aiq.cli.type_registry#
Attributes#
Classes#
Represents a registered front end. Front ends are the entry points to the workflow and are responsible for |
|
Represents a registered function. Functions are the building blocks of the workflow with predefined inputs, outputs, |
|
Represents a registered LLM provider. LLM Providers are the operators of the LLMs. i.e. NIMs, OpenAI, Anthropic, |
|
Represents a registered LLM client. LLM Clients are the clients that interact with the LLM providers and are |
|
Represents a registered Embedder provider. Embedder Providers are the operators of the Embedder models. i.e. NIMs, |
|
Represents a registered Embedder client. Embedder Clients are the clients that interact with the Embedder providers |
|
Represents a registered Evaluator e.g. RagEvaluator, TrajectoryEvaluator, etc. |
|
Represents a registered Memory object which adheres to the memory interface. |
|
Represents a registered tool wrapper. Tool wrappers are used to wrap the functions in a particular LLM framework. |
|
Represents a registered Retriever object which adheres to the retriever interface. |
|
Represents a registered Retriever Client. Retriever Clients are the LLM Framework-specific clients that expose an |
|
Represents a registered LLM client. LLM Clients are the clients that interact with the LLM providers and are |
|
Module Contents#
- logger#
- FrontEndBuildCallableT#
- TelemetryExporterBuildCallableT#
- LoggingMethodBuildCallableT#
- FunctionBuildCallableT#
- LLMProviderBuildCallableT#
- LLMClientBuildCallableT#
- EmbedderProviderBuildCallableT#
- EmbedderClientBuildCallableT#
- EvaluatorBuildCallableT#
- MemoryBuildCallableT#
- RetrieverProviderBuildCallableT#
- RetrieverClientBuildCallableT#
- RegistryHandlerBuildCallableT#
- ToolWrapperBuildCallableT#
- TeleExporterRegisteredCallableT#
- LoggingMethodRegisteredCallableT#
- FrontEndRegisteredCallableT#
- FunctionRegisteredCallableT#
- LLMProviderRegisteredCallableT#
- LLMClientRegisteredCallableT#
- EmbedderProviderRegisteredCallableT#
- EmbedderClientRegisteredCallableT#
- EvaluatorRegisteredCallableT#
- MemoryRegisteredCallableT#
- RetrieverProviderRegisteredCallableT#
- RetrieverClientRegisteredCallableT#
- RegistryHandlerRegisteredCallableT#
- class RegisteredInfo(/, **data: Any)#
Bases:
pydantic.BaseModel
,Generic
[aiq.data_models.common.TypedBaseModelT
]- model_config#
Configuration for the model, should be a dictionary conforming to [
ConfigDict
][pydantic.config.ConfigDict].
- discovery_metadata: aiq.data_models.discovery_metadata.DiscoveryMetadata#
- class RegisteredTelemetryExporter#
Bases:
RegisteredInfo
[aiq.data_models.telemetry_exporter.TelemetryExporterBaseConfig
]- build_fn: TeleExporterRegisteredCallableT = None#
- class RegisteredLoggingMethod#
Bases:
RegisteredInfo
[aiq.data_models.logging.LoggingBaseConfig
]- build_fn: LoggingMethodRegisteredCallableT = None#
- class RegisteredFrontEndInfo#
Bases:
RegisteredInfo
[aiq.data_models.front_end.FrontEndBaseConfig
]Represents a registered front end. Front ends are the entry points to the workflow and are responsible for orchestrating the workflow.
- build_fn: FrontEndRegisteredCallableT = None#
- class RegisteredFunctionInfo#
Bases:
RegisteredInfo
[aiq.data_models.function.FunctionBaseConfig
]Represents a registered function. Functions are the building blocks of the workflow with predefined inputs, outputs, and a description.
- build_fn: FunctionRegisteredCallableT = None#
- class RegisteredLLMProviderInfo#
Bases:
RegisteredInfo
[aiq.data_models.llm.LLMBaseConfig
]Represents a registered LLM provider. LLM Providers are the operators of the LLMs. i.e. NIMs, OpenAI, Anthropic, etc.
- build_fn: LLMProviderRegisteredCallableT = None#
- class RegisteredLLMClientInfo#
Bases:
RegisteredInfo
[aiq.data_models.llm.LLMBaseConfig
]Represents a registered LLM client. LLM Clients are the clients that interact with the LLM providers and are specific to a particular LLM framework.
- build_fn: LLMClientRegisteredCallableT = None#
- class RegisteredEmbedderProviderInfo#
Bases:
RegisteredInfo
[aiq.data_models.embedder.EmbedderBaseConfig
]Represents a registered Embedder provider. Embedder Providers are the operators of the Embedder models. i.e. NIMs, OpenAI, Anthropic, etc.
