phy5g.srs import SrsRxConfig
from aerial.phy5g.srs import SrsConfig
from aerial.phy5g.srs import SrsRxUeConfig
from aerial.phy5g.srs import SrsRxCellConfig
from aerial.util.cuda import get_cuda_stream

# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

Simulation parameters

[3]: esno_db = 40

# Numerology and frame structure. See TS 38.211.
num_symb_per_slot = 14
fft_size = 4096
cyclic_prefix_length = 288
subcarrier_spacing = 30e3
num_guard_subcarriers = (410, 410)
num_slots_per_frame = 20
srs_symbols = [13]

# Channel parameters
num_ue_tx_ant = 1
num_gnb_rx_ant = 4
carrier_frequency = 3.5e9 # Carrier frequency in Hz.
delay_spread = 100e-9 # Nominal delay spread in [s]. Please see the CDL␣
↪→documentation

# about how to choose this value.
link_direction = "uplink"
channel_model = "CDL-D" # Channel model: Suitable values:

# "Rayleigh" - Rayleigh block fading channel model (sionna.
↪→channel.RayleighBlockFading)

# "CDL-x", where x is one of ["A", "B", "C", "D", "E"] -␣
↪→for 3GPP CDL channel models

# as per TR 38.901.

(continues on next page)

510 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
speed = 0.8333 # UE speed [m/s]. The direction of travel will chosen␣
↪→randomly within the x-y plane.

Build the pipelines

We build the SRS transmitter and receiver pipeline objects here.

[4]: # Generate a CUDA stream for running the whole thing.
cuda_stream = get_cuda_stream()

srs_tx = SrsTx(
num_max_srs_ues=1, # Maximum number of UEs for which this object␣

↪→will handle SRS Tx. Here just one.
num_slot_per_frame=num_slots_per_frame,
num_symb_per_slot=num_symb_per_slot,
cuda_stream=cuda_stream

)

srs_rx = SrsRx(
num_rx_ant=[num_gnb_rx_ant], # A list, one element per cell.
chest_algo_idx=0, # MMSE.
enable_delay_offset_correction=1,
chest_params=None, # Use defaults.
num_max_srs_ues=1, # Maximum number of UEs for which this object␣

↪→will handle SRS Rx.
cuda_stream=cuda_stream

)

Sounding reference signal and SRS Tx and Rx pipeline slot configurations

Define the SRS signal configuration for the slot, as well as the slot configurations for the SRS Tx and Rx pipelines built
above. These are the dynamic configurations that depend on slot and frame index, and other parameters.
The SRS signal parameters follow essentially the 3GPP specifications, 3GPP TS 38.211 in particular.

[5]: # Slot and frame indices.
frame = 0
slot = 0

# SRS signal configuration. Just one UE.
srs_config = SrsConfig(

num_ant_ports=1,
num_syms=len(srs_symbols),
num_repetitions=1,
comb_size=2,
start_sym=srs_symbols[0],
sequence_id=0,
config_idx=63,
bandwidth_idx=0,
comb_offset=0,
cyclic_shift=0,
frequency_position=0,
frequency_shift=0,

(continues on next page)

4.3. Examples of Using pyAerial 511



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
frequency_hopping=0,
resource_type=0,
periodicity=1,
offset=0,
group_or_sequence_hopping=0

)

# UE SRS transmitter pipeline slot configuration. One UE, one SRS signal␣
↪→configuration.
srs_tx_config = SrsTxConfig(

slot=slot,
frame=frame,
srs_configs=[srs_config]

)

# gNB SRS receiver pipeline slot configuration
# - UEs from which SRS are received
srs_rx_ue_config = SrsRxUeConfig(

cell_idx=0, # Cell association.
srs_config=srs_config, # SRS signal␣

↪→configuration.
srs_ant_port_to_ue_ant_map=np.zeros(1, dtype=np.uint8), # Mapping to UE antennas.
prg_size=2, # PRB group size.
start_prg=0, # Start PRB group.
num_prgs=136 # 273 // prg_size.

)

# - Cells handled by this pipeline.
srs_rx_cell_config = SrsRxCellConfig(

slot=slot,
frame=frame,
srs_start_sym=srs_symbols[0],
num_srs_sym=len(srs_symbols)

)

# - The actual slot configuration.
srs_rx_config = SrsRxConfig(

srs_cell_configs=[srs_rx_cell_config],
srs_ue_configs=[srs_rx_ue_config]

)

Channel generation using Sionna

Simulating the transmission through the radio channel takes advantage of the channel model implementations available in
NVIDIA Sionna. In Sionna, the transmission can be simulated directly in frequency domain by defining a resource grid.
We define the resource grid as a simple dummy grid containing only data symbols as the SRS are defined elsewhere in
the code.
See also: Sionna documentation

[6]: # Define the resource grid.
resource_grid = sionna.ofdm.ResourceGrid(

num_ofdm_symbols=len(srs_symbols), # Simulate just the SRS symbols.
fft_size=fft_size,
subcarrier_spacing=subcarrier_spacing,

(continues on next page)

512 Chapter 4. pyAerial

https://nvlabs.github.io/sionna/index.html


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
num_tx=num_ue_tx_ant,
num_streams_per_tx=1,
cyclic_prefix_length=cyclic_prefix_length,
num_guard_carriers=num_guard_subcarriers,
dc_null=False,
pilot_pattern=None,
pilot_ofdm_symbol_indices=None

)
resource_grid_mapper = sionna.ofdm.ResourceGridMapper(resource_grid)
remove_guard_subcarriers = sionna.ofdm.RemoveNulledSubcarriers(resource_grid)

# Define the antenna arrays.
ue_array = sionna.channel.tr38901.Antenna(

polarization="single",
polarization_type="V",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)
gnb_array = sionna.channel.tr38901.AntennaArray(

num_rows=1,
num_cols=int(num_gnb_rx_ant/2),
polarization="dual",
polarization_type="cross",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)

if channel_model == "Rayleigh":
ch_model = sionna.channel.RayleighBlockFading(

num_rx=1,
num_rx_ant=num_gnb_rx_ant,
num_tx=1,
num_tx_ant=num_ue_tx_ant

)

elif "CDL" in channel_model:
cdl_model = channel_model[-1]

# Configure a channel impulse reponse (CIR) generator for the CDL model.
ch_model = sionna.channel.tr38901.CDL(

cdl_model,
delay_spread,
carrier_frequency,
ue_array,
gnb_array,
link_direction,
min_speed=speed

)
else:

raise ValueError(f"Invalid channel model {channel_model}!")

ofdm_channel = sionna.channel.OFDMChannel(
ch_model,
resource_grid,
add_awgn=True,
normalize_channel=True,
return_channel=True

(continues on next page)

4.3. Examples of Using pyAerial 513



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
)

def apply_channel(tx_tensor, No):
"""Transmit the Tx tensor through the radio channel."""
# We use DLPack to keep the tensors on the GPU between pyAerial and Sionna.
tx_tensor = tf.experimental.dlpack.from_dlpack(cp.ascontiguousarray(tx_tensor).

↪→toDlpack())

# Add batch and num_tx dimensions that Sionna expects and reshape.
tx_tensor = tf.transpose(tx_tensor, (2, 1, 0))
tx_tensor = tf.reshape(tx_tensor, (1, -1))[None, None]
tx_tensor = resource_grid_mapper(tx_tensor)
rx_tensor, channel = ofdm_channel((tx_tensor, No))
rx_tensor = remove_guard_subcarriers(rx_tensor)
channel = remove_guard_subcarriers(channel)
rx_tensor = rx_tensor[0, 0]
channel = tf.transpose(channel[0, 0, :, 0, 0, :, :], (2, 1, 0))
rx_tensor = tf.transpose(rx_tensor, (2, 1, 0))

rx_tensor = tf.experimental.dlpack.to_dlpack(rx_tensor)
rx_tensor = cp.from_dlpack(rx_tensor)
return rx_tensor, channel

Run the SRS transmission and reception

We run the SRS transmitter, using the transmitter configuration as an argument. Then the generated SRS signal gets
transmitted through the radio channel (using the Sionna library here). The received tensor is fed into the SRS receiver
pipeline.

[7]: # Take the Tx buffer of cell #0.
# The output remains in GPU memory in this case.
tx_tensor = srs_tx(srs_tx_config)[0]
tx_tensor = tx_tensor[:, srs_symbols, :]

# Channel transmission using TF and Sionna.
No = pow(10., -esno_db / 10.)
rx_tensor, channel = apply_channel(tx_tensor, No)
rx_tensor = rx_tensor[:, srs_symbols, :]
channel = channel.numpy()

# Run the receiver pipeline.
srs_report = srs_rx([rx_tensor], srs_rx_config)

Plot results

Plot the sounding results for each PRB group, along with the actual channel realization.

[8]: subc_idx = 6 + np.arange(0, 272 * 12, 2 * 12)
for rx_ant in range(4):

fig, axs = plt.subplots(2, figsize=(10, 10))
fig.suptitle(f"SRS channel estimates for Rx antenna {rx_ant}")
axs[0].plot(np.real(srs_report[0].ch_est[:, rx_ant, 0]), 'bo', label='MMSE')
axs[0].plot(np.real(channel[subc_idx, :, rx_ant]), 'k:', label='Channel')

(continues on next page)

514 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
axs[1].plot(np.imag(srs_report[0].ch_est[:, rx_ant, 0]), 'bo', label='MMSE')
axs[1].plot(np.imag(channel[subc_idx, :, rx_ant]), 'k:', label='Channel')
axs[0].set_title("Real part")
axs[1].set_title("Imaginary part")
for ax in axs:

ax.grid(True)
ax.set_xlim(0, 136)
ax.set_xlabel('PRB group index')
ax.legend()

axs[0].grid(True)
axs[1].grid(True)
plt.show()

4.3. Examples of Using pyAerial 515



Aerial CUDA-Accelerated RAN, Release 25-1

516 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 517



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.4 Dataset generation by simulation

Using pyAerial for data generation by simulation

This notebook generates a fully 5G NR compliant PUSCH/PDSCH dataset using NVIDIA cuPHY through its
Python bindings in pyAerial for PUSCH/PDSCH slot generation and NVIDIA Sionna for radio channel modeling.
PUSCH/PDSCH slots get generated and transmitted through different radio channels. Usually, in order to make models
as generalizable as possible, it is desirable to train the models with as wide variety of different channel models as possible.
This notebook enables generation of a dataset containing samples generated with a number of different channel models,
including e.g. those used by 3GPP, as well as with different MCS classes and other transmission parameters.

518 Chapter 4. pyAerial

https://github.com/nvlabs/sionna


Aerial CUDA-Accelerated RAN, Release 25-1

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

Imports

[2]: import warnings
warnings.filterwarnings('ignore')

import itertools
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.

import numpy as np
import pandas as pd
import sionna
import tensorflow as tf
from tqdm.notebook import tqdm

from aerial.phy5g.pdsch import PdschTx
from aerial.phy5g.ldpc.util import get_mcs, random_tb
from aerial.util.fapi import dmrs_bit_array_to_fapi
from aerial.util.data import PuschRecord
from aerial.util.data import save_pickle

# This is for Sionna and pyAerial to coexist on the same GPU:
# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

Dataset generation parameters

The parameters used to generate the dataset are modified here. Note that some parameters are given as lists, meaning that
multiple values may be given for those parameters. Typically one would like the training dataset to be as diverse as possible
in order to make the models generalize well to various channel conditions and to different transmission parameters.

[3]: # This is the target directory. It gets created if it does not exist.
dataset_dir = 'data/example_simulated_dataset/QPSK'
os.makedirs(dataset_dir, exist_ok=True)

# Number of samples is divided roughly evenly between the options below.
num_samples = 12000

# A list of channel models: Suitable values:
# "Rayleigh" - Rayleigh block fading channel model (sionna.channel.
↪→RayleighBlockFading)
# "CDL-x", where x is one of ["A", "B", "C", "D", "E"] - for 3GPP CDL channel models
# as per TR 38.901.
channel_models = ["CDL-D"]

(continues on next page)

4.3. Examples of Using pyAerial 519



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Speeds to include in the dataset
# This is UE speed in m/s. The direction of travel will be chosen randomly within the␣
↪→x-y plane.
speeds = [0.8333]

# Delay spreads to include in the dataset.
# This is the nominal delay spread in [s]. Please see the CDL documentation
# about how to choose this value.
delay_spreads = [100e-9]

# A list of MCS indices (as per TS 38.214) to include in the dataset.
# MCS table value refers to TS 38.214 as follows:
# 1: TS38.214, table 5.1.3.1-1.
# 2: TS38.214, table 5.1.3.1-2.
# 3: TS38.214, table 5.1.3.1-3.
mcss = [1] # 1, 10, 19 used for QPSK, 16QAM and 64QAM, respectively.
mcs_table = 2

# Es/No values to include in the dataset.
# esnos = [9.0, 9.25, 9.5, 9.75, 10.0, 10.25, 10.5, 10.75, 11.0] # MCS 19
# esnos = [-0.5, -0.25, 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25, 2.5, 2.
↪→75, 3.0] # MCS 10
esnos = [-7.75, -7.5, -7.25, -7.0, -6.75, -6.5] # MCS 1

# These are fixed for the dataset.
num_tx_ant = 1
num_rx_ant = 4
cell_id = 41
carrier_frequency = 3.5e9 # Carrier frequency in Hz.
link_direction = "uplink"
layers = 1
rnti = 20001
scid = 0
data_scid = 41
dmrs_port = 1
dmrs_position = [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0]
start_sym = 0
num_symbols = 14
start_prb = 0
num_prbs = 273

# Numerology and frame structure. See TS 38.211.
mu = 1
num_ofdm_symbols = 14
fft_size = 4096
cyclic_prefix_length = 288
subcarrier_spacing = 30e3
num_guard_subcarriers = (410, 410)
num_slots_per_frame = 20

520 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Channel generation

Radio channel generation is done using NVIDIA Sionna.

[4]: class Channel(sionna.channel.OFDMChannel):
def __init__(self,

link_direction,
channel_model,
num_tx_ant,
num_rx_ant,
carrier_frequency,
delay_spread,
speed,
resource_grid):

self.resource_grid = resource_grid
self.resource_grid_mapper = sionna.ofdm.ResourceGridMapper(resource_grid)
self.remove_guard_subcarriers = sionna.ofdm.RemoveNulledSubcarriers(resource_

↪→grid)

# Define the antenna arrays.
ue_array = sionna.channel.tr38901.Antenna(

polarization="single",
polarization_type="V",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)
gnb_array = sionna.channel.tr38901.AntennaArray(

num_rows=1,
num_cols=int(num_rx_ant/2),
polarization="dual",
polarization_type="cross",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)

if channel_model == "Rayleigh":
ch_model = sionna.channel.RayleighBlockFading(

num_rx=1,
num_rx_ant=num_rx_ant,
num_tx=1,
num_tx_ant=num_tx_ant

)

elif "CDL" in channel_model:
cdl_model = channel_model[-1]

# Configure a channel impulse reponse (CIR) generator for the CDL model.
ch_model = sionna.channel.tr38901.CDL(

cdl_model,
delay_spread,
carrier_frequency,
ue_array,
gnb_array,
link_direction,
min_speed=speed

)
else:

(continues on next page)

4.3. Examples of Using pyAerial 521

https://github.com/nvlabs/sionna


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
raise ValueError(f"Invalid channel model {channel_model}!")

super().__init__(
ch_model,
resource_grid,
add_awgn=True,
normalize_channel=True,
return_channel=False

)

def __call__(self, tx_tensor, No):
# Add batch and num_tx dimensions that Sionna expects and reshape.
tx_tensor = tf.transpose(tx_tensor, (2, 1, 0))
tx_tensor = tf.reshape(tx_tensor, (1, -1))[None, None]
tx_tensor = self.resource_grid_mapper(tx_tensor)
rx_tensor = super().__call__((tx_tensor, No))
rx_tensor = self.remove_guard_subcarriers(rx_tensor)
rx_tensor = rx_tensor[0, 0]
rx_tensor = tf.transpose(rx_tensor, (2, 1, 0))
return rx_tensor

# Define the resource grid.
resource_grid = sionna.ofdm.ResourceGrid(

num_ofdm_symbols=num_ofdm_symbols,
fft_size=fft_size,
subcarrier_spacing=subcarrier_spacing,
num_tx=1,
num_streams_per_tx=1,
cyclic_prefix_length=cyclic_prefix_length,
num_guard_carriers=num_guard_subcarriers,
dc_null=False,
pilot_pattern=None,
pilot_ofdm_symbol_indices=None

)

PDSCH transmitter

This creates the PDSCH transmitter. However due to the symmetry of 5G NR PDSCH and PUSCH, this may be used
to generate also PUSCH frames with certain parameterization. In this notebook this is used as a PUSCH transmitter to
generate uplink slots.

[5]: pxsch_tx = PdschTx(
cell_id=cell_id,
num_rx_ant=num_tx_ant,
num_tx_ant=num_tx_ant,

)

522 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Dataset generation

The actual dataset generation is done here. The different channel, SNR and MCS parameters are swept through, with a
number of samples per parameterization chosen such that the total number of samples will be close to the desired number.
The PxSCH transmitter created above is used to generate a Tx frame. This Tx frame is then fed through the Sionna-
generated radio channel. The resulting data is recorded in a Parquet file containing PUSCH records following roughly the
Small Cell Forum FAPI specification format.

[6]: num_cases = len(channel_models) * len(esnos) * len(speeds) * len(delay_spreads) *␣
↪→len(mcss)
num_samples_per_param = num_samples // num_cases

# loop different channel models, speeds, delay spreads, MCS levels etc.
pusch_records = []
for (channel_model, esno, speed, delay_spread, mcs) in \

(pbar := tqdm(itertools.product(channel_models, esnos, speeds, delay_spreads,␣
↪→mcss), total=num_cases)):

status_str = f"Generating... ({channel_model} | {esno} dB | {speed} m/s | {delay_
↪→spread} s | MCS {mcs})"

pbar.set_description(status_str)

# Create the channel model.
channel = Channel(

link_direction=link_direction,
channel_model=channel_model,
num_tx_ant=num_tx_ant,
num_rx_ant=num_rx_ant,
carrier_frequency=carrier_frequency,
delay_spread=delay_spread,
speed=speed,
resource_grid=resource_grid

)

for sample in range(num_samples_per_param):
# Generate the dataframe.
slot_number = sample % num_slots_per_frame

# Get modulation order and coderate.
mod_order, coderate = get_mcs(mcs, mcs_table)
tb_input = random_tb(mod_order, coderate, dmrs_position, num_prbs, start_sym,␣

↪→num_symbols, layers)

# Transmit PxSCH. This is where we set the dynamically changing parameters.
# Input parameters are given as lists as the interface supports multiple UEs.
tx_tensor = pxsch_tx.run(

tb_inputs=[tb_input], # Input transport block in bytes.
num_ues=1, # We simulate only one UE here.
slot=slot_number, # Slot number.
dmrs_syms=dmrs_position, # List of binary numbers indicating which␣

↪→symbols are DMRS.
start_sym=start_sym, # Start symbol index.
num_symbols=num_symbols, # Number of symbols.
scids=[scid], # DMRS scrambling ID.
layers=[layers], # Number of layers (transmission rank).
dmrs_ports=[dmrs_port], # DMRS port(s) to be used.
rntis=[rnti], # UE RNTI.

(continues on next page)

4.3. Examples of Using pyAerial 523

https://scf.io/en/documents/222_5G_FAPI_PHY_API_Specification.php


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
data_scids=[data_scid], # Data scrambling ID.
code_rates=[coderate * 10], # Code rate
mod_orders=[mod_order] # Modulation order

)

# Channel transmission and noise.
No = pow(10., -esno / 10.)
rx_tensor = channel(tx_tensor, No)
rx_tensor = np.array(rx_tensor)

# Save the sample.
rx_iq_data_filename = "rx_iq_{}_esno{}_speed{}_ds{}_mcs{}_{}.pkl".

↪→format(channel_model, esno, speed, delay_spread, mcs, sample)
rx_iq_data_fullpath = os.path.join(dataset_dir, rx_iq_data_filename)
save_pickle(data=rx_tensor, filename=rx_iq_data_fullpath)

# Save noise power and SNR data as user data.
user_data_filename = "user_data_{}_esno{}_speed{}_ds{}_mcs{}_{}.pkl".

↪→format(channel_model, esno, speed, delay_spread, mcs, sample)
user_data_fullpath = os.path.join(dataset_dir, user_data_filename)
user_data = dict(

snr=esno,
noise_var=No

)
save_pickle(data=user_data, filename=user_data_fullpath)

pusch_record = PuschRecord(
# SCF FAPI 10.02 UL_TTI.request message parameters:
pduIdx=0,
SFN=(sample // num_slots_per_frame) % 1023,
Slot=slot_number,
nPDUs=1,
RachPresent=0,
nULSCH=1,
nULCCH=0,
nGroup=1,
PDUSize=0,
pduBitmap=1,
RNTI=rnti,
Handle=0,
BWPSize=273,
BWPStart=0,
SubcarrierSpacing=mu,
CyclicPrefix=0,
targetCodeRate=coderate * 10,
qamModOrder=mod_order,
mcsIndex=mcs,
mcsTable=mcs_table - 1, # Different indexing
TransformPrecoding=1, # Disabled.
dataScramblingId=data_scid,
nrOfLayers=1,
ulDmrsSymbPos=dmrs_bit_array_to_fapi(dmrs_position),
dmrsConfigType=0,
ulDmrsScramblingId=cell_id,
puschIdentity=cell_id,
SCID=scid,
numDmrsCdmGrpsNoData=2,

(continues on next page)

524 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
dmrsPorts=1, # Note that FAPI uses a different format compared to cuPHY.
resourceAlloc=1,
rbBitmap=np.array(36 * [0]),
rbStart=0,
rbSize=273,
VRBtoPRBMapping=0,
FrequencyHopping=0,
txDirectCurrentLocation=0,
uplinkFrequencyShift7p5khz=0,
StartSymbolIndex=start_sym,
NrOfSymbols=num_symbols,
puschData=None,
puschUci=None,
puschPtrs=None,
dftsOfdm=None,
Beamforming=None,

# SCF FAPI 10.02 RxData.indication message parameters:
HarqID=0,
PDULen=len(tb_input),
UL_CQI=255, # Set to invalid 0xFF.
TimingAdvance=0,
RSSI=65535, # Set to invalid 0xFFFF.
macPdu=tb_input,

TbCrcStatus=0,
NumCb=0,
CbCrcStatus=None,

rx_iq_data_filename=rx_iq_data_filename,
user_data_filename=user_data_filename,

errInd = ""
)
pusch_records.append(pusch_record)

print("Saving...")
df_filename = os.path.join(dataset_dir, "l2_metadata.parquet")
df = pd.DataFrame.from_records(pusch_records, columns=PuschRecord._fields)
df.to_parquet(df_filename, engine="pyarrow")
print("All done!")

0%| | 0/6 [00:00<?, ?it/s]

Saving…
All done!

This notebook generates a fully 5G NR compliant PUSCH/PDSCH dataset using pyAerial. The cuPHY library is used
through its Python bindings in pyAerial for PUSCH/PDSCH slot generation, and NVIDIA Sionna is used for radio channel
modeling. The PUSCH/PDSCH slots get generated and transmitted through different radio channels.
The example stores the dataset for use in the consequent LLRNet examples. Equally well the data could be generated on
the fly during simulation.

4.3. Examples of Using pyAerial 525



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.5 Dataset generation for LLRNet

In this example, pyAerial is used to generate a log-likelihood ratio dataset based on the PUSCH/PDSCH dataset generated
in the previous example. Using pyAerial, the complete PUSCH receiver chain is formed, and LLR data is collected after
the channel equalizer. The log-likelihood ratio data is used to train an LLRNet model in the next example. LLRNet,
published in
Shental, J. Hoydis, “‘Machine LLRning’: Learning to Softly Demodulate”, https://arxiv.org/abs/1907.01512
is a simple neural network model that takes equalizer outputs, i.e. the complex-valued equalized symbols, as its input and
outputs the corresponding log-likelihood ratios (LLRs) for each bit, basically replacing the conventional soft demapper
in the receiver chain.

Note

This notebook requires that the former example in Dataset generation by simulation has been run first.

LLRNet: Dataset generation

The wireless ML design flow using Aerial is depicted in the figure below.

In this notebook, we take data generated in the Using pyAerial for data generation by simulation example and generate a
dataset for training LLRNet using pyAerial. Note that the data is assumed to have been generated prior to running
this notebook.
LLRNet, published in

O. Shental, J. Hoydis, “’Machine LLRning’: Learning to Softly Demodulate”, https://arxiv.org/abs/1907.01512
is a simple neural network model that takes equalizer outputs, i.e. the complex-valued equalized symbols, as its input
and outputs the corresponding log-likelihood ratios (LLRs) for each bit. This model is used to demonstrate the whole
ML design flow using Aerial, from capturing the data to deploying the model into 5G NR PUSCH receiver, replacing
the conventional soft demapper in cuPHY. In this notebook a dataset is generated. We use pyAerial to call cuPHY
functionality to get equalized symbols out for pre-captured/-simulated Rx data, as well as the corresponding log-likelihood
ratios from a conventional soft demapper.

526 Chapter 4. pyAerial

https://arxiv.org/abs/1907.01512
https://arxiv.org/abs/1907.01512


Aerial CUDA-Accelerated RAN, Release 25-1

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

Imports

[2]: import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

from cuda import cudart
import numpy as np
import pandas as pd
from tqdm.notebook import tqdm
from IPython.display import Markdown
from IPython.display import display

from aerial.phy5g.algorithms import ChannelEstimator
from aerial.phy5g.algorithms import NoiseIntfEstimator
from aerial.phy5g.algorithms import ChannelEqualizer
from aerial.phy5g.algorithms import Demapper
from aerial.phy5g.ldpc import LdpcDeRateMatch
from aerial.phy5g.ldpc import LdpcDecoder
from aerial.phy5g.ldpc import CrcChecker
from aerial.phy5g.config import PuschConfig
from aerial.phy5g.config import PuschUeConfig
from aerial.util.data import PuschRecord
from aerial.util.data import load_pickle
from aerial.util.data import save_pickle
from aerial.util.fapi import dmrs_fapi_to_bit_array

import warnings
warnings.filterwarnings("error")

Load the source data

The source data can be either real data collected from an over the air setup, or synthetic data generated by simulation.
Note: This notebook uses data generated using this notebook: Using pyAerial for data generation by simulation, which
needs to be run before this notebook.

[3]: # This is the source data directory which is assumed to contain the source data.
DATA_DIR = "data/"
source_dataset_dir = DATA_DIR + "example_simulated_dataset/QPSK/"
# This is the target dataset directory. It gets created if it does not exist.
target_dataset_dir = DATA_DIR + "example_llrnet_dataset/QPSK/"
os.makedirs(target_dataset_dir, exist_ok=True)

# Load the main data file.
try:

df = pd.read_parquet(source_dataset_dir + "l2_metadata.parquet", engine="pyarrow")
except FileNotFoundError:

display(Markdown("**Data not found - has example_simulated_dataset.ipynb been run?

(continues on next page)

4.3. Examples of Using pyAerial 527



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
↪→**"))

print(f"Loaded {df.shape[0]} PUSCH records.")

Loaded 12000 PUSCH records.

Dataset generation

Here, pyAerial is used to run channel estimation, noise/interference estimation and channel equalization to get the equal-
ized symbols, corresponding to the LLRNet input, as well as the log-likelihood ratios, corresponding to the LLRNet target
output.

[4]: cuda_stream = cudart.cudaStreamCreate()[1]

# Take modulation order from the first record. The assumption is that all
# entries have the same modulation order here.
mod_order = df.loc[0].qamModOrder
# These hard-coded too.
num_rx_ant = 2
enable_pusch_tdi = 1
eq_coeff_algo = 1

# Create the PUSCH Rx components for extracting the equalized symbols and log-
↪→likelihood ratios.
channel_estimator = ChannelEstimator(

num_rx_ant=num_rx_ant,
cuda_stream=cuda_stream

)
noise_intf_estimator = NoiseIntfEstimator(

num_rx_ant=num_rx_ant,
eq_coeff_algo=eq_coeff_algo,
cuda_stream=cuda_stream

)
channel_equalizer = ChannelEqualizer(

num_rx_ant=num_rx_ant,
eq_coeff_algo=eq_coeff_algo,
enable_pusch_tdi=enable_pusch_tdi,
cuda_stream=cuda_stream)

derate_match = LdpcDeRateMatch(enable_scrambling=True, cuda_stream=cuda_stream)
demapper = Demapper(mod_order=mod_order)
decoder = LdpcDecoder(cuda_stream=cuda_stream)
crc_checker = CrcChecker(cuda_stream=cuda_stream)

# Loop through the PUSCH records and create new ones.
pusch_records = []
tb_errors = []
snrs = []
for pusch_record in (pbar := tqdm(df.itertuples(index=False), total=df.shape[0])):

pbar.set_description("Running cuPHY to get equalized symbols and log-likelihood␣
↪→ratios...")

tbs = len(pusch_record.macPdu)
ref_tb = pusch_record.macPdu
slot = pusch_record.Slot

(continues on next page)

528 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Just making sure the hard-coded value is correct.
assert mod_order == pusch_record.qamModOrder

# Wrap the parameters in a PuschConfig structure.
pusch_ue_config = PuschUeConfig(

scid=pusch_record.SCID,
layers=pusch_record.nrOfLayers,
dmrs_ports=pusch_record.dmrsPorts,
rnti=pusch_record.RNTI,
data_scid=pusch_record.dataScramblingId,
mcs_table=pusch_record.mcsTable,
mcs_index=pusch_record.mcsIndex,
code_rate=pusch_record.targetCodeRate,
mod_order=pusch_record.qamModOrder,
tb_size=len(pusch_record.macPdu)

)
# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=pusch_record.numDmrsCdmGrpsNoData,
dmrs_scrm_id=pusch_record.ulDmrsScramblingId,
start_prb=pusch_record.rbStart,
num_prbs=pusch_record.rbSize,
dmrs_syms=dmrs_fapi_to_bit_array(pusch_record.ulDmrsSymbPos),
dmrs_max_len=1,
dmrs_add_ln_pos=1,
start_sym=pusch_record.StartSymbolIndex,
num_symbols=pusch_record.NrOfSymbols

)]

# Load received IQ samples.
rx_iq_data_filename = source_dataset_dir + pusch_record.rx_iq_data_filename
rx_slot = load_pickle(rx_iq_data_filename)
num_rx_ant = rx_slot.shape[2]

# Load user data.
user_data_filename = source_dataset_dir + pusch_record.user_data_filename
user_data = load_pickle(user_data_filename)

# Run the channel estimation (cuPHY).
ch_est = channel_estimator.estimate(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

# Run noise/interference estimation (cuPHY), needed for equalization.
lw_inv, noise_var_pre_eq = noise_intf_estimator.estimate(

rx_slot=rx_slot,
channel_est=ch_est,
slot=slot,
pusch_configs=pusch_configs

)

# Run equalization and mapping to log-likelihood ratios.
llrs, equalized_sym = channel_equalizer.equalize(

(continues on next page)

4.3. Examples of Using pyAerial 529



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
rx_slot=rx_slot,
channel_est=ch_est,
lw_inv=lw_inv,
noise_var_pre_eq=noise_var_pre_eq,
pusch_configs=pusch_configs

)
ree_diag_inv = channel_equalizer.ree_diag_inv[0]
ree_diag_inv = np.transpose(ree_diag_inv[..., 0], (1, 2, 0)).reshape(ree_diag_inv.

