
DU-10617-001 _v3.0 | December 2022

NVIDIA AI Enterprise

User Guide

NVIDIA AI Enterprise DU-10617-001 _v3.0 | ii

Table of Contents

Chapter 1. Introduction to NVIDIA AI Enterprise...1
1.1. NVIDIA AI Enterprise Software Architecture... 2

1.2. Prerequisites for Using NVIDIA AI Enterprise...4

Chapter 2. Installing and Configuring NVIDIA Virtual GPU Manager..................................5
2.1. About NVIDIA Virtual GPUs.. 5

2.1.1. NVIDIA vGPU Architecture... 5

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture... 6

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture...7

2.1.2. About Virtual GPU Types..8

2.1.3. Valid Virtual GPU Configurations on a Single GPU.. 9

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU............................... 9

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU.............................10

2.2. Switching the Mode of a GPU that Supports Multiple Display Modes..................................11

2.3. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux
KVM...12

2.3.1. Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM............12

2.3.1.2. Verifying the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise
Linux KVM...12

2.3.2. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor...................... 13

2.3.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor...14

2.3.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor.......................... 14

2.3.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.. 16

2.3.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM...................................19

2.3.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using virsh.... 20

2.3.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using the
QEMU Command Line... 21

2.3.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor............................... 21

2.3.6. Deleting a vGPU on a Linux with KVM Hypervisor..22

2.3.7. NVIDIA vGPU Information in the sysfs File System..23

2.4. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere............. 25

2.4.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere.................................. 26

2.4.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere.................................. 27

2.4.3. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere................. 28

2.4.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere.......................29

2.4.5. Configuring VMware vMotion with vGPU for VMware vSphere...................................... 29

2.4.6. Changing the Default Graphics Type in VMware vSphere..30

NVIDIA AI Enterprise DU-10617-001 _v3.0 | iii

2.4.7. Configuring a vSphere VM with NVIDIA vGPU.. 34

2.4.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU...35

2.4.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU...36

2.4.8. Setting vGPU Plugin Parameters on VMware vSphere.. 38

2.5. Configuring a GPU for MIG-Backed vGPUs...38

2.5.1. Enabling MIG Mode for a GPU.. 39

2.5.2. Creating GPU Instances on a MIG-Enabled GPU... 40

2.5.3. Optional: Creating Compute Instances in a GPU instance...41

2.6. Disabling MIG Mode for One or More GPUs... 42

2.7. Disabling and Enabling ECC Memory..44

2.7.1. Disabling ECC Memory.. 44

2.7.2. Enabling ECC Memory... 46

2.8. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology.....................47

Chapter 3. Installing and Licensing NVIDIA AI Enterprise Components Required in a
Guest VM...49
3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes..................... 49

3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using NVIDIA
GPU Operator...49

3.1.2. Transforming Container Images for AI and Data Science Applications and
Frameworks into Kubernetes Pods..50

3.2. Install NVIDIA AI Enterprise Software Components by Using Docker................................. 50

3.2.1. Installing and Licensing the NVIDIA AI Enterprise Graphics Driver Natively................ 50

3.2.2. Installing AI and Data Science Applications and Frameworks by Using Docker........... 50

3.3. Installing and Licensing NVIDIA AI Enterprise Components Natively.................................. 51

3.3.1. Installing the NVIDIA AI Enterprise Graphics Driver on Windows................................. 52

3.3.2. Installing the NVIDIA AI Enterprise Graphics Driver on Linux....................................... 54

3.3.2.1. Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian
Package.. 54

3.3.2.2. Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions
from an RPM Package.. 54

3.3.2.3. Disabling the Nouveau Driver for NVIDIA Graphics Cards...................................... 55

3.3.2.4. Disabling the Wayland Display Server Protocol for Red Hat Enterprise Linux......55

3.3.3. Configuring a Licensed Client of NVIDIA License System... 56

3.3.3.1. Configuring a Licensed Client on Windows..56

3.3.3.2. Configuring a Licensed Client on Linux... 58

3.3.3.3. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client................. 61

3.3.4. Installing NVIDIA Container Toolkit...62

3.3.5. Verifying the Installation of NVIDIA Container Toolkit..63

3.3.6. Installing Software Distributed as Container Images.. 63

NVIDIA AI Enterprise DU-10617-001 _v3.0 | iv

3.3.7. Running ResNet-50 with TensorRT...64

3.3.8. Running ResNet-50 with TensorFlow... 65

3.3.9. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU........................ 65

Chapter 4. Configuring Multinode Scaling...67
4.1. Hardware and VM Configuration Requirements for Multinode Scaling............................... 67

4.1.1. Hardware Requirements for Multinode Scaling... 67

4.1.2. VM Requirements for Multinode Scaling.. 68

4.2. Configuring NUMA Affinity for the VMs... 68

4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two NICs
Across Both NUMA Nodes..69

4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on a
Single NUMA Node..71

4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch.. 72

4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections..73

4.5. Installing the Mellanox OFED Driver... 74

4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM.. 74

4.7. Building and Installing the NVIDIA Peer Memory Driver..76

Chapter 5. Modifying a VM's NVIDIA vGPU Configuration... 77
5.1. Removing a VM’s NVIDIA vGPU Configuration.. 77

5.1.1. Removing a vSphere VM’s vGPU Configuration..77

5.2. Modifying GPU Allocation Policy.. 77

5.2.1. Modifying GPU Allocation Policy on VMware vSphere..78

5.3. Migrating a VM Configured with vGPU.. 81

5.3.1. Migrating a VM Configured with vGPU on VMware vSphere.. 82

5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere.............. 84

5.4. Modifying a MIG-Backed vGPU's Configuration.. 84

5.5. Enabling Unified Memory for a vGPU.. 87

5.5.1. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM......................87

5.5.2. Enabling Unified Memory for a vGPU on VMware vSphere..88

5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU..................................88

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU.. 88

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU.. 89

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features... 89

5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are
Enabled... 90

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU......... 90

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM... 90

5.7. Enabling the TCC Driver Model for a vGPU.. 91

NVIDIA AI Enterprise DU-10617-001 _v3.0 | v

Chapter 6. Monitoring GPU Performance..92
6.1. NVIDIA System Management Interface nvidia-smi... 92

6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor..................................... 92

6.2.1. Getting a Summary of all Physical GPUs in the System.. 93

6.2.2. Getting a Summary of all vGPUs in the System...94

6.2.3. Getting Physical GPU Details.. 94

6.2.4. Getting vGPU Details..97

6.2.5. Monitoring vGPU engine usage... 98

6.2.6. Monitoring vGPU engine usage by applications... 99

6.2.7. Monitoring Encoder Sessions.. 100

6.2.8. Listing Supported vGPU Types.. 101

6.2.9. Listing the vGPU Types that Can Currently Be Created...102

6.3. Monitoring GPU Performance from a Guest VM...103

6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM...............................103

Chapter 7. Changing Scheduling Behavior for Time-Sliced vGPUs................................ 104
7.1. Scheduling Policies for Time-Sliced vGPUs.. 104

7.2. Scheduler Time Slice for Time-Sliced vGPUs... 106

7.3. RmPVMRL Registry Key..106

7.4. Getting the Current Time-Sliced vGPU Scheduling Behavior for All GPUs........................108

7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs..................................109

7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs............................110

7.7. Restoring Default Time-Sliced vGPU Scheduler Settings.. 112

Chapter 8. Troubleshooting..113
8.1. Known issues.. 113

8.2. Troubleshooting steps.. 113

8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded.. 113

8.2.2. Verifying that nvidia-smi works... 113

8.2.3. Examining NVIDIA kernel driver output.. 114

8.2.4. Examining NVIDIA Virtual GPU Manager Messages...114

8.2.4.1. Examining VMware vSphere vGPU Manager Messages.. 114

8.3. Capturing configuration data by running nvidia-bug-report.sh..115

Chapter 9. Additional Information..116

Appendix A. Virtual GPU Types for Supported GPUs...117
A.1. NVIDIA A800 PCIe 80GB and NVIDIA A800 PCIe 80GB Liquid Cooled Virtual GPU Types... 117

A.2. NVIDIA A800 HGX Virtual GPU Types...118

A.3. NVIDIA A100 PCIe 40GB Virtual GPU Types..120

A.4. NVIDIA A100 HGX 40GB Virtual GPU Types...121

NVIDIA AI Enterprise DU-10617-001 _v3.0 | vi

A.5. NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X
Virtual GPU Types... 123

A.6. NVIDIA A100 HGX 80GB Virtual GPU Types...124

A.7. NVIDIA A40 Virtual GPU Types...125

A.8. NVIDIA A30 and NVIDIA A30X Virtual GPU Types..126

A.9. NVIDIA A16 Virtual GPU Types...127

A.10. NVIDIA A10 Virtual GPU Types...128

A.11. NVIDIA H100 PCIe 80GB Virtual GPU Types..128

A.12. NVIDIA RTX A6000 Virtual GPU Types... 130

A.13. NVIDIA RTX A5000 Virtual GPU Types... 131

A.14. Tesla T4 Virtual GPU Types..131

A.15. Quadro RTX 8000 Passive Virtual GPU Types..132

A.16. Quadro RTX 6000 Passive Virtual GPU Types..133

NVIDIA AI Enterprise DU-10617-001 _v3.0 | vii

List of Figures

Figure 1. NVIDIA vGPU System Architecture .. 6

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture .. 7

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture ..8

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100 PCIe 40GB10

Figure 5. Shared default graphics type ...31

Figure 6. Host graphics settings for vGPU ... 32

Figure 7. Shared graphics type ..33

Figure 8. Graphics device settings for a physical GPU .. 33

Figure 9. Shared direct graphics type ...34

Figure 10. Command for Adding a PCI Device ... 35

Figure 11. VM Device Selections for vGPU ... 36

Figure 12. VM settings for vGPU ... 37

Figure 13. NVIDIA driver installation ... 52

Figure 14. Verifying NVIDIA driver operation using NVIDIA Control Panel53

Figure 15. Breadth-first allocation scheme setting for vGPU-enabled VMs79

Figure 16. Host graphics settings for vGPU ... 80

Figure 17. Depth-first allocation scheme setting for vGPU-enabled VMs 81

NVIDIA AI Enterprise DU-10617-001 _v3.0 | viii

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 1

Chapter 1. Introduction to NVIDIA AI
Enterprise

NVIDIA® AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics software,
optimized so every organization can succeed with AI. It's certified to deploy anywhere—from
the enterprise data center to the public cloud—and includes global enterprise support and
training.

NVIDIA AI Enterprise includes key enabling technologies and software from NVIDIA for rapid
deployment, management, and scaling of AI workloads in the modern hybrid cloud.

NVIDIA AI Enterprise enables the following:

 1. Leverage fully integrated, optimized, certified, and supported software from NVIDIA for AI
workloads.

 2. Run NVIDIA AI frameworks and tools optimized for GPU acceleration, reducing deployment
time and ensuring reliable performance.

 3. Deploy anywhere – including on popular data center platforms from VMware and Red Hat,
mainstream NVIDIA-Certified Systems configured with or without GPUs, and on GPU-
accelerated instances in the public cloud.

 4. Leverage the jointly certified NVIDIA and Red Hat solution to deploy and manage AI
workloads in containers or VMs with optimized software.

 5. Scale out to multiple nodes, enabling even the largest deep learning training models to
run on the VMware vSphere. Previously, scaling with bare metal performance in a fully
virtualized environment was limited to a single node, limiting the complexity and size of AI
workloads that could be supported.

 6. Run AI workloads at near bare-metal performance with new optimizations for GPU
acceleration on vSphere, including support for the latest Ampere architecture including
the NVIDIA A100. Additionally, technologies like GPUDirect Communications can now be
supported on vSphere. This provides communication between GPU memory and storage
across a cluster for improved performance.

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 2

1.1. NVIDIA AI Enterprise Software
Architecture

The software in the NVIDIA AI Enterprise suite is organized into separate layers for
infrastructure optimization software, cloud native deployment software, and AI and data
science frameworks.

The content of these layers is as follows:

‣ Infrastructure optimization software:

‣ NVIDIA virtual GPU (vGPU) software

‣ NVIDIA CUDA Toolkit

‣ NVIDIA Magnum IO™ software stack for accelerated data centers

‣ Cloud native deployment software:

‣ NVIDIA GPU Operator

‣ NVIDIA Network Operator

‣ AI and data science frameworks:

‣ TensorFlow

‣ PyTorch

‣ NVIDIA Triton Inference Server

‣ NVIDIA TensorRT

‣ RAPIDS

The AI and data science frameworks are delivered as container images. Containerized
software can be run directly with a tool such as Docker.

What Is Included?

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 3

The NVIDIA AI Enterprise suite includes frameworks that are broadly applicable and used
across vertical industries such as manufacturing, logistics, financial services, retail, and
healthcare.

NVIDIA AI Enterprise includes:

 1. TensorFlow and PyTorch for maching learning.

 2. NVIDIA TAO Toolkit for a faster, easier way to accelerate training and quickly create highly
accurate and performant, domain-specific vision, and conversational AI models.

 3. NVIDIA Tensor RT, for GPU optimized deep learning inference and Triton Inference Server
to deploy trained AI models at scale.

 4. Triton Inference Server supports all major frameworks, such as TensorFlow, TensorRT,
PyTorch, MXNet, Python and more. Triton Inference Server also includes the RAPIDS FIL
backend for the best inference performance for tree-based models on GPUs.

 5. NVIDIA RAPIDS, for end-to-end data science, machine learning and analytics pipeline.

 6. NVIDIA GPU and Network Operators, to deploy and manage NVIDIA GPU and Networking
resources in Kubernetes.

 7. NVIDIA vGPU Software, to deploy vGPU on common data center platforms, including
VMware and Red Hat.

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 4

1.2. Prerequisites for Using NVIDIA AI
Enterprise

Before proceeding, ensure that these prerequisites are met:

‣ You have a system that meets the requirements in NVIDIA AI Enterprise Release Notes.

‣ One or more supported NVIDIA GPUs are installed in your system.

‣ If you are using an NVIDIA A100 GPU, the following BIOS settings are enabled on your
system:

‣ Single Root I/O Virtualization (SR-IOV)

‣ VT-d/IOMMU - Enabled

‣ The following software is installed according to the instructions in the VMware
documentation:

‣ VMware vSphere Hypervisor ESXi

‣ VMware vCenter Server

‣ A VM to be enabled with NVIDIA vGPU is created with the virtual hardware resources in the
following table.

Resource Requirements
vCPUs 16

RAM 64 GB

Storage 500 GB thin provisioned virtual disk

NIC VMXNet3 NIC connected to network

‣ A supported guest OS is installed in the VM.

For optimum performance, set options in your server configuration as follows:

‣ Enable the following options:

‣ Hyperthreading

‣ Memory Mapped I/O above 4 GB (if applicable)

‣ Set the Power Setting or System Profile option to High Performance.

‣ If applicable, set CPU Performance to Enterprise or High Throughput.

Note: If NVIDIA card detection does not include all the installed GPUs, set this option to
Enabled.

http://docs.nvidia.com/ai-enterprise/2.0/pdf/nvidia-ai-enterprise-release-notes.pdf

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 5

Chapter 2. Installing and Configuring
NVIDIA Virtual GPU
Manager

The process for installing and configuring NVIDIA Virtual GPU Manager depends on the
hypervisor that you are using. After you complete this process, you can install the display
drivers for your guest OS and license any NVIDIA AI Enterprise licensed products that you are
using.

2.1. About NVIDIA Virtual GPUs

2.1.1. NVIDIA vGPU Architecture
The high-level architecture of NVIDIA vGPU is illustrated in Figure 1. Under the control of the
NVIDIA Virtual GPU Manager running under the hypervisor, NVIDIA physical GPUs are capable
of supporting multiple virtual GPU devices (vGPUs) that can be assigned directly to guest VMs.

Guest VMs use NVIDIA vGPUs in the same manner as a physical GPU that has been passed
through by the hypervisor: an NVIDIA driver loaded in the guest VM provides direct access
to the GPU for performance-critical fast paths, and a paravirtualized interface to the NVIDIA
Virtual GPU Manager is used for non-performant management operations.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 6

Figure 1. NVIDIA vGPU System Architecture

Each NVIDIA vGPU is analogous to a conventional GPU, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU’s framebuffer is
allocated out of the physical GPU’s framebuffer at the time the vGPU is created, and the vGPU
retains exclusive use of that framebuffer until it is destroyed.

Depending on the physical GPU, different types of vGPU can be created on the vGPU:

‣ On all GPUs that support NVIDIA AI Enterprise, time-sliced vGPUs can be created.

‣ Additionally, on GPUs that support the Multi-Instance GPU (MIG) feature, MIG-backed
vGPUs can be created. The MIG feature is introduced on GPUs that are based on the
NVIDIA Ampere GPU architecture.

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
A time-sliced vGPU is a vGPU that resides on a physical GPU that is not partitioned into
multiple GPU instances. All time-sliced vGPUs resident on a GPU share access to the GPU’s
engines including the graphics (3D), video decode, and video encode engines.

In a time-sliced vGPU, processes that run on the vGPU are scheduled to run in series.
Each vGPU waits while other processes run on other vGPUs. While processes are running
on a vGPU, the vGPU has exclusive use of the GPU's engines. You can change the default
scheduling behavior as explained in Changing Scheduling Behavior for Time-Sliced vGPUs.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 7

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture
A MIG-backed vGPU is a vGPU that resides on a GPU instance in a MIG-capable physical GPU.
Each MIG-backed vGPU resident on a GPU has exclusive access to the GPU instance’s engines,
including the compute and video decode engines.

In a MIG-backed vGPU, processes that run on the vGPU run in parallel with processes
running on other vGPUs on the GPU. Process run on all vGPUs resident on a physical GPU
simultaneously.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 8

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture

2.1.2. About Virtual GPU Types
The number of physical GPUs that a board has depends on the board. Each physical GPU can
support several different types of virtual GPU (vGPU). vGPU types have a fixed amount of frame
buffer, number of supported display heads, and maximum resolutions. They are grouped into
different series according to the different classes of workload for which they are optimized.
Each series is identified by the last letter of the vGPU type name.

Series Optimal Workload
C-series Compute-intensive server workloads, such as artificial intelligence (AI), deep learning,

or high-performance computing (HPC)1, 2

The number after the board type in the vGPU type name denotes the amount of frame buffer
that is allocated to a vGPU of that type. For example, a vGPU of type A16-4C is allocated 4096
Mbytes of frame buffer on an NVIDIA A16 board.

1 C-series vGPU types are NVIDIA Virtual Compute Server vGPU types, which are optimized for compute-intensive workloads. As
a result, they support only a single display head and do not provide Quadro graphics acceleration.

2 The maximum number of NVIDIA Virtual Compute Server vGPUs is limited to eight vGPUs per physical GPU, irrespective of the
available hardware resources of the physical GPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 9

Due to their differing resource requirements, the maximum number of vGPUs that can be
created simultaneously on a physical GPU varies according to the vGPU type. For example, an
NVDIA A16 board can support up to 4 A16-4C vGPUs on each of its two physical GPUs, for a
total of 16 vGPUs, but only 2 A16-8C vGPUs, for a total of 8 vGPUs.

When enabled, the frame-rate limiter (FRL) limits the maximum frame rate in frames per
second (FPS) for C-series vGPUs to 60 FPS.

By default, the FRL is enabled for all GPUs. The FRL is disabled when the vGPU scheduling
behavior is changed from the default best-effort scheduler on GPUs that support alternative
vGPU schedulers. For details, see Changing Scheduling Behavior for Time-Sliced vGPUs. On
vGPUs that use the best-effort scheduler, the FRL can be disabled as explained in the release
notes for your chosen hypervisor at NVIDIA AI Enterprise Documentation.

Note: NVIDIA vGPU is a licensed product on all supported GPU boards. An NVIDIA AI Enterprise
software license is required to enable all vGPU features within the guest VM.

For details of the virtual GPU types available from each supported GPU, see Virtual GPU Types
for Supported GPUs.

2.1.3. Valid Virtual GPU Configurations on a Single
GPU

Valid vGPU configurations on a single GPU depend on whether the vGPUs are time sliced or,
on GPUs that support MIG, are MIG-backed.

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a
Single GPU

This release of NVIDIA vGPU supports time-sliced vGPUs with the same amount of frame
buffer from different virtual GPU series on the same physical GPU. For example, A-series, B-
series, C-series, and Q-series vGPUs with the same amount of frame buffer can reside on the
same physical GPU simultaneously.

However, the requirement that all vGPUs have the same amount of frame buffer doesn’t
extend across physical GPUs on the same card. Different physical GPUs on the same card may
host virtual GPUs with different amounts of frame buffer at the same time, provided that the
vGPU types on any one physical GPU all have the same amount of frame buffer.

For example, an NVIDIA A16 card has four physical GPUs, and can support several types of
virtual GPU.

‣ A configuration with a mixture of A16-4C vGPUs and A16-4Q vGPUs on GPU0 is valid.

‣ A configuration with A16-16C vGPUs on GPU 0 and GPU 1, A16-8C vGPUs on GPU 2, and
A16-4C vGPUs on GPU3 is valid.

‣ A configuration with a mixture of A16-8C vGPUs and A16-4C vGPUs on GPU0 is invalid.

Not all hypervisors support time-sliced vGPUs with the same amount of frame buffer from
different virtual GPU series on the same physical GPU. To determine if your chosen hypervisor

https://docs.nvidia.com/ai-enterprise/2.0/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 10

supports this feature, consult the release notes for your hypervisor at NVIDIA AI Enterprise
Documentation.

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a
Single GPU

This release of NVIDIA vGPU supports both homogeneous and mixed MIG-backed virtual GPUs
based on the underlying GPU instance configuration.

For example, an NVIDIA A100 PCIe 40GB card has one physical GPU, and can support several
types of virtual GPU. Figure 4 shows the following examples of valid homogeneous and mixed
MIG-backed virtual GPU configurations on NVIDIA A100 PCIe 40GB.

‣ A valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU
instances

‣ A valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU
instances

‣ A valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance, 1
A100-2-10C vGPU on a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a MIG.1g.5b
instance

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100
PCIe 40GB

https://docs.nvidia.com/ai-enterprise/2.0/
https://docs.nvidia.com/ai-enterprise/2.0/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 11

2.2. Switching the Mode of a GPU that
Supports Multiple Display Modes

Some GPUs support displayless and display-enabled modes but must be used in NVIDIA AI
Enterprise deployments in displayless mode.

The GPUs listed in the following table support multiple display modes. As shown in the table,
some GPUs are supplied from the factory in displayless mode, but other GPUs are supplied in
a display-enabled mode.

GPU Mode as Supplied from the Factory
NVIDIA A40 Displayless

NVIDIA RTX A5000 Display enabled

NVIDIA RTX A5500 Display enabled

NVIDIA RTX A6000 Display enabled

A GPU that is supplied from the factory in displayless mode, such as the NVIDIA A40 GPU,
might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the
displaymodeselector tool, which you can request from the NVIDIA Display Mode Selector
Tool page on the NVIDIA Developer website.

Note:

Only the following GPUs support the displaymodeselector tool:

‣ NVIDIA A40

‣ NVIDIA RTX A5000

‣ NVIDIA RTX A5500

‣ NVIDIA RTX A6000

Other GPUs that support NVIDIA AI Enterprise do not support the displaymodeselector tool
and, unless otherwise stated, do not require display mode switching.

https://developer.nvidia.com/displaymodeselector
https://developer.nvidia.com/displaymodeselector

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 12

2.3. Installing and Configuring the NVIDIA
Virtual GPU Manager for Red Hat
Enterprise Linux KVM

The following topics step you through the process of setting up a single Red Hat Enterprise
Linux Kernel-based Virtual Machine (KVM) VM to use NVIDIA vGPU.

