
DU-10617-001 _v5.0 | April 2024

NVIDIA AI Enterprise

User Guide

NVIDIA AI Enterprise DU-10617-001 _v5.0 | ii

Table of Contents

Chapter 1. Introduction to NVIDIA AI Enterprise..1
1.1. NVIDIA AI Enterprise Software Architecture.. 2

1.2. Prerequisites for Using NVIDIA AI Enterprise...4

Chapter 2. Installing and Configuring NVIDIA Virtual GPU Manager..................................5
2.1. About NVIDIA Virtual GPUs... 5

2.1.1. NVIDIA vGPU Architecture...5

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture...6

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture..7

2.1.2. About Virtual GPU Types..8

2.1.3. Valid Virtual GPU Configurations on a Single GPU.. 9

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU................................ 9

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU.............................10

2.2. Switching the Mode of a GPU that Supports Multiple Display Modes............................... 11

2.3. Downloading NVIDIA AI Enterprise... 11

2.4. Installing the Virtual GPU Manager Package for Linux KVM... 13

2.5. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise
Linux KVM...14

2.5.1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM....15

2.5.2. Verifying the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise
Linux KVM.. 16

2.6. Installing and Configuring the NVIDIA Virtual GPU Manager for Ubuntu.......................... 17

2.6.1. Installing the NVIDIA Virtual GPU Manager for Ubuntu...17

2.6.1.1. Installing the Virtual GPU Manager Package for Ubuntu..18

2.6.1.2. Verifying the Installation of the NVIDIA AI Enterprise for Ubuntu........................18

2.7. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere......19

2.7.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere.................................. 20

2.7.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere................................. 21

2.7.3. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere............ 22

2.7.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere...................23

2.7.5. Configuring VMware vMotion with vGPU for VMware vSphere......................................23

2.7.6. Changing the Default Graphics Type in VMware vSphere...24

2.7.7. Configuring a vSphere VM with NVIDIA vGPU..28

2.7.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU..29

2.7.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU..30

2.7.8. Setting vGPU Plugin Parameters on VMware vSphere... 32

2.8. Configuring the vGPU Manager for a Linux with KVM Hypervisor..33

NVIDIA AI Enterprise DU-10617-001 _v5.0 | iii

2.8.1. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor..................33

2.8.2. Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a
Linux with KVM Hypervisor...34

2.8.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor...35

2.8.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor........................35

2.8.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM
Hypervisor.. 37

2.8.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM................................. 39

2.8.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using
virsh...40

2.8.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using
the QEMU Command Line...41

2.8.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor.............................. 42

2.8.6. Deleting a vGPU on a Linux with KVM Hypervisor..42

2.8.7. NVIDIA vGPU Information in the sysfs File System..43

2.9. Putting a GPU Into Mixed-Size Mode..46

2.10. Placing a vGPU on a Physical GPU in Mixed-Size Mode...47

2.11. Configuring a GPU for MIG-Backed vGPUs..48

2.11.1. Enabling MIG Mode for a GPU...49

2.11.2. Creating GPU Instances on a MIG-Enabled GPU...50

2.11.3. Optional: Creating Compute Instances in a GPU instance...51

2.12. Disabling MIG Mode for One or More GPUs... 52

2.13. Disabling and Enabling ECC Memory..54

2.13.1. Disabling ECC Memory...54

2.13.2. Enabling ECC Memory..56

2.14. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology..............57

Chapter 3. Installing and Licensing NVIDIA AI Enterprise Software Components.....59
3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes................. 59

3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using
NVIDIA GPU Operator...59

3.1.2. Transforming Container Images for AI and Data Science Applications and
Frameworks into Kubernetes Pods... 60

3.2. Install NVIDIA AI Enterprise Software Components by Using Docker................................. 60

3.2.1. Installing and Licensing the NVIDIA AI Enterprise Graphics Driver Natively.............60

3.2.2. Installing NVIDIA AI Enterprise Software, Applications, and Deep Learning
Framework Components by Using Docker..60

3.3. Installing NVIDIA GPU Operator by Using a Bash Shell Script...62

3.4. Installing and Licensing NVIDIA AI Enterprise Components Natively.................................. 63

3.4.1. Installing the NVIDIA AI Enterprise Graphics Driver on Windows..................................63

NVIDIA AI Enterprise DU-10617-001 _v5.0 | iv

3.4.2. Installing the NVIDIA AI Enterprise Graphics Driver on Linux..66

3.4.2.1. Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian
Package... 66

3.4.2.2. Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions
from an RPM Package...66

3.4.2.3. Disabling the Nouveau Driver for NVIDIA Graphics Cards.. 67

3.4.2.4. Disabling the Wayland Display Server Protocol for Red Hat Enterprise
Linux..68

3.4.3. Configuring a Licensed Client of NVIDIA License System.. 68

3.4.3.1. Proxy Server Requirements and Firewall Rules for a CLS Instance.......................69

3.4.3.2. Configuring a Licensed Client on Windows with Default Settings....................... 70

3.4.3.3. Configuring a Licensed Client on Linux with Default Settings............................... 70

3.4.3.4. Generating an Encrypted Credentials File...71

3.4.3.5. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client............ 73

3.4.4. Installing NVIDIA Container Toolkit...74

3.4.5. Verifying the Installation of NVIDIA Container Toolkit.. 75

3.4.6. Installing Software Distributed as Container Images..75

3.4.7. Running ResNet-50 with TensorRT...76

3.4.8. Running ResNet-50 with TensorFlow...77

3.4.9. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU...................... 77

3.5. The NVIDIA NGC Catalog... 78

3.5.1. Resources...78

3.5.2. Container Images...79

3.5.3. Helm Charts... 79

3.5.4. Models... 79

3.5.5. Accessing the NVIDIA AI Enterprise Software Suite..80

3.5.6. Adding Additional Users from Your Organization to the Enterprise Catalog
(Admins Only)..80

3.6. The NGC Private Registry..80

3.6.1. Accessing Your NGC Private Registry... 81

3.6.2. Managing Teams and Users...82

3.6.2.1. Creating Teams...82

3.6.2.2. Creating Users.. 82

Chapter 4. Configuring Multinode Scaling..83
4.1. Hardware and VM Configuration Requirements for Multinode Scaling.............................. 83

4.1.1. Hardware Requirements for Multinode Scaling... 83

4.1.2. VM Requirements for Multinode Scaling...84

4.2. Configuring NUMA Affinity for the VMs..84

NVIDIA AI Enterprise DU-10617-001 _v5.0 | v

4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two
NICs Across Both NUMA Nodes... 85

4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on
a Single NUMA Node..87

4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch...88

4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections... 89

4.5. Installing the Mellanox OFED Driver.. 90

4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM.. 91

4.7. Building and Installing the NVIDIA Peer Memory Driver.. 92

Chapter 5. Modifying a VM's NVIDIA vGPU Configuration...93
5.1. Removing a VM’s NVIDIA vGPU Configuration..93

5.1.1. Removing a vSphere VM’s vGPU Configuration... 93

5.2. Modifying GPU Allocation Policy.. 93

5.2.1. Modifying GPU Allocation Policy on VMware vSphere.. 94

5.3. Migrating a VM Configured with vGPU...97

5.3.1. Migrating a VM Configured with vGPU on VMware vSphere... 98

5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere.....100

5.4. Modifying a MIG-Backed vGPU's Configuration.. 101

5.5. Enabling Unified Memory for a vGPU...104

5.5.1. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM................104

5.5.2. Enabling Unified Memory for a vGPU on VMware vSphere..104

5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU............................... 105

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU.. 105

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU..106

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features.. 106

5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers
Are Enabled.. 106

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU.. 107

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM..107

5.7. Enabling the TCC Driver Model for a vGPU... 108

Chapter 6. Monitoring GPU Performance...109
6.1. NVIDIA System Management Interface nvidia-smi..109

6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor................................... 109

6.2.1. Getting a Summary of all Physical GPUs in the System... 110

6.2.2. Getting a Summary of all vGPUs in the System...111

6.2.3. Getting Physical GPU Details..111

6.2.4. Getting vGPU Details..114

6.2.5. Monitoring vGPU engine usage...115

NVIDIA AI Enterprise DU-10617-001 _v5.0 | vi

6.2.6. Monitoring vGPU engine usage by applications..116

6.2.7. Monitoring Encoder Sessions...117

6.2.8. Monitoring MIG-backed vGPU activity...118

6.2.9. Listing Supported vGPU Types..119

6.2.10. Listing the vGPU Types that Can Currently Be Created... 120

6.3. Monitoring GPU Performance from a Guest VM.. 121

6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM.............................121

Chapter 7. Changing Scheduling Behavior for Time-Sliced vGPUs................................123
7.1. Scheduling Policies for Time-Sliced vGPUs... 123

7.2. Scheduler Time Slice for Time-Sliced vGPUs..125

7.3. RmPVMRL Registry Key...125

7.4. Getting the Current Time-Sliced vGPU Scheduling Policy for All GPUs...........................128

7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs by Using the
RmPVMRL Registry Key..129

7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs by Using the
RmPVMRL Registry Key..130

7.7. Restoring Default Time-Sliced vGPU Scheduler Settings by Using the RmPVMRL
Registry Key.. 132

Chapter 8. Troubleshooting...134
8.1. Known issues...134

8.2. Troubleshooting steps.. 134

8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded.. 134

8.2.2. Verifying that nvidia-smi works... 134

8.2.3. Examining NVIDIA kernel driver output...135

8.2.4. Examining NVIDIA Virtual GPU Manager Messages..135

8.2.4.1. Examining VMware vSphere vGPU Manager Messages.. 135

8.3. Capturing configuration data by running nvidia-bug-report.sh...136

Chapter 9. Additional Information... 137

Appendix A. Virtual GPU Types for Supported GPUs...138
A.1. NVIDIA A800 PCIe 80GB, NVIDIA A800 PCIe 80GB Liquid Cooled, and NVIDIA AX800

Virtual GPU Types.. 138

A.2. NVIDIA A800 PCIe 40GB Virtual GPU Types... 140

A.3. NVIDIA A800 HGX Virtual GPU Types.. 141

A.4. NVIDIA A100 PCIe 40GB Virtual GPU Types... 142

A.5. NVIDIA A100 HGX 40GB Virtual GPU Types... 144

A.6. NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X
Virtual GPU Types.. 145

A.7. NVIDIA A100 HGX 80GB Virtual GPU Types... 147

NVIDIA AI Enterprise DU-10617-001 _v5.0 | vii

A.8. NVIDIA A40 Virtual GPU Types.. 148

A.9. NVIDIA A30, NVIDIA A30X, and NVIDIA A30 Liquid Cooled Virtual GPU Types............. 149

A.10. NVIDIA A16 Virtual GPU Types... 150

A.11. NVIDIA A10 Virtual GPU Types... 151

A.12. NVIDIA H100 PCIe 94GB (H100 NVL) Virtual GPU Types...152

A.13. NVIDIA H100 SXM5 94GB Virtual GPU Types... 153

A.14. NVIDIA H100 PCIe 80GB Virtual GPU Types.. 154

A.15. NVIDIA H100 SXM5 80GB Virtual GPU Types... 156

A.16. NVIDIA H100 SXM5 64GB Virtual GPU Types... 157

A.17. NVIDIA H800 PCIe 94GB (H800 NVL) Virtual GPU Types...158

A.18. NVIDIA H800 PCIe 80GB Virtual GPU Types.. 160

A.19. NVIDIA H800 SXM5 80GB Virtual GPU Types... 161

A.20. NVIDIA L40 Virtual GPU Types..163

A.21. NVIDIA L40S Virtual GPU Types... 164

A.22. NVIDIA L20 Virtual GPU Types..164

A.23. NVIDIA L4 Virtual GPU Types...165

A.24. NVIDIA L2 Virtual GPU Types...166

A.25. NVIDIA RTX 6000 Ada Virtual GPU Types... 167

A.26. NVIDIA RTX 5880 Ada Virtual GPU Types... 168

A.27. NVIDIA RTX 5000 Ada Virtual GPU Types... 169

A.28. NVIDIA RTX A6000 Virtual GPU Types.. 169

A.29. NVIDIA RTX A5500 Virtual GPU Types.. 170

A.30. NVIDIA RTX A5000 Virtual GPU Types.. 171

A.31. Tesla T4 Virtual GPU Types...172

A.32. Tesla V100 SXM2 Virtual GPU Types...172

A.33. Tesla V100 SXM2 32GB Virtual GPU Types..173

A.34. Tesla V100 PCIe Virtual GPU Types..174

A.35. Tesla V100 PCIe 32GB Virtual GPU Types...174

A.36. Tesla V100S PCIe 32GB Virtual GPU Types.. 175

A.37. Tesla V100 FHHL Virtual GPU Types.. 176

A.38. Quadro RTX 8000 Passive Virtual GPU Types..176

A.39. Quadro RTX 6000 Passive Virtual GPU Types..177

Appendix B. vGPU Placements for GPUs in Mixed-Size Mode... 179
B.1. vGPU Placements for GPUs with 94 GB of Frame Buffer.. 179

B.2. vGPU Placements for GPUs with 80 GB of Frame Buffer.. 180

B.3. vGPU Placements for GPUs with 64 GB of Frame Buffer.. 181

B.4. vGPU Placements for GPUs with 48 GB of Frame Buffer.. 181

B.5. vGPU Placements for GPUs with 40 GB of Frame Buffer.. 183

NVIDIA AI Enterprise DU-10617-001 _v5.0 | viii

B.6. vGPU Placements for GPUs with 32 GB of Frame Buffer.. 184

B.7. vGPU Placements for GPUs with 24 GB of Frame Buffer.. 184

B.8. vGPU Placements for GPUs with 20 GB of Frame Buffer.. 185

B.9. vGPU Placements for GPUs with 16 GB of Frame Buffer.. 186

NVIDIA AI Enterprise DU-10617-001 _v5.0 | ix

List of Figures

Figure 1. NVIDIA vGPU System Architecture.. 6

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture..7

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture...8

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100 PCIe 40GB.................. 10

Figure 5. Shared default graphics type...25

Figure 6. Host graphics settings for vGPU... 26

Figure 7. Shared graphics type... 27

Figure 8. Graphics device settings for a physical GPU... 27

Figure 9. Shared direct graphics type..28

Figure 10. Command for Adding a PCI Device..29

Figure 11. VM Device Selections for vGPU... 30

Figure 12. VM settings for vGPU... 31

Figure 13. NVIDIA driver installation...64

Figure 14. Verifying NVIDIA driver operation using NVIDIA Control Panel.....................................65

Figure 15. Breadth-first allocation scheme setting for vGPU-enabled VMs................................ 95

Figure 16. Host graphics settings for vGPU.. 96

Figure 17. Depth-first allocation scheme setting for vGPU-enabled VMs....................................97

NVIDIA AI Enterprise DU-10617-001 _v5.0 | x

List of Tables

Table 1. Default Time Slice Length and Scheduling Frequency by vGPU Density...................127

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 1

Chapter 1. Introduction to NVIDIA AI
Enterprise

NVIDIA® AI Enterprise is an end-to-end, cloud-native suite of AI and data analytics
software, optimized so every organization can succeed with AI. It's certified to deploy
anywhere—from the enterprise data center to the public cloud—and includes global
enterprise support and training.

NVIDIA AI Enterprise includes key enabling technologies and software from NVIDIA for
rapid deployment, management, and scaling of AI workloads in the modern hybrid cloud.

NVIDIA AI Enterprise enables the following:

 1. Leverage fully integrated, optimized, certified, and supported software from NVIDIA
for AI workloads.

 2. Run NVIDIA AI frameworks and tools optimized for GPU acceleration, reducing
deployment time and ensuring reliable performance.

 3. Deploy anywhere – including on popular data center platforms from VMware and Red
Hat, mainstream NVIDIA-Certified Systems configured with or without GPUs, and on
GPU-accelerated instances in the public cloud.

 4. Leverage the jointly certified NVIDIA and Red Hat solution to deploy and manage AI
workloads in containers or VMs with optimized software.

 5. Scale out to multiple nodes, enabling even the largest deep learning training models
to run on the VMware vSphere. Previously, scaling with bare metal performance in a
fully virtualized environment was limited to a single node, limiting the complexity and
size of AI workloads that could be supported.

 6. Run AI workloads at near bare-metal performance with new optimizations for GPU
acceleration on vSphere, including support for the latest Ampere architecture
including the NVIDIA A100. Additionally, technologies like GPUDirect Communications
can now be supported on vSphere. This provides communication between GPU
memory and storage across a cluster for improved performance.

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 2

1.1. NVIDIA AI Enterprise Software
Architecture

The software in the NVIDIA AI Enterprise suite is organized into separate layers for
infrastructure optimization software, cloud native deployment software, and AI and data
science frameworks.

The content of these layers is as follows:

‣ Infrastructure optimization software:

‣ NVIDIA virtual GPU (vGPU) software

‣ NVIDIA CUDA Toolkit

‣ NVIDIA Magnum IO™ software stack for accelerated data centers

‣ Cloud native deployment software:

‣ NVIDIA GPU Operator

‣ NVIDIA Network Operator

‣ AI and data science frameworks:

‣ TensorFlow

‣ PyTorch

‣ NVIDIA Triton Inference Server

‣ NVIDIA TensorRT

‣ RAPIDS

The AI and data science frameworks are delivered as container images. Containerized
software can be run directly with a tool such as Docker.

What Is Included?

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 3

The NVIDIA AI Enterprise suite includes frameworks that are broadly applicable and used
across vertical industries such as manufacturing, logistics, financial services, retail, and
healthcare.

NVIDIA AI Enterprise includes:

 1. TensorFlow and PyTorch for maching learning.

 2. NVIDIA TAO Toolkit for a faster, easier way to accelerate training and quickly create
highly accurate and performant, domain-specific vision, and conversational AI models.

 3. NVIDIA Tensor RT, for GPU optimized deep learning inference and Triton Inference
Server to deploy trained AI models at scale.

 4. Triton Inference Server supports all major frameworks, such as TensorFlow, TensorRT,
PyTorch, MXNet, Python and more. Triton Inference Server also includes the RAPIDS
FIL backend for the best inference performance for tree-based models on GPUs.

 5. NVIDIA RAPIDS, for end-to-end data science, machine learning and analytics pipeline.

 6. NVIDIA GPU and Network Operators, to deploy and manage NVIDIA GPU and
Networking resources in Kubernetes.

 7. NVIDIA vGPU Software, to deploy vGPU on common data center platforms, including
VMware and Red Hat.

Introduction to NVIDIA AI Enterprise

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 4

1.2. Prerequisites for Using NVIDIA AI
Enterprise

Before proceeding, ensure that these prerequisites are met:

‣ You have a system that meets the requirements in NVIDIA AI Enterprise Release Notes.

‣ One or more supported NVIDIA GPUs are installed in your system.

‣ If you are using an NVIDIA A100 GPU, the following BIOS settings are enabled on your
system:

‣ Single Root I/O Virtualization (SR-IOV)

‣ VT-d/IOMMU - Enabled

‣ The following software is installed according to the instructions in the VMware
documentation:

‣ VMware vSphere Hypervisor ESXi

‣ VMware vCenter Server

‣ A VM to be enabled with NVIDIA vGPU is created with the virtual hardware resources
in the following table.

Resource Requirements

vCPUs 16

RAM 64 GB

Storage 500 GB thin provisioned virtual disk

NIC VMXNet3 NIC connected to network

‣ A supported guest OS is installed in the VM.

For optimum performance, set options in your server configuration as follows:

‣ Enable the following options:

‣ Hyperthreading

‣ Memory Mapped I/O above 4 GB (if applicable)

‣ Set the Power Setting or System Profile option to High Performance.

‣ If applicable, set CPU Performance to Enterprise or High Throughput.

Note: If NVIDIA card detection does not include all the installed GPUs, set this option to
Enabled.

http://docs.nvidia.com/ai-enterprise/5.0/pdf/nvidia-ai-enterprise-release-notes.pdf

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 5

Chapter 2. Installing and Configuring
NVIDIA Virtual GPU
Manager

The process for installing and configuring NVIDIA Virtual GPU Manager depends on the
hypervisor that you are using. After you complete this process, you can install the display
drivers for your guest OS and license any NVIDIA AI Enterprise licensed products that you
are using.

2.1. About NVIDIA Virtual GPUs

2.1.1. NVIDIA vGPU Architecture
The high-level architecture of NVIDIA vGPU is illustrated in Figure 1. Under the control of
the NVIDIA Virtual GPU Manager running under the hypervisor, NVIDIA physical GPUs are
capable of supporting multiple virtual GPU devices (vGPUs) that can be assigned directly
to guest VMs.

Guest VMs use NVIDIA vGPUs in the same manner as a physical GPU that has been
passed through by the hypervisor: an NVIDIA driver loaded in the guest VM provides
direct access to the GPU for performance-critical fast paths, and a paravirtualized
interface to the NVIDIA Virtual GPU Manager is used for non-performant management
operations.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 6

Figure 1. NVIDIA vGPU System Architecture

Each NVIDIA vGPU is analogous to a conventional GPU, having a fixed amount of GPU
framebuffer, and one or more virtual display outputs or “heads”. The vGPU’s framebuffer
is allocated out of the physical GPU’s framebuffer at the time the vGPU is created, and
the vGPU retains exclusive use of that framebuffer until it is destroyed.

Depending on the physical GPU and the GPU virtualization software, NVIDIA Virtual GPU
Manager supports different types of vGPU on a physical GPU:

‣ On all GPUs that support NVIDIA AI Enterprise, time-sliced vGPUs can be created.

‣ Additionally, on GPUs that support the Multi-Instance GPU (MIG) feature and NVIDIA
AI Enterprise, MIG-backed vGPUs are supported. The MIG feature is introduced on
GPUs that are based on the NVIDIA Ampere GPU architecture.

Note: Although earlier releases of NVIDIA AI Enterprise supported GPUs that support
the MIG feature, such GPUs are not supported on this release of NVIDIA AI Enterprise.
GPUs that support the MIG feature are supported only on NVIDIA AI Enterprise.

2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
A time-sliced vGPU is a vGPU that resides on a physical GPU that is not partitioned into
multiple GPU instances. All time-sliced vGPUs resident on a GPU share access to the
GPU’s engines including the graphics (3D), video decode, and video encode engines.

In a time-sliced vGPU, processes that run on the vGPU are scheduled to run in series.
Each vGPU waits while other processes run on other vGPUs. While processes are running
on a vGPU, the vGPU has exclusive use of the GPU's engines. You can change the default
scheduling behavior as explained in Changing Scheduling Behavior for Time-Sliced vGPUs.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 7

Figure 2. Time-Sliced NVIDIA vGPU Internal Architecture

2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture
A MIG-backed vGPU is a vGPU that resides on a GPU instance in a MIG-capable physical
GPU. Each MIG-backed vGPU resident on a GPU has exclusive access to the GPU
instance’s engines, including the compute and video decode engines.

In a MIG-backed vGPU, processes that run on the vGPU run in parallel with processes
running on other vGPUs on the GPU. Process run on all vGPUs resident on a physical GPU
simultaneously.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 8

Figure 3. MIG-Backed NVIDIA vGPU Internal Architecture

2.1.2. About Virtual GPU Types
The number of physical GPUs that a board has depends on the board. Each physical
GPU can support several different types of virtual GPU (vGPU). vGPU types have a fixed
amount of frame buffer, number of supported display heads, and maximum resolutions.
They are grouped into different series according to the different classes of workload
for which they are optimized. Each series is identified by the last letter of the vGPU type
name.

Series Optimal Workload

C-series Compute-intensive server workloads, such as artificial intelligence (AI), deep

learning, or high-performance computing (HPC)1, 2

1 C-series vGPU types are NVIDIA Virtual Compute Server vGPU types, which are optimized for compute-intensive
workloads. As a result, they support only a single display head and do not provide Quadro graphics acceleration.

2 The maximum number of NVIDIA Virtual Compute Server vGPUs is limited to 12 vGPUs per physical GPU, irrespective of
the available hardware resources of the physical GPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 9

The number after the board type in the vGPU type name denotes the amount of frame
buffer that is allocated to a vGPU of that type. For example, a vGPU of type A16-4C is
allocated 4096 Mbytes of frame buffer on an NVIDIA A16 board.

Due to their differing resource requirements, the maximum number of vGPUs that can be
created simultaneously on a physical GPU varies according to the vGPU type. For example,
an NVDIA A16 board can support up to 4 A16-4C vGPUs on each of its two physical GPUs,
for a total of 16 vGPUs, but only 2 A16-8C vGPUs, for a total of 8 vGPUs.

When enabled, the frame-rate limiter (FRL) limits the maximum frame rate in frames per
second (FPS) for C-series vGPUs to 60 FPS.

By default, the FRL is enabled for all GPUs. The FRL is disabled when the vGPU scheduling
behavior is changed from the default best-effort scheduler on GPUs that support
alternative vGPU schedulers. For details, see Changing Scheduling Behavior for Time-
Sliced vGPUs. On vGPUs that use the best-effort scheduler, the FRL can be disabled
as explained in the release notes for your chosen hypervisor at NVIDIA AI Enterprise
Documentation.

Note: NVIDIA vGPU is a licensed product on all supported GPU boards. An NVIDIA AI
Enterprise software license is required to enable all vGPU features within the guest VM.

For details of the virtual GPU types available from each supported GPU, see Virtual GPU
Types for Supported GPUs.

2.1.3. Valid Virtual GPU Configurations on a
Single GPU

Valid vGPU configurations on a single GPU depend on whether the vGPUs are time sliced
or, on GPUs that support MIG, are MIG-backed.

2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on
a Single GPU

NVIDIA AI Enterprise supports a mixture of different types of time-sliced vGPUs on the
same physical GPU. Any combination of A-series, B-series, and Q-series vGPUs with any
amount of frame buffer can reside on the same physical GPU simultaneously. The total
amount of frame buffer allocated to the vGPUs on a physical GPU must not exceed the
amount of frame buffer that the physical GPU has.

For example, the following combinations of vGPUs can reside on the same physical GPU
simultaneously:

‣ A40-2B and A40-2Q

‣ A40-2Q and A40-4Q

‣ A40-2B and A40-4Q

By default, a GPU supports only vGPUs with the same amount of frame buffer and,
therefore, is in equal-size mode. To support vGPUs with different amounts of frame
buffer, the GPU must be put into mixed-size mode. When a GPU is in mixed-size mode,

https://docs.nvidia.com/ai-enterprise/3.1/
https://docs.nvidia.com/ai-enterprise/3.1/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 10

the maximum number of some types of vGPU allowed on a GPU is less than when the
GPU is in equal-size mode. For more information, refer to the following topics:

‣ Putting a GPU Into Mixed-Size Mode

‣ Virtual GPU Types for Supported GPUs

Not all hypervisors and GPUs support a mixture of different types of time-sliced vGPUs
on the same physical GPU. To determine if your chosen hypervisor supports this feature
with your chosen GPU, consult the release notes for your hypervisor at NVIDIA AI
Enterprise Documentation.

2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on
a Single GPU

This release of NVIDIA vGPU supports both homogeneous and mixed MIG-backed virtual
GPUs based on the underlying GPU instance configuration.

For example, an NVIDIA A100 PCIe 40GB card has one physical GPU, and can support
several types of virtual GPU. Figure 4 shows the following examples of valid homogeneous
and mixed MIG-backed virtual GPU configurations on NVIDIA A100 PCIe 40GB.

‣ A valid homogeneous configuration with 3 A100-2-10C vGPUs on 3 MIG.2g.10b GPU
instances

‣ A valid homogeneous configuration with 2 A100-3-20C vGPUs on 3 MIG.3g.20b GPU
instances

‣ A valid mixed configuration with 1 A100-4-20C vGPU on a MIG.4g.20b GPU instance,
1 A100-2-10C vGPU on a MIG.2.10b GPU instance, and 1 A100-1-5C vGPU on a
MIG.1g.5b instance

Figure 4. Example MIG-Backed vGPU Configurations on NVIDIA A100
PCIe 40GB

https://docs.nvidia.com/ai-enterprise/3.1/
https://docs.nvidia.com/ai-enterprise/3.1/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 11

2.2. Switching the Mode of a GPU that
Supports Multiple Display Modes

Some GPUs support display-off and display-enabled modes but must be used in NVIDIA
AI Enterprise deployments in display-off mode.

The GPUs listed in the following table support multiple display modes. As shown in the
table, some GPUs are supplied from the factory in display-off mode, but other GPUs are
supplied in a display-enabled mode.

GPU Mode as Supplied from the Factory

NVIDIA A40 Display-off

NVIDIA L40 Display-off

NVIDIA L40S Display-off

NVIDIA L20 Display-off

NVIDIA RTX 5000 Ada Display enabled

NVIDIA RTX 6000 Ada Display enabled

NVIDIA RTX A5000 Display enabled

NVIDIA RTX A5500 Display enabled

NVIDIA RTX A6000 Display enabled

A GPU that is supplied from the factory in display-off mode, such as the NVIDIA A40 GPU,
might be in a display-enabled mode if its mode has previously been changed.

To change the mode of a GPU that supports multiple display modes, use the
displaymodeselector tool, which you can request from the NVIDIA Display Mode
Selector Tool page on the NVIDIA Developer website.

Note: Only the GPUs listed in the table support the displaymodeselector tool. Other
GPUs that support NVIDIA AI Enterprise do not support the displaymodeselector tool
and, unless otherwise stated, do not require display mode switching.

2.3. Downloading NVIDIA AI Enterprise
Before you begin, ensure that you have your order confirmation message and have
created an NVIDIA Enterprise Account.

 1. Visit the NVIDIA Application Hub by following the Login link in the instructions
for using your NVIDIA Entitlement Certificate or when prompted after setting the
password for your NVIDIA Enterprise Account.

 2. When prompted, provide your e-mail address and password, and click LOGIN.
 3. On the NVIDIA APPLICATION HUB page that opens, click NVIDIA LICENSING PORTAL.

https://developer.nvidia.com/displaymodeselector
https://developer.nvidia.com/displaymodeselector
http://nvid.nvidia.com/dashboard/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 12

The NVIDIA Licensing Portal dashboard page opens.

Note: Your entitlement might not appear on the NVIDIA Licensing Portal dashboard
page until 24 business hours after you set your password during the initial registration
process.

 4. In the left navigation pane of the NVIDIA Licensing Portal dashboard page, click
ENTITLEMENTS to view details of the NVIDIA AI Enterprise entitlements that you
purchased.

 5. In the left navigation pane of the NVIDIA Licensing Portal dashboard page, click

SOFTWARE DOWNLOADS.
 6. On the Software Downloads page that opens, download the NVIDIA AI Enterprise

drivers that you require.
 a). Ensure that the Driver downloads tab is selected.
 b). Set the PRODUCT FAMILY option to NVAIE.
 c). Follow the Download link for the brand and version of your chosen hypervisor for

the release of NVIDIA AI Enterprise that you are using.
For example: NVIDIA AI Enterprise for vSphere 7.0.3 for NVIDIA AI Enterprise
release 17.1.
If the brand and version of your chosen hypervisor for the release of NVIDIA AI
Enterprise that you are using aren't displayed, click ALL AVAILABLE to display a list

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 13

of all available NVIDIA AI Enterprise downloads. Set filters on columns in the table
to filter the software listed.

 d). When prompted to accept the license for the software that you are downloading,
click AGREE & DOWNLOAD.

 7. If necessary, download the standalone NVIDIA Control Panel installer.
 a). Ensure that the Driver downloads tab is selected.
 b). Set the filter on the DESCRIPTION column to control.
 c). Follow the Download link for the standalone NVIDIA Control Panel installer.
 d). When prompted to accept the license for the software that you are downloading,

click AGREE & DOWNLOAD.
 8. Download any additional, non-driver software that you need for your NVIDIA AI

Enterprise deployment.
 a). Click the Non-Driver downloads tab.
 b). Optional: Use the CATEGORY filter to list only the category of software that you

are interested in, for example, DLS or gpumodeswitch.
 c). Follow the Download link for the software that you want to download.