↪→shape[1], -1)

# Just pick one (first) symbol from each PUSCH record for the LLRNet dataset.
# This is simply to reduce the size of the dataset - training LLRNet does not
# require a lot of data.
user_data["llrs"] = llrs[0][:mod_order, 0, :, 0]
user_data["eq_syms"] = equalized_sym[0][0, :, 0]
map_llrs = demapper.demap(equalized_sym[0][0, :, 0], ree_diag_inv[0, ...])
user_data["map_llrs"] = map_llrs

# Save pickle files for the target dataset.
rx_iq_data_fullpath = target_dataset_dir + pusch_record.rx_iq_data_filename
user_data_fullpath = target_dataset_dir + pusch_record.user_data_filename
save_pickle(data=rx_slot, filename=rx_iq_data_fullpath)
save_pickle(data=user_data, filename=user_data_fullpath)

pusch_records.append(pusch_record)

##################################################################################
↪→#####

# Run through the rest of the receiver pipeline to verify that this was legit LLR␣
↪→data.

# De-rate matching and descrambling.
coded_blocks = derate_match.derate_match(

input_llrs=llrs,
pusch_configs=pusch_configs

)

# LDPC decoding of the derate matched blocks.
code_blocks = decoder.decode(

input_llrs=coded_blocks,
pusch_configs=pusch_configs

)

# Combine the code blocks into a transport block.
tb, _ = crc_checker.check_crc(

input_bits=code_blocks,
pusch_configs=pusch_configs

)

tb_errors.append(not np.array_equal(tb[:tbs], ref_tb[:tbs]))
snrs.append(user_data["snr"])

0%| | 0/12000 [00:00<?, ?it/s]

[5]: print("Saving...")
df_filename = os.path.join(target_dataset_dir, "l2_metadata.parquet")
df = pd.DataFrame.from_records(pusch_records, columns=PuschRecord._fields)

(continues on next page)

530 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
df.to_parquet(df_filename, engine="pyarrow")
print("All done!")

Saving…
All done!

4.3.6 LLRNet model training

In this example, the LLR data from the previous example is used to train and validate an LLRNet model for computing log-
likelihood ratios. The trained LLRNet is plugged in the PUSCH receiver chain, replacing the conventional soft demapper,
and its performance is validated. The model also gets exported into ONNX format consumed by the NVIDIA TensorRT
inference engine.
The example shows essentially how to use pyAerial for validating a component of the PUSCH receiver chain, and how to
export a model in a format that is ready to be integrated in a real system.

Note

This notebook requires that the former example in Dataset generation for LLRNet has been run first - that generates
the data for this notebook.

LLRNet: Model training and testing

The wireless ML design flow using Aerial is depicted in the figure below.

In this notebook, we use the generated LLRNet data for training and validating LLRNet as part of the PUSCH receiver
chain, implemented using pyAerial, with Aerial SDK cuPHY library working as the backend. The LLRNet is plugged in
the PUSCH receiver chain in place of the conventional soft demapper. So this notebook works as an example of using
pyAerial for model validation.
Finally, the model is exported into a format consumed by the TensorRT inference engine that is used for integrating the
model into Aerial SDK for testing the model with real hardware in an over the air environment.

4.3. Examples of Using pyAerial 531



Aerial CUDA-Accelerated RAN, Release 25-1

Note 1: This notebook requires that the Aerial test vectors have been generated. The test vector directory is set below in
AERIAL_TEST_VECTOR_DIR variable. Note 2: This notebook also requires that the notebook example on LLRNet
dataset generation has been run first.

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

Imports

[2]: %matplotlib widget
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.
os.environ["CUDA_MODULE_LOADING"] = "LAZY"

import cuda
import h5py as h5
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tf2onnx
import onnx
from IPython.display import Markdown
from IPython.display import display

# PyAerial components
from aerial.phy5g.algorithms import ChannelEstimator
from aerial.phy5g.algorithms import ChannelEqualizer
from aerial.phy5g.algorithms import NoiseIntfEstimator
from aerial.phy5g.algorithms import Demapper
from aerial.phy5g.algorithms import TrtEngine
from aerial.phy5g.algorithms import TrtTensorPrms
from aerial.phy5g.ldpc import LdpcDeRateMatch
from aerial.phy5g.ldpc import LdpcDecoder
from aerial.phy5g.ldpc import CrcChecker
from aerial.phy5g.config import PuschConfig
from aerial.phy5g.config import PuschUeConfig
from aerial.util.cuda import get_cuda_stream
from aerial.util.data import load_pickle
from aerial.util.fapi import dmrs_fapi_to_bit_array

# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

[3]: tb_errors = dict(aerial=dict(), llrnet=dict(), logmap=dict())
tb_count = dict(aerial=dict(), llrnet=dict(), logmap=dict())

532 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

[4]: # Dataset root directory.
DATA_DIR = "data/"

# Aerial test vector directory.
AERIAL_TEST_VECTOR_DIR = "/mnt/cicd_tvs/develop/GPU_test_input/"

# LLRNet dataset directory.
dataset_dir = DATA_DIR + "example_llrnet_dataset/QPSK/"

# LLRNet model target path
llrnet_onnx_file = f"../models/llrnet.onnx"
llrnet_trt_file = f"../models/llrnet.trt"

# Training vs. testing SNR. Assume these exist in the dataset.
train_snr = [-7.75, -7.5, -7.25, -7.0, -6.75, -6.5]
test_snr = [-7.75, -7.5, -7.25, -7.0, -6.75, -6.5]

# Training, validation and test split in percentages if the same SNR is used for
# training and testing.
train_split = 45
val_split = 5
test_split = 50

# Training hyperparameters.
batch_size = 32
epochs = 5
step = tf.Variable(0, trainable=False)
boundaries = [350000, 450000]
values = [5e-4, 1e-4, 1e-5]
# values = [0.05, 0.01, 0.001]
learning_rate_fn = tf.keras.optimizers.schedules.PiecewiseConstantDecay(boundaries,␣
↪→values)
optimizer = tf.keras.optimizers.Adam(learning_rate=learning_rate_fn, weight_decay=1e-
↪→4)
# optimizer = tf.keras.optimizers.experimental.SGD(learning_rate=0.05, weight_
↪→decay=1e-4, momentum=0.9)

# Modulation order. LLRNet needs to be trained separately for each modulation order.
mod_order = 2

Define the LLRNet model

The LLRNet model follows the original paper
O. Shental, J. Hoydis, “’Machine LLRning’: Learning to Softly Demodulate”, https://arxiv.org/abs/1907.01512

and is a very simple MLP model with a single hidden layer. It takes the equalized symbols in its input with the real
and imaginary parts separated, and outputs soft bits (log-likelihood ratios) that can be further fed into LDPC (de)rate
matching and decoding.

[5]: model = keras.Sequential(
[

layers.Dense(16, input_dim=2, activation="relu"),
layers.Dense(8, activation="linear")

]
)

(continues on next page)

4.3. Examples of Using pyAerial 533

https://arxiv.org/abs/1907.01512


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
def loss(llr, predictions):

mae = tf.abs(predictions[:, :mod_order] - llr)
mse = tf.reduce_mean(tf.square(mae))
return mse

Training, validation and testing datasets

Here, the dataset gets loaded and spåålit into training, validation and testing datasets, as well as put in the right format for
the model.

[6]: # Load the main data file
try:

df = pd.read_parquet(dataset_dir + "l2_metadata.parquet", engine="pyarrow")
except FileNotFoundError:

display(Markdown("**Data not found - has llrnet_dataset_generation.ipynb been run?
↪→**"))

# Query the entries for the selected modulation order.
df = df[df["qamModOrder"] == mod_order]

# Collect the dataset by SNR.
llrs = dict()
eq_syms = dict()
indices = dict()
for pusch_record in df.itertuples():

user_data_filename = dataset_dir + pusch_record.user_data_filename
user_data = load_pickle(user_data_filename)

if user_data["snr"] not in llrs.keys():
llrs[user_data["snr"]] = []
eq_syms[user_data["snr"]] = []
indices[user_data["snr"]] = []

llrs[user_data["snr"]].append(user_data["map_llrs"])
eq_syms[user_data["snr"]].append(user_data["eq_syms"])

indices[user_data["snr"]].append(pusch_record.Index)

llr_train, llr_val = [], []
sym_train, sym_val = [], []
test_indices = []
for key in llrs.keys():

llrs[key] = np.stack(llrs[key])
eq_syms[key] = np.stack(eq_syms[key])

# Randomize the order.
permutation = np.arange(llrs[key].shape[0])
np.random.shuffle(permutation)
llrs[key] = llrs[key][permutation, ...]
eq_syms[key] = eq_syms[key][permutation, ...]
indices[key] = list(np.array(indices[key])[permutation])

# Separate real and imaginary parts of the symbols.
eq_syms[key] = np.stack((np.real(eq_syms[key]), np.imag(eq_syms[key])))

(continues on next page)

534 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

num_slots = llrs[key].shape[0]
if key in train_snr and key in test_snr:

num_train_slots = int(np.round(train_split / 100 * num_slots))
num_val_slots = int(np.round(val_split / 100 * num_slots))
num_test_slots = int(np.round(test_split / 100 * num_slots))

elif key in train_snr:
num_train_slots = int(np.round(train_split / (train_split + val_split) * num_

↪→slots))
num_val_slots = int(np.round(val_split / (train_split + val_split) * num_

↪→slots))
num_test_slots = 0

elif key in test_snr:
num_train_slots = 0
num_val_slots = 0
num_test_slots = num_slots

else:
num_train_slots = 0
num_val_slots = 0
num_test_slots = 0

# Collect training/validation/testing sets.
llr_train.append(llrs[key][:num_train_slots, ...])
llr_val.append(llrs[key][num_train_slots:num_train_slots+num_val_slots, ...])
sym_train.append(eq_syms[key][:, :num_train_slots, ...])
sym_val.append(eq_syms[key][:, num_train_slots:num_train_slots+num_val_slots, ...

↪→])
# Just indices for the test set.
test_indices += indices[key][num_train_slots+num_val_slots:num_train_slots+num_

↪→val_slots+num_test_slots]

llr_train = np.transpose(np.concatenate(llr_train, axis=0), (1, 0, 2))
llr_val = np.transpose(np.concatenate(llr_val, axis=0), (1, 0, 2))
sym_train = np.concatenate(sym_train, axis=1)
sym_val = np.concatenate(sym_val, axis=1)

# Fetch the total number of slots in each set.
num_train_slots = llr_train.shape[1]
num_val_slots = llr_val.shape[1]
num_test_slots = len(test_indices)

normalizer = 1.0 #np.sqrt(np.var(llr_train))
llr_train = llr_train / normalizer
llr_val = llr_val / normalizer

# Reshape into samples x mod_order array.
llr_train = llr_train.reshape(mod_order, -1).T
llr_val = llr_val.reshape(mod_order, -1).T
# Reshape into samples x 2 array.
sym_train = sym_train.reshape(2, -1).T
sym_val = sym_val.reshape(2, -1).T

print(f"Total number of slots in the training set: {num_train_slots}")
print(f"Total number of slots in the validation set: {num_val_slots}")
print(f"Total number of slots in the test set: {num_test_slots}")

4.3. Examples of Using pyAerial 535



Aerial CUDA-Accelerated RAN, Release 25-1

Total number of slots in the training set: 5400
Total number of slots in the validation set: 600
Total number of slots in the test set: 6000

Model training and validation

Model training is done using Keras here.

[7]: print("Training...")
model.compile(loss=loss, optimizer=optimizer, metrics=[loss])
model.fit(

x=sym_train,
y=llr_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(sym_val, llr_val),
shuffle=True

)

Training…
Epoch 1/5

WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1739310421.242198 36932 device_compiler.h:186] Compiled cluster using␣
↪→XLA! This line is logged at most once for the lifetime of the process.

552825/552825 [==============================] - 1660s 3ms/step - loss: 26.8671 - val_
↪→loss: 26.2765
Epoch 2/5
552825/552825 [==============================] - 1671s 3ms/step - loss: 26.2068 - val_
↪→loss: 26.2741
Epoch 3/5
552825/552825 [==============================] - 1689s 3ms/step - loss: 26.2031 - val_
↪→loss: 26.2689
Epoch 4/5
552825/552825 [==============================] - 1673s 3ms/step - loss: 26.1989 - val_
↪→loss: 26.2643
Epoch 5/5
552825/552825 [==============================] - 1682s 3ms/step - loss: 26.1956 - val_
↪→loss: 26.2625

[7]: <keras.src.callbacks.History at 0x7f1bd176dcf0>

Export to TensorRT

Finally, the model gets exported to ONNX format. The ONNX format needs to be converted to TRT engine format to
be consumed by the TensorRT inference engine, this is done here using the command line tool trtexec.

[8]: input_signature = [tf.TensorSpec([None, 2], tf.float32, name="input")]
onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature)
onnx.save(onnx_model, llrnet_onnx_file)
print("ONNX model created. Converting to TRT engine file...")
command = f"trtexec " + \

f"--onnx={llrnet_onnx_file} " + \

(continues on next page)

536 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
f"--saveEngine={llrnet_trt_file} " + \
f"--skipInference " + \
f"--minShapes=input:1x2 " + \
f"--optShapes=input:42588x2 " + \
f"--maxShapes=input:85176x2 " + \
f"--inputIOFormats=fp32:chw " + \
f"--outputIOFormats=fp32:chw" + \
f"> /dev/null"

return_val = os.system(command)
if return_val == 0:

print("TRT engine model created.")
else:

raise SystemExit("Failed to create the TRT engine file!")

ONNX model created. Converting to TRT engine file…
TRT engine model created.

Define a PUSCH receiver chain using pyAerial

This class encapsulates the whole PUSCH receiver chain. The components include channel estimation, noise and interfer-
ence estimation, channel equalization and soft demapping, LDPC (de)rate matching and LDPC decoding. The receiver
outputs the received transport block in bytes.
The soft demapping part can be replaced by LLRNet.

[9]: class Receiver:
"""PUSCH receiver class.

This class encapsulates the whole PUSCH receiver chain built using
pyAerial components.
"""

def __init__(self,
llrnet_model_file,
num_rx_ant,
enable_pusch_tdi,
eq_coeff_algo):

"""Initialize the PUSCH receiver."""
self.cuda_stream = get_cuda_stream()

# Build the components of the receiver.
self.channel_estimator = ChannelEstimator(

num_rx_ant=num_rx_ant,
cuda_stream=self.cuda_stream

)
self.channel_equalizer = ChannelEqualizer(

num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
cuda_stream=self.cuda_stream

)
self.noise_intf_estimator = NoiseIntfEstimator(

num_rx_ant=num_rx_ant,
eq_coeff_algo=eq_coeff_algo,
cuda_stream=self.cuda_stream

(continues on next page)

4.3. Examples of Using pyAerial 537



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
)
self.demapper = Demapper(mod_order=mod_order)
self.trt_engine = TrtEngine(

llrnet_model_file,
max_batch_size=85176,
input_tensors=[TrtTensorPrms('input', (2,), np.float32)],
output_tensors=[TrtTensorPrms('dense_1', (8,), np.float32)]

)

self.derate_match = LdpcDeRateMatch(
enable_scrambling=True,
cuda_stream=self.cuda_stream

)
self.decoder = LdpcDecoder(cuda_stream=self.cuda_stream)
self.crc_checker = CrcChecker(cuda_stream=self.cuda_stream)
self.llr_method = "llrnet"

def set_llr_method(self, method):
"""Set the used LLR computation method.

Args:
method (str): Either "aerial" meaning the conventional log-likelihood

ratio computation, or "llrnet" for using LLRNet instead.
"""
if method not in ["aerial", "logmap", "llrnet"]:

raise ValueError("Invalid LLR computation method!")
self.llr_method = method

def run(
self,
rx_slot,
slot,
pusch_configs):
"""Run the receiver."""
# Channel estimation.
ch_est = self.channel_estimator.estimate(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

# Noise and interference estimation.
lw_inv, noise_var_pre_eq = self.noise_intf_estimator.estimate(

rx_slot=rx_slot,
channel_est=ch_est,
slot=slot,
pusch_configs=pusch_configs

)

# Channel equalization and soft demapping. Note that the cuPHY kernel␣
↪→actually computes both

# the equalized symbols and the LLRs.
llr, eq_sym = self.channel_equalizer.equalize(

rx_slot=rx_slot,
channel_est=ch_est,
lw_inv=lw_inv,

(continues on next page)

538 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
noise_var_pre_eq=noise_var_pre_eq,
pusch_configs=pusch_configs

)

# Use the LLRNet model here to get the log-likelihood ratios.
dmrs_syms = pusch_configs[0].dmrs_syms
start_sym = pusch_configs[0].start_sym
num_symbols = pusch_configs[0].num_symbols
num_prbs = pusch_configs[0].num_prbs
mod_order = pusch_configs[0].ue_configs[0].mod_order
layers = pusch_configs[0].ue_configs[0].layers
num_data_sym = (np.array(dmrs_syms[start_sym:start_sym + num_symbols]) == 0).

↪→sum()
if self.llr_method == "llrnet":

# Put the input in the right format.
eq_sym_input = np.stack((np.real(eq_sym[0]), np.imag(eq_sym[0]))).

↪→reshape(2, -1).T
# Run the model.
llr_output = self.trt_engine.run({"input": eq_sym_input})["dense_1"]

# Reshape the output in the right format for the LDPC decoding process.
llr_output = np.array(llr_output)[..., :mod_order].T.reshape(mod_order,␣

↪→layers, num_prbs * 12, num_data_sym)
llr_output *= normalizer

elif self.llr_method == "aerial":
llr_output = llr[0]

elif self.llr_method == "logmap":
inv_noise_var_lin = self.channel_equalizer.ree_diag_inv[0]
inv_noise_var_lin = np.transpose(inv_noise_var_lin[..., 0], (1, 2, 0)).

↪→reshape(inv_noise_var_lin.shape[1], -1)
llr_output = self.demapper.demap(eq_sym[0], inv_noise_var_lin[..., None])

# De-rate matching and descrambling.
coded_blocks = self.derate_match.derate_match(

input_llrs=[llr_output],
pusch_configs=pusch_configs

)

# LDPC decoding of the derate matched blocks.
code_blocks = self.decoder.decode(

input_llrs=coded_blocks,
pusch_configs=pusch_configs

)

# Combine the code blocks into a transport block.
tb, _ = self.crc_checker.check_crc(

input_bits=code_blocks,
pusch_configs=pusch_configs

)

return tb[0]

4.3. Examples of Using pyAerial 539



Aerial CUDA-Accelerated RAN, Release 25-1

Model testing on Aerial test vectors

[10]: if mod_order == 2:
test_vector_filename = "TVnr_7201_PUSCH_gNB_CUPHY_s0p0.h5"

elif mod_order == 4:
test_vector_filename = "TVnr_7916_PUSCH_gNB_CUPHY_s0p0.h5"

elif mod_order == 6:
test_vector_filename = "TVnr_7203_PUSCH_gNB_CUPHY_s0p0.h5"

filename = AERIAL_TEST_VECTOR_DIR + test_vector_filename
input_file = h5.File(filename, "r")

num_rx_ant = input_file["gnb_pars"]["nRx"][0]
enable_pusch_tdi = input_file["gnb_pars"]["TdiMode"][0]
eq_coeff_algo = input_file["gnb_pars"]["eqCoeffAlgoIdx"][0]

receiver = Receiver(
llrnet_trt_file,
num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo

)

# Extract the test vector data and parameters.
rx_slot = np.array(input_file["DataRx"])["re"] + 1j * np.array(input_file["DataRx"])[
↪→"im"]
rx_slot = rx_slot.transpose(2, 1, 0)

slot = np.array(input_file["gnb_pars"]["slotNumber"])[0]

# Wrap the parameters in a PuschConfig structure.
pusch_ue_config = PuschUeConfig(

scid=input_file["tb_pars"]["nSCID"][0],
layers=input_file["tb_pars"]["numLayers"][0],
dmrs_ports=input_file["tb_pars"]["dmrsPortBmsk"][0],
rnti=input_file["tb_pars"]["nRnti"][0],
data_scid=input_file["tb_pars"]["dataScramId"][0],
mcs_table=input_file["tb_pars"]["mcsTableIndex"][0],
mcs_index=input_file["tb_pars"]["mcsIndex"][0],
code_rate=input_file["tb_pars"]["targetCodeRate"][0],
mod_order=input_file["tb_pars"]["qamModOrder"][0],
tb_size=input_file["tb_pars"]["nTbByte"][0],
rv=input_file["tb_pars"]["rv"][0],
ndi=input_file["tb_pars"]["ndi"][0]

)
# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=input_file["tb_pars"]["numDmrsCdmGrpsNoData"][0],
dmrs_scrm_id=input_file["tb_pars"]["dmrsScramId"][0],
start_prb=input_file["ueGrp_pars"]["startPrb"][0],
num_prbs=input_file["ueGrp_pars"]["nPrb"][0],
dmrs_syms=dmrs_fapi_to_bit_array(input_file["ueGrp_pars"]["dmrsSymLocBmsk"][0]),
dmrs_max_len=input_file["tb_pars"]["dmrsMaxLength"][0],
dmrs_add_ln_pos=input_file["tb_pars"]["dmrsAddlPosition"][0],
start_sym=input_file["ueGrp_pars"]["StartSymbolIndex"][0],
num_symbols=input_file["ueGrp_pars"]["NrOfSymbols"][0]

)]

(continues on next page)

540 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

# Run the receiver with the test vector parameters.
receiver.set_llr_method("llrnet")
tb = receiver.run(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

# Check that the received TB matches with the transmitted one.
tb_size = pusch_configs[0].ue_configs[0].tb_size
if np.array_equal(np.array(input_file["tb_data"])[:tb_size, 0], tb[:tb_size]):

print("CRC check passed!")
else:

print("CRC check failed!")

CRC check passed!

Model testing on synthetic/simulated data

[11]: for pusch_record in df.take(test_indices).itertuples(index=False):

user_data_filename = dataset_dir + pusch_record.user_data_filename
user_data = load_pickle(user_data_filename)
snr = user_data["snr"]

rx_iq_data_filename = dataset_dir + pusch_record.rx_iq_data_filename
rx_slot = load_pickle(rx_iq_data_filename)

ref_tb = pusch_record.macPdu
tb_size = len(pusch_record.macPdu)
slot = pusch_record.Slot

# Wrap the parameters in a PuschConfig structure.
pusch_ue_config = PuschUeConfig(

scid=pusch_record.SCID,
layers=pusch_record.nrOfLayers,
dmrs_ports=pusch_record.dmrsPorts,
rnti=pusch_record.RNTI,
data_scid=pusch_record.dataScramblingId,
mcs_table=pusch_record.mcsTable,
mcs_index=pusch_record.mcsIndex,
code_rate=pusch_record.targetCodeRate,
mod_order=pusch_record.qamModOrder,
tb_size=tb_size

)
# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=pusch_record.numDmrsCdmGrpsNoData,
dmrs_scrm_id=pusch_record.ulDmrsScramblingId,
start_prb=pusch_record.rbStart,
num_prbs=pusch_record.rbSize,
dmrs_syms=dmrs_fapi_to_bit_array(pusch_record.ulDmrsSymbPos),

(continues on next page)

4.3. Examples of Using pyAerial 541



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
dmrs_max_len=1,
dmrs_add_ln_pos=1,
start_sym=pusch_record.StartSymbolIndex,
num_symbols=pusch_record.NrOfSymbols

)]

for llr_method in ["aerial", "llrnet", "logmap"]:

if snr not in tb_errors[llr_method].keys():
tb_errors[llr_method][snr] = 0
tb_count[llr_method][snr] = 0

receiver.set_llr_method(llr_method)
tb = receiver.run(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

tb_count[llr_method][snr] += 1
tb_errors[llr_method][snr] += (not np.array_equal(tb[:tb_size], ref_tb[:tb_

↪→size]))

[12]: esno_dbs = tb_count["aerial"].keys()
bler = dict(aerial=[], llrnet=[], logmap=[])
for esno_db in esno_dbs:

bler["aerial"].append(tb_errors["aerial"][esno_db] / tb_count["aerial"][esno_db])
bler["llrnet"].append(tb_errors["llrnet"][esno_db] / tb_count["llrnet"][esno_db])
bler["logmap"].append(tb_errors["logmap"][esno_db] / tb_count["logmap"][esno_db])

[13]: esno_dbs = np.array(list(esno_dbs))
fig = plt.figure(figsize=(10, 10))
plt.yscale('log')
plt.ylim(0.01, 1)
plt.xlim(np.min(esno_dbs), np.max(esno_dbs))
plt.title("BLER Performance vs. Es/No")
plt.ylabel("BLER")
plt.xlabel("Es/No [dB]")
plt.grid()
plt.plot(esno_dbs, bler["aerial"], marker="d", linestyle="-", color="blue",␣
↪→markersize=8)
plt.plot(esno_dbs, bler["llrnet"], marker="s", linestyle="-", color="black",␣
↪→markersize=8)
plt.plot(esno_dbs, bler["logmap"], marker="o", linestyle="-", color="red",␣
↪→markersize=8)
plt.legend(["Aerial", "LLRNet", "Log-MAP"])

[13]: <matplotlib.legend.Legend at 0x7f1bcab2ca30>

542 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.7 Neural receiver validation

In this example, a trained neural network -based PUSCH receiver is validated using pyAerial. The model is based on the
following paper:
S. Cammerer, F. Aït Aoudia, J. Hoydis, A. Oeldemann, A. Roessler, T. Mayer and A. Keller, “A Neural Receiver for 5G
NR Multi-user MIMO”, IEEE Globecom Workshops (GC Wkshps), Dec. 2023, https://arxiv.org/abs/2312.02601
The neural receiver is compared against the conventional PUSCH receiver using pyAerial. For running inference, we use
pyAerial’s bindings to cuPHY’s TensorRT wrappers.

4.3. Examples of Using pyAerial 543

https://arxiv.org/abs/2312.02601


Aerial CUDA-Accelerated RAN, Release 25-1

Using pyAerial to evaluate a PUSCH neural receiver

This example shows how to use the pyAerial cuPHY Python bindings to evaluate a trained neural network -based PUSCH
receiver. In this example, the neural network is used to replace channel estimation, noise and interference estimation and
channel equalization, and thus outputs log-likelihood ratios directly. The model is a variant of what has been proposed in

S. Cammerer, F. Aït Aoudia, J. Hoydis, A. Oeldemann, A. Roessler, T. Mayer and A. Keller, “A Neural Receiver for
5G NR Multi-user MIMO”, IEEE Globecom Workshops (GC Wkshps), Dec. 2023.

The rest of the PUSCH receiver pipeline following the neural receiver, meaning LDPC decoding chain, is modeled using
pyAerial. Also, the neural receiver takes LS channel estimates as inputs in addition to the received PUSCH slot. These are
also obtained using pyAerial. The neural receiver -based PUSCH receiver is compared against the conventional PUSCH
receiver, which is built using pyAerial’s (fully fused) PUSCH pipeline.
PUSCH transmitter is emulated by PDSCH transmission with properly chosen parameters, that way making it a 5G NR
compliant PUSCH transmission. The NVIDIA Sionna library is utilized for simulating the radio channel based on 3GPP
channel models.

[1]: # Check platform.
import platform
if platform.machine() != 'x86_64':

raise SystemExit("Unsupported platform!")

Imports

[2]: %matplotlib widget
from collections import defaultdict
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.
os.environ["CUDA_MODULE_LOADING"] = "LAZY"

import cupy as cp
import numpy as np
import sionna
import tensorflow as tf

from aerial.phy5g.pdsch import PdschTx
from aerial.phy5g.pusch import PuschRx
from aerial.phy5g.algorithms import ChannelEstimator
from aerial.phy5g.algorithms import TrtEngine
from aerial.phy5g.algorithms import TrtTensorPrms
from aerial.phy5g.ldpc import get_mcs
from aerial.phy5g.ldpc import random_tb
from aerial.phy5g.ldpc import get_tb_size
from aerial.phy5g.ldpc import LdpcDeRateMatch
from aerial.phy5g.ldpc import LdpcDecoder
from aerial.phy5g.ldpc import CrcChecker
from aerial.pycuphy.types import PuschLdpcKernelLaunch
from aerial.phy5g.config import PuschConfig
from aerial.phy5g.config import PuschUeConfig
from aerial.util.cuda import get_cuda_stream
from simulation_monitor import SimulationMonitor

# Configure the notebook to use only a single GPU and allocate only as much memory as␣
↪→needed.

(continues on next page)

544 Chapter 4. pyAerial

https://arxiv.org/abs/2312.02601
https://arxiv.org/abs/2312.02601
https://nvlabs.github.io/sionna/


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# For more details, see https://www.tensorflow.org/guide/gpu.
gpus = tf.config.list_physical_devices('GPU')
tf.config.experimental.set_memory_growth(gpus[0], True)

Parameters

Set simulation parameters, numerology, PUSCH parameters and channel parameters here.

[3]: # Simulation parameters.
esno_db_range = np.arange(-4.0, -2.8, 0.2)
num_slots = 10000
min_num_tb_errors = 250

# Numerology and frame structure. See TS 38.211.
num_ofdm_symbols = 14
fft_size = 4096
cyclic_prefix_length = 288
subcarrier_spacing = 30e3
num_guard_subcarriers = (410, 410)
num_slots_per_frame = 20

# System/gNB configuration
num_tx_ant = 1 # UE antennas
num_rx_ant = 4 # gNB antennas
cell_id = 41 # Physical cell ID
enable_pusch_tdi = 1 # Enable time interpolation for equalizer coefficients
eq_coeff_algo = 1 # Equalizer algorithm

# PUSCH parameters
rnti = 1234 # UE RNTI
scid = 0 # DMRS scrambling ID
data_scid = 0 # Data scrambling ID
layers = 1 # Number of layers
mcs_index = 7 # MCS index as per TS 38.214 table.
mcs_table = 0 # MCS table index
dmrs_ports = 1 # Used DMRS port.
start_prb = 0 # Start PRB index.
num_prbs = 273 # Number of allocated PRBs.
start_sym = 0 # Start symbol index.
num_symbols = 12 # Number of symbols.
dmrs_scrm_id = 41 # DMRS scrambling ID
dmrs_syms = [1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0] # Indicates which symbols are␣
↪→used for DMRS.
dmrs_max_len = 1
dmrs_add_ln_pos = 2
num_dmrs_cdm_grps_no_data = 2
mod_order, code_rate = get_mcs(mcs_index, mcs_table+1) # Different indexing for MCS␣
↪→table.
tb_size = get_tb_size(mod_order, code_rate, dmrs_syms, num_prbs, start_sym, num_
↪→symbols, layers) # TB size in bits

# Channel parameters
carrier_frequency = 3.5e9 # Carrier frequency in Hz.
delay_spread = 100e-9 # Nominal delay spread in [s]. Please see the CDL␣
↪→documentation

(continues on next page)

4.3. Examples of Using pyAerial 545



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# about how to choose this value.

link_direction = "uplink"
channel_model = "Rayleigh" # Channel model: Suitable values:

# "Rayleigh" - Rayleigh block fading channel model (sionna.
↪→channel.RayleighBlockFading)

# "CDL-x", where x is one of ["A", "B", "C", "D", "E"] -␣
↪→for 3GPP CDL channel models

# as per TR 38.901.
speed = 0.8333 # UE speed [m/s]. The direction of travel will chosen␣
↪→randomly within the x-y plane.