CAUTION: Output from the VM console is not available for VMs that are running vGPU. Make
sure that you have installed an alternate means of accessing the VM (such as a VNC server)
before you configure vGPU.

Follow this sequence of instructions:

 1. Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM
 2. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
 3. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
 4. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
 5. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
 6. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

After the process is complete, you can install the graphics driver for your guest OS and license
any NVIDIA AI Enterprise licensed products that you are using.

2.3.1. Installing the NVIDIA Virtual GPU Manager
for Red Hat Enterprise Linux KVM

The NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM is provided as a .rpm file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you update
vGPU Manager to a release that is incompatible with the guest VM drivers, guest VMs will boot
with vGPU disabled until their guest vGPU driver is updated to a compatible version.

2.3.1.2. Verifying the Installation of the NVIDIA AI
Enterprise for Red Hat Enterprise Linux KVM

After the Red Hat Enterprise Linux KVM server has rebooted, verify the installation of the
NVIDIA AI Enterprise package for Red Hat Enterprise Linux KVM.

 1. Verify that the NVIDIA AI Enterprise package is installed and loaded correctly by checking
for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio
nvidia_vgpu_vfio 27099 0
nvidia 12316924 1 nvidia_vgpu_vfio
vfio_mdev 12841 0

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 13

mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio_iommu_type1 22342 0
vfio 32331 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1
#

 2. Verify that the libvirtd service is active and running.
service libvirtd status

 3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
nvidia-smi
Fri Dec 16 18:46:50 2022
+--+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18W / 250W | 53MiB / 24575MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
#

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs in
your system, see Troubleshooting for troubleshooting steps.

2.3.2. Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor

Sometimes when configuring a physical GPU for use with NVIDIA AI Enterprise, you must find
out which directory in the sysfs file system represents the GPU. This directory is identified by
the domain, bus, slot, and function of the GPU.

For more information about the directory in the sysfs file system that represents a physical
GPU, see NVIDIA vGPU Information in the sysfs File System.

 1. Obtain the PCI device bus/device/function (BDF) of the physical GPU.
lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCI device BDFs 06:00.0 and 07:00.0.
lspci | grep NVIDIA
06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
 a1)

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 14

07:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
 a1)

 2. Obtain the full identifier of the GPU from its PCI device BDF.
virsh nodedev-list --cap pci| grep transformed-bdf
transformed-bdf

The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 06_00_0.

This example obtains the full identifier of the GPU with the PCI device BDF 06:00.0.
virsh nodedev-list --cap pci| grep 06_00_0
pci_0000_06_00_0

 3. Obtain the domain, bus, slot, and function of the GPU from the full identifier of the GPU.
virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'

full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci_0000_06_00_0.

This example obtains the domain, bus, slot, and function of the GPU with the PCI device
BDF 06:00.0.
virsh nodedev-dumpxml pci_0000_06_00_0| egrep 'domain|bus|slot|function'
 <domain>0x0000</domain>
 <bus>0x06</bus>
 <slot>0x00</slot>
 <function>0x0</function>
 <address domain='0x0000' bus='0x06' slot='0x00' function='0x0'/>

2.3.3. Creating an NVIDIA vGPU on a Linux with
KVM Hypervisor

For each vGPU that you want to create, perform this task in a Linux command shell on the a
Linux with KVM hypervisor host.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU on which
you are creating the vGPU. For instructions, see Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor.

How to create an NVIDIA vGPU on a Linux with KVM hypervisor depends on whether the
NVIDIA vGPU supports single root I/O virtualization (SR-IOV). For details, refer to:

‣ Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor

‣ Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

2.3.3.1. Creating a Legacy NVIDIA vGPU on a Linux with
KVM Hypervisor

A legacy NVIDIA vGPU does not support SR-IOV.

 1. Change to the mdev_supported_types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported_types/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 15

domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev_supported_types directory for the GPU with the
domain 0000 and PCI device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported_types/

 2. Find out which subdirectory of mdev_supported_types contains registration information
for the vGPU type that you want to create.
grep -l "vgpu-type" nvidia-*/name
vgpu-type

The vGPU type, for example, M10-2Q.

This example shows that the registration information for the M10-2Q vGPU type is
contained in the nvidia-41 subdirectory of mdev_supported_types.
grep -l "M10-2Q" nvidia-*/name
nvidia-41/name

 3. Confirm that you can create an instance of the vGPU type on the physical GPU.
cat subdirectory/available_instances
subdirectory

The subdirectory that you found in the previous step, for example, nvidia-41.

The number of available instances must be at least 1. If the number is 0, either an instance
of another vGPU type already exists on the physical GPU, or the maximum number of
allowed instances has already been created.

This example shows that four more instances of the M10-2Q vGPU type can be created on
the physical GPU.
cat nvidia-41/available_instances
4

 4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.
uuidgen
aa618089-8b16-4d01-a136-25a0f3c73123

 5. Write the UUID that you obtained in the previous step to the create file in the registration
information directory for the vGPU type that you want to create.
echo "uuid"> subdirectory/create
uuid

The UUID that you generated in the previous step, which will become the UUID of the
vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create, for
example, nvidia-41.

This example creates an instance of the M10-2Q vGPU type with the UUID
aa618089-8b16-4d01-a136-25a0f3c73123.
echo "aa618089-8b16-4d01-a136-25a0f3c73123" > nvidia-41/create

An mdev device file for the vGPU is added to the parent physical device directory of the
vGPU. The vGPU is identified by its UUID.

The /sys/bus/mdev/devices/ directory contains a symbolic link to the mdev device file.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 16

 6. Make the mdev device file that you created to represent the vGPU persistent.
mdevctl define --auto --uuid uuid
uuid

The UUID that you specified in the previous step for the vGPU that you are creating.

Note: Not all Linux with KVM hypervisor releases include the mdevctl command. If your
release does not include the mdevctl command, you can use standard features of the
operating system to automate the re-creation of this device file when the host is booted.
For example, you can write a custom script that is executed when the host is rebooted.

 7. Confirm that the vGPU was created.
 a). Confirm that the /sys/bus/mdev/devices/ directory contains the mdev device file for

the vGPU.
ls -l /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Nov 24 13:33 aa618089-8b16-4d01-a136-25a0f3c73123 -
> ../../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0/
aa618089-8b16-4d01-a136-25a0f3c73123

 b). If your release includes the mdevctl command, list the active mediated devices on the
hypervisor host.
mdevctl list
aa618089-8b16-4d01-a136-25a0f3c73123 0000:06:00.0 nvidia-41

2.3.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on
a Linux with KVM Hypervisor

An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV, such
as a GPU based on the NVIDIA Ampere architecture.

 1. Enable the virtual functions for the physical GPU in the sysfs file system.

Note:

‣ Before performing this step, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

‣ The virtual functions for the physical GPU in the sysfs file system are disabled after
the hypervisor host is rebooted or if the driver is reloaded or upgraded.

Use only the custom script sriov-manage provided by NVIDIA AI Enterprise for this
purpose. Do not try to enable the virtual function for the GPU by any other means.
/usr/lib/nvidia/sriov-manage -e domain:bus:slot.function
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

Note: Only one mdev device file can be created on a virtual function.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 17

This example enables the virtual functions for the GPU with the domain 00, bus 41, slot
0000, and function 0.
/usr/lib/nvidia/sriov-manage -e 00:41:0000.0

 2. Obtain the domain, bus, slot, and function of the available virtual functions on the GPU.
ls -l /sys/bus/pci/devices/domain\:bus\:slot.function/ | grep virtfn
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example shows the output of this command for a physical GPU with slot 00, bus 41,
domain 0000, and function 0.
ls -l /sys/bus/pci/devices/0000:41:00.0/ | grep virtfn
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn0 -> ../0000:41:00.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn1 -> ../0000:41:00.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn10 -> ../0000:41:01.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn11 -> ../0000:41:01.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn12 -> ../0000:41:02.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn13 -> ../0000:41:02.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn14 -> ../0000:41:02.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn15 -> ../0000:41:02.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn16 -> ../0000:41:02.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn17 -> ../0000:41:02.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn18 -> ../0000:41:02.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn19 -> ../0000:41:02.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2 -> ../0000:41:00.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn20 -> ../0000:41:03.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn21 -> ../0000:41:03.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn22 -> ../0000:41:03.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn23 -> ../0000:41:03.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn24 -> ../0000:41:03.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn25 -> ../0000:41:03.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn26 -> ../0000:41:03.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn27 -> ../0000:41:03.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn28 -> ../0000:41:04.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn29 -> ../0000:41:04.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn3 -> ../0000:41:00.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn30 -> ../0000:41:04.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn31 -> ../0000:41:04.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn4 -> ../0000:41:01.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn5 -> ../0000:41:01.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn6 -> ../0000:41:01.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn7 -> ../0000:41:01.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn8 -> ../0000:41:01.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn9 -> ../0000:41:01.5

 3. Choose the available virtual function on which you want to create the vGPU and note its
domain, bus, slot, and function.

 4. Change to the mdev_supported_types directory for the virtual function on which you want
to create the vGPU.
cd /sys/class/mdev_bus/domain\:bus\:vf-slot.v-function/mdev_supported_types/
domain
bus

The domain and bus of the GPU, without the 0x prefix.
vf-slot
v-function

The slot and function of the virtual function.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 18

This example changes to the mdev_supported_types directory for the first virtual
function (virtfn0) for the GPU with the domain 0000 and bus 41. The first virtual function
(virtfn0) has slot 00 and function 4.
cd /sys/class/mdev_bus/0000\:41\:00.4/mdev_supported_types

 5. Find out which subdirectory of mdev_supported_types contains registration information
for the vGPU type that you want to create.
grep -l "vgpu-type" nvidia-*/name
vgpu-type

The vGPU type, for example, A40-2Q.

This example shows that the registration information for the A40-2Q vGPU type is
contained in the nvidia-558 subdirectory of mdev_supported_types.
grep -l "A40-2Q" nvidia-*/name
nvidia-558/name

 6. Confirm that you can create an instance of the vGPU type on the virtual function.
cat subdirectory/available_instances
subdirectory

The subdirectory that you found in the previous step, for example, nvidia-558.

The number of available instances must be 1. If the number is 0, a vGPU has already been
created on the virtual function. Only one instance of any vGPU type can be created on a
virtual function.

This example shows that an instance of the A40-2Q vGPU type can be created on the virtual
function.
cat nvidia-558/available_instances
1

 7. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.
uuidgen
aa618089-8b16-4d01-a136-25a0f3c73123

 8. Write the UUID that you obtained in the previous step to the create file in the registration
information directory for the vGPU type that you want to create.
echo "uuid"> subdirectory/create
uuid

The UUID that you generated in the previous step, which will become the UUID of the
vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create, for
example, nvidia-558.

This example creates an instance of the A40-2Q vGPU type with the UUID
aa618089-8b16-4d01-a136-25a0f3c73123.
echo "aa618089-8b16-4d01-a136-25a0f3c73123" > nvidia-558/create

An mdev device file for the vGPU is added to the parent virtual function directory of the
vGPU. The vGPU is identified by its UUID.

 9. Time-sliced vGPUs only: Make the mdev device file that you created to represent the vGPU
persistent.
mdevctl define --auto --uuid uuid

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 19

uuid
The UUID that you specified in the previous step for the vGPU that you are creating.

Note:

‣ If you are using a GPU that supports SR-IOV, the mdev device file persists after a host
reboot only if you perform Step 1 before rebooting any VM that is configured with a
vGPU on the GPU.

‣ You cannot use the mdevctl command to make the mdev device file for a MIG-backed
vGPU persistent. The mdev device file for a MIG-backed vGPU is not retained after the
host is rebooted because MIG instances are no longer available.

‣ Not all Linux with KVM hypervisor releases include the mdevctl command. If your
release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host is
booted. For example, you can write a custom script that is executed when the host is
rebooted.

 10.Confirm that the vGPU was created.
 a). Confirm that the /sys/bus/mdev/devices/ directory contains a symbolic link to the

mdev device file.
ls -l /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Jul 16 05:57 aa618089-8b16-4d01-a136-25a0f3c73123
 -> ../../../devices/pci0000:40/0000:40:01.1/0000:41:00.4/aa618089-8b16-4d01-
a136-25a0f3c73123

 b). If your release includes the mdevctl command, list the active mediated devices on the
hypervisor host.
mdevctl list
aa618089-8b16-4d01-a136-25a0f3c73123 0000:06:00.0 nvidia-558

2.3.4. Adding One or More vGPUs to a Linux with
KVM Hypervisor VM

To support applications and workloads that are compute or graphics intensive, you can add
multiple vGPUs to a single VM.

Ensure that the following prerequisites are met:

‣ The VM to which you want to add the vGPUs is shut down.

‣ The vGPUs that you want to add have been created as explained in Creating an NVIDIA
vGPU on a Linux with KVM Hypervisor.

You can add vGPUs to a Linux with KVM hypervisor VM by using any of the following tools:

‣ The virsh command

‣ The QEMU command line

After adding vGPUs to a Linux with KVM hypervisor VM, start the VM.
virsh start vm-name

vm-name
The name of the VM that you added the vGPUs to.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 20

After the VM has booted, install the NVIDIA AI Enterprise graphics driver as explained in
Installing and Licensing NVIDIA AI Enterprise Components Natively.

2.3.4.1. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using virsh

 1. In virsh, open for editing the XML file of the VM that you want to add the vGPU to.
virsh edit vm-name
vm-name

The name of the VM to that you want to add the vGPUs to.
 2. For each vGPU that you want to add to the VM, add a device entry in the form of an

address element inside the source element to add the vGPU to the guest VM.
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='uuid'/>
 </source>
 </hostdev>
</device>
uuid

The UUID that was assigned to the vGPU when the vGPU was created.

This example adds a device entry for the vGPU with the UUID a618089-8b16-4d01-
a136-25a0f3c73123.
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='a618089-8b16-4d01-a136-25a0f3c73123'/>
 </source>
 </hostdev>
</device>

This example adds device entries for two vGPUs with the following UUIDs:

‣ c73f1fa6-489e-4834-9476-d70dabd98c40

‣ 3b356d38-854e-48be-b376-00c72c7d119c

<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='c73f1fa6-489e-4834-9476-d70dabd98c40'/>
 </source>
 </hostdev>
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='3b356d38-854e-48be-b376-00c72c7d119c'/>
 </source>
 </hostdev>
</device>

 3. Optional: Add a video element that contains a model element in which the type attribute
is set to none.
<video>
<model type='none'/>
</video>

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 21

Adding this video element prevents the default video device that libvirt adds from
being loaded into the VM. If you don't add this video element, you must configure the
Xorg server or your remoting solution to load only the vGPU devices you added and not the
default video device.

2.3.4.2. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using the QEMU Command Line

Add the following options to the QEMU command line:

‣ For each vGPU that you want to add to the VM, add one -device option in the following
format:
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/vgpu-uuid
vgpu-uuid

The UUID that was assigned to the vGPU when the vGPU was created.

‣ Add a -uuid option to specify the VM as follows:
-uuid vm-uuid
vm-uuid

The UUID that was assigned to the VM when the VM was created.

This example adds the vGPU with the UUID aa618089-8b16-4d01-a136-25a0f3c73123 to
the VM with the UUID ebb10a6e-7ac9-49aa-af92-f56bb8c65893.
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/aa618089-8b16-4d01-
a136-25a0f3c73123 \
-uuid ebb10a6e-7ac9-49aa-af92-f56bb8c65893

This example adds device entries for two vGPUs with the following UUIDs:

‣ 676428a0-2445-499f-9bfd-65cd4a9bd18f

‣ 6c5954b8-5bc1-4769-b820-8099fe50aaba

The entries are added to the VM with the UUID ec5e8ee0-657c-4db6-8775-
da70e332c67e.
-device vfio-pci,sysfsdev=/sys/bus/mdev/
devices/676428a0-2445-499f-9bfd-65cd4a9bd18f \
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/6c5954b8-5bc1-4769-
b820-8099fe50aaba \
-uuid ec5e8ee0-657c-4db6-8775-da70e332c67e

2.3.5. Setting vGPU Plugin Parameters on a Linux
with KVM Hypervisor

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate limiter
(FRL) configuration in frames per second or whether console virtual network computing
(VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is started with these
parameters. If parameters are set for multiple vGPUs assigned to the same VM, the VM is
started with the parameters assigned to each vGPU.
For each vGPU for which you want to set plugin parameters, perform this task in a Linux
command shell on the Linux with KVM hypervisor host.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 22

 1. Change to the nvidia subdirectory of the mdev device directory that represents the vGPU.
cd /sys/bus/mdev/devices/uuid/nvidia
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-a136-25a0f3c73123.
 2. Write the plugin parameters that you want to set to the vgpu_params file in the directory

that you changed to in the previous step.
echo "plugin-config-params" > vgpu_params
plugin-config-params

A comma-separated list of parameter-value pairs, where each pair is of the form
parameter-name=value.

This example disables frame rate limiting and console VNC for a vGPU.
echo "frame_rate_limiter=0, disable_vnc=1" > vgpu_params

This example enables unified memory for a vGPU.
echo "enable_uvm=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit debuggers for a vGPU.
echo "enable_debugging=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit profilers for a vGPU.
echo "enable_profiling=1" > vgpu_params

To clear any vGPU plugin parameters that were set previously, write a space to the
vgpu_params file for the vGPU.
echo " " > vgpu_params

2.3.6. Deleting a vGPU on a Linux with KVM
Hypervisor

For each vGPU that you want to delete, perform this task in a Linux command shell on the
Linux with KVM hypervisor host.

Before you begin, ensure that the following prerequisites are met:

‣ You have the domain, bus, slot, and function of the GPU where the vGPU that you want to
delete resides. For instructions, see Getting the BDF and Domain of a GPU on a Linux with
KVM Hypervisor.

‣ The VM to which the vGPU is assigned is shut down.

 1. Change to the mdev_supported_types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported_types/
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev_supported_types directory for the GPU with the PCI
device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported_types/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 23

 2. Change to the subdirectory of mdev_supported_types that contains registration
information for the vGPU.
cd `find . -type d -name uuid`
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-a136-25a0f3c73123.
 3. Write the value 1 to the remove file in the registration information directory for the vGPU

that you want to delete.
echo "1" > remove

2.3.7. NVIDIA vGPU Information in the sysfs File
System

Information about the NVIDIA vGPU types supported by each physical GPU in a Linux with KVM
hypervisor host is stored in the sysfs file system.

All physical GPUs on the host are registered with the mdev kernel module. Information about
the physical GPUs and the vGPU types that can be created on each physical GPU is stored in
directories and files under the /sys/class/mdev_bus/ directory.

The sysfs directory for each physical GPU is at the following locations:

‣ /sys/bus/pci/devices/

‣ /sys/class/mdev_bus/

Both directories are a symbolic link to the real directory for PCI devices in the sysfs file
system.

The organization the sysfs directory for each physical GPU is as follows:
/sys/class/mdev_bus/
 |-parent-physical-device
 |-mdev_supported_types
 |-nvidia-vgputype-id
 |-available_instances
 |-create
 |-description
 |-device_api
 |-devices
 |-name

parent-physical-device

Each physical GPU on the host is represented by a subdirectory of the /sys/class/
mdev_bus/ directory.

The name of each subdirectory is as follows:
domain\:bus\:slot.function

domain, bus, slot, function are the domain, bus, slot, and function of the GPU, for example,
0000\:06\:00.0.

Each directory is a symbolic link to the real directory for PCI devices in the sysfs file
system. For example:
ll /sys/class/mdev_bus/
total 0

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 24

lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:05:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:08.0/0000:05:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:06:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:07:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:10.0/0000:07:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:08:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:11.0/0000:08:00.0

mdev_supported_types
A directory named mdev_supported_types is required under the sysfs directory for each
physical GPU that will be configured with NVIDIA vGPU. How this directory is created for a
GPU depends on whether the GPU supports SR-IOV.

‣ For a GPU that does not support SR-IOV, this directory is created automatically after the
Virtual GPU Manager is installed on the host and the host has been rebooted.

‣ For a GPU that supports SR-IOV, such as a GPU based on the NVIDIA Ampere
architecture, you must create this directory by enabling the virtual function for the
GPU as explained in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor. The
mdev_supported_types directory itself is never visible on the physical function.

The mdev_supported_types directory contains a subdirectory for each vGPU type that the
physical GPU supports. The name of each subdirectory is nvidia-vgputype-id, where
vgputype-id is an unsigned integer serial number. For example:
ll mdev_supported_types/
total 0
drwxr-xr-x 3 root root 0 Dec 6 01:37 nvidia-35
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-36
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-37
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-38
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-39
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-40
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-41
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-42
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-43
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-44
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-45

nvidia-vgputype-id
Each directory represents an individual vGPU type and contains the following files and
directories:
available_instances

This file contains the number of instances of this vGPU type that can still be created.
This file is updated any time a vGPU of this type is created on or removed from the
physical GPU.

Note: When a time-sliced vGPU is created, the content of the available_instances for
all other time-sliced vGPU types on the physical GPU is set to 0. This behavior enforces
the requirement that all time-sliced vGPUs on a physical GPU must be of the same type.
However, this requirement does not apply to MIG-backed vGPUs. Therefore, when a MIG-
backed vGPU is created, available_instances for all other MIG-backed vGPU types on
the physical GPU is not set to 0

create
This file is used for creating a vGPU instance. A vGPU instance is created by writing the
UUID of the vGPU to this file. The file is write only.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 25

description
This file contains the following details of the vGPU type:

‣ The maximum number of virtual display heads that the vGPU type supports

‣ The frame rate limiter (FRL) configuration in frames per second

‣ The frame buffer size in Mbytes

‣ The maximum resolution per display head

‣ The maximum number of vGPU instances per physical GPU

For example:
cat description
num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=4096x2160,
 max_instance=4

device_api
This file contains the string vfio_pci to indicate that a vGPU is a PCI device.

devices
This directory contains all the mdev devices that are created for the vGPU type. For
example:
ll devices
total 0
lrwxrwxrwx 1 root root 0 Dec 6 01:52 aa618089-8b16-4d01-a136-25a0f3c73123 -
> ../../../aa618089-8b16-4d01-a136-25a0f3c73123

name
This file contains the name of the vGPU type. For example:
cat name
GRID M10-2Q

2.4. Installing and Configuring the NVIDIA
Virtual GPU Manager for VMware
vSphere

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware vSphere
VM to use NVIDIA vGPU or VMware vSGA. The vGPU Manager vSphere software components
provide vSGA and vGPU functionality in a single component.

Note:

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV
SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware vSphere
on such a server, you must ensure that the SR-IOV SBIOS setting is enabled on the server.

However, with any server hardware, do not enable SR-IOV in VMware vCenter Server for the
Tesla T4 GPU. If SR-IOV is enabled in VMware vCenter Server for T4, VMware vCenter Server
lists the status of the GPU as needing a reboot. You can ignore this status message.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 26

Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed Resource
Scheduler (DRS) cluster. However, to ensure that the automation level of the cluster supports
VMs configured with NVIDIA vGPU, you must set the automation level to Partially Automated
or Manual.

For more information about these settings, see Edit Cluster Settings in the VMware
documentation.