- build_fn: EmbedderProviderRegisteredCallableT = None#
- class RegisteredEmbedderClientInfo#
Bases:
RegisteredInfo
[aiq.data_models.embedder.EmbedderBaseConfig
]Represents a registered Embedder client. Embedder Clients are the clients that interact with the Embedder providers and are specific to a particular LLM framework.
- build_fn: EmbedderClientRegisteredCallableT = None#
- class RegisteredEvaluatorInfo#
Bases:
RegisteredInfo
[aiq.data_models.evaluator.EvaluatorBaseConfig
]Represents a registered Evaluator e.g. RagEvaluator, TrajectoryEvaluator, etc.
- build_fn: EvaluatorRegisteredCallableT = None#
- class RegisteredMemoryInfo#
Bases:
RegisteredInfo
[aiq.data_models.memory.MemoryBaseConfig
]Represents a registered Memory object which adheres to the memory interface.
- build_fn: MemoryRegisteredCallableT = None#
- class RegisteredToolWrapper(/, **data: Any)#
Bases:
pydantic.BaseModel
Represents a registered tool wrapper. Tool wrappers are used to wrap the functions in a particular LLM framework. They do not have their own configuration, but they are used to wrap the functions in a particular LLM framework.
Create a new model by parsing and validating input data from keyword arguments.
Raises [
ValidationError
][pydantic_core.ValidationError] if the input data cannot be validated to form a valid model.self
is explicitly positional-only to allowself
as a field name.- build_fn: ToolWrapperBuildCallableT = None#
- discovery_metadata: aiq.data_models.discovery_metadata.DiscoveryMetadata#
- class RegisteredRetrieverProviderInfo#
Bases:
RegisteredInfo
[aiq.data_models.retriever.RetrieverBaseConfig
]Represents a registered Retriever object which adheres to the retriever interface.
- build_fn: RetrieverProviderRegisteredCallableT = None#
- class RegisteredRetrieverClientInfo#
Bases:
RegisteredInfo
[aiq.data_models.retriever.RetrieverBaseConfig
]Represents a registered Retriever Client. Retriever Clients are the LLM Framework-specific clients that expose an interface to the Retriever object.
- build_fn: RetrieverClientRegisteredCallableT = None#
- class RegisteredRegistryHandlerInfo#
Bases:
RegisteredInfo
[aiq.data_models.registry_handler.RegistryHandlerBaseConfig
]Represents a registered LLM client. LLM Clients are the clients that interact with the LLM providers and are specific to a particular LLM framework.
- build_fn: RegistryHandlerRegisteredCallableT = None#
- class RegisteredPackage(/, **data: Any)#
Bases:
pydantic.BaseModel
- discovery_metadata: aiq.data_models.discovery_metadata.DiscoveryMetadata#
- class TypeRegistry#
- _registered_telemetry_exporters: dict[type[aiq.data_models.telemetry_exporter.TelemetryExporterBaseConfig], RegisteredTelemetryExporter]#
- _registered_logging_methods: dict[type[aiq.data_models.logging.LoggingBaseConfig], RegisteredLoggingMethod]#
- _registered_front_end_infos: dict[type[aiq.data_models.front_end.FrontEndBaseConfig], RegisteredFrontEndInfo]#
- _registered_functions: dict[type[aiq.data_models.function.FunctionBaseConfig], RegisteredFunctionInfo]#
- _registered_llm_provider_infos: dict[type[aiq.data_models.llm.LLMBaseConfig], RegisteredLLMProviderInfo]#
- _llm_client_provider_to_framework: dict[type[aiq.data_models.llm.LLMBaseConfig], dict[str, RegisteredLLMClientInfo]]#
- _llm_client_framework_to_provider: dict[str, dict[type[aiq.data_models.llm.LLMBaseConfig], RegisteredLLMClientInfo]]#
- _registered_embedder_provider_infos: dict[type[aiq.data_models.embedder.EmbedderBaseConfig], RegisteredEmbedderProviderInfo]#
- _embedder_client_provider_to_framework: dict[type[aiq.data_models.embedder.EmbedderBaseConfig], dict[str, RegisteredEmbedderClientInfo]]#
- _embedder_client_framework_to_provider: dict[str, dict[type[aiq.data_models.embedder.EmbedderBaseConfig], RegisteredEmbedderClientInfo]]#
- _registered_evaluator_infos: dict[type[aiq.data_models.evaluator.EvaluatorBaseConfig], RegisteredEvaluatorInfo]#
- _registered_memory_infos: dict[type[aiq.data_models.memory.MemoryBaseConfig], RegisteredMemoryInfo]#
- _registered_retriever_provider_infos: dict[type[aiq.data_models.retriever.RetrieverBaseConfig], RegisteredRetrieverProviderInfo]#
- _retriever_client_provider_to_framework: dict[type[aiq.data_models.retriever.RetrieverBaseConfig], dict[str | None, RegisteredRetrieverClientInfo]]#