‣ If you are using Delegated License Service (DLS) instances to serve licenses,
follow the link to the DLS release for your chosen platform, for example, NLS
License Server (DLS) 3.2 for VMware vSphere.

For information about installing and configuring DLS instances, refer to NVIDIA
License System User Guide.

‣ If you are using NVIDIA GPU Operator, follow the vGPU Driver Catalog link.

‣ If you are using an NVIDIA Tesla™ M60 or M6 GPU and think you might need to
change its mode, follow the Mode Change Utility link.

For details about when you need to change the mode, see #unique_19.
 d). When prompted to accept the license for the software that you are downloading,

click AGREE & DOWNLOAD.

2.4. Installing the Virtual GPU Manager
Package for Linux KVM

Before installing the Virtual GPU Manager package for Linux KVM, ensure that the
following prerequisites are met:

‣ The following packages are installed on the Linux KVM server:

‣ The x86_64 build of the GNU Compiler Collection (GCC)

‣ Linux kernel headers

‣ The package file is copied to a directory in the file system of the Linux KVM server.

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
package.

http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 14

 1. Change to the directory on the Linux KVM server that contains the package file.
cd package-file-directory
package-file-directory

The path to the directory that contains the package file.
 2. Make the package file executable.

chmod +x package-file-name
package-file-name

The name of the file that contains the Virtual GPU Manager package for Linux
KVM, for example NVIDIA-Linux-x86_64-390.42-vgpu-kvm.run.

 3. Run the package file as the root user.
sudo sh./package-file-name

The package file should launch and display the license agreement.
 4. Accept the license agreement to continue with the installation.
 5. When installation has completed, select OK to exit the installer.
 6. Reboot the Linux KVM server.

systemctl reboot

2.5. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Red Hat Enterprise Linux KVM

The following topics step you through the process of setting up a single Red Hat
Enterprise Linux Kernel-based Virtual Machine (KVM) VM to use NVIDIA vGPU.

CAUTION: Output from the VM console is not available for VMs that are running vGPU.
Make sure that you have installed an alternate means of accessing the VM (such as a VNC
server) before you configure vGPU.

Follow this sequence of instructions:

 1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM
 2. Verifying the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise Linux KVM
 3. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
 4. vGPUs that support SR-IOV only: Preparing the Virtual Function for an NVIDIA vGPU

that Supports SR-IOV on a Linux with KVM Hypervisor
 5. Optional: Putting a GPU Into Mixed-Size Mode
 6. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
 7. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
 8. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
 9. Optional: Placing a vGPU on a Physical GPU in Mixed-Size Mode
 10.Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 15

After the process is complete, you can install the graphics driver for your guest OS and
license any NVIDIA AI Enterprise licensed products that you are using.

2.5.1. Installing the Virtual GPU Manager
Package for Red Hat Enterprise Linux KVM

The NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM is provided as a .rpm
file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you
update vGPU Manager to a release that is incompatible with the guest VM drivers, guest
VMs will boot with vGPU disabled until their guest vGPU driver is updated to a compatible
version.

Before installing the RPM package for Red Hat Enterprise Linux KVM, ensure that
the sshd service on the Red Hat Enterprise Linux KVM server is configured to permit
root login. If the Nouveau driver for NVIDIA graphics cards is present, disable it before
installing the package. For instructions, see How to disable the Nouveau driver and install
the Nvidia driver in RHEL 7 (Red Hat subscription required).

Some versions of Red Hat Enterprise Linux KVM have z-stream updates that break Kernel
Application Binary Interface (kABI) compatibility with the previous kernel or the GA kernel.
For these versions of Red Hat Enterprise Linux KVM, the following Virtual GPU Manager
RPM packages are supplied:

‣ A package for the GA Linux KVM kernel

‣ A package for the updated z-stream kernel

To differentiate these packages, the name of each RPM package includes the kernel
version. Ensure that you install the RPM package that is compatible with your Linux KVM
kernel version.

 1. Securely copy the RPM file from the system where you downloaded the file to the Red
Hat Enterprise Linux KVM server.

‣ From a Windows system, use a secure copy client such as WinSCP.

‣ From a Linux system, use the scp command.

 2. Use secure shell (SSH) to log in as root to the Red Hat Enterprise Linux KVM server.
ssh root@kvm-server
kvm-server

The host name or IP address of the Red Hat Enterprise Linux KVM server.
 3. Change to the directory on the Red Hat Enterprise Linux KVM server to which you

copied the RPM file.
cd rpm-file-directory
rpm-file-directory

The path to the directory to which you copied the RPM file.
 4. Use the rpm command to install the package.

https://access.redhat.com/solutions/1155663
https://access.redhat.com/solutions/1155663

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 16

rpm -iv NVIDIA-vGPU-rhel-8.9-550.54.16.x86_64.rpm
Preparing packages for installation...
NVIDIA-vGPU-rhel-8.9-550.54.16
#

 5. Reboot the Red Hat Enterprise Linux KVM server.
systemctl reboot

2.5.2. Verifying the Installation of the NVIDIA AI
Enterprise for Red Hat Enterprise Linux
KVM

After the Red Hat Enterprise Linux KVM server has rebooted, verify the installation of the
NVIDIA AI Enterprise package for Red Hat Enterprise Linux KVM.

 1. Verify that the NVIDIA AI Enterprise package is installed and loaded correctly by
checking for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio
nvidia_vgpu_vfio 27099 0
nvidia 12316924 1 nvidia_vgpu_vfio
vfio_mdev 12841 0
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio_iommu_type1 22342 0
vfio 32331 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1
#

 2. Verify that the libvirtd service is active and running.
service libvirtd status

 3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
nvidia-smi
Fri Mar 22 18:46:50 2024
+--+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18W / 250W | 53MiB / 24575MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
#

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 17

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs
in your system, see Troubleshooting for troubleshooting steps.

2.6. Installing and Configuring the
NVIDIA Virtual GPU Manager for
Ubuntu

Follow this sequence of instructions to set up a single Ubuntu VM to use NVIDIA vGPU.

 1. Installing the NVIDIA Virtual GPU Manager for Ubuntu
 2. MIG-backed vGPUs only: Configuring a GPU for MIG-Backed vGPUs
 3. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
 4. vGPUs that support SR-IOV only: Preparing the Virtual Function for an NVIDIA vGPU

that Supports SR-IOV on a Linux with KVM Hypervisor
 5. Optional: Putting a GPU Into Mixed-Size Mode
 6. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
 7. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
 8. Optional: Placing a vGPU on a Physical GPU in Mixed-Size Mode
 9. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor

CAUTION: Output from the VM console is not available for VMs that are running vGPU.
Make sure that you have installed an alternate means of accessing the VM (such as a VNC
server) before you configure vGPU.

After the process is complete, you can install the graphics driver for your guest OS and
license any NVIDIA AI Enterprise licensed products that you are using.

2.6.1. Installing the NVIDIA Virtual GPU Manager
for Ubuntu

The NVIDIA Virtual GPU Manager for Ubuntu is provided as a Debian package (.deb) file.

CAUTION: NVIDIA Virtual GPU Manager and guest VM drivers must be compatible. If you
update vGPU Manager to a release that is incompatible with the guest VM drivers, guest
VMs will boot with vGPU disabled until their guest vGPU driver is updated to a compatible
version. Consult for further details.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 18

2.6.1.1. Installing the Virtual GPU Manager Package for
Ubuntu

Before installing the Debian package for Ubuntu, ensure that the sshd service on the
Ubuntu server is configured to permit root login. If the Nouveau driver for NVIDIA
graphics cards is present, disable it before installing the package.

 1. Securely copy the Debian package file from the system where you downloaded the file
to the Ubuntu server.

‣ From a Windows system, use a secure copy client such as WinSCP.

‣ From a Linux system, use the scp command.

 2. Use secure shell (SSH) to log in as root to the Ubuntu server.
ssh root@ubuntu-server
ubuntu-server

The host name or IP address of the Ubuntu server.
 3. Change to the directory on the Ubuntu server to which you copied the Debian

package file.
cd deb-file-directory
deb-file-directory

The path to the directory to which you copied the Debian package file.
 4. Use the apt command to install the package.

apt install ./.deb

 5. Reboot the Ubuntu server.
systemctl reboot

2.6.1.2. Verifying the Installation of the NVIDIA AI
Enterprise for Ubuntu

After the Ubuntu server has rebooted, verify the installation of the NVIDIA AI Enterprise
package for Ubuntu.

 1. Verify that the NVIDIA AI Enterprise package is installed and loaded correctly by
checking for the VFIO drivers in the list of kernel loaded modules.
lsmod | grep vfio
nvidia_vgpu_vfio 27099 0
nvidia 12316924 1 nvidia_vgpu_vfio
vfio_mdev 12841 0
mdev 20414 2 vfio_mdev,nvidia_vgpu_vfio
vfio_iommu_type1 22342 0
vfio 32331 3 vfio_mdev,nvidia_vgpu_vfio,vfio_iommu_type1
#

 2. Verify that the libvirtd service is active and running.
service libvirtd status

 3. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 19

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
nvidia-smi
Fri Mar 22 18:46:50 2024
+--+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:85:00.0 Off | Off |
| N/A 23C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:86:00.0 Off | Off |
| N/A 29C P8 23W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla P40 On | 0000:87:00.0 Off | Off |
| N/A 21C P8 18W / 250W | 53MiB / 24575MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+
#

If nvidia-smi fails to run or doesn’t produce the expected output for all the NVIDIA GPUs
in your system, see Troubleshooting for troubleshooting steps.

2.7. Installing and Configuring the
NVIDIA Virtual GPU Manager for
VMware vSphere

You can use the NVIDIA Virtual GPU Manager for VMware vSphere to set up a VMware
vSphere VM to use NVIDIA vGPU or VMware vSGA. The vGPU Manager vSphere software
components provide vSGA and vGPU functionality in a single component.

Note:

Some servers, for example, the Dell R740, do not configure SR-IOV capability if the SR-IOV
SBIOS setting is disabled on the server. If you are using the Tesla T4 GPU with VMware
vSphere on such a server, you must ensure that the SR-IOV SBIOS setting is enabled on
the server.

However, with any server hardware, do not enable SR-IOV in VMware vCenter Server
for the Tesla T4 GPU. If SR-IOV is enabled in VMware vCenter Server for T4, VMware
vCenter Server lists the status of the GPU as needing a reboot. You can ignore this status
message.

Requirements for Configuring NVIDIA vGPU in a DRS Cluster

You can configure a VM with NVIDIA vGPU on an ESXi host in a VMware Distributed
Resource Scheduler (DRS) cluster. However, to ensure that the automation level of the

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 20

cluster supports VMs configured with NVIDIA vGPU, you must set the automation level to
Partially Automated or Manual.

For more information about these settings, see Edit Cluster Settings in the VMware
documentation.

2.7.1. Installing the NVIDIA Virtual GPU Manager
on VMware vSphere

To install the NVIDIA Virtual GPU Manager you need to access the ESXi host via the ESXi
Shell or SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an
ESXi host.
Before you begin, ensure that the following prerequisites are met:

‣ The ZIP archive that contains NVIDIA AI Enterprise has been downloaded from the
NVIDIA Licensing Portal.

‣ The software components for the NVIDIA Virtual GPU Manager have been extracted
from the downloaded ZIP archive.

 1. Copy the NVIDIA Virtual GPU Manager component files to the ESXi host.
 2. Put the ESXi host into maintenance mode.

$ esxcli system maintenanceMode set –-enable true

 3. Install the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management
daemon from their software component files.
 a). Run the esxcli command to install the NVIDIA vGPU hypervisor host driver from

its software component file.
$ esxcli software vib install -d /vmfs/volumes/datastore/host-driver-component.zip

 b). Run the esxcli command to install the NVIDIA GPU Management daemon from
its software component file.
$ esxcli software vib install -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.

host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the
form of a software component. Ensure that you specify the file that was extracted
from the downloaded ZIP archive. For example, for VMware vSphere 7.0.3, host-
driver-component is NVD-VMware-x86_64-525.125.03-1OEM.703.0.0.17630552-
bundle-build-number.

gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in
the form of a software component. Ensure that you specify the file that was
extracted from the downloaded ZIP archive. For example, for VMware vSphere
7.0.3, gpu-management-daemon-component is VMW-esx-7.0.2-nvd-gpu-mgmt-
daemon-1.0-0.0.0001.

 4. Exit maintenance mode.
$ esxcli system maintenanceMode set –-enable false

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-755AB944-F3D0-43DD-82CD-8CDDDF8674E8.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 21

 5. Reboot the ESXi host.
$ reboot

2.7.2. Updating the NVIDIA Virtual GPU Manager
for VMware vSphere

Update the NVIDIA Virtual GPU Manager if you want to install a new version of NVIDIA
Virtual GPU Manager on a system where an existing version is already installed.

To update the vGPU Manager VIB you need to access the ESXi host via the ESXi Shell or
SSH. Refer to VMware’s documentation on how to enable ESXi Shell or SSH for an ESXi
host.

Note: Before proceeding with the vGPU Manager update, make sure that all VMs are
powered off and the ESXi host is placed in maintenance mode. Refer to VMware’s
documentation on how to place an ESXi host in maintenance mode

 1. Stop the NVIDIA GPU Management Daemon.
$ /etc/init.d/nvdGpuMgmtDaemon stop

 2. Update the NVIDIA vGPU hypervisor host driver and the NVIDIA GPU Management
daemon.
 a). Run the esxcli command to update the NVIDIA vGPU hypervisor host driver from

its software component file.
$ esxcli software vib update -d /vmfs/volumes/datastore/host-driver-component.zip

 b). Run the esxcli command to update the NVIDIA GPU Management daemon from
its software component file.
$ esxcli software vib update -d /vmfs/volumes/datastore/gpu-management-daemon-
component.zip

datastore
The name of the VMFS datastore to which you copied the software components.

host-driver-component
The name of the file that contains the NVIDIA vGPU hypervisor host driver in the
form of a software component. Ensure that you specify the file that was extracted
from the downloaded ZIP archive. For example, for VMware vSphere 7.0.3, host-
driver-component is NVD-VMware-x86_64-525.125.03-1OEM.703.0.0.17630552-
bundle-build-number.

gpu-management-daemon-component
The name of the file that contains the NVIDIA GPU Management daemon in
the form of a software component. Ensure that you specify the file that was
extracted from the downloaded ZIP archive. For example, for VMware vSphere
7.0.3, gpu-management-daemon-component is VMW-esx-7.0.2-nvd-gpu-mgmt-
daemon-1.0-0.0.0001.

 3. Reboot the ESXi host and remove it from maintenance mode.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 22

2.7.3. Verifying the Installation of the NVIDIA AI
Enterprise Package for vSphere

After the ESXi host has rebooted, verify the installation of the NVIDIA AI Enterprise
package for vSphere.

 1. Verify that the NVIDIA AI Enterprise package installed and loaded correctly by
checking for the NVIDIA kernel driver in the list of kernel loaded modules.
[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the NVIDIA driver is not listed in the output, check dmesg for any load-time errors
reported by the driver.

 3. Verify that the NVIDIA GPU Management daemon has started.
$ /etc/init.d/nvdGpuMgmtDaemon status

 4. Verify that the NVIDIA kernel driver can successfully communicate with the NVIDIA
physical GPUs in your system by running the nvidia-smi command.
The nvidia-smi command is described in more detail in NVIDIA System Management
Interface nvidia-smi.

Running the nvidia-smi command should produce a listing of the GPUs in your platform.
[root@esxi:~] nvidia-smi
Fri Mar 22 17:56:22 2024
+--+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 00000000:05:00.0 Off | Off |
| N/A 25C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 00000000:06:00.0 Off | Off |
| N/A 24C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M60 On | 00000000:86:00.0 Off | Off |
| N/A 25C P8 25W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M60 On | 00000000:87:00.0 Off | Off |
| N/A 28C P8 24W / 150W | 13MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+

+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| No running processes found |
+---+

If nvidia-smi fails to report the expected output for all the NVIDIA GPUs in your system,
see Troubleshooting for troubleshooting steps.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 23

2.7.4. Managing the NVIDIA GPU Management
Daemon for VMware vSphere

The NVIDIA GPU Management Daemon for VMware vSphere is a service that is controlled
through scripts in the /etc/init.d directory. You can use these scripts to start the
daemon, stop the daemon, and get its status.

To start the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon start

To stop the NVIDIA GPU Management Daemon, enter the following command:
$ /etc/init.d/nvdGpuMgmtDaemon stop

To get the status of the NVIDIA GPU Management Daemon, enter the following
command:
$ /etc/init.d/nvdGpuMgmtDaemon status

2.7.5. Configuring VMware vMotion with vGPU
for VMware vSphere

NVIDIA AI Enterprise supports vGPU migration, which includes VMware vMotion and
suspend-resume, for VMs that are configured with vGPU. To enable VMware vMotion with
vGPU, an advanced vCenter Server setting must be enabled. However, suspend-resume
for VMs that are configured with vGPU is enabled by default.

Before configuring VMware vMotion with vGPU for an ESXi host, ensure that the current
NVIDIA Virtual GPU Manager for VMware vSphere package is installed on the host.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the Hosts and Clusters view, select the vCenter Server instance.

Note: Ensure that you select the vCenter Server instance, not the vCenter Server VM.

 3. Click the Configure tab.
 4. In the Settings section, select Advanced Settings and click Edit.
 5. In the Edit Advanced vCenter Server Settings window that opens, type vGPU in the

search field.
 6. When the vgpu.hotmigrate.enabled setting appears, set the Enabled option and click

OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 24

2.7.6. Changing the Default Graphics Type in
VMware vSphere

The vGPU Manager VIB for VMware vSphere provides vSGA and vGPU functionality in a
single VIB. After this VIB is installed, the default graphics type is Shared, which provides
vSGA functionality. To enable vGPU support for VMs in VMware vSphere, you must
change the default graphics type to Shared Direct.

If you do not change the default graphics type, VMs to which a vGPU is assigned fail to
start and the following error message is displayed:
The amount of graphics resource available in the parent resource pool is
 insufficient for the operation.

Note: Change the default graphics type before configuring vGPU. Output from the VM
console in the VMware vSphere Web Client is not available for VMs that are running vGPU.

Before changing the default graphics type, ensure that the ESXi host is running and that
all VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 25

 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Figure 5. Shared default graphics type

 5. In the Edit Host Graphics Settings dialog box that opens, select Shared Direct and
click OK.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 26

Figure 6. Host graphics settings for vGPU

Note: In this dialog box, you can also change the allocation scheme for vGPU-enabled
VMs. For more information, see Modifying GPU Allocation Policy on VMware vSphere.

After you click OK, the default graphics type changes to Shared Direct.
 6. Click the Graphics Devices tab to verify the configured type of each physical GPU on

which you want to configure vGPU.
The configured type of each physical GPU must be Shared Direct. For any physical
GPU for which the configured type is Shared, change the configured type as follows:
 a). On the Graphics Devices tab, select the physical GPU and click the Edit icon.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 27

Figure 7. Shared graphics type

 b). In the Edit Graphics Device Settings dialog box that opens, select Shared Direct
and click OK.

Figure 8. Graphics device settings for a physical GPU

 7. Restart the ESXi host or stop and restart nv-hostengine on the ESXi host.

To stop and restart nv-hostengine, perform these steps:
 a). Stop nv-hostengine.

[root@esxi:~] nv-hostengine -t

 b). Wait for 1 second to allow nv-hostengine to stop.
 c). Start nv-hostengine.

[root@esxi:~] nv-hostengine -d

 8. In the Graphics Devices tab of the VMware vCenter Web UI, confirm that the active
type and the configured type of each physical GPU are Shared Direct.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 28

Figure 9. Shared direct graphics type

After changing the default graphics type, configure vGPU as explained in Configuring a
vSphere VM with NVIDIA vGPU.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

2.7.7. Configuring a vSphere VM with NVIDIA
vGPU

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

CAUTION: Output from the VM console in the VMware vSphere Web Client is not available
for VMs that are running vGPU. Make sure that you have installed an alternate means of
accessing the VM (such as VMware Horizon or a VNC server) before you configure vGPU.

VM console in vSphere Web Client will become active again once the vGPU parameters
are removed from the VM’s configuration.

How to configure a vSphere VM with a vGPU depends on your VMware vSphere version as
explained in the following topics:

‣ Configuring a vSphere 8 VM with NVIDIA vGPU

‣ Configuring a vSphere 7 VM with NVIDIA vGPU

After you have configured a vSphere VM with a vGPU, start the VM. VM console in
vSphere Web Client is not supported in this vGPU release. Therefore, use VMware Horizon
or VNC to access the VM’s desktop.

After the VM has booted, install the NVIDIA AI Enterprise graphics driver as explained in
Installing and Licensing NVIDIA AI Enterprise Software Components.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 29

2.7.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU
 1. Open the vCenter Web UI.
 2. In the vCenter Web UI, right-click the VM and choose Edit Settings.
 3. In the Edit Settings window that opens, configure the vGPUs that you want to add to

the VM.
Add each vGPU that you want to add to the VM as follows:
 a). From the ADD NEW DEVICE menu, choose PCI Device.

Figure 10. Command for Adding a PCI Device

 b). In the Device Selection window that opens, select the type of vGPU you want to
configure and click SELECT.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 30

Figure 11. VM Device Selections for vGPU

 4. Back in the Edit Settings window, click OK.

2.7.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU
If you are adding multiple vGPUs to a single VM, perform this task for each vGPU that you
want to add to the VM.

 1. Open the vCenter Web UI.
 2. In the vCenter Web UI, right-click the VM and choose Edit Settings.
 3. Click the Virtual Hardware tab.
 4. In the New device list, select Shared PCI Device and click Add.

The PCI device field should be auto-populated with NVIDIA GRID vGPU.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 31

Figure 12. VM settings for vGPU

 5. From the GPU Profile drop-down menu, choose the type of vGPU you want to
configure and click OK.

 6. Ensure that VMs running vGPU have all their memory reserved:
 a). Select Edit virtual machine settings from the vCenter Web UI.
 b). Expand the Memory section and click Reserve all guest memory (All locked).

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 32

2.7.8. Setting vGPU Plugin Parameters on
VMware vSphere

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.
Ensure that the VM to which the vGPU is assigned is powered off.
For each vGPU for which you want to set plugin parameters, perform this task in the
vSphere Client. vGPU plugin parameters are PCI pass through configuration parameters
in advanced VM attributes.

 1. In the vSphere Client, browse to the VM to which the vGPU is assigned.
 2. Context-click the VM and choose Edit Settings.
 3. In the Edit Settings window, click the VM Options tab.
 4. From the Advanced drop-down list, select Edit Configuration.
 5. In the Configuration Parameters dialog box, click Add Row.
 6. In the Name field, type the parameter name pciPassthruvgpu-id.cfg.parameter, in

the Value field type the parameter value, and click OK.
vgpu-id

A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and
you are setting a plugin parameter for both vGPUs, set the following parameters:

‣ pciPassthru0.cfg.parameter

‣ pciPassthru1.cfg.parameter

parameter
The name of the vGPU plugin parameter that you want to set. For example, the
name of the vGPU plugin parameter for enabling unified memory is enable_uvm.

To enable unified memory for two vGPUs that are assigned to a VM, set
pciPassthru0.cfg.enable_uvm and pciPassthru1.cfg.enable_uvm to 1.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 33

2.8. Configuring the vGPU Manager for
a Linux with KVM Hypervisor

NVIDIA AI Enterprise supports the following Linux with KVM hypervisors: Red Hat
Enterprise Linux with KVM and Ubuntu.

2.8.1. Getting the BDF and Domain of a GPU on a
Linux with KVM Hypervisor

Sometimes when configuring a physical GPU for use with NVIDIA AI Enterprise, you must
find out which directory in the sysfs file system represents the GPU. This directory is
identified by the domain, bus, slot, and function of the GPU.

For more information about the directory in the sysfs file system that represents a
physical GPU, see NVIDIA vGPU Information in the sysfs File System.

 1. Obtain the PCI device bus/device/function (BDF) of the physical GPU.
lspci | grep NVIDIA

The NVIDIA GPUs listed in this example have the PCI device BDFs 06:00.0 and
07:00.0.
lspci | grep NVIDIA
06:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
 a1)
07:00.0 VGA compatible controller: NVIDIA Corporation GM204GL [Tesla M10] (rev
 a1)

 2. Obtain the full identifier of the GPU from its PCI device BDF.
virsh nodedev-list --cap pci| grep transformed-bdf
transformed-bdf

The PCI device BDF of the GPU with the colon and the period replaced with
underscores, for example, 06_00_0.

This example obtains the full identifier of the GPU with the PCI device BDF 06:00.0.
virsh nodedev-list --cap pci| grep 06_00_0
pci_0000_06_00_0

 3. Obtain the domain, bus, slot, and function of the GPU from the full identifier of the
GPU.
virsh nodedev-dumpxml full-identifier| egrep 'domain|bus|slot|function'

full-identifier
The full identifier of the GPU that you obtained in the previous step, for example,
pci_0000_06_00_0.

This example obtains the domain, bus, slot, and function of the GPU with the PCI
device BDF 06:00.0.
virsh nodedev-dumpxml pci_0000_06_00_0| egrep 'domain|bus|slot|function'
 <domain>0x0000</domain>
 <bus>0x06</bus>
 <slot>0x00</slot>
 <function>0x0</function>

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 34

 <address domain='0x0000' bus='0x06' slot='0x00' function='0x0'/>

2.8.2. Preparing the Virtual Function for an
NVIDIA vGPU that Supports SR-IOV on a
Linux with KVM Hypervisor

An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV,
such as a GPU based on the NVIDIA Ampere architecture. Before creating an NVIDIA vGPU
on a GPUthat supports SR-IOV, you must enable the virtual functions of the GPU and
obtain the domain, bus, slot, and function of the specific virtual function on which you
want to create the vGPU.
Before performing this task, ensure that the GPU is not being used by any other
processes, such as CUDA applications, monitoring applications, or the nvidia-smi
command.

 1. Enable the virtual functions for the physical GPU in the sysfs file system.

Note: The virtual functions for the physical GPU in the sysfs file system are disabled
after the hypervisor host is rebooted or if the driver is reloaded or upgraded.

Use only the custom script sriov-manage provided by NVIDIA AI Enterprise for this
purpose. Do not try to enable the virtual function for the GPU by any other means.
/usr/lib/nvidia/sriov-manage -e domain:bus:slot.function
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

Note: Only one mdev device file can be created on a virtual function.

This example enables the virtual functions for the GPU with the domain 00, bus 41,
slot 0000, and function 0.
/usr/lib/nvidia/sriov-manage -e 00:41:0000.0

 2. Obtain the domain, bus, slot, and function of the available virtual functions on the
GPU.
ls -l /sys/bus/pci/devices/domain\:bus\:slot.function/ | grep virtfn
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example shows the output of this command for a physical GPU with slot 00, bus
41, domain 0000, and function 0.
ls -l /sys/bus/pci/devices/0000:41:00.0/ | grep virtfn
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn0 -> ../0000:41:00.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn1 -> ../0000:41:00.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn10 -> ../0000:41:01.6

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 35

lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn11 -> ../0000:41:01.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn12 -> ../0000:41:02.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn13 -> ../0000:41:02.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn14 -> ../0000:41:02.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn15 -> ../0000:41:02.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn16 -> ../0000:41:02.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn17 -> ../0000:41:02.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn18 -> ../0000:41:02.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn19 -> ../0000:41:02.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn2 -> ../0000:41:00.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn20 -> ../0000:41:03.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn21 -> ../0000:41:03.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn22 -> ../0000:41:03.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn23 -> ../0000:41:03.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn24 -> ../0000:41:03.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn25 -> ../0000:41:03.5
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn26 -> ../0000:41:03.6
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn27 -> ../0000:41:03.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn28 -> ../0000:41:04.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn29 -> ../0000:41:04.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn3 -> ../0000:41:00.7
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn30 -> ../0000:41:04.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn31 -> ../0000:41:04.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn4 -> ../0000:41:01.0
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn5 -> ../0000:41:01.1
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn6 -> ../0000:41:01.2
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn7 -> ../0000:41:01.3
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn8 -> ../0000:41:01.4
lrwxrwxrwx. 1 root root 0 Jul 16 04:42 virtfn9 -> ../0000:41:01.5

 3. Choose the available virtual function on which you want to create the vGPU and note
its domain, bus, slot, and function.

2.8.3. Creating an NVIDIA vGPU on a Linux with
KVM Hypervisor

For each vGPU that you want to create, perform this task in a Linux command shell on the
a Linux with KVM hypervisor host.

Before you begin, ensure that you have the domain, bus, slot, and function of the GPU on
which you are creating the vGPU. For instructions, see Getting the BDF and Domain of a
GPU on a Linux with KVM Hypervisor.

How to create an NVIDIA vGPU on a Linux with KVM hypervisor depends on whether the
NVIDIA vGPU supports single root I/O virtualization (SR-IOV). For details, refer to:

‣ Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor

‣ Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

2.8.3.1. Creating a Legacy NVIDIA vGPU on a Linux with
KVM Hypervisor

A legacy NVIDIA vGPU does not support SR-IOV.

 1. Change to the mdev_supported_types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported_types/

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 36

domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev_supported_types directory for the GPU with the
domain 0000 and PCI device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported_types/

 2. Find out which subdirectory of mdev_supported_types contains registration
information for the vGPU type that you want to create.
grep -l "vgpu-type" nvidia-*/name
vgpu-type

The vGPU type, for example, M10-2Q.

This example shows that the registration information for the M10-2Q vGPU type is
contained in the nvidia-41 subdirectory of mdev_supported_types.
grep -l "M10-2Q" nvidia-*/name
nvidia-41/name

 3. Confirm that you can create an instance of the vGPU type on the physical GPU.
cat subdirectory/available_instances
subdirectory

The subdirectory that you found in the previous step, for example, nvidia-41.

The number of available instances must be at least 1. If the number is 0, either an
instance of another vGPU type already exists on the physical GPU, or the maximum
number of allowed instances has already been created.

This example shows that four more instances of the M10-2Q vGPU type can be
created on the physical GPU.
cat nvidia-41/available_instances
4

 4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.
uuidgen
aa618089-8b16-4d01-a136-25a0f3c73123

 5. Write the UUID that you obtained in the previous step to the create file in the
registration information directory for the vGPU type that you want to create.
echo "uuid"> subdirectory/create
uuid

The UUID that you generated in the previous step, which will become the UUID of
the vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create,
for example, nvidia-41.

This example creates an instance of the M10-2Q vGPU type with the UUID
aa618089-8b16-4d01-a136-25a0f3c73123.
echo "aa618089-8b16-4d01-a136-25a0f3c73123" > nvidia-41/create

An mdev device file for the vGPU is added to the parent physical device directory of
the vGPU. The vGPU is identified by its UUID.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 37

The /sys/bus/mdev/devices/ directory contains a symbolic link to the mdev device
file.

 6. Make the mdev device file that you created to represent the vGPU persistent.
mdevctl define --auto --uuid uuid
uuid

The UUID that you specified in the previous step for the vGPU that you are
creating.

Note: Not all Linux with KVM hypervisor releases include the mdevctl command. If
your release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host is
booted. For example, you can write a custom script that is executed when the host is
rebooted.

 7. Confirm that the vGPU was created.
 a). Confirm that the /sys/bus/mdev/devices/ directory contains the mdev device file

for the vGPU.
ls -l /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Nov 24 13:33 aa618089-8b16-4d01-a136-25a0f3c73123 -
> ../../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0/
aa618089-8b16-4d01-a136-25a0f3c73123

 b). If your release includes the mdevctl command, list the active mediated devices on
the hypervisor host.
mdevctl list
aa618089-8b16-4d01-a136-25a0f3c73123 0000:06:00.0 nvidia-41

2.8.3.2. Creating an NVIDIA vGPU that Supports SR-IOV
on a Linux with KVM Hypervisor

An NVIDIA vGPU that supports SR-IOV resides on a physical GPU that supports SR-IOV,
such as a GPU based on the NVIDIA Ampere architecture.