2.4.1. Installing the NVIDIA Virtual GPU Manager on
VMware vSphere

To install the NVIDIA Virtual GPU Manager you need to access the ESXi host via the ESXi Shell
or SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.
Before you begin, ensure that the following prerequisites are met:

‣ The ZIP archive that contains NVIDIA AI Enterprise has been downloaded from the NVIDIA
Licensing Portal.

‣ The software components for the NVIDIA Virtual GPU Manager have been extracted from
the downloaded ZIP archive.

 1. Copy the NVIDIA Virtual GPU Manager component files to the ESXi host.
 2. Put the ESXi host into maintenance mode.

$ esxcli system maintenanceMode set –-enable true

 3. Install the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management daemon
from their software component files.
 a). Run the esxcli command to install the NVIDIA vGPU hypervisor host driver from its

software component file.
$ esxcli software vib install -d /vmfs/volumes/datastore/host-driver-component.zip

 b). Run the esxcli command to install the NVIDIA GPU Management daemon from its
software component file.
$ esxcli software vib install -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.

host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the form
of a software component. Ensure that you specify the file that was extracted from the
downloaded ZIP archive. For example, for VMware vSphere 7.0.2, host-driver-component
is VMW-esx-7.0.0-nvd-gpu-mgmt-daemon-1.0-0.0.0001-build-number.

gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in the form
of a software component. Ensure that you specify the file that was extracted from the

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-755AB944-F3D0-43DD-82CD-8CDDDF8674E8.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 27

downloaded ZIP archive. For example, for VMware vSphere 7.0.2, gpu-management-
daemon-component is VMW-esx-7.0.0-nvd-gpu-mgmt-daemon-1.0-0.0.0001.

 4. Exit maintenance mode.
$ esxcli system maintenanceMode set –-enable false

 5. Reboot the ESXi host.
$ reboot

2.4.2. Updating the NVIDIA Virtual GPU Manager for
VMware vSphere

Update the NVIDIA Virtual GPU Manager if you want to install a new version of NVIDIA Virtual
GPU Manager on a system where an existing version is already installed.

To update the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or SSH.
Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi host.

Note: Before proceeding with the vGPU Manager update, make sure that all VMs are powered
off and the ESXi host is placed in maintenance mode. Refer to VMware’s documentation on how
to place an ESXi host in maintenance mode

 1. Update the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management daemon.
 a). Run the esxcli command to update the NVIDIA vGPU hypervisor host driver from its

software component file.
$ esxcli software vib update -d /vmfs/volumes/datastore/host-driver-component.zip

 b). Run the esxcli command to update the NVIDIA GPU Management daemon from its
software component file.
$ esxcli software vib update -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.

host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the form
of a software component. Ensure that you specify the file that was extracted from the
downloaded ZIP archive. For example, for VMware vSphere 7.0.2, host-driver-component
is VMW-esx-7.0.0-nvd-gpu-mgmt-daemon-1.0-0.0.0001-build-number.

gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in the form
of a software component. Ensure that you specify the file that was extracted from the
downloaded ZIP archive. For example, for VMware vSphere 7.0.2, gpu-management-
daemon-component is VMW-esx-7.0.0-nvd-gpu-mgmt-daemon-1.0-0.0.0001.

 2. Reboot the ESXi host and remove it from maintenance mode.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 28

2.4.3. Verifying the Installation of the NVIDIA AI
Enterprise Package for vSphere

After the ESXi host has rebooted, verify the installation of the NVIDIA AI Enterprise package for
vSphere.

 1. Verify that the NVIDIA AI Enterprise package installed and loaded correctly by checking for
the NVIDIA kernel driver in the list of kernel loaded modules.
[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the NVIDIA driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

 3. Verify that the NVIDIA GPU Management daemon has started.
$ /etc/init.d/nvdGpuMgmtDaemon status

 4. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
[root@esxi:~] nvidia-smi
Fri Dec 16 17:56:22 2022
+--+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 00000000:05:00.0 Off | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your system, see
Troubleshooting for troubleshooting steps.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 29

2.4.4. Managing the NVIDIA GPU Management
Daemon for VMware vSphere

The NVIDIA GPU Management Daemon for VMware vSphere is a service that is controlled
through scripts in the /etc/init.d directory. You can use these scripts to start the daemon,
stop the daemon, and get its status.

‣ To start the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon start

‣ To stop the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon stop

‣ To get the status of the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon status

2.4.5. Configuring VMware vMotion with vGPU for
VMware vSphere

NVIDIA AI Enterprise supports vGPU migration, which includes VMware vMotion and suspend-
resume, for VMs that are configured with vGPU. To enable VMware vMotion with vGPU, an
advanced vCenter Server setting must be enabled. However, suspend-resume for VMs that
are configured with vGPU is enabled by default.

Before configuring VMware vMotion with vGPU for an ESXi host, ensure that the current
NVIDIA Virtual GPU Manager for VMware vSphere package is installed on the host.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the Hosts and Clusters view, select the vCenter Server instance.

Note: Ensure that you select the vCenter Server instance, not the vCenter Server VM.

 3. Click the Configure tab.
 4. In the Settings section, select Advanced Settings and click Edit.
 5. In the Edit Advanced vCenter Server Settings window that opens, type vGPU in the search

field.
 6. When the vgpu.hotmigrate.enabled setting appears, set the Enabled option and click OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 30

2.4.6. Changing the Default Graphics Type in
VMware vSphere

The vGPU Manager VIB for VMware vSphere provides vSGA and vGPU functionality in a single
VIB. After this VIB is installed, the default graphics type is Shared, which provides vSGA
functionality. To enable vGPU support for VMs in VMware vSphere, you must change the
default graphics type to Shared Direct.

If you do not change the default graphics type, VMs to which a vGPU is assigned fail to start
and the following error message is displayed:
The amount of graphics resource available in the parent resource pool is
 insufficient for the operation.

Note: Change the default graphics type before configuring vGPU. Output from the VM console
in the VMware vSphere Web Client is not available for VMs that are running vGPU.

Before changing the default graphics type, ensure that the ESXi host is running and that all
VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 31

 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Figure 5. Shared default graphics type

 5. In the Edit Host Graphics Settings dialog box that opens, select Shared Direct and click
OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 32

Figure 6. Host graphics settings for vGPU

Note: In this dialog box, you can also change the allocation scheme for vGPU-enabled VMs.
For more information, see Modifying GPU Allocation Policy on VMware vSphere.

After you click OK, the default graphics type changes to Shared Direct.
 6. Click the Graphics Devices tab to verify the configured type of each physical GPU on which

you want to configure vGPU.
The configured type of each physical GPU must be Shared Direct. For any physical GPU for
which the configured type is Shared, change the configured type as follows:
 a). On the Graphics Devices tab, select the physical GPU and click the Edit icon.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 33

Figure 7. Shared graphics type

 b). In the Edit Graphics Device Settings dialog box that opens, select Shared Direct and
click OK.

Figure 8. Graphics device settings for a physical GPU

 7. Restart the ESXi host or stop and restart nv-hostengine on the ESXi host.

To stop and restart nv-hostengine, perform these steps:
 a). Stop nv-hostengine.

[root@esxi:~] nv-hostengine -t

 b). Wait for 1 second to allow nv-hostengine to stop.
 c). Start nv-hostengine.

[root@esxi:~] nv-hostengine -d

 8. In the Graphics Devices tab of the VMware vCenter Web UI, confirm that the active type
and the configured type of each physical GPU are Shared Direct.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 34

Figure 9. Shared direct graphics type

After changing the default graphics type, configure vGPU as explained in Configuring a
vSphere VM with NVIDIA vGPU.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

2.4.7. Configuring a vSphere VM with NVIDIA vGPU
To support applications and workloads that are compute or graphics intensive, you can add
multiple vGPUs to a single VM.

CAUTION: Output from the VM console in the VMware vSphere Web Client is not available for
VMs that are running vGPU. Make sure that you have installed an alternate means of accessing
the VM (such as VMware Horizon or a VNC server) before you configure vGPU.

VM console in vSphere Web Client will become active again once the vGPU parameters are
removed from the VM’s configuration.

How to configure a vSphere VM with a vGPU depends on your VMware vSphere version ass
explained in the following topics:

‣ Configuring a vSphere 8 VM with NVIDIA vGPU

‣ Configuring a vSphere 7 VM with NVIDIA vGPU

After you have configured a vSphere VM with a vGPU, start the VM. VM console in vSphere Web
Client is not supported in this vGPU release. Therefore, use VMware Horizon or VNC to access
the VM’s desktop.

After the VM has booted, install the NVIDIA AI Enterprise graphics driver as explained in
Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 35

2.4.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU
 1. Open the vCenter Web UI.
 2. In the vCenter Web UI, right-click the VM and choose Edit Settings.
 3. In the Edit Settings window that opens, configure the vGPUs that you want to add to the

VM.
Add each vGPU that you want to add to the VM as follows:
 a). From the ADD NEW DEVICE menu, choose PCI Device.

Figure 10. Command for Adding a PCI Device

 b). In the Device Selection window that opens, select the type of vGPU you want to
configure and click SELECT.

Note: NVIDIA AI Enterprise does not support vCS on VMware vSphere. Therefore, C-
series vGPU types are not available for selection in the Device Selection window.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 36

Figure 11. VM Device Selections for vGPU

 4. Back in the Edit Settings window, click OK.

2.4.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU
If you are adding multiple vGPUs to a single VM, perform this task for each vGPU that you want
to add to the VM.

 1. Open the vCenter Web UI.
 2. In the vCenter Web UI, right-click the VM and choose Edit Settings.
 3. Click the Virtual Hardware tab.
 4. In the New device list, select Shared PCI Device and click Add.

The PCI device field should be auto-populated with NVIDIA GRID vGPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 37

Figure 12. VM settings for vGPU

 5. From the GPU Profile drop-down menu, choose the type of vGPU you want to configure
and click OK.

 6. Ensure that VMs running vGPU have all their memory reserved:
 a). Select Edit virtual machine settings from the vCenter Web UI.
 b). Expand the Memory section and click Reserve all guest memory (All locked).

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 38

2.4.8. Setting vGPU Plugin Parameters on VMware
vSphere

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate limiter
(FRL) configuration in frames per second or whether console virtual network computing
(VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is started with these
parameters. If parameters are set for multiple vGPUs assigned to the same VM, the VM is
started with the parameters assigned to each vGPU.
Ensure that the VM to which the vGPU is assigned is powered off.
For each vGPU for which you want to set plugin parameters, perform this task in the vSphere
Client. vGPU plugin parameters are PCI pass through configuration parameters in advanced
VM attributes.

 1. In the vSphere Client, browse to the VM to which the vGPU is assigned.
 2. Context-click the VM and choose Edit Settings.
 3. In the Edit Settings window, click the VM Options tab.
 4. From the Advanced drop-down list, select Edit Configuration.
 5. In the Configuration Parameters dialog box, click Add Row.
 6. In the Name field, type the parameter name pciPassthruvgpu-id.cfg.parameter, in the

Value field type the parameter value, and click OK.
vgpu-id

A positive integer that identifies the vGPU assigned to a VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
setting a plugin parameter for both vGPUs, set the following parameters:

‣ pciPassthru0.cfg.parameter

‣ pciPassthru1.cfg.parameter

parameter
The name of the vGPU plugin parameter that you want to set. For example, the name of
the vGPU plugin parameter for enabling unified memory is enable_uvm.

To enable unified memory for two vGPUs that are assigned to a VM, set
pciPassthru0.cfg.enable_uvm and pciPassthru1.cfg.enable_uvm to 1.

2.5. Configuring a GPU for MIG-Backed
vGPUs

To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG mode
enabled and GPU instances must be created and configured on the physical GPU. Optionally,
you can create compute instances within the GPU instances. If you don't create compute
instances within the GPU instances, they can be added later for individual vGPUs from within
the guest VMs.

Ensure that the following prerequisites are met:

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 39

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

‣ You have determined which GPU instances correspond to the vGPU types of the MIG-
backed vGPUs that you will create.

To get this information, consult the table of MIG-backed vGPUs for your GPU in Virtual
GPU Types for Supported GPUs.

‣ The GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

To configure a GPU for MIG-backed vGPUs, follow these instructions:

 1. Enabling MIG Mode for a GPU

Note: For VMware vSphere, only enabling MIG mode is required because VMware vSphere
creates the GPU instances and, after the VM is booted and guest driver is installed, one
compute instance is automatically created in the VM.

 2. Creating GPU Instances on a MIG-Enabled GPU

 3. Optional: Creating Compute Instances in a GPU instance

After configuring a GPU for MIG-backed vGPUs, create the vGPUs that you need and add them
to their VMs.

2.5.1. Enabling MIG Mode for a GPU
Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Determine whether MIG mode is enabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled.

This example shows that MIG mode is disabled on GPU 0.

Note: In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to as
A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB On	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 40

+-------------------------------+----------------------+----------------------+

 3. If MIG mode is disabled, enable it.
$ nvidia-smi -i [gpu-ids] -mig 1
gpu-ids

A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the GPUs
on which you want to enable MIG mode. If gpu-ids is omitted, MIG mode is enabled on
all GPUs on the system.

This example enables MIG mode on GPU 0.
$ nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

Note: If the GPU is being used by another process, this command fails and displays
a warning message that MIG mode for the GPU is in the pending enable state. In this
situation, stop all processes that are using the GPU and retry the command.

 4. VMware vSphere ESXi only: Reboot the hypervisor host.
 5. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is enabled.

This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated values
(CSV) format.
$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

2.5.2. Creating GPU Instances on a MIG-Enabled
GPU

Note: If you are using VMware vSphere, omit this task. VMware vSphere creates the GPU
instances automatically.

Perform this task in your hypervisor command shell.

 1. If necessary, open a command shell as the root user on your hypervisor host machine.
 2. List the GPU instance profiles that are available on your GPU.

You will need to specify the profiles by their IDs, not their names, when you create them.
$ nvidia-smi mig -lgip
+--+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
|==|
| 0 MIG 1g.5gb 19 7/7 4.95 No 14 0 0 |
| 1 0 0 |
+--+
| 0 MIG 2g.10gb 14 3/3 9.90 No 28 1 0 |
| 2 0 0 |
+--+
| 0 MIG 3g.20gb 9 2/2 19.79 No 42 2 0 |
| 3 0 0 |
+--+
| 0 MIG 4g.20gb 5 1/1 19.79 No 56 2 0 |

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 41

| 4 0 0 |
+--+
| 0 MIG 7g.40gb 0 1/1 39.59 No 98 5 0 |
| 7 1 1 |
+--+

 3. Create the GPU instances that correspond to the vGPU types of the MIG-backed vGPUs
that you will create.
$ nvidia-smi mig -cgi gpu-instance-profile-ids
gpu-instance-profile-ids

A comma-separated list of GPU instance profile IDs that specifies the GPU instances
that you want to create.

This example creates two GPU instances of type 2g.10gb, which has profile ID 14.
$ nvidia-smi mig -cgi 14,14
Successfully created GPU instance ID 5 on GPU 2 using profile MIG 2g.10gb (ID
 14)
Successfully created GPU instance ID 3 on GPU 2 using profile MIG 2g.10gb (ID
 14)

2.5.3. Optional: Creating Compute Instances in a
GPU instance

Creating compute instances within GPU instances is optional. If you don't create compute
instances within the GPU instances, they can be added later for individual vGPUs from within
the guest VMs.

Note: If you are using VMware vSphere, omit this task. After the VM is booted and guest driver
is installed, one compute instance is automatically created in the VM.

Perform this task in your hypervisor command shell.

 1. If necessary, open a command shell as the root user on your hypervisor host machine.
 2. List the available GPU instances.

$ nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 2 MIG 2g.10gb 14 3 0:2 |
+--+
| 2 MIG 2g.10gb 14 5 4:2 |
+--+

 3. Create the compute instances that you need within each GPU instance.
$ nvidia-smi mig -cci -gi gpu-instance-ids
gpu-instance-ids

A comma-separated list of GPU instance IDs that specifies the GPU instances within
which you want to create the compute instances.

CAUTION: To avoid an inconsistent state between a guest VM and the hypervisor host, do
not create compute instances from the hypervisor on a GPU instance on which an active

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 42

guest VM is running. Instead, create the compute instances from within the guest VM as
explained in Modifying a MIG-Backed vGPU's Configuration.

This example creates a compute instance on each of GPU instances 3 and 5.
$ nvidia-smi mig -cci -gi 3,5
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile
 ID 2
Successfully created compute instance on GPU 0 GPU instance ID 2 using profile
 ID 2

 4. Verify that the compute instances were created within each GPU instance.
$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG|
| | | ECC| |
|==================+======================+===========+=======================|
| 2 3 0 0 | 0MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 0MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+
| 2 5 0 1 | 0MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 0MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|

Note: Additional compute instances that have been created in a VM are destroyed when
the VM is shut down or rebooted. After the shutdown or reboot, only one compute instance
remains in the VM. This compute instance is created automatically after the NVIDIA AI
Enterprise graphics driver is installed.

2.6. Disabling MIG Mode for One or More
GPUs

If a GPU that you want to use for time-sliced vGPUs or GPU pass through has previously been
configured for MIG-backed vGPUs, disable MIG mode on the GPU.

Ensure that the following prerequisites are met:

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

‣ The GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 43

On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Determine whether MIG mode is disabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled, but
might have previously been enabled.

This example shows that MIG mode is enabled on GPU 0.

Note: In the output from output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is
referred to as A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Enabled
+-------------------------------+----------------------+----------------------+

 3. If MIG mode is enabled, disable it.
$ nvidia-smi -i [gpu-ids] -mig 0
gpu-ids

A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the GPUs
on which you want to disable MIG mode. If gpu-ids is omitted, MIG mode is disabled on
all GPUs on the system.

This example disables MIG mode on GPU 0.
$ sudo nvidia-smi -i 0 -mig 0
Disabled MIG Mode for GPU 00000000:36:00.0
All done.

 4. Confirm that MIG mode was disabled.
Use the nvidia-smi command for this purpose.

This example shows that MIG mode is disabled on GPU 0.
$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 44

2.7. Disabling and Enabling ECC Memory
Some GPUs that support NVIDIA AI Enterprise support error correcting code (ECC) memory
with NVIDIA vGPU. ECC memory improves data integrity by detecting and handling double-
bit errors. However, not all GPUs, vGPU types, and hypervisor software versions support ECC
memory with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-
series and Q-series vGPUs, but not with A-series and B-series vGPUs. Although A-series and
B-series vGPUs start on physical GPUs on which ECC memory is enabled, enabling ECC with
vGPUs that do not support it might incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is usable
by vGPUs is reduced. All types of vGPU are affected, not just vGPUs that support ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:

‣ ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.

‣ In VMs that support ECC memory, ECC memory is enabled, with the option to disable ECC
in the VM.

‣ ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC
memory in a VM does not affect the amount of frame buffer that is usable by vGPUs.

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC
memory with NVIDIA vGPU. To determine whether ECC memory is enabled for a GPU, run
nvidia-smi -q for the GPU.

Tesla M60 and M6 GPUs support ECC memory when used without GPU virtualization, but
NVIDIA vGPU does not support ECC memory with these GPUs. In graphics mode, these GPUs
are supplied with ECC memory disabled by default.

Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.

If you are using a hypervisor software version or GPU that does not support ECC memory with
NVIDIA vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this situation, you
must ensure that ECC memory is disabled on all GPUs if you are using NVIDIA vGPU.

2.7.1. Disabling ECC Memory
If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it. You
must also ensure that ECC memory is disabled on all GPUs if you are using NVIDIA vGPU with
a hypervisor software version or a GPU that does not support ECC memory with NVIDIA vGPU.
If your hypervisor software version or GPU does not support ECC memory and ECC memory is
enabled, NVIDIA vGPU fails to start.

Where to perform this task depends on whether you are changing ECC memory settings for a
physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 45

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor. If
you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI Enterprise
graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC noted
as enabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Dec 19 18:36:45 2022
Driver Version : 525.60.12

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

 2. Change the ECC status to off for each GPU for which ECC is enabled.

‣ If you want to change the ECC status to off for all GPUs on your host machine or vGPUs
assigned to the VM, run this command:
nvidia-smi -e 0

‣ If you want to change the ECC status to off for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 0

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example disables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 0

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Dec 19 18:37:53 2022
Driver Version : 525.60.12

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 46

If you later need to enable ECC on your GPUs or vGPUs, follow the instructions in Enabling
ECC Memory.

2.7.2. Enabling ECC Memory
If ECC memory is suitable for your workloads and is supported by your hypervisor software
and GPUs, but is disabled on your GPUs or vGPUs, enable it.

Where to perform this task depends on whether you are changing ECC memory settings for a
physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor. If
you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI Enterprise
graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC noted
as disabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Dec 19 18:36:45 2022
Driver Version : 525.60.12

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

 2. Change the ECC status to on for each GPU or vGPU for which ECC is enabled.

‣ If you want to change the ECC status to on for all GPUs on your host machine or vGPUs
assigned to the VM, run this command:
nvidia-smi -e 1

‣ If you want to change the ECC status to on for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 1

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example enables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 1

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now enabled for the GPU or vGPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 47

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Dec 19 18:37:53 2022
Driver Version : 525.60.12

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

If you later need to disable ECC on your GPUs or vGPUs, follow the instructions in Disabling
ECC Memory.

2.8. Configuring a vGPU VM for Use
with NVIDIA GPUDirect Storage
Technology

To use NVIDIA® GPUDirect Storage® technology with NVIDIA vGPU, you must install all the
required software in the VM that is configured with NVIDIA vGPU.
Ensure that the prerequisites in are met.

 1. Install and configure the NVIDIA Virtual GPU Manager as explained in Installing and
Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM.

 2. As root, log in to the VM that you configured with NVIDIA vGPU in the previous step.
 3. Install the Mellanox OpenFabrics Enterprise Distribution for Linux (MLNX_OFED) in the VM

as explained in Installation Procedure in Installing Mellanox OFED.

In the command to run the installation script, specify the following options:

‣ --with-nvmf

‣ --with-nfsrdma

‣ --enable-gds

‣ --add-kernel-support

 4. Install the NVIDIA AI Enterprise graphics driver for Linux in the VM from a distribution-
specific package.

Note: GPUDirect Storage technology does not support installation of the NVIDIA AI
Enterprise graphics driver for Linux from a .run file.

Follow the instructions for the Linux distribution that is installed in the VM:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package

https://docs.nvidia.com/networking/display/MLNXOFEDv461000/Installing+Mellanox+OFED#InstallingMellanoxOFED-InstallationProcedure

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 48

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from an
RPM Package

 5. Install NVIDIA CUDA Toolkit from a .run file, deselecting the CUDA driver when selecting
the CUDA components to install.

Note: To avoid overwriting the NVIDIA AI Enterprise graphics driver that you installed in the
previous step, do not install NVIDIA CUDA Toolkit from a distribution-specific package.

For instructions, refer to Runfile Installation in NVIDIA CUDA Installation Guide for Linux.
 6. Use the package manager of the Linux distribution that is installed in the VM to install the

GPUDirect Storage technology packages, omitting the installation of the NVIDIA CUDA
Toolkit packages.

