<3

NVIDIA.

pyAerial

Content

Key Features
Target Audience
Value Proposition

Release Notes

pyAerial

Table of contents

List of Figures

Figure 0. Neural Pipeline

Figure 1. Data Lake Db Example

pyAerial

As 6G research gains momentum, and with many new technologies in its purvue, one
thing is clear, AI/ML will feature prominently in the next generation RAN. It will play a
pivotal role in realizing all parts of the network infrastructure from the radio units,
baseband processing, the network core including system management, orchestration
and dynamic optimization processes. GPU hardware, together with programming
frameworks will be essential to realize this vision of a software defined native-Al
communication infrastructure.

The application of AI/ML in the physical layer has in particular been a hot research topic.
There is a lot of emphasis on neural network architectures and optimization strategies
mostly performed in the context of simulation. The next step for the research community
and commercial system developers is to bring AlI/ML applied in layer-1 to reality in over-
the-air real-time testbeds and operator-network scale systems.

This is where pyAerial enters the picture. pyAerial is a Python library of physical layer
components that can be used as part of the workflow in taking a design from simulation
to real-time operation. It helps with end-to-end verification of a neural network
integration into a PHY pipeline and helps bridge the gap from the world of training and
simulation in TensorFlow/PyTorch to real-time operation in an over-the-air testbed.

The pyAerial library provides a Python-callable bit-accurate GPU-accelerated library for all
of the signal processing CUDA kernels in the NVIDIA cuBB layer-1 PDSCH and PUSCH
pipelines. In other words, the pyAerial Python classes behave in a numerically identical
manner to the kernels employed in cuBB because a pyAerial class employs the exact
same CUDA code as the corresponding cuBB kernel: it is the CUDA kernel but with a
Python API.

Using pyAerial library components complete layer-1 pipelines can be composed in
Python. User code or inference engines, from NVIDIA TensorRT, or custom CUDA code,
can be included in the datapath as shown in the lower part of Figure 1. This rapid
prototyping design and verification flow is used for dataplane functional performance
evaluation. It is a step in the workflow for verifying a physical layer design prior to
deployment in a real-time over-the-air GPU base station.

pyAerial can also be used in conjunction with the NVIDIA data collection platform Aerial
Data Lake. An Aerial Data Lake database consists of RF samples from a 7.2x fronthaul
interface together with L2 meta-information to enable database search and query
operations. A pyAerial pipeline can access samples from Aerial Data Lake database using
the Data Lake Python APIs, and transform that data into training data for any function in
the pipeline. Figure 2 illustrates data ingress from a Data Lake database into a pyAerial

pyAerial 3

pipeline and using standard Python file I/0 to generate training data for a soft de-
mapper.

Content

e Key Features
e Target Audience
e Value Proposition
e Release Notes
e Getting Started with pyAerial
o Pre-requisites
o Testing the installation
o Running the example Jupyter notebooks
e Examples of Using pyAerial
o Running a PUSCH link simulation
LDPC encoding-decoding chain
Dataset generation by simulation
Dataset generation for LLRNet
LLRNet model training
Channel estimation on transmissions captured using Aerial Data Lake
Decoding PUSCH transmissions captured using Aerial Data Lake
o API Reference
o Physical layer pipelines for 5G
o Utilities

O O O O o o

Key Features

pyAerial has the following key features:
Feature 1: Productive Python for rapid prototyping of layer-1 pipelines

e pyAerial library components are CUDA kernels with Python bindings. The productive
environment of Python permits the rapid assembly of signal processing pipelines in
Python. All of the analytic and visualization aspects of Python can be used for
performance characterization, signal visualization and debugging.

pyAerial 4

https://docs.nvidia.com/quick_setup.html
https://docs.nvidia.com/quick_setup.html#pre-requisites
https://docs.nvidia.com/quick_setup.html#testing-the-installation
https://docs.nvidia.com/quick_setup.html#running-the-example-jupyter-notebooks
https://docs.nvidia.com/examples.html
https://docs.nvidia.com/examples.html#running-a-pusch-link-simulation
https://docs.nvidia.com/examples.html#ldpc-encoding-decoding-chain
https://docs.nvidia.com/examples.html#dataset-generation-by-simulation
https://docs.nvidia.com/examples.html#dataset-generation-for-llrnet
https://docs.nvidia.com/examples.html#llrnet-model-training
https://docs.nvidia.com/examples.html#channel-estimation-on-transmissions-captured-using-aerial-data-lake
https://docs.nvidia.com/examples.html#decoding-pusch-transmissions-captured-using-aerial-data-lake
https://docs.nvidia.com/api_reference.html
https://docs.nvidia.com/aerial.phy5g.html
https://docs.nvidia.com/aerial.util.html

Feature 2: Simulate machine learning in the physical layer before over-the-air
operation

e With the goal of going from model training and simulation in TensorFlow or PyTorch
to real-time over-the-air operation, pyAerial provides a convenient way to verify,
evaluate and benchmark your physical layer prior to deployment in an OTA testbed.