Create the model file for the TRT engine

The TRT engine is built based on TensorRT plan files which are not portable across different platforms. Hence the plan
file is created here from a supplied ONNX file.

[4]: MODEL_DIR = "../models"
nrx_onnx_file = f"{MODEL_DIR}/neural_rx.onnx"
nrx_trt_file = f"{MODEL_DIR}/neural_rx.trt"
command = f"trtexec " + \

f"--onnx={nrx_onnx_file} " + \
f"--saveEngine={nrx_trt_file} " + \
f"--skipInference " + \
f"--inputIOFormats=fp32:chw,fp32:chw,fp32:chw,fp32:chw,fp32:chw,int32:chw,int32:

↪→chw " + \
f"--outputIOFormats=fp32:chw,fp32:chw " + \
f"--shapes=rx_slot_real:1x3276x12x4,rx_slot_imag:1x3276x12x4,h_hat_real:

↪→1x4914x1x4,h_hat_imag:1x4914x1x4 " + \
f"> /dev/null"

return_val = os.system(command)
if return_val == 0:

print("TRT engine model created.")
else:

raise SystemExit("Failed to create the TRT engine file!")

TRT engine model created.

Create the PUSCH pipelines

As mentioned, PUSCH transmission is emulated here by the PDSCH transmission chain. Note that the static cell param-
eters and static PUSCH parameters are given upon creating the PUSCH transmission/reception objects. Dynamically
(per slot) changing parameters are however set when actually running the transmission/reception, see further below.

[5]: pusch_tx = PdschTx(
cell_id=cell_id,
num_rx_ant=num_tx_ant,
num_tx_ant=num_tx_ant,

)

# This is the fully fused PUSCH receiver chain.
pusch_rx = PuschRx(

cell_id=cell_id,
num_rx_ant=num_rx_ant,

(continues on next page)

546 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
num_tx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
# To make this equal separate PUSCH Rx components configuration:
ldpc_kernel_launch=PuschLdpcKernelLaunch.PUSCH_RX_LDPC_STREAM_SEQUENTIAL

)

# PUSCH configuration object. Note that default values are used for some parameters
# not given here.
pusch_ue_config = PuschUeConfig(

scid=scid,
layers=layers,
dmrs_ports=dmrs_ports,
rnti=rnti,
data_scid=data_scid,
mcs_table=mcs_table,
mcs_index=mcs_index,
code_rate=int(code_rate * 10),
mod_order=mod_order,
tb_size=tb_size // 8

)
# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=num_dmrs_cdm_grps_no_data,
dmrs_scrm_id=dmrs_scrm_id,
start_prb=start_prb,
num_prbs=num_prbs,
dmrs_syms=dmrs_syms,
dmrs_max_len=dmrs_max_len,
dmrs_add_ln_pos=dmrs_add_ln_pos,
start_sym=start_sym,
num_symbols=num_symbols

)]

class NeuralRx:
"""PUSCH neural receiver class.

This class encapsulates the PUSCH neural receiver chain built using
pyAerial components.
"""

def __init__(self,
num_rx_ant,
enable_pusch_tdi,
eq_coeff_algo):

"""Initialize the neural receiver."""
self.cuda_stream = get_cuda_stream()

# Build the components of the receiver. The channel estimator outputs just␣
↪→the LS

# channel estimates.
self.channel_estimator = ChannelEstimator(

num_rx_ant=num_rx_ant,
ch_est_algo=3, # This is LS channel estimation.
cuda_stream=self.cuda_stream

(continues on next page)

4.3. Examples of Using pyAerial 547



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
)

# Create the pyAerial TRT engine object. This wraps TensorRT and links it␣
↪→together

# with the rest of cuPHY. Here pyAerial's Python bindings to the engine are␣
↪→used

# to run inference with the neural receiver model.
# The inputs of the neural receiver are:
# - LS channel estimates
# - The Rx slot
# - Active DMRS ports (active layers out of the layers that the neural␣

↪→receiver supports)
# - DMRS OFDM symbol locations (indices)
# - DMRS subcarrier positions within a PRB (indices)
# Note that the shapes are given without batch size.
self.trt_engine = TrtEngine(

trt_model_file="../models/neural_rx.trt",
max_batch_size=1,
input_tensors=[TrtTensorPrms('rx_slot_real', (3276, 12, 4), np.float32),

TrtTensorPrms('rx_slot_imag', (3276, 12, 4), np.float32),
TrtTensorPrms('h_hat_real', (4914, 1, 4), np.float32),
TrtTensorPrms('h_hat_imag', (4914, 1, 4), np.float32),
TrtTensorPrms('active_dmrs_ports', (1,), np.float32),
TrtTensorPrms('dmrs_ofdm_pos', (3,), np.int32),
TrtTensorPrms('dmrs_subcarrier_pos', (6,), np.int32)],

output_tensors=[TrtTensorPrms('output_1', (8, 1, 3276, 12), np.float32),
TrtTensorPrms('output_2', (1, 3276, 12, 8), np.float32)]

)

# LDPC (de)rate matching and decoding implemented using pyAerial.
self.derate_match = LdpcDeRateMatch(

enable_scrambling=True,
cuda_stream=self.cuda_stream

)
self.decoder = LdpcDecoder(cuda_stream=self.cuda_stream)
self.crc_checker = CrcChecker(cuda_stream=self.cuda_stream)

def run(
self,
rx_slot,
slot,
pusch_configs=pusch_configs

):
"""Run the receiver."""
# Channel estimation.
ch_est = self.channel_estimator.estimate(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

# This is the neural receiver part.
# It outputs the LLRs for all symbols.
dmrs_ofdm_pos = np.where(np.array(pusch_configs[0].dmrs_syms))[0].astype(np.

↪→int32)
dmrs_ofdm_pos = dmrs_ofdm_pos[None, ...]
dmrs_subcarrier_pos = np.array([[0, 2, 4, 6, 8, 10]], dtype=np.int32)

(continues on next page)

548 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
active_dmrs_ports = np.ones((1, 1), dtype=np.float32)
rx_slot_in = rx_slot[None, :, pusch_configs[0].start_sym:pusch_configs[0].

↪→start_sym+pusch_configs[0].num_symbols, :]
ch_est_in = np.transpose(ch_est[0], (0, 3, 1, 2)).reshape(ch_est[0].shape[0]␣

↪→* ch_est[0].shape[3], ch_est[0].shape[1], ch_est[0].shape[2])
ch_est_in = ch_est_in[None, ...]
input_tensors = {

"rx_slot_real": np.real(rx_slot_in).astype(np.float32),
"rx_slot_imag": np.imag(rx_slot_in).astype(np.float32),
"h_hat_real": np.real(ch_est_in).astype(np.float32),
"h_hat_imag": np.imag(ch_est_in).astype(np.float32),
"active_dmrs_ports": active_dmrs_ports.astype(np.float32),
"dmrs_ofdm_pos": dmrs_ofdm_pos.astype(np.int32),
"dmrs_subcarrier_pos": dmrs_subcarrier_pos.astype(np.int32)

}
outputs = self.trt_engine.run(input_tensors)

# The neural receiver outputs some values also for DMRS symbols, remove those
# from the output.
data_syms = np.array(pusch_configs[0].dmrs_syms[pusch_configs[0].start_sym:

↪→pusch_configs[0].start_sym + pusch_configs[0].num_symbols]) == 0
llrs = np.take(outputs["output_1"][0, ...], np.where(data_syms)[0], axis=3)

coded_blocks = self.derate_match.derate_match(
input_llrs=[llrs],
pusch_configs=pusch_configs

)

code_blocks = self.decoder.decode(
input_llrs=coded_blocks,
pusch_configs=pusch_configs

)

decoded_tbs, _ = self.crc_checker.check_crc(
input_bits=code_blocks,
pusch_configs=pusch_configs

)

return decoded_tbs

neural_rx = NeuralRx(
num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo

)

4.3. Examples of Using pyAerial 549



Aerial CUDA-Accelerated RAN, Release 25-1

Channel generation using Sionna

Simulating the transmission through the radio channel takes advantage of the channel model implementations available in
NVIDIA Sionna. In Sionna, the transmission can be simulated directly in frequency domain by defining a resource grid.
In our case, reference signal patterns and data carrying resource elements are defined elsewhere within the Aerial code,
hence we define resource grid as a simple dummy grid containing only data symbols.
See also: Sionna documentation

[6]: # Define the resource grid.
resource_grid = sionna.ofdm.ResourceGrid(

num_ofdm_symbols=num_ofdm_symbols,
fft_size=fft_size,
subcarrier_spacing=subcarrier_spacing,
num_tx=1,
num_streams_per_tx=1,
cyclic_prefix_length=cyclic_prefix_length,
num_guard_carriers=num_guard_subcarriers,
dc_null=False,
pilot_pattern=None,
pilot_ofdm_symbol_indices=None

)
resource_grid_mapper = sionna.ofdm.ResourceGridMapper(resource_grid)
remove_guard_subcarriers = sionna.ofdm.RemoveNulledSubcarriers(resource_grid)

# Define the antenna arrays.
ue_array = sionna.channel.tr38901.Antenna(

polarization="single",
polarization_type="V",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)
gnb_array = sionna.channel.tr38901.AntennaArray(

num_rows=1,
num_cols=int(num_rx_ant/2),
polarization="dual",
polarization_type="cross",
antenna_pattern="38.901",
carrier_frequency=carrier_frequency

)

if channel_model == "Rayleigh":
ch_model = sionna.channel.RayleighBlockFading(

num_rx=1,
num_rx_ant=num_rx_ant,
num_tx=1,
num_tx_ant=num_tx_ant

)

elif "CDL" in channel_model:
cdl_model = channel_model[-1]

# Configure a channel impulse reponse (CIR) generator for the CDL model.
ch_model = sionna.channel.tr38901.CDL(

cdl_model,
delay_spread,
carrier_frequency,
ue_array,

(continues on next page)

550 Chapter 4. pyAerial

https://nvlabs.github.io/sionna/index.html


Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
gnb_array,
link_direction,
min_speed=speed

)
else:

raise ValueError(f"Invalid channel model {channel_model}!")

channel = sionna.channel.OFDMChannel(
ch_model,
resource_grid,
add_awgn=True,
normalize_channel=True,
return_channel=False

)

def apply_channel(tx_tensor, No):
"""Transmit the Tx tensor through the radio channel."""
# Add batch and num_tx dimensions that Sionna expects and reshape.
tx_tensor = tf.transpose(tx_tensor, (2, 1, 0))
tx_tensor = tf.reshape(tx_tensor, (1, -1))[None, None]
tx_tensor = resource_grid_mapper(tx_tensor)
rx_tensor = channel((tx_tensor, No))
rx_tensor = remove_guard_subcarriers(rx_tensor)
rx_tensor = rx_tensor[0, 0]
rx_tensor = tf.transpose(rx_tensor, (2, 1, 0))
return rx_tensor

Run the actual simulation

Here we loop across the Es/No range, and simulate a number of slots for each Es/No value. A single transport block is
simulated within a slot. The simulation starts over from the next Es/No value when a minimum number of transport block
errors is reached.

[7]: cases = ["PUSCH Rx", "Neural Rx"]
monitor = SimulationMonitor(cases, esno_db_range)

# Loop the Es/No range.
bler = []
for esno_db in esno_db_range:

monitor.step(esno_db)
num_tb_errors = defaultdict(int)

# Run multiple slots and compute BLER.
for slot_idx in range(num_slots):

slot_number = slot_idx % num_slots_per_frame

# Get modulation order and coderate.
tb_input_np = random_tb(mod_order, code_rate, dmrs_syms, num_prbs, start_sym,␣

↪→num_symbols, layers)
tb_input = cp.array(tb_input_np, dtype=cp.uint8, order='F')

# Transmit PUSCH. This is where we set the dynamically changing parameters.
# Input parameters are given as lists as the interface supports multiple UEs.
tx_tensor = pusch_tx.run(

tb_inputs=[tb_input], # Input transport block in bytes.
(continues on next page)

4.3. Examples of Using pyAerial 551



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
num_ues=1, # We simulate only one UE here.
slot=slot_number, # Slot number.
num_dmrs_cdm_grps_no_data=num_dmrs_cdm_grps_no_data,
dmrs_scrm_id=dmrs_scrm_id, # DMRS scrambling ID.
start_prb=start_prb, # Start PRB index.
num_prbs=num_prbs, # Number of allocated PRBs.
dmrs_syms=dmrs_syms, # List of binary numbers indicating which␣

↪→symbols are DMRS.
start_sym=start_sym, # Start symbol index.
num_symbols=num_symbols, # Number of symbols.
scids=[scid], # DMRS scrambling ID.
layers=[layers], # Number of layers (transmission rank).
dmrs_ports=[dmrs_ports], # DMRS port(s) to be used.
rntis=[rnti], # UE RNTI.
data_scids=[data_scid], # Data scrambling ID.
code_rates=[code_rate * 10], # Code rate x 1024 x 10.
mod_orders=[mod_order] # Modulation order.

)

# Channel transmission using TF and Sionna.
tx_tensor = tf.experimental.dlpack.from_dlpack(tx_tensor.toDlpack())
No = pow(10., -esno_db / 10.)
rx_tensor = apply_channel(tx_tensor, No)
rx_tensor = tf.experimental.dlpack.to_dlpack(rx_tensor)
rx_tensor = cp.from_dlpack(rx_tensor)

# Run the fused PUSCH receiver.
# Note that this is where we set the dynamically changing parameters.
tb_crcs, tbs = pusch_rx.run(

rx_slot=rx_tensor,
slot=slot_number,
pusch_configs=pusch_configs

)
num_tb_errors["PUSCH Rx"] += int(np.array_equal(tbs[0], tb_input_np) == False)

# Run the neural receiver.
tbs = neural_rx.run(

rx_slot=rx_tensor,
slot=slot_number,
pusch_configs=pusch_configs

)
num_tb_errors["Neural Rx"] += int(np.array_equal(tbs[0], tb_input_np) ==␣

↪→False)

monitor.update(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
if (np.array(list(num_tb_errors.values())) >= min_num_tb_errors).all():

break # Next Es/No value.

monitor.finish_step(num_tbs=slot_idx + 1, num_tb_errors=num_tb_errors)
monitor.finish()

PUSCH Rx Neural Rx
-------------------- --------------------

Es/No (dB) TBs TB Errors BLER TB Errors BLER ms/TB
==================== ==================== ==================== ========

-4.00 250 250 1.0000 250 1.0000 138.2
-3.80 324 324 1.0000 250 0.7716 135.7

(continues on next page)

552 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
-3.60 4833 4832 0.9998 250 0.0517 136.8
-3.40 10000 7586 0.7586 2 0.0002 135.2
-3.20 10000 639 0.0639 0 0.0000 135.5
-3.00 10000 1 0.0001 0 0.0000 135.3
-2.80 10000 0 0.0000 0 0.0000 135.7

4.3. Examples of Using pyAerial 553



Aerial CUDA-Accelerated RAN, Release 25-1

4.3.8 Machine learning based channel estimation for 5G NR PUSCH

This notebook provides another example on how to validate machine learning models using pyAerial. In particular, the
model implements 5G NR PUSCH channel estimation using DMRS pilots. The model is trained using PyTorch, and the
channel estimation error is validated against cuPHY algorithms using pyAerial.

Channel Estimation for Uplink Shared Channel (PUSCH) in PyAerial

This notebook provides researchers an example of how to prototype machine learning in PyAerial. PyAerial is the Python
bindings for the Aerial SDK, NVIDIA’s L1 accelerated stack that is also integrated in the Aerial Omniverse Digital
Twin (AODT). This enables researchers to develop standard-compliant approaches focusing on enhancing their link-level
performance. Subsequently, the approach can be evaluated realistically in AODT, showing how the link-level performance
translates to system-level KPIs.
In particular, this notebook focuses on improving the channel estimation based on the DMRS pilots in a PUSCH trans-
mission. First, we isolate the channel estimator block from the PyAerial PUSCH pipeline. The channel estimation is on
one of the first receiver blocks, as seen in the figure below:

To isolate the channel estimation block, we refer to the modular PUSCH pipeline in Example PUSCH Simulation.ipynb.
There, we see how to interface channel estimation downstream with resource element (RE) demapper and with the wireless
channel, and upstream with other components like the MIMO Equalizer. Similar approaches can be done for other blocks
in the receiver or transmitter pipelines.
This notebook uses PyTorch to train a convolutional neural network that improves and interpolates least squares
(LS) channel estimates. The training uses a custom LS estimator which interfaces with a resource grid, resource
mapper, and channel generator from Sionna. The trained models are then integrated and validated in PyAerial
PUSCH pipeline with standard-compliant signal transmission and reception blocks running on top of Sionna
channels.
*
See below how we train and test the channel estimator models.

•

[1]: # Standard imports
import os

(continues on next page)

554 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# GPU setup
GPU_IDX = 0
os.environ["CUDA_VISIBLE_DEVICES"] = str(GPU_IDX) # Select only one GPU
os.environ['TF_CPP_MIN_LOG_LEVEL'] = "3" # Silence TensorFlow.

import torch
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt

# Our imports
from channel_est_models import FusedChannelEstimator, ComplexMSELoss
from channel_gen_funcs import (SionnaChannelGenerator,

PyAerialChannelEstimateGenerator,
sionna_to_pyaerial_shape)

import utils as ut

dev = torch.device(f'cuda')
torch.set_default_device(dev)

# General parameters
num_prbs = 48 # Number of PRBs in the UE allocated bandwidth
interp = 2 # Interpolation factor = comb_size (2 or 4) = 2 for DMRS
models_folder = f'saved_models_prbs={num_prbs}_interp={interp}' # Folder to save␣
↪→trained models

# Training parameters
train_snrs = np.arange(-10, 40.1, 10) # Train models for these SNRs.
training_ch_model = 'UMa' # Channel model ['Rayleigh', 'CDL-x', 'TDL-x', 'UMa', 'UMi
↪→'],

# where x is in ["A", "B", "C", "D", "E"] as per TR 38.901
n_iter = 500 # Number of training iterations. For best results: >20k
batch_size = 32 # Batch size = number of channels to train simultaneously

# Testing parameters
test_snrs = np.arange(-10, 40.1, 5) # Test models for these SNRs.
testing_ch_model = 'UMi' # Channel for testing
n_iter_test = 500 # Number of testing iterations

[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

Training channel estimation model

The example machine learning model uses the least squares (LS) estimates and outputs a more accurate channel esti-
mate. In its base configuration, the DMRS has 1/2 density in frequency (i.e. one RE for every two subcarriers). Our
ChannelEstimator, therefore, needs to output twice many estimates as DMRS pilots to cover all subcarriers.
Important note on training: Our approach consists of training one model per SNR. SNR-specific models can learn more
accurately how to estimate the channels for SNRs close to the original SNR that was used for model training. This
approach also solves the problem where low SNR channels incur in higher loss and lead to the model focusing on them
and not working for the high SNR cases.
For training, the model interfaces directly with Sionna channel models. For testing, the model is integrated in PyAerial’s
PUSCH pipeline and evaluated alongside other classic channel estimators, like the minimum mean squared error (MMSE)
and the multi-stage MMSE (MS-MMSE). A diagram of training and testing is below:

4.3. Examples of Using pyAerial 555



Aerial CUDA-Accelerated RAN, Release 25-1

[2]: models_dir = ut.get_model_training_dir(models_folder, training_ch_model,
num_prbs, n_iter, batch_size)

os.makedirs(models_dir, exist_ok=True)

# Channel generator for training
train_ch_gen = SionnaChannelGenerator(num_prbs, training_ch_model, batch_size)

n_sub = num_prbs * 12 // interp # number of subcarriers with reference symbols

for snr_idx, snr in enumerate(train_snrs):
print(f'Training model for SNRs: {snr} dB')
save_model_path = ut.get_snr_model_path(models_dir, snr)

model = FusedChannelEstimator(n_sub, comb_size=interp).to(dev)

criterion = ComplexMSELoss()
optimizer = torch.optim.AdamW(model.parameters(), lr=1e-3, weight_decay=1e-4)

model.train()
train_loss, mse_loss = [], []
count = []
for i in (pbar := tqdm(range(n_iter))): # trick: n_iter*(snr_idx+1), high SNR␣

↪→needs longer
# Sionna generate Channels
h, h_ls = train_ch_gen.gen_channel_jit(snr)

# Reshape to match exactly PyAerial's shapes
h_p = sionna_to_pyaerial_shape(h.numpy(), n_sub, interp, est_type='mmse')
h_ls_p = sionna_to_pyaerial_shape(h_ls[..., ::interp].numpy(), n_sub, interp,␣

↪→est_type='ls')

# Transition tensors to PyTorch
h_t, h_ls_t = torch.tensor(h_p).to(dev), torch.tensor(h_ls_p).to(dev)

inputs = torch.view_as_real(h_ls_t)

outputs = model(inputs)

(continues on next page)

556 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

h_hat = torch.view_as_complex(outputs)

loss = criterion(h_hat, h_t)
optimizer.zero_grad(); loss.backward(); optimizer.step()

train_loss += [ut.db(loss.item())]
pbar.set_description(f"Iteration {i+1}/{n_iter}")
pbar.set_postfix_str(f"Training loss: {train_loss[-1]:.1f} dB")

last_model = save_model_path
torch.save(model.state_dict(), save_model_path)
ut.plot_losses([train_loss], ['train loss'], title=f'SNR = {snr} dB')

XLA can lead to reduced numerical precision. Use with care.
Training model for SNRs: -10.0 dB

0%| ␣
↪→ | 0/500 [00:00<?, ?it/s]WARNING: All␣
↪→log messages before absl::InitializeLog() is called are written to STDERR
I0000 00:00:1739325981.380854 41780 device_compiler.h:186] Compiled cluster using␣
↪→XLA! This line is logged at most once for the lifetime of the process.
Iteration 500/500: 100
↪→%|██████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:26<00:00, 19.16it/s, Training loss: -4.2 dB]

4.3. Examples of Using pyAerial 557



Aerial CUDA-Accelerated RAN, Release 25-1

Training model for SNRs: 0.0 dB

Iteration 500/500: 100
↪→%|█████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:08<00:00, 60.60it/s, Training loss: -10.5 dB]

558 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Training model for SNRs: 10.0 dB

Iteration 500/500: 100
↪→%|█████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:08<00:00, 60.17it/s, Training loss: -16.4 dB]

4.3. Examples of Using pyAerial 559



Aerial CUDA-Accelerated RAN, Release 25-1

Training model for SNRs: 20.0 dB

Iteration 500/500: 100
↪→%|█████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:08<00:00, 60.47it/s, Training loss: -21.2 dB]

560 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Training model for SNRs: 30.0 dB

Iteration 500/500: 100
↪→%|█████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:08<00:00, 61.92it/s, Training loss: -23.8 dB]

4.3. Examples of Using pyAerial 561



Aerial CUDA-Accelerated RAN, Release 25-1

Training model for SNRs: 40.0 dB

Iteration 500/500: 100
↪→%|█████████████████████████████████████████████████████████████████████████| 500/
↪→500 [00:08<00:00, 60.73it/s, Training loss: -24.1 dB]

562 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing channel estimation model

The model trained above is a convolutional network, made of RESNET layers. This network consists of two separate
blocks, each estimating as many subcarriers as reference signals. The subcarriers are then interleaved to compose the
complete channel estimate. The diagram for this network is presented below for an example user allocated 48 PRBs:

Now we evaluate this network using the LS channel estimates extracted from a PUSCH receiver, as opposed to manually
extracted from the channel. The output of the network is compared with MS-MMSE.

4.3. Examples of Using pyAerial 563



Aerial CUDA-Accelerated RAN, Release 25-1

[3]: train_dir = ut.get_model_training_dir(models_folder, training_ch_model,
num_prbs, n_iter, batch_size)

snr_losses_ls = [] # LS from PyAerial
snr_losses_mmse = [] # MMSE from PyAerial
snr_losses_mmse2 = [] # MMSE from PyAerial (median)
snr_losses_ml = [] # ML channel estimation losses
snr_losses_ml2 = [] # ML channel estimation losses (median)

# Channel generator for testing
test_ch_gen = SionnaChannelGenerator(num_prbs, testing_ch_model, batch_size=32)

# Create PyAerial channel estimate generator by applying PyAerial components on␣
↪→Sionna Channels
pyaerial_ch_est_gen = PyAerialChannelEstimateGenerator(test_ch_gen)

for snr_idx, snr in enumerate(test_snrs):
print(f'Testing SNR {snr} dB')

# Select model trained on the SNR closest to the test SNR
snr_model_idx = np.argmin(abs(train_snrs - snr))
snr_model = train_snrs[snr_model_idx]
print(f'Testing model trained on SNR {snr_model}')

# Load ML model
model = FusedChannelEstimator(n_sub, comb_size=interp).to(dev)
model.load_state_dict(torch.load(ut.get_snr_model_path(train_dir, snr_model)))

criterion = ComplexMSELoss()

model.eval()
ls_loss, mmse_loss, ml_loss = [], [], []
with torch.no_grad():

for i in tqdm(range(n_iter_test), desc='Testing LS & MS-MMSE in PyAerial'):
# Internally generate channels, add noise, receive the DM-RS symbols and␣

↪→estimate the channel
ls, mmse, gt = pyaerial_ch_est_gen(snr)
ls = ls[:,::interp//2] # to support comb4

# Reshape to match exactly PyAerial's shapes
ls_p = sionna_to_pyaerial_shape(ls, n_sub, interp, est_type='ls')
mmse_p = sionna_to_pyaerial_shape(mmse, n_sub, interp, est_type='mmse')
gt_p = sionna_to_pyaerial_shape(gt, n_sub, interp, est_type='mmse')

# Evaluate PyAerial classic estimators
for b in range(len(ls)):

ls_loss += [ut.complex_mse_loss(ls[b], gt[b][::interp])]
mmse_loss += [ut.complex_mse_loss(mmse[b], gt[b])]

# Evaluate ML approach
h, h_ls = torch.tensor(gt_p).to(dev), torch.tensor(ls_p).to(dev)
inputs = torch.view_as_real(h_ls)
outputs = model(inputs)
h_hat = torch.view_as_complex(outputs)
ml_loss += [criterion(h_hat, h).item()]

# # Uncomment to inspect channel estimates vs ground-truth

(continues on next page)

564 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# ut.compare_ch_ests([ls[0,:],
# mmse[0,:],
# h_hat.detach().cpu().numpy()[0,0,0,:,0],
# gt[0,:]],
# ['LS', 'MMSE', 'ML', 'GT'], title=f'SNR = {snr} dB')

# Compute means and medians of LS, LS+ML and MS-MMSE
snr_losses_ml += [ut.db(np.mean(ml_loss))]
snr_losses_ml2 += [ut.db(np.median(ml_loss))]

snr_losses_ls += [ut.db(np.mean(ls_loss))]
snr_losses_mmse += [ut.db(np.mean(mmse_loss))]
snr_losses_mmse2 += [ut.db(np.median(mmse_loss))]

print(f'Avg. ML test loss for {snr} dB SNR is {snr_losses_ml[-1]:.1f} dB')

# Plot CDFs of MSE losses
ut.plot_annotaded_cdfs([ml_loss, mmse_loss], ['LS+ML', 'MS-MMSE'],

title=f'MSE CDFs for SNR = {snr} dB')

XLA can lead to reduced numerical precision. Use with care.
Testing SNR -10.0 dB
Testing model trained on SNR -10.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:53<00:00, 9.43it/s]

Avg. ML test loss for -10.0 dB SNR is -5.5 dB

4.3. Examples of Using pyAerial 565



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR -5.0 dB
Testing model trained on SNR -10.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:26<00:00, 19.21it/s]

Avg. ML test loss for -5.0 dB SNR is -4.4 dB

566 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 0.0 dB
Testing model trained on SNR 0.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.27it/s]

Avg. ML test loss for 0.0 dB SNR is -11.5 dB

4.3. Examples of Using pyAerial 567



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 5.0 dB
Testing model trained on SNR 0.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.27it/s]

Avg. ML test loss for 5.0 dB SNR is -10.2 dB

568 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 10.0 dB
Testing model trained on SNR 10.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.33it/s]

Avg. ML test loss for 10.0 dB SNR is -17.7 dB

4.3. Examples of Using pyAerial 569



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 15.0 dB
Testing model trained on SNR 10.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.35it/s]

Avg. ML test loss for 15.0 dB SNR is -17.8 dB

570 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 20.0 dB
Testing model trained on SNR 20.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.32it/s]

Avg. ML test loss for 20.0 dB SNR is -21.3 dB

4.3. Examples of Using pyAerial 571



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 25.0 dB
Testing model trained on SNR 20.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.35it/s]

Avg. ML test loss for 25.0 dB SNR is -21.6 dB

572 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 30.0 dB
Testing model trained on SNR 30.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.34it/s]

Avg. ML test loss for 30.0 dB SNR is -23.0 dB

4.3. Examples of Using pyAerial 573



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 35.0 dB
Testing model trained on SNR 30.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.39it/s]

Avg. ML test loss for 35.0 dB SNR is -23.0 dB

574 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Testing SNR 40.0 dB
Testing model trained on SNR 40.0

Testing LS & MS-MMSE in PyAerial: 100
↪→%|███████████████████████████████████████████████████████████████████████████████████|␣
↪→500/500 [00:25<00:00, 19.32it/s]

Avg. ML test loss for 40.0 dB SNR is -22.7 dB

4.3. Examples of Using pyAerial 575



Aerial CUDA-Accelerated RAN, Release 25-1

Observation: When we fine tune our training, we see the ML model outperforming the MS-MMSE approach for most
SNRs. The performance decays slightly when interpolation is necessary. Additionally, the ML seems more reliable for a
wider class of channels. The variance of estimates is lower for ML, on average, it’s performance saturates for high SNRs,
even if the median continues to decay.