Before performing this task, ensure that the virtual function on which you want to create
the vGPU has been prepared as explained inPreparing the Virtual Function for an NVIDIA
vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

If you want to support vGPUs with different amounts of frame buffer, also ensure that
the GPU has been put into mixed-size mode as explained in Preparing the Virtual Function
for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor.

 1. Change to the mdev_supported_types directory for the virtual function on which you
want to create the vGPU.
cd /sys/class/mdev_bus/domain\:bus\:vf-slot.v-function/mdev_supported_types/
domain
bus

The domain and bus of the GPU, without the 0x prefix.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 38

vf-slot
v-function

The slot and function of the virtual function that you noted in Preparing the
Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM
Hypervisor.

This example changes to the mdev_supported_types directory for the first virtual
function (virtfn0) for the GPU with the domain 0000 and bus 41. The first virtual
function (virtfn0) has slot 00 and function 4.
cd /sys/class/mdev_bus/0000\:41\:00.4/mdev_supported_types

 2. Find out which subdirectory of mdev_supported_types contains registration
information for the vGPU type that you want to create.
grep -l "vgpu-type" nvidia-*/name
vgpu-type

The vGPU type, for example, A40-2Q.

This example shows that the registration information for the A40-2Q vGPU type is
contained in the nvidia-558 subdirectory of mdev_supported_types.
grep -l "A40-2Q" nvidia-*/name
nvidia-558/name

 3. Confirm that you can create an instance of the vGPU type on the virtual function.
cat subdirectory/available_instances
subdirectory

The subdirectory that you found in the previous step, for example, nvidia-558.

The number of available instances must be 1. If the number is 0, a vGPU has already
been created on the virtual function. Only one instance of any vGPU type can be
created on a virtual function.

This example shows that an instance of the A40-2Q vGPU type can be created on the
virtual function.
cat nvidia-558/available_instances
1

 4. Generate a correctly formatted universally unique identifier (UUID) for the vGPU.
uuidgen
aa618089-8b16-4d01-a136-25a0f3c73123

 5. Write the UUID that you obtained in the previous step to the create file in the
registration information directory for the vGPU type that you want to create.
echo "uuid"> subdirectory/create
uuid

The UUID that you generated in the previous step, which will become the UUID of
the vGPU that you want to create.

subdirectory
The registration information directory for the vGPU type that you want to create,
for example, nvidia-558.

This example creates an instance of the A40-2Q vGPU type with the UUID
aa618089-8b16-4d01-a136-25a0f3c73123.
echo "aa618089-8b16-4d01-a136-25a0f3c73123" > nvidia-558/create

An mdev device file for the vGPU is added to the parent virtual function directory of
the vGPU. The vGPU is identified by its UUID.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 39

 6. Time-sliced vGPUs only: Make the mdev device file that you created to represent the
vGPU persistent.
mdevctl define --auto --uuid uuid
uuid

The UUID that you specified in the previous step for the vGPU that you are
creating.

Note:

‣ If you are using a GPU that supports SR-IOV, the mdev device file persists after
a host reboot only if you enable the virtual functions for the GPU as explained
in Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on
a Linux with KVM Hypervisor before rebooting any VM that is configured with a
vGPU on the GPU.

‣ You cannot use the mdevctl command to make the mdev device file for a MIG-
backed vGPU persistent. The mdev device file for a MIG-backed vGPU is not
retained after the host is rebooted because MIG instances are no longer available.

‣ Not all Linux with KVM hypervisor releases include the mdevctl command. If your
release does not include the mdevctl command, you can use standard features of
the operating system to automate the re-creation of this device file when the host
is booted. For example, you can write a custom script that is executed when the
host is rebooted.

 7. Confirm that the vGPU was created.
 a). Confirm that the /sys/bus/mdev/devices/ directory contains a symbolic link to

the mdev device file.
ls -l /sys/bus/mdev/devices/
total 0
lrwxrwxrwx. 1 root root 0 Jul 16 05:57 aa618089-8b16-4d01-a136-25a0f3c73123
 -> ../../../devices/pci0000:40/0000:40:01.1/0000:41:00.4/aa618089-8b16-4d01-
a136-25a0f3c73123

 b). If your release includes the mdevctl command, list the active mediated devices on
the hypervisor host.
mdevctl list
aa618089-8b16-4d01-a136-25a0f3c73123 0000:06:00.0 nvidia-558

2.8.4. Adding One or More vGPUs to a Linux with
KVM Hypervisor VM

To support applications and workloads that are compute or graphics intensive, you can
add multiple vGPUs to a single VM.

Ensure that the following prerequisites are met:

‣ The VM to which you want to add the vGPUs is shut down.

‣ The vGPUs that you want to add have been created as explained in Creating an NVIDIA
vGPU on a Linux with KVM Hypervisor.

You can add vGPUs to a Linux with KVM hypervisor VM by using any of the following tools:

‣ The virsh command

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 40

‣ The QEMU command line

After adding vGPUs to a Linux with KVM hypervisor VM, start the VM.
virsh start vm-name

vm-name
The name of the VM that you added the vGPUs to.

After the VM has booted, install the NVIDIA AI Enterprise graphics driver as explained in
Installing and Licensing NVIDIA AI Enterprise Components Natively.

2.8.4.1. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using virsh

 1. In virsh, open for editing the XML file of the VM that you want to add the vGPU to.
virsh edit vm-name
vm-name

The name of the VM to that you want to add the vGPUs to.
 2. For each vGPU that you want to add to the VM, add a device entry in the form of an

address element inside the source element to add the vGPU to the guest VM.
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='uuid'/>
 </source>
 </hostdev>
</device>
uuid

The UUID that was assigned to the vGPU when the vGPU was created.

This example adds a device entry for the vGPU with the UUID a618089-8b16-4d01-
a136-25a0f3c73123.
<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='a618089-8b16-4d01-a136-25a0f3c73123'/>
 </source>
 </hostdev>
</device>

This example adds device entries for two vGPUs with the following UUIDs:

‣ c73f1fa6-489e-4834-9476-d70dabd98c40

‣ 3b356d38-854e-48be-b376-00c72c7d119c

<device>
...
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='c73f1fa6-489e-4834-9476-d70dabd98c40'/>
 </source>
 </hostdev>
 <hostdev mode='subsystem' type='mdev' model='vfio-pci'>
 <source>
 <address uuid='3b356d38-854e-48be-b376-00c72c7d119c'/>
 </source>

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 41

 </hostdev>
</device>

 3. Optional: Add a video element that contains a model element in which the type
attribute is set to none.
<video>
<model type='none'/>
</video>

Adding this video element prevents the default video device that libvirt adds from
being loaded into the VM. If you don't add this video element, you must configure the
Xorg server or your remoting solution to load only the vGPU devices you added and
not the default video device.

2.8.4.2. Adding One or More vGPUs to a Linux with KVM
Hypervisor VM by Using the QEMU Command
Line

Add the following options to the QEMU command line:

‣ For each vGPU that you want to add to the VM, add one -device option in the
following format:
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/vgpu-uuid
vgpu-uuid

The UUID that was assigned to the vGPU when the vGPU was created.

‣ Add a -uuid option to specify the VM as follows:
-uuid vm-uuid
vm-uuid

The UUID that was assigned to the VM when the VM was created.

This example adds the vGPU with the UUID aa618089-8b16-4d01-a136-25a0f3c73123
to the VM with the UUID ebb10a6e-7ac9-49aa-af92-f56bb8c65893.
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/aa618089-8b16-4d01-
a136-25a0f3c73123 \
-uuid ebb10a6e-7ac9-49aa-af92-f56bb8c65893

This example adds device entries for two vGPUs with the following UUIDs:

‣ 676428a0-2445-499f-9bfd-65cd4a9bd18f

‣ 6c5954b8-5bc1-4769-b820-8099fe50aaba

The entries are added to the VM with the UUID ec5e8ee0-657c-4db6-8775-
da70e332c67e.
-device vfio-pci,sysfsdev=/sys/bus/mdev/
devices/676428a0-2445-499f-9bfd-65cd4a9bd18f \
-device vfio-pci,sysfsdev=/sys/bus/mdev/devices/6c5954b8-5bc1-4769-
b820-8099fe50aaba \
-uuid ec5e8ee0-657c-4db6-8775-da70e332c67e

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 42

2.8.5. Setting vGPU Plugin Parameters on a Linux
with KVM Hypervisor

Plugin parameters for a vGPU control the behavior of the vGPU, such as the frame rate
limiter (FRL) configuration in frames per second or whether console virtual network
computing (VNC) for the vGPU is enabled. The VM to which the vGPU is assigned is
started with these parameters. If parameters are set for multiple vGPUs assigned to the
same VM, the VM is started with the parameters assigned to each vGPU.
For each vGPU for which you want to set plugin parameters, perform this task in a Linux
command shell on the Linux with KVM hypervisor host.

 1. Change to the nvidia subdirectory of the mdev device directory that represents the
vGPU.
cd /sys/bus/mdev/devices/uuid/nvidia
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-a136-25a0f3c73123.
 2. Write the plugin parameters that you want to set to the vgpu_params file in the

directory that you changed to in the previous step.
echo "plugin-config-params" > vgpu_params
plugin-config-params

A comma-separated list of parameter-value pairs, where each pair is of the form
parameter-name=value.

This example disables frame rate limiting and console VNC for a vGPU.
echo "frame_rate_limiter=0, disable_vnc=1" > vgpu_params

This example enables unified memory for a vGPU.
echo "enable_uvm=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit debuggers for a vGPU.
echo "enable_debugging=1" > vgpu_params

This example enables NVIDIA CUDA Toolkit profilers for a vGPU.
echo "enable_profiling=1" > vgpu_params

To clear any vGPU plugin parameters that were set previously, write a space to the
vgpu_params file for the vGPU.
echo " " > vgpu_params

2.8.6. Deleting a vGPU on a Linux with KVM
Hypervisor

For each vGPU that you want to delete, perform this task in a Linux command shell on the
Linux with KVM hypervisor host.

Before you begin, ensure that the following prerequisites are met:

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 43

‣ You have the domain, bus, slot, and function of the GPU where the vGPU that you
want to delete resides. For instructions, see Getting the BDF and Domain of a GPU on
a Linux with KVM Hypervisor.

‣ The VM to which the vGPU is assigned is shut down.

 1. Change to the mdev_supported_types directory for the physical GPU.
cd /sys/class/mdev_bus/domain\:bus\:slot.function/mdev_supported_types/
domain
bus
slot
function

The domain, bus, slot, and function of the GPU, without the 0x prefix.

This example changes to the mdev_supported_types directory for the GPU with the
PCI device BDF 06:00.0.
cd /sys/bus/pci/devices/0000\:06\:00.0/mdev_supported_types/

 2. Change to the subdirectory of mdev_supported_types that contains registration
information for the vGPU.
cd `find . -type d -name uuid`
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-a136-25a0f3c73123.
 3. Write the value 1 to the remove file in the registration information directory for the

vGPU that you want to delete.
echo "1" > remove

2.8.7. NVIDIA vGPU Information in the sysfs File
System

Information about the NVIDIA vGPU types supported by each physical GPU in a Linux with
KVM hypervisor host is stored in the sysfs file system.

All physical GPUs on the host are registered with the mdev kernel module. Information
about the physical GPUs and the vGPU types that can be created on each physical GPU is
stored in directories and files under the /sys/class/mdev_bus/ directory.

The sysfs directory for each physical GPU is at the following locations:

‣ /sys/bus/pci/devices/

‣ /sys/class/mdev_bus/

Both directories are a symbolic link to the real directory for PCI devices in the sysfs file
system.

The organization the sysfs directory for each physical GPU is as follows:

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 44

/sys/class/mdev_bus/
 |-parent-physical-device
 |-mdev_supported_types
 |-nvidia-vgputype-id
 |-available_instances
 |-create
 |-description
 |-device_api
 |-devices
 |-name

parent-physical-device

Each physical GPU on the host is represented by a subdirectory of the /sys/class/
mdev_bus/ directory.

The name of each subdirectory is as follows:
domain\:bus\:slot.function

domain, bus, slot, function are the domain, bus, slot, and function of the GPU, for
example, 0000\:06\:00.0.

Each directory is a symbolic link to the real directory for PCI devices in the sysfs file
system. For example:
ll /sys/class/mdev_bus/
total 0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:05:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:08.0/0000:05:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:06:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:09.0/0000:06:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:07:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:10.0/0000:07:00.0
lrwxrwxrwx. 1 root root 0 Dec 12 03:20 0000:08:00.0 -> ../../devices/
pci0000:00/0000:00:03.0/0000:03:00.0/0000:04:11.0/0000:08:00.0

mdev_supported_types
A directory named mdev_supported_types is required under the sysfs directory for
each physical GPU that will be configured with NVIDIA vGPU. How this directory is
created for a GPU depends on whether the GPU supports SR-IOV.

‣ For a GPU that does not support SR-IOV, this directory is created automatically
after the Virtual GPU Manager is installed on the host and the host has been
rebooted.

‣ For a GPU that supports SR-IOV, such as a GPU based on the NVIDIA Ampere
architecture, you must create this directory by enabling the virtual function for the
GPU as explained in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor. The
mdev_supported_types directory itself is never visible on the physical function.

The mdev_supported_types directory contains a subdirectory for each vGPU type that
the physical GPU supports. The name of each subdirectory is nvidia-vgputype-id,
where vgputype-id is an unsigned integer serial number. For example:
ll mdev_supported_types/
total 0
drwxr-xr-x 3 root root 0 Dec 6 01:37 nvidia-35
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-36
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-37
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-38
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-39
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-40
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-41

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 45

drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-42
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-43
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-44
drwxr-xr-x 3 root root 0 Dec 5 10:43 nvidia-45

nvidia-vgputype-id
Each directory represents an individual vGPU type and contains the following files and
directories:
available_instances

This file contains the number of instances of this vGPU type that can still be
created. This file is updated any time a vGPU of this type is created on or removed
from the physical GPU.

Note: When a time-sliced vGPU is created, the content of the available_instances
for all other time-sliced vGPU types on the physical GPU is set to 0. This behavior
enforces the requirement that all time-sliced vGPUs on a physical GPU must be of
the same type. However, this requirement does not apply to MIG-backed vGPUs.
Therefore, when a MIG-backed vGPU is created, available_instances for all other
MIG-backed vGPU types on the physical GPU is not set to 0

create
This file is used for creating a vGPU instance. A vGPU instance is created by writing
the UUID of the vGPU to this file. The file is write only.

description
This file contains the following details of the vGPU type:

‣ The maximum number of virtual display heads that the vGPU type supports

‣ The frame rate limiter (FRL) configuration in frames per second

‣ The frame buffer size in Mbytes

‣ The maximum resolution per display head

‣ The maximum number of vGPU instances per physical GPU

For example:
cat description
num_heads=4, frl_config=60, framebuffer=2048M, max_resolution=4096x2160,
 max_instance=4

device_api
This file contains the string vfio_pci to indicate that a vGPU is a PCI device.

devices
This directory contains all the mdev devices that are created for the vGPU type. For
example:
ll devices
total 0
lrwxrwxrwx 1 root root 0 Dec 6 01:52 aa618089-8b16-4d01-a136-25a0f3c73123 -
> ../../../aa618089-8b16-4d01-a136-25a0f3c73123

name
This file contains the name of the vGPU type. For example:
cat name
GRID M10-2Q

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 46

2.9. Putting a GPU Into Mixed-Size
Mode

By default, a GPU supports only vGPUs with the same amount of frame buffer and,
therefore, is in equal-size mode. To support vGPUs with different amounts of frame
buffer, the GPU must be put into mixed-size mode. When a GPU is in mixed-size mode,
the maximum number of some types of vGPU allowed on a GPU is less than when the
GPU is in equal-size mode.

Note:

‣ A GPU in mixed-size mode reverts to its default mode if the hypervisor host is
rebooted, the NVIDIA Virtual GPU Manager is reloaded, or the GPU is reset.

‣ When a GPU is in mixed-size mode, only the best effort and equal share schedulers are
supported. The fixed share scheduler is not supported.

Before performing this task, ensure that no vGPUs are running on the GPU and that the
GPU is not being used by any other processes, such as CUDA applications, monitoring
applications, or the nvidia-smi command.

If you are using a GPU that supports SR-IOV on a Linux with KVM hypervisor, also ensure
that the virtual functions for the physical GPU in the sysfs file system are enabled as
explained in Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a
Linux with KVM Hypervisor.

 1. Use nvidia-smi to list the status of all physical GPUs, and check that heterogeneous
time-sliced vGPU sizes are noted as supported.
nvidia-smi -q
...
Attached GPUs : 1
GPU 00000000:41:00.0
...
 Heterogeneous Time-Slice Sizes : Supported
...

 2. Put each GPU that you want to support vGPUs with different amounts of frame buffer
into mixed-size mode.
nvidia-smi vgpu -i id -shm 1
id

The index of the GPU as reported by nvidia-smi.

This example puts the GPU with index 00000000:41:00.0 into mixed-size mode.
nvidia-smi vgpu -i 0 -shm 1
Enabled vGPU heterogeneous mode for GPU 00000000:41:00.0

 3. Confirm that the GPU is now in mixed-size mode by using nvidia-smi to check that
vGPU heterogeneous mode is enabled.
nvidia-smi -q
 ...
 vGPU Heterogeneous Mode : Enabled

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 47

 ...

2.10. Placing a vGPU on a Physical GPU in
Mixed-Size Mode

By default, the Virtual GPU Manager determines where a vGPU is placed on a GPU. To
fit as many vGPUs as possible on the GPU, you can control the placement of vGPUs on
a GPU in mixed-size mode. By controlling the placement of vGPUs on the GPU, you can
ensure that no gaps that cannot be occupied by a vGPU are left in the placement region
on the GPU.

The vGPU placements that a GPU in mixed-size mode supports depend on the total
amount of frame buffer that the GPU has. For details, refer to vGPU Placements for GPUs
in Mixed-Size Mode.

Note: This task is optional. If you want the Virtual GPU Manager to determine where a
vGPU is placed on a GPU, omit this task.

Before performing this task, ensure that following prerequisites are met:

‣ The GPU has been put into mixed-size mode as explained in Putting a GPU Into Mixed-
Size Mode.

‣ The vGPU that you want to place on the physical GPU has been created as explained
in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.

Perform this task in a command shell on the hypervisor host.

 1. Use nvidia-smi to list the placement size and available placement IDs for the type of
the vGPU.
nvidia-smi vgpu -c -v
...
 vGPU Type ID : 0x392
 Name : NVIDIA L4-6Q
...
 Placement Size : 6
 Creatable Placement IDs : 6 18
...

Note:

Some supported placement IDs for the vGPU type might be unavailable because
they are already in use by another vGPU. To list the placement size and all supported
placement IDs for the type of the vGPU, run the following command:
nvidia-smi vgpu -s -v
...
 vGPU Type ID : 0x392
 Name : NVIDIA L4-6Q
...
 Placement Size : 6
 Supported Placement IDs : 0 6 12 18
...

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 48

The number of supported placement IDs is the maximum number of vGPUs of the
type that are allowed on the GPU in mixed-size mode.

 2. Set the vgpu-placement-id vGPU plugin parameter for the vGPU to the placement ID
that you want.

For a Linux with KVM hypervisor, write the parameter to the vgpu_params file in the
nvidia subdirectory of the mdev device directory that represents the vGPU.
echo "vgpu-placement-id=placement-id" > /sys/bus/mdev/devices/uuid/nvidia/vgpu_params
placement-id

The placement ID that you want to set for the vGPU.
uuid

The UUID of the vGPU, for example, aa618089-8b16-4d01-a136-25a0f3c73123.

This example sets the placement ID for the vGPU that has the UUID
aa618089-8b16-4d01-a136-25a0f3c73123 to 6.
echo "vgpu-placement-id=6" > \
/sys/bus/mdev/devices/aa618089-8b16-4d01-a136-25a0f3c73123/nvidia/vgpu_params

When the VM to which the vGPU is assigned is rebooted, the Virtual GPU Manager
validates the placement ID that you assigned to the vGPU. If the placement ID is invalid or
unavailable, the VM fails to boot.

After the VM to which the vGPU is assigned has been rebooted, you can confirm that the
vGPU has been assigned the correct placement ID.
nvidia-smi vgpu -q
GPU 00000000:41:00.0
 Active vGPUs : 1
 vGPU ID : 3251719533
 VM ID : 2150987
 ...
 Placement ID : 6
 ...

2.11. Configuring a GPU for MIG-Backed
vGPUs

To support GPU instances with NVIDIA vGPU, a GPU must be configured with MIG
mode enabled and GPU instances must be created and configured on the physical
GPU. Optionally, you can create compute instances within the GPU instances. If you
don't create compute instances within the GPU instances, they can be added later for
individual vGPUs from within the guest VMs.

Ensure that the following prerequisites are met:

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

‣ You have determined which GPU instances correspond to the vGPU types of the MIG-
backed vGPUs that you will create.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 49

To get this information, consult the table of MIG-backed vGPUs for your GPU in Virtual
GPU Types for Supported GPUs.

‣ The GPU is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

To configure a GPU for MIG-backed vGPUs, follow these instructions:

 1. Enabling MIG Mode for a GPU

Note: For VMware vSphere, only enabling MIG mode is required because VMware
vSphere creates the GPU instances and, after the VM is booted and guest driver is
installed, one compute instance is automatically created in the VM.

 2. Creating GPU Instances on a MIG-Enabled GPU

 3. Optional: Creating Compute Instances in a GPU instance

After configuring a GPU for MIG-backed vGPUs, create the vGPUs that you need and add
them to their VMs.

2.11.1. Enabling MIG Mode for a GPU
Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Determine whether MIG mode is enabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled.

This example shows that MIG mode is disabled on GPU 0.

Note: In the output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is referred to
as A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 CUDA Version: 12.3 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB On	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled
+-------------------------------+----------------------+----------------------+

 3. If MIG mode is disabled, enable it.
$ nvidia-smi -i [gpu-ids] -mig 1

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 50

gpu-ids
A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the
GPUs on which you want to enable MIG mode. If gpu-ids is omitted, MIG mode is
enabled on all GPUs on the system.

This example enables MIG mode on GPU 0.
$ nvidia-smi -i 0 -mig 1
Enabled MIG Mode for GPU 00000000:36:00.0
All done.

Note: If the GPU is being used by another process, this command fails and displays a
warning message that MIG mode for the GPU is in the pending enable state. In this
situation, stop all processes that are using the GPU and retry the command.

 4. VMware vSphere ESXi with GPUs based on the NVIDIA Ampere architecture only:
Reboot the hypervisor host.
If you are using any other hypervisor or GPUs that are based on the NVIDIA Hopper™

GPU architecture or a later architecture, omit this step.
 5. Query the GPUs on which you enabled MIG mode to confirm that MIG mode is

enabled.

This example queries GPU 0 for the PCI bus ID and MIG mode in comma-separated
values (CSV) format.
$ nvidia-smi -i 0 --query-gpu=pci.bus_id,mig.mode.current --format=csv
pci.bus_id, mig.mode.current
00000000:36:00.0, Enabled

2.11.2. Creating GPU Instances on a MIG-Enabled
GPU

Note: If you are using VMware vSphere, omit this task. VMware vSphere creates the GPU
instances automatically.

Perform this task in your hypervisor command shell.

 1. If necessary, open a command shell as the root user on your hypervisor host machine.
 2. List the GPU instance profiles that are available on your GPU.

You will need to specify the profiles by their IDs, not their names, when you create
them.
$ nvidia-smi mig -lgip
+--+
| GPU instance profiles: |
| GPU Name ID Instances Memory P2P SM DEC ENC |
| Free/Total GiB CE JPEG OFA |
|==|
| 0 MIG 1g.5gb 19 7/7 4.95 No 14 0 0 |
| 1 0 0 |
+--+
| 0 MIG 2g.10gb 14 3/3 9.90 No 28 1 0 |
| 2 0 0 |
+--+
| 0 MIG 3g.20gb 9 2/2 19.79 No 42 2 0 |

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 51

| 3 0 0 |
+--+
| 0 MIG 4g.20gb 5 1/1 19.79 No 56 2 0 |
| 4 0 0 |
+--+
| 0 MIG 7g.40gb 0 1/1 39.59 No 98 5 0 |
| 7 1 1 |
+--+

 3. Create the GPU instances that correspond to the vGPU types of the MIG-backed
vGPUs that you will create.
$ nvidia-smi mig -cgi gpu-instance-profile-ids
gpu-instance-profile-ids

A comma-separated list of GPU instance profile IDs that specifies the GPU
instances that you want to create.

This example creates two GPU instances of type 2g.10gb, which has profile ID 14.
$ nvidia-smi mig -cgi 14,14
Successfully created GPU instance ID 5 on GPU 2 using profile MIG 2g.10gb (ID
 14)
Successfully created GPU instance ID 3 on GPU 2 using profile MIG 2g.10gb (ID
 14)

2.11.3. Optional: Creating Compute Instances in a
GPU instance

Creating compute instances within GPU instances is optional. If you don't create compute
instances within the GPU instances, they can be added later for individual vGPUs from
within the guest VMs.

Note: If you are using VMware vSphere, omit this task. After the VM is booted and guest
driver is installed, one compute instance is automatically created in the VM.

Perform this task in your hypervisor command shell.

 1. If necessary, open a command shell as the root user on your hypervisor host machine.
 2. List the available GPU instances.

$ nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 2 MIG 2g.10gb 14 3 0:2 |
+--+
| 2 MIG 2g.10gb 14 5 4:2 |
+--+

 3. Create the compute instances that you need within each GPU instance.
$ nvidia-smi mig -cci -gi gpu-instance-ids

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 52

gpu-instance-ids
A comma-separated list of GPU instance IDs that specifies the GPU instances
within which you want to create the compute instances.

CAUTION: To avoid an inconsistent state between a guest VM and the hypervisor host,
do not create compute instances from the hypervisor on a GPU instance on which an
active guest VM is running. Instead, create the compute instances from within the
guest VM as explained in Modifying a MIG-Backed vGPU's Configuration.

This example creates a compute instance on each of GPU instances 3 and 5.
$ nvidia-smi mig -cci -gi 3,5
Successfully created compute instance on GPU 0 GPU instance ID 1 using profile
 ID 2
Successfully created compute instance on GPU 0 GPU instance ID 2 using profile
 ID 2

 4. Verify that the compute instances were created within each GPU instance.
$ nvidia-smi
+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
| GPU GI CI MIG | Memory-Usage | Vol| Shared |
| ID ID Dev | BAR1-Usage | SM Unc| CE ENC DEC OFA JPG|
| | | ECC| |
|==================+======================+===========+=======================|
| 2 3 0 0 | 0MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 0MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+
| 2 5 0 1 | 0MiB / 9984MiB | 28 0 | 2 0 1 0 0 |
| | 0MiB / 16383MiB | | |
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|

Note: Additional compute instances that have been created in a VM are destroyed
when the VM is shut down or rebooted. After the shutdown or reboot, only one
compute instance remains in the VM. This compute instance is created automatically
after the NVIDIA AI Enterprise graphics driver is installed.

2.12. Disabling MIG Mode for One or
More GPUs

If a GPU that you want to use for time-sliced vGPUs or GPU pass through has previously
been configured for MIG-backed vGPUs, disable MIG mode on the GPU.

Ensure that the following prerequisites are met:

‣ The NVIDIA Virtual GPU Manager is installed on the hypervisor host.

‣ You have root user privileges on your hypervisor host machine.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 53

‣ The GPU is not being used by any other processes, such as CUDA applications,
monitoring applications, or the nvidia-smi command.

Perform this task in your hypervisor command shell.

 1. Open a command shell as the root user on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Determine whether MIG mode is disabled.
Use the nvidia-smi command for this purpose. By default, MIG mode is disabled, but
might have previously been enabled.

This example shows that MIG mode is enabled on GPU 0.

Note: In the output from output from nvidia-smi, the NVIDIA A100 HGX 40GB GPU is
referred to as A100-SXM4-40GB.

$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 CUDA Version: 12.3 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Enabled
+-------------------------------+----------------------+----------------------+

 3. If MIG mode is enabled, disable it.
$ nvidia-smi -i [gpu-ids] -mig 0
gpu-ids

A comma-separated list of GPU indexes, PCI bus IDs or UUIDs that specifies the
GPUs on which you want to disable MIG mode. If gpu-ids is omitted, MIG mode is
disabled on all GPUs on the system.

This example disables MIG mode on GPU 0.
$ sudo nvidia-smi -i 0 -mig 0
Disabled MIG Mode for GPU 00000000:36:00.0
All done.

 4. Confirm that MIG mode was disabled.
Use the nvidia-smi command for this purpose.

This example shows that MIG mode is disabled on GPU 0.
$ nvidia-smi -i 0
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 CUDA Version: 12.3 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 A100-SXM4-40GB Off	00000000:36:00.0 Off	0
N/A 29C P0 62W / 400W	0MiB / 40537MiB	6% Default
		Disabled

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 54

+-------------------------------+----------------------+----------------------+

2.13. Disabling and Enabling ECC
Memory

Some GPUs that support NVIDIA AI Enterprise support error correcting code (ECC)
memory with NVIDIA vGPU. ECC memory improves data integrity by detecting and
handling double-bit errors. However, not all GPUs, vGPU types, and hypervisor software
versions support ECC memory with NVIDIA vGPU.

On GPUs that support ECC memory with NVIDIA vGPU, ECC memory is supported with C-
series and Q-series vGPUs, but not with A-series and B-series vGPUs. Although A-series
and B-series vGPUs start on physical GPUs on which ECC memory is enabled, enabling
ECC with vGPUs that do not support it might incur some costs.

On physical GPUs that do not have HBM2 memory, the amount of frame buffer that is
usable by vGPUs is reduced. All types of vGPU are affected, not just vGPUs that support
ECC memory.

The effects of enabling ECC memory on a physical GPU are as follows:

‣ ECC memory is exposed as a feature on all supported vGPUs on the physical GPU.

‣ In VMs that support ECC memory, ECC memory is enabled, with the option to disable
ECC in the VM.

‣ ECC memory can be enabled or disabled for individual VMs. Enabling or disabling ECC
memory in a VM does not affect the amount of frame buffer that is usable by vGPUs.

GPUs based on the Pascal GPU architecture and later GPU architectures support ECC
memory with NVIDIA vGPU. To determine whether ECC memory is enabled for a GPU, run
nvidia-smi -q for the GPU.

Tesla M60 and M6 GPUs support ECC memory when used without GPU virtualization, but
NVIDIA vGPU does not support ECC memory with these GPUs. In graphics mode, these
GPUs are supplied with ECC memory disabled by default.

Some hypervisor software versions do not support ECC memory with NVIDIA vGPU.

If you are using a hypervisor software version or GPU that does not support ECC memory
with NVIDIA vGPU and ECC memory is enabled, NVIDIA vGPU fails to start. In this
situation, you must ensure that ECC memory is disabled on all GPUs if you are using
NVIDIA vGPU.

2.13.1. Disabling ECC Memory
If ECC memory is unsuitable for your workloads but is enabled on your GPUs, disable it.
You must also ensure that ECC memory is disabled on all GPUs if you are using NVIDIA
vGPU with a hypervisor software version or a GPU that does not support ECC memory
with NVIDIA vGPU. If your hypervisor software version or GPU does not support ECC
memory and ECC memory is enabled, NVIDIA vGPU fails to start.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 55

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI
Enterprise graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as enabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Mar 25 18:36:45 2024
Driver Version : 550.54.16

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

 2. Change the ECC status to off for each GPU for which ECC is enabled.

‣ If you want to change the ECC status to off for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 0

‣ If you want to change the ECC status to off for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 0

id is the index of the GPU or vGPU as reported by nvidia-smi.

This example disables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 0

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now disabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Mar 25 18:37:53 2024
Driver Version : 550.54.16

Attached GPUs : 1
GPU 0000:02:00.0
[...]

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 56

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

If you later need to enable ECC on your GPUs or vGPUs, follow the instructions in Enabling
ECC Memory.