Follow the instructions in NVIDIA CUDA Installation Guide for Linux for the Linux distribution
that is installed in the VM:

‣ RHEL8/CentOS8

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:
sudo dnf install nvidia-gds

‣ Ubuntu

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:
sudo apt-get install nvidia-gds

After you configure a vGPU VM for use with NVIDIA GPUDirect Storage technology, you can
license the NVIDIA AI Enterprise licensed products that you are using. For instructions, refer
to NVIDIA AI Enterprise Client Licensing User Guide.

https://docs.nvidia.com/cuda/archive/12.0/cuda-installation-guide-linux/index.html#runfile
https://docs.nvidia.com/cuda/archive/12.0/cuda-installation-guide-linux/index.html#redhat8-installation
https://docs.nvidia.com/cuda/archive/12.0/cuda-installation-guide-linux/index.html#ubuntu-installation
http://docs.nvidia.com/ai-enterprise/2.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 49

Chapter 3. Installing and Licensing
NVIDIA AI Enterprise
Components Required in a
Guest VM

3.1. Installing NVIDIA AI Enterprise
Software Components by Using
Kubernetes

Perform this task if you are using one of the following combinations of guest operating system
and container platform:

‣ Ubuntu with Kubernetes

Ensure that the following prerequisites are met:

 1. If you are using Kubernetes, ensure that:
 a). Kubernetes is installed in the VM.
 b). NVIDIA vGPU Manager is installed.
 c). NVIDIA vGPU License Server with licenses is installed.

 2. Helm is installed.
 3. You have generated your NGC API key for accessing the NVIDIA Enterprise Collection at

the URL provided to you by NVIDIA.

3.1.1. Installing and Licensing the NVIDIA vGPU
Software Graphics Driver by Using NVIDIA
GPU Operator

Installation of the NVIDIA AI Enterprise GPU Operator is documented at:

https://docs.nvidia.com/datacenter/cloud-native/kubernetes/install-k8s.html#install-kubernetes
https://docs.nvidia.com/grid/latest/index.html
https://docs.nvidia.com/grid/ls/latest/grid-license-server-user-guide/index.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#install-helm
https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 50

https://docs.nvidia.com/datacenter/cloud-native/gpu-
operator/getting-started.html‣nvidia-ai-enterprise

3.1.2. Transforming Container Images for AI and
Data Science Applications and Frameworks
into Kubernetes Pods

The AI and data science applications and frameworks are distributed as NGC container
images through the NGC private registry. If you are using Kubernetes or Red Hat OpenShift,
you must transform each image that you want to use into a Kubernetes pod. Each container
image contains the entire user-space software stack that is required to run the application
or framework, namely, the CUDA libraries, cuDNN, any required Magnum IO components,
TensorRT, and the framework.

3.2. Install NVIDIA AI Enterprise Software
Components by Using Docker

Perform this task if you are using Ubuntu with Docker.

3.2.1. Installing and Licensing the NVIDIA AI
Enterprise Graphics Driver Natively

Perform this task in the guest VM by following this sequence of instructions:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Linux

‣ Configuring a Licensed Client of NVIDIA License System

‣ Installing NVIDIA Container Toolkit

3.2.2. Installing AI and Data Science Applications
and Frameworks by Using Docker

The AI and data science applications and frameworks are distributed as NGC container
images through the NGC private registry. Each container image contains the entire user-
space software stack that is required to run the application or framework, namely, the CUDA
libraries, cuDNN, any required Magnum IO components, TensorRT, and the framework.

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

‣ Accessing the NGC Container Registry

Perform this task from the VM.

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 51

For each AI or data science application that you are interested in, load the container as
explained in Uploading an NVIDIA Container Image onto Your System in NGC Private Registry
User Guide.

The following table lists the Docker pull command for downloading the container for each
application or framework.

Application or Framework Docker pull Command

NVIDIA TensorRT docker pull nvcr.io/nvaie/
tensorrt-3-0:22.11-nvaie-3.0-py3

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3-sdk

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3-min

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3

PyTorch docker pull nvcr.io/nvaie/pytorch-3-0:22.11-
nvaie-3.0-py3

RAPIDS docker pull nvcr.io/nvaie/nvidia-
rapids-3-0:22.12-runtime-cuda11.8-
ubuntu20.04

NVIDIA Clara Parabricks docker pull nvcr.io/nvaie/clara-
parabricks-3-0:4.0.1-1

NVIDIA DeepStream docker pull nvcr.io/nvaie/
deepstream-3-0:6.2.0-triton

MONAI - Medical Open Network for Artificial
Intelligence

docker pull nvcr.io/nvaie/monai-
toolkit-3-0:1.0

TensorFlow 1 docker pull nvcr.io/nvaie/
tensorflow-3-0:22.11-tf1-nvaie-3.0-py3

TensorFlow 2 docker pull nvcr.io/nvaie/
tensorflow-3-0:22.11-tf2-nvaie-3.0-py3

The following table lists the Docker pull commands for downloading other software that is
distributed as NGC container images through the NGC private registry.

Other Software Docker pull Command

GPU Operator docker pull nvcr.io/nvaie/gpu-
operator-3-0:v22.9.1

Network Operator docker pull nvcr.io/nvaie/network-
operator-3-0:v1.4.0

vGPU Guest Driver, Ubuntu 22.04 docker pull nvcr.io/nvaie/vgpu-guest-
driver-3-0:525.60.13-ubuntu22.04

3.3. Installing and Licensing NVIDIA AI
Enterprise Components Natively

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#loading-nvidia-docker-containers

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 52

3.3.1. Installing the NVIDIA AI Enterprise Graphics
Driver on Windows

After you create a Windows VM on the hypervisor and boot the VM, the VM should boot to a
standard Windows desktop in VGA mode at 800×600 resolution. You can use the Windows
screen resolution control panel to increase the resolution to other standard resolutions, but
to fully enable GPU operation, the NVIDIA AI Enterprise graphics driver must be installed.
Windows guest VMs are supported on all NVIDIA vGPU types, namely: Q-series, C-series, B-
series, and A-series NVIDIA vGPU types.

 1. Copy the NVIDIA Windows driver package to the guest VM where you are installing the
driver.

 2. Execute the package to unpack and run the driver installer.

Figure 13. NVIDIA driver installation

 3. Click through the license agreement.
 4. Select Express Installation and click NEXT.

After the driver installation is complete, the installer may prompt you to restart the
platform.

 5. If prompted to restart the platform, do one of the following:

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 53

‣ Select Restart Now to reboot the VM.

‣ Exit the installer and reboot the VM when you are ready.

After the VM restarts, it boots to a Windows desktop.
 6. Verify that the NVIDIA driver is running.

 a). Right-click on the desktop.
 b). From the menu that opens, choose NVIDIA Control Panel.
 c). In the NVIDIA Control Panel, from the Help menu, choose System Information.

NVIDIA Control Panel reports the vGPU or physical GPU that is being used, its
capabilities, and the NVIDIA driver version that is loaded.

Figure 14. Verifying NVIDIA driver operation using NVIDIA Control
Panel

After you install the NVIDIA AI Enterprise graphics driver, you can license any NVIDIA AI
Enterprise licensed products that you are using. For instructions, refer to NVIDIA AI Enterprise
Client Licensing User Guide.

Note: The graphics driver for Windows in this release of NVIDIA AI Enterprise is distributed in
a DCH-compliant package. The Windows registry key for license settings for a DCH-compliant
package is different than the key for a driver package that is not DCH compliant. If you are
upgrading from a driver package that is not DCH compliant in a VM that was previously
licensed, you must reconfigure the license settings for the VM. Existing license settings are not
propagated to the new Windows registry key for a DCH-compliant package.

http://docs.nvidia.com/ai-enterprise/2.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf
http://docs.nvidia.com/ai-enterprise/2.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 54

3.3.2. Installing the NVIDIA AI Enterprise Graphics
Driver on Linux

The NVIDIA AI Enterprise graphics driver for Linux is distributed as a Debian package for
Ubuntu distributions and as an RPM package for Red Hat distributions. The procedure for
installing the driver is the same in a VM and on bare metal.

If you are using a Linux OS for which the Wayland display server protocol is enabled by default,
disable it as explained in Disabling the Wayland Display Server Protocol for Red Hat Enterprise
Linux.

How to install the NVIDIA AI Enterprisegraphics driver on Linux depends on the distribution
format from which you are installing the driver. For detailed instructions, refer to:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from an RPM
Package

3.3.2.1. Installing the NVIDIA AI Enterprise Graphics Driver
on Ubuntu from a Debian Package

The NVIDIA AI Enterprise graphics driver for Ubuntu is distributed as a Debian package file.
This task requires sudo privileges.

 1. Copy the NVIDIA AI Enterprise Linux driver package, for example nvidia-linux-
grid-525_525.60.13_amd64.deb, to the guest VM where you are installing the driver.

 2. Log in to the guest VM as a user with sudo privileges.
 3. Open a command shell and change to the directory that contains the NVIDIA AI Enterprise

Linux driver package.
 4. From the command shell, run the command to install the package.

$ sudo apt-get install ./nvidia-linux-grid-525_525.60.13_amd64.deb

 5. Verify that the NVIDIA driver is operational.
 a). Reboot the system and log in.
 b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device in

the output from the nvidia-smi command.
$ nvidia-smi

3.3.2.2. Installing the NVIDIA AI Enterprise Graphics Driver
on Red Hat Distributions from an RPM Package

The NVIDIA AI Enterprise graphics driver for Red Hat Distributions is distributed as an RPM
package file.
This task requires root user privileges.

 1. Copy the NVIDIA AI Enterprise Linux driver package, for example nvidia-linux-
grid-525_525.60.13_amd64.rpm, to the guest VM where you are installing the driver.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 55

 2. Log in to the guest VM as a user with root user privileges.
 3. Open a command shell and change to the directory that contains the NVIDIA AI Enterprise

Linux driver package.
 4. From the command shell, run the command to install the package.

$ rpm -iv ./nvidia-linux-grid-525_525.60.13_amd64.rpm

 5. Verify that the NVIDIA driver is operational.
 a). Reboot the system and log in.
 b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device in

the output from the nvidia-smi command.
$ nvidia-smi

3.3.2.3. Disabling the Nouveau Driver for NVIDIA Graphics
Cards

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
NVIDIA AI Enterprise graphics driver.

Note: If you are using SUSE Linux Enterprise Server, you can skip this task because the
Nouveau driver is not present in SUSE Linux Enterprise Server.

Run the following command and if the command prints any output, the Nouveau driver is
present and must be disabled.
$ lsmod | grep nouveau

 1. Create the file /etc/modprobe.d/blacklist-nouveau.conf with the following contents:
blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initial RAM file system (initramfs).
The command to run to regenerate the kernel initramfs depends on the Linux distribution
that you are using.

Linux Distribution Command

CentOS $ sudo dracut --force

Debian $ sudo update-initramfs -u

Red Hat Enterprise Linux $ sudo dracut --force

Ubuntu $ sudo update-initramfs -u

 3. Reboot the host or guest VM.

3.3.2.4. Disabling the Wayland Display Server Protocol for
Red Hat Enterprise Linux

Starting with Red Hat Enterprise Linux Desktop 8.0, the Wayland display server protocol is
used by default on supported GPU and graphics driver configurations. However, the NVIDIA
AI Enterprise graphics driver for Linux requires the X Window System. Before installing the
driver, you must disable the Wayland display server protocol to revert to the X Window System.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 56

Perform this task from the host or guest VM that is running Red Hat Enterprise Linux Desktop.
This task requires administrative access.

 1. In a plain text editor, edit the file /etc/gdm/custom.conf and remove the comment from
the option WaylandEnable=false.

 2. Save your changes to /etc/gdm/custom.conf.
 3. Reboot the host or guest VM.

3.3.3. Configuring a Licensed Client of NVIDIA
License System

A client with a network connection obtains a license by leasing it from a NVIDIA License
System service instance. The service instance serves the license to the client over the network
from a pool of floating licenses obtained from the NVIDIA Licensing Portal. The license is
returned to the service instance when the licensed client is shut down.

Before configuring a licensed client, ensure that the following prerequisites are met:

‣ The NVIDIA AI Enterprise graphics driver is installed on the client.

‣ The client configuration token that you want to deploy on the client has been created from
the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System User Guide.

‣ Ports 443 and 80 in your firewall or proxy must be open to allow HTTPS traffic between
a service instance and its the licensed clients. These ports must be open for both CLS
instances and DLS instances.

Note: For DLS releases before DLS 1.1, ports 8081 and 8082 were also required to be open
to allow HTTPS traffic between a DLS instance and its licensed clients. Although these
ports are no longer required, they remain supported for backward compatibility.

The graphics driver creates a default location in which to store the client configuration
token on the client. You can specify a custom location for the client configuration token by
adding a registry value on Windows or by setting a configuration parameter on Linux. By
specifying a shared network location that is mounted locally on the client, you can simplify the
deployment of the same client configuration token on multiple clients. Instead of copying the
client configuration token to each client individually, you can keep only one copy in the shared
network location.

The process for configuring a licensed client is the same for CLS and DLS instances but
depends on the OS that is running on the client.

3.3.3.1. Configuring a Licensed Client on Windows
Perform this task from the client.

http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 57

 1. Physical GPUs only: Add the FeatureType DWord (REG_DWORD) registry value to the
Windows registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services
\nvlddmkm\Global\GridLicensing.

Note:

‣ If you're licensing an NVIDIA vGPU, the FeatureType DWord (REG_DWORD) registry
value is not required. NVIDIA AI Enterprise automatically selects the correct type of
license based on the vGPU type.

‣ If you are upgrading an existing driver, this value is already set.

Set this value to the feature type of a GPU in pass-through mode or a bare-metal
deployment:

‣ 0: NVIDIA Virtual Applications

‣ 2: NVIDIA RTX Virtual Workstation

‣ 4: NVIDIA Virtual Compute Server

 2. Optional: If you want store the client configuration token in a custom location, add the
ClientConfigTokenPath String (REG_SZ) registry value to the Windows registry key
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\nvlddmkm\Global
\GridLicensing.

Set the value to the full path to the folder in which you want to store the client
configuration token for the client. You can use the syntax \\fully-qualified-domain-
name\share-name for the path to the folder. By default, the client searches for the client
configuration token in the %SystemDrive%:\Program Files\NVIDIA Corporation\vGPU
Licensing\ClientConfigToken folder.

By specifying a shared network drive mapped on the client, you can simplify the
deployment of the same client configuration token on multiple clients. Instead of copying
the client configuration token to each client individually, you can keep only one copy in the
shared network drive.

 3. If a non-transparent proxy server is configured between your licensed client and a CLS
instance, provide the address and port number of the proxy server.

Note: Authenticated non-transparent proxy servers are not supported.

Provide this information by adding the following registry values to the Windows registry
key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\nvlddmkm\Global
\GridLicensing.
ProxyServerAddress String (REG_SZ)

The address of the proxy server. The address can be a fully qualified domain name such
as iproxy1.example.com, or an IP address such as 10.31.20.45.

ProxyServerPort String (REG_SZ)
The port number of the proxy server.

 4. If you are storing the client configuration token in a custom location, create the folder in
which you want to store the client configuration token.

If the folder is a shared network drive, ensure that the following conditions are met:

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 58

‣ The folder is mapped locally on the client to the path specified in the
ClientConfigTokenPath registry value.

‣ The COMPUTER object has the rights to access the folder on the shared network drive.
The COMPUTER object requires these rights because the license service runs before any
user logs in.

If you are storing the client configuration token in the default location, omit this step. The
default folder in which the client configuration token is stored is created automatically
after the graphics driver is installed.

 5. Copy the client configuration token to the folder in which you want to store the client
configuration token.
Ensure that this folder contains only the client configuration token that you want to deploy
on the client and no other files or folders. If the folder contains more than one client
configuration token, the client uses the newest client configuration token in the folder.

‣ If you want to store the client configuration token in the default location, copy the client
configuration token to the %SystemDrive%:\Program Files\NVIDIA Corporation
\vGPU Licensing\ClientConfigToken folder.

‣ If you want to store the client configuration token in a custom location, copy the token
to the folder that you created in the previous step.

 6. Restart the NvDisplayContainer service.

The NVIDIA service on the client should now automatically obtain a license from the CLS or
DLS instance.

After a Windows licensed client has been configured, options for configuring licensing for a
network-based license server are no longer available in NVIDIA Control Panel.

3.3.3.2. Configuring a Licensed Client on Linux
Perform this task from the client.

 1. As root, open the file /etc/nvidia/gridd.conf in a plain-text editor, such as vi.
$ sudo vi /etc/nvidia/gridd.conf

Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied template
file /etc/nvidia/gridd.conf.template.

 2. Add the FeatureType configuration parameter to the file /etc/nvidia/gridd.conf on a
new line as FeatureType="value".

value depends on the type of the GPU assigned to the licensed client that you are
configuring.

GPU Type Value
NVIDIA vGPU 1. NVIDIA AI Enterprise automatically selects the correct

type of license based on the vGPU type.

Physical GPU The feature type of a GPU in pass-through mode or a bare-
metal deployment:

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 59

GPU Type Value
‣ 0: NVIDIA Virtual Applications

‣ 2: NVIDIA RTX Virtual Workstation

‣ 4: NVIDIA Virtual Compute Server

This example shows how to configure a licensed Linux client for NVIDIA Virtual Compute
Server.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
Description: Set Feature to be enabled
Data type: integer
Possible values:
0 => for unlicensed state
1 => for NVIDIA vGPU
2 => for NVIDIA RTX Virtual Workstation
4 => for NVIDIA Virtual Compute Server
FeatureType=4
...

 3. If a non-transparent proxy server is configured between your licensed client and a CLS
instance, provide the address and port number of the proxy server.

Note: Authenticated non-transparent proxy servers are not supported.

Provide this information by adding the following configuration parameters to the file /etc/
nvidia/gridd.conf on separate lines.
ProxyServerAddress=address
ProxyServerPort=port
address

The address of the proxy server. The address can be a fully qualified domain name such
as iproxy1.example.com, or an IP address such as 10.31.20.45.

port
The port number of the proxy server.

This example sets the address of a proxy server to 10.31.20.45 and the port number to
3128.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
ProxyServerAddress=10.31.20.45
ProxyServerPort=3128
...

 4. Optional: If you want store the client configuration token in a custom location, add the
ClientConfigTokenPath configuration parameter to the file /etc/nvidia/gridd.conf
on a new line as ClientConfigTokenPath="path"
path

The full path to the directory in which you want to store the client configuration token
for the client. By default, the client searches for the client configuration token in the /
etc/nvidia/ClientConfigToken/ directory.

By specifying a shared network directory that is mounted locally on the client, you can
simplify the deployment of the same client configuration token on multiple clients. Instead

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 60

of copying the client configuration token to each client individually, you can keep only one
copy in the shared network directory.

This example shows how to configure a licensed Linux client to search for the client
configuration token in the /mnt/nvidia/ClientConfigToken/ directory. This directory is
a mount point on the client for a shared network directory.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
ClientConfigTokenPath=/mnt/nvidia/ClientConfigToken/
...

 5. Save your changes to the /etc/nvidia/gridd.conf file and close the file.
 6. If you are storing the client configuration token in a custom location, create the directory in

which you want to store the client configuration token.

If the directory is a shared network directory, ensure that it is mounted locally on the client
at the path specified in the ClientConfigTokenPath configuration parameter.

If you are storing the client configuration token in the default location, omit this step. The
default directory in which the client configuration token is stored is created automatically
after the graphics driver is installed.

 7. Copy the client configuration token to the directory in which you want to store the client
configuration token.
Ensure that this directory contains only the client configuration token that you want to
deploy on the client and no other files or directories. If the directory contains more than
one client configuration token, the client uses the newest client configuration token in the
directory.

‣ If you want to store the client configuration token in the default location, copy the client
configuration token to the /etc/nvidia/ClientConfigToken directory.

‣ If you want to store the client configuration token in a custom location, copy the token
to the directory that you created in the previous step.

 8. Ensure that the file access modes of the client configuration token allow the owner to
read, write, and execute the token, and the group and others only to read the token.
 a). Determine the current file access modes of the client configuration token.

ls -l client-configuration-token-directory

 b). If necessary, change the mode of the client configuration token to 744.
chmod 744 client-configuration-token-directory/client_configuration_token_*.tok

client-configuration-token-directory
The directory to which you copied the client configuration token in the previous step.

 9. Restart the nvidia-gridd service.

The NVIDIA service on the client should now automatically obtain a license from the CLS or
DLS instance.

After a Linux licensed client has been configured, options for configuring licensing for a
network-based license server are no longer available in NVIDIA X Server Settings.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 61

3.3.3.3. Verifying the NVIDIA AI Enterprise License Status
of a Licensed Client

After configuring a client with an NVIDIA AI Enterprise license, verify the license status by
displaying the licensed product name and status.

To verify the license status of a licensed client, run nvidia-smi with the –q or --query option.
If the product is licensed, the expiration date is shown in the license status.
nvidia-smi -q
==============NVSMI LOG==============

Timestamp : Wed Nov 23 10:52:59 2022
Driver Version : 525.60.06
CUDA Version : 12.0

Attached GPUs : 2
GPU 00000000:02:03.0
 Product Name : NVIDIA A2-8Q
 Product Brand : NVIDIA RTX Virtual Workstation
 Product Architecture : Ampere
 Display Mode : Enabled
 Display Active : Disabled
 Persistence Mode : Enabled
 MIG Mode
 Current : Disabled
 Pending : Disabled
 Accounting Mode : Disabled
 Accounting Mode Buffer Size : 4000
 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : N/A
 GPU UUID : GPU-ba5b1e9b-1dd3-11b2-be4f-98ef552f4216
 Minor Number : 0
 VBIOS Version : 00.00.00.00.00
 MultiGPU Board : No
 Board ID : 0x203
 Board Part Number : N/A
 GPU Part Number : 25B6-890-A1
 Module ID : N/A
 Inforom Version
 Image Version : N/A
 OEM Object : N/A
 ECC Object : N/A
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 GSP Firmware Version : N/A
 GPU Virtualization Mode
 Virtualization Mode : VGPU
 Host VGPU Mode : N/A
 vGPU Software Licensed Product
 Product Name : NVIDIA RTX Virtual Workstation
 License Status : Licensed (Expiry: 2022-11-23 10:41:16
 GMT)
 …
 …

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 62

3.3.4. Installing NVIDIA Container Toolkit
Use NVIDIA Container Toolkit to build and run GPU accelerated Docker containers. The toolkit
includes a container runtime library and utilities to configure containers to use NVIDIA GPUs
automatically.

Ensure that the following software is installed in the guest VM:

‣ Docker 20.10 for your Linux distribution. For instructions, refer to Install Docker Engine on
Ubuntu in the Docker product manuals.

‣ The NVIDIA AI Enterprise graphics driver. For instructions, refer to Installing the NVIDIA AI
Enterprise Graphics Driver on Ubuntu from a Debian Package.

Note: You do not need to install NVIDIA CUDA Toolkit on the hypervisor host.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the file
/etc/apt/sources.list.d/nvidia-docker.list.
$ distribution=$(. /etc/os-release;echo IDVERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

 2. Download information from all configured sources about the latest versions of the
packages and install the nvidia-container-toolkit package.
$ sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

 3. Restart the Docker service.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 63

$ sudo systemctl restart docker

3.3.5. Verifying the Installation of NVIDIA Container
Toolkit

 1. Run the nvidia-smi command contained in the latest official NVIDIA CUDA Toolkit image.
$ docker run --gpus all nvidia/cuda:11.0-base nvidia-smi

 2. Start a GPU-enabled container on any two available GPUs.
$ docker run --gpus 2 nvidia/cuda:11.0-base nvidia-smi

 3. Start a GPU-enabled container on two specific GPUs identified by their index numbers.
$ docker run --gpus '"device=1,2"' nvidia/cuda:10.0-base nvidia-smi

 4. Start a GPU-enabled container on two specific GPUs with one GPU identified by its UUID
and the other GPU identified by its index number.
$ docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:11.0-base nvidia-smi

 5. Specify a GPU capability for the container.
$ docker run --gpus all,capabilities=utility nvidia/cuda:11.0-base nvidia-smi

3.3.6. Installing Software Distributed as Container
Images

The NGC container images accessed through the NVIDIA Enterprise Catalog includes the AI
and data science applications, frameworks, and software in the infrastructure optimization
and cloud native deployment layers. Each container image for an AI and data science
application or framework contains the entire user-space software stack that is required to run
the application or framework; namely, the CUDA libraries, cuDNN, any required Magnum IO
components, TensorRT, and the framework.