Feature 3: Fast simulation with CUDA optimized kernels

e pyAerial library components are CUDA under the hood. Simulation is fast on a GPU.
When you are simulating the coding chain, including for example an LDPC decoder,
optimized CUDA code is implementing these computationally heavy functions.

Feature 4: Generate data sets for any node in layer-1 uplink or downlink pipeline

e pyAerial is designed to be used in conjunction with the NVIDIA data collection
platform Aerial Data Lake. pyAerial can access RF samples in a Data Lake database
and transform those samples into training data for all of the signal processing
functions in and uplink or downlink pipeline.

Feature 5: Bit accurate simulation

e Because pyAerial is Python running on CUDA, the performance you observe in BLER
and other characterization metrics is what is identical to the performance of the
real-time over-the-air system.

Target Audience

Industry and university researchers and developers looking to bring machine learning to
the physical layer with the end goal of benchmarking on over-the-air testbeds like NVIDIA
ARC-OTA or other GPU-based base stations.

Value Proposition

pyAerial 5

Fast bit-accurate GPU accelerated simulation of neural-network downlink and uplink
signal processing pipelines. Rapid prototyping and functional verification of a real-time
layer-1 in preparation for real-time deployment. Convenient Python environment aids
debugging and provides easy access to all nodes in the pipeline for visualization and
analysis. Easy to use Python environment for producing BLER and other statistics of
interest for a real-time bit-accurate GPU layer-1 implementation. Transform RF sample
captures for over-the-air captures into data for training layer-1 functions or compositions

of multiple functions.

Aerial Data Lake
Database or Synthetic
Data from Aerial Omniverse
Digital Twin

Baseline Reference PUSCH Pipeline (Simplified)

PythonAPl PythonAPl PythonAPl PythonAPl Python APl Python APl FYMONAPT Python AP
S 3 @) 3 @) @ C) @& &)
=) ®) &y & € &Y
N S S S S I T
decompressed Compare Raw
Vasempls HEpENENENE Nu Bt rrors
=] =] | =
CUDA CUDA CUDA CUDA CUDA CUDA CUDA CUDA
LS Chnl MMSE Eqlzr Eqlzr Soft Rate LDPC CRC
Estimate Chnl Weights De-mapper ~ Match Decoder
Estimate
— Compare BLER
Neural Receiver ——>
A N A I
L@ @ & —&— @
I Channel Estimation, i I I i
— Equalizer — F— —1
replace :
cupA by Neural Network CuDA cupbA cupbA i | Regeuisr
LS Chnl Rate LDPC CRC with Reference Receiver
Estimate TensorRT GPU Optimized Match Decoder
Inference Engine

Figure 1: Using pyAerial to verify a neural pipeline context of a full uplink pipeline. This is one
of the verification steps to moving to real-time operation over-the-air on a GPU base station.

Aerial Data Lake

Aerial Data Lake
LLR DB

Aerial Data Lake

Sionna, TensorFlow,
DB APl

PyTorch

Database
Python APl Python APl Python APl Python APl | Python APl | Python APl Python APl Python API
R R
FH UL RF Data I I I I I I I
& FAP| Messages
CuDA CUDA CUDA CUDA CUDA CUDA CUDA CUDA
LS Chnl MMSE Eqlzr Eqlzr Soft Rate LBPC CRC
Estimate Chnl Weights De-mapper Match Decoder
Estimate

pyAerial

Figure 2: pyAerial is used in conjunction with the NVIDIA data collection platform Aerial Data
Lake to build training data sets for any node in the layer-1 downlink or uplink signal
processing pipeline. The example shows a Data Lake database of over-the-air samples
transformed into training data for a neural network soft de-mapper, using pyAerial. Data gets
extracted at the input and output of the de-mapper, and stored in the database.

Release Notes

e Release version: 24-1
e Supported configurations:
o AX800, A100X and A100 GPUs with the x86 platform.
m CUDA Toolkit: 12.2.0

m GPU Driver (OpenRM): 535.54.03

o Note: The Grace Hopper platform is currently not supported.

e Supported features: pyAerial exposes a subset of the cuPHY API features to Python.
Currently this subset includes the following features:

o PUSCH receiver pipeline

o PDSCH transmission pipeline

o Channel estimation

o Noise and interference estimation

o Channel equalization and soft demapping
o LDPC encoding

o LDPC decoding

o LDPC rate matching

pyAerial 7

o SRS channel estimation

e Limitations:

o Unlike the cuPHY API, pyAerial APl supports only a single UE group per method
call. Multiple UE groups (FDM) can be supported by calling the methods
separately for each UE group.

pyAerial 8

	Content
	Key Features
	Target Audience
	Value Proposition
	Release Notes