2.13.2. Enabling ECC Memory
If ECC memory is suitable for your workloads and is supported by your hypervisor
software and GPUs, but is disabled on your GPUs or vGPUs, enable it.

Where to perform this task depends on whether you are changing ECC memory settings
for a physical GPU or a vGPU.

‣ For a physical GPU, perform this task from the hypervisor host.

‣ For a vGPU, perform this task from the VM to which the vGPU is assigned.

Note: ECC memory must be enabled on the physical GPU on which the vGPUs reside.

Before you begin, ensure that NVIDIA Virtual GPU Manager is installed on your hypervisor.
If you are changing ECC memory settings for a vGPU, also ensure that the NVIDIA AI
Enterprise graphics driver is installed in the VM to which the vGPU is assigned.

 1. Use nvidia-smi to list the status of all physical GPUs or vGPUs, and check for ECC
noted as disabled.
nvidia-smi -q

==============NVSMI LOG==============

Timestamp : Mon Mar 25 18:36:45 2024
Driver Version : 550.54.16

Attached GPUs : 1
GPU 0000:02:00.0

[...]

 Ecc Mode
 Current : Disabled
 Pending : Disabled

[...]

 2. Change the ECC status to on for each GPU or vGPU for which ECC is enabled.

‣ If you want to change the ECC status to on for all GPUs on your host machine or
vGPUs assigned to the VM, run this command:
nvidia-smi -e 1

‣ If you want to change the ECC status to on for a specific GPU or vGPU, run this
command:
nvidia-smi -i id -e 1

id is the index of the GPU or vGPU as reported by nvidia-smi.

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 57

This example enables ECC for the GPU with index 0000:02:00.0.
nvidia-smi -i 0000:02:00.0 -e 1

 3. Reboot the host or restart the VM.
 4. Confirm that ECC is now enabled for the GPU or vGPU.

nvidia—smi —q

==============NVSMI LOG==============

Timestamp : Mon Mar 25 18:37:53 2024
Driver Version : 550.54.16

Attached GPUs : 1
GPU 0000:02:00.0
[...]

 Ecc Mode
 Current : Enabled
 Pending : Enabled

[...]

If you later need to disable ECC on your GPUs or vGPUs, follow the instructions in
Disabling ECC Memory.

2.14. Configuring a vGPU VM for Use
with NVIDIA GPUDirect Storage
Technology

To use NVIDIA® GPUDirect Storage® technology with NVIDIA vGPU, you must install all the
required software in the VM that is configured with NVIDIA vGPU.
Ensure that the prerequisites in Prerequisites for Using NVIDIA AI Enterprise are met.

 1. Install and configure the NVIDIA Virtual GPU Manager as explained in Installing and
Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM.

 2. As root, log in to the VM that you configured with NVIDIA vGPU in the previous step.
 3. Install the Mellanox OpenFabrics Enterprise Distribution for Linux (MLNX_OFED) in the

VM as explained in Installation Procedure in Installing Mellanox OFED.

In the command to run the installation script, specify the following options:

‣ --with-nvmf

‣ --with-nfsrdma

‣ --enable-gds

‣ --add-kernel-support

https://docs.nvidia.com/networking/display/MLNXOFEDv461000/Installing+Mellanox+OFED#InstallingMellanoxOFED-InstallationProcedure

Installing and Configuring NVIDIA Virtual GPU Manager

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 58

 4. Install the NVIDIA AI Enterprise graphics driver for Linux in the VM from a distribution-
specific package.

Note: GPUDirect Storage technology does not support installation of the NVIDIA AI
Enterprise graphics driver for Linux from a .run file.

Follow the instructions for the Linux distribution that is installed in the VM:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian
Package

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from
an RPM Package

 5. Install NVIDIA CUDA Toolkit from a .run file, deselecting the CUDA driver when
selecting the CUDA components to install.

Note: To avoid overwriting the NVIDIA AI Enterprise graphics driver that you installed
in the previous step, do not install NVIDIA CUDA Toolkit from a distribution-specific
package.

For instructions, refer to Runfile Installation in NVIDIA CUDA Installation Guide for Linux.
 6. Use the package manager of the Linux distribution that is installed in the VM to install

the GPUDirect Storage technology packages, omitting the installation of the NVIDIA
CUDA Toolkit packages.

Follow the instructions in NVIDIA CUDA Installation Guide for Linux for the Linux
distribution that is installed in the VM:

‣ RHEL 8/Rocky 8

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:
sudo dnf install nvidia-gds

‣ Ubuntu

In the step to install CUDA, execute only the command to include all GPUDirect
Storage technology packages:
sudo apt-get install nvidia-gds

After you configure a vGPU VM for use with NVIDIA GPUDirect Storage technology,
you can license the NVIDIA AI Enterprise licensed products that you are using. For
instructions, refer to NVIDIA AI Enterprise Client Licensing User Guide.

https://docs.nvidia.com/cuda/archive/12.3.0/cuda-installation-guide-linux/index.html#runfile
https://docs.nvidia.com/cuda/archive/12.3.0/cuda-installation-guide-linux/index.html#rhel-8-rocky-8
https://docs.nvidia.com/cuda/archive/12.3.0/cuda-installation-guide-linux/index.html#ubuntu
http://docs.nvidia.com/ai-enterprise/5.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 59

Chapter 3. Installing and Licensing
NVIDIA AI Enterprise
Software Components

3.1. Installing NVIDIA AI Enterprise
Software Components by Using
Kubernetes

Perform this task if you are using one of the following combinations of guest operating
system and container platform:

‣ Ubuntu with Kubernetes

Ensure that the following prerequisites are met:

 1. If you are using Kubernetes, ensure that:
 a). Kubernetes is installed in the VM.
 b). NVIDIA vGPU Manager is installed.
 c). NVIDIA vGPU License Server with licenses is installed.

 2. Helm is installed.
 3. You have generated your NGC API key for accessing the NVIDIA Enterprise Collection

at the URL provided to you by NVIDIA.

3.1.1. Installing and Licensing the NVIDIA vGPU
Software Graphics Driver by Using NVIDIA
GPU Operator

Installation of the NVIDIA AI Enterprise GPU Operator is documented at:

https://docs.nvidia.com/datacenter/cloud-native/kubernetes/install-k8s.html#install-kubernetes
https://docs.nvidia.com/grid/latest/index.html
https://docs.nvidia.com/grid/ls/latest/grid-license-server-user-guide/index.html
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#install-helm
https://docs.nvidia.com/ngc/ngc-overview/index.html#generating-api-key

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 60

https://docs.nvidia.com/datacenter/cloud-native/gpu-
operator/getting-started.html#nvidia-ai-enterprise

3.1.2. Transforming Container Images for AI and
Data Science Applications and Frameworks
into Kubernetes Pods

The AI and data science applications and frameworks are distributed as NGC container
images through the NGC private registry. If you are using Kubernetes or Red Hat
OpenShift, you must transform each image that you want to use into a Kubernetes pod.
Each container image contains the entire user-space software stack that is required
to run the application or framework, namely, the CUDA libraries, cuDNN, any required
Magnum IO components, TensorRT, and the framework.

3.2. Install NVIDIA AI Enterprise
Software Components by Using
Docker

Perform this task if you are using Ubuntu with Docker.

3.2.1. Installing and Licensing the NVIDIA AI
Enterprise Graphics Driver Natively

Perform this task in the guest VM by following this sequence of instructions:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Linux

‣ Configuring a Licensed Client of NVIDIA License System

‣ Installing NVIDIA Container Toolkit

3.2.2. Installing NVIDIA AI Enterprise Software,
Applications, and Deep Learning
Framework Components by Using Docker

NVIDIA AI Enterprise software components in the infrastructure optimization and cloud
native deployment layers are distributed through the NVIDIA AI Enterprise Infra Release
5 collection on NVIDIA NGC. Applications and deep learning framework components for
NVIDIA AI Enterprise are distributed exclusively through the NGC Public Catalog.

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/getting-started.html#nvidia-ai-enterprise

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 61

The container image for each application or framework contains the entire user-space
software stack that is required to run the application or framework, namely, the CUDA
libraries, cuDNN, any required Magnum IO components, TensorRT, and the framework.

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

‣ Accessing the NGC Container Registry

Perform this task from the VM.

Obtain the Docker pull command for downloading each of the following applications and
deep learning framework components from the listing for the application or component
in the NGC Public Catalog.

‣ Applications:

‣ NVIDIA Clara Parabricks

‣ NVIDIA DeepStream

‣ NVIDIA Riva

‣ MONAI - Medical Open Network for Artificial Intelligence

‣ RAPIDS

‣ RAPIDS Accelerator for Apache Spark

‣ TAO

‣ Deep learning framework components:

‣ NVIDIA TensorRT

‣ NVIDIA Triton Inference Server

‣ PyTorch

‣ TensorFlow 2

Obtain the command for downloading each of the following NVIDIA AI Enterprise
software components from the listing for the component in the NVIDIA AI Enterprise
Infra Release 5 collection on NVIDIA NGC.

‣ GPU Operator

‣ Network Operator

‣ NVIDIA Base Command Manager Essentials

‣ vGPU Guest Driver, Ubuntu 22.04

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://catalog.ngc.nvidia.com/
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nvidia-ai-enterprise-infra-5
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nvidia-ai-enterprise-infra-5

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 62

3.3. Installing NVIDIA GPU Operator by
Using a Bash Shell Script

A bash shell script for installing NVIDIA GPU Operator with the NVIDIA vGPU guest driver
is available for download from NVIDIA NGC.
Before performing this task, ensure that the following prerequisites are met:

‣ A client configuration token has been generated for the client on which the script will
install the vGPU guest driver.

‣ The API key of the NVIDIA NGC user to be used for creating the image pull secret has
been generated.

‣ The following environment variables are set:
NGC_API_KEY

The API key of the NVIDIA NGC user to be used for creating the image pull secret

For example:
export
 NGC_API_KEY="RLh1zerCiG4wPGWWt4Tyj2VMyd7T8MnDyCT95pygP5VJFv8en4eLvdXVZzjm"

NGC_USER_EMAIL
The email address of the NVIDIA NGC user to be used for creating the image pull
secret

For example:
export NGC_USER_EMAIL="ada.lovelace@example.com"

 1. Download the NVIDIA GPU Operator - Deploy Installer Script from NVIDIA NGC.
 2. Ensure that the file access modes of the script allow the owner to execute the script.

 a). Change to the directory that contains the script.
cd script-directory
script-directory

The directory to which you downloaded the script in the previous step.
 b). Determine the current file access modes of the script.

ls -l gpu-operator-nvaie.sh

 c). If necessary, grant execute permission to the owner of the script.
chmod u+x gpu-operator-nvaie.sh

 3. Copy the client configuration token to the directory that contains the script.
 4. Rename the client configuration token to client_configuration_token.tok.

The client configuration token is generated with a file name that includes a time
stamp, namely: client_configuration_token_mm-dd-yyyy-hh-mm-ss.tok.

 5. From the directory that contains the script, start the script, specifying the option to
install the NVIDIA vGPU guest driver.
bash gpu-operator-nvaie.sh install

https://docs.nvidia.com/license-system/latest/nvidia-license-system-user-guide/index.html#generating-client-configuration-token
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://catalog.ngc.nvidia.com/orgs/nvidia/teams/vgpu/resources/gpu-operator-installer-5

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 63

3.4. Installing and Licensing NVIDIA AI
Enterprise Components Natively

3.4.1. Installing the NVIDIA AI Enterprise
Graphics Driver on Windows

After you create a Windows VM on the hypervisor and boot the VM, the VM should boot
to a standard Windows desktop in VGA mode at 800×600 resolution. You can use the
Windows screen resolution control panel to increase the resolution to other standard
resolutions, but to fully enable GPU operation, the NVIDIA AI Enterprise graphics driver
must be installed. Windows guest VMs are supported on all NVIDIA vGPU types, namely:
Q-series, C-series, B-series, and A-series NVIDIA vGPU types.

 1. Copy the NVIDIA Windows driver package to the guest VM where you are installing
the driver.

 2. Execute the package to unpack and run the driver installer.

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 64

Figure 13. NVIDIA driver installation

 3. Click through the license agreement.
 4. Select Express Installation and click NEXT.

After the driver installation is complete, the installer may prompt you to restart the
platform.

 5. If prompted to restart the platform, do one of the following:

‣ Select Restart Now to reboot the VM.

‣ Exit the installer and reboot the VM when you are ready.

After the VM restarts, it boots to a Windows desktop.
 6. Verify that the NVIDIA driver is running.

 a). Right-click on the desktop.
 b). From the menu that opens, choose NVIDIA Control Panel.
 c). In the NVIDIA Control Panel, from the Help menu, choose System Information.

NVIDIA Control Panel reports the vGPU or physical GPU that is being used, its
capabilities, and the NVIDIA driver version that is loaded.

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 65

Figure 14. Verifying NVIDIA driver operation using NVIDIA
Control Panel

After you install the NVIDIA AI Enterprise graphics driver, you can license any NVIDIA
AI Enterprise licensed products that you are using. For instructions, refer to NVIDIA AI
Enterprise Client Licensing User Guide.

Note: The graphics driver for Windows in this release of NVIDIA AI Enterprise is distributed
in a DCH-compliant package. A DCH-compliant package differs from a driver package that
is not DCH compliant in the following ways:

‣ The Windows registry key for license settings for a DCH-compliant package is
different than the key for a driver package that is not DCH compliant. If you are
upgrading from a driver package that is not DCH compliant in a VM that was
previously licensed, you must reconfigure the license settings for the VM. Existing
license settings are not propagated to the new Windows registry key for a DCH-
compliant package.

‣ NVIDIA System Management Interface, nvidia-smi, is installed in a folder that is in
the default executable path.

‣ The NVWMI binary files are installed in the Windows Driver Store under
%SystemDrive%:\Windows\System32\DriverStore\FileRepository\.

‣ NVWMI help information in Windows Help format is not installed with graphics driver
for Windows guest OSes.

http://docs.nvidia.com/ai-enterprise/5.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf
http://docs.nvidia.com/ai-enterprise/5.0/pdf/nvidia-ai-enterprise-client-licensing-user-guide.pdf

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 66

3.4.2. Installing the NVIDIA AI Enterprise
Graphics Driver on Linux

The NVIDIA AI Enterprise graphics driver for Linux is distributed as a Debian package for
Ubuntu distributions and as an RPM package for Red Hat distributions. The procedure for
installing the driver is the same in a VM and on bare metal.

If you are using a Linux OS for which the Wayland display server protocol is enabled by
default, disable it as explained in Disabling the Wayland Display Server Protocol for Red
Hat Enterprise Linux.

How to install the NVIDIA AI Enterprisegraphics driver on Linux depends on the
distribution format from which you are installing the driver. For detailed instructions, refer
to:

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package

‣ Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from an
RPM Package

3.4.2.1. Installing the NVIDIA AI Enterprise Graphics
Driver on Ubuntu from a Debian Package

The NVIDIA AI Enterprise graphics driver for Ubuntu is distributed as a Debian package
file.
This task requires sudo privileges.

 1. Copy the NVIDIA AI Enterprise Linux driver package, for example nvidia-linux-
grid-550_550.54.15_amd64.deb, to the guest VM where you are installing the driver.

 2. Log in to the guest VM as a user with sudo privileges.
 3. Open a command shell and change to the directory that contains the NVIDIA AI

Enterprise Linux driver package.
 4. From the command shell, run the command to install the package.

$ sudo apt-get install ./nvidia-linux-grid-550_550.54.15_amd64.deb

 5. Verify that the NVIDIA driver is operational.
 a). Reboot the system and log in.
 b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device

in the output from the nvidia-smi command.
$ nvidia-smi

3.4.2.2. Installing the NVIDIA AI Enterprise Graphics
Driver on Red Hat Distributions from an RPM
Package

The NVIDIA AI Enterprise graphics driver for Red Hat Distributions is distributed as an
RPM package file.
This task requires root user privileges.

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 67

 1. Copy the NVIDIA AI Enterprise Linux driver package, for example nvidia-linux-
grid-550.54.15_amd64.rpm, to the guest VM where you are installing the driver.

 2. Log in to the guest VM as a user with root user privileges.
 3. Open a command shell and change to the directory that contains the NVIDIA AI

Enterprise Linux driver package.
 4. From the command shell, run the command to install the package.

$ rpm -iv ./nvidia-linux-grid-550.54.15_amd64.rpm

 5. Verify that the NVIDIA driver is operational.
 a). Reboot the system and log in.
 b). After the system has rebooted, confirm that you can see your NVIDIA vGPU device

in the output from the nvidia-smi command.
$ nvidia-smi

3.4.2.3. Disabling the Nouveau Driver for NVIDIA
Graphics Cards

If the Nouveau driver for NVIDIA graphics cards is present, disable it before installing the
NVIDIA AI Enterprise graphics driver.

Note: If you are using SUSE Linux Enterprise Server, you can skip this task because the
Nouveau driver is not present in SUSE Linux Enterprise Server.

Run the following command and if the command prints any output, the Nouveau driver is
present and must be disabled.
$ lsmod | grep nouveau

 1. Create the file /etc/modprobe.d/blacklist-nouveau.conf with the following
contents:
blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initial RAM file system (initramfs).
The command to run to regenerate the kernel initramfs depends on the Linux
distribution that you are using.

Linux Distribution Command

CentOS $ sudo dracut --force

Debian $ sudo update-initramfs -u

Red Hat Enterprise Linux $ sudo dracut --force

Ubuntu $ sudo update-initramfs -u

 3. Reboot the host or guest VM.

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 68

3.4.2.4. Disabling the Wayland Display Server Protocol
for Red Hat Enterprise Linux

Starting with Red Hat Enterprise Linux Desktop 8.0, the Wayland display server protocol
is used by default on supported GPU and graphics driver configurations. However, the
NVIDIA AI Enterprise graphics driver for Linux requires the X Window System. Before
installing the driver, you must disable the Wayland display server protocol to revert to the
X Window System.
Perform this task from the host or guest VM that is running Red Hat Enterprise Linux
Desktop.
This task requires administrative access.

 1. In a plain text editor, edit the file /etc/gdm/custom.conf and remove the comment
from the option WaylandEnable=false.

 2. Save your changes to /etc/gdm/custom.conf.
 3. Reboot the host or guest VM.

3.4.3. Configuring a Licensed Client of NVIDIA
License System

A client with a network connection obtains a license by leasing it from a NVIDIA License
System service instance. The service instance serves the license to the client over the
network from a pool of floating licenses obtained from the NVIDIA Licensing Portal. The
license is returned to the service instance when the licensed client no longer requires the
license.

Before configuring a licensed client, ensure that the following prerequisites are met:

‣ The NVIDIA AI Enterprise graphics driver is installed on the client.

‣ The client configuration token that you want to deploy on the client has been created
from the NVIDIA Licensing Portal or the DLS as explained in NVIDIA License System
User Guide.

‣ Ports 443 and 80 in your firewall or proxy must be open to allow HTTPS traffic
between a service instance and its the licensed clients. These ports must be open for
both CLS instances and DLS instances.

Note: For DLS releases before DLS 1.1, ports 8081 and 8082 were also required to be
open to allow HTTPS traffic between a DLS instance and its licensed clients. Although
these ports are no longer required, they remain supported for backward compatibility.

The graphics driver creates a default location in which to store the client configuration
token on the client.

The process for configuring a licensed client is the same for CLS and DLS instances but
depends on the OS that is running on the client.

http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf
http://docs.nvidia.com/license-system/latest/pdf/nvidia-license-system-user-guide.pdf

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 69

3.4.3.1. Proxy Server Requirements and Firewall Rules
for a CLS Instance

To enable communication between a licensed client and a CLS instance through a proxy
server, the proxy server must meet certain requirements. To enable communication
through a firewall, firewall rules that allow traffic on specific URLs through specific ports
must be defined.

The processes for configuring a proxy server and defining firewall rules are separate from
the process for configuring a CLS instance. Use the standard interfaces of the proxy
server and the firewall that you are using to perform these processes.

Proxy Server Requirements for a CLS Instance

NVIDIA License System supports transparent proxy servers and non-transparent proxy
servers.

‣ A transparent proxy server identifies itself to the server and does not modify client
requests and responses.

‣ A non-transparent proxy server does not reveal the IP address of the client and
modifies client requests and responses.

Any proxy server between a licensed client and a CLS instance must allow programmatic
calls to the URL api.cls.licensing.nvidia.com.

Non-Transparent Proxy Server Support

NVIDIA License System supports both authenticated and unauthenticated non-
transparent proxy servers.

The following authenticated proxy servers are supported:

‣ Squid

The following authentication methods are supported for authenticated proxy servers:

‣ Basic

‣ Microsoft Windows Challenge/Response (Microsoft NTLM) (Windows clients only)

‣ Kerberos (only for clients that are a member of an Active Directory domain)

Firewall Rules for a CLS Instance

To enable communication between a licensed client and a CLS instance through a firewall,
firewall rules that allow traffic on the URLs through the ports specified in the following
table must be defined.

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 70

URL Port Traffic

api.cls.licensing.nvidia.com443 ‣ Licensing operations, namely, the borrowing, renewal,
and return of a license.

‣ Licensed client authentication

api.licensing.nvidia.com80 License return from a Windows licensed client that has
not been shut down cleanly

3.4.3.2. Configuring a Licensed Client on Windows with
Default Settings

Perform this task from the client.

 1. Copy the client configuration token to the %SystemDrive%:\Program Files\NVIDIA
Corporation\vGPU Licensing\ClientConfigToken folder.

 2. Restart the NvDisplayContainer service.

The NVIDIA service on the client should now automatically obtain a license from the CLS
or DLS instance.

3.4.3.3. Configuring a Licensed Client on Linux with
Default Settings

Perform this task from the client.

 1. As root, open the file /etc/nvidia/gridd.conf in a plain-text editor, such as vi.
$ sudo vi /etc/nvidia/gridd.conf

Note: You can create the /etc/nvidia/gridd.conf file by copying the supplied
template file /etc/nvidia/gridd.conf.template.

 2. Add the FeatureType configuration parameter to the file /etc/nvidia/gridd.conf
on a new line as FeatureType="value".

value depends on the type of the GPU assigned to the licensed client that you are
configuring.

GPU Type Value

NVIDIA vGPU 1. NVIDIA AI Enterprise automatically selects the
correct type of license based on the vGPU type.

Physical GPU The feature type of a GPU in pass-through mode or a
bare-metal deployment:

‣ 0: NVIDIA Virtual Applications

‣ 2: NVIDIA RTX Virtual Workstation

‣ 4: NVIDIA Virtual Compute Server

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 71

This example shows how to configure a licensed Linux client for NVIDIA Virtual
Compute Server.
/etc/nvidia/gridd.conf.template - Configuration file for NVIDIA Grid Daemon
…
Description: Set Feature to be enabled
Data type: integer
Possible values:
0 => for unlicensed state
1 => for NVIDIA vGPU
2 => for NVIDIA RTX Virtual Workstation
4 => for NVIDIA Virtual Compute Server
FeatureType=4
...

 3. Copy the client configuration token to the /etc/nvidia/ClientConfigToken
directory.

 4. Ensure that the file access modes of the client configuration token allow the owner to
read, write, and execute the token, and the group and others only to read the token.
 a). Determine the current file access modes of the client configuration token.

ls -l client-configuration-token-directory

 b). If necessary, change the mode of the client configuration token to 744.
chmod 744 client-configuration-token-directory/client_configuration_token_*.tok

client-configuration-token-directory
The directory to which you copied the client configuration token in the previous
step.

 5. Save your changes to the /etc/nvidia/gridd.conf file and close the file.
 6. Restart the nvidia-gridd service.

The NVIDIA service on the client should now automatically obtain a license from the CLS
or DLS instance.

3.4.3.4. Generating an Encrypted Credentials File
Some authentication methods require a licensed client to provide user credentials
when the client authenticates with a proxy server. To enable the client to provide these
credentials securely without input from a user, you must generate a file that contains
these credentials in an encrypted form that the client can read.

The following authentication methods require an encrypted credentials file:

‣ Basic authentication

‣ Microsoft Windows Challenge/Response (NTLM) authentication for a client that is not
a member of an Active Directory domain

How to generate an encrypted credentials file depends on the OS that client is running.
For detailed instructions, refer to the following topics:

‣ Generating an Encrypted Credentials File on Windows

‣ Generating an Encrypted Credentials File on Linux

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 72

3.4.3.4.1. Generating an Encrypted Credentials File on Windows
Perform this task in a Windows PowerShell window as the Administrator user on the
client.

 1. Change to the C:\Program Files\NVIDIA Corporation\vGPU Licensing
\ProxySettings folder.
PS C:\> cd "C:\Program Files\NVIDIA Corporation\vGPU Licensing\ProxySettings"

 2. Run the grid-proxy-credentials Windows PowerShell script.
PS C:\> .\grid-proxy-credentials.ps1

 3. In the Select Output File Path window that opens, navigate to the directory in which
you want to generate the credentials file, enter the file name, and click Save.

 4. When prompted in the Windows PowerShell window, specify the password of the user

that will log in to the proxy server when the licensed client requests a license.

Provide the path to this file when configuring a licensed client that will use the file as
explained in Configuring a Licensed Client on Windows with Default Settings.

3.4.3.4.2. Generating an Encrypted Credentials File on Linux
Perform this task in a Linux command shell on the client.

 1. Run the grid-proxy-credentials.sh command.
/usr/lib/nvidia/grid-proxy-credentials.sh -o output-file-path

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 73

output-file-path
The full path to the credentials file that you are generating. Ensure that the
directory in the path exists.

Tip: To get help information for this command, type /usr/lib/nvidia/grid-proxy-
credentials.sh --help.

This example creates the credentials file /etc/nvidia/proxy-credentials.dat.
/usr/lib/nvidia/grid-proxy-credentials.sh -o /etc/nvidia/proxy-credentials.dat

 2. When prompted, specify the password of the user that will log in to the proxy server
when the licensed client requests a license.

Provide the path to this file when configuring a licensed client that will use the file as
explained in Configuring a Licensed Client on Linux with Default Settings.

3.4.3.5. Verifying the NVIDIA AI Enterprise License
Status of a Licensed Client

After configuring a client with an NVIDIA AI Enterprise license, verify the license status by
displaying the licensed product name and status.

To verify the license status of a licensed client, run nvidia-smi with the –q or --query
optionfrom the licensed client, not the hypervisor host. If the product is licensed, the
expiration date is shown in the license status.
nvidia-smi -q
==============NVSMI LOG==============

Timestamp : Wed Nov 23 10:52:59 2022
Driver Version : 525.60.06
CUDA Version : 12.0

Attached GPUs : 2
GPU 00000000:02:03.0
 Product Name :
 Product Brand : NVIDIA Virtual Compute Server
 Product Architecture : Ampere
 Display Mode : Enabled
 Display Active : Disabled
 Persistence Mode : Enabled
 MIG Mode
 Current : Disabled
 Pending : Disabled
 Accounting Mode : Disabled
 Accounting Mode Buffer Size : 4000
 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : N/A
 GPU UUID : GPU-ba5b1e9b-1dd3-11b2-be4f-98ef552f4216
 Minor Number : 0
 VBIOS Version : 00.00.00.00.00
 MultiGPU Board : No
 Board ID : 0x203
 Board Part Number : N/A
 GPU Part Number : 25B6-890-A1
 Module ID : N/A
 Inforom Version
 Image Version : N/A

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 74

 OEM Object : N/A
 ECC Object : N/A
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 GSP Firmware Version : N/A
 GPU Virtualization Mode
 Virtualization Mode : VGPU
 Host VGPU Mode : N/A
 vGPU Software Licensed Product
 Product Name : NVIDIA Virtual Compute Server
 License Status : Licensed (Expiry: 2022-11-23 10:41:16
 GMT)
 …
 …

3.4.4. Installing NVIDIA Container Toolkit
Use NVIDIA Container Toolkit to build and run GPU accelerated Docker containers. The
toolkit includes a container runtime library and utilities to configure containers to use
NVIDIA GPUs automatically.

Ensure that the following software is installed in the guest VM:

‣ Docker 20.10 for your Linux distribution. For instructions, refer to Install Docker
Engine on Ubuntu in the Docker product manuals.

https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 75

‣ The NVIDIA AI Enterprise graphics driver. For instructions, refer to Installing the
NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package.

Note: You do not need to install NVIDIA CUDA Toolkit on the hypervisor host.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the
file /etc/apt/sources.list.d/nvidia-docker.list.
$ distribution=$(. /etc/os-release;echo IDVERSION_ID)
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-
docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

 2. Download information from all configured sources about the latest versions of the
packages and install the nvidia-container-toolkit package.
$ sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit

 3. Restart the Docker service.
$ sudo systemctl restart docker

3.4.5. Verifying the Installation of NVIDIA
Container Toolkit

 1. Run the nvidia-smi command contained in the latest official NVIDIA CUDA Toolkit
image that is compatible with the release of the NVIDIA CUDA Toolkit driver that is
running on your machine.

Note: Do not use a release of the NVIDIA CUDA Toolkit image later than the release of
the NVIDIA CUDA Toolkit driver that is running on your machine. For a list of all NVIDIA
CUDA Toolkit images, refer to nvidia/cuda on Docker Hub.

$ docker run --gpus all nvidia/cuda:12.3.0-base-ubuntu22.04 nvidia-smi

 2. Start a GPU-enabled container on any two available GPUs.
$ docker run --gpus 2 nvidia/cuda:12.3.0-base-ubuntu22.04 nvidia-smi

 3. Start a GPU-enabled container on two specific GPUs identified by their index
numbers.
$ docker run --gpus '"device=1,2"' nvidia/cuda:12.3.0-base-ubuntu22.04 nvidia-smi

 4. Start a GPU-enabled container on two specific GPUs with one GPU identified by its
UUID and the other GPU identified by its index number.
$ docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:12.3.0-base-ubuntu22.04 nvidia-
smi

 5. Specify a GPU capability for the container.
$ docker run --gpus all,capabilities=utility nvidia/cuda:12.3.0-base-ubuntu22.04 nvidia-
smi

3.4.6. Installing Software Distributed as
Container Images

The NGC container images accessed through the NVIDIA NGC Catalog include the AI
and data science applications and frameworks. Each container image for an AI and data

https://hub.docker.com/r/nvidia/cuda/tags

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 76

science application or framework contains the entire user-space software stack that is
required to run the application or framework, namely, the CUDA libraries, cuDNN, any
required Magnum IO components, TensorRT, and the framework.

Ensure that you have completed the following tasks in NGC Private Registry User Guide:

‣ Generating Your NGC API Key

‣ Accessing the NGC Container Registry

Perform this task from the VM.

Obtain the Docker pull command for downloading each of the following applications and
deep learning framework components from the listing for the application or component
in the NGC Public Catalog.

‣ Applications:

‣ NVIDIA Clara Parabricks

‣ NVIDIA DeepStream

‣ NVIDIA Riva

‣ MONAI - Medical Open Network for Artificial Intelligence

‣ RAPIDS

‣ RAPIDS Accelerator for Apache Spark

‣ TAO

‣ Deep learning framework components:

‣ NVIDIA TensorRT

‣ NVIDIA Triton Inference Server

‣ PyTorch

‣ TensorFlow 2

3.4.7. Running ResNet-50 with TensorRT
 1. Launch the NVIDIA TensorRT container image on all GPUs in interactive mode,

specifying that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm nvcr.io/nvaie/tensorrt:21.07-py3

 2. From within the container runtime, change to the directory that contains test data for
the ResNet-50 convolutional neural network.
cd /workspace/tensorrt/data/resnet50

 3. Run the ResNet-50 convolutional neural network with FP32, FP16, and INT8 precision
and confirm that each test is completed with the result PASSED.
 a). To run ResNet-50 with the default FP32 precision, run this command:

trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob

 b). To run ResNet-50 with FP16 precision, add the --fp16 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --fp16

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://catalog.ngc.nvidia.com/

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 77

 c). To run ResNet-50 with INT8 precision, add the --int8 option:
trtexec --duration=90 --workspace=1024 --percentile=99 --avgRuns=100 \
--deploy=ResNet50_N2.prototxt --batch=1 --output=prob --int8

 4. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command
shell.