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

‣ Accessing the NGC Container Registry

Perform this task from the VM.

For each AI or data science application that you are interested in, load the container as
explained in Uploading an NVIDIA Container Image onto Your System in NGC Private Registry
User Guide.

The following table lists the Docker pull command for downloading the container for each
application or framework.

Application or Framework Docker pull Command

NVIDIA TensorRT docker pull nvcr.io/nvaie/
tensorrt-3-0:22.11-nvaie-3.0-py3

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3-sdk

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3-min

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#loading-nvidia-docker-containers

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 64

Application or Framework Docker pull Command

NVIDIA Triton Inference Server docker pull nvcr.io/nvaie/
tritonserver-3-0:22.11-nvaie-3.0-py3

PyTorch docker pull nvcr.io/nvaie/pytorch-3-0:22.11-
nvaie-3.0-py3

RAPIDS docker pull nvcr.io/nvaie/nvidia-
rapids-3-0:22.12-runtime-cuda11.8-
ubuntu20.04

NVIDIA Clara Parabricks docker pull nvcr.io/nvaie/clara-
parabricks-3-0:4.0.1-1

NVIDIA DeepStream docker pull nvcr.io/nvaie/
deepstream-3-0:6.2.0-triton

MONAI - Medical Open Network for Artificial
Intelligence

docker pull nvcr.io/nvaie/monai-
toolkit-3-0:1.0

TensorFlow 1 docker pull nvcr.io/nvaie/
tensorflow-3-0:22.11-tf1-nvaie-3.0-py3

TensorFlow 2 docker pull nvcr.io/nvaie/
tensorflow-3-0:22.11-tf2-nvaie-3.0-py3

The following table lists the Docker pull commands for downloading other software that is
distributed as NGC container images through the NVIDIA Enterprise Catalog.

Other Software Docker pull Command

GPU Operator docker pull nvcr.io/nvaie/gpu-
operator-3-0:v22.9.1

Network Operator docker pull nvcr.io/nvaie/network-
operator-3-0:v1.4.0

vGPU Guest Driver, Ubuntu 22.04 docker pull nvcr.io/nvaie/vgpu-guest-
driver-3-0:525.60.13-ubuntu22.04

3.3.7. Running ResNet-50 with TensorRT
 1. Launch the NVIDIA TensorRT container image on all vGPUs in interactive mode, specifying

that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm nvcr.io/nvaie/tensorrt:21.07-py3

 2. From within the container runtime, change to the directory that contains test data for the
ResNet-50 convolutional neural network.
cd /workspace/tensorrt/data/resnet50

 3. Run the ResNet-50 convolutional neural network with FP32, FP16, and INT8 precision and
confirm that each test is completed with the result PASSED.
 a). To run ResNet-50 with the default FP32 precision, run this command:

trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob

 b). To run ResNet-50 with FP16 precision, add the --fp16 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --fp16

 c). To run ResNet-50 with INT8 precision, add the --int8 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --int8

 4. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command shell.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 65

3.3.8. Running ResNet-50 with TensorFlow
 1. Launch the TensorFlow 1 container image on all vGPUs in interactive mode, specifying

that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm \
nvcr.io/nvaie/tensorflow:21.07-tf1-py3

 2. From within the container runtime, change to the directory that contains test data for cnn
example.
cd /workspace/nvidia-examples/cnn

 3. Run the ResNet-50 training test with FP16 precision.
python resnet.py --layers 50 -b 64 -i 200 -u batch --precision fp16

 4. Confirm that all operations on the application are performed correctly and that a set of
results is reported when the test is completed.

 5. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command shell.

3.3.9. Optional: Updating NVIDIA Container Toolkit
for a MIG-Enabled vGPU

To run containers on a MIG-enabled vGPU, you must update the NVIDIA Container Toolkit.
This task requires sudo privileges.
Perform this task from the guest VM in which you want to run containers on a MIG-enabled
vGPU.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the file
/etc/apt/sources.list.d/nvidia-docker.list.
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
 && distribution=$(. /etc/os-release;echo IDVERSION_ID) \
 && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list
 | sudo tee /etc/apt/sources.list.d/nvidia-docker.list \
 && sudo apt-get update

 2. Install the NVIDIA Container Toolkit packages and the packages on which it depends, and
restart Docker.
$ sudo apt-get install -y nvidia-docker2 \
 && sudo systemctl restart docker

 3. Test the installation of the NVIDIA Container Toolkit on the VM.
sudo docker run –runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=mig-device nvidia/cuda
 nvidia-smi
mig-device

The ID of the MIG-enabled vGPU in one of the following formats:

‣ MIG-gpu-uuid/gpu-instance-id/compute-instance-id
gpu-uuid

The UUID of the physical GPU, for example, GPU-786035d5-1e85-11b2-9fec-
ac9c9a792daf.

gpu-instance-id
The index number the GPU instance on which the vGPU resides, for example, 0
for the first GPU instance.

Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 66

compute-instance-id
The index number of the compute instance within the GPU instance, for example,
0 for the first compute instance.

This example sets NVIDIA_VISIBLE_DEVICES for compute instance 0 on
a MIG-enabled vGPU on GPU instance 0 of the physical GPU with UUID
GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf.
NVIDIA_VISIBLE_DEVICES=MIG-GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf/0/0

‣ gpu-device-index:mig-device-index
gpu-device-index

The index number the physical GPU.
mig-device-index

The index number the GPU instance.

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 67

Chapter 4. Configuring Multinode
Scaling

Multinode scaling improves the performance of applications and frameworks, such as PyTorch
and Tensorflow, that can run in a cluster of multiple hypervisor hosts.

Note:

Perform the tasks for configuring multinode scaling before performing the tasks in Getting
Started with NVIDIA AI Enterprise.

The procedures for configuring switches and NICs apply to NVIDIA Mellanox NICs and
switches. If you are using other makes of NICs and switches, consult the vendor's
documentation for the products that you are using.

You are free to choose how to run your training jobs in a cluster. For information about the
cluster architecture that can be used to run BERT training jobs, see Multi-node BERT User
Guide.

4.1. Hardware and VM Configuration
Requirements for Multinode Scaling

If you are configuring multinode scaling, your hardware and VM configuration must meet some
specific requirements in addition to the requirements for a single node.

4.1.1. Hardware Requirements for Multinode
Scaling

In addition to the requirements for a single node, the hardware used for multinode scaling
must meet the following requirements:

‣ An Ethernet NIC that supports RoCE is required in each VM used for multinode scaling.
For best performance, NVIDIA recommends the NVIDIA® Mellanox® ConnectX®-6 Dx.

‣ The hypervisor hosts must be connected to a network switch that supports RoCE. For best
performance, NVIDIA recommends the NVIDIA Mellanox Spectrum switch.

https://docs.nvidia.com/ngc/multi-node-bert-user-guide/
https://docs.nvidia.com/ngc/multi-node-bert-user-guide/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 68

‣ One GPU is required for each VM.

For best performance, NVIDIA recommends the NVIDIA A100 GPU.

‣ Each GPU on each hypervisor host must be paired with a NIC in the same NUMA node.

4.1.2. VM Requirements for Multinode Scaling
In addition to meeting the requirements for using C-Series vCS vGPUs, each VM used for
multinode scaling must be assigned an RoCE NIC PCIe device.

4.2. Configuring NUMA Affinity for the
VMs

To ensure that your multinode setup performs adequately, each GPU on each hypervisor host
must be paired with a NIC in the same NUMA node. If a GPU is not paired with a NIC in the
same NUMA node, reconfigure your server hardware to ensure that this prerequisite is met.

Examples of how to configure NUMA affinity for the VMs in a two-socket server are provided
for the following configurations:.

‣ Whole-server VM with two GPUs and two NICs across both NUMA nodes

‣ Per-socket VM with one GPU and one NIC paired on a single NUMA node

The hardware configuration of the server is as follows:

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#vcompute-vgpu-bar-memory
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-BF2770C3-39ED-4BC5-A8EF-77D55EFE924C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-A80A6337-7B99-48C8-B024-EE47E2366C1B.html

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 69

4.2.1. Configuring NUMA Affinity for a Whole-
Server VM with Two GPUs and Two NICs
Across Both NUMA Nodes

The allocation of hardware resources to a VM that is assigned the whole server is as follows:

Perform this task on each hypervisor host.

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes two GPUs. One GPU is attached to NUMA node 0 and the
other GPU is attached to NUMA node 1.
#GPU 1
0000:37:00.0
 Address: 0000:37:00.0
 Segment: 0x0000
 Bus: 0x37
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx0
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 70

 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 2
 Slot Description: PCI-E Slot 2
 Device Layer Bus Address: s00000002.00
 Passthru Capable: true
 Parent Device: PCI 0:54:0:0
 Dependent Device: PCI 0:55:0:0
 Reset Method: Bridge reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 0
 Extended Device Name:

#GPU 2
0000:86:00.0
 Address: 0000:86:00.0
 Segment: 0x0000
 Bus: 0x86
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx1
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 5
 Slot Description: PCI-E Slot 5
 Device Layer Bus Address: s00000005.00
 Passthru Capable: true
 Parent Device: PCI 0:133:0:0
 Dependent Device: PCI 0:134:0:0
 Reset Method: Bridge reset
 FPT Sharable: true
 NUMA Node: 1
 Extended Device ID: 0

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 71

 Extended Device Name:

 2. Set up vCPUs for the VM so that the VM has two sockets with the vCPU cores evenly
divided between the sockets.

 3. With two GPUs and NICs in the VM across NUMA nodes, set the NUMA affinity in the VM
configuration to include both NUMA nodes 0 and 1.
numa.nodeAffinity = 0,1

4.2.2. Configuring NUMA Affinity for a Per-Socket
VM with One GPU and One NIC on a Single
NUMA Node

The allocation of hardware resources to the VMs that are each assigned one socket in a server
is as follows:

Perform this task on each hypervisor host.

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 72

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes a GPU that is attached to NUMA node 0.
0000:3b:02.3
 Address: 0000:3b:02.3
 Segment: 0x0000
 Bus: 0x3b
 Slot: 0x02
 Function: 0x3
 VMkernel Name: PF_0.59.0_VF_15
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner:
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x0000
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
PCI Pin: 0xff
 Spawned Bus: 0x00
 Flags: 0x0001
 Module ID: 54
 Module Name: nvidia
 Chassis: 0
 Physical Slot: -1
 Slot Description:
 Device Layer Bus Address: s00000001.00.vf15
 Passthru Capable: true
 Parent Device: PCI 0:58:0:0
 Dependent Device: PCI 0:59:2:3
 Reset Method: Function reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 65535
 Extended Device Name:

 2. For each GPU that you want to pair with a NIC, set the NUMA affinity in the VM
configuration to the NUMA node to which the NIC and the GPU in the pair belong.
numa.nodeAffinity = numa-node-value

4.3. Configuring RoCE on the NVIDIA
Mellanox Spectrum Switch

The NVIDIA Mellanox Spectrum switch must be able to run RDMA over Converged Ethernet
(RoCE) over a lossless network in DSCP-based QoS mode.

Perform this task from a host computer that has an Ethernet LAN connection to the switch.

 1. Use secure shell (SSH) to log in to the switch.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 73

To obtain the username and password for logging in to the switch, consult the
documentation for the switch.

 2. Set the mode of the switch to RoCE.
switch (config) # roce

 3. Create an isolated vLAN.
switch (config) # interface vlan vlan-id

The vLAN context is entered automatically after the vLAN is created.

The following example creates a vLAN with the identifier 111.
switch (config) # interface vlan 111
switch (config vlan 111) #

 4. Exit the vLAN context.
switch (config vlan 111) # exit

 5. Place the NVIDIA ConnectX NICs into the created vLAN as access ports.
switch (config) # interface ethernet port-range switchport access vlan-id

This example puts four NVIDIA ConnectX NICs into the vLAN with the identifier 111 as
access ports 1/1 - 1/4.
switch (config) # interface ethernet 1/1-1/4 switchport access vlan 111

 6. Set the maximum transmission unit (MTU) frame size to 9216.
 a). Disable all the ports related to the interface.

switch (config) # interface ethernet port-range shutdown

 b). Set the MTU frame size for the NVIDIA ConnectX NICs in the created vLAN to 9216.
switch (config) # interface ethernet port-range mtu 9216

 c). Enable all the ports related to the interface.
switch (config) # interface ethernet port-range no shutdown

 7. If your switch is running Cumulus Linux, enable RoCE with Cumulus Linux.

4.4. Enabling GPUDirect Technology for
Peer-to-Peer Connections

Enabling GPUDirect® Technology for peer-to-peer connections involves enabling Address
Translation Services (ATS) in the VMware ESXi VMkernel and modifying Access Control
Services (ACS) settings for the VM.

Perform this task from each hypervisor host in your multinode cluster.

 1. As root, log in to the hypervisor host.
 2. Update the VMkernel settings.

 a). Enable Address Translation Services (ATS) in the boot options.
[root@localhost:~] esxcli system settings kernel set -s atsSupport -v TRUE

 b). Reboot the hypervisor host.
 c). Confirm that ATS is enabled.

[root@localhost:~] esxcli system settings kernel list -o atsSupport
Name Type Configured Runtime Default Description

https://docs.cumulusnetworks.com/cumulus-linux-42/Network-Solutions/RDMA-over-Converged-Ethernet-RoCE/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 74

---------- ---- ---------- ------- ------- -----------
atsSupport Bool TRUE TRUE FALSE Enable Support for PCIe
 ATS.

 3. Update the VM configuration.
 a). Set the option to enable peer-to-peer connections.

pciPassthru.allowP2P=true

 b). Set the option to relax ACS settings for peer-to-peer connections.
pciPassthru.RelaxACSforP2P=true

When this option is set, VMware vSphere ESXi locates an ATS-capable pass-through
device, finds its parent switch or root port, and enables the ACS Direct Translated bit.

4.5. Installing the Mellanox OFED Driver
Perform this task on each guest VM on each hypervisor host.

 1. Install the default version of python.
$ sudo apt install python

 2. Download the compressed tar archive that contains the driver.
$ wget \
https://content.mellanox.com/ofed/MLNX_OFED-5.2-2.2.0.0/\
MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 3. Extract the contents of the compressed tar archive that contains the driver.
$ tar xvf MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 4. Change to the MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64 directory.
$ cd MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64

 5. Run the script that installs the driver.
$ sudo ./mlnxofedinstall

During the installation process, OFED detects the ConnectX-6 NICs and updates the
firmware.

 6. When the installation is complete, confirm that the versions of OFED are correct.
 a). Determine the OFED version.

$ dpkg -l | grep mlnx-ofed

 b). Determine the firmware version.
$ cat /sys/class/infiniband/mlx5*/fw_ver

If the firmware is not updated, download the latest firmware, update the firmware
manually, and install the Mellanox OFED driver again.

 7. Load the installed driver.
$ sudo /etc/init.d/openibd restart

4.6. Enabling ATS on the NVIDIA
ConnectX-6 DX NICs in a VM

Perform this task on each guest VM on each hypervisor host.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 75

 1. Change the ATS configuration to enabled on each guest VM on the hypervisor host.
 a). Start Mellanox software tools.

$ sudo mst start

 b). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

If the installed version of the firmware supports ATS, output similar to the following
example is displayed.
ATS_ENABLED False(0)

If no output is displayed, the installed version of the firmware does not support ATS. In
this situation, update to a version of the firmware that supports ATS.

 c). If ATS is disabled, enable it.
$sudo mlxconfig -d /dev/mst/mt4123_pciconf0 set ATS_ENABLED=true
Device #1:

Device type: ConnectX6
Name: MCX653105A-HDA_Ax
Description: ConnectX-6 VPI adapter card; HDR IB (200Gb/s) and 200GbE;
 single-port QSFP56; PCIe4.0 x16; tall bracket; ROHS R6
Device: /dev/mst/mt4123_pciconf0

Configurations: Next Boot New
ATS_ENABLED False(0) True(1)
Apply new Configuration? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

 2. After changing the ATS configuration to enabled on each guest VM on the node, turn off the
power to the VMware vSphere ESXi host and turn the power back on again.

Note:

To apply the changed ATS configuration setting, you must turn off the power to the VMware
vSphere ESXi host and turn the power back on again. Rebooting the host is insufficient to
apply this change.

 3. Start VMware vCenter Server on the hypervisor host.
 4. For each VM on the node, perform the following steps:

 a). Turn on the power to the VM.
 b). Start Mellanox software tools.

$ sudo mst start

 c). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

If the installed version of the firmware supports ATS, output similar to the following
example is displayed.
ATS_ENABLED True(1)

 d). Obtain detailed information about all PCI buses and devices in the VM and confirm that
the ATS capability of Mellanox ConnectX-6 device is shown as Enable+.
$ sudo lspci -vvv
...
 Capabilities: [480 v1] Address Translation Service (ATS)
 ATSCap: Invalidate Queue Depth: 00
 ATSCtl: Enable+, Smallest Translation Unit: 00
...

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 76

4.7. Building and Installing the NVIDIA
Peer Memory Driver

Perform this task on each guest VM on each hypervisor host.

 1. If necessary, install the latest stable upstream version of Git.
 a). Add the ppa:git-core/ppa repository to your list of package sources.

$ sudo add-apt-repository ppa:git-core/ppa

 b). Download information from all configured sources about the latest versions of the
packages.
$ sudo apt update

 c). Install the git package.
$ sudo apt install git

 2. Clone the Mellanox nv_peer_memory Git repository.
$ git clone https://github.com/Mellanox/nv_peer_memory.git

 3. Change to the nv_peer_memory directory.
$ cd nv_peer_memory/

 4. Build the NVIDIA peer memory driver software.
$./build_module.sh

 5. Change to the /tmp directory.
$ cd /tmp/

 6. Extract the NVIDIA peer memory driver software from the compressed tar archive that the
build process created.
$ tar xzf /tmp/nvidia-peer-memory_1.1.orig.tar.gz

 7. Change to the nvidia-peer-memory-1.1 directory.
$ cd nvidia-peer-memory-1.1/

 8. Build the NVIDIA peer memory driver package.
$ dpkg-buildpackage -us -uc

 9. Change to the parent of the current working directory.
$ cd ..

 10.Install the driver package that you built.
$ sudo dpkg -i nvidia-peer-memory_1.1-0_all.deb

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 77

Chapter 5. Modifying a VM's NVIDIA
vGPU Configuration

You can modify a VM's NVIDIA vGPU configuration by removing the NVIDIA vGPU configuration
from a VM or by modifying GPU allocation policy.

5.1. Removing a VM’s NVIDIA vGPU
Configuration

Remove a VM’s NVIDIA vGPU configuration when you no longer require the VM to use a virtual
GPU.

5.1.1. Removing a vSphere VM’s vGPU
Configuration

To remove a vSphere vGPU configuration from a VM:

 1. Select Edit settings after right-clicking on the VM in the vCenter Web UI.
 2. Select the Virtual Hardware tab.
 3. Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the (X) icon to

mark the device for removal.
 4. Click OK to remove the device and update the VM settings.

5.2. Modifying GPU Allocation Policy
VMware vSphere supports the breadth first and depth-first GPU allocation policies for vGPU-
enabled VMs.
breadth-first

The breadth-first allocation policy attempts to minimize the number of vGPUs running on
each physical GPU. Newly created vGPUs are placed on the physical GPU that can support
the new vGPU and that has the fewest vGPUs already resident on it. This policy generally
leads to higher performance because it attempts to minimize sharing of physical GPUs, but
it may artificially limit the total number of vGPUs that can run.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 78

depth-first
The depth-first allocation policy attempts to maximize the number of vGPUs running on
each physical GPU. Newly created vGPUs are placed on the physical GPU that can support
the new vGPU and that has the most vGPUs already resident on it. This policy generally
leads to higher density of vGPUs, particularly when different types of vGPUs are being run,
but may result in lower performance because it attempts to maximize sharing of physical
GPUs.

By default, VMware vSphere ESXi uses the breadth-first allocation policy.

If the default GPU allocation policy does not meet your requirements for performance or
density of vGPUs, you can change it.

5.2.1. Modifying GPU Allocation Policy on VMware
vSphere

Before using the vSphere Web Client to change the allocation scheme, ensure that the ESXi
host is running and that all VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 79

Figure 15. Breadth-first allocation scheme setting for vGPU-enabled
VMs

 5. In the Edit Host Graphics Settings dialog box that opens, select these options and click OK.
 a). If not already selected, select Shared Direct.
 b). Select Group VMs on GPU until full.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 80

Figure 16. Host graphics settings for vGPU

After you click OK, the default graphics type changes to Shared Direct and the allocation
scheme for vGPU-enabled VMs is breadth-first.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 81

Figure 17. Depth-first allocation scheme setting for vGPU-enabled VMs

 6. Restart the ESXi host or the Xorg service on the host.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

5.3. Migrating a VM Configured with vGPU
On some hypervisors, NVIDIA AI Enterprise supports migration of VMs that are configured with
vGPU. Migration is supported for both time-sliced and MIG-backed vGPUs.

Before migrating a VM configured with vGPU, ensure that the following prerequisites are met:

‣ The VM is configured with vGPU.

‣ The VM is running.

‣ The VM obtained a suitable vGPU license when it was booted.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 82

‣ The destination host has a physical GPU of the same type as the GPU where the vGPU
currently resides.

‣ If the physical GPU supports the Multi-Instance GPU (MIG) feature, the MIG configuration
of the GPU on both the source and destination hosts must be identical.

‣ ECC memory configuration (enabled or disabled) on both the source and destination hosts
must be identical.

‣ The GPU topologies (including NVLink widths) on both the source and destination hosts
must be identical.

Note: vGPU migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit
features is enabled:

‣ Unified memory

‣ Debuggers

‣ Profilers

How to migrate a VM configured with vGPU depends on the hypervisor that you are using.

After migration, the vGPU type of the vGPU remains unchanged.

The time required for migration depends on the amount of frame buffer that the vGPU has.
Migration for a vGPU with a large amount of frame buffer is slower than for a vGPU with a
small amount of frame buffer.

5.3.1. Migrating a VM Configured with vGPU on
VMware vSphere

NVIDIA AI Enterprise supports VMware vMotion for VMs that are configured with vGPU.
VMware vMotion enables you to move a running virtual machine from one physical host
machine to another host with very little disruption or downtime. For a VM that is configured
with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other host. The NVIDIA
GPUs on both host machines must be of the same type.

Perform this task in the VMware vSphere web client by using the Migration wizard.

Before migrating a VM configured with vGPU on VMware vSphere, ensure that the following
prerequisites are met:

‣ Your hosts are correctly configured for VMware vMotion. See Host Configuration for
vMotion in the VMware documentation.