- _retriever_client_framework_to_provider: dict[str | None, dict[type[aiq.data_models.retriever.RetrieverBaseConfig], RegisteredRetrieverClientInfo]]#
- _registered_registry_handler_infos: dict[type[aiq.data_models.registry_handler.RegistryHandlerBaseConfig], RegisteredRegistryHandlerInfo]#
- _registered_tool_wrappers: dict[str, RegisteredToolWrapper]#
- _registered_packages: dict[str, RegisteredPackage]#
- _registration_changed_hooks: list[collections.abc.Callable[[], None]] = []#
- _registered_channel_map#
- _registration_changed()#
- add_registration_changed_hook(
- cb: collections.abc.Callable[[], Any],
- pause_registration_changed_hooks()#
- register_telemetry_exporter(registration: RegisteredTelemetryExporter)#
- get_telemetry_exporter( ) RegisteredTelemetryExporter #
- get_registered_telemetry_exporters() list[RegisteredInfo[aiq.data_models.telemetry_exporter.TelemetryExporterBaseConfig]] #
- register_logging_method(registration: RegisteredLoggingMethod)#
- get_logging_method(
- config_type: type[aiq.data_models.logging.LoggingBaseConfig],
- get_registered_logging_method() list[RegisteredInfo[aiq.data_models.logging.LoggingBaseConfig]] #
- register_front_end(registration: RegisteredFrontEndInfo)#
- get_front_end(
- config_type: type[aiq.data_models.front_end.FrontEndBaseConfig],
- get_registered_front_ends() list[RegisteredInfo[aiq.data_models.front_end.FrontEndBaseConfig]] #
- register_function(registration: RegisteredFunctionInfo)#
- get_function(
- config_type: type[aiq.data_models.function.FunctionBaseConfig],
- get_registered_functions() list[RegisteredInfo[aiq.data_models.function.FunctionBaseConfig]] #
- register_llm_provider(info: RegisteredLLMProviderInfo)#
- get_llm_provider(
- config_type: type[aiq.data_models.llm.LLMBaseConfig],
- get_registered_llm_providers() list[RegisteredInfo[aiq.data_models.llm.LLMBaseConfig]] #
- register_llm_client(info: RegisteredLLMClientInfo)#
- get_llm_client(
- config_type: type[aiq.data_models.llm.LLMBaseConfig],
- wrapper_type: str,
- register_embedder_provider(info: RegisteredEmbedderProviderInfo)#
- get_embedder_provider(
- config_type: type[aiq.data_models.embedder.EmbedderBaseConfig],
- get_registered_embedder_providers() list[RegisteredInfo[aiq.data_models.embedder.EmbedderBaseConfig]] #
- register_embedder_client(info: RegisteredEmbedderClientInfo)#
- get_embedder_client(
- config_type: type[aiq.data_models.embedder.EmbedderBaseConfig],
- wrapper_type: str,
- register_evaluator(info: RegisteredEvaluatorInfo)#
- get_evaluator(
- config_type: type[aiq.data_models.evaluator.EvaluatorBaseConfig],
- get_registered_evaluators() list[RegisteredInfo[aiq.data_models.evaluator.EvaluatorBaseConfig]] #
- register_memory(info: RegisteredMemoryInfo)#
- get_memory(
- config_type: type[aiq.data_models.memory.MemoryBaseConfig],
- get_registered_memorys() list[RegisteredInfo[aiq.data_models.memory.MemoryBaseConfig]] #
- register_retriever_provider(info: RegisteredRetrieverProviderInfo)#
- get_retriever_provider(
- config_type: type[aiq.data_models.retriever.RetrieverBaseConfig],
- get_registered_retriever_providers() list[RegisteredInfo[aiq.data_models.retriever.RetrieverBaseConfig]] #
- register_retriever_client(info: RegisteredRetrieverClientInfo)#
- get_retriever_client(
- config_type: type[aiq.data_models.retriever.RetrieverBaseConfig],
- wrapper_type: str | None,
- register_tool_wrapper(registration: RegisteredToolWrapper)#
- get_tool_wrapper(llm_framework: str) RegisteredToolWrapper #
- register_registry_handler(info: RegisteredRegistryHandlerInfo)#
- get_registry_handler(
- config_type: type[aiq.data_models.registry_handler.RegistryHandlerBaseConfig],
- get_registered_registry_handlers() list[RegisteredInfo[aiq.data_models.registry_handler.RegistryHandlerBaseConfig]] #
- get_infos_by_type(
- component_type: aiq.data_models.component.AIQComponentEnum,
- get_registered_types_by_component_type(
- component_type: aiq.data_models.component.AIQComponentEnum,
- get_registered_channel_info_by_channel_type(
- channel_type: str,
- _do_compute_annotation(
- cls: type[aiq.data_models.common.TypedBaseModelT],
- registrations: list[RegisteredInfo[aiq.data_models.common.TypedBaseModelT]],
- class GlobalTypeRegistry#
- _global_registry: TypeRegistry#
- static get() TypeRegistry #
- static push()#