3.4.8. Running ResNet-50 with TensorFlow
 1. Launch the TensorFlow 1 container image on all GPUs in interactive mode, specifying

that the container will be deleted when it is stopped.
$ sudo docker run --gpus all -it --rm \
nvcr.io/nvaie/tensorflow:21.07-tf1-py3

 2. From within the container runtime, change to the directory that contains test data for
cnn example.
cd /workspace/nvidia-examples/cnn

 3. Run the ResNet-50 training test with FP16 precision.
python resnet.py --layers 50 -b 64 -i 200 -u batch --precision fp16

 4. Confirm that all operations on the application are performed correctly and that a set
of results is reported when the test is completed.

 5. Press Ctrl+P, Ctrl+Q to exit the container runtime and return to the Linux command
shell.

3.4.9. Optional: Updating NVIDIA Container
Toolkit for a MIG-Enabled vGPU

To run containers on a MIG-enabled vGPU, you must update the NVIDIA Container Toolkit.
This task requires sudo privileges.
Perform this task from the guest VM in which you want to run containers on a MIG-
enabled vGPU.

 1. Set up the GPG key and configure apt to use NVIDIA Container Toolkit packages in the
file /etc/apt/sources.list.d/nvidia-docker.list.
$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add - \
 && distribution=$(. /etc/os-release;echo IDVERSION_ID) \
 && curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list
 | sudo tee /etc/apt/sources.list.d/nvidia-docker.list \
 && sudo apt-get update

 2. Install the NVIDIA Container Toolkit packages and the packages on which it depends,
and restart Docker.
$ sudo apt-get install -y nvidia-docker2 \
 && sudo systemctl restart docker

 3. Test the installation of the NVIDIA Container Toolkit on the VM.
sudo docker run –runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=mig-device nvidia/cuda
 nvidia-smi
mig-device

The ID of the MIG-enabled vGPU in one of the following formats:

‣ MIG-gpu-uuid/gpu-instance-id/compute-instance-id

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 78

gpu-uuid
The UUID of the physical GPU, for example, GPU-786035d5-1e85-11b2-9fec-
ac9c9a792daf.

gpu-instance-id
The index number the GPU instance on which the vGPU resides, for example,
0 for the first GPU instance.

compute-instance-id
The index number of the compute instance within the GPU instance, for
example, 0 for the first compute instance.

This example sets NVIDIA_VISIBLE_DEVICES for compute instance 0 on
a MIG-enabled vGPU on GPU instance 0 of the physical GPU with UUID
GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf.
NVIDIA_VISIBLE_DEVICES=MIG-GPU-786035d5-1e85-11b2-9fec-ac9c9a792daf/0/0

‣ gpu-device-index:mig-device-index
gpu-device-index

The index number the physical GPU.
mig-device-index

The index number the GPU instance.

3.5. The NVIDIA NGC Catalog
NVIDIA AI Enterprise components are distributed through the NVIDIA NGC Catalog.
Infrastructure and workload management components are distributed as resources in the
NVIDIA AI Enterprise Infra Release 5 collection. Tools for AI development and use cases
are available from the NVIDIA AI Enterprise Software Suite.

3.5.1. Resources
Infrastructure and workload management components of NVIDIA AI Enterprise are
distributed as resources in the NVIDIA AI Enterprise Infra Release 5 collection.

The NVIDIA AI Enterprise Infra Release 5 collection contains the following resources:

‣ GPU Operator

‣ Network Operator

‣ NVIDIA Base Command Manager Essentials

‣ vGPU Guest Driver, Ubuntu 22.04

Before downloading any NVIDIA AI Enterprise software assets, ensure that you have
signed in to NVIDIA NGC from the NVIDIA NGC Sign In page.

 1. Go to the NVIDIA AI Enterprise Infra Release 5 collection on NVIDIA NGC.
 2. Click the Entities tab and select the resource that you are interested in.
 3. Click Download and, from the menu that opens, choose to download the resource by

using a direct download in the browser, the displayed wget command, or the CLI.

https://ngc.nvidia.com/signin
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nvidia-ai-enterprise-infra-5
https://ngc.nvidia.com/setup/installers/cli

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 79

3.5.2. Container Images
You obtain AI and data science container images by using Docker to pull the images from
the NVIDIA NGC container registry.
For each container image that you want, perform this task from the VM or host where
you want to run the container image.

 1. Generate your API key.
 2. Access the NVIDIA NGC container registry.

 a). Log in to the NVIDIA NGC container registry.
sudo docker login nvcr.io

 b). When prompted for your username, enter the text $oauthtoken.
Username: $oauthtoken

 c). When prompted for your password, enter your NVIDIA NGC API key.
Password: my-api-key

 3. For each AI or data science application that you are interested in, load the container.
sudo docker pull nvcr.io/nvaie/tensorflow:21.02-tf2-py3

3.5.3. Helm Charts
The NVIDIA AI Enterprise Infra Release 5 collection contains Helm charts for use
by NVIDIA GPU Operator and NVIDIA Network Operator to deploy and manage GPU
resources and network resources for deployments based on Kubernetes.
Before downloading any NVIDIA AI Enterprise software assets, ensure that you have
signed in to NVIDIA NGC from the NVIDIA NGC Sign In page.

 1. Go to the NVIDIA AI Enterprise Infra Release 5 collection on NVIDIA NGC.
 2. Click the Entities tab and select the Helm chart that you are interested in.
 3. Download the Helm chart as explained in Manage Helm Charts Using the Helm CLI in

NGC Private Registry User Guide.

3.5.4. Models
The Feature Branches and Models collection contains pretrained unencrypted models for
MONAI and Tao Toolkit.

 1. Go to the Feature Branches and Models collection.
 2. Click the Entities tab and select the model that you are interested in.
 3. On the page that opens for the model that you selected, click Download and choose

to download the resource by using a direct download in the browser, the displayed
wget command, or the CLI.

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#generating-api-key
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#accessing-ngc-registry
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#loading-nvidia-docker-containers
https://ngc.nvidia.com/signin
https://catalog.ngc.nvidia.com/orgs/nvidia/collections/nvidia-ai-enterprise-infra-5
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#managing-helm-charts-using-helm-cli
https://catalog.ngc.nvidia.com/enterprise/orgs/nvaie/collections/nvidia_ai_enterprise_ai_development_tools_and_use_cases
https://ngc.nvidia.com/setup/installers/cli

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 80

3.5.5. Accessing the NVIDIA AI Enterprise
Software Suite

Tools for AI development and use cases are available from the NVIDIA AI Enterprise
Software Suite, which is distributed through the NVIDIA NGC Catalog.
Before downloading any NVIDIA AI Enterprise software assets, ensure that you have
signed in to NVIDIA NGC from the NVIDIA NGC Sign In page.

 1. View the NVIDIA AI Enterprise Software Suite on NVIDIA NGC.

‣ Go to the NVIDIA AI Enterprise Supported page on NVIDIA NGC.

‣ Visit the NVIDIA NGC site and set the NVIDIA AI Enterprise Support filter.

 2. Browse the NVIDIA AI Enterprise Software Suite to find software assets that you are
interested in.

 3. For each software asset that you are interested in, click the asset to learn more about
or download the asset.

3.5.6. Adding Additional Users from Your
Organization to the Enterprise Catalog
(Admins Only)

As an admin, you are responsible for giving members of your organization access to the
Enterprise Catalog.

 1. Make sure you are signed in.
 2. Make sure to select your company's organization from the user menu on the top right.
 3. On the left side menu, select Organization and click on Users, then click the + icon at

the bottom of the screen and then click the Invite New User icon.
 4. Provide the name and email address of the user you would like to add.
 5. Provision user roles for the new user:

 a). To give the new user access to the entities in the Enterprise Catalog, provide them
with the user role NVIDIA AI Enterprise Viewer.

 b). To make the user an admin that can add additional users to the Enterprise
Catalog, provision the user roles: NVIDIA AI Enterprise Viewer and User Admin.

 c). To give the user access to your organization’s Private Registry, see Accessing
Your NGC Private Registry. Provisioning access to the Enterprise Catalog and your
organization’s Private Registry can be done in one or two steps.

3.6. The NGC Private Registry
As an NVIDIA AI Enterprise user, you have exclusive access to your organization’s own
NGC Private Registry, which gives authorized users within your organization privileges

https://ngc.nvidia.com/signin
https://ngc.nvidia.com/nvaie-supported/
https://ngc.nvidia.com/
https://ngc.nvidia.com/signin

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 81

to store your company’s proprietary software and tools, including custom models,
frameworks, and helm charts, in one location.

The complete NGC Private Registry user guide can be found here.

3.6.1. Accessing Your NGC Private Registry
 1. To access your NGC Private Registry, sign in with your NGC Account.
 2. In the top right corner, click your user account icon and select the orgname.

 3. To view artifacts in your NGC Private Registry, select Private Registry in the left-hand

menu.

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html
https://ngc.nvidia.com/signin

Installing and Licensing NVIDIA AI Enterprise Software Components

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 82

 4. You can access the content of the NGC Private Registry by selecting one of the entity

types (Collections, Containers, Helm Charts, Models, Resources).
 5. To upload entities to your NGC Private Registry, click on Entity Creation Hub.

3.6.2. Managing Teams and Users
As an admin, you can add users to your organization’s NGC Private Registry and create
teams within the NGC Private Registry.

Before adding users and teams, familiarize yourself with the following definitions of each
role here.

3.6.2.1. Creating Teams
Creating teams allows users to share images within a team while keeping them invisible
to other teams in the same organization. Only organization administrators can create
teams.

Here is how you create a team.

3.6.2.2. Creating Users
As the organization administrator, you must create user accounts to allow others to use
the NGC container registry within the organization.

Here is how you create a new user.

https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#user-roles
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#creating-teams
https://docs.nvidia.com/ngc/ngc-private-registry-user-guide/index.html#creating-users

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 83

Chapter 4. Configuring Multinode
Scaling

Multinode scaling improves the performance of applications and frameworks, such as
PyTorch and Tensorflow, that can run in a cluster of multiple hypervisor hosts.

Note:

Perform the tasks for configuring multinode scaling before performing the tasks in
Getting Started with NVIDIA AI Enterprise.

The procedures for configuring switches and NICs apply to NVIDIA Mellanox NICs and
switches. If you are using other makes of NICs and switches, consult the vendor's
documentation for the products that you are using.

You are free to choose how to run your training jobs in a cluster. For information about
the cluster architecture that can be used to run BERT training jobs, see Multi-node BERT
User Guide.

4.1. Hardware and VM Configuration
Requirements for Multinode
Scaling

If you are configuring multinode scaling, your hardware and VM configuration must meet
some specific requirements in addition to the requirements for a single node.

4.1.1. Hardware Requirements for Multinode
Scaling

In addition to the requirements for a single node, the hardware used for multinode scaling
must meet the following requirements:

‣ An Ethernet NIC that supports RoCE is required in each VM used for multinode
scaling. For best performance, NVIDIA recommends the NVIDIA® Mellanox®

ConnectX®-6 Dx.

https://docs.nvidia.com/ngc/multi-node-bert-user-guide/
https://docs.nvidia.com/ngc/multi-node-bert-user-guide/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 84

‣ The hypervisor hosts must be connected to a network switch that supports RoCE. For
best performance, NVIDIA recommends the NVIDIA Mellanox Spectrum switch.

‣ One GPU is required for each VM.

For best performance, NVIDIA recommends the NVIDIA A100 GPU.

‣ Each GPU on each hypervisor host must be paired with a NIC in the same NUMA node.

4.1.2. VM Requirements for Multinode Scaling
In addition to meeting the requirements for using C-Series vCS vGPUs, each VM used for
multinode scaling must be assigned an RoCE NIC PCIe device.

4.2. Configuring NUMA Affinity for the
VMs

To ensure that your multinode setup performs adequately, each GPU on each hypervisor
host must be paired with a NIC in the same NUMA node. If a GPU is not paired with
a NIC in the same NUMA node, reconfigure your server hardware to ensure that this
prerequisite is met.

Examples of how to configure NUMA affinity for the VMs in a two-socket server are
provided for the following configurations:.

‣ Whole-server VM with two GPUs and two NICs across both NUMA nodes

‣ Per-socket VM with one GPU and one NIC paired on a single NUMA node

The hardware configuration of the server is as follows:

https://docs.nvidia.com/grid/latest/grid-vgpu-release-notes-vmware-vsphere/index.html#vcompute-vgpu-bar-memory
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.networking.doc/GUID-BF2770C3-39ED-4BC5-A8EF-77D55EFE924C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-A80A6337-7B99-48C8-B024-EE47E2366C1B.html

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 85

4.2.1. Configuring NUMA Affinity for a Whole-
Server VM with Two GPUs and Two NICs
Across Both NUMA Nodes

The allocation of hardware resources to a VM that is assigned the whole server is as
follows:

Perform this task on each hypervisor host.

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes two GPUs. One GPU is attached to NUMA node 0 and
the other GPU is attached to NUMA node 1.
#GPU 1
0000:37:00.0
 Address: 0000:37:00.0
 Segment: 0x0000
 Bus: 0x37
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx0
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 86

 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 2
 Slot Description: PCI-E Slot 2
 Device Layer Bus Address: s00000002.00
 Passthru Capable: true
 Parent Device: PCI 0:54:0:0
 Dependent Device: PCI 0:55:0:0
 Reset Method: Bridge reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 0
 Extended Device Name:

#GPU 2
0000:86:00.0
 Address: 0000:86:00.0
 Segment: 0x0000
 Bus: 0x86
 Slot: 0x00
 Function: 0x0
 VMkernel Name: vmgfx1
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner: VMkernel
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x145f
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
 PCI Pin: 0x00
 Spawned Bus: 0x00
 Flags: 0x3001
 Module ID: 50
 Module Name: nvidia
 Chassis: 0
 Physical Slot: 5
 Slot Description: PCI-E Slot 5
 Device Layer Bus Address: s00000005.00
 Passthru Capable: true
 Parent Device: PCI 0:133:0:0
 Dependent Device: PCI 0:134:0:0
 Reset Method: Bridge reset

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 87

 FPT Sharable: true
 NUMA Node: 1
 Extended Device ID: 0
 Extended Device Name:

 2. Set up vCPUs for the VM so that the VM has two sockets with the vCPU cores evenly
divided between the sockets.

 3. With two GPUs and NICs in the VM across NUMA nodes, set the NUMA affinity in the
VM configuration to include both NUMA nodes 0 and 1.
numa.nodeAffinity = 0,1

4.2.2. Configuring NUMA Affinity for a Per-
Socket VM with One GPU and One NIC on a
Single NUMA Node

The allocation of hardware resources to the VMs that are each assigned one socket in a
server is as follows:

Perform this task on each hypervisor host.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 88

 1. Determine the NUMA node to which the GPUs and NICs are attached.
 a). Determine the NUMA node to which the GPUs are attached.

$ esxcli hardware pci list | grep -A 30 -B 10 NVIDIA

 b). Determine the NUMA node to which the NICs are attached.
$ esxcli hardware pci list | grep -A 30 -B 10 Mellanox

The following output describes a GPU that is attached to NUMA node 0.
0000:3b:02.3
 Address: 0000:3b:02.3
 Segment: 0x0000
 Bus: 0x3b
 Slot: 0x02
 Function: 0x3
 VMkernel Name: PF_0.59.0_VF_15
 Vendor Name: NVIDIA Corporation
 Device Name: NVIDIAA100-PCIE-40GB
 Configured Owner:
 Current Owner: VMkernel
 Vendor ID: 0x10de
 Device ID: 0x20f1
 SubVendor ID: 0x10de
 SubDevice ID: 0x0000
 Device Class: 0x0302
 Device Class Name: 3D controller
 Programming Interface: 0x00
 Revision ID: 0xa1
 Interrupt Line: 0xff
 IRQ: 255
 Interrupt Vector: 0x00
PCI Pin: 0xff
 Spawned Bus: 0x00
 Flags: 0x0001
 Module ID: 54
 Module Name: nvidia
 Chassis: 0
 Physical Slot: -1
 Slot Description:
 Device Layer Bus Address: s00000001.00.vf15
 Passthru Capable: true
 Parent Device: PCI 0:58:0:0
 Dependent Device: PCI 0:59:2:3
 Reset Method: Function reset
 FPT Sharable: true
 NUMA Node: 0
 Extended Device ID: 65535
 Extended Device Name:

 2. For each GPU that you want to pair with a NIC, set the NUMA affinity in the VM
configuration to the NUMA node to which the NIC and the GPU in the pair belong.
numa.nodeAffinity = numa-node-value

4.3. Configuring RoCE on the NVIDIA
Mellanox Spectrum Switch

The NVIDIA Mellanox Spectrum switch must be able to run RDMA over Converged
Ethernet (RoCE) over a lossless network in DSCP-based QoS mode.

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 89

Perform this task from a host computer that has an Ethernet LAN connection to the
switch.

 1. Use secure shell (SSH) to log in to the switch.
To obtain the username and password for logging in to the switch, consult the
documentation for the switch.

 2. Set the mode of the switch to RoCE.
switch (config) # roce

 3. Create an isolated vLAN.
switch (config) # interface vlan vlan-id

The vLAN context is entered automatically after the vLAN is created.

The following example creates a vLAN with the identifier 111.
switch (config) # interface vlan 111
switch (config vlan 111) #

 4. Exit the vLAN context.
switch (config vlan 111) # exit

 5. Place the NVIDIA ConnectX NICs into the created vLAN as access ports.
switch (config) # interface ethernet port-range switchport access vlan-id

This example puts four NVIDIA ConnectX NICs into the vLAN with the identifier 111 as
access ports 1/1 - 1/4.
switch (config) # interface ethernet 1/1-1/4 switchport access vlan 111

 6. Set the maximum transmission unit (MTU) frame size to 9216.
 a). Disable all the ports related to the interface.

switch (config) # interface ethernet port-range shutdown

 b). Set the MTU frame size for the NVIDIA ConnectX NICs in the created vLAN to
9216.
switch (config) # interface ethernet port-range mtu 9216

 c). Enable all the ports related to the interface.
switch (config) # interface ethernet port-range no shutdown

 7. If your switch is running Cumulus Linux, enable RoCE with Cumulus Linux.

4.4. Enabling GPUDirect Technology for
Peer-to-Peer Connections

Enabling GPUDirect® Technology for peer-to-peer connections involves enabling Address
Translation Services (ATS) in the VMware ESXi VMkernel and modifying Access Control
Services (ACS) settings for the VM.

Perform this task from each hypervisor host in your multinode cluster.

 1. As root, log in to the hypervisor host.
 2. Update the VMkernel settings.

 a). Enable Address Translation Services (ATS) in the boot options.

https://docs.cumulusnetworks.com/cumulus-linux-42/Network-Solutions/RDMA-over-Converged-Ethernet-RoCE/

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 90

[root@localhost:~] esxcli system settings kernel set -s atsSupport -v TRUE

 b). Reboot the hypervisor host.
 c). Confirm that ATS is enabled.

[root@localhost:~] esxcli system settings kernel list -o atsSupport
Name Type Configured Runtime Default Description
---------- ---- ---------- ------- ------- -----------
atsSupport Bool TRUE TRUE FALSE Enable Support for PCIe
 ATS.

 3. Update the VM configuration.
 a). Set the option to enable peer-to-peer connections.

pciPassthru.allowP2P=true

 b). Set the option to relax ACS settings for peer-to-peer connections.
pciPassthru.RelaxACSforP2P=true

When this option is set, VMware vSphere ESXi locates an ATS-capable pass-
through device, finds its parent switch or root port, and enables the ACS Direct
Translated bit.

4.5. Installing the Mellanox OFED Driver
Perform this task on each guest VM on each hypervisor host.

 1. Install the default version of python.
$ sudo apt install python

 2. Download the compressed tar archive that contains the driver.
$ wget \
https://content.mellanox.com/ofed/MLNX_OFED-5.2-2.2.0.0/\
MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 3. Extract the contents of the compressed tar archive that contains the driver.
$ tar xvf MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64.tgz

 4. Change to the MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64 directory.
$ cd MLNX_OFED_LINUX-5.2-2.2.0.0-ubuntu20.04-x86_64

 5. Run the script that installs the driver.
$ sudo ./mlnxofedinstall

During the installation process, OFED detects the ConnectX-6 NICs and updates the
firmware.

 6. When the installation is complete, confirm that the versions of OFED are correct.
 a). Determine the OFED version.

$ dpkg -l | grep mlnx-ofed

 b). Determine the firmware version.
$ cat /sys/class/infiniband/mlx5*/fw_ver

If the firmware is not updated, download the latest firmware, update the firmware
manually, and install the Mellanox OFED driver again.

 7. Load the installed driver.
$ sudo /etc/init.d/openibd restart

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 91

4.6. Enabling ATS on the NVIDIA
ConnectX-6 DX NICs in a VM

Perform this task on each guest VM on each hypervisor host.

 1. Change the ATS configuration to enabled on each guest VM on the hypervisor host.
 a). Start Mellanox software tools.

$ sudo mst start

 b). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

If the installed version of the firmware supports ATS, output similar to the
following example is displayed.
ATS_ENABLED False(0)

If no output is displayed, the installed version of the firmware does not support
ATS. In this situation, update to a version of the firmware that supports ATS.

 c). If ATS is disabled, enable it.
$sudo mlxconfig -d /dev/mst/mt4123_pciconf0 set ATS_ENABLED=true
Device #1:

Device type: ConnectX6
Name: MCX653105A-HDA_Ax
Description: ConnectX-6 VPI adapter card; HDR IB (200Gb/s) and 200GbE;
 single-port QSFP56; PCIe4.0 x16; tall bracket; ROHS R6
Device: /dev/mst/mt4123_pciconf0

Configurations: Next Boot New
ATS_ENABLED False(0) True(1)
Apply new Configuration? (y/n) [n] : y
Applying... Done!
-I- Please reboot machine to load new configurations.

 2. After changing the ATS configuration to enabled on each guest VM on the node, turn
off the power to the VMware vSphere ESXi host and turn the power back on again.

Note:

To apply the changed ATS configuration setting, you must turn off the power to the
VMware vSphere ESXi host and turn the power back on again. Rebooting the host is
insufficient to apply this change.

 3. Start VMware vCenter Server on the hypervisor host.
 4. For each VM on the node, perform the following steps:

 a). Turn on the power to the VM.
 b). Start Mellanox software tools.

$ sudo mst start

 c). Determine whether ATS is enabled.
$ sudo mlxconfig -d /dev/mst/mt4123_pciconf0 query | grep -i ATS

Configuring Multinode Scaling

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 92

If the installed version of the firmware supports ATS, output similar to the
following example is displayed.
ATS_ENABLED True(1)

 d). Obtain detailed information about all PCI buses and devices in the VM and confirm
that the ATS capability of Mellanox ConnectX-6 device is shown as Enable+.
$ sudo lspci -vvv
...
 Capabilities: [480 v1] Address Translation Service (ATS)
 ATSCap: Invalidate Queue Depth: 00
 ATSCtl: Enable+, Smallest Translation Unit: 00
...

4.7. Building and Installing the NVIDIA
Peer Memory Driver

Perform this task on each guest VM on each hypervisor host.

 1. If necessary, install the latest stable upstream version of Git.
 a). Add the ppa:git-core/ppa repository to your list of package sources.

$ sudo add-apt-repository ppa:git-core/ppa

 b). Download information from all configured sources about the latest versions of the
packages.
$ sudo apt update

 c). Install the git package.
$ sudo apt install git

 2. Clone the Mellanox nv_peer_memory Git repository.
$ git clone https://github.com/Mellanox/nv_peer_memory.git

 3. Change to the nv_peer_memory directory.
$ cd nv_peer_memory/

 4. Build the NVIDIA peer memory driver software.
$./build_module.sh

 5. Change to the /tmp directory.
$ cd /tmp/

 6. Extract the NVIDIA peer memory driver software from the compressed tar archive
that the build process created.
$ tar xzf /tmp/nvidia-peer-memory_1.1.orig.tar.gz

 7. Change to the nvidia-peer-memory-1.1 directory.
$ cd nvidia-peer-memory-1.1/

 8. Build the NVIDIA peer memory driver package.
$ dpkg-buildpackage -us -uc

 9. Change to the parent of the current working directory.
$ cd ..

 10.Install the driver package that you built.
$ sudo dpkg -i nvidia-peer-memory_1.1-0_all.deb

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 93

Chapter 5. Modifying a VM's NVIDIA
vGPU Configuration

You can modify a VM's NVIDIA vGPU configuration by removing the NVIDIA vGPU
configuration from a VM or by modifying GPU allocation policy.

5.1. Removing a VM’s NVIDIA vGPU
Configuration

Remove a VM’s NVIDIA vGPU configuration when you no longer require the VM to use a
virtual GPU.

5.1.1. Removing a vSphere VM’s vGPU
Configuration

To remove a vSphere vGPU configuration from a VM:

 1. Select Edit settings after right-clicking on the VM in the vCenter Web UI.
 2. Select the Virtual Hardware tab.
 3. Mouse over the PCI Device entry showing NVIDIA GRID vGPU and click on the (X) icon

to mark the device for removal.
 4. Click OK to remove the device and update the VM settings.

5.2. Modifying GPU Allocation Policy
VMware vSphere supports the breadth first and depth-first GPU allocation policies for
vGPU-enabled VMs.
breadth-first

The breadth-first allocation policy attempts to minimize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the fewest vGPUs already resident on it. This
policy generally leads to higher performance because it attempts to minimize sharing
of physical GPUs, but it may artificially limit the total number of vGPUs that can run.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 94

depth-first
The depth-first allocation policy attempts to maximize the number of vGPUs running
on each physical GPU. Newly created vGPUs are placed on the physical GPU that can
support the new vGPU and that has the most vGPUs already resident on it. This policy
generally leads to higher density of vGPUs, particularly when different types of vGPUs
are being run, but may result in lower performance because it attempts to maximize
sharing of physical GPUs.

By default, VMware vSphere ESXi uses the breadth-first allocation policy.

If the default GPU allocation policy does not meet your requirements for performance or
density of vGPUs, you can change it.

5.2.1. Modifying GPU Allocation Policy on
VMware vSphere

Before using the vSphere Web Client to change the allocation scheme, ensure that the
ESXi host is running and that all VMs on the host are powered off.

 1. Log in to vCenter Server by using the vSphere Web Client.
 2. In the navigation tree, select your ESXi host and click the Configure tab.
 3. From the menu, choose Graphics and then click the Host Graphics tab.
 4. On the Host Graphics tab, click Edit.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 95

Figure 15. Breadth-first allocation scheme setting for vGPU-
enabled VMs

 5. In the Edit Host Graphics Settings dialog box that opens, select these options and
click OK.
 a). If not already selected, select Shared Direct.
 b). Select Group VMs on GPU until full.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 96

Figure 16. Host graphics settings for vGPU

After you click OK, the default graphics type changes to Shared Direct and the
allocation scheme for vGPU-enabled VMs is breadth-first.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 97

Figure 17. Depth-first allocation scheme setting for vGPU-enabled
VMs

 6. Restart the ESXi host or the Xorg service on the host.

See also the following topics in the VMware vSphere documentation:

‣ Log in to vCenter Server by Using the vSphere Web Client

‣ Configuring Host Graphics

5.3. Migrating a VM Configured with
vGPU

On some hypervisors, NVIDIA AI Enterprise supports migration of VMs that are
configured with vGPU. Migration is supported for both time-sliced and MIG-backed
vGPUs.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-CE128B59-E236-45FF-9976-D134DADC8178.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.resmgmt.doc/GUID-E0862AED-BF69-4C85-A811-EEE626F63B48.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 98

Before migrating a VM configured with vGPU, ensure that the following prerequisites are
met:

‣ The VM is configured with vGPU.

‣ The VM is running.

‣ The VM obtained a suitable vGPU license when it was booted.

‣ The destination host has a physical GPU of the same type as the GPU where the vGPU
currently resides.

‣ If the physical GPU supports the Multi-Instance GPU (MIG) feature, the MIG
configuration of the GPU on both the source and destination hosts must be identical.

‣ ECC memory configuration (enabled or disabled) on both the source and destination
hosts must be identical.

‣ The GPU topologies (including NVLink widths) on both the source and destination
hosts must be identical.

Note:

vGPU migration is disabled for a VM for which any of the following NVIDIA CUDA Toolkit
features is enabled:

‣ Unified memory

‣ Debuggers

‣ Profilers

How to migrate a VM configured with vGPU depends on the hypervisor that you are using.

After migration, the vGPU type of the vGPU remains unchanged.

The time required for migration depends on the amount of frame buffer that the vGPU
has. Migration for a vGPU with a large amount of frame buffer is slower than for a vGPU
with a small amount of frame buffer.

5.3.1. Migrating a VM Configured with vGPU on
VMware vSphere

NVIDIA AI Enterprise supports VMware vMotion for VMs that are configured with vGPU.
VMware vMotion enables you to move a running virtual machine from one physical
host machine to another host with very little disruption or downtime. For a VM that is
configured with vGPU, the vGPU is migrated with the VM to an NVIDIA GPU on the other
host. The NVIDIA GPUs on both host machines must be of the same type.

Perform this task in the VMware vSphere web client by using the Migration wizard.

Before migrating a VM configured with vGPU on VMware vSphere, ensure that the
following prerequisites are met:

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 99

‣ Your hosts are correctly configured for VMware vMotion. See Host Configuration for
vMotion in the VMware documentation.

‣ The prerequisites listed for all supported hypervisors in Migrating a VM Configured
with vGPU are met.

‣ NVIDIA vGPU migration is configured. See Configuring VMware vMotion with vGPU for
VMware vSphere.

 1. Context-click the VM and from the menu that opens, choose Migrate.
 2. For the type of migration, select Change compute resource only and click Next.

If you select Change both compute resource and storage, the time required for the
migration increases.

 3. Select the destination host and click Next.
The destination host must have a physical GPU of the same type as the GPU where
the vGPU currently resides. Furthermore, the physical GPU must be capable of hosting
the vGPU. If these requirements are not met, no available hosts are listed.

 4. Select the destination network and click Next.
 5. Select the migration priority level and click Next.
 6. Review your selections and click Finish.

For more information, see the following topics in the VMware documentation:

‣ Migrate a Virtual Machine to a New Compute Resource

‣ Using vMotion to Migrate vGPU Virtual Machines

If NVIDIA vGPU migration is not configured, any attempt to migrate a VM with an NVIDIA
vGPU fails and a window containing the following error message is displayed:
Compatibility Issue/Host
Migration was temporarily disabled due to another
migration activity.
vGPU hot migration is not enabled.

The window appears as follows:

If you see this error, configure NVIDIA vGPU migration as explained in Configuring
VMware vMotion with vGPU for VMware vSphere.

https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-30FAA00F-D5F3-475D-820E-5D45517AC18E.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vm_admin.doc/GUID-6068ECD7-E3FA-4155-A326-D996BDBDF00C.html
https://docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.vsphere.vcenterhost.doc/GUID-8FE6A0DA-49E9-472B-815B-D630CF2014AD.html

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 100

If your version of VMware vSpehere ESXi does not support vMotion for VMs configured
with NVIDIA vGPU, any attempt to migrate a VM with an NVIDIA vGPU fails and a window
containing the following error message is displayed:
Compatibility Issues
...
A required migration feature is not supported on the "Source" host 'host-name'.

A warning or error occurred when migrating the virtual machine.
Virtual machine relocation, or power on after relocation or cloning can fail if
vGPU resources are not available on the destination host.

The window appears as follows:

For details about which VMware vSphere versions, NVIDIA GPUs, and guest OS releases
support suspend and resume, see NVIDIA AI Enterprise Release Notes.

5.3.2. Suspending and Resuming a VM
Configured with vGPU on VMware vSphere

NVIDIA AI Enterprise supports suspend and resume for VMs that are configured with
vGPU.

Perform this task in the VMware vSphere web client.

‣ To suspend a VM, context-click the VM that you want to suspend, and from the
context menu that pops up, choose Power > Suspend .