‣ The prerequisites listed for all supported hypervisors in Migrating a VM Configured with
vGPU are met.

‣ NVIDIA vGPU migration is configured. See Configuring VMware vMotion with vGPU for
VMware vSphere.

 1. Context-click the VM and from the menu that opens, choose Migrate.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 83

 2. For the type of migration, select Change compute resource only and click Next.
If you select Change both compute resource and storage, the time required for the
migration increases.

 3. Select the destination host and click Next.
The destination host must have a physical GPU of the same type as the GPU where the
vGPU currently resides. Furthermore, the physical GPU must be capable of hosting the
vGPU. If these requirements are not met, no available hosts are listed.

 4. Select the destination network and click Next.
 5. Select the migration priority level and click Next.
 6. Review your selections and click Finish.

For more information, see the following topics in the VMware documentation:

‣ Migrate a Virtual Machine to a New Compute Resource

‣ Using vMotion to Migrate vGPU Virtual Machines

If NVIDIA vGPU migration is not configured, any attempt to migrate a VM with an NVIDIA vGPU
fails and a window containing the following error message is displayed:
Compatibility Issue/Host
Migration was temporarily disabled due to another
migration activity.
vGPU hot migration is not enabled.

The window appears as follows:

If you see this error, configure NVIDIA vGPU migration as explained in Configuring VMware
vMotion with vGPU for VMware vSphere.

If your version of VMware vSpehere ESXi does not support vMotion for VMs configured with
NVIDIA vGPU, any attempt to migrate a VM with an NVIDIA vGPU fails and a window containing
the following error message is displayed:
Compatibility Issues
...
A required migration feature is not supported on the "Source" host 'host-name'.

A warning or error occurred when migrating the virtual machine.
Virtual machine relocation, or power on after relocation or cloning can fail if
vGPU resources are not available on the destination host.

The window appears as follows:

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6068ECD7-E3FA-4155-A326-D996BDBDF00C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-8FE6A0DA-49E9-472B-815B-D630CF2014AD.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 84

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see NVIDIA AI Enterprise Release Notes.

5.3.2. Suspending and Resuming a VM Configured
with vGPU on VMware vSphere

NVIDIA AI Enterprise supports suspend and resume for VMs that are configured with vGPU.

Perform this task in the VMware vSphere web client.

‣ To suspend a VM, context-click the VM that you want to suspend, and from the context
menu that pops up, choose Power > Suspend .

‣ To resume a VM, context-click the VM that you want to resume, and from the context menu
that pops up, choose Power > Power On .

5.4. Modifying a MIG-Backed vGPU's
Configuration

If compute instances weren't created within the GPU instances when the GPU was configured
for MIG-backed vGPUs, you can add the compute instances for an individual vGPU from within
the guest VM. If you want to replace the compute instances that were created when the GPU
was configured for MIG-backed vGPUs, you can delete them before adding the compute
instances from within the guest VM.

Ensure that the following prerequisites are met:

‣ You have root user privileges in the guest VM.

‣ The GPU instance is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

http://docs.nvidia.com/ai-enterprise/2.0/pdf/nvidia-ai-enterprise-release-notes.pdf

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 85

Perform this task in a guest VM command shell.

 1. Open a command shell as the root user in the guest VM.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. List the available GPU instance.
$ nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 2g.10gb 0 0 0:8 |
+--+

 3. Optional: If compute instances were created when the GPU was configured for MIG-
backed vGPUs that you no longer require, delete them.
$ nvidia-smi mig -dci -ci compute-instance-id -gi gpu-instance-id
compute-instance-id

The ID of the compute instance that you want to delete.
gpu-instance-id

The ID of the GPU instance from which you want to delete the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU instance and retry the command.

This example deletes compute instance 0 from GPU instance 0 on GPU 0.
$ nvidia-smi mig -dci -ci 0 -gi 0
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 0

 4. List the compute instance profiles that are available for your GPU instance.
$ nvidia-smi mig -lcip

This example shows that one MIG 2g.10gb compute instance or two MIG 1c.2g.10gb
compute instances can be created within the GPU instance.
$ nvidia-smi mig -lcip
+---+
| Compute instance profiles: |
| GPU GPU Name Profile Instances Exclusive Shared |
| Instance ID Free/Total SM DEC ENC OFA |
| ID CE JPEG |
|===|
| 0 0 MIG 1c.2g.10gb 0 2/2 14 1 0 0 |
| 2 0 |
+---+
| 0 0 MIG 2g.10gb 1* 1/1 28 1 0 0 |
| 2 0 |
+---+

 5. Create the compute instances that you need within the available GPU instance.

Create each compute instance individually by running the following command.
$ nvidia-smi mig -cci compute-instance-profile-id -gi gpu-instance-id
compute-instance-profile-id

The compute instance profile ID that specifies the compute instance.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 86

gpu-instance-id
The GPU instance ID that specifies the GPU instance within which you want to create
the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU and retry the command.

This example creates a MIG 2g.10gb compute instance on GPU instance 0.
$ nvidia-smi mig -cci 1 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 2g.10gb (ID 1)
This example creates two MIG 1c.2g.10gb compute instances on GPU instance 0 by
running the same command twice.
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 1 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)

 6. Verify that the compute instances were created within the GPU instance.
Use the nvidia-smi command for this purpose.

This example confirms that a MIG 2g.10gb compute instance was created on GPU
instance 0.
nvidia-smi
Mon Dec 19 19:01:24 2022
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	28 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

This example confirms that two MIG 1c.2g.10gb compute instances were created on GPU
instance 0.
$ nvidia-smi

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 87

Mon Dec 19 19:01:24 2022
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 CUDA Version: 12.0 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	14 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+ +-----------+-----------------------+			
0 0 1 1		14 0	2 0 1 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

5.5. Enabling Unified Memory for a vGPU
Unified memory is disabled by default. If used, you must enable unified memory individually for
each vGPU that requires it by setting a vGPU plugin parameter. How to enable unified memory
for a vGPU depends on the hypervisor that you are using.

5.5.1. Enabling Unified Memory for a vGPU on Red
Hat Enterprise Linux KVM

On Red Hat Enterprise Linux KVM, enable unified memory by setting the enable_uvm vGPU
plugin parameter.
Ensure that the mdev device file that represents the vGPU has been created as explained in
Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.
Perform this task for each vGPU that requires unified memory.
Set the enable_uvm vGPU plugin parameter for the mdev device file that represents the vGPU
to 1 as explained in Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 88

5.5.2. Enabling Unified Memory for a vGPU on
VMware vSphere

On VMware vSphere, enable unified memory by setting the pciPassthruvgpu-
id.cfg.enable_uvm configuration parameter in advanced VM attributes.
Ensure that the VM to which the vGPU is assigned is powered off.
Perform this task in the vSphere Client for each vGPU that requires unified memory.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_uvm vGPU plugin
parameter for the vGPU to 1 as explained in Setting vGPU Plugin Parameters on VMware
vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
enabling unified memory for both vGPUs, set pciPassthru0.cfg.enable_uvm and
pciPassthru1.cfg.enable_uvm to 1.

5.6. Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA vGPU

By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If used, you
must enable NVIDIA CUDA Toolkit development tools individually for each VM that requires
them by setting vGPU plugin parameters. One parameter must be set for enabling NVIDIA
CUDA Toolkit debuggers and a different parameter must be set for enabling NVIDIA CUDA
Toolkit profilers.

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for
NVIDIA vGPU

By default, NVIDIA CUDA Toolkit debuggers are disabled. If used, you must enable them
for each vGPU VM that requires them by setting a vGPU plugin parameter. How to set
the parameter to enable NVIDIA CUDA Toolkit debuggers for a vGPU VM depends on the
hypervisor that you are using.

You can enable NVIDIA CUDA Toolkit debuggers for any number of VMs configured with vGPUs
on the same GPU. When NVIDIA CUDA Toolkit debuggers are enabled for a VM, the VM cannot
be migrated.

Perform this task for each VM for which you want to enable NVIDIA CUDA Toolkit debuggers.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 89

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM

Set the enable_debugging vGPU plugin parameter for the mdev device file that represents
the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin Parameters on a
Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit debuggers is powered
off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_debugging vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting vGPU
Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are
enabling debuggers for both vGPUs, set pciPassthru0.cfg.enable_debugging and
pciPassthru1.cfg.enable_debugging to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for
NVIDIA vGPU

By default, only GPU workload trace is enabled. If you want to use all NVIDIA CUDA Toolkit
profiler features that NVIDIA vGPU supports, you must enable them for each vGPU VM that
requires them.

Note: Enabling profiling for a VM gives the VM access to the GPU’s global performance
counters, which may include activity from other VMs executing on the same GPU. Enabling
profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other VMs
executing on the same GPU.

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features
You can enable the following NVIDIA CUDA Toolkit profiler features for a vGPU VM:

‣ NVIDIA Nsight™ Compute

‣ NVIDIA Nsight Systems

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 90

‣ CUDA Profiling Tools Interface (CUPTI)

5.6.2.2. Clock Management for a vGPU VM for Which
NVIDIA CUDA Toolkit Profilers Are Enabled

Clocks are not locked for periodic sampling use cases such as NVIDIA Nsight Systems
profiling.

Clocks are locked for multipass profiling such as:

‣ NVIDIA Nsight Compute kernel profiling

‣ CUPTI range profiling

Clocks are locked automatically when profiling starts and are unlocked automatically when
profiling ends.

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit
Profilers with NVIDIA vGPU

The following limitations apply when NVIDIA CUDA Toolkit profilers are enabled for NVIDIA
vGPU:

‣ NVIDIA CUDA Toolkit profilers can be used on only one VM at a time.

‣ Multiple CUDA contexts cannot be profiled simultaneously.

‣ Profiling data is collected separately for each context.

‣ A VM for which NVIDIA CUDA Toolkit profilers are enabled cannot be migrated.

Because NVIDIA CUDA Toolkit profilers can be used on only one VM at a time, you should
enable them for only one VM assigned a vGPU on a GPU. However, NVIDIA AI Enterprise
cannot enforce this requirement. If NVIDIA CUDA Toolkit profilers are enabled on more than
one VM assigned a vGPU on a GPU, profiling data is collected only for the first VM to start the
profiler.

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU
VM

You enable NVIDIA CUDA Toolkit profilers for a vGPU VM by setting a vGPU plugin parameter.
How to set the parameter to enable NVIDIA CUDA Toolkit profilers for a vGPU VM depends on
the hypervisor that you are using.

Perform this task for the VM for which you want to enable NVIDIA CUDA Toolkit profilers.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Red Hat Enterprise
Linux KVM

Set the enable_profiling vGPU plugin parameter for the mdev device file that represents
the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin Parameters on a
Linux with KVM Hypervisor.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 91

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit profilers is powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_profiling vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting vGPU
Plugin Parameters on VMware vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU assigned
to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you are enabling
profilers for the second vGPU, set pciPassthru1.cfg.enable_profiling to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

5.7. Enabling the TCC Driver Model for a
vGPU

The Tesla Compute Cluster (TCC) driver model supports CUDA C/C++ applications. This
model is optimized for compute applications and reduces kernel launch times on Windows.
By default, the driver model of a vGPU that is assigned to a Windows VM is Windows Display
Driver Model (WDDM). If you want to use the TCC driver model, you must enable it explicitly.
This task requires administrator privileges.
Perform this task from the VM to which the vGPU is assigned.

Note: Only Q-series vGPUs support the TCC driver model.

 1. Log on to the VM to which the vGPU is assigned.
 2. Set the driver model of the vGPU to the TCC driver model.

nvidia-smi -g vgpu-id -dm 1
vgpu-id

The ID of the vGPU for which you want to enable the TCC driver model. If the -g is
omitted, the TCC driver model is enabled for all vGPUs that are assigned to the VM.

 3. Reboot the VM.

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 92

Chapter 6. Monitoring GPU
Performance

NVIDIA AI Enterprise enables you to monitor the performance of physical GPUs and virtual
GPUs from the hypervisor and from within individual guest VMs.

6.1. NVIDIA System Management
Interface nvidia-smi

NVIDIA System Management Interface, nvidia-smi, is a command-line tool that reports
management information for NVIDIA GPUs.

The nvidia-smi tool is included in the following packages:

‣ NVIDIA Virtual GPU Manager package for each supported hypervisor

‣ NVIDIA driver package for each supported guest OS

The scope of the reported management information depends on where you run nvidia-smi
from:

‣ From a hypervisor command shell, such as the VMware ESXi host shell, nvidia-smi
reports management information for NVIDIA physical GPUs and virtual GPUs present in
the system.

‣ From a guest VM, nvidia-smi retrieves usage statistics for vGPUs or pass-through GPUs
that are assigned to the VM.

6.2. Using nvidia-smi to Monitor GPU
Performance from a Hypervisor

You can get management information for the NVIDIA physical GPUs and virtual GPUs present
in the system by running nvidia-smi from a hypervisor command shell such as the Citrix
Hypervisor dom0 shell or the VMware ESXi host shell.

Without a subcommand, nvidia-smi provides management information for physical GPUs. To
examine virtual GPUs in more detail, use nvidia-smi with the vgpu subcommand.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 93

From the command line, you can get help information about the nvidia-smi tool and the
vgpu subcommand.

Help Information Command
A list of subcommands supported by the nvidia-smi tool. Note
that not all subcommands apply to GPUs that support NVIDIA AI
Enterprise.

nvidia-smi -h

A list of all options supported by the vgpu subcommand. nvidia-smi vgpu –h

6.2.1. Getting a Summary of all Physical GPUs in
the System

To get a summary of all physical GPUs in the system, along with PCI bus IDs, power state,
temperature, current memory usage, and so on, run nvidia-smi without additional
arguments.

Each vGPU instance is reported in the Compute processes section, together with its physical
GPU index and the amount of frame-buffer memory assigned to it.

In the example that follows, three vGPUs are running in the system: One vGPU is running on
each of the physical GPUs 0, 1, and 2.
[root@vgpu ~]# nvidia-smi
Fri Dec 16 09:26:18 2022
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:83:00.0 Off | Off |
| N/A 31C P8 23W / 150W | 1889MiB / 8191MiB | 7% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:84:00.0 Off | Off |
| N/A 26C P8 23W / 150W | 926MiB / 8191MiB | 9% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M10 On | 0000:8A:00.0 Off | N/A |
| N/A 23C P8 10W / 53W | 1882MiB / 8191MiB | 12% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M10 On | 0000:8B:00.0 Off | N/A |
| N/A 26C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 Tesla M10 On | 0000:8C:00.0 Off | N/A |
| N/A 34C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 Tesla M10 On | 0000:8D:00.0 Off | N/A |
| N/A 32C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 11924 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
| 1 11903 C+G /usr/lib64/xen/bin/vgpu 896MiB |
| 2 11908 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
+---+
[root@vgpu ~]#

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 94

6.2.2. Getting a Summary of all vGPUs in the
System

To get a summary of the vGPUs currently that are currently running on each physical GPU in
the system, run nvidia-smi vgpu without additional arguments.
[root@vgpu ~]# nvidia-smi vgpu
Fri Dec 16 09:27:06 2022
+---+
| NVIDIA-SMI 525.60.12 Driver Version: 525.60.12 |
|-------------------------------+--------------------------------+------------+
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
|===============================+================================+============|
| 0 Tesla M60 | 0000:83:00.0 | 7% |
| 11924 GRID M60-2Q | 3 Win7-64 GRID test 2 | 6% |
+-------------------------------+--------------------------------+------------+
| 1 Tesla M60 | 0000:84:00.0 | 9% |
| 11903 GRID M60-1B | 1 Win8.1-64 GRID test 3 | 8% |
+-------------------------------+--------------------------------+------------+
| 2 Tesla M10 | 0000:8A:00.0 | 12% |
| 11908 GRID M10-2Q | 2 Win7-64 GRID test 1 | 10% |
+-------------------------------+--------------------------------+------------+
| 3 Tesla M10 | 0000:8B:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 4 Tesla M10 | 0000:8C:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 5 Tesla M10 | 0000:8D:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
[root@vgpu ~]#

6.2.3. Getting Physical GPU Details
To get detailed information about all the physical GPUs on the platform, run nvidia-smi with
the –q or --query option.
[root@vgpu ~]# nvidia-smi -q
==============NVSMI LOG==============

Timestamp : Tue Nov 22 10:33:26 2022
Driver Version : 525.60.06
CUDA Version : Not Found
vGPU Driver Capability
 Heterogenous Multi-vGPU : Supported

Attached GPUs : 3
GPU 00000000:C1:00.0
 Product Name : Tesla T4
 Product Brand : NVIDIA
 Product Architecture : Turing
 Display Mode : Enabled
 Display Active : Disabled
 Persistence Mode : Enabled
 vGPU Device Capability
 Fractional Multi-vGPU : Supported
 Heterogeneous Time-Slice Profiles : Supported
 Heterogeneous Time-Slice Sizes : Not Supported
 MIG Mode
 Current : N/A
 Pending : N/A
 Accounting Mode : Enabled
 Accounting Mode Buffer Size : 4000

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 95

 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : 1321120031291
 GPU UUID : GPU-9084c1b2-624f-2267-4b66-345583fbd981
 Minor Number : 1
 VBIOS Version : 90.04.38.00.03
 MultiGPU Board : No
 Board ID : 0xc100
 Board Part Number : 900-2G183-0000-001
 GPU Part Number : 1EB8-895-A1
 Module ID : 0
 Inforom Version
 Image Version : G183.0200.00.02
 OEM Object : 1.1
 ECC Object : 5.0
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 GSP Firmware Version : N/A
 GPU Virtualization Mode
 Virtualization Mode : Host VGPU
 Host VGPU Mode : Non SR-IOV
 IBMNPU
 Relaxed Ordering Mode : N/A
 PCI
 Bus : 0xC1
 Device : 0x00
 Domain : 0x0000
 Device Id : 0x1EB810DE
 Bus Id : 00000000:C1:00.0
 Sub System Id : 0x12A210DE
 GPU Link Info
 PCIe Generation
 Max : 3
 Current : 1
 Device Current : 1
 Device Max : 3
 Host Max : N/A
 Link Width
 Max : 16x
 Current : 16x
 Bridge Chip
 Type : N/A
 Firmware : N/A
 Replays Since Reset : 0
 Replay Number Rollovers : 0
 Tx Throughput : 0 KB/s
 Rx Throughput : 0 KB/s
 Atomic Caps Inbound : N/A
 Atomic Caps Outbound : N/A
 Fan Speed : N/A
 Performance State : P8
 Clocks Throttle Reasons
 Idle : Active
 Applications Clocks Setting : Not Active
 SW Power Cap : Not Active
 HW Slowdown : Not Active
 HW Thermal Slowdown : Not Active
 HW Power Brake Slowdown : Not Active
 Sync Boost : Not Active
 SW Thermal Slowdown : Not Active
 Display Clock Setting : Not Active
 FB Memory Usage
 Total : 15360 MiB
 Reserved : 0 MiB

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 96

 Used : 3859 MiB
 Free : 11500 MiB
 BAR1 Memory Usage
 Total : 256 MiB
 Used : 17 MiB
 Free : 239 MiB
 Compute Mode : Default
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Encoder Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 FBC Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 Ecc Mode
 Current : Enabled
 Pending : Enabled
 ECC Errors
 Volatile
 SRAM Correctable : 0
 SRAM Uncorrectable : 0
 DRAM Correctable : 0
 DRAM Uncorrectable : 0
 Aggregate
 SRAM Correctable : 0
 SRAM Uncorrectable : 0
 DRAM Correctable : 0
 DRAM Uncorrectable : 0
 Retired Pages
 Single Bit ECC : 0
 Double Bit ECC : 0
 Pending Page Blacklist : No
 Remapped Rows : N/A
 Temperature
 GPU Current Temp : 35 C
 GPU Shutdown Temp : 96 C
 GPU Slowdown Temp : 93 C
 GPU Max Operating Temp : 85 C
 GPU Target Temperature : N/A
 Memory Current Temp : N/A
 Memory Max Operating Temp : N/A
 Power Readings
 Power Management : Supported
 Power Draw : 16.57 W
 Power Limit : 70.00 W
 Default Power Limit : 70.00 W
 Enforced Power Limit : 70.00 W
 Min Power Limit : 60.00 W
 Max Power Limit : 70.00 W
 Clocks
 Graphics : 300 MHz
 SM : 300 MHz
 Memory : 405 MHz
 Video : 540 MHz
 Applications Clocks
 Graphics : 585 MHz
 Memory : 5001 MHz
 Default Applications Clocks
 Graphics : 585 MHz
 Memory : 5001 MHz
 Deferred Clocks

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 97

 Memory : N/A
 Max Clocks
 Graphics : 1590 MHz
 SM : 1590 MHz
 Memory : 5001 MHz
 Video : 1470 MHz
 Max Customer Boost Clocks
 Graphics : 1590 MHz
 Clock Policy
 Auto Boost : N/A
 Auto Boost Default : N/A
 Voltage
 Graphics : N/A
 Fabric
 State : N/A
 Status : N/A
 Processes
 GPU instance ID : N/A
 Compute instance ID : N/A
 Process ID : 2103065
 Type : C+G
 Name : Win11SV2_View87
 Used GPU Memory : 3810 MiB
[root@vgpu ~]#

6.2.4. Getting vGPU Details
To get detailed information about all the vGPUs on the platform, run nvidia-smi vgpu with
the –q or --query option.

To limit the information retrieved to a subset of the GPUs on the platform, use the –i or --id
option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -q -i 1
GPU 00000000:C1:00.0
 Active vGPUs : 1
 vGPU ID : 3251634327
 VM ID : 2103066
 VM Name : Win11SV2_View87
 vGPU Name : GRID T4-4Q
 vGPU Type : 232
 vGPU UUID : afdcf724-1dd2-11b2-8534-624f22674b66
 Guest Driver Version : 527.15
 License Status : Licensed (Expiry: 2022-11-23 5:2:12 GMT)
 GPU Instance ID : N/A
 Accounting Mode : Disabled
 ECC Mode : Enabled
 Accounting Buffer Size : 4000
 Frame Rate Limit : 60 FPS
 PCI
 Bus Id : 00000000:02:04.0
 FB Memory Usage
 Total : 4096 MiB
 Used : 641 MiB
 Free : 3455 MiB
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Encoder Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 FBC Stats

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 98

 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
[root@vgpu ~]#

6.2.5. Monitoring vGPU engine usage
To monitor vGPU engine usage across multiple vGPUs, run nvidia-smi vgpu with the –u or
--utilization option.

For each vGPU, the usage statistics in the following table are reported once every second. The
table also shows the name of the column in the command output under which each statistic is
reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU is
using. For example, a vGPU that uses 20% of the GPU’s graphics engine’s capacity will report
20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -u
gpu vgpu sm mem enc dec
Idx Id % % % %
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 9 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
^C[root@vgpu ~]#

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 99

6.2.6. Monitoring vGPU engine usage by
applications

To monitor vGPU engine usage by applications across multiple vGPUs, run nvidia-smi vgpu
with the –p option.