Plot comparison across SNRs

Requirement: test_snrs must have more than one element. Read below why we would want to do this.
Model switching depending on SNR: One of the challenges in channel estimation is having it work across SNRs. Lower
SNRs have higher channel estimation mean squared error (MSE), which influences more heavily the loss of these samples
in machine learning models, thus leading the model learn only low-SNR channels. One way to avoid this problem is to
do a model-switching approach. In model-switching, each model is trained for a single SNR and use the model that has
the closest SNR to the SNR of the user.
Note that this approach requires a sufficiently good estimate of the SNR so the correct model is chosen. Usually, acquiring
such an estimate is not difficult - for example, using the MMSE channel estimate should have more resolution than needed.
As such, here we assume the SNR of the user is known and the closest model is selected.
If we set train_snrs = [-10, 0, 10, 20, 30, 40] and test_snrs = [-10, -5, 0, 5, 10,
15, ..., 40], then we will see that the model trained for an SNR of -10 dB is also used to estimate channels at -5

576 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

dB, and the model trained for 0 dB is also used at 5 dB, etc. This leads to a higher MSE in SNRs divisible by 5 but not
10.

[4]: plt.figure(dpi=200)

plt.plot(test_snrs, snr_losses_ls, '-', label='LS', color='k', alpha=.
↪→7)
plt.plot(test_snrs, snr_losses_ml, '-', label='LS+ML (mean)', color='tab:orange
↪→')
plt.plot(test_snrs, snr_losses_ml2, '--', label='LS+ML (median)', color='tab:orange
↪→')
plt.plot(test_snrs, snr_losses_mmse, '-', label='MMSE (mean)', color='tab:green')
plt.plot(test_snrs, snr_losses_mmse2, '--', label='MMSE (median)', color='tab:green')

plt.xlabel('SNR [dB]')
plt.ylabel('NMSE [dB]')
plt.xlim((min(test_snrs), max(test_snrs)))
plt.legend(fontsize=7)
plt.grid()
plt.show()

Below is an example of this plot for the case interp = 2, trained with models every 5 dB SNRs, for 20k iterations,
and 48 PRBs.

4.3. Examples of Using pyAerial 577



Aerial CUDA-Accelerated RAN, Release 25-1

Noteworthy ML gains in MSE compared to MS-MMSE median performance:
• 4-7 dB gain for SNRs ∈ [−10, 0] dB
• 3-4 dB gain for SNRs ∈ [0, 10] dB
• 1-3 dB gain for SNRs ∈ [10, 20] dB

Furthermore, when comparing mean performances (dashed lines), results indicate that the ML approach provides a more
deterministic channel estimation, offering predictably lower errors also in high delay spread regimes. For channels at
SNRs 20 dB, the benefit of ML is over 10 dB on average and it grows for higher SNRs. Note further that this approach
is expected to work better for higher PRB allocations. Higher allocations allow the models to leverage more information
across the band. However, performance should decrease when the interpolation factor (comb size) increases.

Considerations for Real Deployments

For such approach to work in real deployments, it requires two additional steps we choose to omit here for simplicity:
• SNR estimation: required to estimate the optimized model to perform channel estimation. Here, we consider the

SNR is known and choose the closest model to that SNR.
• PRB parallelization: during inference, the PRB parallelizer would split the LS estimates (e.g. 78 PRBs) into

chunks that could be processed in parallel by the trained models of different sizes, and then put back together. As
an example, if we trained models for {1, 4, 16} PRBs, the 78 PRB estimate would results in 4 batches for the 16
PRB model, 3 batches for the 4 PRB and 2 batches for the 1 PRB (4 * 16 + 3 * 4 + 2*1 = 64 + 12 + 2 = 78)

578 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Assessing System-level Performance in the Aerial Omniverse Digital Twin

This notebook can be used to generate models compatible with the machine learning example of PUSCH channel es-
timation in the AODT. As long as the models_folder variable is kept constant across runs, a single folder will be
populated with the correct structure for multiple SNRs and PRBs. As mentioned in the AODT user guide, this folder
will then need to be moved to a directory accessible by the AODT backend, and the config_est.ini file populated
with the absolute path to the folder.
Benefits of using PyAerial as a bridge to AODT

• AODT uses a high-performance EM solver for computing raytracing propagation simulations. Raytracing is neces-
sary for studying ML approaches in site-specific settings, offering insight and explainability to edge-cases previously
unavailable in stochastic simulations.

• AODT RAN simulations use the same software running on the same hardware deployed in the real world. This
unprecedented combination creates an accurate system representation, giving researchers the possibility to design
new features (AI/ML powered or not) and assess their network-wide end-to-end impact.

• PyAerial currently provides a Python interface only to cuPHY, the PHY layer of Aerial. As such, comparions
beyond the PHY are not possible in PyAerial, and the last link-level quantity that can be computed is block error
rates. The AODT, on the other hand, integrates both Aerial’s cuPHY and cuMAC, allowing researchers to measure
how channel estimation impacts higher layers.

For more information about how to run this ML channel estimation in AODT, see the AODT user guide.

4.3.9 Channel estimation on transmissions captured using Aerial Data Lake

This example shows how to query PUSCH data from an Aerial Data Lake database and perform channel estimation on
that PUSCH data using pyAerial.

Note

This notebook requires that the clickhouse server used by Aerial Data Lake is running, and that the example data has
been imported into a database. Refer to the Aerial Data Lake installation docs on how to do this.

Using pyAerial for channel estimation on Aerial Data Lake data

This example shows how to use the pyAerial bindings to run cuPHY GPU accelerated channel estimation for 5G NR
PUSCH. 5G NR PUSCH data is read from an example over the air captured PUSCH dataset collected and stored using
Aerial Data Lake, and the channel is estimated using pyAerial and cuPHY based on the corresponding PUSCH parameters.
Note: This example requires that the clickhouse server is running and that the example data has been stored in the
database. Refer to the Aerial Data Lake documentation on how to do this.

[1]: # Check platform.
import platform
if platform.machine() not in ['x86_64', 'aarch64']:

raise SystemExit("Unsupported platform!")

4.3. Examples of Using pyAerial 579

https://docs.nvidia.com/aerial/aerial-dt/index.html


Aerial CUDA-Accelerated RAN, Release 25-1

Imports

[2]: import math
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# Connecting to clickhouse on remote server
import clickhouse_connect

# Import the channel estimator and some utilities for converting
# the DMRS fields in the right format from the SCF FAPI format that the dataset␣
↪→follows.
from aerial.phy5g.algorithms import ChannelEstimator
from aerial.util.fapi import dmrs_fapi_to_bit_array

Data

We use an example dataset which has been captured from a real over the air PUSCH transmission. The “fapi” table in the
database contains the metadata for each PUSCH transmission and the “fh” table contains all of the samples for that slot.

[3]: # Create the pyAerial (cuPHY) channel estimator.
num_ues = 1
num_rx_ant = 4
channel_estimator = ChannelEstimator(num_rx_ant=num_rx_ant)

# Connect to the local database
client = clickhouse_connect.get_client(host='localhost')

# Pick some pusch records from the database
pusch_records = client.query_df('select * from fapi order by TsTaiNs limit 10')

Run channel estimation

From the PUSCH record we extract the PUSCH DMRS parameters and use the TAI time entry to select the IQ samples
for that slot Channel estimation is then run using the extracted parameters, and the absolute values of the estimated
channels are plotted in the same figure.

[4]: for index,pusch_record in pusch_records.iterrows():
query = f"""select TsTaiNs,fhData from fh where

TsTaiNs == {pusch_record.TsTaiNs.timestamp()} and
CellId == 51
"""

fh = client.query_df(query)

# Make sure that the fronthaul database is complete for the SFN.Slot we've chosen
if fh.index.size < 1:

pusch_records = pusch_records.drop(index)
continue;

(continues on next page)

580 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)

fh_samp = np.array(fh['fhData'][0], dtype=np.float32)
rx_slot = np.swapaxes(fh_samp.view(np.complex64).reshape(4, 14, 273*12),2,0)

# Extract all the needed parameters from the PUSCH record.
slot = int(pusch_record.Slot)
rntis = [pusch_record.rnti]
layers = [pusch_record.nrOfLayers]
start_prb = pusch_record.rbStart
num_prbs = pusch_record.rbSize
start_sym = pusch_record.StartSymbolIndex
num_symbols = pusch_record.NrOfSymbols
scids = [int(pusch_record.SCID)]
data_scids = [pusch_record.dataScramblingId]
dmrs_scrm_id = pusch_record.ulDmrsScramblingId
num_dmrs_cdm_grps_no_data = pusch_record.numDmrsCdmGrpsNoData
dmrs_syms = dmrs_fapi_to_bit_array(int(pusch_record.ulDmrsSymbPos))
dmrs_ports = [pusch_record.dmrsPorts]
dmrs_max_len = 1
dmrs_add_ln_pos = 2
num_subcarriers = num_prbs * 12
mcs_tables = [pusch_record.mcsTable]
mcs_indices = [pusch_record.mcsIndex]
coderates = [pusch_record.targetCodeRate/10.]
tb_sizes = [pusch_record.TBSize]
mod_orders = [pusch_record.qamModOrder]
tb_input = np.array(pusch_record.pduData)

# Run PyAerial (cuPHY) channel estimation.
ch_est = channel_estimator.estimate(

rx_slot=rx_slot,
num_ues=num_ues,
layers=layers,
scids=scids,
slot=slot,
dmrs_ports=dmrs_ports,
dmrs_syms=dmrs_syms,
dmrs_scrm_id=dmrs_scrm_id,
dmrs_max_len=dmrs_max_len,
dmrs_add_ln_pos=dmrs_add_ln_pos,
num_dmrs_cdm_grps_no_data=num_dmrs_cdm_grps_no_data,
start_prb=start_prb,
num_prbs=num_prbs,
prg_size=1,
num_ul_streams=1,
start_sym=start_sym,
num_symbols=num_symbols

)

fig, axs = plt.subplots(1)
fig.suptitle("Channel estimates for SFN.Slot: "+str(pusch_record.SFN)+".

↪→"+str(pusch_record.Slot))
axs.set_title(pusch_record.TsTaiNs)
for ant in range(4):

axs.plot(np.abs(ch_est[0][ant, 0, :, 0]))
axs.grid(True)
plt.show()

4.3. Examples of Using pyAerial 581



Aerial CUDA-Accelerated RAN, Release 25-1

582 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 583



Aerial CUDA-Accelerated RAN, Release 25-1

584 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 585



Aerial CUDA-Accelerated RAN, Release 25-1

586 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 587



Aerial CUDA-Accelerated RAN, Release 25-1

588 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 589



Aerial CUDA-Accelerated RAN, Release 25-1

590 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

For more information, refer to the Aerial Data Lake section.

4.3.10 Decoding PUSCH transmissions captured using Aerial Data Lake

Using pyAerial for PUSCH decoding on Aerial Data Lake data

This example shows how to use the pyAerial bindings to run cuPHY GPU accelerated PUSCH decoding for 5G NR
PUSCH. The 5G NR PUSCH data is read from an example over the air captured PUSCH dataset collected and stored
using Aerial Data Lake. Building a PUSCH receiver using pyAerial is demonstrated in two ways, first by using a fully
fused, complete, PUSCH receiver called from Python using just a single function call. The same is then achieved by
building the complete PUSCH receiver using individual separate Python function calls to individual PUSCH receiver
components.
Note: This example requires that the clickhouse server is running and that the example data has been stored in the
database. Refer to the Aerial Data Lake documentation on how to do this.

[1]: # Check platform.
import platform
if platform.machine() not in ['x86_64', 'aarch64']:

raise SystemExit("Unsupported platform!")

4.3. Examples of Using pyAerial 591



Aerial CUDA-Accelerated RAN, Release 25-1

Imports

[2]: import math
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

import numpy as np
import pandas as pd
from IPython.display import Markdown
from IPython.display import display

# Connecting to clickhouse on remote server
import clickhouse_connect

# Plotting with Matplotlib.
import matplotlib.pyplot as plt

# pyAerial imports
from aerial.phy5g.config import PuschConfig
from aerial.phy5g.config import PuschUeConfig
from aerial.phy5g.algorithms import ChannelEstimator
from aerial.phy5g.algorithms import ChannelEqualizer
from aerial.phy5g.algorithms import NoiseIntfEstimator
from aerial.phy5g.ldpc import LdpcDeRateMatch
from aerial.phy5g.ldpc import LdpcDecoder
from aerial.phy5g.ldpc import CrcChecker
from aerial.phy5g.pusch import PuschRx
from aerial.util.cuda import get_cuda_stream
from aerial.pycuphy.types import PuschLdpcKernelLaunch
from aerial.util.fapi import dmrs_fapi_to_bit_array

# Hide log10(10) warning
_ = np.seterr(divide='ignore', invalid='ignore')

Create the PUSCH pipelines

This is a PUSCH receiver pipeline made up of separately called pyAerial PUSCH receiver components.

[3]: # Whether to plot intermediate results within the PUSCH pipeline, such as channel␣
↪→estimates and equalized symbols.
plot_figures = True

num_ues = 1
num_tx_ant = 2 # UE antennas
num_rx_ant = 4 # gNB antennas
cell_id = 41 # Physical cell ID
enable_pusch_tdi = 0 # Enable time interpolation for equalizer coefficients
eq_coeff_algo = 1 # Equalizer algorithm

# The PUSCH receiver chain built from separately called pyAerial Python components is␣
↪→defined here.
class PuschRxSeparate:

"""PUSCH receiver class.

This class encapsulates the whole PUSCH receiver chain built using

(continues on next page)

592 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
pyAerial components.
"""

def __init__(self,
num_rx_ant,
enable_pusch_tdi,
eq_coeff_algo,
plot_figures):

"""Initialize the PUSCH receiver."""
self.cuda_stream = get_cuda_stream()

# Build the components of the receiver.
self.channel_estimator = ChannelEstimator(

num_rx_ant=num_rx_ant,
cuda_stream=self.cuda_stream)

self.channel_equalizer = ChannelEqualizer(
num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
cuda_stream=self.cuda_stream)

self.noise_intf_estimator = NoiseIntfEstimator(
num_rx_ant=num_rx_ant,
eq_coeff_algo=eq_coeff_algo,
cuda_stream=self.cuda_stream)

self.derate_match = LdpcDeRateMatch(
enable_scrambling=True,
cuda_stream=self.cuda_stream)

self.decoder = LdpcDecoder(cuda_stream=self.cuda_stream)
self.crc_checker = CrcChecker(cuda_stream=self.cuda_stream)

# Whether to plot the intermediate results.
self.plot_figures = plot_figures

def run(
self,
rx_slot,
slot,
pusch_configs

):
"""Run the receiver."""
# Channel estimation.
ch_est = self.channel_estimator.estimate(

rx_slot=rx_slot,
slot=slot,
pusch_configs=pusch_configs

)

# Noise and interference estimation.
lw_inv, noise_var_pre_eq = self.noise_intf_estimator.estimate(

rx_slot=rx_slot,
channel_est=ch_est,
slot=slot,
pusch_configs=pusch_configs

)

# Channel equalization and soft demapping. The first return value are the␣
↪→LLRs,

(continues on next page)

4.3. Examples of Using pyAerial 593



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
# second are the equalized symbols. We only want the LLRs now.
llrs, sym = self.channel_equalizer.equalize(

rx_slot=rx_slot,
channel_est=ch_est,
lw_inv=lw_inv,
noise_var_pre_eq=noise_var_pre_eq,
pusch_configs=pusch_configs

)

if self.plot_figures:
fig, axs = plt.subplots(1,4)
for ant in range(4):

axs[ant].imshow(10*np.log10(np.abs(rx_slot[:, :, ant]**2)), aspect=
↪→'auto')

axs[ant].set_ylim([pusch_record.rbStart * 12, pusch_record.rbSize *␣
↪→12])

axs[ant].set_title('Ant ' + str(ant))
axs[ant].set(xlabel='Symbol', ylabel='Resource Element')
axs[ant].label_outer()

fig.suptitle('Power in RU Antennas')

fig, axs = plt.subplots(1,2)
axs[0].scatter(rx_slot.reshape(-1).real, rx_slot.reshape(-1).imag)
axs[0].set_title("Pre-Equalized samples")
axs[0].set_aspect('equal')

axs[1].scatter(np.array(sym).reshape(-1).real, np.array(sym).reshape(-1).
↪→imag)

axs[1].set_title("Post-Equalized samples")
axs[1].set_aspect('equal')

fig, axs = plt.subplots(1)
axs.set_title("Channel estimates from the PUSCH pipeline")
for ant in range(4):

axs.plot(np.abs(ch_est[0][ant, 0, :, 0]))
axs.legend(["Rx antenna 0, estimate",

"Rx antenna 1, estimate",
"Rx antenna 2, estimate",
"Rx antenna 3, estimate"])

axs.grid(True)
plt.show()

coded_blocks = self.derate_match.derate_match(
input_llrs=llrs,
pusch_configs=pusch_configs

)

code_blocks = self.decoder.decode(
input_llrs=coded_blocks,
pusch_configs=pusch_configs

)

decoded_tbs, tb_crcs = self.crc_checker.check_crc(
input_bits=code_blocks,
pusch_configs=pusch_configs

)

(continues on next page)

594 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
return decoded_tbs

pusch_rx_separate = PuschRxSeparate(
num_rx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
plot_figures=plot_figures

)

# This is the fully fused PUSCH receiver chain.
pusch_rx = PuschRx(

cell_id=cell_id,
num_rx_ant=num_rx_ant,
num_tx_ant=num_rx_ant,
enable_pusch_tdi=enable_pusch_tdi,
eq_coeff_algo=eq_coeff_algo,
# To make this equal separate PUSCH Rx components configuration:
ldpc_kernel_launch=PuschLdpcKernelLaunch.PUSCH_RX_LDPC_STREAM_SEQUENTIAL

)

Querying the database

Below shows how to connect to the clickhouse database and querying the data from it.

[4]: # Connect to the local database
client = clickhouse_connect.get_client(host='localhost')

# Pick a packet from the database
pusch_records = client.query_df('select * from fapi where mcsIndex != 0 order by␣
↪→TsTaiNs limit 10')

Extract the PUSCH parameters and run the pipelines

[5]: for index, pusch_record in pusch_records.iterrows():
query = f"""select TsTaiNs,fhData from fh where

TsTaiNs == {pusch_record.TsTaiNs.timestamp()} and
CellId == 51
"""

fh = client.query_df(query)

display(Markdown("### Example {} - SFN.Slot {}.{} from time {}"
.format(index + 1, pusch_record.SFN, pusch_record.Slot, pusch_

↪→record.TsTaiNs
)))

# Make sure that the fronthaul database is complete for the SFN.Slot we've chosen.
# Also make sure that PDU data exists for the entry.
if fh.index.size < 1 or np.array(pusch_record.pduData).size == 0:

pusch_records = pusch_records.drop(index)
continue;

fh_samp = np.array(fh['fhData'][0], dtype=np.float32)

(continues on next page)

4.3. Examples of Using pyAerial 595



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
rx_slot = np.swapaxes(fh_samp.view(np.complex64).reshape(4, 14, 273 * 12), 2, 0)

# Extract all the needed parameters from the PUSCH record and create the␣
↪→PuschConfig.

pusch_ue_config = PuschUeConfig(
scid=int(pusch_record.SCID),
layers=pusch_record.nrOfLayers,
dmrs_ports=pusch_record.dmrsPorts,
rnti=pusch_record.rnti,
data_scid=pusch_record.dataScramblingId,
mcs_table=pusch_record.mcsTable,
mcs_index=pusch_record.mcsIndex,
code_rate=pusch_record.targetCodeRate,
mod_order=pusch_record.qamModOrder,
tb_size=pusch_record.TBSize

)

slot = int(pusch_record.Slot)
tb_input = np.array(pusch_record.pduData)

# Note that this is a list. One UE group only in this case.
pusch_configs = [PuschConfig(

ue_configs=[pusch_ue_config],
num_dmrs_cdm_grps_no_data=pusch_record.numDmrsCdmGrpsNoData,
dmrs_scrm_id=pusch_record.ulDmrsScramblingId,
start_prb=pusch_record.rbStart,
num_prbs=pusch_record.rbSize,
dmrs_syms=dmrs_fapi_to_bit_array(int(pusch_record.ulDmrsSymbPos)),
dmrs_max_len=1,
dmrs_add_ln_pos=2,
start_sym=pusch_record.StartSymbolIndex,
num_symbols=pusch_record.NrOfSymbols

)]

# Run the receiver built from separately called components.
tbs = pusch_rx_separate.run(

slot=slot,
rx_slot=rx_slot,
pusch_configs=pusch_configs

)

if np.array_equal(tbs[0], tb_input):
display(Markdown("**Separated kernels PUSCH decoding success** for SFN.Slot {}

↪→.{} from time {}"
.format(pusch_record.SFN, pusch_record.Slot, pusch_record.

↪→TsTaiNs)))
else:

display(Markdown("**Separated kernels PUSCH decoding failure**"))
print("Output bytes:")
print(tbs[0])
print("Expected output:")
print(tb_input)

# Run the fused PUSCH receiver.
# Note that this is where we set the dynamically changing parameters.
tb_crcs, tbs = pusch_rx.run(

rx_slot=rx_slot,
(continues on next page)

596 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

(continued from previous page)
slot=slot,
pusch_configs=pusch_configs

)

if np.array_equal(tbs[0], tb_input):
display(Markdown("**Fused PUSCH decoding success** for SFN.Slot {}.{} from␣

↪→time {}"
.format(pusch_record.SFN, pusch_record.Slot, pusch_record.

↪→TsTaiNs)))
else:

display(Markdown("**Fused PUSCH decoding failure**"))
print("Output bytes:")
print(tbs[0])
print("Expected output:")
print(tb_input)

Example 1 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 2 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

4.3. Examples of Using pyAerial 597



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 3 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

598 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 599



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 4 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

/tmp/ipykernel_43612/1271835907.py:85: UserWarning: Attempting to set identical low␣
↪→and high ylims makes transformation singular; automatically expanding.
axs[ant].set_ylim([pusch_record.rbStart * 12, pusch_record.rbSize * 12])

600 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 601



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 5 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

602 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 603



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 6 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

604 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 605



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 7 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

606 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 607



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
Fused PUSCH decoding success for SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000

Example 8 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000

Example 9 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000

608 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 609



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000
Fused PUSCH decoding success for SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000

Example 10 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000

610 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.3. Examples of Using pyAerial 611



Aerial CUDA-Accelerated RAN, Release 25-1

Separated kernels PUSCH decoding success for SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000
Fused PUSCH decoding success for SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000

Similarly to the previous example, this example illustrates the use of pyAerial in context of Aerial Data Lake. In this
example, the PUSCH data queried from the database is run through a full PUSCH receiver pipeline implemented using
the pyAerial API. The example also illustrates how the pyAerial PUSCH components enable fetching intermediate results
from the receiver pipeline.

Note

Similarly to the previous notebook, this notebook requires that the clickhouse server used by Aerial Data Lake is
running, and that the example data has been imported into a database. Refer to the Aerial Data Lake installation docs
on how to do this.

For more information, refer to the Aerial Data Lake section.

612 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

4.4 API Reference

4.4.1 Physical layer for 5G

This module contains classes implementing the 5G NR physical layer using GPU acceleration through the cuPHY library.
The module contains full PDSCH transmitter and PUSCH receiver pipelines in PdschTx and PuschRx, respectively.
The other parts of this module contain individual components of the transmitter-receiver chain, such as for example the
LDPC encoder and decoder in LdpcEncoder and LdpcDecoder, and the channel estimator in ChannelEsti-
mator. Sounding reference signal transmission and reception pipelines are defined in SrsTx and SrsRx, respectively.

Receiver algorithms

This module contains a number of receiver algorithms implemented in cuPHY, thus using GPU acceleration.
class aerial.phy5g.algorithms.channel_estimator.ChannelEstimator

Channel estimator class.
This class implements traditional MMSE-based channel estimation on the DMRS symbols of the received slot
signal. It outputs the channel estimates for all resource elements in the DMRS symbols. Similarly to many other
classes in pyAerial, this class handles groups of UEs sharing the same time-frequency resources with one call, i.e.
it supports MU-MIMO.
__init__(

num_rx_ant,
ch_est_algo=1,
enable_per_prg_chest=0,
enable_ul_rx_bf=0,
cuda_stream=None,
chest_filter_h5=None,
w_freq_array=None,
w_freq4_array=None,
w_freq_small_array=None,
shift_seq_array=None,
unshift_seq_array=None,
shift_seq4_array=None,
unshift_seq4_array=None,

)

Initialize ChannelEstimator.
The channel estimation filters can be given as an H5 file or directly as Numpy arrays. If neither is given, the
channel estimator is using default filters.

Parameters
• num_rx_ant (int) – Number of receive antennas.
• ch_est_algo (int) – Channel estimation algorithm.
– 0 - MMSE
– 1 - Multi-stage MMSE with delay estimation (default)
– 2 - RKHS not supported by pyAerial yet
– 3 - LS channel estimation only

• enable_per_prg_chest (int) – Enable/disable PUSCH per-PRG channel estima-
tion.

4.4. API Reference 613



Aerial CUDA-Accelerated RAN, Release 25-1

– 0: Disable (default).
– 1: Enable.

• enable_ul_rx_bf (int) – Enable/disable beamforming for PUSCH.
– 0: Disable (default).
– 1: Enable.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
• chest_filter_h5 (str) – Filename of an HDF5 file containing channel estimation

filters.
• w_freq_array (np.ndarray)
• w_freq4_array (np.ndarray)
• w_freq_small_array (np.ndarray)
• shift_seq_array (np.ndarray)
• unshift_seq_array (np.ndarray)
• shift_seq4_array (np.ndarray)
• unshift_seq4_array (np.ndarray)

Return type
None

estimate(
*,
rx_slot,
slot,
pusch_configs=None,
num_ues=None,
num_dmrs_cdm_grps_no_data=None,
dmrs_scrm_id=None,
start_prb=None,
num_prbs=None,
prg_size=None,
num_ul_streams=None,
dmrs_syms=None,
dmrs_max_len=None,
dmrs_add_ln_pos=None,
start_sym=None,
num_symbols=None,
scids=None,
layers=None,
dmrs_ports=None,

)

Run channel estimation for multiple UE groups.
This runs the cuPHY channel estimation for all UE groups included in pusch_configs. If this argument is
not given, all the other arguments need to be given and cuPHY channel estimation is run only for a single
UE group sharing the same time-frequency resources, i.e. having the same PRB allocation, and the same
start symbol and number of allocated symbols. This single UE group is the parameterized by the all other
arguments.

614 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the
GPU (CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for rx_slot
when calling the method.

Parameters
• rx_slot (Array) – Input received data as a frequency x time x Rx antenna Numpy or

CuPy array with type complex64 entries.
• slot (int) – Slot number.
• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one

per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given (only one UE group supported in that case).

• num_ues (int) – Number of UEs in the single UE group.
• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without

data [3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.
• dmrs_scrm_id (int) – DMRS scrambling ID.
• start_prb (int) – Start PRB index of the UE allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• prg_size (int) – The Size of PRG in PRB for PUSCH per-PRG channel estimation.
• num_ul_streams (int) – The number of active streams for this PUSCH.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol. The length of the list equals the
number of symbols in the slot. 0 means no DMRS in the symbol and 1 means the symbol is
a DMRS symbol.

• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS
are single-symbol DMRS or single- or double-symbol DMRS.

• dmrs_add_ln_pos (int) – Number of additional DMRS positions.
• start_sym (int) – Start symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.
• scids (List[int]) – DMRS sequence initialization SCID [TS38.211, sec 7.4.1.1.2] for

each UE in the UE group. Value is 0 or 1.
• layers (List[int]) – Number of layers for each UE in the UE group. The length of

the list equals the number of UEs.
• dmrs_ports (List[int]) – DMRS ports for each UE in the UE group. The format of

each entry is in the SCF FAPI format as follows: A bitmap (mask) starting from the LSB
where each bit indicates whether the corresponding DMRS port index is used.

Returns
The channel estimates as a Rx ant x layer x frequency x time Numpy or CuPy array, per UE
group.

Return type
List[Array]

class aerial.phy5g.algorithms.noise_intf_estimator.NoiseIntfEstimator

Noise and interference estimator class.

4.4. API Reference 615



Aerial CUDA-Accelerated RAN, Release 25-1

This class implements an algorithm for noise and interference estimation. It calls the corresponding cuPHY algo-
rithms and provides the estimates as needed for cuPHY equalization and soft demapping.
It needs channel estimates as its input, along with the received data symbols.
__init__(

num_rx_ant,
eq_coeff_algo,
cuda_stream=None,

)

Initialize NoiseIntfEstimator.
Parameters

• num_rx_ant (int) – Number of receive antennas.
• eq_coeff_algo (int) – Algorithm used to compute equalizer coefficients.
– 0: Zero-forcing equalizer.
– 1: MMSE with noise variance only.
– 2: MMSE-IRC.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
estimate(

*,
rx_slot,
channel_est,
slot,
pusch_configs=None,
num_ues=None,
num_dmrs_cdm_grps_no_data=None,
dmrs_scrm_id=None,
start_prb=None,
num_prbs=None,
dmrs_syms=None,
dmrs_max_len=None,
dmrs_add_ln_pos=None,
start_sym=None,
num_symbols=None,
scids=None,
layers=None,
dmrs_ports=None,

)

Estimate noise and interference.
This runs the cuPHY noise and interference estimation for all UE groups included in pusch_configs. If this
argument is not given, all the other arguments need to be given and cuPHY noise and interference estimation
is run only for a single UE group sharing the same time-frequency resources, i.e. having the same PRB
allocation, and the same start symbol and number of allocated symbols.
The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the
GPU (CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for rx_slot
when calling the method.

616 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Parameters
• rx_slot (Array) – Input received data as a frequency x time x Rx antenna Numpy or

CuPy array with type complex64 entries.
• channel_est (List[Array]) – The channel estimates as a Rx ant x layer x frequency

x time Numpy or CuPy array, per UE group.
• slot (int) – Slot number.
• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one

per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given (only one UE group supported in that case).

• num_ues (int) – Number of UEs in the UE group.
• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without

data [3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.
• dmrs_scrm_id (int) – DMRS scrambling ID.
• start_prb (int) – Start PRB index of the UE allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol. The length of the list equals the
number of symbols in the slot. 0 means no DMRS in the symbol and 1 means the symbol is
a DMRS symbol.

• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS
are single-symbol DMRS or single- or double-symbol DMRS.

• dmrs_add_ln_pos (int) – Number of additional DMRS positions.
• start_sym (int) – Start symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.
• scids (List[int]) – DMRS sequence initialization SCID [TS38.211, sec 7.4.1.1.2] for

each UE. Value is 0 or 1.
• layers (List[int]) – Number of layers for each UE. The length of the list equals the

number of UEs.
• dmrs_ports (List[int]) – DMRS ports for each UE. The format of each entry is in

the SCF FAPI format as follows: A bitmap (mask) starting from the LSB where each bit
indicates whether the corresponding DMRS port index is used.

Returns
A tuple containing:
• List[Array]: Inverse of the Cholesky decomposition of the noise/interference covariance

matrix per PRB, per UE group. The size of each entry in this list is number of Rx antennas
x number of Rx antennas x number of PRBs.