‣ To resume a VM, context-click the VM that you want to resume, and from the context
menu that pops up, choose Power > Power On .

http://docs.nvidia.com/ai-enterprise/5.0/pdf/nvidia-ai-enterprise-release-notes.pdf

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 101

5.4. Modifying a MIG-Backed vGPU's
Configuration

If compute instances weren't created within the GPU instances when the GPU was
configured for MIG-backed vGPUs, you can add the compute instances for an individual
vGPU from within the guest VM. If you want to replace the compute instances that were
created when the GPU was configured for MIG-backed vGPUs, you can delete them
before adding the compute instances from within the guest VM.

Ensure that the following prerequisites are met:

‣ You have root user privileges in the guest VM.

‣ The GPU instance is not being used by any other processes, such as CUDA
applications, monitoring applications, or the nvidia-smi command.

Perform this task in a guest VM command shell.

 1. Open a command shell as the root user in the guest VM.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. List the available GPU instance.
$ nvidia-smi mig -lgi
+--+
| GPU instances: |
| GPU Name Profile Instance Placement |
| ID ID Start:Size |
|==|
| 0 MIG 2g.10gb 0 0 0:8 |
+--+

 3. Optional: If compute instances were created when the GPU was configured for MIG-
backed vGPUs that you no longer require, delete them.
$ nvidia-smi mig -dci -ci compute-instance-id -gi gpu-instance-id
compute-instance-id

The ID of the compute instance that you want to delete.
gpu-instance-id

The ID of the GPU instance from which you want to delete the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU instance and retry the command.

This example deletes compute instance 0 from GPU instance 0 on GPU 0.
$ nvidia-smi mig -dci -ci 0 -gi 0
Successfully destroyed compute instance ID 0 from GPU 0 GPU instance ID 0

 4. List the compute instance profiles that are available for your GPU instance.
$ nvidia-smi mig -lcip

This example shows that one MIG 2g.10gb compute instance or two MIG 1c.2g.10gb
compute instances can be created within the GPU instance.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 102

$ nvidia-smi mig -lcip
+---+
| Compute instance profiles: |
| GPU GPU Name Profile Instances Exclusive Shared |
| Instance ID Free/Total SM DEC ENC OFA |
| ID CE JPEG |
|===|
| 0 0 MIG 1c.2g.10gb 0 2/2 14 1 0 0 |
| 2 0 |
+---+
| 0 0 MIG 2g.10gb 1* 1/1 28 1 0 0 |
| 2 0 |
+---+

 5. Create the compute instances that you need within the available GPU instance.

Create each compute instance individually by running the following command.
$ nvidia-smi mig -cci compute-instance-profile-id -gi gpu-instance-id
compute-instance-profile-id

The compute instance profile ID that specifies the compute instance.
gpu-instance-id

The GPU instance ID that specifies the GPU instance within which you want to
create the compute instance.

Note: If the GPU instance is being used by another process, this command fails. In this
situation, stop all processes that are using the GPU and retry the command.

This example creates a MIG 2g.10gb compute instance on GPU instance 0.
$ nvidia-smi mig -cci 1 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 2g.10gb (ID 1)
This example creates two MIG 1c.2g.10gb compute instances on GPU instance 0 by
running the same command twice.
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)
$ nvidia-smi mig -cci 0 -gi 0
Successfully created compute instance ID 1 on GPU 0 GPU instance ID 0 using
 profile MIG 1c.2g.10gb (ID 0)

 6. Verify that the compute instances were created within the GPU instance.
Use the nvidia-smi command for this purpose.

This example confirms that a MIG 2g.10gb compute instance was created on GPU
instance 0.
nvidia-smi
Mon Mar 25 19:01:24 2024
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 CUDA Version: 12.3 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 103

+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	28 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

This example confirms that two MIG 1c.2g.10gb compute instances were created on
GPU instance 0.
$ nvidia-smi
Mon Mar 25 19:01:24 2024
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 CUDA Version: 12.3 |
|-------------------------------+----------------------+----------------------+
GPU Name Persistence-M	Bus-Id Disp.A	Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap	Memory-Usage	GPU-Util Compute M.
		MIG M.
===============================+======================+======================		
0 GRID A100X-2-10C On	00000000:00:08.0 Off	On
N/A N/A P0 N/A / N/A	1058MiB / 10235MiB	N/A Default
		Enabled
+-------------------------------+----------------------+----------------------+

+---+
| MIG devices: |
+------------------+----------------------+-----------+-----------------------+
GPU GI CI MIG	Memory-Usage	Vol	Shared
ID ID Dev	BAR1-Usage	SM Unc	CE ENC DEC OFA JPG
		ECC	
==================+======================+===========+=======================			
0 0 0 0	1058MiB / 10235MiB	14 0	2 0 1 0 0
	0MiB / 4096MiB		
+------------------+ +-----------+-----------------------+			
0 0 1 1		14 0	2 0 1 0 0
+------------------+----------------------+-----------+-----------------------+

+---+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|===|
| No running processes found |
+---+

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 104

5.5. Enabling Unified Memory for a
vGPU

Unified memory is disabled by default. If used, you must enable unified memory
individually for each vGPU that requires it by setting a vGPU plugin parameter. How to
enable unified memory for a vGPU depends on the hypervisor that you are using.

5.5.1. Enabling Unified Memory for a vGPU on
Red Hat Enterprise Linux KVM

On Red Hat Enterprise Linux KVM, enable unified memory by setting the enable_uvm
vGPU plugin parameter.
Ensure that the mdev device file that represents the vGPU has been created as explained
in Creating an NVIDIA vGPU on a Linux with KVM Hypervisor.
Perform this task for each vGPU that requires unified memory.
Set the enable_uvm vGPU plugin parameter for the mdev device file that represents
the vGPU to 1 as explained in Setting vGPU Plugin Parameters on a Linux with KVM
Hypervisor.

5.5.2. Enabling Unified Memory for a vGPU on
VMware vSphere

On VMware vSphere, enable unified memory by setting the pciPassthruvgpu-
id.cfg.enable_uvm configuration parameter in advanced VM attributes.
Ensure that the VM to which the vGPU is assigned is powered off.
Perform this task in the vSphere Client for each vGPU that requires unified memory.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_uvm vGPU plugin
parameter for the vGPU to 1 as explained in Setting vGPU Plugin Parameters on VMware
vSphere.

vgpu-id
A positive integer that identifies the vGPU assigned to a VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling unified memory for both vGPUs, set pciPassthru0.cfg.enable_uvm and
pciPassthru1.cfg.enable_uvm to 1.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 105

5.6. Enabling NVIDIA CUDA Toolkit
Development Tools for NVIDIA
vGPU

By default, NVIDIA CUDA Toolkit development tools are disabled on NVIDIA vGPU. If
used, you must enable NVIDIA CUDA Toolkit development tools individually for each VM
that requires them by setting vGPU plugin parameters. One parameter must be set for
enabling NVIDIA CUDA Toolkit debuggers and a different parameter must be set for
enabling NVIDIA CUDA Toolkit profilers.

5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers
for NVIDIA vGPU

By default, NVIDIA CUDA Toolkit debuggers are disabled. If used, you must enable them
for each vGPU VM that requires them by setting a vGPU plugin parameter. How to set
the parameter to enable NVIDIA CUDA Toolkit debuggers for a vGPU VM depends on the
hypervisor that you are using.

You can enable NVIDIA CUDA Toolkit debuggers for any number of VMs configured with
vGPUs on the same GPU. When NVIDIA CUDA Toolkit debuggers are enabled for a VM, the
VM cannot be migrated.

Perform this task for each VM for which you want to enable NVIDIA CUDA Toolkit
debuggers.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM

Set the enable_debugging vGPU plugin parameter for the mdev device file that
represents the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin
Parameters on a Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit debuggers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_debugging vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 106

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling debuggers for both vGPUs, set pciPassthru0.cfg.enable_debugging
and pciPassthru1.cfg.enable_debugging to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for
NVIDIA vGPU

By default, only GPU workload trace is enabled. If you want to use all NVIDIA CUDA Toolkit
profiler features that NVIDIA vGPU supports, you must enable them for each vGPU VM
that requires them.

Note: Enabling profiling for a VM gives the VM access to the GPU’s global performance
counters, which may include activity from other VMs executing on the same GPU. Enabling
profiling for a VM also allows the VM to lock clocks on the GPU, which impacts all other
VMs executing on the same GPU.

5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler
Features

You can enable the following NVIDIA CUDA Toolkit profiler features for a vGPU VM:

‣ NVIDIA Nsight™ Compute

‣ NVIDIA Nsight Systems

‣ CUDA Profiling Tools Interface (CUPTI)

5.6.2.2. Clock Management for a vGPU VM for Which
NVIDIA CUDA Toolkit Profilers Are Enabled

Clocks are not locked for periodic sampling use cases such as NVIDIA Nsight Systems
profiling.

Clocks are locked for multipass profiling such as:

‣ NVIDIA Nsight Compute kernel profiling

‣ CUPTI range profiling

Clocks are locked automatically when profiling starts and are unlocked automatically
when profiling ends.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 107

5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit
Profilers with NVIDIA vGPU

The following limitations apply when NVIDIA CUDA Toolkit profilers are enabled for NVIDIA
vGPU:

‣ NVIDIA CUDA Toolkit profilers can be used on only one VM at a time.

‣ Multiple CUDA contexts cannot be profiled simultaneously.

‣ Profiling data is collected separately for each context.

‣ A VM for which NVIDIA CUDA Toolkit profilers are enabled cannot be migrated.

Because NVIDIA CUDA Toolkit profilers can be used on only one VM at a time, you should
enable them for only one VM assigned a vGPU on a GPU. However, NVIDIA AI Enterprise
cannot enforce this requirement. If NVIDIA CUDA Toolkit profilers are enabled on more
than one VM assigned a vGPU on a GPU, profiling data is collected only for the first VM to
start the profiler.

5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a
vGPU VM

You enable NVIDIA CUDA Toolkit profilers for a vGPU VM by setting a vGPU plugin
parameter. How to set the parameter to enable NVIDIA CUDA Toolkit profilers for a vGPU
VM depends on the hypervisor that you are using.

Perform this task for the VM for which you want to enable NVIDIA CUDA Toolkit profilers.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on Red Hat
Enterprise Linux KVM

Set the enable_profiling vGPU plugin parameter for the mdev device file that
represents the vGPU that is assigned to the VM to 1 as explained in Setting vGPU Plugin
Parameters on a Linux with KVM Hypervisor.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU on on VMware
vSphere

Ensure that the VM for which you want to enable NVIDIA CUDA Toolkit profilers is
powered off.

In advanced VM attributes, set the pciPassthruvgpu-id.cfg.enable_profiling vGPU
plugin parameter for the vGPU that is assigned to the VM to 1 as explained in Setting
vGPU Plugin Parameters on VMware vSphere.

Modifying a VM's NVIDIA vGPU Configuration

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 108

vgpu-id
A positive integer that identifies the vGPU assigned to the VM. For the first vGPU
assigned to a VM, vgpu-id is 0. For example, if two vGPUs are assigned to a VM and you
are enabling profilers for the second vGPU, set pciPassthru1.cfg.enable_profiling
to 1.

The setting of this parameter is preserved after a guest VM is restarted. However, this
parameter is reset to its default value after the hypervisor host is restarted.

5.7. Enabling the TCC Driver Model for a
vGPU

The Tesla Compute Cluster (TCC) driver model supports CUDA C/C++ applications.
This model is optimized for compute applications and reduces kernel launch times on
Windows. By default, the driver model of a vGPU that is assigned to a Windows VM is
Windows Display Driver Model (WDDM). If you want to use the TCC driver model, you
must enable it explicitly.
This task requires administrator privileges.
Perform this task from the VM to which the vGPU is assigned.

Note: Only Q-series vGPUs support the TCC driver model.

 1. Log on to the VM to which the vGPU is assigned.
 2. Set the driver model of the vGPU to the TCC driver model.

nvidia-smi -g vgpu-id -dm 1
vgpu-id

The ID of the vGPU for which you want to enable the TCC driver model. If the -g is
omitted, the TCC driver model is enabled for all vGPUs that are assigned to the VM.

 3. Reboot the VM.

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 109

Chapter 6. Monitoring GPU
Performance

NVIDIA AI Enterprise enables you to monitor the performance of physical GPUs and
virtual GPUs from the hypervisor and from within individual guest VMs.

6.1. NVIDIA System Management
Interface nvidia-smi

NVIDIA System Management Interface, nvidia-smi, is a command-line tool that reports
management information for NVIDIA GPUs.

The nvidia-smi tool is included in the following packages:

‣ NVIDIA Virtual GPU Manager package for each supported hypervisor

‣ NVIDIA driver package for each supported guest OS

The scope of the reported management information depends on where you run nvidia-
smi from:

‣ From a hypervisor command shell, such as the VMware ESXi host shell, nvidia-smi
reports management information for NVIDIA physical GPUs and virtual GPUs present
in the system.

‣ From a guest VM, nvidia-smi retrieves usage statistics for vGPUs or pass-through
GPUs that are assigned to the VM.

6.2. Using nvidia-smi to Monitor GPU
Performance from a Hypervisor

You can get management information for the NVIDIA physical GPUs and virtual GPUs
present in the system by running nvidia-smi from a hypervisor command shell such as
the Citrix Hypervisor dom0 shell or the VMware ESXi host shell.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 110

Without a subcommand, nvidia-smi provides management information for physical
GPUs. To examine virtual GPUs in more detail, use nvidia-smi with the vgpu
subcommand.

From the command line, you can get help information about the nvidia-smi tool and the
vgpu subcommand.

Help Information Command

A list of subcommands supported by the nvidia-smi tool. Note
that not all subcommands apply to GPUs that support NVIDIA
AI Enterprise.

nvidia-smi -h

A list of all options supported by the vgpu subcommand. nvidia-smi vgpu –h

6.2.1. Getting a Summary of all Physical GPUs in
the System

To get a summary of all physical GPUs in the system, along with PCI bus IDs, power
state, temperature, current memory usage, and so on, run nvidia-smi without additional
arguments.

Each vGPU instance is reported in the Compute processes section, together with its
physical GPU index and the amount of frame-buffer memory assigned to it.

In the example that follows, three vGPUs are running in the system: One vGPU is running
on each of the physical GPUs 0, 1, and 2.
[root@vgpu ~]# nvidia-smi
Fri Mar 22 09:26:18 2024
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla M60 On | 0000:83:00.0 Off | Off |
| N/A 31C P8 23W / 150W | 1889MiB / 8191MiB | 7% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla M60 On | 0000:84:00.0 Off | Off |
| N/A 26C P8 23W / 150W | 926MiB / 8191MiB | 9% Default |
+-------------------------------+----------------------+----------------------+
| 2 Tesla M10 On | 0000:8A:00.0 Off | N/A |
| N/A 23C P8 10W / 53W | 1882MiB / 8191MiB | 12% Default |
+-------------------------------+----------------------+----------------------+
| 3 Tesla M10 On | 0000:8B:00.0 Off | N/A |
| N/A 26C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 4 Tesla M10 On | 0000:8C:00.0 Off | N/A |
| N/A 34C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 5 Tesla M10 On | 0000:8D:00.0 Off | N/A |
| N/A 32C P8 10W / 53W | 10MiB / 8191MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+---+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|===|
| 0 11924 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
| 1 11903 C+G /usr/lib64/xen/bin/vgpu 896MiB |

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 111

| 2 11908 C+G /usr/lib64/xen/bin/vgpu 1856MiB |
+---+
[root@vgpu ~]#

6.2.2. Getting a Summary of all vGPUs in the
System

To get a summary of the vGPUs currently that are currently running on each physical GPU
in the system, run nvidia-smi vgpu without additional arguments.
[root@vgpu ~]# nvidia-smi vgpu
Fri Mar 22 09:27:06 2024
+---+
| NVIDIA-SMI 550.54.16 Driver Version: 550.54.16 |
|-------------------------------+--------------------------------+------------+
| GPU Name | Bus-Id | GPU-Util |
| vGPU ID Name | VM ID VM Name | vGPU-Util |
|===============================+================================+============|
| 0 Tesla M60 | 0000:83:00.0 | 7% |
| 11924 GRID M60-2Q | 3 Win7-64 GRID test 2 | 6% |
+-------------------------------+--------------------------------+------------+
| 1 Tesla M60 | 0000:84:00.0 | 9% |
| 11903 GRID M60-1B | 1 Win8.1-64 GRID test 3 | 8% |
+-------------------------------+--------------------------------+------------+
| 2 Tesla M10 | 0000:8A:00.0 | 12% |
| 11908 GRID M10-2Q | 2 Win7-64 GRID test 1 | 10% |
+-------------------------------+--------------------------------+------------+
| 3 Tesla M10 | 0000:8B:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 4 Tesla M10 | 0000:8C:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
| 5 Tesla M10 | 0000:8D:00.0 | 0% |
+-------------------------------+--------------------------------+------------+
[root@vgpu ~]#

6.2.3. Getting Physical GPU Details
To get detailed information about all the physical GPUs on the platform, run nvidia-smi
with the –q or --query option.
[root@vgpu ~]# nvidia-smi -q
==============NVSMI LOG==============

Timestamp : Tue Nov 22 10:33:26 2022
Driver Version : 525.60.06
CUDA Version : Not Found
vGPU Driver Capability
 Heterogenous Multi-vGPU : Supported

Attached GPUs : 3
GPU 00000000:C1:00.0
 Product Name : Tesla T4
 Product Brand : NVIDIA
 Product Architecture : Turing
 Display Mode : Enabled
 Display Active : Disabled
 Persistence Mode : Enabled
 vGPU Device Capability
 Fractional Multi-vGPU : Supported
 Heterogeneous Time-Slice Profiles : Supported
 Heterogeneous Time-Slice Sizes : Not Supported
 MIG Mode
 Current : N/A

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 112

 Pending : N/A
 Accounting Mode : Enabled
 Accounting Mode Buffer Size : 4000
 Driver Model
 Current : N/A
 Pending : N/A
 Serial Number : 1321120031291
 GPU UUID : GPU-9084c1b2-624f-2267-4b66-345583fbd981
 Minor Number : 1
 VBIOS Version : 90.04.38.00.03
 MultiGPU Board : No
 Board ID : 0xc100
 Board Part Number : 900-2G183-0000-001
 GPU Part Number : 1EB8-895-A1
 Module ID : 0
 Inforom Version
 Image Version : G183.0200.00.02
 OEM Object : 1.1
 ECC Object : 5.0
 Power Management Object : N/A
 GPU Operation Mode
 Current : N/A
 Pending : N/A
 GSP Firmware Version : N/A
 GPU Virtualization Mode
 Virtualization Mode : Host VGPU
 Host VGPU Mode : Non SR-IOV
 IBMNPU
 Relaxed Ordering Mode : N/A
 PCI
 Bus : 0xC1
 Device : 0x00
 Domain : 0x0000
 Device Id : 0x1EB810DE
 Bus Id : 00000000:C1:00.0
 Sub System Id : 0x12A210DE
 GPU Link Info
 PCIe Generation
 Max : 3
 Current : 1
 Device Current : 1
 Device Max : 3
 Host Max : N/A
 Link Width
 Max : 16x
 Current : 16x
 Bridge Chip
 Type : N/A
 Firmware : N/A
 Replays Since Reset : 0
 Replay Number Rollovers : 0
 Tx Throughput : 0 KB/s
 Rx Throughput : 0 KB/s
 Atomic Caps Inbound : N/A
 Atomic Caps Outbound : N/A
 Fan Speed : N/A
 Performance State : P8
 Clocks Throttle Reasons
 Idle : Active
 Applications Clocks Setting : Not Active
 SW Power Cap : Not Active
 HW Slowdown : Not Active
 HW Thermal Slowdown : Not Active
 HW Power Brake Slowdown : Not Active
 Sync Boost : Not Active
 SW Thermal Slowdown : Not Active
 Display Clock Setting : Not Active

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 113

 FB Memory Usage
 Total : 15360 MiB
 Reserved : 0 MiB
 Used : 3859 MiB
 Free : 11500 MiB
 BAR1 Memory Usage
 Total : 256 MiB
 Used : 17 MiB
 Free : 239 MiB
 Compute Mode : Default
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Encoder Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 FBC Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
 Ecc Mode
 Current : Enabled
 Pending : Enabled
 ECC Errors
 Volatile
 SRAM Correctable : 0
 SRAM Uncorrectable : 0
 DRAM Correctable : 0
 DRAM Uncorrectable : 0
 Aggregate
 SRAM Correctable : 0
 SRAM Uncorrectable : 0
 DRAM Correctable : 0
 DRAM Uncorrectable : 0
 Retired Pages
 Single Bit ECC : 0
 Double Bit ECC : 0
 Pending Page Blacklist : No
 Remapped Rows : N/A
 Temperature
 GPU Current Temp : 35 C
 GPU Shutdown Temp : 96 C
 GPU Slowdown Temp : 93 C
 GPU Max Operating Temp : 85 C
 GPU Target Temperature : N/A
 Memory Current Temp : N/A
 Memory Max Operating Temp : N/A
 Power Readings
 Power Management : Supported
 Power Draw : 16.57 W
 Power Limit : 70.00 W
 Default Power Limit : 70.00 W
 Enforced Power Limit : 70.00 W
 Min Power Limit : 60.00 W
 Max Power Limit : 70.00 W
 Clocks
 Graphics : 300 MHz
 SM : 300 MHz
 Memory : 405 MHz
 Video : 540 MHz
 Applications Clocks
 Graphics : 585 MHz
 Memory : 5001 MHz
 Default Applications Clocks

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 114

 Graphics : 585 MHz
 Memory : 5001 MHz
 Deferred Clocks
 Memory : N/A
 Max Clocks
 Graphics : 1590 MHz
 SM : 1590 MHz
 Memory : 5001 MHz
 Video : 1470 MHz
 Max Customer Boost Clocks
 Graphics : 1590 MHz
 Clock Policy
 Auto Boost : N/A
 Auto Boost Default : N/A
 Voltage
 Graphics : N/A
 Fabric
 State : N/A
 Status : N/A
 Processes
 GPU instance ID : N/A
 Compute instance ID : N/A
 Process ID : 2103065
 Type : C+G
 Name : Win11SV2_View87
 Used GPU Memory : 3810 MiB
[root@vgpu ~]#

6.2.4. Getting vGPU Details
To get detailed information about all the vGPUs on the platform, run nvidia-smi vgpu
with the –q or --query option.

To limit the information retrieved to a subset of the GPUs on the platform, use the –i or
--id option to select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -q -i 1
GPU 00000000:C1:00.0
 Active vGPUs : 1
 vGPU ID : 3251634327
 VM ID : 2103066
 VM Name : Win11SV2_View87
 vGPU Name : GRID T4-4Q
 vGPU Type : 232
 vGPU UUID : afdcf724-1dd2-11b2-8534-624f22674b66
 Guest Driver Version : 527.15
 License Status : Licensed (Expiry: 2022-11-23 5:2:12 GMT)
 GPU Instance ID : N/A
 Accounting Mode : Disabled
 ECC Mode : Enabled
 Accounting Buffer Size : 4000
 Frame Rate Limit : 60 FPS
 PCI
 Bus Id : 00000000:02:04.0
 FB Memory Usage
 Total : 4096 MiB
 Used : 641 MiB
 Free : 3455 MiB
 Utilization
 Gpu : 0 %
 Memory : 0 %
 Encoder : 0 %
 Decoder : 0 %
 Encoder Stats
 Active Sessions : 0

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 115

 Average FPS : 0
 Average Latency : 0
 FBC Stats
 Active Sessions : 0
 Average FPS : 0
 Average Latency : 0
[root@vgpu ~]#

6.2.5. Monitoring vGPU engine usage
To monitor vGPU engine usage across multiple vGPUs, run nvidia-smi vgpu with the –u
or --utilization option.

For each vGPU, the usage statistics in the following table are reported once every second.
The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU
is using. For example, a vGPU that uses 20% of the GPU’s graphics engine’s capacity will
report 20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -u
gpu vgpu sm mem enc dec
Idx Id % % % %
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 9 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
 0 11924 6 3 0 0
 1 11903 8 3 0 0
 2 11908 10 4 0 0
 3 - - - - -
 4 - - - - -
 5 - - - - -
^C[root@vgpu ~]#

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 116

6.2.6. Monitoring vGPU engine usage by
applications

To monitor vGPU engine usage by applications across multiple vGPUs, run nvidia-smi
vgpu with the –p option.

For each application on each vGPU, the usage statistics in the following table are reported
once every second. Each application is identified by its process ID and process name.
The table also shows the name of the column in the command output under which each
statistic is reported.

Statistic Column

3D/Compute sm

Memory controller bandwidth mem

Video encoder enc

Video decoder dec

Each reported percentage is the percentage of the physical GPU’s capacity used by
an application running on a vGPU that resides on the physical GPU. For example, an
application that uses 20% of the GPU’s graphics engine’s capacity will report 20%.

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -p
GPU vGPU process process sm mem enc dec
Idx Id Id name % % % %
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 32 25 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 32 24 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257869 4432 FurMark.exe 38 30 0 0
 1 257911 656 DolphinVS.exe 19 14 0 0
 1 257969 4552 FurMark.exe 38 30 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257848 3220 Balls64.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 48 37 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 257911 656 DolphinVS.exe 32 25 0 0
 1 257969 4552 FurMark.exe 64 50 0 0
 0 38127 1528 dwm.exe 0 0 0 0
 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257911 656 DolphinVS.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
 0 38127 1528 dwm.exe 0 0 0 0

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 117

 1 37408 4232 DolphinVS.exe 16 12 0 0
 1 257869 4432 FurMark.exe 16 12 0 0
 1 257969 4552 FurMark.exe 64 49 0 0
[root@vgpu ~]#

6.2.7. Monitoring Encoder Sessions

Note: Encoder sessions can be monitored only for vGPUs assigned to Windows VMs. No
encoder session statistics are reported for vGPUs assigned to Linux VMs.

To monitor the encoder sessions for processes running on multiple vGPUs, run nvidia-
smi vgpu with the –es or --encodersessions option.

For each encoder session, the following statistics are reported once every second:

‣ GPU ID

‣ vGPU ID

‣ Encoder session ID

‣ PID of the process in the VM that created the encoder session

‣ Codec type, for example, H.264 or H.265

‣ Encode horizontal resolution

‣ Encode vertical resolution

‣ One-second trailing average encoded FPS

‣ One-second trailing average encode latency in microseconds

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -es
GPU vGPU Session Process Codec H V Average Average
Idx Id Id Id Type Res Res FPS Latency(us)
 1 21211 2 2308 H.264 1920 1080 424 1977
 1 21206 3 2424 H.264 1920 1080 0 0
 1 22011 1 3676 H.264 1920 1080 374 1589
 1 21211 2 2308 H.264 1920 1080 360 807
 1 21206 3 2424 H.264 1920 1080 325 1474
 1 22011 1 3676 H.264 1920 1080 313 1005
 1 21211 2 2308 H.264 1920 1080 329 1732
 1 21206 3 2424 H.264 1920 1080 352 1415
 1 22011 1 3676 H.264 1920 1080 434 1894
 1 21211 2 2308 H.264 1920 1080 362 1818
 1 21206 3 2424 H.264 1920 1080 296 1072
 1 22011 1 3676 H.264 1920 1080 416 1994
 1 21211 2 2308 H.264 1920 1080 444 1912
 1 21206 3 2424 H.264 1920 1080 330 1261
 1 22011 1 3676 H.264 1920 1080 436 1644
 1 21211 2 2308 H.264 1920 1080 344 1500
 1 21206 3 2424 H.264 1920 1080 393 1727
 1 22011 1 3676 H.264 1920 1080 364 1945
 1 21211 2 2308 H.264 1920 1080 555 1653
 1 21206 3 2424 H.264 1920 1080 295 925
 1 22011 1 3676 H.264 1920 1080 372 1869
 1 21211 2 2308 H.264 1920 1080 326 2206

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 118

 1 21206 3 2424 H.264 1920 1080 318 1366
 1 22011 1 3676 H.264 1920 1080 464 2015
 1 21211 2 2308 H.264 1920 1080 305 1167
 1 21206 3 2424 H.264 1920 1080 445 1892
 1 22011 1 3676 H.264 1920 1080 361 906
 1 21211 2 2308 H.264 1920 1080 353 1436
 1 21206 3 2424 H.264 1920 1080 354 1798
 1 22011 1 3676 H.264 1920 1080 373 1310
^C[root@vgpu ~]#

6.2.8. Monitoring MIG-backed vGPU activity

Note: MIG-backed vGPU activity cannot be monitored on GPUs based on the NVIDIA
Ampere GPU architecture because the required hardware feature is not present on these
GPUs.

To monitor MIG-backed vGPU activity across multiple vGPUs, run nvidia-smi vgpu with
the --gpm-metrics ID-list option.

ID-list
A comma-separated list of integer IDs that specify the statistics to monitor as shown
in the following table. The table also shows the name of the column in the command
output under which the statistic is reported.

Statistic ID Column

Graphics activity 1 gract

Streaming multiprocessor (SM) activity 2 smutil

SM occupancy 3 smocc

Integer activity 4 intutil

Tensor activity 5 mmaact

Double-precision fused multiply-add (DFMA) tensor activity 6 dfmat

Half matrix multiplication and accumulation (HMMA) tensor
activity

7 hmmat

Integer matrix multiplication and accumulation (IMMA) tensor
activity

9 immat

Dynamic random-access memory (DRAM) activity 10 dram

Double-precision 64-bit floating-point (FP64) activity 11 fp64

Single-precision 32-bit floating-point (FP32) activity 12 fp32

Half-precision 16-bit FP16 activity 13 fp16

Each reported percentage is the percentage of the physical GPU’s capacity that a vGPU is
using. For example, a vGPU that uses 20% of the GPU’s DRAM capacity will report 20%.

For each vGPU, the specified statistics are reported once every second.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 119

To modify the reporting frequency, use the –l or --loop option.

To limit monitoring to a subset of the GPUs on the platform, use the –i or --id option to
select one or more GPUs.

The following example reports graphics activity, SM activity, SM occupancy, and integer
activity for one vGPU VM that is powered on and within which one application is running.
[root@vgpu ~]# nvidia-smi vgpu --gpm-metrics 1,2,3,4
gpu vgpu mig_id gi_id ci_id gract smutil
 smocc intutil
Idx Id Idx Idx Idx % %
 % %
 0 3251634249 0 2 0 - -
 - -
 0 3251634249 0 2 0 99 97
 26 13
 0 3251634249 0 2 0 99 96
 23 13
 0 3251634249 0 2 0 99 97
 27 13

When no vGPUs are active on the hypervisor host, no activity is reported.
[root@vgpu ~]# nvidia-smi vgpu --gpm-metrics 1,2,3,4
gpu vgpu mig_id gi_id ci_id gract smutil
 smocc intutil
Idx Id Idx Idx Idx % %
 % %
 0 - - - - - -
 - -
 0 - - - - - -
 - -
 0 - - - - - -
 - -

6.2.9. Listing Supported vGPU Types
To list the virtual GPU types that the GPUs in the system support, run nvidia-smi vgpu
with the –s or --supported option.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or
--id option to select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -s -i 0
GPU 0000:83:00.0
 GRID M60-0B
 GRID M60-0Q
 GRID M60-1A
 GRID M60-1B
 GRID M60-1Q
 GRID M60-2A
 GRID M60-2Q
 GRID M60-4A
 GRID M60-4Q
 GRID M60-8A
 GRID M60-8Q
[root@vgpu ~]#

To view detailed information about the supported vGPU types, add the –v or --verbose
option:
[root@vgpu ~]# nvidia-smi vgpu -s -i 0 -v | less
GPU 00000000:40:00.0

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 120

 vGPU Type ID : 0xc
 Name : GRID M60-0Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 16
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
 Device ID : 0x13f210de
 Sub System ID : 0x13f2114c
 FB Memory : 512 MiB
 Display Heads : 2
 Maximum X Resolution : 2560
 Maximum Y Resolution : 1600
 Frame Rate Limit : 60 FPS
 GRID License : Quadro-Virtual-DWS,5.0;GRID-Virtual-
WS,2.0;GRID-Virtual-WS-Ext,2.0
 vGPU Type ID : 0xf
 Name : GRID M60-1Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 8
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
 Device ID : 0x13f210de
 Sub System ID : 0x13f2114d
 FB Memory : 1024 MiB
 Display Heads : 4
 Maximum X Resolution : 5120
 Maximum Y Resolution : 2880
 Frame Rate Limit : 60 FPS
 GRID License : Quadro-Virtual-DWS,5.0;GRID-Virtual-
WS,2.0;GRID-Virtual-WS-Ext,2.0
 vGPU Type ID : 0x12
 Name : GRID M60-2Q
 Class : Quadro
 GPU Instance Profile ID : N/A
 Max Instances : 4
 Max Instances Per VM : 1
 Multi vGPU Exclusive : False
 vGPU Exclusive Type : False
 vGPU Exclusive Size : False
…
[root@vgpu ~]#

6.2.10. Listing the vGPU Types that Can Currently
Be Created

To list the virtual GPU types that can currently be created on GPUs in the system, run
nvidia-smi vgpu with the –c or --creatable option.

