aiq.data_models.profiler#

Classes#

Module Contents#

class PromptCachingConfig(/, **data: Any)#

Bases: pydantic.BaseModel

enable: bool = False#
min_frequency: float = 0.5#
class BottleneckConfig(/, **data: Any)#

Bases: pydantic.BaseModel

enable_simple_stack: bool = False#
enable_nested_stack: bool = False#
class ConcurrencySpikeConfig(/, **data: Any)#

Bases: pydantic.BaseModel

enable: bool = False#
spike_threshold: int = 1#
class PrefixSpanConfig(/, **data: Any)#

Bases: pydantic.BaseModel

enable: bool = False#
min_support: float = 2#
min_coverage: float = 0#
max_text_len: int = 1000#
top_k: int = 10#
chain_with_common_prefixes: bool = False#
class ProfilerConfig(/, **data: Any)#

Bases: pydantic.BaseModel

token_usage_forecast: bool = False#
token_uniqueness_forecast: bool = False#
workflow_runtime_forecast: bool = False#
compute_llm_metrics: bool = False#
csv_exclude_io_text: bool = False#
prompt_caching_prefixes: PromptCachingConfig#
bottleneck_analysis: BottleneckConfig#
concurrency_spike_analysis: ConcurrencySpikeConfig#
prefix_span_analysis: PrefixSpanConfig#