• Array: Pre-equalization wideband noise variance estimate per UE, i.e. one value per UE
averaged over the whole frequency allocation. This value is in dB.

Return type
List[Array], Array

4.4. API Reference 617



Aerial CUDA-Accelerated RAN, Release 25-1

class aerial.phy5g.algorithms.channel_equalizer.ChannelEqualizer

Channel equalizer class.
This class implements MMSE-based channel equalization along with soft demapping to get log-likelihood ratios
for channel decoding.
It needs channel estimates and noise and interference estimates as its input, along with the received data symbols.
__init__(

num_rx_ant,
eq_coeff_algo,
enable_pusch_tdi,
cuda_stream=None,

)

Initialize ChannelEqualizer.
Parameters

• num_rx_ant (int) – Number of receive antennas.
• eq_coeff_algo (int) – Algorithm used to compute equalizer coefficients.
– 0: Zero-forcing equalizer.
– 1: MMSE with noise variance only.
– 2: MMSE-IRC.

• enable_pusch_tdi (int) – Whether to use time-domain interpolation.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

equalize(
*,
rx_slot,
channel_est,
lw_inv,
noise_var_pre_eq,
pusch_configs=None,
num_ues=None,
num_dmrs_cdm_grps_no_data=None,
start_prb=None,
num_prbs=None,
dmrs_syms=None,
dmrs_max_len=None,
dmrs_add_ln_pos=None,
start_sym=None,
num_symbols=None,
layers=None,
mod_orders=None,

)

Run equalization and soft demapping.
This runs the cuPHY equalization for all UE groups included in pusch_configs. If this argument is not given,
all the other arguments need to be given and cuPHY equalization is run only for a single UE group sharing the
same time-frequency resources, i.e. having the same PRB allocation, and the same start symbol and number
of allocated symbols.

618 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the
GPU (CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for rx_slot
when calling the method.

Parameters
• rx_slot (Array) – Input received data as a frequency x time x Rx antenna Numpy or

CuPy array with type np.complex64 entries.
• channel_est (List[Array]) – The channel estimates as a Rx ant x layer x frequency

x time Numpy or Cupy array, per UE group.
• lw_inv (List[Array]) – Inverse of the Cholesky decomposition of the

noise/interference covariance matrix per PRB, per UE group. The size of each entry
in this list is number of Rx antennas x number of Rx antennas x number of PRBs.

• noise_var_pre_eq (Array) – Average pre-equalizer noise variance in dB. One value
per UE group.

• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one
per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given (only one UE group supported in that case).

• num_ues (int) – Number of UEs in the UE group.
• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without

data [3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.
• start_prb (int) – Start PRB index of the UE allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol. The length of the list equals the
number of symbols in the slot. 0 means no DMRS in the symbol and 1 means the symbol is
a DMRS symbol.

• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS
are single-symbol DMRS or single- or double-symbol DMRS.

• dmrs_add_ln_pos (int) – Number of additional DMRS positions.
• start_sym (int) – Start symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.
• layers (List[int]) – Number of layers for each UE.
• mod_orders (List[int]) – QAM modulation order for each UE.

Returns
A tuple containing:
• List[Array]: Log-likelihood ratios for the received bits to be fed into decoding (rate match-

ing). One Numpy array per UE group and the size of each Numpy array is 8 x number of
layers x number of subcarriers x number of data symbols. The size of the first dimension
is fixed to eight as modulations up to 256QAM are supported and cuPHY returns the same
size independently of modulation. Only the first entries corresponding to the actual number
of bits are used.

• List[Array]: Equalized symbols, one Numpy array per UE group. The size of each Numpy
array is equal to number of layers x number of subcarriers x number of data symbols.

4.4. API Reference 619



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
List[Array], List[Array]

class aerial.phy5g.algorithms.rsrp_estimator.RsrpEstimator

RSRP, post- and pre-equalizer SINR estimator class.
This class implements RSRP estimation as well as post- and pre-equalizer SINR estimation for PUSCH receiver
pipeline.
__init__(num_rx_ant, enable_pusch_tdi, cuda_stream=None)

Initialize RsrpEstimator.
Parameters

• num_rx_ant (int) – Number of receive antennas.
• enable_pusch_tdi (int) – Whether time-interpolation is used in computing equalizer

coefficients. This impacts post-equalizer SINR.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

estimate(
channel_est,
ree_diag_inv,
noise_var_pre_eq,
pusch_configs=None,
num_ues=None,
num_prbs=None,
dmrs_add_ln_pos=None,
layers=None,

)

Run RSRP and post- and pre-equalizer SINR estimation.
The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the
GPU (CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for rx_slot
when calling the method.

Parameters
• channel_est (List[Array]) – The channel estimates as a Rx ant x layer x frequency

x time Numpy or CuPy array, per UE group.
• ree_diag_inv (List[Array]) – Inverse of post-equalizer residual error covariance

diagonal, per UE group.
• noise_var_pre_eq (Array) – Average pre-equalizer noise variance in dB. One value

per UE group.
• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one

per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given (only one UE group supported in that case).

• num_ues (int) – Number of UEs in the UE group.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_add_ln_pos (int) – Number of additional DMRS positions. This is used to

derive the total number of DMRS symbols.
• layers (List[int]) – Number of layers for each UE.

620 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Returns
A tuple containing:
• Array: RSRP values per UE.
• Array: Pre-equalization SINR values per UE.
• Array: Post-equalization SINR values per UE.

Return type
Array, Array, Array

class aerial.phy5g.algorithms.cfo_ta_estimator.CfoTaEstimator

CFO and TA estimator class.
This class implements an algorithm for carrier frequency offset and timing advance estimation. It calls the corre-
sponding cuPHY algorithms and provides the estimates as needed for other cuPHY algorithms.
It needs channel estimates as its input.
__init__(

num_rx_ant,
mu=1,
enable_cfo_correction=True,
enable_to_estimation=True,
cuda_stream=None,

)

Initialize CfoTaEstimator.
Parameters

• num_rx_ant (int) – Number of receive antennas.
• mu (int) – Numerology. Values in [0, 3]. Default: 1.
• enable_cfo_correction (int) – Enable/disable CFO correction:
– 0: Disable.
– 1: Enable (default).

• enable_to_estimation (int) – Enable/disable time offset estimation:
– 0: Disable.
– 1: Enable (default).

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
estimate(

channel_est,
pusch_configs=None,
num_ues=None,
num_prbs=None,
dmrs_syms=None,
dmrs_max_len=None,
dmrs_add_ln_pos=None,
layers=None,

)

Estimate carrier frequency offset and timing advance.

4.4. API Reference 621



Aerial CUDA-Accelerated RAN, Release 25-1

Parameters
• channel_est (List[Array]) – The channel estimates as a Rx ant x layer x frequency

x time Numpy or CuPy array, per UE group.
• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one

per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given (only one UE group supported in that case).

• num_ues (int) – Number of UEs in the UE group.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol. The length of the list equals the
number of symbols in the slot. 0 means no DMRS in the symbol and 1 means the symbol is
a DMRS symbol.

• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS
are single-symbol DMRS or single- or double-symbol DMRS.

• dmrs_add_ln_pos (int) – Number of additional DMRS positions.
• layers (List[int]) – Number of layers for each UE. The length of the list equals the

number of UEs.
Returns

A tuple containing:
• Array: Carrier frequency offset per UE, in Hz.
• Array: Timing offset per UE, in microseconds.

Return type
Array, Array

class aerial.phy5g.algorithms.trt_engine.TrtTensorPrms

Class to hold the TRT input and output tensor parameters.
property cuphy_data_type: aerial.pycuphy.types.DataType

Convert data type to cuPHY data type format.
__init__(name, dims, data_type=numpy.float32)

Parameters
• name (str)
• dims (List[int])
• data_type (type)

Return type
None

class aerial.phy5g.algorithms.trt_engine.TrtEngine

TensorRT engine class.
This class implements a simple wrapper around NVIDIA’s TensorRT and its cuPHY API. It takes a TRT engine
file as its input, along with the names and dimensions of the input and output tensors. The TRT engine file can be
generated offline from an .onnx file using the trtexec tool.

622 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

__init__(
trt_model_file,
max_batch_size,
input_tensors,
output_tensors,
cuda_stream=None,

)

Initialize TrtEngine.
Parameters

• trt_model_file (str) – This is TRT engine (model) file.
• max_batch_size (int) – Maximum batch size.
• input_tensors (List[TrtTensorPrms]) – A mapping from tensor names to input

tensor dimensions. The names are strings that must match with those found in the TRT model
file, and the shapes are iterables of integers. The batch dimension is skipped.

• output_tensors (List[TrtTensorPrms]) – A mapping from tensor names to out-
put tensor dimensions. The names are strings that must match with those found in the TRT
model file, and the shapes are iterables of integers. The batch dimension is skipped.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
run(input_tensors)

Run the TensorRT model.
This runs the model using NVIDIA TensorRT engine.

Parameters
input_tensors (dict) – A mapping from input tensor names to the actual input tensors.
The tensor names must match with those given in the initialization, and with those found in the
TRT model. Actual batch size is read from the tensor size. The tensors can be either Numpy
or CuPy arrays.

Returns
A mapping from output tensor names to the actual output tensors.

Return type
dict

Configuration classes

This module contains classes to hold various configuration parameters. In particular, the PUSCH receiver pipeline and its
components accept PuschConfig and PuschUeConfig as arguments. Similarly, the PDSCH transmitter pipeline
is configured using the PdschConfig, PdschUeConfig, and PdschCwConfig classes.
class aerial.phy5g.config.PuschUeConfig

A class holding all dynamic PUSCH parameters for a single slot, single UE.
Parameters

• scid (int) – DMRS sequence initialization [TS38.211, sec 7.4.1.1.2].
• layers (int) – Number of layers.
• dmrs_ports (int) – Allocated DMRS ports.

4.4. API Reference 623



Aerial CUDA-Accelerated RAN, Release 25-1

• rnti (int) – The 16-bit RNTI value of the UE.
• data_scid (List[int]) – Data scrambling ID, more precisely dataScramblingIdenti-
tyPdsch [TS38.211, sec 7.3.1.1].

• mcs_table (int) – MCS table to use (see TS 38.214).
• mcs_index (int) – MCS index to use.
• code_rate (int) – Code rate, expressed as the number of information bits per 1024 coded

bits expressed in 0.1 bit units.
• mod_order (int) – Modulation order.
• tb_size (int) – TB size in bytes.
• rv (List[int]) – Redundancy version.
• ndi (List[int]) – New data indicator.

class aerial.phy5g.config.PuschConfig

A class holding all dynamic PUSCH parameters for a single slot, single UE group.
Parameters

• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without data
[3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.

• dmrs_scrm_id (int) – DMRS scrambling ID.
• start_prb (int) – Start PRB index of the UE group allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• prg_size (int) – The Size of PRG in PRB for PUSCH per-PRG channel estimation.
• num_ul_streams (int) – The number of active streams for this PUSCH.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol.
• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS are

single-symbol DMRS or single- or double-symbol DMRS. Note that this needs to be consistent
with dmrs_syms.

• dmrs_add_ln_pos (int) – Number of additional DMRS positions. Note that this needs
to be consistent with dmrs_syms.

• start_sym (int) – Start OFDM symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.

class aerial.phy5g.config.AerialPuschRxConfig

Aerial PUSCH receiver pipeline configuration.
Parameters

• cell_id (int) – Physical cell ID.
• num_rx_ant (int) – Number of receive antennas.
• num_ul_bwp (int) – Number of PRBs in a uplink bandwidth part. Default: 273.
• num_dl_bwp (int) – Number of PRBs in a downlink bandwidth part. Default: 273.
• mu (int) – Numerology. Values in [0, 3]. Default: 1.
• enable_cfo_correction (int) – Enable/disable CFO correction:

624 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

– 0: Disable (default).
– 1: Enable.

• enable_to_estimation (int) – Enable/disable time offset estimation:
– 0: Disable (default).
– 1: Enable.

• enable_pusch_tdi (int) – Time domain interpolation on PUSCH.
– 0: Disable (default).
– 1: Enable.

• eq_coeff_algo (int) – Algorithm for equalizer coefficient computation.
– 0 - ZF.
– 1 - MMSE (default).
– 2 - MMSE-IRC.

• enable_per_prg_chest (int) – Enable/disable PUSCH per-PRG channel estimation.
– 0: Disable (default).
– 1: Enable.

• enable_ul_rx_bf (int) – Enable/disable beamforming for PUSCH.
– 0: Disable (default).
– 1: Enable.

• ldpc_kernel_launch (PuschLdpcKernelLaunch) – LDPC kernel launch method.
class aerial.phy5g.config.CsiRsConfig

CSI-RS parameters.
The RRC parameters for CSI-RS. Used together with PDSCH Tx and CSI-RS Tx.

Parameters
• start_prb (int) – PRB where this CSI resource starts. Expected value < 273.
• num_prb (int) – Number of PRBs across which this CSI resource spans. Expected value

<= 273 - start_prb.
• prb_bitmap (List[int]) – Bitmap defining frequency domain allocation. Counting is

started from least significant bit (first element of the list).
• row (int) – Row entry into the CSI resource location table. Valid values 1-18.
• symb_L0 (int) – Time domain location L0.
• symb_L1 (int) – Time domain location L1.
• freq_density (int) – The density field, p and comb offset (for dot5), 0: dot5 (even RB),

1: dot5 (odd RB), 2: one, 3: three.
• scramb_id (int) – Scrambling ID of CSI-RS.
• idx_slot_in_frame (int) – Slot index in frame.
• cdm_type (int) – CDM Type.
– 0: noCDM

4.4. API Reference 625



Aerial CUDA-Accelerated RAN, Release 25-1

– 1: fd-CDM2
– 2: cdm4-FD2-TD2
– 3: cdm8-FD2-TD4

• beta (float) – Power scaling factor
• precoding_matrix (np.ndarray) – Precoding matrix. Default: No precoding.

class aerial.phy5g.config.AerialPdschTxConfig

Aerial PDSCH transmitter pipeline configuration.
Parameters

• cell_id (int) – Physical cell ID.
• num_tx_ant (int) – Number of transmit antennas.
• num_dl_bwp (int) – Number of PRBs in a downlink bandwidth part. Default: 273.
• mu (int) – Numerology. Values in [0, 3]. Default: 1.

class aerial.phy5g.config.PdschCwConfig

A class holding all dynamic PDSCH parameters for a single slot, single codeword.
Parameters

• mcs_table (int) – MCS table index.
• mcs_index (int) – MCS index.
• code_rate (int) – Code rate, expressed as the number of information bits per 1024 coded

bits expressed in 0.1 bit units.
• mod_order (int) – Modulation order.
• rvs (int) – Redundancy version (default: 0).
• num_prb_lbrm (int) – Number of PRBs used for LBRM TB size computation. Possible

values: {32, 66, 107, 135, 162, 217, 273}.
• max_layers (int) – Number of layers used for LBRM TB size computation (at most 4).
• max_qm (int) – Modulation order used for LBRM TB size computation. Value: 6 or 8.

class aerial.phy5g.config.PdschUeConfig

A class holding all dynamic PDSCH parameters for a single slot, single UE.
Parameters

• scid (int) – DMRS sequence initialization [TS38.211, sec 7.4.1.1.2].
• layers (int) – Number of layers.
• dmrs_ports (int) – Allocated DMRS ports. The format of the entry is in the SCF FAPI

format as follows: A bitmap (mask) starting from the LSB where each bit indicates whether
the corresponding DMRS port index is used.

• bwp_start (int) – Bandwidth part start (PRB number starting from 0). Used only if
reference point is 1.

• ref_point (int) – DMRS reference point. Value 0 or 1.
• beta_qam (float) – Amplitude factor of QAM signal.
• beta_dmrs (float) – Amplitude factor of DMRS signal.

626 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• rnti (int)
• data_scid (List[int]) – Data scrambling ID for the UE, more precisely dataScram-
blingIdentityPdsch [TS38.211, sec 7.3.1.1].

• precoding_matrix (np.ndarray) – Precoding matrix. The shape of the matrix is
number of layers x number of Tx antennas. If set to None, precoding is disabled.

class aerial.phy5g.config.PdschConfig

A class holding all dynamic PDSCH parameters for a single slot, single UE group.
Parameters

• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without data
[3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.

• dmrs_scrm_id (int) – Downlink DMRS scrambling ID.
• resource_alloc (int) – Resource allocation type.
• prb_bitmap (List[int]) – Array of bits indicating bitmask for allocated RBs.
• start_prb (int) – Start PRB index of the UE group allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol.
• start_sym (int) – Start OFDM symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.

PDSCH

This module contains classes related to the Physical Downlink Shared Channel, PDSCH, as well as to Channel State
Information Reference Signals, CSI-RS.
class aerial.phy5g.pdsch.pdsch_tx_base.PdschTxPipeline

A base class for PDSCH transmitter pipeline implementations.
abstract __call__(slot, tb_inputs, config, **kwargs)

Abstract method that runs the transmitter pipeline.
This method gives the signature that the transmitter pipelines should implement.

Parameters
• slot (int) – Slot number.
• tb_inputs (List[Array]) – List of transport blocks, one per UE.
• config (List[_SlotConfigT]) – Dynamic slot configuration in this slot. Note that

the type of this configuration should be derived from SlotConfig.
• kwargs (Any)

Returns
Transmitted OFDM symbols in a frequency x time x antenna tensor.

Return type
Array

4.4. API Reference 627



Aerial CUDA-Accelerated RAN, Release 25-1

class aerial.phy5g.pdsch.pdsch_tx.PdschTxPipelineFactory

Factory for building a PdschTx pipeline.
create(config, cuda_stream, **kwargs)

Create the pipeline.
Parameters

• config (AerialPdschTxConfig) – Pipeline configuration object.
• cuda_stream (int) – CUDA stream used to run the pipeline.
• kwargs (Any)

Returns
A PdschTx pipeline object.

Return type
PdschTx

class aerial.phy5g.pdsch.pdsch_tx.PdschTx

PDSCH transmitter.
This class implements the whole PDSCH transmission pipeline from the transmitted transport block to the trans-
mitted frequency-domain symbols.
__init__(

cell_id,
num_rx_ant,
num_tx_ant,
num_ul_bwp=273,
num_dl_bwp=273,
mu=1,
cuda_stream=None,

)

Initialize PdschTx.
Parameters

• cell_id (int) – Physical cell ID.
• num_rx_ant (int) – Number of receive antennas.
• num_tx_ant (int) – Number of transmit antennas.
• num_ul_bwp (int) – Number of PRBs in a uplink bandwidth part. Default: 273.
• num_dl_bwp (int) – Number of PRBs in a downlink bandwidth part. Default: 273.
• mu (int) – Numerology. Values in [0, 3]. Default: 1.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

__call__(
slot,
tb_inputs,
config,
csi_rs_config=None,
**kwargs,

)

628 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Run the transmitter pipeline.
Note: This implements the base class abstract method.

Parameters
• slot (int) – Slot number.
• tb_inputs (List[Array]) – Transport blocks to be transmitted, one per UE.
• config (List[PdschConfig]) – Dynamic slot configuration in this slot.
• csi_rs_config (List[CsiRsConfig]) – Optional parameters for CSI-RS. Note:

This only leaves the CSI-RS REs empty. To actually add in the CSI-RS signals, one needs
to call the CSI-RS transmitter separately.

• kwargs (Any)
Returns

Transmitted OFDM symbols in a frequency x time x antenna tensor.
Return type

Array
run(

tb_inputs,
slot=0,
pdsch_configs=None,
num_ues=1,
num_dmrs_cdm_grps_no_data=2,
dmrs_scrm_id=41,
resource_alloc=1,
prb_bitmap=None,
start_prb=0,
num_prbs=273,
dmrs_syms=None,
start_sym=2,
num_symbols=12,
scids=None,
layers=None,
dmrs_ports=None,
bwp_starts=None,
ref_points=None,
rntis=None,
data_scids=None,
precoding_matrices=None,
mcs_tables=None,
mcs_indices=None,
code_rates=None,
mod_orders=None,
rvs=None,
num_prb_lbrms=None,
max_layers=None,
max_qms=None,
csi_rs_configs=None,

)

Run PDSCH transmission.

4.4. API Reference 629



Aerial CUDA-Accelerated RAN, Release 25-1

Set dynamic PDSCH parameters and call cuPHY to run the PDSCH transmission.
If the input transport blocks are on the GPU, also the output will be on the GPU. If they are on the host
(NumPy arrays), also the output will be on the host.

Parameters
• tb_inputs (List[np.ndarray]) – Transport blocks in bytes for each UE.
• num_ues (int) – Number of UEs.
• slot (int) – Slot number.
• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without

data [3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.
• dmrs_scrm_id (int) – Downlink DMRS scrambling ID.
• resource_alloc (int) – Resource allocation type.
• prb_bitmap (List[int]) – Array of bits indicating bitmask for allocated RBs.
• start_prb (int) – Start PRB index for the UE group.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol.
• start_sym (int) – Start OFDM symbol index of the UE group allocation.
• num_symbols (int) – Number of symbols in the allocation, starting from start_sym.
• scids (List[int]) – DMRS sequence initialization for each UE [TS38.211, sec

7.4.1.1.2].
• layers (List[int]) – Number of layers for each UE.
• dmrs_ports (List[int]) – DMRS ports for each UE. The format of each entry is in

the SCF FAPI format as follows: A bitmap (mask) starting from the LSB where each bit
indicates whether the corresponding DMRS port index is used.

• bwp_starts (List[int]) – Bandwidth part start (PRB number starting from 0). Used
only if reference point is 1.

• ref_points (List[int]) – DMRS reference point per UE. Value 0 or 1.
• rntis (List[int])
• data_scids (List[int]) – Data scrambling IDs for each UE, more precisely
dataScramblingIdentityPdsch [TS38.211, sec 7.3.1.1].

• precoding_matrices (List[np.ndarray]) – Precoding matrices, one per UE.
The shape of each precoding matrix is number of layers x number of Tx antennas. If set to
None, precoding is disabled.

• mcs_tables (List[int]) – MCS table per UE.
• mcs_indices (List[int]) – MCS index per UE.
• code_rates (List[int]) – Code rate, expressed as the number of information bits per

1024 coded bits expressed in 0.1 bit units.
• mod_orders (List[int]) – Modulation order for each UE.
• rvs (List[int]) – Redundancy version per UE (default: 0 for each UE).

630 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• num_prb_lbrms (List[int]) – Number of PRBs used for LBRM TB size computa-
tion. Possible values: {32, 66, 107, 135, 162, 217, 273}.

• max_layers (List[int]) – Number of layers used for LBRM TB size computation (at
most 4).

• max_qms (List[int]) – Modulation order used for LBRM TB size computation. Value:
6 or 8.

• csi_rs_configs (List[CsiRsConfig]) – List of CSI-RS RRC dynamic parame-
ters, see CsiRsConfig. Note that no CSI-RS symbols get written, this is only to make sure
that PDSCH does not get mapped to the CSI-RS resource elements.

• pdsch_configs (List[PdschConfig] | None)
Returns

Transmitted OFDM symbols in a frequency x time x antenna tensor.
Return type

Array
ldpc_output()

Return the coded bits from LDPC encoder output.
Note: This is returned always as a NumPy array, i.e. in host memory.

Returns
Coded bits in a num_codewords x num_bits_per_codeword tensor,

one per UE.
Return type

List[np.array]
classmethod cuphy_to_tx(

tx_slot,
num_ues,
dmrs_ports,
scids,
precoding_matrices=None,

)

Map cuPHY outputs to Tx antenna ports.
Parameters

• tx_slot (Array) – Transmit buffer from cuPHY.
• num_ues (int) – Number of UEs.
• dmrs_ports (List[int]) – DMRS ports for each UE. The format of each entry is in

the SCF FAPI format as follows: A bitmap (mask) starting from the LSB where each bit
indicates whether the corresponding DMRS port index is used.

• scids (List[int]) – DMRS sequence initialization for each UE [TS38.211, sec
7.4.1.1.2].

• precoding_matrices (List[np.ndarray]) – Precoding matrices, one per UE.
The shape of each precoding matrix is number of layers x number of Tx antennas. If set to
None, precoding is disabled.

Returns
Transmitted OFDM symbols in a frequency x time x antenna tensor.

4.4. API Reference 631



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
Array

class aerial.phy5g.pdsch.csirs_tx.CsiRsTx

CSI-RS transmitter.
This class implements CSI-RS transmission within a slot.
__init__(num_prb_dl_bwp, cuda_stream=None)

Initialize CsiRsTx.
Parameters

• num_prb_dl_bwp (List[int]) – Number of PRBs in DL BWP.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

run(csirs_cell_dyn_prms, tx_buffers, precoding_matrices=None)
Run CSI-RS transmission.
Fills CSI-RS into the transmit buffers given as input, based on given CSI-RS parameters.
The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the GPU
(CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for tx_buffers
when calling the method.

Parameters
• csirs_cell_dyn_prms (List[CsiRsCellDynPrms]) – A list of CSI-RS cell dy-

namic parameters, one entry per cell. See CsiRsCellDynPrms.
• tx_buffers (List[Array]) – A list of transmit slot buffers, one per cell. These rep-

resent the slot buffers prior to inserting the CSI-RS.
• precoding_matrices (List[CsiRsPmwOneLayer]) – A list of precoding matri-

ces. This list gets indexed by the pmw_prm_idx field in CsiRsRrcDynPrms (part of CsiRsCell-
DynPrms).

Returns
Transmit buffers for the slot for each cell after inserting CSI-RS.

Return type
List[Array]

PUSCH

This module contains classes related to the Physical Uplink Shared Channel, PUSCH.
class aerial.phy5g.pusch.pusch_rx_base.PuschRxPipeline

A base class for PUSCH receiver pipeline implementations.
abstract __call__(slot, rx_slot, config, **kwargs)

Abstract method that runs the receiver pipeline.
This method gives the signature that the receiver pipelines should implement.

Parameters
• slot (int) – Slot number.

632 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• rx_slot (Array) – Received slot as an Array.
• config (List[_SlotConfigT]) – Dynamic slot configuration in this slot. Note that

the type of this configuration should be derived from SlotConfig.
• kwargs (Any)

Returns
A tuple containing:
• Array: Transport block CRCs.
• List[Array]: Transport blocks, one per UE, without CRC.

Return type
Array, List[Array]

class aerial.phy5g.pusch.pusch_rx.PuschRxPipelineFactory

Factory for building a PuschRx pipeline.
create(config, cuda_stream, **kwargs)

Create the pipeline.
Parameters

• config (AerialPuschRxConfig) – Pipeline configuration object.
• cuda_stream (int) – CUDA stream used to run the pipeline.
• kwargs (Any)

Returns
A PuschRx pipeline object.

Return type
PuschRx

class aerial.phy5g.pusch.pusch_rx.PuschRx

PUSCH receiver pipeline.
This class implements the whole PUSCH reception pipeline from the received OFDM post-FFT symbols to the
received transport block (along with CRC check).
__init__(

cell_id,
num_rx_ant,
num_tx_ant,
num_ul_bwp=273,
num_dl_bwp=273,
mu=1,
enable_cfo_correction=0,
enable_to_estimation=0,
enable_pusch_tdi=0,
eq_coeff_algo=1,
enable_per_prg_chest=0,
enable_ul_rx_bf=0,
ldpc_kernel_launch=aerial.pycuphy.types.PuschLdpcKernelLaunch.PUSCH_RX_ENABLE_DRIVER_LDPC_LAUNCH,
cuda_stream=None,

)

Initialize PuschRx.
Parameters

4.4. API Reference 633



Aerial CUDA-Accelerated RAN, Release 25-1

• cell_id (int) – Physical cell ID.
• num_rx_ant (int) – Number of receive antennas.
• num_tx_ant (int) – Number of transmit antennas.
• num_ul_bwp (int) – Number of PRBs in a uplink bandwidth part. Default: 273.
• num_dl_bwp (int) – Number of PRBs in a downlink bandwidth part. Default: 273.
• mu (int) – Numerology. Values in [0, 3]. Default: 1.
• enable_cfo_correction (int) – Enable/disable CFO correction:
– 0: Disable (default).
– 1: Enable.

• enable_to_estimation (int) – Enable/disable time offset estimation:
– 0: Disable (default).
– 1: Enable.

• enable_pusch_tdi (int) – Time domain interpolation on PUSCH.
– 0: Disable (default).
– 1: Enable.

• eq_coeff_algo (int) – Algorithm for equalizer coefficient computation.
– 0 - ZF.
– 1 - MMSE (default).
– 2 - MMSE-IRC.

• enable_per_prg_chest (int) – Enable/disable PUSCH per-PRG channel estima-
tion.
– 0: Disable (default).
– 1: Enable.

• enable_ul_rx_bf (int) – Enable/disable beamforming for PUSCH.
– 0: Disable (default).
– 1: Enable.

• ldpc_kernel_launch (PuschLdpcKernelLaunch) – LDPC kernel launch
method.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
__call__(slot, rx_slot, config, **kwargs)

Run the receiver pipeline.
Note: This implements the base class abstract method.

Parameters
• slot (int) – Slot number.
• rx_slot (Array) – Received slot as an Array.

634 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• config (List[PuschConfig]) – Dynamic slot configuration in this slot.
• kwargs (Any)

Returns
A tuple containing:
• Array: Transport block CRCs.
• List[Array]: Transport blocks, one per UE, without CRC.

Return type
Array, List[Array]

run(
rx_slot,
slot=0,
pusch_configs=None,
num_ues=1,
num_dmrs_cdm_grps_no_data=2,
dmrs_scrm_id=41,
start_prb=0,
num_prbs=273,
prg_size=1,
num_ul_streams=1,
dmrs_syms=None,
dmrs_max_len=2,
dmrs_add_ln_pos=1,
start_sym=2,
num_symbols=12,
scids=None,
layers=None,
dmrs_ports=None,
rntis=None,
data_scids=None,
mcs_tables=None,
mcs_indices=None,
code_rates=None,
mod_orders=None,
tb_sizes=None,
rvs=None,
ndis=None,

)

Run PUSCH Rx.
This runs the cuPHY PUSCH receiver pipeline based on the given parameters. Multiple UE groups are
supported if the PuschConfig based API is used. Otherwise, the pipeline gets run only for a single UE group
sharing the same time-frequency resources, i.e. having the same PRB allocation, and the same start symbol
and number of allocated symbols. In this case default values get filled for the parameters that are not given.

Parameters
• rx_slot (Array) – A tensor representing the receive slot buffer of the cell.
• slot (int) – Slot number.
• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one

per UE group. If this argument is given, the rest are ignored. If not given, the other arguments

4.4. API Reference 635



Aerial CUDA-Accelerated RAN, Release 25-1

will be used (default values are used for the parameters that are not given). Only one UE
group is supported in that case.