This property is a dynamic property that varies for each GPU depending on whether MIG
mode is enabled for the GPU.

‣ If MIG mode is not enabled for the GPU, or if the GPU does not support MIG, this
property reflects the number and type of vGPUs that are already running on the GPU.

‣ If MIG mode is enabled for the GPU, the result reflects the number and type of GPU
instances on which no vGPUs are already running.

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 121

‣ If no GPU instances have been created, no vGPU types are listed.

‣ If GPU instances have been created, only the vGPU types that correspond to GPU
instances on which no vGPU is running are listed.

‣ If a vGPU is running on every GPU instance, no vGPU types are listed.

To limit the retrieved information to a subset of the GPUs on the platform, use the –i or
--id option to select one or more GPUs.
[root@vgpu ~]# nvidia-smi vgpu -c -i 0
GPU 0000:83:00.0
 GRID M60-2Q
[root@vgpu ~]#

To view detailed information about the vGPU types that can currently be created, add the
–v or --verbose option.

6.3. Monitoring GPU Performance from
a Guest VM

You can use monitoring tools within an individual guest VM to monitor the performance
of vGPUs or pass-through GPUs that are assigned to the VM. The scope of these tools
is limited to the guest VM within which you use them. You cannot use monitoring tools
within an individual guest VM to monitor any other GPUs in the platform.

For a vGPU, only these metrics are reported in a guest VM:

‣ 3D/Compute

‣ Memory controller

‣ Video encoder

‣ Video decoder

‣ Frame buffer usage

Other metrics normally present in a GPU are not applicable to a vGPU and are reported as
zero or N/A, depending on the tool that you are using.

6.3.1. Using nvidia-smi to Monitor GPU
Performance from a Guest VM

In guest VMs, you can use the nvidia-smi command to retrieve statistics for the total
usage by all applications running in the VM and usage by individual applications of the
following resources:

‣ GPU

‣ Video encoder

‣ Video decoder

Monitoring GPU Performance

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 122

‣ Frame buffer

To use nvidia-smi to retrieve statistics for the total resource usage by all applications
running in the VM, run the following command:
nvidia-smi dmon

To use nvidia-smi to retrieve statistics for resource usage by individual applications
running in the VM, run the following command:
nvidia-smi pmon

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 123

Chapter 7. Changing Scheduling
Behavior for Time-Sliced
vGPUs

NVIDIA GPUs implement a best effort vGPU scheduler that aims to balance performance
across vGPUs. The best effort scheduler allows a vGPU to use GPU processing cycles that
are not being used by other vGPUs. Under some circumstances, a VM running a graphics-
intensive application may adversely affect the performance of graphics-light applications
running in other VMs.

To address this issue with the best effort vGPU scheduler, NVIDIA GPUs additionally
support equal share and fixed share vGPU schedulers. These schedulers impose a limit on
GPU processing cycles used by a vGPU, which prevents graphics-intensive applications
running in one VM from affecting the performance of graphics-light applications running
in other VMs. On GPUs that support multiple vGPU schedulers, you can select the vGPU
scheduler to use. You can also set the length of the time slice for the equal share and
fixed share vGPU schedulers.

Note: If you use the equal share or fixed share vGPU scheduler, the frame-rate limiter
(FRL) is disabled.

The best effort scheduler is the default scheduler for all supported GPU architectures.

7.1. Scheduling Policies for Time-Sliced
vGPUs

In addition to the default best effort scheduler, GPUs based on NVIDIA GPU architectures
after the Maxwell architecture support equal share and fixed share vGPU schedulers.
Equal share scheduler

The physical GPU is shared equally amongst the running vGPUs that reside on it. As
vGPUs are added to or removed from a GPU, the share of the GPU's processing cycles
allocated to each vGPU changes accordingly. As a result, the performance of a vGPU
may increase as other vGPUs on the same GPU are stopped, or decrease as other
vGPUs are started on the same GPU.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 124

Fixed share scheduler
Each vGPU is given a fixed share of the physical GPU's processing cycles, the amount
of which depends on the vGPU type, which in turn determines the maximum number
of vGPUs per physical GPU. For example, the maximum number of T4-4C vGPUs per
physical GPU is 4. When the scheduling policy is fixed share, each T4-4C vGPU is given
one quarter, or 25%, the physical GPU's processing cycles. As vGPUs are added to or
removed from a GPU, the share of the GPU's processing cycles allocated to each vGPU
remains constant. As a result, the performance of a vGPU remains unchanged as other
vGPUs are stopped or started on the same GPU.

Note: For time-sliced vGPUs with different amounts of frame buffer on the same physical
GPU, only the best effort and equal share schedulers are supported. The fixed share
scheduler is not supported.

By default, these schedulers impose a strict round-robin scheduling policy. When this
policy is enforced, the schedulers maintain scheduling fairness by adjusting the time
slice for each VM that is configured with NVIDIA vGPU. The strict round-robin scheduling
policy ensures more consistent scheduling of the work for VMs that are configured with
NVIDIA vGPU and restricts the impact of GPU-intensive applications running in one VM on
applications running in other VMs.

Instead of a strict round-robin scheduling policy, you can ensure scheduling fairness
by scheduling the work for the vGPU that has spent the least amount of time in
the scheduled state. This behavior was the default scheduling behavior in NVIDIA AI
Enterprise releases before 15.0.

When a strict round-robin scheduling policy is enforced, the adjustment to the time slice
is based on the scheduling frequency and an averaging factor.
Scheduling frequency

The number of times per second that work for a specific vGPU is scheduled. The
default scheduling frequency depends on the number of vGPUs that reside on the
physical GPU:

‣ If fewer than eight vGPUs reside on the physical GPU, the default is 480 Hz.

‣ If eight or more vGPUs reside on the physical GPU, the default is 960 Hz.

Averaging factor
A number that determines the moving average of time-slice overshoots accrued for
each vGPU. This average controls the strictness with which the scheduling frequency is
enforced. A high value for the averaging factor enforces the scheduling frequency less
strictly than a low value.

Deviations from the specified scheduling frequency occur because the actual amount
of time that a scheduler allocates to a VM might exceed, or overshoot, the time slice
specified for the VM. A scheduler enforces the scheduling frequency by shortening the
next time slice for each vGPU VM to compensate for the accrued overshoot time of
the VM.

To calculate the amount by which to shorten the next time slice for a vGPU VM, the
scheduler maintains a running total of the accrued overshoot time for each vGPU
VM. This amount is equal to the running total divided by the averaging factor that you

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 125

specify. The calculated amount is also subtracted from the accrued overshoot time. A
high value for the averaging factor enforces the scheduling frequency less strictly by
spreading the compensation for the accrued overshoot time over a longer period.

7.2. Scheduler Time Slice for Time-
Sliced vGPUs

When multiple VMs access the vGPUs on a single GPU, the GPU performs the work for
each VM serially. The vGPU scheduler time slice represents the amount of time that the
work of a VM is allowed to run on the GPU before it is preempted and the work of the
next VM is performed.

For the equal share and fixed share vGPU schedulers, you can set the length of the time
slice. The length of the time slice affects latency and throughput. The optimal length of
the time slice depends the workload that the GPU is handling.

‣ For workloads that require low latency, a shorter time slice is optimal. Typically, these
workloads are applications that must generate output at a fixed interval, such as
graphics applications that generate output at a frame rate of 60 FPS. These workloads
are sensitive to latency and should be allowed to run at least once per interval. A
shorter time slice reduces latency and improves responsiveness by causing the
scheduler to switch more frequently between VMs.

‣ For workloads that require maximum throughput, a longer time slice is optimal.
Typically, these workloads are applications that must complete their work as quickly as
possible and do not require responsiveness, such as CUDA applications. A longer time
slice increases throughput by preventing frequent switching between VMs.

7.3. RmPVMRL Registry Key
The RmPVMRL registry key controls the scheduling behavior for NVIDIA vGPUs by setting
the scheduling policy, the averaging factor and scheduling frequency for schedulers with
a strict round-robin scheduling policy, and the length of the time slice for schedulers
without a strict round-robin scheduling policy.

Note: You can change the vGPU scheduling behavior only on GPUs that support multiple
vGPU schedulers, that is, GPUs based on NVIDIA GPU architectures after the Maxwell
architecture.

Type

Dword

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 126

Contents

Value Meaning

0x00 (default) Best effort scheduler

0x01 Equal share scheduler with a strict round-robin scheduling policy and the
default time slice length, scheduling frequency, and averaging factor

0x03 Equal share scheduler without a strict round-robin scheduling policy and the
default time slice length

0xAAFFF001 Equal share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

0x00TT0003 Equal share scheduler without a strict round-robin scheduling policy and
with a user-defined time slice length TT

0x11 Fixed share scheduler with a strict round-robin scheduling policy and the
default time slice length, scheduling frequency, and averaging factor

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

0x13 Fixed share scheduler without a strict round-robin scheduling policy and with
the default time slice length

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

0xAAFFF011 Fixed share scheduler with a strict round-robin scheduling policy and a user-
defined averaging factor AA and a user-defined scheduling frequency FFF

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

0x00TT0013 Fixed share scheduler without a strict round-robin scheduling policy and with
a user-defined time slice length TT

Note: This value cannot be set for time-sliced vGPUs on a physical
GPU in mixed-size mode.

The default time slice length and scheduling frequency depend on the maximum number
of vGPUs per physical GPU allowed for the vGPU type.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 127

Table 1. Default Time Slice Length and Scheduling Frequency by
vGPU Density

Maximum Number of
vGPUs Default Time Slice Length

Default Scheduling
Frequency

Less than or equal to 8 2 ms 480 Hz

Greater than 8 1 ms 960 Hz

AA
Two hexadecimal digits in the range 0x01 to 0x3C (decimal 1-60) that set the
averaging factor for the equal share and fixed share schedulers with a strict round-
robin scheduling policy.

The number of time slices over which the compensation for the accrued overshoot
time is applied depends on the value of AA:

‣ If AA is 0x01, the compensation for the accrued overshoot time is applied in a
single time slice.

‣ If AA is 0x3C, the compensation for the accrued overshoot time is spread over 60
(0x3C) time slices.

‣ If AA is 0x00, the default value of 33 is used.

‣ If AA is greater than 0x3C, the value is capped at 0x3C.

FFF
Three hexadecimal digits in the range 0x3F to 0x3C0 (decimal 63-960) that set the
scheduling frequency for the equal share and fixed share schedulers with a strict
round-robin scheduling policy. The time slice is the inverse of scheduling frequency. For
example, a frequency of 0x3F (63 Hz) yields a time slice of 1/63 s, or 15.873 ms.

A value of 0x100 for FFF sets the scheduling frequency to 256.

If FFF is outside the range 0x3F to 0x3C0, the scheduling frequency is set as follows:

‣ If FFF is 000, the scheduling frequency is set to the default scheduling frequency
for the vGPU type as listed in Table 1.

‣ If FFF is greater than 000 but less than 0x3F, the scheduling frequency is raised to
0x3F (decimal 63).

‣ If FFF is greater than 0x3C0, the scheduling frequency is capped at 0x3C0 (decimal
960).

TT
Two hexadecimal digits in the range 0x01 to 0x1E (decimal 1-30) that set the length of
the time slice in milliseconds (ms) for the equal share and fixed share schedulers. The
minimum length is 1 ms and the maximum length is 30 ms.

If TT is outside the range 01 to 1E, the length is set as follows:

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 128

‣ If TT is 00, the length is set to the default time slice length for the vGPU type as
listed in Table 1.

‣ If TT is greater than 0x1E (decimal 30), the length is capped at 30 ms.

Examples

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.
RmPVMRL=0x01

This example sets the vGPU scheduler to equal share scheduler without a strict round-
robin scheduling policy and with a time slice that is 3 ms long.
RmPVMRL=0x00030003

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy and the default time slice length, scheduling frequency, and averaging
factor.
RmPVMRL=0x11

This example sets the vGPU scheduler to fixed share scheduler without a strict round-
robin scheduling policy and with a time slice that is 24 (0x18) ms long.
RmPVMRL=0x00180011

This example sets the vGPU scheduler to equal share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x3C), and a scheduling frequency of 960
(0x3C0) Hz.
RmPVMRL=0x3c3c0001

This example sets the vGPU scheduler to fixed share scheduler with a strict round-robin
scheduling policy, an averaging factor of 60 (0x3C), and a scheduling frequency of 960
(0x3C0) Hz.
RmPVMRL=0x3c3c0011

7.4. Getting the Current Time-Sliced
vGPU Scheduling Policy for All
GPUs

You can use the hypervisor's dmesg command to get the current time-sliced vGPU
scheduling policy for all GPUs. Get this information before changing the scheduling
behavior of one or more GPUs to determine if you need to change it or after changing it
to confirm the change.

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 129

On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Use the dmesg command to display messages from the kernel that contain the strings
NVRM and scheduler.
$ dmesg | grep NVRM | grep scheduler

The scheduling policy is indicated in these messages by the following strings:

‣ BEST_EFFORT

‣ EQUAL_SHARE

‣ FIXED_SHARE

If the scheduling policy is equal share or fixed share, the scheduler time slice in ms is
also displayed.

This example gets the scheduling policy of the GPUs in a system in which the policy
of one GPU is set to best effort, one GPU is set to equal share, and one GPU is set to
fixed share.
$ dmesg | grep NVRM | grep scheduler
2020-10-05T02:58:08.928Z cpu79:2100753)NVRM: GPU at 0000:3d:00.0 has software
 scheduler DISABLED with policy BEST_EFFORT.
2020-10-05T02:58:09.818Z cpu79:2100753)NVRM: GPU at 0000:5e:00.0 has software
 scheduler ENABLED with policy EQUAL_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.
2020-10-05T02:58:12.115Z cpu79:2100753)NVRM: GPU at 0000:88:00.0 has software
 scheduler ENABLED with policy FIXED_SHARE.
NVRM: Software scheduler timeslice set to 1 ms.

7.5. Changing the Time-Sliced vGPU
Scheduling Behavior for All GPUs by
Using the RmPVMRL Registry Key

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Set the RmPVMRL registry key to the value that sets the GPU scheduling policy and the
length of the time slice that you want.

‣ On , add the following entry to the /etc/modprobe.d/nvidia.conf file.
options nvidia NVreg_RegistryDwords="RmPVMRL=value"

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia -p
 "NVreg_RegistryDwords=RmPVMRL=value"

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 130

value

The value that sets the GPU scheduling policy and the length of the time slice that
you want, for example:
0x01

Sets the vGPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the vGPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.
 3. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Policy for All GPUs.

7.6. Changing the Time-Sliced vGPU
Scheduling Behavior for Select
GPUs by Using the RmPVMRL
Registry Key

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Use the lspci command to obtain the PCI domain and bus/device/function (BDF) of
each GPU for which you want to change the scheduling behavior.

‣ On Red Hat Enterprise Linux KVM, add the -D option to display the PCI domain and
the -d 10de: option to display information only for NVIDIA GPUs.
lspci -D -d 10de:

‣ On VMware vSphere, pipe the output of lspci to the grep command to display
information only for NVIDIA GPUs.
lspci | grep NVIDIA

The NVIDIA GPU listed in this example has the PCI domain 0000 and BDF 86:00.0.

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 131

0000:86:00.0 3D controller: NVIDIA Corporation GP104GL [Tesla P4] (rev a1)

 3. Use the module parameter NVreg_RegistryDwordsPerDevice to set the pci and
RmPVMRL registry keys for each GPU.

‣ On Red Hat Enterprise Linux KVM, add the following entry to the /etc/
modprobe.d/nvidia.conf file.
options nvidia NVreg_RegistryDwordsPerDevice="pci=pci-domain:pci-
bdf;RmPVMRL=value
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

If the /etc/modprobe.d/nvidia.conf file does not already exist, create it.

‣ On VMware vSphere, use the esxcli set command.
esxcli system module parameters set -m nvidia \
-p "NVreg_RegistryDwordsPerDevice=pci=pci-domain:pci-bdf;RmPVMRL=value\
[;pci=pci-domain:pci-bdf;RmPVMRL=value...]"

For each GPU, provide the following information:
pci-domain

The PCI domain of the GPU.
pci-bdf

The PCI device BDF of the GPU.
value

The value that sets the GPU scheduling policy and the length of the time slice that
you want, for example:
0x01

Sets the GPU scheduling policy to equal share scheduler with the default time
slice length.

0x00030001
Sets the GPU scheduling policy to equal share scheduler with a time slice that is
3 ms long.

0x11
Sets the GPU scheduling policy to fixed share scheduler with the default time
slice length.

0x00180011
Sets the GPU scheduling policy to fixed share scheduler with a time slice that is
24 (0x18) ms long.

For all supported values, see RmPVMRL Registry Key.

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the GPU scheduling policy of the
GPU at PCI domain 0000 and BDF 86:00.0 to fixed share scheduler with the default
time slice length.
options nvidia NVreg_RegistryDwordsPerDevice=
"pci=0000:86:00.0;RmPVMRL=0x11"

This example adds an entry to the /etc/modprobe.d/nvidia.conf file to change the
scheduling behavior of a single GPU. The entry sets the scheduling policy of the GPU
at PCI domain 0000 and BDF 86:00.0 to fixed share scheduler with a time slice that is
24 (0x18) ms long.
options nvidia NVreg_RegistryDwordsPerDevice=
"pci=0000:86:00.0;RmPVMRL=0x00180011"

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 132

This example changes the scheduling behavior of a single GPU on a hypervisor host
that is running VMware vSphere. The command sets the scheduling policy of the GPU
at PCI domain 0000 and BDF 15:00.0 to fixed share scheduler with the default time
slice length.
esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x11]"

This example changes the scheduling behavior of a single GPU on a hypervisor host
that is running VMware vSphere. The command sets the scheduling policy of the GPU
at PCI domain 0000 and BDF 15:00.0 to fixed share scheduler with a time slice that is
24 (0x18) ms long.
esxcli system module parameters set -m nvidia -p \
"NVreg_RegistryDwordsPerDevice=pci=0000:15:00.0;RmPVMRL=0x11[;pci=0000:15:00.0;RmPVMRL=0x00180011]"

 4. Reboot your hypervisor host machine.

Confirm that the scheduling behavior was changed as required as explained in Getting
the Current Time-Sliced vGPU Scheduling Policy for All GPUs.

7.7. Restoring Default Time-Sliced
vGPU Scheduler Settings by Using
the RmPVMRL Registry Key

Perform this task in your hypervisor command shell.

 1. Open a command shell on your hypervisor host machine.
On all supported hypervisors, you can use secure shell (SSH) for this purpose.
Individual hypervisors may provide additional means for logging in. For details, refer to
the documentation for your hypervisor.

 2. Unset the RmPVMRL registry key.

‣ On Red Hat Enterprise Linux KVM, comment out the entries in the /etc/
modprobe.d/nvidia.conf file that set RmPVMRL by prefixing each entry with the #
character.

‣ On VMware vSphere, set the module parameter to an empty string.
esxcli system module parameters set -m nvidia -p "module-parameter="
module-parameter

The module parameter to set, which depends on whether the scheduling
behavior was changed for all GPUs or select GPUs:

‣ For all GPUs, set the NVreg_RegistryDwords module parameter.

‣ For select GPUs, set the NVreg_RegistryDwordsPerDevice module
parameter.

For example, to restore default vGPU scheduler settings after they were changed
for all GPUs, enter this command:
esxcli system module parameters set -m nvidia -p "NVreg_RegistryDwords="

Changing Scheduling Behavior for Time-Sliced vGPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 133

 3. Reboot your hypervisor host machine.

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 134

Chapter 8. Troubleshooting

This chapter describes basic troubleshooting steps for NVIDIA vGPU and how to collect
debug information when filing a bug report.

8.1. Known issues
Before troubleshooting or filing a bug report, review the release notes that accompany
each driver release, for information about known issues with the current release, and
potential workarounds.

8.2. Troubleshooting steps
If a vGPU-enabled VM fails to start, or doesn’t display any output when it does start,
follow these steps to narrow down the probable cause.

8.2.1. Verifying the NVIDIA Kernel Driver Is
Loaded

 1. Run the vmkload_mod command.
[root@esxi:~] vmkload_mod -l | grep nvidia
nvidia 5 8420

 2. If the nvidia driver is not listed in the output, check dmesg for any load-time errors
reported by the driver (see Examining NVIDIA kernel driver output).

8.2.2. Verifying that nvidia-smi works
If the NVIDIA kernel driver is correctly loaded on the physical GPU, run nvidia-smi and
verify that all physical GPUs not currently being used for GPU pass-through are listed in
the output. For details on expected output, see NVIDIA System Management Interface
nvidia-smi.

If nvidia-smi fails to report the expected output, check dmesg for NVIDIA kernel driver
messages.

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 135

8.2.3. Examining NVIDIA kernel driver output
Information and debug messages from the NVIDIA kernel driver are logged in kernel logs,
prefixed with NVRM or nvidia.

Run dmesg and check for the NVRM and nvidia prefixes:
[root@xenserver ~]# dmesg | grep -E "NVRM|nvidia"
[22.054928] nvidia: module license 'NVIDIA' taints kernel.
[22.390414] NVRM: loading
[22.829226] nvidia 0000:04:00.0: enabling device (0000 -> 0003)
[22.829236] nvidia 0000:04:00.0: PCI INT A -> GSI 32 (level, low) -> IRQ 32
[22.829240] NVRM: This PCI I/O region assigned to your NVIDIA device is invalid:
[22.829241] NVRM: BAR0 is 0M @ 0x0 (PCI:0000:00:04.0)
[22.829243] NVRM: The system BIOS may have misconfigured your GPU.

8.2.4. Examining NVIDIA Virtual GPU Manager
Messages

Information and debug messages from the NVIDIA Virtual GPU Manager are logged to the
hypervisor’s log files, prefixed with vmiop.

8.2.4.1. Examining VMware vSphere vGPU Manager
Messages

For VMware vSphere, NVIDIA Virtual GPU Manager messages are written to the
vmware.log file in the guest VM’s storage directory.

Look in the vmware.log file for the vmiop prefix:
[root@esxi:~] grep vmiop /vmfs/volumes/datastore1/win7-vgpu-test1/vmware.log
2024-03-22T14:02:21.275Z| vmx| I120: DICT pciPassthru0.virtualDev = "vmiop"
2024-03-22T14:02:21.344Z| vmx| I120: GetPluginPath testing /usr/lib64/vmware/plugin/
libvmx-vmiop.so
2024-03-22T14:02:21.344Z| vmx| I120: PluginLdr_LoadShared: Loaded shared plugin
 libvmx-vmiop.so from /usr/lib64/vmware/plugin/libvmx-vmiop.so
2024-03-22T14:02:21.344Z| vmx| I120: VMIOP: Loaded plugin libvmx-
vmiop.so:VMIOP_InitModule
2024-03-22T14:02:21.359Z| vmx| I120: VMIOP: Initializing plugin vmiop-display
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: gpu-pci-id : 0000:04:00.0
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: vgpu_type : quadro
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: Framebuffer: 0x74000000
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: Virtual Device Id: 0x11B0:0x101B
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: ######## vGPU Manager Information:
 ########
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: Driver Version: 550.54.16
2024-03-22T14:02:21.365Z| vmx| I120: vmiop_log: VGX Version: 17.1
2024-03-22T14:02:21.445Z| vmx| I120: vmiop_log: Init frame copy engine: syncing...
2024-03-22T14:02:37.031Z| vthread-12| I120: vmiop_log: ######## Guest NVIDIA Driver
 Information: ########
2024-03-22T14:02:37.031Z| vthread-12| I120: vmiop_log: Driver Version: 551.78
2024-03-22T14:02:37.031Z| vthread-12| I120: vmiop_log: VGX Version: 17.1
2024-03-22T14:02:37.093Z| vthread-12| I120: vmiop_log: Clearing BAR1 mapping
2023-03-25T23:39:55.726Z| vmx| I120: VMIOP: Shutting down plugin vmiop-display
[root@esxi:~]

Troubleshooting

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 136

8.3. Capturing configuration data by
running nvidia-bug-report.sh

The nvidia-bug-report.sh script captures debug information into a gzip-compressed
log file on the server.

Run nvidia-bug-report.sh from the VMware ESXi host shell.

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 137

Chapter 9. Additional Information

Additional information about the software components of NVIDIA AI Enterprise is
available in the documentation for these entities.

Infrastructure and Workload Management Components

‣ NVIDIA virtual GPU software

‣ NVIDIA GPU Operator

‣ NVIDIA Network Operator

‣ NVIDIA Base Command™ Manager Essentials

Tools for AI Development and Use Cases

‣ NVIDIA Clara Parabricks

‣ NVIDIA DeepStream

‣ NVIDIA DGL

‣ NVIDIA Maxine

‣ NVIDIA Modulus

‣ MONAI (Medical Open Network for Artificial Intelligence) Enterprise

‣ NVIDIA NeMo™

‣ NVIDIA NIM

‣ PyTorch

‣ NVIDIA RAPIDS

‣ NVIDIA RAPIDS Accelerator for Apache Spark

‣ NVIDIA Riva

‣ TAO Toolkit

‣ NVIDIA TensorRT

‣ TensorFlow

‣ NVIDIA Triton Inference Server

‣ NVIDIA Triton Management Service

https://docs.nvidia.com/grid/17.0/index.html#hypervisor-release-notes
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/
https://docs.nvidia.com/networking/display/COKAN10/Network+Operator
https://docs.nvidia.com/base-command-manager/
https://docs.nvidia.com/clara/parabricks/
https://docs.nvidia.com/metropolis/deepstream/dev-guide/text/DS_Overview.html
https://docs.nvidia.com/deeplearning/frameworks/dgl-release-notes/
https://developer.nvidia.com/maxine
https://docs.nvidia.com/modulus/index.html
https://docs.nvidia.com/clara/monai/index.html
https://docs.nvidia.com/deeplearning/nemo/
https://ngc.nvidia.com/nvidia-nim
https://docs.nvidia.com/deeplearning/frameworks/pytorch-release-notes/
https://docs.rapids.ai/
https://docs.nvidia.com/ai-enterprise/deployment-guide-spark-rapids-accelerator/0.1.0/index.html
https://docs.nvidia.com/riva/
https://docs.nvidia.com/tao/tao-toolkit/text/release_notes.html
https://docs.nvidia.com/deeplearning/tensorrt/container-release-notes/
https://docs.nvidia.com/deeplearning/frameworks/tensorflow-release-notes/
https://docs.nvidia.com/deeplearning/triton-inference-server/release-notes/
https://docs.nvidia.com/triton-management-service/

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 138

Appendix A. Virtual GPU Types for
Supported GPUs

NVIDIA vGPU is available as a licensed product on supported NVIDIA GPUs. For a list
of recommended server platforms and supported GPUs, consult the release notes for
supported hypervisors at NVIDIA AI Enterprise Documentation.

A.1. NVIDIA A800 PCIe 80GB, NVIDIA
A800 PCIe 80GB Liquid Cooled, and
NVIDIA AX800 Virtual GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A800 PCIe 80GB, NVIDIA A800 PCIe 80GB liquid
cooled, and NVIDIA AX800 GPUs are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A800 PCIe 80GB,
NVIDIA A800 PCIe 80GB Liquid Cooled, and NVIDIA AX800

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A800D-7-80C 81920 1 7 7 MIG 7g.80gb

https://docs.nvidia.com/ai-enterprise/3.1/
http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 139

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A800D-4-40C 40960 1 4 4 MIG 4g.40gb

A800D-3-40C 40960 2 3 3 MIG 3g.40gb

A800D-2-20C 20480 3 2 2 MIG 2g.20gb

A800D-1-20C 20480 4 1 1 MIG 1g.20gb

A800D-1-10C 10240 7 1 1 MIG 1g.10gb

A800D-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A800 PCIe 80GB,
NVIDIA A800 PCIe 80GB Liquid Cooled, and NVIDIA AX800

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A800D-80C 81920 1 1 3840×24001 1

A800D-40C 40960 2 2 3840×24001 1

A800D-20C 20480 4 4 3840×24001 1

A800D-16C 16384 5 4 3840×24001 1

A800D-10C 10240 8 8 3840×24001 1

A800D-8C 8192 10 8 3840×24001 1

A800D-4C 4096 20 16 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 140

A.2. NVIDIA A800 PCIe 40GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A800 PCIe 40GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A800-7-40C 40960 1 7 7 MIG 7g.40gb

A800-4-20C 20480 1 4 4 MIG 4g.20gb

A800-3-20C 20480 2 3 3 MIG 3g.20gb

A800-2-10C 10240 3 2 2 MIG 2g.10gb

A800-1-10C 10240 4 1 1 MIG 1g.10gb

A800-1-5C 5120 7 1 1 MIG 1g.5gb

A800-1-5CME 5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A800 PCIe 40GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 141

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A800-40C 40960 1 1 3840×24001 1

A800-20C 20480 2 2 3840×24001 1

A800-10C 10240 4 4 3840×24001 1

A800-8C 8192 5 4 3840×24001 1

A800-5C 5120 8 8 3840×24001 1

A800-4C 4096 10 8 3840×24001 1

A.3. NVIDIA A800 HGX Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A800 HGX 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A800DX-7-80C 81920 1 7 7 MIG 7g.80gb

A800DX-4-40C 40960 1 4 4 MIG 4g.40gb

A800DX-3-40C 40960 2 3 3 MIG 3g.40gb

A800DX-2-20C 20480 3 2 2 MIG 2g.20gb

A800DX-1-20C 20480 4 1 1 MIG 1g.20gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 142

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A800DX-1-10C 10240 7 1 1 MIG 1g.10gb

A800DX-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A800 HGX 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A800DX-80C 81920 1 1 3840×24001 1

A800DX-40C 40960 2 2 3840×24001 1

A800DX-20C 20480 4 4 3840×24001 1

A800DX-16C 16384 5 4 3840×24001 1

A800DX-10C 10240 8 8 3840×24001 1

A800DX-8C 8192 10 8 3840×24001 1

A800DX-4C 4096 20 16 3840×24001 1

A.4. NVIDIA A100 PCIe 40GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 143

This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A100-7-40C 40960 1 7 7 MIG 7g.40gb

A100-4-20C 20480 1 4 4 MIG 4g.20gb

A100-3-20C 20480 2 3 3 MIG 3g.20gb

A100-2-10C 10240 3 2 2 MIG 2g.10gb

A100-1-10C 10240 4 1 1 MIG 1g.10gb

A100-1-5C 5120 7 1 1 MIG 1g.5gb

A100-1-5CME 5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 40GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A100-40C 40960 1 1 3840×24001 1

A100-20C 20480 2 2 3840×24001 1

A100-10C 10240 4 4 3840×24001 1

A100-8C 8192 5 4 3840×24001 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 144

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A100-5C 5120 8 8 3840×24001 1

A100-4C 4096 10 8 3840×24001 1

A.5. NVIDIA A100 HGX 40GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A100X-7-40C 40960 1 7 7 MIG 7g.40gb

A100X-4-20C 20480 1 4 4 MIG 4g.20gb

A100X-3-20C 20480 2 3 3 MIG 3g.20gb

A100X-2-10C 10240 3 2 2 MIG 2g.10gb

A100X-1-10C 10240 4 1 1 MIG 1g.10gb

A100X-1-5C 5120 7 1 1 MIG 1g.5gb

A100X-1-5CME 5120 1 1 1 MIG 1g.5gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 40GB

Intended use cases:

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 145

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A100X-40C 40960 1 1 3840×24001 1

A100X-20C 20480 2 2 3840×24001 1

A100X-10C 10240 4 4 3840×24001 1

A100X-8C 8192 5 4 3840×24001 1

A100X-5C 5120 8 8 3840×24001 1

A100X-4C 4096 10 8 3840×24001 1

A.6. NVIDIA A100 PCIe 80GB, NVIDIA
A100 PCIe 80GB Liquid Cooled and
NVIDIA A100X Virtual GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB liquid
cooled and NVIDIA A100X GPUs are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB,
NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 146

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A100D-7-80C 81920 1 7 7 MIG 7g.80gb

A100D-4-40C 40960 1 4 4 MIG 4g.40gb

A100D-3-40C 40960 2 3 3 MIG 3g.40gb

A100D-2-20C 20480 3 2 2 MIG 2g.20gb

A100D-1-20C 20480 4 1 1 MIG 1g.20gb

A100D-1-10C 10240 7 1 1 MIG 1g.10gb

A100D-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 PCIe 80GB,
NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A100D-80C 81920 1 1 3840×24001 1

A100D-40C 40960 2 2 3840×24001 1

A100D-20C 20480 4 4 3840×24001 1

A100D-16C 16384 5 4 3840×24001 1

A100D-10C 10240 8 8 3840×24001 1

A100D-8C 8192 10 8 3840×24001 1

A100D-4C 4096 20 16 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 147

A.7. NVIDIA A100 HGX 80GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A100DX-7-80C 81920 1 7 7 MIG 7g.80gb

A100DX-4-40C 40960 1 4 4 MIG 4g.40gb

A100DX-3-40C 40960 2 3 3 MIG 3g.40gb

A100DX-2-20C 20480 3 2 2 MIG 2g.20gb

A100DX-1-20C 20480 4 1 1 MIG 1g.20gb

A100DX-1-10C 10240 7 1 1 MIG 1g.10gb

A100DX-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A100 HGX 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 148

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A100DX-80C 81920 1 1 3840×24001 1

A100DX-40C 40960 2 2 3840×24001 1

A100DX-20C 20480 4 4 3840×24001 1

A100DX-16C 16384 5 4 3840×24001 1

A100DX-10C 10240 8 8 3840×24001 1

A100DX-8C 8192 10 8 3840×24001 1

A100DX-4C 4096 20 16 3840×24001 1

A.8. NVIDIA A40 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA A40

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A40-48C 49152 1 1 3840×24001 1

A40-24C 24576 2 2 3840×24001 1

A40-16C 16384 3 2 3840×24001 1

A40-12C 12288 4 4 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 149

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A40-8C 8192 6 4 3840×24001 1

A40-6C 6144 8 8 3840×24001 1

A40-4C 4096 122 8 3840×24001 1

A.9. NVIDIA A30, NVIDIA A30X, and
NVIDIA A30 Liquid Cooled Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

The virtual GPU types for the NVIDIA A30, NVIDIA A30X, and NVIDIA A30 Liquid Cooled
GPUs are identical.