For each application on each vGPU, the usage statistics in the following table are reported
once every second. Each application is identified by its process ID and process name. The
table also shows the name of the column in the command output under which each statistic is
reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity used by an
application running on a vGPU that resides on the physical GPU. For example, an application
that uses 20% of the GPU’s graphics engine’s capacity will report 20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -p
GPU vGPU process process sm mem enc dec
Idx Id Id name % % % %
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 32 25 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 32 24 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257869 4432 FurMark.exe 38 30 0 0
 1 257911 656 DolphinVS.exe 19 14 0 0
 1 257969 4552 FurMark.exe 38 30 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257848 3220 Balls64.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257911 656 DolphinVS.exe 32 25 0 0
 1 257969 4552 FurMark.exe 64 50 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
 0 38127 1528 dwm.exe 0 0 0 0

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 100

 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
[root@vgpu ~]#

6.2.7. Monitoring Encoder Sessions

Note: Encoder sessions can be monitored only for vGPUs assigned to Windows VMs. No
encoder session statistics are reported for vGPUs assigned to Linux VMs.

To monitor the encoder sessions for processes running on multiple vGPUs, run nvidia-smi
vgpu with the –es or --encodersessions option.

For each encoder session, the following statistics are reported once every second:

‣ GPU ID

‣ vGPU ID

‣ Encoder session ID

‣ PID of the process in the VM that created the encoder session

‣ Codec type, for example, H.264 or H.265

‣ Encode horizontal resolution

‣ Encode vertical resolution

‣ One-second trailing average encoded FPS

‣ One-second trailing average encode latency in microseconds

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -es
GPU vGPU Session Process Codec H V Average Average
Idx Id Id Id Type Res Res FPS Latency(us)
 1 21211 2 2308 H.264 1920 1080 424 1977
 1 21206 3 2424 H.264 1920 1080 0 0
 1 22011 1 3676 H.264 1920 1080 374 1589
 1 21211 2 2308 H.264 1920 1080 360 807
 1 21206 3 2424 H.264 1920 1080 325 1474
 1 22011 1 3676 H.264 1920 1080 313 1005
 1 21211 2 2308 H.264 1920 1080 329 1732
 1 21206 3 2424 H.264 1920 1080 352 1415
 1 22011 1 3676 H.264 1920 1080 434 1894
 1 21211 2 2308 H.264 1920 1080 362 1818
 1 21206 3 2424 H.264 1920 1080 296 1072
 1 22011 1 3676 H.264 1920 1080 416 1994
 1 21211 2 2308 H.264 1920 1080 444 1912
 1 21206 3 2424 H.264 1920 1080 330 1261
 1 22011 1 3676 H.264 1920 1080 436 1644
 1 21211 2 2308 H.264 1920 1080 344 1500
 1 21206 3 2424 H.264 1920 1080 393 1727
 1 22011 1 3676 H.264 1920 1080 364 1945
 1 21211 2 2308 H.264 1920 1080 555 1653
 1 21206 3 2424 H.264 1920 1080 295 925
 1 22011 1 3676 H.264 1920 1080 372 1869
 1 21211 2 2308 H.264 1920 1080 326 2206

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 101

 1 21206 3 2424 H.264 1920 1080 318 1366
 1 22011 1 3676 H.264 1920 1080 464 2015
 1 21211 2 2308 H.264 1920 1080 305 1167
 1 21206 3 2424 H.264 1920 1080 445 1892
 1 22011 1 3676 H.264 1920 1080 361 906
 1 21211 2 2308 H.264 1920 1080 353 1436
 1 21206 3 2424 H.264 1920 1080 354 1798
 1 22011 1 3676 H.264 1920 1080 373 1310
^C[root@vgpu ~]#

6.2.8. Listing Supported vGPU Types
To list the virtual GPU types that the GPUs in the system support, run nvidia-smi vgpu with
the –s or --supported option.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or --id
option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -s -i 0
GPU 0000:83:00.0
 GRID M60-0B
 GRID M60-0Q
 GRID M60-1A
 GRID M60-1B
 GRID M60-1Q
 GRID M60-2A
 GRID M60-2Q
 GRID M60-4A
 GRID M60-4Q
 GRID M60-8A
 GRID M60-8Q
[root@vgpu ~]#

To view detailed information about the supported vGPU types, add the –v or --verbose option:
[root@vgpu ~]# nvidia-smi vgpu -s -i 0 -v | less
GPU 00000000:40:00.0
 vGPU Type ID : 0xc
 Name : GRID M60-0Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 16
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
 Device ID : 0x13f210de
 Sub System ID : 0x13f2114c
 FB Memory : 512 MiB
 Display Heads : 2
 Maximum X Resolution : 2560
 Maximum Y Resolution : 1600
 Frame Rate Limit : 60 FPS
 GRID License : Quadro-Virtual-DWS,5.0;GRID-Virtual-
WS,2.0;GRID-Virtual-WS-Ext,2.0
 vGPU Type ID : 0xf
 Name : GRID M60-1Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 8
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
 Device ID : 0x13f210de
 Sub System ID : 0x13f2114d

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 102

 FB Memory : 1024 MiB
 Display Heads : 4
 Maximum X Resolution : 5120
 Maximum Y Resolution : 2880
 Frame Rate Limit : 60 FPS
 GRID License : Quadro-Virtual-DWS,5.0;GRID-Virtual-
WS,2.0;GRID-Virtual-WS-Ext,2.0
 vGPU Type ID : 0x12
 Name : GRID M60-2Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 4
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
…
[root@vgpu ~]#

6.2.9. Listing the vGPU Types that Can Currently Be
Created

To list the virtual GPU types that can currently be created on GPUs in the system, run nvidia-
smi vgpu with the –c or --creatable option.

This property is a dynamic property that varies for each GPU depending on whether MIG mode
is enabled for the GPU.

‣ If MIG mode is not enabled for the GPU, or if the GPU does not support MIG, this property
reflects the number and type of vGPUs that are already running on the GPU.

‣ If no vGPUs are running on the GPU, all vGPU types that the GPU supports are listed.

‣ If one or more vGPUs are running on the GPU, but the GPU is not fully loaded, only the
type of the vGPUs that are already running is listed.

‣ If the GPU is fully loaded, no vGPU types are listed.

‣ If MIG mode is enabled for the GPU, the result reflects the number and type of GPU
instances on which no vGPUs are already running.

‣ If no GPU instances have been created, no vGPU types are listed.

‣ If GPU instances have been created, only the vGPU types that correspond to GPU
instances on which no vGPU is running are listed.

‣ If a vGPU is running on every GPU instance, no vGPU types are listed.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or --id
option to select one or more vGPUs.
[root@vgpu ~]# nvidia-smi vgpu -c -i 0
GPU 0000:83:00.0
 GRID M60-2Q
[root@vgpu ~]#

To view detailed information about the vGPU types that can currently be created, add the –v or
--verbose option.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 103

6.3. Monitoring GPU Performance from a
Guest VM

You can use monitoring tools within an individual guest VM to monitor the performance
of vGPUs or pass-through GPUs that are assigned to the VM. The scope of these tools is
limited to the guest VM within which you use them. You cannot use monitoring tools within an
individual guest VM to monitor any other GPUs in the platform.

For a vGPU, only these metrics are reported in a guest VM:

‣ 3D/Compute

‣ Memory controller

‣ Video encoder

‣ Video decoder

‣ Frame buffer usage

Other metrics normally present in a GPU are not applicable to a vGPU and are reported as
zero or N/A, depending on the tool that you are using.

6.3.1. Using nvidia-smi to Monitor GPU
Performance from a Guest VM

In guest VMs, you can use the nvidia-smi command to retrieve statistics for the total usage
by all applications running in the VM and usage by individual applications of the following
resources:

‣ GPU

‣ Video encoder

‣ Video decoder

‣ Frame buffer

To use nvidia-smi to retrieve statistics for the total resource usage by all applications
running in the VM, run the following command:
nvidia-smi dmon

To use nvidia-smi to retrieve statistics for resource usage by individual applications running
in the VM, run the following command:
nvidia-smi pmon

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 104

Chapter 7. Changing Scheduling
Behavior for Time-Sliced
vGPUs

NVIDIA GPUs implement a best effort vGPU scheduler that aims to balance performance
across vGPUs. The best effort scheduler allows a vGPU to use GPU processing cycles that
are not being used by other vGPUs. Under some circumstances, a VM running a graphics-
intensive application may adversely affect the performance of graphics-light applications
running in other VMs.

To address this issue with the best effort vGPU scheduler, NVIDIA GPUs additionally support
equal share and fixed share vGPU schedulers. These schedulers impose a limit on GPU
processing cycles used by a vGPU, which prevents graphics-intensive applications running in
one VM from affecting the performance of graphics-light applications running in other VMs. On
GPUs that support multiple vGPU schedulers, you can select the vGPU scheduler to use. You
can also set the length of the time slice for the equal share and fixed share vGPU schedulers.

Note: If you use the equal share or fixed share vGPU scheduler, the frame-rate limiter (FRL) is
disabled.

The best effort scheduler is the default scheduler for all supported GPU architectures.

7.1. Scheduling Policies for Time-Sliced
vGPUs

In addition to the default best effort scheduler, GPUs based on NVIDIA GPU architectures after
the Maxwell architecture support equal share and fixed share vGPU schedulers.
Equal share scheduler

The physical GPU is shared equally amongst the running vGPUs that reside on it. As vGPUs
are added to or removed from a GPU, the share of the GPU's processing cycles allocated to
each vGPU changes accordingly. As a result, the performance of a vGPU may increase as
other vGPUs on the same GPU are stopped, or decrease as other vGPUs are started on the
same GPU.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 105

Fixed share scheduler
Each vGPU is given a fixed share of the physical GPU's processing cycles, the amount of
which depends on the vGPU type, which in turn determines the maximum number of vGPUs
per physical GPU. For example, the maximum number of T4-4C vGPUs per physical GPU is
4. When the scheduling policy is fixed share, each T4-4C vGPU is given one quarter, or 25%,
the physical GPU's processing cycles. As vGPUs are added to or removed from a GPU, the
share of the GPU's processing cycles allocated to each vGPU remains constant. As a result,
the performance of a vGPU remains unchanged as other vGPUs are stopped or started on
the same GPU.

By default, these schedulers impose a strict round-robin scheduling policy. When this policy is
enforced, the schedulers maintain scheduling fairness by adjusting the time slice for each VM
that is configured with NVIDIA vGPU. The strict round-robin scheduling policy ensures more
consistent scheduling of the work for VMs that are configured with NVIDIA vGPU and restricts
the impact of GPU-intensive applications running in one VM on applications running in other
VMs.

Instead of a strict round-robin scheduling policy, you can ensure scheduling fairness by
scheduling the work for the vGPU that has spent the least amount of time in the scheduled
state. This behavior was the default scheduling behavior in NVIDIA AI Enterprise releases
before 15.0. To control whether the schedulers impose a strict round-robin scheduling policy,
use the RmPVMRL registry key.

When a strict round-robin scheduling policy is enforced, the adjustment to the time slice is
based on the scheduling frequency and an averaging factor.
Scheduling frequency

The number of times per second that work for a specific vGPU is scheduled. The default
scheduling frequency depends on the number of vGPUs that reside on the physical GPU:

‣ If fewer than eight vGPUs reside on the physical GPU, the default is 480 Hz.

‣ If eight or more vGPUs reside on the physical GPU, the default is 960 Hz.

Averaging factor
A number that determines the moving average of time-slice overshoots accrued for each
vGPU. This average controls the strictness with which the scheduling frequency is enforced.
A high value for the averaging factor enforces the scheduling frequency less strictly than a
low value.

Deviations from the specified scheduling frequency occur because the actual amount of
time that a scheduler allocates to a VM might exceed, or overshoot, the time slice specified
for the VM. A scheduler enforces the scheduling frequency by shortening the next time slice
for each vGPU VM to compensate for the accrued overshoot time of the VM.

To calculate the amount by which to shorten the next time slice for a vGPU VM, the
scheduler maintains a running total of the accrued overshoot time for each vGPU VM.
This amount is equal to the running total divided by the averaging factor that you specify.
The calculated amount is also subtracted from the accrued overshoot time. A high value
for the averaging factor enforces the scheduling frequency less strictly by spreading the
compensation for the accrued overshoot time over a longer period.

To set the scheduling frequency and averaging factor, use the RmPVMRL registry key.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 106

7.2. Scheduler Time Slice for Time-Sliced
vGPUs

When multiple VMs access the vGPUs on a single GPU, the GPU performs the work for each
VM serially. The vGPU scheduler time slice represents the amount of time that the work
of a VM is allowed to run on the GPU before it is preempted and the work of the next VM is
performed.

For the equal share and fixed share vGPU schedulers, you can set the length of the time slice.
The length of the time slice affects latency and throughput. The optimal length of the time
slice depends the workload that the GPU is handling.

‣ For workloads that require low latency, a shorter time slice is optimal. Typically, these
workloads are applications that must generate output at a fixed interval, such as graphics
applications that generate output at a frame rate of 60 FPS. These workloads are sensitive
to latency and should be allowed to run at least once per interval. A shorter time slice
reduces latency and improves responsiveness by causing the scheduler to switch more
frequently between VMs.

‣ For workloads that require maximum throughput, a longer time slice is optimal. Typically,
these workloads are applications that must complete their work as quickly as possible and
do not require responsiveness, such as CUDA applications. A longer time slice increases
throughput by preventing frequent switching between VMs.

7.3. RmPVMRL Registry Key
The RmPVMRL registry key controls the scheduling behavior for NVIDIA vGPUs by setting the
scheduling policy and the length of the time slice.

Note: You can change the vGPU scheduling behavior only on GPUs that support multiple vGPU
schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell architecture.

Type

Dword

Contents

Value Meaning

0x00 (default) Best effort scheduler

0x01 Equal share scheduler with a strict round-robin scheduling policy and the default
time slice length, scheduling frequency, and averaging factor

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 107

Value Meaning

0x03 Equal share scheduler without a strict round-robin scheduling policy and the
default time slice length

0xAAFFF0001 Equal share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

0x00TT0003 Equal share scheduler without a strict round-robin scheduling policy and with a
user-defined time slice length TT

0x11 Fixed share scheduler with a strict round-robin scheduling policy and the default
time slice length, scheduling frequency, and averaging factor

0x13 Fixed share scheduler without a strict round-robin scheduling policy and with the
default time slice length

0xAAFFF0013 Fixed share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

0x00TT0011 Fixed share scheduler without a strict round-robin scheduling policy and with a
user-defined time slice length TT

The default time slice length depends on the maximum number of vGPUs per physical GPU
allowed for the vGPU type.

Maximum Number of vGPUs Default Time Slice Length

Less than or equal to 8 2 ms

Greater than 8 1 ms

AA
Two hexadecimal digits in the range 0x01 to 0x64 that set the averaging factor for the equal
share and fixed share schedulers with a strict round-robin scheduling policy.

If AA is 01, the compensation for the accrued overshoot time is applied in a single time
slice.

If AA is 64, the compensation for the accrued overshoot time is spread over 100 (0x64) time
slices.

If AA is outside the range 0x01 to 0x64, the default value of 33 is used.

FFF
Three hexadecimal digits in the range 0xA0 to 0x3C0 that set the scheduling frequency for
the equal share and fixed share schedulers with a strict round-robin scheduling policy. The
time slice is inverse of scheduling frequency.

If FFF is 000 or outside the range 0xA0 to 0x3C0, the scheduling frequency is set to the
default scheduling frequency for the vGPU type.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 108

TT
Two hexadecimal digits in the range 01 to 1E that set the length of the time slice in
milliseconds (ms) for the equal share and fixed share schedulers. The minimum length is 1
ms and the maximum length is 30 ms.

If TT is 00, the length is set to the default length for the vGPU type.

If TT is greater than 1E, the length is set to 30 ms.

Examples

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.
RmPVMRL=0x01

This example sets the vGPU scheduler to equal share scheduler without a strict round-robin
scheduling policy and with a time slice that is 3 ms long.
RmPVMRL=0x00030003

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.
RmPVMRL=0x11

This example sets the vGPU scheduler to fixed share scheduler without a strict round-robin
scheduling policy and with a time slice that is 24 (0x18) ms long.
RmPVMRL=0x00180011

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x32), and a scheduling frequency of 960 (0x3C0)
Hz.
RmPVMRL=0x323c0001

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x32), and a scheduling frequency of 960 (0x3C0)
Hz.
RmPVMRL=0x323c0011

7.4. Getting the Current Time-Sliced
vGPU Scheduling Behavior for All
GPUs

Get the current scheduling behavior before changing the scheduling behavior of one or more
GPUs to determine if you need to change it or after changing it to confirm the change.

Perform this task in your hypervisor command shell.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 109

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Use the dmesg command to display messages from the kernel that contain the strings
NVRM and scheduler.
$ dmesg | grep NVRM | grep scheduler

The scheduling behavior is indicated in these messages by the following strings:

‣ BEST_EFFORT

‣ EQUAL_SHARE

‣ FIXED_SHARE

If the scheduling behavior is equal share or fixed share, the scheduler time slice in ms is
also displayed.

This example gets the scheduling behavior of the GPUs in a system in which the behavior
of one GPU is set to best effort, one GPU is set to equal share, and one GPU is set to fixed
share.
$ dmesg | grep NVRM | grep scheduler
2020-10-05T02:58:08.928Z cpu79:2100753)NVRM: GPU at 0000:3d:00.0 has software
 scheduler DISABLED with policy BEST_EFFORT.
2020-10-05T02:58:09.818Z cpu79:2100753)NVRM: GPU at 0000:5e:00.0 has software
 scheduler ENABLED with policy EQUAL_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.
2020-10-05T02:58:12.115Z cpu79:2100753)NVRM: GPU at 0000:88:00.0 has software
 scheduler ENABLED with policy FIXED_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.

7.5. Changing the Time-Sliced vGPU
Scheduling Behavior for All GPUs

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Set the RmPVMRL registry key to the value that sets the GPU scheduling policy and the
length of the time slice that you want.

‣ On Red Hat Enterprise Linux KVM, add the following entry to the /etc/modprobe.d/
nvidia.conf file.
options nvidia NVreg_RegistryDwords="RmPVMRL=value"

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia -p
 "NVreg_RegistryDwords=RmPVMRL=value"

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 110

value

The value that sets the GPU scheduling policy and the length of the time slice that you
want, for example:
0x01

Sets the vGPU scheduling policy to equal share scheduler with the default time slice
length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is 3
ms long.

0x11
Sets the vGPU scheduling policy to fixed share scheduler with the default time slice
length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is 24
(0x18) ms long.

For all supported values, see RmPVMRL Registry Key.
 3. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting the
Current Time-Sliced vGPU Scheduling Behavior for All GPUs.

7.6. Changing the Time-Sliced vGPU
Scheduling Behavior for Select GPUs

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Use the lspci command to obtain the PCI domain and bus/device/function (BDF) of each
GPU for which you want to change the scheduling behavior.

‣ On Red Hat Enterprise Linux KVM, add the -D option to display the PCI domain and the
-d 10de: option to display information only for NVIDIA GPUs.
lspci -D -d 10de:

‣ On VMware vSphere, pipe the output of lspci to the grep command to display
information only for NVIDIA GPUs.
lspci | grep NVIDIA

The NVIDIA GPU listed in this example has the PCI domain 0000 and BDF 86:00.0.
0000:86:00.0 3D controller: NVIDIA Corporation GP104GL [Tesla P4] (rev a1)

 3. Use the module parameter NVreg_RegistryDwordsPerDevice to set the pci and
RmPVMRL registry keys for each GPU.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 111

‣ On Red Hat Enterprise Linux KVM, add the following entry to the /etc/modprobe.d/
nvidia.conf file.
options nvidia NVreg_RegistryDwordsPerDevice="pci=pci-domain:pci-
bdf;RmPVMRL=value
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia \
-p "NVreg_RegistryDwordsPerDevice=pci=pci-domain:pci-bdf;RmPVMRL=value\
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

For each GPU, provide the following information:
pci-domain

The PCI domain of the GPU.
pci-bdf

The PCI device BDF of the GPU.
value

The value that sets the GPU scheduling policy and the length of the time slice that you
want, for example:
0x01

Sets the GPU scheduling policy to equal share scheduler with the default time slice
length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is 3
ms long.

0x11
Sets the GPU scheduling policy to fixed share scheduler with the default time slice
length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is 24
(0x18) ms long.

For all supported values, see RmPVMRL Registry Key.

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the GPU scheduling policy of the GPU
at PCI domain 0000 and BDF 86:00.0 to fixed share scheduler with the default time slice
length.
options nvidia NVreg_RegistryDwordsPerDevice=
"pci=0000:86:00.0;RmPVMRL=0x11"

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the scheduling policy of the GPU at PCI
domain 0000 and BDF 86:00.0 to fixed share scheduler with a time slice that is 24 (0x18)
ms long.
options nvidia NVreg_RegistryDwordsPerDevice=
"pci=0000:86:00.0;RmPVMRL=0x00180011"

This example changes the scheduling behavior of a single GPU on a hypervisor host that
is running VMware vSphere. The command sets the scheduling policy of the GPU at PCI
domain 0000 and BDF 15:00.0 to fixed share scheduler with the default time slice length.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 112

esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x11]"

This example changes the scheduling behavior of a single GPU on a hypervisor host that
is running VMware vSphere. The command sets the scheduling policy of the GPU at PCI
domain 0000 and BDF 15:00.0 to fixed share scheduler with a time slice that is 24 (0x18)
ms long.
esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x00180011]"

 4. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting the
Current Time-Sliced vGPU Scheduling Behavior for All GPUs.

7.7. Restoring Default Time-Sliced vGPU
Scheduler Settings

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose. Individual
hypervisors may provide additional means for logging in. For details, refer to the
documentation for your hypervisor.

 2. Unset the RmPVMRL registry key.

‣ On Red Hat Enterprise Linux KVM, comment out the entries in the /etc/modprobe.d/
nvidia.conf file that set RmPVMRL by prefixing each entry with the # character.

‣ On VMware vSphere, set the module parameter to an empty string.
esxcli system module parameters set -m nvidia -p "module-parameter="
module-parameter

The module parameter to set, which depends on whether the scheduling behavior
was changed for all GPUs or select GPUs:

‣ For all GPUs, set the NVreg_RegistryDwords module parameter.

‣ For select GPUs, set the NVreg_RegistryDwordsPerDevice module
parameter.

For example, to restore default vGPU scheduler settings after they were changed for
all GPUs, enter this command:
esxcli system module parameters set -m nvidia -p "NVreg_RegistryDwords="

 3. Reboot your hypervisor host machine.

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 113

Chapter 8. Troubleshooting

This chapter describes basic troubleshooting steps for NVIDIA vGPU and how to collect debug
information when filing a bug report.

8.1. Known issues
Before troubleshooting or filing a bug report, review the release notes that accompany each
driver release, for information about known issues with the current release, and potential
workarounds.

8.2. Troubleshooting steps
If a vGPU-enabled VM fails to start, or doesn’t display any output when it does start, follow
these steps to narrow down the probable cause.

8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded
 1. Run the vmkload_mod command.

[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver (see Examining NVIDIA kernel driver output).

8.2.2. Verifying that nvidia-smi works
If the NVIDIA kernel driver is correctly loaded on the physical GPU, run nvidia-smi and verify
that all physical GPUs not currently being used for GPU pass-through are listed in the output.
For details on expected output, see NVIDIA System Management Interface nvidia-smi.

If nvidia-smi fails to report the expected output, check dmesg for NVIDIA kernel driver
messages.

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 114

8.2.3. Examining NVIDIA kernel driver output
Information and debug messages from the NVIDIA kernel driver are logged in kernel logs,
prefixed with NVRM or nvidia.