• num_ues (int) – Number of UEs in the UE group.
• num_dmrs_cdm_grps_no_data (int) – Number of DMRS CDM groups without

data [3GPP TS 38.212, sec 7.3.1.1]. Value: 1->3.
• dmrs_scrm_id (int) – DMRS scrambling ID.
• start_prb (int) – Start PRB index of the UE group allocation.
• num_prbs (int) – Number of allocated PRBs for the UE group.
• prg_size (int) – The Size of PRG in PRB for PUSCH per-PRG channel estimation.
• nUplinkStreams (int) – The number of active streams for this PUSCH.
• dmrs_syms (List[int]) – For the UE group, a list of binary numbers each indicating

whether the corresponding symbol is a DMRS symbol.
• dmrs_max_len (int) – The maxLength parameter, value 1 or 2, meaning that DMRS

are single-symbol DMRS or single- or double-symbol DMRS.
• dmrs_add_ln_pos (int) – Number of additional DMRS positions.
• start_sym (int) – Start OFDM symbol index for the UE group allocation.
• num_symbols (int) – Number of symbols in the UE group allocation.
• scids (List[int]) – DMRS sequence initialization for each UE [TS38.211, sec

7.4.1.1.2].
• layers (List[int]) – Number of layers for each UE.
• dmrs_ports (List[int]) – DMRS ports for each UE. The format of each entry is in

the SCF FAPI format as follows: A bitmap (mask) starting from the LSB where each bit
indicates whether the corresponding DMRS port index is used.

• rntis (List[int])
• data_scids (List[int]) – Data scrambling IDs for each UE, more precisely
dataScramblingIdentityPdsch [TS38.211, sec 7.3.1.1].

• mcs_tables (List[int]) – MCS table to use for each UE (see TS 38.214).
• mcs_indices (List[int]) – MCS indices for each UE.
• code_rates (List[float]) – Code rate, expressed as the number of information bits

per 1024 coded bits expressed in 0.1 bit units.
• mod_orders (List[int]) – Modulation order for each UE.
• tb_sizes (List[int]) – TB size in bytes for each UE.
• rvs (List[int]) – Redundancy versions for each UE.
• ndis (List[int]) – New data indicator per UE.
• num_ul_streams (int)

Returns
A tuple containing:
• Array: Transport block CRCs.
• List[Array]: Transport blocks, one per UE, without CRC.

636 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
Array, List[Array]

class aerial.phy5g.pusch.separable_pusch_rx.SeparablePuschRxPipelineFactory

Factory for building a SeparablePuschRx pipeline.
create(config, cuda_stream, **kwargs)

Create the pipeline.
Parameters

• config (AerialPuschRxConfig) – Pipeline configuration object.
• cuda_stream (int) – CUDA stream used to run the tool.
• kwargs (Any)

Returns
A SeparablePuschRx pipeline object.

Return type
SeparablePuschRx

class aerial.phy5g.pusch.separable_pusch_rx.SeparablePuschRx

Separable PUSCH receiver pipeline.
This class implements the whole PUSCH reception pipeline from the received OFDM post-FFT symbols to the
received transport block (along with CRC check). As opposed to PuschRx, this class implements the pipeline
using separable PUSCH receiver components.
__init__(

num_rx_ant,
enable_pusch_tdi,
eq_coeff_algo,
cuda_stream,

)

Initialize SeparablePuschRx.
Parameters

• num_rx_ant (int) – Number of receive antennas.
• enable_pusch_tdi (int) – Time domain interpolation on PUSCH.
– 0: Disable (default).
– 1: Enable.

• eq_coeff_algo (int) – Algorithm for equalizer coefficient computation.
– 0 - ZF.
– 1 - MMSE (default).
– 2 - MMSE-IRC.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
__call__(slot, rx_slot, config, **kwargs)

Run the receiver pipeline.
Note: This implements the base class abstract method.

4.4. API Reference 637



Aerial CUDA-Accelerated RAN, Release 25-1

Parameters
• slot (int) – Slot number.
• rx_slot (Array) – Received slot as an Array.
• config (List[PuschConfig]) – Dynamic slot configuration in this slot.
• kwargs (Any)

Returns
A tuple containing:
• Array: Transport block CRCs.
• List[Array]: Transport blocks, one per UE, without CRC.

Return type
Array, List[Array]

LDPC 5G

This module contains the API for using the GPU-accelerated LDPC coding chain from the cuPHY library. This includes
encoding and decoding, rate matching, and CRC encoding and checking. Additionally, this module contains a number of
utility functions–for example, to determine the LDPC base graph, transport block size, etc.
class aerial.phy5g.ldpc.decoder.LdpcDecoder

LDPC decoder.
This class supports decoding of LDPC code blocks encoded following TS 38.212. It uses cuPHY accelerated
LDPC decoding routines under the hood.
__init__(

num_iterations=10,
throughput_mode=False,
cuda_stream=None,

)

Initialize LdpcDecoder.
Parameters

• num_iterations (int) – Number of LDPC decoder iterations. Default: 10.
• throughput_mode (bool) – Enable throughput mode. Default: False.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

decode(
*,
input_llrs,
pusch_configs=None,
tb_sizes=None,
code_rates=None,
redundancy_versions=None,
rate_match_lengths=None,
num_iterations=None,

)

638 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Decode function for LDPC decoder.
The decoder outputs decoded code blocks which can be further concatenated into the received transport block
using CrcChecker.
The method can be called using either Numpy or CuPy arrays. In case the input arrays are located on the GPU
(CuPy), the output will be on the GPU (CuPy). So the return type shall be the same as used for input_llrs
when calling the method.

Parameters
• input_llrs (List[Array]) – Input LLRs per UE, each array is a N x C array of

32-bit floats, N being the number of LLRs per code block and C being the number of code
blocks.

• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one
per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given.

• tb_sizes (List[int]) – Transport block size in bits, without CRC, per UE.
• code_rates (List[float]) – Target code rates per UE.
• redundancy_versions (List[int]) – Redundancy version, i.e. 0, 1, 2, or 3, per

UE.
• rate_match_lengths (int) – Number of rate matching output bits of each UE. This

is equal to N.
• num_iterations (int) – Number of LDPC iterations. If not given, use the default from

the constructor.
Returns

The decoded bits.
Return type

List[Array]
set_num_iterations(num_iterations)

Set a particular value for the number of iterations to be run.
Parameters

num_iterations (int) – Value of the number of iterations.
Return type

None
set_throughput_mode(throughput_mode)

Enable throughput mode.
Parameters

throughput_mode (bool) – Enable (True) throughput mode.
Return type

None
get_soft_bits()

Get the soft bit output from the decoder.
Returns

The soft bits in an array.

4.4. API Reference 639



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
List[Array]

class aerial.phy5g.ldpc.encoder.LdpcEncoder

LDPC encoder.
This class provides encoding of transmitted transport block bits using LDPC coding following TS 38.212. The
encoding process is GPU accelerated using cuPHY routines. As the input, the transport blocks are assumed to be
attached with the CRC and segmented to code blocks (as per TS 38.212).
__init__(

num_profiling_iterations=0,
puncturing=True,
max_num_code_blocks=152,
cuda_stream=None,

)

Initialize LdpcEncoder.
Initialization does all the necessary memory allocations for cuPHY.

Parameters
• num_profiling_iterations (int) – Number of profiling iterations. Set to 0 to

disable profiling. Default: 0.
• puncturing (bool) – Whether to puncture the systematic bits (2Zc). Default: True.
• max_num_code_blocks (int) – Maximum number of code blocks. Memory is allo-

cated based on this. Default: 152.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

encode(input_data, tb_size, code_rate, redundancy_version)
Encode function for LDPC encoder.
The input to this function is code blocks, meaning that the code block segmentation is expected to be done
before calling this function. Code block segmentation can be done using code_block_segment(), or
together with CRC attachment using CrcChecker.
Note: If the input data is given as a Numpy array, the output will be a Numpy array. If is is a CuPy array,
the output will be a CuPy array, i.e. no copies between host and device memory are done in that case.

Parameters
• input_data (Array) – The input code blocks as a K x C array where K is the number

of input bits per code block (including CRCs) and C is the number of code blocks.
• tb_size (int) – Transport block size in bits, without CRC.
• code_rate (float) – Target code rate.
• redundancy_version (int) – Redundancy version, 0, 1, 2, or 3.

Returns
Encoded bits as a N x C array where N is the number of

encoded bits per code block.
Return type

Array

640 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

set_profiling_iterations(num_profiling_iterations)
Set a particular value for the number of profiling iterations to be run.

Parameters
num_profiling_iterations (int) – Value of the number of profiling iterations.

Return type
None

set_puncturing(puncturing)

Set puncturing flag.
Parameters

puncturing (bool) – Whether to puncture the systematic bits (2*Zc). Default: True.
Return type

None
class aerial.phy5g.ldpc.rate_match.LdpcRateMatch

LDPC rate matching.
__init__(

enable_scrambling=True,
num_profiling_iterations=0,
max_num_code_blocks=152,
cuda_stream=None,

)

Initialize LdpcRateMatch.
Parameters

• enable_scrambling (bool) – Whether to enable scrambling after code block con-
catenation.

• num_profiling_iterations (int) – Number of profiling iterations. Set to 0 to
disable profiling. Default: 0 (no profiling).

• max_num_code_blocks (int) – Maximum number of code blocks. Memory will be
allocated based on this number.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
rate_match(

input_data,
tb_size,
code_rate,
rate_match_len,
mod_order,
num_layers,
redundancy_version,
cinit,

)

LDPC rate matching function.
This function does rate matching of LDPC code blocks following TS 38.212. If scrambling is enabled, it also
scrambles the rate matched bits. In this case the c_init value needs to be set to an appropriate scrambling
sequence initialization value.

4.4. API Reference 641



Aerial CUDA-Accelerated RAN, Release 25-1

Note: If the input data is given as a Numpy array, the output will be a Numpy array. If is is a CuPy array,
the output will be a CuPy array, i.e. no copies between host and device memory are done in that case.

Parameters
• input_data (Array) – Input bits as a N x C array where N is the number of bits per

code block and C is the number of code blocks.
• tb_size (int) – Transport block size in bits without CRC.
• code_rate (float) – Code rate.
• rate_match_len (int) – Number of rate matching output bits.
• mod_order (int) – Modulation order.
• num_layers (int) – Number of layers.
• redundancy_version (int) – Redundancy version, i.e. 0, 1, 2, or 3.
• cinit (int) – The c_init value used for initializing scrambling.

Returns
Rate matched bits.

Return type
Array

set_profiling_iterations(num_profiling_iterations)
Set a particular value for the number of profiling iterations to be run.

Parameters
num_profiling_iterations (int) – Value of the number of profiling iterations.

Return type
None

class aerial.phy5g.ldpc.derate_match.LdpcDeRateMatch

LDPC derate matching.
__init__(enable_scrambling=True, cuda_stream=None)

Initialize LdpcDeRateMatch.
Initialization does all the necessary memory allocations for cuPHY.

Parameters
• enable_scrambling (bool) – Whether to descramble the bits before derate matching.

Default: True.
• cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

derate_match(
*,
input_llrs,
pusch_configs=None,
tb_sizes=None,
code_rates=None,
rate_match_lengths=None,
mod_orders=None,
num_layers=None,

642 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

redundancy_versions=None,
ndis=None,
cinits=None,
ue_grp_idx=None,

)

LDPC derate matching function.
Parameters

• input_llrs (List[Array]) – Input LLRs as a N x 1 array with dtype np.float32,
where N is the number of LLRs coming from the equalizer. Ordering of this input data is
bitsPerQam x numLayers x numSubcarriers x numDataSymbols. One entry per UE group.

• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one
per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given.

• tb_sizes (List[int]) – Transport block sizes in bits without CRC, per UE.
• code_rates (List[float]) – Code rates per UE.
• rate_match_lengths (List[int]) – Number of rate matching output bits, the same

as N, per UE.
• mod_orders (List[int]) – Modulation order per UE.
• num_layers (List[int]) – Number of layers per UE.
• redundancy_versions (List[int]) – Redundancy version, i.e. 0, 1, 2, or 3, per

UE.
• ndis (List[int]) – New data indicator per UE.
• cinits (List[int]) – The c_init value used for initializing scrambling for each UE.
• ue_grp_idx (List[int]) – The UE group index for each UE. Default is one-to-one

mapping.
Returns

Derate matched LLRs for each UE.
Return type

List[Array]
class aerial.phy5g.ldpc.crc_encode.CrcEncoder

CRC encoding.
This class supports computing and attaching transport block CRCs into the input transport blocks, segmenting the
TB into code blocks and computing and attaching code block CRCs into the code blocks, if needed. It uses cuPHY
accelerated CRC routines under the hood.
__init__(cuda_stream=None)

initialize the CRC encoder.
Parameters

cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None

4.4. API Reference 643



Aerial CUDA-Accelerated RAN, Release 25-1

encode(tb_input, tb_sizes, code_rates)
Run the CRC encoding.
The input is transport blocks (TBs) in bytes. Transport block CRC gets computed and attached into the TB.
Then, if needed, the transport block gets segmented into code blocks (as per 3GPP specifications), and each
code blocks gets appended with a code block CRC. The output is code blocks.
Note: If the input data is given as a Numpy array, the output will be a Numpy array. If is is a CuPy array,
the output will be a CuPy array, i.e. no copies between host and device memory are done in that case.

Parameters
• tb_input (Array) – The transport blocks in bytes, concatenated into a single array which

can be either a Numpy array or a CuPy array.
• tb_sizes (List[int]) – The size of each transport block in bits.
• code_rates (List[float]) – Code rates as float per transport block. Code rate is

needed to determine LDPC base graph.
Returns

Output code blocks corresponding to each transport block.
Return type

List[Array]
class aerial.phy5g.ldpc.crc_check.CrcChecker

CRC checking.
This class supports decoding the code block CRCs, desegmenting code blocks together, assembling the transport
block and also finally decoding the transport block CRCs. It uses cuPHY accelerated CRC routines under the hood.

__init__(cuda_stream=None)
Initialize CrcChecker.

Parameters
cuda_stream (int) – The CUDA stream. If not given, one will be created.

Return type
None

check_crc(
*,
input_bits,
pusch_configs=None,
tb_sizes=None,
code_rates=None,

)

CRC checking.
This method takes LDPC decoder output as its input, checks the code block CRCs, desegments code blocks,
combines them into a transport block and checks the transport block CRC. It returns the transport block
payloads without CRC, as well as the transport block CRC check results. The code block CRC results are
stored as well and may be queried separately.

Parameters
• input_bits (List[Array]) – LDPC decoder outputs per UE, each array is a K x C

array of 32-bit floats, K being the number of bits per code block and C being the number of
code blocks.

644 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• pusch_configs (List[PuschConfig]) – List of PUSCH configuration objects, one
per UE group. If this argument is given, the rest are ignored. If not given, all other arguments
need to be given.

• tb_sizes (List[int]) – Transport block size in bits, without CRC, per UE.
• code_rates (List[float]) – Target code rates per UE.

Returns
A tuple containing:
• List[Array]: Transport block payloads in bytes, without CRC, for each UE.
• List[Array]: Transport block CRC check results for each UE.

Return type
List[Array], List[Array]

aerial.phy5g.ldpc.util.get_mcs(mcs, table_idx=2)
Get modulation order and code rate based on MCS index.

Parameters
• mcs (int) – MCS index pointing to the table indicated by table_idx.
• table_idx (int) – Index of the MCS table in TS 38.214 section 5.1.3.1. Values: - 1:

TS38.214, table 5.1.3.1-1. - 2: TS38.214, table 5.1.3.1-2. - 3: TS38.214, table 5.1.3.1-3.
Returns

A tuple containing:
• int: Modulation order.
• float: Code rate * 1024.

Return type
int, float

aerial.phy5g.ldpc.util.get_tb_size(
mod_order,
code_rate,
dmrs_syms,
num_prbs,
start_sym,
num_symbols,
num_layers,

)

Get transport block size based on given parameters.
Determine transport block size as per TS 38.214 section 5.1.3.2.

Parameters
• mod_order (int) – Modulation order.
• code_rate (float) – Code rate * 1024 as in section 5.1.3.1 of TS 38.214.
• dmrs_syms (List[int]) – List of binary numbers indicating which symbols contain

DMRS.
• num_prbs (int) – Number of PRBs.
• start_sym (int) – Starting symbol.

4.4. API Reference 645



Aerial CUDA-Accelerated RAN, Release 25-1

• num_symbols (int) – Number of symbols.
• num_layers (int) – Number of layers.

Returns
Transport block size in bits.

Return type
int

aerial.phy5g.ldpc.util.get_base_graph(tb_size, code_rate)
Get LDPC base graph.

Parameters
• tb_size (int) – Transport block size in bits, without CRC.
• code_rate (float) – Code rate.

Returns
Base graph, 1 or 2.

Return type
int

aerial.phy5g.ldpc.util.max_code_block_size(base_graph)
Get maximum LDPC code block size based on base graph.

Parameters
base_graph (int) – Base graph, 1 or 2.

Returns
Maximum code block size.

Return type
int

aerial.phy5g.ldpc.util.find_lifting_size(base_graph, tb_size)
Find lifting size for base graph.

Parameters
• base_graph (int) – Base graph, 1 or 2.
• tb_size (int) – Transport block size in bits without CRC.

Returns
Lifting size.

Return type
int

aerial.phy5g.ldpc.util.get_num_info_nodes(base_graph, tb_size)
Get number of information nodes.
Note: This is the value K_b in TS 38.212.

Parameters
• base_graph (int) – Base graph, 1 or 2.
• tb_size (int) – Transport block size without any CRCs.

Returns
The number of information nodes (K_b).

646 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
int

aerial.phy5g.ldpc.util.get_code_block_num_info_bits(base_graph, tb_size)
Get number of information bits in a code block.
This is the number K’ in TS 38.212, i.e. the number of information bits without the filler bits.

Parameters
• base_graph (int) – Base graph, 1 or 2.
• tb_size (int) – Transport block size in bits, without CRC.

Returns
Number of information bits in a code block.

Return type
int

aerial.phy5g.ldpc.util.get_code_block_size(tb_size, code_rate)
Get code block size.
This is the number K in TS 38.212, i.e. the number of information bits including filler bits.

Parameters
• tb_size (int) – Transport block size in bits, without CRC.
• code_rate (float) – Code rate.

Returns
Code block size.

Return type
int

aerial.phy5g.ldpc.util.get_num_code_blocks(tb_size, code_rate)
Return the number of code blocks for a transport block.

Parameters
• tb_size (int) – Transport block size in bits, without CRC.
• code_rate (float) – Code rate.

Returns
The number of code blocks (C).

Return type
int

aerial.phy5g.ldpc.util.code_block_segment(tb_size, transport_block, code_rate)
Do code block segmentation.
This function does code block segmentation as per TS 38.212 section 5.2.2. Randomly generated 24-bit string is
attached to each code block to emulate code block CRC if there is more than one code block.

Parameters
• tb_size (int) – Transport block size in bits, without CRC.
• transport_block (np.ndarray) – Transport block in bits, CRC included.
• code_rate (float) – Code rate.

4.4. API Reference 647



Aerial CUDA-Accelerated RAN, Release 25-1

Returns
The code blocks.

Return type
np.ndarray

aerial.phy5g.ldpc.util.code_block_desegment(
code_blocks,
tb_size,
code_rate,
return_bits=True,

)

Concatenate code blocks coming from LDPC decoding into a transport block.
This function desegments code blocks into a transport block as per TS 38.212, and removes the CRCs, i.e. does
the opposite of code_block_segment().

Parameters
• code_blocks (np.ndarray) – The code blocks coming out of the LDPC decoder as a

N x C array.
• tb_size (int) – Transport block size in bits, without CRC.
• code_rate (float) – Code rate.
• return_bits (bool) – If True (default), give the return value in bits. Otherwise convert

to bytes.
Returns

The transport block with CRC, in bits or bytes depending on the value of return_bits.
Return type

np.ndarray
aerial.phy5g.ldpc.util.add_crc_len(tb_size)

Append CRC length to transport block size.
Parameters

tb_size (int) – Transport block size in bits without CRC.
Returns

Transport block size in bits with CRC.
Return type

int
aerial.phy5g.ldpc.util.random_tb(

mod_order,
code_rate,
dmrs_syms,
num_prbs,
start_sym,
num_symbols,
num_layers,
return_bits=False,

)

Generate a random transport block.
Generates random transport block according to given parameters. The transport block size is first determined as
per TS 38.214 section 5.1.3.2.

648 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

Parameters
• mod_order (int) – Modulation order.
• code_rate (float) – Code rate * 1024 as in section 5.1.3.1 of TS 38.214.
• dmrs_syms (List[int]) – List of binary numbers indicating which symbols contain

DMRS.
• num_prbs (int) – Number of PRBs.
• start_sym (int) – Starting symbol.
• num_symbols (int) – Number of symbols.
• num_layers (int) – Number of layers.
• return_bits (bool) – Whether to return the transport block in bits (True) or bytes (False).

Returns
Random transport block payload.

Return type
np.ndarray

aerial.phy5g.ldpc.util.get_crc_len(tb_size)
Return CRC length based on transport block size.

Parameters
tb_size (int) – Transport block size in bits without CRC.

Returns
CRC length (either 16 or 24 bits).

Return type
int

Sounding reference signals (SRS)

This module contains classes related to transmission and reception of sounding reference signals (SRS).
class aerial.phy5g.srs.srs_api.SrsTxPipeline

A base class for SRS transmitter pipeline implementations.
class aerial.phy5g.srs.srs_api.SrsRxPipeline

A base class for SRS receiver pipeline implementations.
class aerial.phy5g.srs.srs_api.SrsOutput

An empty base class for all SRS output data classes.
class aerial.phy5g.srs.srs_api.SrsConfig

SRS transmission configuration.
Parameters

• num_ant_ports (int) – Number of SRS antenna ports. 1,2, or 4.
• num_syms (int) – Number of SRS symbols. 1,2, or 4.
• num_repetitions (int) – Number of repetitions. 1,2, or 4.
• comb_size (int) – SRS comb size. 2 or 4.
• start_sym (int) – Starting SRS symbol. 0 - 13.

4.4. API Reference 649



Aerial CUDA-Accelerated RAN, Release 25-1

• sequence_id (int) – SRS sequence ID. 0 - 1023.
• config_idx (int) – SRS bandwidth configuration index. 0 - 63.
• bandwidth_idx (int) – SRS bandwidth index. 0 - 3.
• comb_offset (int) – SRS comb offset. 0 - 3.
• cyclic_shift (int) – Cyclic shift. 0 - 11.
• frequency_position (int) – Frequency domain position. 0 - 67.
• frequency_shift (int) – Frequency domain shift. 0 - 268.
• frequency_hopping (int) – Frequency hopping options. 0 - 3.
• resource_type (int) – Type of SRS allocation.
– 0: Aperiodic.
– 1: Semi-persistent.
– 2: Periodic.

• periodicity (int) – SRS periodicity in slots. 0, 2, 3, 5, 8, 10, 16, 20, 32, 40, 64, 80,
160, 320, 640, 1280, 2560.

• offset (int) – Slot offset value. 0 - 2569.
• group_or_sequence_hopping (int) – Hopping configuration.
– 0: No hopping.
– 1: Group hopping.
– 2: Sequence hopping.

class aerial.phy5g.srs.srs_api.SrsTxConfig

SRS transmitter pipeline configuration for a slot.
Parameters

• slot (int) – Slot number.
• frame (int) – Frame number.
• srs_configs (List[SrsConfig]) – SRS configuration for each UE.

class aerial.phy5g.srs.srs_api.SrsRxUeConfig

SRS receiver configuration corresponding to a single UE in a slot.
Parameters

• cell_idx (int) – Index of the cell that this UE is attached to. This index indexes the
SrsRxCellConfig list of cell configurations, as well as the list of Rx data slots given to the SRS
receiver pipeline.

• srs_config (SrsConfig) – SRS configuration for this UE.
• srs_ant_port_to_ue_ant_map (np.array) – Mapping between SRS antenna ports

and UE antennas in channel estimation buffer: Store estimates for SRS antenna port i in
srs_ant_port_to_ue_ant_map[i].

• prg_size (int) – Number of PRBs per PRB group.
• start_prg (int) – Starting PRB group.
• num_prgs (int) – Number of PRB groups.

650 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

class aerial.phy5g.srs.srs_api.SrsRxCellConfig

SRS receiver configuration for a single cell in a slot.
Parameters

• slot (int) – Slot number.
• frame (int) – Frame number.
• srs_start_sym (int) – SRS start symbol in this slot (all UEs).
• num_srs_sym (int) – Number of SRS symbols in this slot (all UEs).

class aerial.phy5g.srs.srs_api.SrsRxConfig

SRS receiver pipeline configuration for a slot.
Parameters

• srs_cell_configs (List[SrsRxCellConfig]) – List of cell configurations for this
slot.

• srs_ue_configs (List[SrsRxUeConfig]) – List of UE SRS configurations for this
slot.

class aerial.phy5g.srs.srs_api.SrsReport

SRS output report.
This report is returned by the SRS receiver pipeline.

Parameters
• ch_est (np.ndarray) – The channel estimates.
• ch_est_to_L2 (np.ndarray) – The channel estimates as returned to L2.
• to_est_ms (np.float32) – Time offset estimate in microseconds.
• wideband_snr (np.float3) – Wideband SNR.
• wideband_noise_energy (np.float32) – Wideband noise energy.
• wideband_signal_energy (np.float32) – Wideband signal energy.
• wideband_sc_corr (np.complex64) – Wideband subcarrier correlation.
• wideband_cs_corr_ratio_db (np.float32)
• wideband_cs_corr_use (np.float32)
• wideband_cs_corr_not_use (np.float32)
• high_density_ant_port_flag (bool)

class aerial.phy5g.srs.srs_tx.SrsTx

SRS transmitter pipeline.
This class implements the sounding reference signal transmission. The signals can be generated for multiple UEs
with a single API call.
__init__(

num_max_srs_ues,
num_slot_per_frame,
num_symb_per_slot,
cuda_stream=None,

)

Initialize SrsTx.

4.4. API Reference 651



Aerial CUDA-Accelerated RAN, Release 25-1

Parameters
• num_max_srs_ues (int) – Maximum number of SRS UEs that this pipeline will handle.

Memory allocation is based on this number.
• num_slot_per_frame (int) – Number of slots per frame.
• num_symb_per_slot (int) – Number of symbols in a slot.
• cuda_stream (int) – The CUDA stream to run the pipeline. If not given, one will be

created.
Return type

None
__call__(config, copy_to_cpu=False, **kwargs)

Run SRS transmission.
Note: This implements the base class abstract method.

Parameters
• config (SrsTxConfig) – SRS transmission configuration. See SrsTxConfig.
• copy_to_cpu (bool) – Whether to copy the transmit buffers to host memory as Numpy

arrays. Default: False.
• kwargs (Any)

Returns
The SRS transmit buffers per UE.

Return type
List[Array]

class aerial.phy5g.srs.srs_rx.SrsRx

SRS receiver pipeline.
This class implements the sounding reference signal reception pipeline. The SRS transmissions can be received
from multiple cells with a single API call.
__init__(

num_rx_ant,
chest_algo_idx=0,
enable_delay_offset_correction=1,
chest_params=None,
num_max_srs_ues=192,
cuda_stream=None,

)

Initialize SrsRx.
Parameters

• num_rx_ant (List[int]) – Number of receive antennas per cell.
• chest_algo_idx (int) – Channel estimation algorithm. Default: 0 (MMSE).
– 0: MMSE
– 1: RKHS

• enable_delay_offset_correction (int) – Enable/disable delay offset correc-
tion. Default: 1 (enabled).

652 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• chest_params (dict) – Dictionary of channel estimation filters and parameters. Set to
None to use defaults.

• num_max_srs_ues (int) – Maximum number of SRS UEs. This number is used in
memory allocations. Default: 192.

• cuda_stream (int) – The CUDA stream. If not given, one will be created.
Return type

None
__call__(rx_data, config, **kwargs)

Run SRS reception.
Note: This implements the base class abstract method.

Parameters
• rx_data (List[Array]) – Received data slot as an Array (Numpy or CuPy).
• config (SrsRxConfig) – SRS reception configuration. See SrsRxConfig.
• kwargs (Any)

Returns
The SRS reports per UE, see SrsReport.

Return type
List[SrsReport]

Fading channel

This module contains the FadingChan class which can be used to simulate OFDM transmission through a tapped delay
line (TDL) fading channel. The implementation is using GPU acceleration.
class aerial.phy5g.chan_models.fading_chan.FadingChan

Fading channel class.
This class implements the fading channel that processes the frequency Tx samples and outputs frequency Rx sam-
ples. It includes OFDM modulation, tapped delay line (TDL) channel, OFDM demodulation, and adds noise based
on input SNR.
__init__(

cuphy_carrier_prms,
tdl_cfg=None,
cdl_cfg=None,
fading_type=1,
freq_in=None,
proc_sig_freq=False,
disable_noise=False,
rand_seed=0,

)

Initialize the FadingChan class.
• cuphy_carrier_prms: carrier parameters for the channel
• tdl_config: configuration of TDL channel
• cdl_config: configuration of CDL channel
• fading_type: 0: AWGN, 1: TDL, 2: CDL

4.4. API Reference 653



Aerial CUDA-Accelerated RAN, Release 25-1

• freq_in: input frequency tx
• proc_sig_freq: processing signal in freq domain will use the CFR from TDL class to process data on

frequency domain. This mode may be inaccurate if CFO presents.
• disable_noise: disable additive Gaussian noise
• rand_seed: random seed for TDL/CDL channel generation

Parameters
• cuphy_carrier_prms (aerial.pycuphy.CuphyCarrierPrms)
• tdl_cfg (aerial.pycuphy.TdlConfig | None)
• cdl_cfg (aerial.pycuphy.CdlConfig | None)
• fading_type (int)
• freq_in (numpy.ndarray | None)
• proc_sig_freq (bool)
• disable_noise (bool)
• rand_seed (int)

Return type
None

add_noise_with_snr(snr_db, enable_swap_tx_rx=False)
Add Gaussian noise to a complex signal with a specified SNR.

Parameters
• snr_db (float) – Desired Signal-to-Noise Ratio in decibels.
• enable_swap_tx_rx (bool) – Swap tx and rx to simulate UL channel using DL class.

Returns
The frequency-domain signal with noise added.

Return type
np.ndarray

add_noise_with_snr_numpy(snr_db, enable_swap_tx_rx=False)
Add Gaussian noise to a complex signal with a specified SNR.

Parameters
• snr_db (float) – Desired Signal-to-Noise Ratio in decibels.
• enable_swap_tx_rx (bool) – Swap tx and rx to simulate UL channel using DL class.
• pycuphy.GauNoiseAdder (This function is GPU-accelerated by
add_noise_with_snr() and)

Returns
The frequency-domain signal with noise added.

Return type
np.ndarray

654 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

dump_channel(freq_in=None, enable_swap_tx_rx=False)
Dump TDL channel to numpy arrays.

Returns
A tuple containing two numpy arrays (cfr_sc, cfr_prbg).

Return type
tuple

Parameters
• freq_in (numpy.ndarray | None)
• enable_swap_tx_rx (bool)

get_genie_channel(
freq_in=None,
cfr_sc=None,
enable_swap_tx_rx=False,

)

need to do ofdm demodulation of the rx-tx ant pair sample to get genie channel
Parameters

• freq_in (numpy.ndarray | None)
• cfr_sc (numpy.ndarray | None)
• enable_swap_tx_rx (bool)

Return type
None

reset()

Reset the fading channel.
Return type

None
run(

tti_idx,
snr_db,
enable_swap_tx_rx=False,
tx_column_major_ind=False,
freq_in=None,

)

Run the fading channel.
Parameters

• tti_idx (int) – TTI index.
• snr_db (float) – Signal-to-Noise Ratio in dB.
• enable_swap_tx_rx (bool) – Swap tx and rx to simulate UL channel using DL class.
• freq_in (np.ndarray) – Frequency domain input samples.
• tx_column_major_ind (bool)

Returns
Frequency domain samples after channel processing.

4.4. API Reference 655



Aerial CUDA-Accelerated RAN, Release 25-1

Return type
np.ndarray

API definitions

This module contains generic API definitions for pyAerial pipelines.
class aerial.phy5g.api.SlotConfig

An empty base class for all slot configuration data classes.
class aerial.phy5g.api.PipelineConfig

An empty base class for all pipeline configuration data classes.
class aerial.phy5g.api.Pipeline

A generic pipeline base class.
class aerial.phy5g.api.PipelineFactory

A generic pipeline factory defining the interface that the factories need to implement.
abstract create(config, cuda_stream, **kwargs)

Create the pipeline.
Parameters

• config (PipelineConfig) – Pipeline configuration. Note that for the implementation
of this method, a PipelineConfig may also be subclassed to implement an arbitrary pipeline
configuration.

• cuda_stream (int) – CUDA stream used to run the pipeline.
• kwargs (Any)

Returns
A pipeline object, the class of which is derived from Pipeline.

Return type
Pipeline

4.4.2 Utilities

FAPI and Matlab interface utilities

The FAPI module contains various utilities for handling the interface between the PUSCH database schema (SCF FAPI)
and cuPHY.
aerial.util.fapi.dmrs_fapi_to_bit_array(dmrs_symb_pos)

Convert the DMRS symbol position decimal value to a bit array.
Parameters

dmrs_symb_pos (np.uint16) – DMRS symbol position decimal value as defined in SCF
FAPI.

Returns
A bit array to be used for cuPHY interface, indicating the positions of DMRS symbols. The first
bit corresponds to OFDM symbol 0.

Return type
list

656 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

aerial.util.fapi.dmrs_bit_array_to_fapi(x)
Convert a bit array to DMRS symbol position decimal value.

Parameters
x (list) – A bit array to be used for cuPHY interface, indicating the positions of DMRS symbols.
The first bit corresponds to OFDM symbol 0.

Returns
DMRS symbol position decimal value as defined in SCF FAPI.

Return type
np.uint16

aerial.util.fapi.dmrs_fapi_to_sym(dmrs_symb_pos)
Convert the DMRS symbol position decimal value to a list of DMRS symbol indices.

Parameters
dmrs_symb_pos (np.uint16) – DMRS symbol position decimal value as defined in SCF
FAPI.

Returns
A list of DMRS symbol indices.

Return type
list

aerial.util.fapi.mac_pdu_to_bit_array(mac_pdu)
Convert MAC PDU bytes to a bit array.

Parameters
mac_pdu (list) – A list of bytes, the content of the MAC PDU.

Returns
The same MAC PDU as a bit array, i.e. the bytes are converted to a list of bits.

Return type
list

aerial.util.fapi.bit_array_to_mac_pdu(bits)
Convert a bit array to MAC PDU bytes.

Parameters
bits (list) – A MAC PDU as a bit array.

Returns
A list of bytes corresponding to the above MAC PDU.

Return type
list

Data storing utilities

class aerial.util.data.PuschRecord

Implements column schema of a PUSCH dataframe row.
The PuschRecord includes fields collected from the data collection agent, and SCF FAPI message content for the
PUSCH channels from UL_TTI.request, RxData.indication, and CRC.indication.

Parameters
• SFN – System Frame Number. Value: 0 - 1023.

4.4. API Reference 657



Aerial CUDA-Accelerated RAN, Release 25-1

• Slot – Slot number. Value: 0 - 159.
• nPDUs – Number of PDUs that were included in the UL_TTI.request message.
• RachPresent – Indicates if a RACH PDU was included in the UL_TTI.request message.
– 0: No RACH in this slot.
– 1: RACH in this slot.

• nULSCH – Number of ULSCH PDUs that were included in the UL_TTI.request message.
Value: 0 - 255.

• nULCCH – Number of ULCCH PDUs that were included in the UL_TTI.request message.
Value: 0 - 255.

• nGroup – Number of UE Groups that were included in the UL_TTI.request message. Value:
0 - 8.

• PDUSize – Size of the PDU control information (in bytes). This length value includes the 4
bytes required for the PDU type and PDU size parameters. Value: 0 - 65535.

• nUE – Number of UEs in this group. For SU-MIMO, one group includes one UE only. For
MU-MIMO, one group includes up to 12 UEs. Value: 1 - 6, None if nGroup = 0.

• pduIdx – This value is an index for number of PDU identified by nPDU in the
UL_TTI.request message. Value: 0 - 255, None if nGroup = 0.

• pduBitmap – Bitmap indicating presence of optional PDUs.
– Bit 0: puschData (Indicates data is expected on the PUSCH).
– Bit 1: puschUci (Indicates UCI is expected on the PUSCH).
– Bit 2: puschPtrs (Indicates PTRS included (FR2)).
– Bit 3: dftsOfdm (Indicates DFT S-OFDM transmission).
– All other bits reserved.

• RNTI – The RNTI used for identifying the UE when receiving the PDU. Value: 1 - 65535.
• Handle – An opaque handling returned in the RxData.indication and/or UCI.indication mes-

sage.
• BWPSize – Bandwidth part size [TS38.213 sec12]. Number of contiguous PRBs allocated

to the BWP. Value: 1 - 275.
• BWPStart – Bandwidth part start RB index from reference CRB [TS38.213 sec 12]. Value:

0 - 274.
• SubcarrierSpacing – SubcarrierSpacing [TS38.211 sec 4.2]. Value: 0 - 4.
• CyclicPrefix – Cyclic prefix type [TS38.211 sec 4.2].
– 0: Normal
– 1: Extended

• targetCodeRate – Target coding rate [TS38.214 sec 6.1.4.1]. This is the number of
information bits per 1024 coded bits expressed in 0.1 bit units.

• qamModOrder – QAM modulation [TS38.214 sec 6.1.4.1]. Values:
– 2,4,6,8 if transform precoding is disabled.
– 1,2,4,6,8 if transform precoding is enabled.

658 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• mcsIndex – MCS index [TS38.214, sec 6.1.4.1], should match value sent in DCI. Value: 0
- 31.

• mcsTable – MCS-Table-PUSCH [TS38.214, sec 6.1.4.1]. Value:
– 0: notqam256 [TS38.214, table 5.1.3.1-1].
– 1: qam256 [TS38.214, table 5.1.3.1-2].
– 2: qam64LowSE [TS38.214, table 5.1.3.1-3].
– 3: notqam256-withTransformPrecoding [TS38.214, table 6.1.4.1-1].
– 4: qam64LowSE-withTransformPrecoding [TS38.214, table 6.1.4.1-2].

• TransformPrecoding – Indicates if transform precoding is enabled or disabled
[TS38.214, sec 6.1.4.1] [TS38.211 6.3.1.4].
– 0: Enabled
– 1: Disabled

• dataScramblingId – dataScramblingIdentityPdsch [TS38.211, sec 6.3.1.1]. It equals
the higher-layer parameter Data-scrambling-Identity if configured and the RNTI equals the
C-RNTI, otherwise L2 needs to set it to physical cell ID. Value: 0 - 65535.

• nrOfLayers – Number of layers [TS38.211, sec 6.3.1.3]. Value: 1 - 4.
• ulDmrsSymbPos – DMRS symbol positions [TS38.211, sec 6.4.1.1.3 and Tables 6.4.1.1.3-

3 and 6.4.1.1.3-4]. Bitmap occupying the 14 LSBs with bit 0 corresponding to the first symbol
and for each bit, value 0 indicates no DMRS and value 1 indicates DMRS.

• dmrsConfigType – UL DMRS config type [TS38.211, sec 6.4.1.1.3].
– 0: type 1
– 1: type 2

• ulDmrsScramblingId – UL-DMRS-Scrambling-ID [TS38.211, sec 6.4.1.1.1 ]. If pro-
vided and the PUSCH is not a msg3 PUSCH, otherwise, L2 should set this to physical cell ID.
Value: 0 - 65535.

• puschIdentity – PUSCH-ID [TS38.211, sec 6.4.1.1.2 ]. If provided and the PUSCH is
not a msg3 PUSCH, otherwise, L2 should set this to physical cell ID. Value: 0 - 1007.

• SCID – DMRS sequence initialization [TS38.211, sec 6.4.1.1.1]. Should match what is sent
in DCI 0_1, otherwise set to 0. Value : 0 - 1.

• numDmrsCdmGrpsNoData – Number of DM-RS CDM groups without data [TS38.212
sec 7.3.1.1]. Value: 1 - 3.

• dmrsPorts – DMRS ports. [TS38.212 7.3.1.1.2] provides description between DCI 0-1
content and DMRS ports. Bitmap occupying the 11 LSBs with bit 0 corresponding to antenna
port 1000 and bit 11 corresponding to antenna port 1011 and for each bit:
– 0: DMRS port not used.
– 1: DMRS port used.

• resourceAlloc – Resource Allocation Type [TS38.214, sec 6.1.2.2].
– 0: Type 0.
– 1: Type 1.

4.4. API Reference 659



Aerial CUDA-Accelerated RAN, Release 25-1

• rbBitmap – For resource allocation type 0. [TS38.214, sec 6.1.2.2.1] [TS 38.212, 7.3.1.1.2]
bitmap of RBs, 273 rounded up to multiple of 32. This bitmap is in units of VRBs. LSB of
byte 0 of the bitmap represents the first RB of the BWP. Each element is of type numpy.uint8.

• rbStart – For resource allocation type 1. [TS38.214, sec 6.1.2.2.2]. The starting resource
block within the BWP for this PUSCH. Value: 0 - 274.

• rbSize – For resource allocation type 1. [TS38.214, sec 6.1.2.2.2]. The number of resource
block within for this PUSCH. Value: 1 - 275.

• VRBtoPRBMapping – VRB to PRB mapping [TS38.211, sec 6.3.1.7].
– 0: Non-interleaved.
– 1: Interleaved.

• FrequencyHopping – For resource allocation type 1, indicates if frequency hopping is
enabled. [TS38.212, sec 7.3.1.1] [TS38.214, sec 6.3].
– 0: Disabled.
– 1: Enabled.

• txDirectCurrentLocation – The uplink Tx Direct Current location for the carrier.
Only values in the value range of this field between 0 and 3299, which indicate the subcarrier
index within the carrier corresponding to the numerology of the corresponding uplink BWP
and value 3300, which indicates “Outside the carrier” and value 3301, which indicates “Unde-
termined position within the carrier” are used. [TS38.331, UplinkTxDirectCurrentBWP IE].
Value: 0 - 4095.

• uplinkFrequencyShift7p5khz – Indicates whether there is 7.5 kHz shift or not.
[TS38.331, UplinkTxDirectCurrentBWP IE].
– 0: False.
– 1: True.

• StartSymbolIndex – Start symbol index of PUSCH mapping from the start of the slot,
S. [TS38.214, Table 6.1.2.1-1]. Value: 0 - 13.

• NrOfSymbols – PUSCH duration in symbols, L. [TS38.214, Table 6.1.2.1-1]. Value: 1 -
14.

• puschData – See SCF FAPI 10.02, Table 3-47. dict{‘cbPresentAndPosition’: array([],
dtype=int32), ‘harqProcessID’: np.uint8, ‘newDataIndicator’: np.uint8, ‘numCb’: np.uint8,
‘rvIndex’: np.uint8, ‘TBSize’: np.uint32}

• puschUci – See SCF FAPI 10.02, Table 3-48.
• puschPtrs – See SCF FAPI 10.02, Table 3-49.
• dftsOfdm – See SCF FAPI 10.02, Table 3-50.
• Beamforming – See SCF FAPI 10.02, Table 3-53.
• HarqID – HARQ process ID. Value: 0 - 15.
• PDULen – Length of PDU in bytes. A length of 0 indicates a CRC or decoding error.
• UL_CQI – SNR.
• TimingAdvance – Timing advance.
• RSSI – RSSI. See SCF FAPI 10.02 Table 3-16 for RSSI definition.
• macPdu – Contents of MAC PDU. Each element is of type numpy.uint8.

660 Chapter 4. pyAerial



Aerial CUDA-Accelerated RAN, Release 25-1

• TbCrcStatus – Indicates CRC result on TB data. Each element is of type numpy.uint8.
– 0: Pass.
– 1: Fail.

• NumCb – If CBG is not used this parameter can be set to zero. Otherwise the number of CBs
in the TB. Value: 0 - 65535.

• CbCrcStatus – Byte-packed array where each bit indicates CRC result on CB data. Each
element is of type numpy.uint8.
– 0: Pass.
– 1: Fail.
– None if NumCb = 0.

• rx_iq_data_filename – Filename of the received OFDM IQ data file. This file contains
the complex OFDM slot data as a frequency x time x antenna numpy array.

• user_data_filename – Filename of the user data file. This file may contain for example
ground truth data.

• errInd – Freeform error indication message.

Notes

The PDULen field is 32 bits whereas SCF FAPI 10.02 incorrectly uses 16 bits. Using 32 bits allows MAC PDUs
larger than 65535 bytes.
static from_series(series)

Create a PuschRecord from a Pandas Series entry (e.g. a DataFrame row).
Parameters

series (pandas.Series) – The input dataframe row.
Returns

The PUSCH record built from the given Pandas Series.
Return type

PuschRecord

static columns()

Return the field names of PuschRecord.
Return type

Tuple

aerial.util.data.save_pickle(data, filename, s3=None)
Save the data in a pickle file either locally or on S3.

Parameters
• data (np.ndarray or dict) – The data to be saved.
• filename (str) – Full path of the file to be used.
• s3 (s3fs.S3FileSystem) – The S3 filesystem to be used. Set to None for local filesys-

tem.
Return type

None

4.4. API Reference 661



Aerial CUDA-Accelerated RAN, Release 25-1

aerial.util.data.load_pickle(filename, s3=None)
Load data from a pickle file, either a local file or on S3.

Parameters
• filename (str) – Full path of the file to be used.
• s3 (s3fs.S3FileSystem) – The S3 filesystem to be used. Set to None for local filesys-

tem.
Returns

The loaded data.
Return type

np.ndarray or dict

CUDA utilities

aerial.util.cuda.get_cuda_stream()

Return a CUDA stream.
Returns

A new CUDA stream.
Return type

cudart.cudaStream_t
aerial.util.cuda.check_cuda_errors(result)

Check CUDA errors.
Parameters

result (cudart.cudaError_t) – CUDA error value.
Return type

Any

662 Chapter 4. pyAerial



PYTHON MODULE INDEX

a
aerial.phy5g.algorithms.cfo_ta_estimator,

621
aerial.phy5g.algorithms.channel_equalizer,

617
aerial.phy5g.algorithms.channel_estimator,

613
aerial.phy5g.algorithms.noise_intf_estimator,

615
aerial.phy5g.algorithms.rsrp_estimator,

620
aerial.phy5g.algorithms.trt_engine, 622
aerial.phy5g.api, 656
aerial.phy5g.chan_models.fading_chan,

653
aerial.phy5g.config, 623
aerial.phy5g.ldpc.crc_check, 644
aerial.phy5g.ldpc.crc_encode, 643
aerial.phy5g.ldpc.decoder, 638
aerial.phy5g.ldpc.derate_match, 642
aerial.phy5g.ldpc.encoder, 640
aerial.phy5g.ldpc.rate_match, 641
aerial.phy5g.ldpc.util, 645
aerial.phy5g.pdsch.csirs_tx, 632
aerial.phy5g.pdsch.pdsch_tx, 627
aerial.phy5g.pdsch.pdsch_tx_base, 627
aerial.phy5g.pusch.pusch_rx, 633
aerial.phy5g.pusch.pusch_rx_base, 632
aerial.phy5g.pusch.separable_pusch_rx,

637
aerial.phy5g.srs.srs_api, 649
aerial.phy5g.srs.srs_rx, 652
aerial.phy5g.srs.srs_tx, 651
aerial.util.cuda, 662
aerial.util.data, 657
aerial.util.fapi, 656

663



Aerial CUDA-Accelerated RAN, Release 25-1

664 Python Module Index



INDEX

Non-alphabetical
__call__() (aerial.phy5g.pdsch.pdsch_tx_base.PdschTxPipeline

method), 627
__call__() (aerial.phy5g.pdsch.pdsch_tx.PdschTx

method), 628
__call__() (aerial.phy5g.pusch.pusch_rx_base.PuschRxPipeline

method), 632
__call__() (aerial.phy5g.pusch.pusch_rx.PuschRx

method), 634
__call__() (aerial.phy5g.pusch.separable_pusch_rx.SeparablePuschRx

method), 637
__call__() (aerial.phy5g.srs.srs_rx.SrsRxmethod), 653
__call__() (aerial.phy5g.srs.srs_tx.SrsTx method), 652
__init__() (aerial.phy5g.algorithms.cfo_ta_estimator.CfoTaEstimator

method), 621
__init__() (aerial.phy5g.algorithms.channel_equalizer.ChannelEqualizer

method), 618
__init__() (aerial.phy5g.algorithms.channel_estimator.ChannelEstimator

method), 613
__init__() (aerial.phy5g.algorithms.noise_intf_estimator.NoiseIntfEstimator

method), 616
__init__() (aerial.phy5g.algorithms.rsrp_estimator.RsrpEstimator

method), 620
__init__() (aerial.phy5g.algorithms.trt_engine.TrtEngine

method), 622
__init__() (aerial.phy5g.algorithms.trt_engine.TrtTensorPrms

method), 622
__init__() (aerial.phy5g.chan_models.fading_chan.FadingChan

method), 653
__init__() (aerial.phy5g.ldpc.crc_check.CrcChecker

method), 644
__init__() (aerial.phy5g.ldpc.crc_encode.CrcEncoder

method), 643
__init__() (aerial.phy5g.ldpc.decoder.LdpcDecoder

method), 638
__init__() (aerial.phy5g.ldpc.derate_match.LdpcDeRateMatch

method), 642
__init__() (aerial.phy5g.ldpc.encoder.LdpcEncoder

method), 640
__init__() (aerial.phy5g.ldpc.rate_match.LdpcRateMatch

method), 641
__init__() (aerial.phy5g.pdsch.csirs_tx.CsiRsTx

method), 632
__init__() (aerial.phy5g.pdsch.pdsch_tx.PdschTx

method), 628
__init__() (aerial.phy5g.pusch.pusch_rx.PuschRx

method), 633
__init__() (aerial.phy5g.pusch.separable_pusch_rx.SeparablePuschRx

method), 637
__init__() (aerial.phy5g.srs.srs_rx.SrsRxmethod), 652
__init__() (aerial.phy5g.srs.srs_tx.SrsTx method), 651

A
add_crc_len() (in module aerial.phy5g.ldpc.util), 648
add_noise_with_snr()

(aerial.phy5g.chan_models.fading_chan.FadingChan
method), 654

add_noise_with_snr_numpy()
(aerial.phy5g.chan_models.fading_chan.FadingChan
method), 654

AerialPdschTxConfig (class in aerial.phy5g.config),
626

aerial.phy5g.algorithms.cfo_ta_estimator
module, 621

aerial.phy5g.algorithms.channel_equalizer
module, 617

aerial.phy5g.algorithms.channel_estimator
module, 613

aerial.phy5g.algorithms.noise_intf_estimator
module, 615

aerial.phy5g.algorithms.rsrp_estimator
module, 620

aerial.phy5g.algorithms.trt_engine
module, 622

aerial.phy5g.api
module, 656

aerial.phy5g.chan_models.fading_chan
module, 653

aerial.phy5g.config
module, 623

aerial.phy5g.ldpc.crc_check
module, 644

aerial.phy5g.ldpc.crc_encode
module, 643

665



Aerial CUDA-Accelerated RAN, Release 25-1

aerial.phy5g.ldpc.decoder
module, 638

aerial.phy5g.ldpc.derate_match
module, 642

aerial.phy5g.ldpc.encoder
module, 640

aerial.phy5g.ldpc.rate_match
module, 641

aerial.phy5g.ldpc.util
module, 645

aerial.phy5g.pdsch.csirs_tx
module, 632

aerial.phy5g.pdsch.pdsch_tx
module, 627

aerial.phy5g.pdsch.pdsch_tx_base
module, 627

aerial.phy5g.pusch.pusch_rx
module, 633

aerial.phy5g.pusch.pusch_rx_base
module, 632

aerial.phy5g.pusch.separable_pusch_rx
module, 637

aerial.phy5g.srs.srs_api
module, 649

aerial.phy5g.srs.srs_rx
module, 652

aerial.phy5g.srs.srs_tx
module, 651

AerialPuschRxConfig (class in aerial.phy5g.config),
624

aerial.util.cuda
module, 662

aerial.util.data
module, 657

aerial.util.fapi
module, 656

B
bit_array_to_mac_pdu() (in module

aerial.util.fapi), 657

C
CfoTaEstimator (class in

aerial.phy5g.algorithms.cfo_ta_estimator),
621

ChannelEqualizer (class in
aerial.phy5g.algorithms.channel_equalizer),
617

ChannelEstimator (class in
aerial.phy5g.algorithms.channel_estimator),
613

check_crc() (aerial.phy5g.ldpc.crc_check.CrcChecker
method), 644

check_cuda_errors() (in module aerial.util.cuda),
662

code_block_desegment() (in module
aerial.phy5g.ldpc.util), 648

code_block_segment() (in module
aerial.phy5g.ldpc.util), 647

columns() (aerial.util.data.PuschRecord static method),
661

CrcChecker (class in aerial.phy5g.ldpc.crc_check), 644
CrcEncoder (class in aerial.phy5g.ldpc.crc_encode), 643
create() (aerial.phy5g.api.PipelineFactory method),

656
create() (aerial.phy5g.pdsch.pdsch_tx.PdschTxPipelineFactory

method), 628
create() (aerial.phy5g.pusch.pusch_rx.PuschRxPipelineFactory

method), 633
create() (aerial.phy5g.pusch.separable_pusch_rx.SeparablePuschRxPipelineFactory

method), 637
CsiRsConfig (class in aerial.phy5g.config), 625
CsiRsTx (class in aerial.phy5g.pdsch.csirs_tx), 632
cuphy_data_type (aerial.phy5g.algorithms.trt_engine.TrtTensorPrms

property), 622
cuphy_to_tx() (aerial.phy5g.pdsch.pdsch_tx.PdschTx

class method), 631

D
decode() (aerial.phy5g.ldpc.decoder.LdpcDecoder

method), 638
derate_match() (aerial.phy5g.ldpc.derate_match.LdpcDeRateMatch

method), 642
dmrs_bit_array_to_fapi() (in module

aerial.util.fapi), 656
dmrs_fapi_to_bit_array() (in module

aerial.util.fapi), 656
dmrs_fapi_to_sym() (in module aerial.util.fapi),

657
dump_channel() (aerial.phy5g.chan_models.fading_chan.FadingChan

method), 654

E
encode() (aerial.phy5g.ldpc.crc_encode.CrcEncoder

method), 643
encode() (aerial.phy5g.ldpc.encoder.LdpcEncoder

method), 640
equalize() (aerial.phy5g.algorithms.channel_equalizer.ChannelEqualizer

method), 618
estimate() (aerial.phy5g.algorithms.cfo_ta_estimator.CfoTaEstimator

method), 621
estimate() (aerial.phy5g.algorithms.channel_estimator.ChannelEstimator

method), 614
estimate() (aerial.phy5g.algorithms.noise_intf_estimator.NoiseIntfEstimator

method), 616
estimate() (aerial.phy5g.algorithms.rsrp_estimator.RsrpEstimator

method), 620

666 Index



Aerial CUDA-Accelerated RAN, Release 25-1

F
FadingChan (class in

aerial.phy5g.chan_models.fading_chan), 653
find_lifting_size() (in module

aerial.phy5g.ldpc.util), 646
from_series() (aerial.util.data.PuschRecord static

method), 661

G
get_base_graph() (in module aerial.phy5g.ldpc.util),

646
get_code_block_num_info_bits() (in module

aerial.phy5g.ldpc.util), 647
get_code_block_size() (in module

aerial.phy5g.ldpc.util), 647
get_crc_len() (in module aerial.phy5g.ldpc.util), 649
get_cuda_stream() (in module aerial.util.cuda), 662
get_genie_channel()

(aerial.phy5g.chan_models.fading_chan.FadingChan
method), 655

get_mcs() (in module aerial.phy5g.ldpc.util), 645
get_num_code_blocks() (in module

aerial.phy5g.ldpc.util), 647
get_num_info_nodes() (in module

aerial.phy5g.ldpc.util), 646
get_soft_bits() (aerial.phy5g.ldpc.decoder.LdpcDecoder

method), 639
get_tb_size() (in module aerial.phy5g.ldpc.util), 645

L
ldpc_output() (aerial.phy5g.pdsch.pdsch_tx.PdschTx

method), 631
LdpcDecoder (class in aerial.phy5g.ldpc.decoder), 638
LdpcDeRateMatch (class in

aerial.phy5g.ldpc.derate_match), 642
LdpcEncoder (class in aerial.phy5g.ldpc.encoder), 640
LdpcRateMatch (class in

aerial.phy5g.ldpc.rate_match), 641
load_pickle() (in module aerial.util.data), 661

M
mac_pdu_to_bit_array() (in module

aerial.util.fapi), 657
max_code_block_size() (in module

aerial.phy5g.ldpc.util), 646
module

aerial.phy5g.algorithms.cfo_ta_estimator,
621

aerial.phy5g.algorithms.channel_equalizer,
617

aerial.phy5g.algorithms.channel_estimator,
613

aerial.phy5g.algorithms.noise_intf_estimator,
615

aerial.phy5g.algorithms.rsrp_estimator,
620

aerial.phy5g.algorithms.trt_engine,
622

aerial.phy5g.api, 656
aerial.phy5g.chan_models.fading_chan,

653
aerial.phy5g.config, 623
aerial.phy5g.ldpc.crc_check, 644
aerial.phy5g.ldpc.crc_encode, 643
aerial.phy5g.ldpc.decoder, 638
aerial.phy5g.ldpc.derate_match, 642
aerial.phy5g.ldpc.encoder, 640
aerial.phy5g.ldpc.rate_match, 641
aerial.phy5g.ldpc.util, 645
aerial.phy5g.pdsch.csirs_tx, 632
aerial.phy5g.pdsch.pdsch_tx, 627
aerial.phy5g.pdsch.pdsch_tx_base,

627
aerial.phy5g.pusch.pusch_rx, 633
aerial.phy5g.pusch.pusch_rx_base,

632
aerial.phy5g.pusch.separable_pusch_rx,

637
aerial.phy5g.srs.srs_api, 649
aerial.phy5g.srs.srs_rx, 652
aerial.phy5g.srs.srs_tx, 651
aerial.util.cuda, 662
aerial.util.data, 657
aerial.util.fapi, 656

N
NoiseIntfEstimator (class in

aerial.phy5g.algorithms.noise_intf_estimator),
615

P
PdschConfig (class in aerial.phy5g.config), 627
PdschCwConfig (class in aerial.phy5g.config), 626
PdschTx (class in aerial.phy5g.pdsch.pdsch_tx), 628
PdschTxPipeline (class in

aerial.phy5g.pdsch.pdsch_tx_base), 627
PdschTxPipelineFactory (class in

aerial.phy5g.pdsch.pdsch_tx), 627
PdschUeConfig (class in aerial.phy5g.config), 626
Pipeline (class in aerial.phy5g.api), 656
PipelineConfig (class in aerial.phy5g.api), 656
PipelineFactory (class in aerial.phy5g.api), 656
PuschConfig (class in aerial.phy5g.config), 624
PuschRecord (class in aerial.util.data), 657
PuschRx (class in aerial.phy5g.pusch.pusch_rx), 633
PuschRxPipeline (class in

aerial.phy5g.pusch.pusch_rx_base), 632

Index 667



Aerial CUDA-Accelerated RAN, Release 25-1

PuschRxPipelineFactory (class in
aerial.phy5g.pusch.pusch_rx), 633

PuschUeConfig (class in aerial.phy5g.config), 623

R
random_tb() (in module aerial.phy5g.ldpc.util), 648
rate_match() (aerial.phy5g.ldpc.rate_match.LdpcRateMatch

method), 641
reset() (aerial.phy5g.chan_models.fading_chan.FadingChan

method), 655
RsrpEstimator (class in

aerial.phy5g.algorithms.rsrp_estimator), 620
run() (aerial.phy5g.algorithms.trt_engine.TrtEngine

method), 623
run() (aerial.phy5g.chan_models.fading_chan.FadingChan

method), 655
run() (aerial.phy5g.pdsch.csirs_tx.CsiRsTx method), 632
run() (aerial.phy5g.pdsch.pdsch_tx.PdschTx method),

629
run() (aerial.phy5g.pusch.pusch_rx.PuschRx method),

635

S
save_pickle() (in module aerial.util.data), 661
SeparablePuschRx (class in

aerial.phy5g.pusch.separable_pusch_rx), 637
SeparablePuschRxPipelineFactory (class in

aerial.phy5g.pusch.separable_pusch_rx), 637
set_num_iterations()

(aerial.phy5g.ldpc.decoder.LdpcDecoder
method), 639

set_profiling_iterations()
(aerial.phy5g.ldpc.encoder.LdpcEncoder
method), 640

set_profiling_iterations()
(aerial.phy5g.ldpc.rate_match.LdpcRateMatch
method), 642

set_puncturing() (aerial.phy5g.ldpc.encoder.LdpcEncoder
method), 641

set_throughput_mode()
(aerial.phy5g.ldpc.decoder.LdpcDecoder
method), 639

SlotConfig (class in aerial.phy5g.api), 656
SrsConfig (class in aerial.phy5g.srs.srs_api), 649
SrsOutput (class in aerial.phy5g.srs.srs_api), 649
SrsReport (class in aerial.phy5g.srs.srs_api), 651
SrsRx (class in aerial.phy5g.srs.srs_rx), 652
SrsRxCellConfig (class in aerial.phy5g.srs.srs_api),

650
SrsRxConfig (class in aerial.phy5g.srs.srs_api), 651
SrsRxPipeline (class in aerial.phy5g.srs.srs_api), 649
SrsRxUeConfig (class in aerial.phy5g.srs.srs_api), 650
SrsTx (class in aerial.phy5g.srs.srs_tx), 651
SrsTxConfig (class in aerial.phy5g.srs.srs_api), 650