Run dmesg and check for the NVRM and nvidia prefixes:
[root@xenserver ~]# dmesg | grep -E "NVRM|nvidia"
[22.054928] nvidia: module license 'NVIDIA' taints kernel.
[22.390414] NVRM: loading
[22.829226] nvidia 0000:04:00.0: enabling device (0000 -> 0003)
[22.829236] nvidia 0000:04:00.0: PCI INT A -> GSI 32 (level, low) -> IRQ 32
[22.829240] NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:
[22.829241] NVRM: BAR0 is 0M @ 0x0 (PCI:0000:00:04.0)
[22.829243] NVRM: The system BIOS may have misconfigured your GPU.

8.2.4. Examining NVIDIA Virtual GPU Manager
Messages

Information and debug messages from the NVIDIA Virtual GPU Manager are logged to the
hypervisor’s log files, prefixed with vmiop.

8.2.4.1. Examining VMware vSphere vGPU Manager
Messages

For VMware vSphere, NVIDIA Virtual GPU Manager messages are written to the vmware.log
file in the guest VM’s storage directory.

Look in the vmware.log file for the vmiop prefix:
[root@esxi:~] grep vmiop /vmfs/volumes/datastore1/win7-vgpu-test1/vmware.log
2022-12-16T14:02:21.275Z| vmx| I120: DICT pciPassthru0.virtualDev = "vmiop"
2022-12-16T14:02:21.344Z| vmx| I120: GetPluginPath testing /usr/lib64/vmware/plugin/
libvmx-vmiop.so
2022-12-16T14:02:21.344Z| vmx| I120: PluginLdr_LoadShared: Loaded shared plugin
 libvmx-vmiop.so from /usr/lib64/vmware/plugin/libvmx-vmiop.so
2022-12-16T14:02:21.344Z| vmx| I120: VMIOP: Loaded plugin libvmx-
vmiop.so:VMIOP_InitModule
2022-12-16T14:02:21.359Z| vmx| I120: VMIOP: Initializing plugin vmiop-display
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: gpu-pci-id : 0000:04:00.0
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: vgpu_type : quadro
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: Framebuffer: 0x74000000
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: Virtual Device Id: 0x11B0:0x101B
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: ######## vGPU Manager Information:
 ########
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: Driver Version: 525.60.12
2022-12-16T14:02:21.365Z| vmx| I120: vmiop_log: VGX Version: 15.0
2022-12-16T14:02:21.445Z| vmx| I120: vmiop_log: Init frame copy engine: syncing...
2022-12-16T14:02:37.031Z| vthread-12| I120: vmiop_log: ######## Guest NVIDIA Driver
 Information: ########
2022-12-16T14:02:37.031Z| vthread-12| I120: vmiop_log: Driver Version: 527.41
2022-12-16T14:02:37.031Z| vthread-12| I120: vmiop_log: VGX Version: 15.0
2022-12-16T14:02:37.093Z| vthread-12| I120: vmiop_log: Clearing BAR1 mapping
2022-12-19T23:39:55.726Z| vmx| I120: VMIOP: Shutting down plugin vmiop-display
[root@esxi:~]

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 115

8.3. Capturing configuration data by
running nvidia-bug-report.sh

The nvidia-bug-report.sh script captures debug information into a gzip-compressed log
file on the server.

Run nvidia-bug-report.sh from the VMware ESXi host shell.

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 116

Chapter 9. Additional Information

The following table provides links to additional information about each application or
framework in NVIDIA AI Enterprise.

Application or Framework Additional Information
TensorFlow ‣ TensorFlow Release Notes

‣ TensorFlow User Guide

PyTorch PyTorch Release Notes

NVIDIA Triton Inference Server Triton Inference Server Documentation on Github

NVIDIA TensorRT NVIDIA TensorRT Documentation

RAPIDS RAPIDS Docs on the RAPIDS project site

Other Software Additional Information
NVIDIA GPU Operator NVIDIA GPU Operator Documentation

NVIDIA Network Operator NVIDIA Network Operator Documentation

https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/index.html
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-user-guide/index.html
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/index.html
https://github.com/triton-inference-server/server/blob/r21.02/README.md#documentation
https://docs.nvidia.com/deeplearning/tensorrt/
https://docs.rapids.ai/
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.mellanox.com/display/COKAN10/Network+Operator

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 117

Appendix A. Virtual GPU Types for
Supported GPUs

NVIDIA vGPU is available as a licensed product on supported NVIDIA GPUs. For a list of
recommended server platforms and supported GPUs, consult the release notes for supported
hypervisors at NVIDIA AI Enterprise Documentation.

A.1. NVIDIA A800 PCIe 80GB and NVIDIA
A800 PCIe 80GB Liquid Cooled Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A800 PCIe 80GB and NVIDIA A800 PCIe 80GB liquid
cooled are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A800 PCIe 80GB and
NVIDIA A800 PCIe 80GB Liquid Cooled

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A800D-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A800D-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A800D-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

https://docs.nvidia.com/ai-enterprise/2.0/
http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 118

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A800D-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

A800D-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A800D-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A800 PCIe 80GB and
NVIDIA A800 PCIe 80GB Liquid Cooled

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A800D-80C
Training
Workloads

81920 1 1 4096×21601 1

A800D-40C
Training
Workloads

40960 2 2 4096×21601 1

A800D-20C
Training
Workloads

20480 4 4 4096×21601 1

A800D-16C
Inference
Workloads

16384 5 5 4096×21601 1

A800D-10C
Training
Workloads

10240 8 8 4096×21601 1

A800D-8C
Training
Workloads

8192 10 10 4096×21601 1

A800D-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.2. NVIDIA A800 HGX Virtual GPU Types
Physical GPUs per board: 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 119

This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A800 HGX 80GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A800DX-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A800DX-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A800DX-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

A800DX-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

A800DX-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A800DX-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A800 HGX 80GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A800DX-80C
Training
Workloads

81920 1 1 4096×21601 1

A800DX-40C
Training
Workloads

40960 2 2 4096×21601 1

A800DX-20C
Training
Workloads

20480 4 4 4096×21601 1

A800DX-16C
Inference
Workloads

16384 5 5 4096×21601 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 120

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A800DX-10C
Training
Workloads

10240 8 8 4096×21601 1

A800DX-8C
Training
Workloads

8192 10 10 4096×21601 1

A800DX-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.3. NVIDIA A100 PCIe 40GB Virtual GPU
Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100-7-40C Training
Workloads

40960 1 7 7 MIG 7g.40gb

A100-4-20C Training
Workloads

20480 1 4 4 MIG 4g.20gb

A100-3-20C Training
Workloads

20480 2 3 3 MIG 3g.20gb

A100-2-10C Training
Workloads

10240 3 2 2 MIG 2g.10gb

A100-1-5C Inference
Workloads

5120 7 1 1 MIG 1g.5gb

A100-1-5CME Inference
Workloads

5120 1 1 1 MIG 1g.5gb+me

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 121

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100-40C
Training
Workloads

40960 1 1 4096×21601 1

A100-20C
Training
Workloads

20480 2 2 4096×21601 1

A100-10C
Training
Workloads

10240 4 4 4096×21601 1

A100-8C
Training
Workloads

8192 5 5 4096×21601 1

A100-5C
Inference
Workloads

5120 8 8 4096×21601 1

A100-4C
Inference
Workloads

4096 10 10 4096×21601 1

A.4. NVIDIA A100 HGX 40GB Virtual GPU
Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100X-7-40C Training
Workloads

40960 1 7 7 MIG 7g.40gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 122

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100X-4-20C Training
Workloads

20480 1 4 4 MIG 4g.20gb

A100X-3-20C Training
Workloads

20480 2 3 3 MIG 3g.20gb

A100X-2-10C Training
Workloads

10240 3 2 2 MIG 2g.10gb

A100X-1-5C Inference
Workloads

5120 7 1 1 MIG 1g.5gb

A100X-1-5CME Inference
Workloads

5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100X-40C
Training
Workloads

40960 1 1 4096×21601 1

A100X-20C
Training
Workloads

20480 2 2 4096×21601 1

A100X-10C
Training
Workloads

10240 4 4 4096×21601 1

A100X-8C
Training
Workloads

8192 5 5 4096×21601 1

A100X-5C
Inference
Workloads

5120 8 8 4096×21601 1

A100X-4C
Inference
Workloads

4096 10 10 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 123

A.5. NVIDIA A100 PCIe 80GB, NVIDIA A100
PCIe 80GB Liquid Cooled and NVIDIA
A100X Virtual GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB liquid cooled
and NVIDIA A100X GPUs are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB, NVIDIA
A100 PCIe 80GB Liquid Cooled and NVIDIA A100X

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100D-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A100D-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A100D-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

A100D-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

A100D-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A100D-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB, NVIDIA
A100 PCIe 80GB Liquid Cooled and NVIDIA A100X

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 124

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100D-80C
Training
Workloads

81920 1 1 4096×21601 1

A100D-40C
Training
Workloads

40960 2 2 4096×21601 1

A100D-20C
Training
Workloads

20480 4 4 4096×21601 1

A100D-16C
Inference
Workloads

16384 5 5 4096×21601 1

A100D-10C
Training
Workloads

10240 8 8 4096×21601 1

A100D-8C
Training
Workloads

8192 10 10 4096×21601 1

A100D-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.6. NVIDIA A100 HGX 80GB Virtual GPU
Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100DX-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

A100DX-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

A100DX-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 125

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A100DX-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

A100DX-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

A100DX-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A100DX-80C
Training
Workloads

81920 1 1 4096×21601 1

A100DX-40C
Training
Workloads

40960 2 2 4096×21601 1

A100DX-20C
Training
Workloads

20480 4 4 4096×21601 1

A100DX-16C
Inference
Workloads

16384 5 5 4096×21601 1

A100DX-10C
Training
Workloads

10240 8 8 4096×21601 1

A100DX-8C
Training
Workloads

8192 10 10 4096×21601 1

A100DX-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.7. NVIDIA A40 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA A40

Required license edition: vCS or vWS

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 126

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A40-48C
Training
Workloads

49152 1 1 4096×21601 1

A40-24C
Training
Workloads

24576 2 2 4096×21601 1

A40-16C
Training
Workloads

16384 3 3 4096×21601 1

A40-12C
Training
Workloads

12288 4 4 4096×21601 1

A40-8C
Training
Workloads

8192 6 6 4096×21601 1

A40-6C
Training
Workloads

6144 8 8 4096×21601 1

A40-4C
Inference
Workloads

4096 82 12 4096×21601 1

A.8. NVIDIA A30 and NVIDIA A30X Virtual
GPU Types

Physical GPUs per board: 1
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A30 and NVIDIA A30X GPUs are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A30 and NVIDIA A30X

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A30-4-24C Training
Workloads

24576 1 4 4 MIG 4g.24gb

A30-2-12C Training
Workloads

12288 2 2 2 MIG 2g.12gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 127

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

A30-1-6C Inference
Workloads

6144 4 1 1 MIG 1g.6gb

A30-1-6CME Inference
Workloads

6144 1 1 1 MIG 1g.6gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A30 and NVIDIA A30X

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A30-24C
Training
Workloads

24576 1 1 4096×21601 1

A30-12C
Training
Workloads

12288 2 2 4096×21601 1

A30-8C
Training
Workloads

8192 3 3 4096×21601 1

A30-6C
Inference
Workloads

6144 4 4 4096×21601 1

A30-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.9. NVIDIA A16 Virtual GPU Types
Physical GPUs per board: 4

C-Series Virtual GPU Types for NVIDIA A16

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 128

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A16-16C
Training
Workloads

16384 1 4 4096×21601 1

A16-8C
Training
Workloads

8192 2 8 4096×21601 1

A16-4C
Inference
Workloads

4096 4 16 4096×21601 1

A.10. NVIDIA A10 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA A10

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

A10-24C
Training
Workloads

24576 1 1 4096×21601 1

A10-12C
Training
Workloads

12288 2 2 4096×21601 1

A10-8C
Training
Workloads

8192 3 3 4096×21601 1

A10-6C
Training
Workloads

6144 4 4 4096×21601 1

A10-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.11. NVIDIA H100 PCIe 80GB Virtual GPU
Types

Physical GPUs per board: 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 129

This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 PCIe 80GB

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU
Type

Intended Use
Case

Frame
Buffer
(MB)

Maximum
vGPUs
per GPU

Slices
per
vGPU

Compute
Instances
per vGPU

Corresponding
GPU Instance
Profile

H100-7-80C Training
Workloads

81920 1 7 7 MIG 7g.80gb

H100-4-40C Training
Workloads

40960 1 4 4 MIG 4g.40gb

H100-3-40C Training
Workloads

40960 2 3 3 MIG 3g.40gb

H100-2-20C Training
Workloads

20480 3 2 2 MIG 2g.20gb

H100-1-10C Training
Workloads

10240 7 1 1 MIG 1g.10gb

H100-1-10CME Training
Workloads

10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 PCIe 80GB

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

H100-80C
Training
Workloads

81920 1 1 4096×21601 1

H100-40C
Training
Workloads

40960 2 2 4096×21601 1

H100-20C
Training
Workloads

20480 4 4 4096×21601 1

H100-16C
Inference
Workloads

16384 5 5 4096×21601 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 130

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

H100-10C
Training
Workloads

10240 8 8 4096×21601 1

H100-8C
Training
Workloads

8192 10 10 4096×21601 1

H100-5C
Inference
Workloads

5120 16 16 4096×21601 1

H100-4C
Inference
Workloads

4096 20 20 4096×21601 1

A.12. NVIDIA RTX A6000 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA RTX A6000

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTXA6000-48C
Training
Workloads

49152 1 1 4096×21601 1

RTXA6000-24C
Training
Workloads

24576 2 2 4096×21601 1

RTXA6000-16C
Training
Workloads

16384 3 3 4096×21601 1

RTXA6000-12C
Training
Workloads

12288 4 4 4096×21601 1

RTXA6000-8C
Training
Workloads

8192 6 6 4096×21601 1

RTXA6000-6C
Training
Workloads

6144 8 8 4096×21601 1

RTXA6000-4C
Inference
Workloads

4096 82 12 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 131

A.13. NVIDIA RTX A5000 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA RTX A5000

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTXA5000-24C
Training
Workloads

24576 1 1 4096×21601 1

RTXA5000-12C
Training
Workloads

12288 2 2 4096×21601 1

RTXA5000-8C
Training
Workloads

8192 3 3 4096×21601 1

RTXA5000-6C
Training
Workloads

6144 4 4 4096×21601 1

RTXA5000-4C
Inference
Workloads

4096 6 6 4096×21601 1

A.14. Tesla T4 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for Tesla T4

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

T4-16C
Training
Workloads

16384 1 1 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 132

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

T4-8C
Training
Workloads

8192 2 2 4096×21601 1

T4-4C
Inference
Workloads

4096 4 4 4096×21601 1

A.15. Quadro RTX 8000 Passive Virtual GPU
Types

Physical GPUs per board: 1

C-Series Virtual GPU Types for Quadro RTX 8000 Passive

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTX8000P-48C
Training
Workloads

49152 1 1 4096×21601 1

RTX8000P-24C
Training
Workloads

24576 2 2 4096×21601 1

RTX8000P-16C
Training
Workloads

16384 3 3 4096×21601 1

RTX8000P-12C
Training
Workloads

12288 4 4 4096×21601 1

RTX8000P-8C
Training
Workloads

8192 6 6 4096×21601 1

RTX8000P-6C
Training
Workloads

6144 8 8 4096×21601 1

RTX8000P-4C
Inference
Workloads

4096 82 8 4096×21601 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v3.0 | 133

A.16. Quadro RTX 6000 Passive Virtual GPU
Types

Physical GPUs per board: 1

C-Series Virtual GPU Types for Quadro RTX 6000 Passive

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

RTX6000P-24C
Training
Workloads

24576 1 1 4096×21601 1

RTX6000P-12C
Training
Workloads

12288 2 2 4096×21601 1

RTX6000P-8C
Training
Workloads

8192 3 3 4096×21601 1

RTX6000P-6C
Training
Workloads

6144 4 4 4096×21601 1

RTX6000P-4C
Inference
Workloads

4096 6 6 4096×21601 1

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	Introduction to NVIDIA AI Enterprise
	1.1. NVIDIA AI Enterprise Software Architecture
	1.2. Prerequisites for Using NVIDIA AI Enterprise

	Installing and Configuring NVIDIA Virtual GPU Manager
	2.1. About NVIDIA Virtual GPUs
	2.1.1. NVIDIA vGPU Architecture
	2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
	2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture

	2.1.2. About Virtual GPU Types
	2.1.3. Valid Virtual GPU Configurations on a Single GPU
	2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU
	2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU

	2.2. Switching the Mode of a GPU that Supports Multiple Display Modes
	2.3. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM
	2.3.1. Installing the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM
	2.3.1.2. Verifying the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise Linux KVM

	2.3.2. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
	2.3.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
	2.3.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor
	2.3.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

	2.3.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
	2.3.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using virsh
	2.3.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using the QEMU Command Line

	2.3.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor
	2.3.6. Deleting a vGPU on a Linux with KVM Hypervisor
	2.3.7. NVIDIA vGPU Information in the sysfs File System

	2.4. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere
	2.4.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere
	2.4.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere
	2.4.3. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere
	2.4.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere
	2.4.5. Configuring VMware vMotion with vGPU for VMware vSphere
	2.4.6. Changing the Default Graphics Type in VMware vSphere
	2.4.7. Configuring a vSphere VM with NVIDIA vGPU
	2.4.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU
	2.4.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU

	2.4.8. Setting vGPU Plugin Parameters on VMware vSphere

	2.5. Configuring a GPU for MIG-Backed vGPUs
	2.5.1. Enabling MIG Mode for a GPU
	2.5.2. Creating GPU Instances on a MIG-Enabled GPU
	2.5.3. Optional: Creating Compute Instances in a GPU instance

	2.6. Disabling MIG Mode for One or More GPUs
	2.7. Disabling and Enabling ECC Memory
	2.7.1. Disabling ECC Memory
	2.7.2. Enabling ECC Memory

	2.8. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology

	Installing and Licensing NVIDIA AI Enterprise Components Required in a Guest VM
	3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes
	3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using NVIDIA GPU Operator
	3.1.2. Transforming Container Images for AI and Data Science Applications and Frameworks into Kubernetes Pods

	3.2. Install NVIDIA AI Enterprise Software Components by Using Docker
	3.2.1. Installing and Licensing the NVIDIA AI Enterprise Graphics Driver Natively
	3.2.2. Installing AI and Data Science Applications and Frameworks by Using Docker

	3.3. Installing and Licensing NVIDIA AI Enterprise Components Natively
	3.3.1. Installing the NVIDIA AI Enterprise Graphics Driver on Windows
	3.3.2. Installing the NVIDIA AI Enterprise Graphics Driver on Linux
	3.3.2.1. Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package
	3.3.2.2. Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from an RPM Package
	3.3.2.3. Disabling the Nouveau Driver for NVIDIA Graphics Cards
	3.3.2.4. Disabling the Wayland Display Server Protocol for Red Hat Enterprise Linux

	3.3.3. Configuring a Licensed Client of NVIDIA License System
	3.3.3.1. Configuring a Licensed Client on Windows
	3.3.3.2. Configuring a Licensed Client on Linux
	3.3.3.3. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client

	3.3.4. Installing NVIDIA Container Toolkit
	3.3.5. Verifying the Installation of NVIDIA Container Toolkit
	3.3.6. Installing Software Distributed as Container Images
	3.3.7. Running ResNet-50 with TensorRT
	3.3.8. Running ResNet-50 with TensorFlow
	3.3.9. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU

	Configuring Multinode Scaling
	4.1. Hardware and VM Configuration Requirements for Multinode Scaling
	4.1.1. Hardware Requirements for Multinode Scaling
	4.1.2. VM Requirements for Multinode Scaling

	4.2. Configuring NUMA Affinity for the VMs
	4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two NICs Across Both NUMA Nodes
	4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on a Single NUMA Node

	4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch
	4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections
	4.5. Installing the Mellanox OFED Driver
	4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM
	4.7. Building and Installing the NVIDIA Peer Memory Driver

	Modifying a VM's NVIDIA vGPU Configuration
	5.1. Removing a VM’s NVIDIA vGPU Configuration
	5.1.1. Removing a vSphere VM’s vGPU Configuration

	5.2. Modifying GPU Allocation Policy
	5.2.1. Modifying GPU Allocation Policy on VMware vSphere

	5.3. Migrating a VM Configured with vGPU
	5.3.1. Migrating a VM Configured with vGPU on VMware vSphere
	5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere

	5.4. Modifying a MIG-Backed vGPU's Configuration
	5.5. Enabling Unified Memory for a vGPU
	5.5.1. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM
	5.5.2. Enabling Unified Memory for a vGPU on VMware vSphere

	5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU
	5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU
	5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU
	5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features
	5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are Enabled
	5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU
	5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM

	5.7. Enabling the TCC Driver Model for a vGPU

	Monitoring GPU Performance
	6.1. NVIDIA System Management Interface nvidia-smi
	6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor
	6.2.1. Getting a Summary of all Physical GPUs in the System
	6.2.2. Getting a Summary of all vGPUs in the System
	6.2.3. Getting Physical GPU Details
	6.2.4. Getting vGPU Details
	6.2.5. Monitoring vGPU engine usage
	6.2.6. Monitoring vGPU engine usage by applications
	6.2.7. Monitoring Encoder Sessions
	6.2.8. Listing Supported vGPU Types
	6.2.9. Listing the vGPU Types that Can Currently Be Created

	6.3. Monitoring GPU Performance from a Guest VM
	6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM

	Changing Scheduling Behavior for Time-Sliced vGPUs
	7.1. Scheduling Policies for Time-Sliced vGPUs
	7.2. Scheduler Time Slice for Time-Sliced vGPUs
	7.3. RmPVMRL Registry Key
	7.4. Getting the Current Time-Sliced vGPU Scheduling Behavior for All GPUs
	7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs
	7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs
	7.7. Restoring Default Time-Sliced vGPU Scheduler Settings

	Troubleshooting
	8.1. Known issues
	8.2. Troubleshooting steps
	8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded
	8.2.2. Verifying that nvidia-smi works
	8.2.3. Examining NVIDIA kernel driver output
	8.2.4. Examining NVIDIA Virtual GPU Manager Messages
	8.2.4.1. Examining VMware vSphere vGPU Manager Messages

	8.3. Capturing configuration data by running nvidia-bug-report.sh

	Additional Information
	Virtual GPU Types for Supported GPUs
	A.1. NVIDIA A800 PCIe 80GB and NVIDIA A800 PCIe 80GB Liquid Cooled Virtual GPU Types
	A.2. NVIDIA A800 HGX Virtual GPU Types
	A.3. NVIDIA A100 PCIe 40GB Virtual GPU Types
	A.4. NVIDIA A100 HGX 40GB Virtual GPU Types
	A.5. NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X Virtual GPU Types
	A.6. NVIDIA A100 HGX 80GB Virtual GPU Types
	A.7. NVIDIA A40 Virtual GPU Types
	A.8. NVIDIA A30 and NVIDIA A30X Virtual GPU Types
	A.9. NVIDIA A16 Virtual GPU Types
	A.10. NVIDIA A10 Virtual GPU Types
	A.11. NVIDIA H100 PCIe 80GB Virtual GPU Types
	A.12. NVIDIA RTX A6000 Virtual GPU Types
	A.13. NVIDIA RTX A5000 Virtual GPU Types
	A.14. Tesla T4 Virtual GPU Types
	A.15. Quadro RTX 8000 Passive Virtual GPU Types
	A.16. Quadro RTX 6000 Passive Virtual GPU Types