SrsTxPipeline (class in aerial.phy5g.srs.srs_api), 649

T
TrtEngine (class in aerial.phy5g.algorithms.trt_engine),

622
TrtTensorPrms (class in

aerial.phy5g.algorithms.trt_engine), 622

668 Index


	Aerial cuBB
	Getting Started
	Aerial cuBB Content Map

	Product Brief
	cuPHY Features Overview
	Supported Features
	Aerial CUDA-Accelerated RAN Layer 1
	3GPP Release 15

	PHY FH Interface
	Aerial CUDA-Accelerated RAN PHY Overall Capabilities

	TS 38.211 Numerologies, Physical Resources, Modulation, Sequence, Signal Generation
	Aerial CUDA-Accelerated RAN PHY Numerologies
	Aerial CUDA-Accelerated RAN Overall PHY Physical Resources
	Aerial CUDA-Accelerated RAN PHY Physical Resources – BWP
	Aerial CUDA-Accelerated RAN Overall Carrier Aggregation
	Aerial CUDA-Accelerated RAN PHY Modulation Mapper
	Aerial CUDA-Accelerated RAN PHY Sequence Generation
	OFDM Baseband Signal Generation (UL DFT-S-OFDM)

	TS 38.211 Channels
	Aerial CUDA-Accelerated RAN Physical Overall Channels and Reference Signals
	Aerial CUDA-Accelerated RAN Overall Channel - PUSCH (Physical Uplink Shared Channel)
	1-Capabilities-TSx211-6-3-3] Aerial CUDA-Accelerated RAN Overall Channel - PRACH(PHY Random Access Channel)
	Aerial CUDA-Accelerated RAN Overall PHY - UL Reference Signals
	Aerial CUDA-Accelerated RAN Overall Channel - PDSCH(PHY DL Shared Channel)
	Aerial CUDA-Accelerated RAN Overall Channel - PDCCH (Physical DL Control Channel)
	Aerial CUDA-Accelerated RAN Overall Channel - PBCH (Physical Broadcast Channel)
	Aerial CUDA-Accelerated RAN Overall - PHY DL Reference Signals

	TS 38.212 Multiplexing and Channel Coding
	Aerial CUDA-Accelerated RAN Overall Multiplexing and Channel Coding

	TS 38.213 Physical Layer Procedures for Control
	Aerial CUDA-Accelerated RAN Overall - PHY Control Procedures

	TS 38.214 Physical Layer Procedures for Data
	Aerial CUDA-Accelerated RAN Overall PHY Data Procedures

	FH Interfaces
	Aerial CUDA-Accelerated RAN Overall 4T4R L1 - L2 Layer Interface Based on SCF FAPI
	Aerial CUDA-Accelerated RAN Overall PHY FH Interface

	Measurements
	Aerial CUDA-Accelerated RAN Overall PHY Measurements - 4T4R

	TS 38.104 (base station radio Tx and Rx) Base Station (BS) Radio Transmission and Reception
	Aerial CUDA-Accelerated RAN Overall PHY Performance Conformance



	Aerial CUDA-Accelerated RAN Features for 5G gNB
	Highlights
	Capabilities
	Homogeneous Cell Lifecycle Mgmt - Cell State Mgmt (IS/OOS)
	Fronthaul Port Failover Validation (Active-Standby) of C/U/S-Planes

	Procedures
	Aerial CUDA-Accelerated RAN Overall Beam and Carrier Mobility
	UL Power Control
	Carrier Aggregation

	Interfaces
	gNB Interfaces


	Network, Services, and KPIs
	Highlights
	E2E Summary
	4T4R Overall Configuration and KPIs
	Aerial CUDA-Accelerated RAN Overall ORU Ecosystem
	Aerial CUDA-Accelerated RAN Overall UE Ecosystem
	5G Infrastructure Integration
	5G RAN Integration
	5G Mobile Core (NGC) integration

	5G NSE Overall Network Deployment Topologies
	Aerial E2E Reference BOM and Component Manifest



	Supported Systems
	Highlights
	Aerial CUDA-Accelerated RAN Overall Platform Qualification

	Operations, Administration, and Management (OAM) Guide
	OAM Operation
	Cloud Native DevOps
	Aerial Applications
	Deployment Scenarios
	Functional Testing
	End to End Testing


	Fault Management
	Logging
	nvlog message format
	nvlog Components
	Event codes

	OAM Configuration
	Startup Configuration (cuphycontroller)
	l2adapter_filename
	aerial_metrics_backend_address
	low_priority_core
	nic_tput_alert_threshold_mbps
	cuphydriver_config
	standalone
	validation
	num_slots
	log_level
	profiler_sec
	dpdk_thread
	dpdk_verbose_logs
	accu_tx_sched_res_ns
	accu_tx_sched_disable
	fh_stats_dump_cpu_core
	pdump_client_thread
	mps_sm_pusch
	mps_sm_pucch
	mps_sm_pusch
	mps_sm_prach
	mps_sm_ul_order
	mps_sm_pdsch
	mps_sm_pdcch
	mps_sm_pbch
	mps_sm_srs
	mps_sm_gpu_comms
	nics
	nic
	mtu
	cpu_mbufs
	uplane_tx_handles
	txq_count
	rxq_count
	txq_size
	rxq_size
	gpu
	gpus
	workers_ul
	workers_dl
	debug_worker
	workers_sched_priority
	dpdk_file_prefix
	wfreq
	cell_group
	cell_group_num
	enable_h2d_copy_thread
	h2d_copy_thread_cpu_affinity
	h2d_copy_thread_sched_priority
	fix_beta_dl
	prometheus_thread
	start_section_id_srs
	start_section_id_prach
	enable_ul_cuphy_graphs
	enable_dl_cuphy_graphs
	section_3_time_offset
	ul_order_timeout_cpu_ns
	ul_order_timeout_gpu_ns
	pusch_sinr
	pusch_rssi
	pusch_tdi
	pusch_cfo
	pusch_dftsofdm
	pusch_to
	pusch_select_eqcoeffalgo
	pusch_select_chestalgo
	pusch_tbsizecheck
	pusch_subSlotProcEn
	pusch_deviceGraphLaunchEn
	pusch_waitTimeOutPreEarlyHarqUs
	pusch_waitTimeOutPostEarlyHarqUs
	puxch_polarDcdrListSz
	enable_cpu_task_tracing
	enable_prepare_tracing
	enable_dl_cqe_tracing
	ul_rx_pkt_tracing_level
	split_ul_cuda_streams
	aggr_obj_non_avail_th
	dl_wait_th_ns
	sendCPlane_timing_error_th_ns
	pusch_forcedNumCsi2Bits
	mMIMO_enable
	enable_srs
	enable_csip2_v3
	pusch_aggr_per_ctx
	prach_aggr_per_ctx
	pucch_aggr_per_ctx
	srs_aggr_per_ctx
	ul_input_buffer_per_cell
	ul_input_buffer_per_cell_srs
	ue_mode
	cplane_disable
	cells
	name
	cell_id
	src_mac_addr
	dst_mac_addr
	nic
	vlan
	pcp
	txq_count_uplane
	eAxC_id_ssb_pbch
	eAxC_id_pdcch
	eAxC_id_pdsch
	eAxC_id_csirs
	eAxC_id_pusch
	eAxC_id_pucch
	eAxC_id_srs
	eAxC_id_prach
	dl_iq_data_fmt:comp_meth
	dl_iq_data_fmt:bit_width
	ul_iq_data_fmt:comp_meth
	ul_iq_data_fmt:bit_width
	fs_offset_dl
	exponent_dl
	ref_dl
	fs_offset_ul
	exponent_ul
	max_amp_ul
	mu
	T1a_max_up_ns
	T1a_max_cp_ul_ns
	Ta4_min_ns
	Ta4_max_ns
	Tcp_adv_dl_ns
	ul_u_plane_tx_offset_ns
	pusch_prb_stride
	prach_prb_stride
	srs_prb_stride
	pusch_ldpc_max_num_itr_algo_type
	pusch_fixed_max_num_ldpc_itrs
	pusch_ldpc_n_iterations
	pusch_ldpc_algo_index
	pusch_ldpc_flags
	pusch_ldpc_use_half
	pusch_nMaxPrb
	ul_gain_calibration
	lower_guard_bw
	tv_pusch
	tv_prach
	pusch_ldpc_n_iterations
	pusch_ldpc_early_termination

	Startup Configuration (l2_adapter_config)
	msg_type
	phy_class
	tick_generator_mode
	allowed_fapi_latency
	allowed_tick_error
	timer_thread_config
	name
	cpu_affinity
	sched_priority
	message_thread_config
	name
	cpu_affinity
	sched_priority
	ptp
	gps_alpha
	gps_beta
	mu_highest
	slot_advance
	enableTickDynamicSfnSlot
	staticPucchSlotNum
	staticPuschSlotNum
	staticPdschSlotNum
	staticPdcchSlotNum
	staticCsiRsSlotNum
	staticSsbSlotNum
	staticSsbPcid
	staticSsbSFN
	pucch_dtx_thresholds
	pusch_dtx_thresholds
	enable_precoding
	prepone_h2d_copy
	enable_beam_forming
	dl_tb_loc
	instances
	name
	nvipc_config_file
	transport
	type
	udp_config
	local_port
	remote_port
	shm_config
	primary
	prefix
	cuda_device_id
	ring_len
	mempool_size
	cpu_msg
	buf_size
	pool_len
	cpu_data
	buf_size
	pool_len
	cuda_data
	buf_size
	pool_len
	dpdk_config
	primary
	prefix
	local_nic_pci
	peer_nic_mac
	cuda_device_id
	need_eal_init
	lcore_id
	mempool_size
	cpu_msg
	buf_size
	pool_len
	cpu_data
	buf_size
	pool_len
	cuda_data
	buf_size
	pool_len
	app_config
	grpc_forward
	debug_timing
	pcap_enable
	pcap_cpu_core
	pcap_cache_size_bits
	pcap_file_size_bits
	pcap_max_data_size

	Startup Configuration (ru-emulator)
	core_list
	nic_interface
	peerethaddr
	nvlog_name
	cell_configs
	name
	eth
	dl_iq_data_fmt:comp_meth
	dl_iq_data_fmt:bit_width
	ul_iq_data_fmt:comp_meth
	ul_iq_data_fmt:bit_width
	flow_list
	eAxC_prach_list
	vlan
	nic
	tti
	validate_dl_timing
	timing_histogram
	timing_histogram_bin_size
	oran_timing_info
	dl_c_plane_timing_delay
	dl_c_plane_window_size
	ul_c_plane_timing_delay
	ul_c_plane_window_size
	dl_u_plane_timing_delay
	dl_u_plane_window_size
	ul_u_plane_tx_offset

	Run-time Configuration/Status
	Simple Request/Reply Flow
	Streaming Request/Replies
	Asynchronous Interthread Communication
	Aerial Common Service Definition
	rpc GetCpuUtilization
	rpc GetFAPIStream
	rpc TerminateCuphycontroller
	rpc CellParamUpdateRequest
	List of Parameters Supported by Dynamic OAM via gRPC and CONFIG.request (M-plane)
	ru_type
	nic
	dst_mac_addr
	vlan_id
	pcp
	dl_iq_data_fmt
	ul_iq_data_fmt
	exponent_dl
	exponent_ul
	prusch_prb_stride
	prach_prb_stride
	max_amp_ul
	section_3_time_offset
	fh_distance_range
	ul_gain_calibration
	lower_guard_bw
	ref_dl
	attenuation_db
	gps_alpha
	gps_beta
	prachRootSequenceIndex
	prachZeroCorrConf
	numPrachFdOccasions
	restrictedSetConfig
	prachConfigIndex
	K1
	UL bandwidth
	DL bandwidth

	M-Plane Hybrid Mode ORAN YANG Model Provisioning
	Data Model Transfer APIs(gRPC ProtoBuf contract)
	List of Parameters Supported by YANG Model
	o-du-mac-address
	ru-mac-address
	vlan-id
	pcp
	ul_iq_data_fmt: bit_width
	ul_iq_data_fmt: comp_meth
	dl_iq_data_fmt: bit_width
	dl_iq_data_fmt: comp_meth
	exponent_dl
	exponent_ul
	Reference Examples
	Update ru-mac-address, vlan-id, and pcp
	Update o-du-mac-address(du nic port)
	Update DL/UL IQ data format
	Update dl and ul Exponent

	Logging
	Log Levels
	nvlog
	name
	primary
	shm_log_level
	console_log_level
	max_file_size_bits
	shm_cache_size_bits
	log_buf_size
	max_threads
	save_to_file
	cpu_core_id
	prefix_opts

	Metrics
	Host Metrics
	GPU Metrics
	Aerial Metric Naming Conventions
	Metrics Exporter Port
	L2/L1 Interface Metrics
	aerial_cuphycp_slots_total
	aerial_cuphycp_fapi_rx_packets
	aerial_cuphycp_fapi_tx_packets
	Fronthaul Interface Metrics
	aerial_cuphycp_cplane_tx_packets_total
	aerial_cuphycp_cplane_tx_bytes_total
	aerial_cuphycp_uplane_rx_packets_total
	aerial_cuphycp_uplane_rx_bytes_total
	aerial_cuphycp_uplane_tx_packets_total
	aerial_cuphycp_uplane_tx_bytes_total
	aerial_cuphycp_uplane_lost_prbs_total
	NIC Metrics
	aerial_cuphycp_net_rx_failed_packets_total
	aerial_cuphycp_net_rx_nombuf_packets_total
	aerial_cuphycp_net_rx_dropped_packets_total
	aerial_cuphycp_net_tx_failed_packets_total
	aerial_cuphycp_net_tx_accu_sched_missed_interrupt_errors_total
	aerial_cuphycp_net_tx_accu_sched_rearm_queue_errors_total
	aerial_cuphycp_net_tx_accu_sched_clock_queue_errors_total
	aerial_cuphycp_net_tx_accu_sched_timestamp_past_errors_total
	aerial_cuphycp_net_tx_accu_sched_timestamp_future_errors_total
	aerial_cuphycp_net_tx_accu_sched_clock_queue_jitter_ns
	aerial_cuphycp_net_tx_accu_sched_clock_queue_wander_ns
	Application Performance Metrics
	aerial_cuphycp_slot_processing_duration_us
	aerial_cuphycp_slot_pusch_processing_duration_us
	aerial_cuphycp_pusch_rx_tb_bytes_total
	aerial_cuphycp_pusch_rx_tb_total
	aerial_cuphycp_pusch_rx_tb_crc_error_total
	aerial_cuphycp_pusch_nrofuesperslot
	PRACH Metrics
	aerial_cuphy_prach_rx_preambles_total
	PDSCH Metrics
	aerial_cuphycp_slot_pdsch_processing_duration_us
	aerial_cuphy_pdsch_tx_tb_bytes_total
	aerial_cuphy_pdsch_tx_tb_total
	aerial_cuphycp_pdsch_nrofuesperslot




	cuBB Release Notes
	cuBB Software Mainfest
	Aerial CUDA-Accelerated RAN Software Manifest
	Kubernetes Software Manifest

	Supported Features and Configurations
	PUSCH
	PUCCH
	PRACH
	PDSCH
	PDCCH
	SS Block
	CSI-RS
	SRS
	MIMO Features
	LDPC Decoder
	SHM Logger

	Multicell Capacity
	Supported Test Vector Configurations
	PUSCH
	PUCCH
	PRACH
	PDSCH
	PDCCH
	SS Block
	CSI-RS
	SRS
	mSlot_mCell
	LDPC Performance

	Limitations
	Known Limitations
	Known Issues

	Acknowledgements
	Abseil
	Backward-cpp
	BoringSSL
	Benchmark
	Bloaty
	c-ares
	CivetWeb
	Data plane API
	DPDK
	Eigen
	Fluent Helm Charts
	Fmtlog
	GDRCopy
	Google APIs
	GoogleTest
	gRPC
	libuv
	LibYAML
	Libyang
	Mimalloc
	Prometheus Client Library for Modern C++
	Protocol Buffers
	protoc-gen-validate (PGV)
	RE2
	UDPA API
	zlib
	CLI11
	gsl-lite
	cmake-modules
	wise_enum
	fmtlib
	pybind11
	fixuid


	cuBB Installation Guide
	Installing Tools on Grace Hopper MGX System
	Supermicro Grace Hopper MGX Configuration
	Cable Connection
	Host OS Internet Connection
	E2E Test Connection
	cuBB Test Connection

	System Firmware Upgrade
	Install Ubuntu 22.04 Server
	Configure the Network Interfaces
	Disable Auto Upgrade
	Install NVIDIA Optimized Ubuntu Kernel
	Configure Linux Kernel Command-line
	Apply the Changes and Reboot to Load the Kernel
	Install Dependency Packages
	Install DOCA OFED and Mellanox Firmware Tools on the Host
	Install CUDA Driver
	Install GDRCopy Driver
	Install Docker CE
	Install the Nvidia Container Toolkit
	Update BF3 BFB Image and NIC Firmware
	Install ptp4l and phc2sys
	Setup the Boot Configuration Service
	Validating software-component versions and system configurations
	Running Aerial on Grace Hopper

	Installing Tools on Dell R750
	Dell PowerEdge R750 Server Configuration
	BF3 NIC Installation
	Configure BIOS Settings
	Install Ubuntu 22.04 Server
	Disable Auto Upgrade
	Install the Low-Latency Kernel
	Configure Linux Kernel Command-line
	Apply the Changes and Reboot to Load the Kernel
	Disabling Nouveau
	Install Dependency Packages
	Install RSHIM and Mellanox Firmware Tools on the Host
	Install Docker CE
	Update BF3 BFB Image and NIC Firmware
	Set Persistent NIC Interface Name
	Install ptp4l and phc2sys
	Setup the Boot Configuration Service
	Validating software-component versions and system configurations

	Installing and Upgrading Aerial cuBB
	Removing the Old Aerial cuBB Container
	Installing the New Aerial cuBB Container

	cuBB on NVIDIA Cloud Native Stack
	Installation of NVIDIA Cloud Native Stack
	Building Aerial Binary Container
	Deploying Binary Container using Helm Chart
	Theory of Operation

	Aerial System Scripts
	System Configuration Validation Script
	Checking the NIC Status


	CUBB Aerial SDK Versioning in YAML Files
	Troubleshooting
	Hugepages Issues
	Remove Old CUDA Toolkit and Driver
	How to Fix Apt Update Error Due to Incorrect System Time
	How to Resize the Default LVM Volume
	How to Identify the NIC Interface Name and MAC Address


	cuBB Quickstart Guide
	cuBB Quickstart Overview
	Generating TV and Launch Pattern Files
	Using Aerial Python mcore Module
	Using Matlab

	Running Aerial cuPHY
	Building Aerial cuPHY
	Prerequisites
	Set Up the Host Environment
	Launch the cuBB Container
	Build Aerial cuPHY in the Container

	Building and running on separate servers
	Running the cuPHY Examples
	Generating Test Vectors using Matlab 5GModel
	Instructions for Testing cuPHY Channels Manually
	PUSCH
	PUCCH
	PRACH
	PDSCH
	PDCCH
	SSB
	CSI-RS
	SRS
	BFC

	Instructions for LDPC Performance Test

	Running cuPHY Performance Testing Scripts
	Generating Test Vectors using Matlab 5GModel
	Measuring cuPHY Performance using cubb_gpu_test_bench


	Running cuBB End-to-End
	Building the cuBB End-to-End
	nvlog Configuration
	Updating Configuration Files for End-to-End
	Server #1 (to Run TestMAC and cuPHYController)
	Server #2 (to Run RU Emulator)

	Running Environment Initialization for End-to-End
	Running Examples for End-to-End (SCF FAPI)
	Running testMAC + SCF L2 Adapter Standalone
	Running testMAC + cuPHYController_SCF + RU Emulator
	Running the F08 Test Cases
	Simultaneous FH Port Test Configs with RU Emulator

	Running RU on a GH server
	Running the nrSim Test Cases
	PBCH
	PDCCH_DL
	PDSCH
	PUSCH
	PRACH
	NZP CSI_RS
	PDSCH + ZP CSI_RS
	Precoding
	PUCCH HARQ
	PUCCH Format 2
	PUCCH HARQ/SR
	PUCCH Format 3
	UCI on PUSCH
	SRS
	S-slot
	Multiple SSB
	PUSCH TDI
	PUSCH SINR and Noise
	mSlot_mCell Test Cases
	64T64R SRS + Dynamic Beamforming Weights + Static Beamforming Weights Test Cases

	FAPI Message Reference Check
	Running testMAC + cuPHYController_SCF + RU Emulator P5G PRACH
	Server#1
	Server#2

	Running End-to-End with Full Stack
	Capture Logs
	Capture NVIPC PCAP Logs

	Run in Test Mode (TM)
	Mixed O-RAN IOT Profiles (CAT-A-NoBF + CAT-A-DBF)
	Mixed BFP9/BFP14
	Mixed IQ data format for F08 Test Case
	UL Measurements
	Verification of PUSCH Measurement Reporting for BFP-9/14/16
	Verification of PUCCH Measurement Reporting for BFP-9/14/16
	Verification of PRACH Interference Level Report for BFP-9/14/16

	Cell Life-Cycle Test
	Terminate cuphycontroller Using a gRPC Message
	Update M-plane Parameters Using gRPC Message
	X2 Launch Pattern Files Generation
	Initial OAM Update
	DST MAC Address OAM Initial Update Test - Single Cell
	VLAN ID OAM Initial Update Test - Single Cell
	VLAN PCP OAM Initial Update Test - Single Cell
	DST MAC + VLAN ID + PCP OAM Initial Update Test - Multi-Cells

	Dynamic OAM Update
	DST MAC Address OAM On-the-Fly Update Test - Single Cell
	VLAN ID OAM On-the-Fly Update Test - Single Cell
	VLAN PCP OAM On-the-Fly Update Test - Single Cell
	DST MAC OAM On-the-Fly Update Test (with OAM Cell Ctrl Command) - Multi-Cells


	Cell BW update Test
	Dynamic PRACH Configuration and Init Sequence Test
	Duplicate Configuration and Init Sequence Test
	How to Get Aerial Metrics
	Run an Additional Logging Stream Container
	Run Multiple L2 Instances with Single L1 Instance
	OAM Commands in Multiple L2 Instances
	UL FH Pcap Capture Feature
	Configuration
	Testing the Feature
	DU Side Commands
	RU Side Commands to force CRC errors

	Converting 3GPP SFN/Slot to ORAN Frame/Subframe/Slot


	Running cuBB End-to-End Perf tests
	Prerequisites

	Step A1: Build and prepare DU Compute node
	Step A2: Build and prepare O-RU Compute node
	Step A3: Run the RU-Emulator (On RU compute node)
	Step A4: Run the cuphycontroller (On DU compute node)
	Step A5: Run the testMAC (On DU compute node)
	E2E gNodeB on MIG
	Setting up MIG for Aerial
	Check GPU Device availability
	Partition GPUs
	Disabling MIG

	Bringing up cuBB with a MIG Instance
	Start the cuBB Container
	Start L1 Binaries

	Starting LLM on MIG
	Adding Routes on CN and PDN
	Adding a PDN Route on CN
	Adding Routes on PDN to enable Internet


	Active-Standby Fronthaul Port Failover
	Test Configuration
	Test Procedure
	FH Switch Test Script


	cuBB Integration Guide
	NVIPC
	NVIPC Overview
	NVIPC Message Transfer
	NVIPC API Definitions
	Lock-Free Data Structures
	NVIPC Memory Pools
	Bi-Directional Message Queues

	NVIPC message notification
	NVIPC message flow

	NVIPC Integration
	Configuration
	Primary Application Configuration
	Secondary Application Configuration
	Optional NVIPC Logger Configuration

	Initiation
	De-Initialization
	Sending
	Receive
	Notification


	SCF FAPI Support
	SCF FAPI Messages Supported
	Vendor Specific Message
	Message Sequence
	Impact of Late Messages
	How to Enable or Disable SLOT.response

	Dynamic Beamforming for 64T64R
	Static Beamforming for 64T64R
	Additional Aerial Specific Error Codes Reported in ERROR.indication from L1 to L2


	cuBB Developer Guide
	cuBB Software Architecture Overview
	Aerial cuPHY Components
	L2 Adapter
	cuPHY Driver
	FH Driver Library
	cuPHY Controller
	cuPHY
	PDSCH Pipeline
	PDCCH Pipeline
	SSB Pipeline
	CSI-RS Pipeline
	PUSCH Pipeline
	Channel Estimation
	Noise and Interference Covariance Estimation
	Carrier Frequency and Timing Offset Estimation
	Soft De-mapper
	4QAM
	16QAM
	64QAM
	256QAM
	De-rate matching and Descrambling
	RSSI Estimation
	RSRP and SINR Estimation
	UCI on PUSCH Decoder
	Simplex Decoder
	Reed Muller (RM) Decoder
	Polar Decoder
	LDPC Decoder
	CRC Decoder

	PUCCH Pipeline
	PRACH Pipeline
	SRS Pipeline Overview
	SRS Pipeline Lifecycle
	SRS Pipeline Execution
	cuphyCreateSrsRx()
	cuphySetupSrsRx()
	cuphyRunSrsRx()
	cuphyDestroySrsRx()
	Input and Output Data
	Memory Management
	SRS channel estimation algorithms

	Performance Optimization

	Running cuPHY Examples

	Test MAC and RU Emulator Architecture Overview
	5G MATLAB Models for Testing and Validation
	Waveform compliance test
	Test Vector Generation
	PHY Performance Simulation
	nrSim Configuration
	nrSim Usage
	Matlab Environment Preparation
	External Configuration Mode (runSim)
	Internal Configuration Mode (runRegression)

	AI/ML Components for PUSCH Channel Estimation
	How to Enable and Run the TrTEngine Model
	TrTEngine YAML File Example
	Example Python Script
	Prerequisites
	How to Execute the Script
	Notes


	References

	Glossary

	Aerial cuMAC
	Getting Started with cuMAC
	Data Flow
	Quick Setup
	Prerequisites
	Set Up the Host Environment
	Launch the cuBB Container
	Build Aerial cuMAC in the Container


	cuMAC API Reference
	cuMAC API Data Structures
	CumacCellGrpPrms
	cumacCellGrpUeStatus
	cumacSchdSol

	cuMAC Scheduler Module API
	Multi-cell proportional-fairness UE down-selection
	Multi-cell proportional-fairness PRB scheduler
	Multi-cell layer selection
	Multi-cell MCS selection + outer-loop link adaptation (OLLA)


	Examples
	4T4R Scheduler Performance Test
	cuMAC Test Vector Generation
	Test Vector Loading Test
	DRL MCS Selection Test
	64T64R MU-MIMO Scheduler Test

	cuMAC-CP integration guide
	cuMAC-CP API Procedures
	Configuration Procedures
	Initialization procedure
	Termination procedure
	SLOT procedures

	cuMAC-CP API Messages
	Configuration Procedure Messages
	CONFIG.request
	CONFIG.response
	START.request
	START.response

	Slot procedure messages
	SCH_TTI.request
	TTI_END
	SCH_TTI.response
	TTI_ERR.indication


	L2 integration notes
	NVIPC integration
	cuMAC message definitions

	cuMAC-CP Tests
	Basic cuMAC-CP Standalone Test
	Configuration Files
	cumac_cp.yaml
	test_cumac_config.yaml
	test_mac_config.yaml

	Test Execution
	Generate Test Vectors
	Run the Tests

	Expected Output
	cumac_cp Output
	test_mac Output


	cuMAC-CP + cuBB Test
	Configure cumac_cp_standalone to 0
	Enabled MPS

	Additional Configuration Options
	TestMAC Module Selection
	Debug Options




	Aerial Data Lake
	Target Audience
	Key Features
	Design
	Installation
	Usage
	Multi-Cell
	Using Data Lake in Notebooks
	Database Administration
	Database Import
	Database Queries
	Fresh Data
	Dropping Data
	Notes and Known Limitations


	pyAerial
	Overview
	Key Features
	Target Audience
	Value Proposition
	Release Notes

	Getting Started with pyAerial
	Pre-requisites
	Installing pyAerial
	Testing the installation
	Running the example Jupyter notebooks

	Examples of Using pyAerial
	Running a PUSCH link simulation
	Using pyAerial to run a PUSCH link simulation
	Imports
	Parameters
	Create the pipelines
	Channel generation using Sionna
	Run the actual simulation


	LDPC encoding-decoding chain
	Using pyAerial for LDPC encoding-decoding chain
	Imports
	Parameters
	Create the LDPC coding chain objects
	Main simulation loop


	Sounding reference signal transmission and reception
	Using pyAerial to run 5G sounding reference signal transmission and reception
	Imports
	Simulation parameters
	Build the pipelines
	Sounding reference signal and SRS Tx and Rx pipeline slot configurations
	Channel generation using Sionna
	Run the SRS transmission and reception
	Plot results


	Dataset generation by simulation
	Using pyAerial for data generation by simulation
	Imports
	Dataset generation parameters
	Channel generation
	PDSCH transmitter
	Dataset generation


	Dataset generation for LLRNet
	LLRNet: Dataset generation
	Imports
	Load the source data
	Dataset generation


	LLRNet model training
	LLRNet: Model training and testing
	Imports
	Define the LLRNet model
	Training, validation and testing datasets
	Model training and validation
	Export to TensorRT
	Define a PUSCH receiver chain using pyAerial
	Model testing on Aerial test vectors
	Model testing on synthetic/simulated data


	Neural receiver validation
	Using pyAerial to evaluate a PUSCH neural receiver
	Imports
	Parameters
	Create the model file for the TRT engine
	Create the PUSCH pipelines
	Channel generation using Sionna
	Run the actual simulation


	Machine learning based channel estimation for 5G NR PUSCH
	Channel Estimation for Uplink Shared Channel (PUSCH) in PyAerial
	Training channel estimation model
	Testing channel estimation model
	Plot comparison across SNRs
	Considerations for Real Deployments
	Assessing System-level Performance in the Aerial Omniverse Digital Twin



	Channel estimation on transmissions captured using Aerial Data Lake
	Using pyAerial for channel estimation on Aerial Data Lake data
	Imports
	Data
	Run channel estimation


	Decoding PUSCH transmissions captured using Aerial Data Lake
	Using pyAerial for PUSCH decoding on Aerial Data Lake data
	Imports
	Create the PUSCH pipelines
	Querying the database
	Extract the PUSCH parameters and run the pipelines
	Example 1 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 2 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 3 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 4 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 5 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 6 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 7 - SFN.Slot 391.4 from time 2024-07-19 10:42:46.272000
	Example 8 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000
	Example 9 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000
	Example 10 - SFN.Slot 493.4 from time 2024-07-19 10:42:47.292000




	API Reference
	Physical layer for 5G
	Receiver algorithms
	Configuration classes
	PDSCH
	PUSCH
	LDPC 5G
	Sounding reference signals (SRS)
	Fading channel
	API definitions

	Utilities
	FAPI and Matlab interface utilities
	Data storing utilities
	CUDA utilities



	Python Module Index
	Index