MIG-Backed C-Series Virtual GPU Types for NVIDIA A30, NVIDIA A30X, and
NVIDIA A30 Liquid Cooled

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A30-4-24C 24576 1 4 4 MIG 4g.24gb

A30-2-12C 12288 2 2 2 MIG 2g.12gb

A30-2-12CME 12288 1 2 2 MIG 2g.12gb+me

A30-1-6C 6144 4 1 1 MIG 1g.6gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 150

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

A30-1-6CME 6144 1 1 1 MIG 1g.6gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA A30, NVIDIA A30X, and
NVIDIA A30 Liquid Cooled

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A30-24C 24576 1 1 3840×24001 1

A30-12C 12288 2 2 3840×24001 1

A30-8C 8192 3 2 3840×24001 1

A30-6C 6144 4 4 3840×24001 1

A30-4C 4096 6 4 3840×24001 1

A.10. NVIDIA A16 Virtual GPU Types
Physical GPUs per board: 4

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA A16

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 151

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A16-16C 16384 1 1 3840×24001 1

A16-8C 8192 2 2 3840×24001 1

A16-4C 4096 4 4 3840×24001 1

A.11. NVIDIA A10 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA A10

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

A10-24C 24576 1 1 3840×24001 1

A10-12C 12288 2 2 3840×24001 1

A10-8C 8192 3 2 3840×24001 1

A10-6C 6144 4 4 3840×24001 1

A10-4C 4096 6 4 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 152

A.12. NVIDIA H100 PCIe 94GB (H100
NVL) Virtual GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 PCIe 94GB (H100
NVL)

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100L-7-94C 96246 1 7 7 MIG 7g.94gb

H100L-4-47C 48128 1 4 4 MIG 4g.47gb

H100L-3-47C 48128 2 3 3 MIG 3g.47gb

H100L-2-24C 24672 3 2 2 MIG 2g.24gb

H100L-1-24C 24672 4 1 1 MIG 1g.24gb

H100L-1-12C 12288 7 1 1 MIG 1g.12gb

H100L-1-12CME 12288 1 1 1 MIG 1g.12gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 PCIe 94GB (H100
NVL)

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 153

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100L-94C 96246 1 1 3840×24001 1

H100L-47C 48128 2 2 3840×24001 1

H100L-23C 23552 4 4 3840×24001 1

H100L-15C 15360 6 4 3840×24001 1

H100L-11C 11264 8 8 3840×24001 1

H100L-6C 6,144 15 8 3840×24001 1

H100L-4C 4,096 23 16 3840×24001 1

A.13. NVIDIA H100 SXM5 94GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 SXM5 94GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100XL-7-94C 96246 1 7 7 MIG 7g.94gb

H100XL-4-47C 48128 1 4 4 MIG 4g.47gb

H100XL-3-47C 48128 2 3 3 MIG 3g.47gb

H100XL-2-24C 24672 3 2 2 MIG 2g.24gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 154

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100XL-1-24C 24672 4 1 1 MIG 1g.24gb

H100XL-1-12C 12288 7 1 1 MIG 1g.12gb

H100XL-1-12CME 12288 1 1 1 MIG 1g.12gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 SXM5 94GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100XL-94C 96246 1 1 3840×24001 1

H100XL-47C 48128 2 2 3840×24001 1

H100XL-23C 23552 4 4 3840×24001 1

H100XL-15C 15360 6 4 3840×24001 1

H100XL-11C 11264 8 8 3840×24001 1

H100XL-6C 6,144 15 8 3840×24001 1

H100XL-4C 4,096 23 16 3840×24001 1

A.14. NVIDIA H100 PCIe 80GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 155

This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 PCIe 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100-7-80C 81920 1 7 7 MIG 7g.80gb

H100-4-40C 40960 1 4 4 MIG 4g.40gb

H100-3-40C 40960 2 3 3 MIG 3g.40gb

H100-2-20C 20480 3 2 2 MIG 2g.20gb

H100-1-20C 20480 4 1 1 MIG 1g.20gb

H100-1-10C 10240 7 1 1 MIG 1g.10gb

H100-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 PCIe 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100-80C 81920 1 1 3840×24001 1

H100-40C 40960 2 2 3840×24001 1

H100-20C 20480 4 4 3840×24001 1

H100-16C 16384 5 4 3840×24001 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 156

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100-10C 10240 8 8 3840×24001 1

H100-8C 8192 10 8 3840×24001 1

H100-5C 5120 16 16 3840×24001 1

H100-4C 4096 20 16 3840×24001 1

A.15. NVIDIA H100 SXM5 80GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 SXM5 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100XM-7-80C 81920 1 7 7 MIG 7g.80gb

H100XM-4-40C 40960 1 4 4 MIG 4g.40gb

H100XM-3-40C 40960 2 3 3 MIG 3g.40gb

H100XM-2-20C 20480 3 2 2 MIG 2g.20gb

H100XM-1-20C 20480 4 1 1 MIG 1g.20gb

H100XM-1-10C 10240 7 1 1 MIG 1g.10gb

H100XM-1-10CME 10240 1 1 1 MIG 1g.10gb+me

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 157

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 SXM5 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100XM-80C 81920 1 1 3840×24001 1

H100XM-40C 40960 2 2 3840×24001 1

H100XM-20C 20480 4 4 3840×24001 1

H100XM-16C 16384 5 4 3840×24001 1

H100XM-10C 10240 8 8 3840×24001 1

H100XM-8C 8192 10 8 3840×24001 1

H100XM-5C 5120 16 16 3840×24001 1

H100XM-4C 4096 20 16 3840×24001 1

A.16. NVIDIA H100 SXM5 64GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H100 SXM5 64GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 158

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H100XS-7-64C 65536 1 7 7 MIG 7g.64gb

H100XS-4-32C 32768 1 4 4 MIG 4g.32gb

H100XS-3-32C 32768 2 3 3 MIG 3g.32gb

H100XS-2-16C 16384 3 2 2 MIG 2g.16gb

H100XS-1-16C 16384 4 1 1 MIG 1g.16gb

H100XS-1-8C 8192 7 1 1 MIG 1g.8gb

H100XS-1-8CME 8192 1 1 1 MIG 1g.8gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H100 SXM5 64GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H100XS-64C 65536 1 1 3840×24001 1

H100XS-32C 32768 2 2 3840×24001 1

H100XS-16C 16384 4 4 3840×24001 1

H100XS-8C 8192 8 8 3840×24001 1

H100XS-4C 4096 16 16 3840×24001 1

A.17. NVIDIA H800 PCIe 94GB (H800
NVL) Virtual GPU Types

Physical GPUs per board: 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 159

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H800 PCIe 94GB (H800
NVL)

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H800L-7-94C 96246 1 7 7 MIG 7g.94gb

H800L-4-47C 48128 1 4 4 MIG 4g.47gb

H800L-3-47C 48128 2 3 3 MIG 3g.47gb

H800L-2-24C 24672 3 2 2 MIG 2g.24gb

H800L-1-24C 24672 4 1 1 MIG 1g.24gb

H800L-1-12C 12288 7 1 1 MIG 1g.12gb

H800L-1-12CME 12288 1 1 1 MIG 1g.12gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H800 PCIe 94GB (H800
NVL)

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H800L-94C 96246 1 1 3840×24001 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 160

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H800L-47C 48128 2 2 3840×24001 1

H800L-23C 23552 4 4 3840×24001 1

H800L-15C 15360 6 4 3840×24001 1

H800L-11C 11264 8 8 3840×24001 1

H800L-6C 6,144 15 8 3840×24001 1

H800L-4C 4,096 23 16 3840×24001 1

A.18. NVIDIA H800 PCIe 80GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.
This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H800 PCIe 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H800-7-80C 81920 1 7 7 MIG 7g.80gb

H800-4-40C 40960 1 4 4 MIG 4g.40gb

H800-3-40C 40960 2 3 3 MIG 3g.40gb

H800-2-20C 20480 3 2 2 MIG 2g.20gb

H800-1-20C 20480 4 1 1 MIG 1g.20gb

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 161

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H800-1-10C 10240 7 1 1 MIG 1g.10gb

H800-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H800 PCIe 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H800-80C 81920 1 1 3840×24001 1

H800-40C 40960 2 2 3840×24001 1

H800-20C 20480 4 4 3840×24001 1

H800-16C 16384 5 4 3840×24001 1

H800-10C 10240 8 8 3840×24001 1

H800-8C 8192 10 8 3840×24001 1

H800-5C 5120 16 16 3840×24001 1

H800-4C 4096 20 16 3840×24001 1

A.19. NVIDIA H800 SXM5 80GB Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 162

This GPU supports MIG-backed virtual GPUs and time-sliced virtual GPUs.

MIG-Backed C-Series Virtual GPU Types for NVIDIA H800 SXM5 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

For details of GPU instance profiles, see NVIDIA Multi-Instance GPU User Guide.

Virtual GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs per
GPU

Slices
per
vGPU

Compute
Instances per
vGPU

Corresponding
GPU Instance
Profile

H800XM-7-80C 81920 1 7 7 MIG 7g.80gb

H800XM-4-40C 40960 1 4 4 MIG 4g.40gb

H800XM-3-40C 40960 2 3 3 MIG 3g.40gb

H800XM-2-20C 20480 3 2 2 MIG 2g.20gb

H800XM-1-20C 20480 4 1 1 MIG 1g.20gb

H800XM-1-10C 10240 7 1 1 MIG 1g.10gb

H800XM-1-10CME 10240 1 1 1 MIG 1g.10gb+me

Time-Sliced C-Series Virtual GPU Types for NVIDIA H800 SXM5 80GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H800XM-80C 81920 1 1 3840×24001 1

H800XM-40C 40960 2 2 3840×24001 1

H800XM-20C 20480 4 4 3840×24001 1

H800XM-16C 16384 5 4 3840×24001 1

http://docs.nvidia.com/datacenter/tesla/pdf/NVIDIA_MIG_User_Guide.pdf

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 163

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

H800XM-10C 10240 8 8 3840×24001 1

H800XM-8C 8192 10 8 3840×24001 1

H800XM-5C 5120 16 16 3840×24001 1

H800XM-4C 4096 20 16 3840×24001 1

A.20. NVIDIA L40 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA L40

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L40-48C 49152 1 1 3840×24001 1

L40-24C 24576 2 2 3840×24001 1

L40-16C 16384 3 2 3840×24001 1

L40-12C 12288 4 4 3840×24001 1

L40-8C 8192 6 4 3840×24001 1

L40-6C 6144 8 8 3840×24001 1

L40-4C 4096 122 8 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 164

A.21. NVIDIA L40S Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA L40S

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L40S-48C 49152 1 1 3840×24001 1

L40S-24C 24576 2 2 3840×24001 1

L40S-16C 16384 3 2 3840×24001 1

L40S-12C 12288 4 4 3840×24001 1

L40S-8C 8192 6 4 3840×24001 1

L40S-6C 6144 8 8 3840×24001 1

L40S-4C 4096 122 8 3840×24001 1

A.22. NVIDIA L20 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA L20

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 165

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L20-48C 49152 1 1 3840×24001 1

L20-24C 24576 2 2 3840×24001 1

L20-16C 16384 3 2 3840×24001 1

L20-12C 12288 4 4 3840×24001 1

L20-8C 8192 6 4 3840×24001 1

L20-6C 6144 8 8 3840×24001 1

L20-4C 4096 122 8 3840×24001 1

A.23. NVIDIA L4 Virtual GPU Types
Physical GPUs per board: 1

C-Series Virtual GPU Types for NVIDIA L4

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L4-24C 24576 1 1 3840×24001 1

L4-12C 12288 2 2 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 166

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L4-8C 8192 3 2 3840×24001 1

L4-6C 6144 4 4 3840×24001 1

L4-4C 4096 6 4 3840×24001 1

A.24. NVIDIA L2 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA L2

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

L2-24C 24576 1 1 3840×24001 1

L2-12C 12288 2 2 3840×24001 1

L2-8C 8192 3 2 3840×24001 1

L2-6C 6144 4 4 3840×24001 1

L2-4C 4096 6 4 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 167

A.25. NVIDIA RTX 6000 Ada Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA RTX 6000 Ada

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTX 6000
Ada-48C

49152 1 1 3840×24001 1

RTX 6000
Ada-24C

24576 2 2 3840×24001 1

RTX 6000
Ada-16C

16384 3 2 3840×24001 1

RTX 6000
Ada-12C

12288 4 4 3840×24001 1

RTX 6000
Ada-8C

8192 6 4 3840×24001 1

RTX 6000
Ada-6C

6144 8 8 3840×24001 1

RTX 6000
Ada-4C

4096 122 8 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 168

A.26. NVIDIA RTX 5880 Ada Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA RTX 5880 Ada

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTX 5880
Ada-48C

49152 1 1 3840×24001 1

RTX 5880
Ada-24C

24576 2 2 3840×24001 1

RTX 5880
Ada-16C

16384 3 2 3840×24001 1

RTX 5880
Ada-12C

12288 4 4 3840×24001 1

RTX 5880
Ada-8C

8192 6 4 3840×24001 1

RTX 5880
Ada-6C

6144 8 8 3840×24001 1

RTX 5880
Ada-4C

4096 122 8 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 169

A.27. NVIDIA RTX 5000 Ada Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA RTX 5000 Ada

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTX 5000
Ada-32C

32768 1 1 3840×24001 1

RTX 5000
Ada-16C

16384 2 2 3840×24001 1

RTX 5000
Ada-8C

8192 4 4 3840×24001 1

RTX 5000
Ada-4C

4096 8 8 3840×24001 1

A.28. NVIDIA RTX A6000 Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 170

C-Series Virtual GPU Types for NVIDIA RTX A6000

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTXA6000-48C 49152 1 1 3840×24001 1

RTXA6000-24C 24576 2 2 3840×24001 1

RTXA6000-16C 16384 3 2 3840×24001 1

RTXA6000-12C 12288 4 4 3840×24001 1

RTXA6000-8C 8192 6 4 3840×24001 1

RTXA6000-6C 6144 8 8 3840×24001 1

RTXA6000-4C 4096 122 8 3840×24001 1

A.29. NVIDIA RTX A5500 Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

C-Series Virtual GPU Types for NVIDIA RTX A5500

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 171

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTXA5500-24C 24576 1 1 3840×24001 1

RTXA5500-12C 12288 2 2 3840×24001 1

RTXA5500-8C 8192 3 2 3840×24001 1

RTXA5500-6C 6144 4 4 3840×24001 1

RTXA5500-4C 4096 6 4 3840×24001 1

A.30. NVIDIA RTX A5000 Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for NVIDIA RTX A5000

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTXA5000-24C 24576 1 1 3840×24001 1

RTXA5000-12C 12288 2 2 3840×24001 1

RTXA5000-8C 8192 3 2 3840×24001 1

RTXA5000-6C 6144 4 4 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 172

Virtual
GPU Type

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU
in Equal-
Size Mode

Maximum
vGPUs per

GPU in Mixed-
Size Mode

Maximum
Display

Resolution

Virtual
Displays
per vGPU

RTXA5000-4C 4096 6 4 3840×24001 1

A.31. Tesla T4 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla T4

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

T4-16C 16384 1 3840×24001 1

T4-8C 8192 2 3840×24001 1

T4-4C 4096 4 3840×24001 1

A.32. Tesla V100 SXM2 Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100 SXM2

Intended use cases:

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 173

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

V100X-16C 16384 1 3840×24001 1

V100X-8C 8192 2 3840×24001 1

V100X-4C 4096 4 3840×24001 1

A.33. Tesla V100 SXM2 32GB Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100 SXM2 32GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

V100DX-32C 32768 1 3840×24001 1

V100DX-16C 16384 2 3840×24001 1

V100DX-8C 8192 4 3840×24001 1

V100DX-4C 4096 8 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 174

A.34. Tesla V100 PCIe Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100 PCIe

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

V100-16C 16384 1 3840×24001 1

V100-8C 8192 2 3840×24001 1

V100-4C 4096 4 3840×24001 1

A.35. Tesla V100 PCIe 32GB Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100 PCIe 32GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 175

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

V100D-32C 32768 1 3840×24001 1

V100D-16C 16384 2 3840×24001 1

V100D-8C 8192 4 3840×24001 1

V100D-4C 4096 8 3840×24001 1

A.36. Tesla V100S PCIe 32GB Virtual GPU
Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100S PCIe 32GB

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

V100S-32C 32768 1 3840×24001 1

V100S-16C 16384 2 3840×24001 1

V100S-8C 8192 4 3840×24001 1

V100S-4C 4096 8 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 176

A.37. Tesla V100 FHHL Virtual GPU Types
Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Tesla V100 FHHL

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual
GPU Type

Intended
Use Case

Frame
Buffer
(MB)

Maximum
vGPUs

per GPU

Maximum
vGPUs

per Board

Maximum
Display

Resolution

Virtual
Displays

per
vGPU

V100L-16C
Training
Workloads

16384 1 1 3840×24001 1

V100L-8C
Training
Workloads

8192 2 2 3840×24001 1

V100L-4C
Inference
Workloads

4096 4 4 3840×24001 1

A.38. Quadro RTX 8000 Passive Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Quadro RTX 8000 Passive

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 177

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

RTX8000P-48C 49152 1 3840×24001 1

RTX8000P-24C 24576 2 3840×24001 1

RTX8000P-16C 16384 3 3840×24001 1

RTX8000P-12C 12288 4 3840×24001 1

RTX8000P-8C 8192 6 3840×24001 1

RTX8000P-6C 6144 8 3840×24001 1

RTX8000P-4C 4096 82 3840×24001 1

A.39. Quadro RTX 6000 Passive Virtual
GPU Types

Physical GPUs per board: 1

The maximum number of vGPUs per board is the product of the maximum number of
vGPUs per GPU and the number of physical GPUs per board.

This GPU does not support mixed-size mode.

C-Series Virtual GPU Types for Quadro RTX 6000 Passive

Intended use cases:

‣ vGPUs with more than 4096 MB of frame buffer: Training Workloads

‣ vGPUs with 4096 MB of frame buffer: Inference Workloads

Required license edition: vCS or vWS

These vGPU types support a single display with a fixed maximum resolution.

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

RTX6000P-24C 24576 1 3840×24001 1

RTX6000P-12C 12288 2 3840×24001 1

Virtual GPU Types for Supported GPUs

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 178

Virtual GPU Type
Frame

Buffer (MB)
Maximum

vGPUs per GPU
Maximum Display

Resolution

Virtual
Displays
per vGPU

RTX6000P-8C 8192 3 3840×24001 1

RTX6000P-6C 6144 4 3840×24001 1

RTX6000P-4C 4096 6 3840×24001 1

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 179

Appendix B. vGPU Placements for
GPUs in Mixed-Size Mode

The vGPU placements that a GPU in mixed-size mode supports depend on the total
amount of frame buffer that the GPU has.

B.1. vGPU Placements for GPUs with 94
GB of Frame Buffer

Placement region size: 94

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

96246 94 1 1 0

48128 47 2 2 0, 47

23552 23 4 4 0, 24, 47, 71

15360 15 6 4 0, 32, 47, 79

11264 11 8 8
0, 12, 23, 36, 47, 59, 70,
83

6,144 6 15 8
0, 17, 23, 41, 47, 64, 70,
88

4,096 4 23 16
0, 7, 11, 19, 23, 31, 35,
43, 47, 54, 58, 66, 70, 78,
82, 90

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 94 GB of frame buffer in mixed-size mode.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 180

B.2. vGPU Placements for GPUs with 80
GB of Frame Buffer

Placement region size: 80

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

81920 80 1 1 0

40960 40 2 2 0, 40

20480 20 4 4 0, 20, 40, 60

16384 16 5 4 0, 24, 40, 64

10240
10

8 8
0, 10, 20, 30, 40, 50, 60,
70

8192
8

10 8
0, 12, 20, 32, 40, 52, 60,
72

5120 5 16 16
0, 5, 10, 15, 20, 25, 30,
35, 40, 45, 50, 55, 60, 65,
70, 75

4096
4

20 16
0, 6, 10, 16, 20, 26, 30,
36, 40, 46, 50, 56, 60, 66,
70, 76

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 80 GB of frame buffer in mixed-size mode.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 181

B.3. vGPU Placements for GPUs with 64
GB of Frame Buffer

Placement region size: 64

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

65536 64 1 1 0

32768 32 2 2 0, 32

16384 16 4 4 0, 16, 32, 48

8192
8

8 8
0, 8, 16, 24, 32, 40, 48,
56

4096 4 16 16
0, 4, 8, 12, 16, 20, 24, 28,
32, 36, 40, 44, 48, 52, 46,
60

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 64 GB of frame buffer in mixed-size mode.

B.4. vGPU Placements for GPUs with 48
GB of Frame Buffer

Placement region size: 48

Note: When in mixed-size mode, the maximum number of vGPUs with 1024 MB of frame
buffer allowed on GPUs based on the Ada Lovelace GPU architecture is lower than for
other GPU architectures. As a result, the supported placement IDs for these vGPUs on
GPUs based on the Ada Lovelace GPU architecture are different than for other GPU
architectures.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 182

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

49152 48 1 1 0

24576 24 2 2 0, 24

16384 16 3 2 0, 32

12288 12 4 4 0, 12, 24, 36

8192 8 6 4 0, 16, 24, 40

6144
6

8 8
0, 6, 12, 18, 24, 30, 36,
42

4096
4

12 8
0, 8, 12, 20, 24, 32, 36,
44

3072
3

16 16
0, 3, 6, 9, 12, 15, 18, 21,
24, 27, 30, 33, 36, 39, 42,
45

2048
2

24 16
0, 4, 6, 10, 12, 16, 18, 22,
24, 28, 30, 34, 36, 40, 42,
46

GPU architectures
except Ada
Lovelace: 30

GPU architectures
except Ada Lovelace: 0,
2, 3, 5, 6, 9, 11, 12, 14,
15, 17, 18, 20, 21, 23, 24,
26, 27, 29, 30, 33, 35, 36,
38, 39, 41, 42, 44, 45, 471024 1 32

Ada Lovelace GPU
architecture: 16

Ada Lovelace GPU
architecture: 0, 5, 6, 11,
12, 17, 18, 23, 24, 29, 30,
35, 36, 41, 42, 47

The following diagram shows the supported placements for each size of vGPU on a GPU
based on a GPU architecture except Ada Lovelace with a total of 48 GB of frame buffer in
mixed-size mode.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 183

The following diagram shows the supported placements for each size of vGPU on a GPU
based on the Ada Lovelace GPU architecture with a total of 48 GB of frame buffer in
mixed-size mode.

B.5. vGPU Placements for GPUs with 40
GB of Frame Buffer

Placement region size: 40

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

40960 40 1 1 0

20480 20 2 2 0, 20

10240 10 4 4 0, 10, 20, 30

8192 8 5 4 0, 12, 20, 32

5120
5

8 8
0, 5, 10, 15, 20, 25, 30,
35

4096
4

10 8
0, 6, 10, 16, 20, 26, 30,
36

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 40 GB of frame buffer in mixed-size mode.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 184

B.6. vGPU Placements for GPUs with 32
GB of Frame Buffer

Placement region size: 32

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

32768 32 1 1 0

16384 16 2 2 0, 16

8192 8 4 4 0, 8, 16, 24

4096 4 8 8 0, 4, 8, 12, 16, 20, 24, 28

2048
2

16 16
0, 2, 4, 6, 8, 10, 12, 14,
16, 18, 20, 22, 24, 26, 28,
30

1024

1

32 32

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30,
31

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 32 GB of frame buffer in mixed-size mode.

B.7. vGPU Placements for GPUs with 24
GB of Frame Buffer

Placement region size: 24

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 185

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

24576 24 1 1 0

12288 12 2 2 0, 12

8192 8 3 2 0, 16

6144 6 4 4 0, 6, 12, 18

4096 4 6 4 0, 8, 12, 20

3072 3 8 8 0, 3, 6, 9, 12, 15, 18, 21

2048 2 12 8 0, 4, 6, 10, 12, 16, 18, 22

1024
1

24 16
0, 2, 3, 5, 6, 8, 9, 11, 12,
14, 15, 17, 18, 20, 21, 23

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 24 GB of frame buffer in mixed-size mode.

B.8. vGPU Placements for GPUs with 20
GB of Frame Buffer

Placement region size: 20

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

20480 20 1 1 0

10240 10 2 2 0, 10

5120 5 4 4 0, 5, 10, 15

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 186

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

4096 4 5 4 0, 6, 10, 16

2048 2 10 8 0, 3, 5, 8, 10, 13, 15, 18

1024
1

20 16
0, 1, 2, 4, 5, 6, 7, 9, 10,
11, 12, 14, 15, 16, 17, 19

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 20 GB of frame buffer in mixed-size mode.

B.9. vGPU Placements for GPUs with 16
GB of Frame Buffer

Placement region size: 16

vGPU Size
(MB of
Frame
Buffer)

Placement
Size

Maximum vGPUs
per GPU in

Equal-Size Mode

Maximum vGPUs
per GPU in

Mixed-Size Mode

Supported
Placement IDs

16384 16 1 1 0

8192 8 2 2 0, 8

4096 4 4 4 0, 4, 8, 12

2048 2 8 8 0, 2, 4, 6, 8, 10, 12, 14

1024
1

16 16
0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14, 15

The following diagram shows the supported placements for each size of vGPU on a GPU
with a total of 16 GB of frame buffer in mixed-size mode.

vGPU Placements for GPUs in Mixed-Size Mode

NVIDIA AI Enterprise DU-10617-001 _v5.0 | 187

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product.
NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained
in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information
or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or
deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without
notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise
agreed in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual
obligations are formed either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in
applications where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use
is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each
product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained
in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in
order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA
product and may result in additional or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related
to any default, damage, costs, or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this
document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or
a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights
of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full
compliance with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the
products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA, the NVIDIA logo, NVIDIA Maxwell, NVIDIA Pascal, NVIDIA Turing, NVIDIA Volta, Quadro, and Tesla are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

Copyright

© 2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction to NVIDIA AI Enterprise
	1.1. NVIDIA AI Enterprise Software Architecture
	1.2. Prerequisites for Using NVIDIA AI Enterprise

	Installing and Configuring NVIDIA Virtual GPU Manager
	2.1. About NVIDIA Virtual GPUs
	2.1.1. NVIDIA vGPU Architecture
	2.1.1.1. Time-Sliced NVIDIA vGPU Internal Architecture
	2.1.1.2. MIG-Backed NVIDIA vGPU Internal Architecture

	2.1.2. About Virtual GPU Types
	2.1.3. Valid Virtual GPU Configurations on a Single GPU
	2.1.3.1. Valid Time-Sliced Virtual GPU Configurations on a Single GPU
	2.1.3.2. Valid MIG-Backed Virtual GPU Configurations on a Single GPU

	2.2. Switching the Mode of a GPU that Supports Multiple Display Modes
	2.3. Downloading NVIDIA AI Enterprise
	2.4. Installing the Virtual GPU Manager Package for Linux KVM
	2.5. Installing and Configuring the NVIDIA Virtual GPU Manager for Red Hat Enterprise Linux KVM
	2.5.1. Installing the Virtual GPU Manager Package for Red Hat Enterprise Linux KVM
	2.5.2. Verifying the Installation of the NVIDIA AI Enterprise for Red Hat Enterprise Linux KVM

	2.6. Installing and Configuring the NVIDIA Virtual GPU Manager for Ubuntu
	2.6.1. Installing the NVIDIA Virtual GPU Manager for Ubuntu
	2.6.1.1. Installing the Virtual GPU Manager Package for Ubuntu
	2.6.1.2. Verifying the Installation of the NVIDIA AI Enterprise for Ubuntu

	2.7. Installing and Configuring the NVIDIA Virtual GPU Manager for VMware vSphere
	2.7.1. Installing the NVIDIA Virtual GPU Manager on VMware vSphere
	2.7.2. Updating the NVIDIA Virtual GPU Manager for VMware vSphere
	2.7.3. Verifying the Installation of the NVIDIA AI Enterprise Package for vSphere
	2.7.4. Managing the NVIDIA GPU Management Daemon for VMware vSphere
	2.7.5. Configuring VMware vMotion with vGPU for VMware vSphere
	2.7.6. Changing the Default Graphics Type in VMware vSphere
	2.7.7. Configuring a vSphere VM with NVIDIA vGPU
	2.7.7.1. Configuring a vSphere 8 VM with NVIDIA vGPU
	2.7.7.2. Configuring a vSphere 7 VM with NVIDIA vGPU

	2.7.8. Setting vGPU Plugin Parameters on VMware vSphere

	2.8. Configuring the vGPU Manager for a Linux with KVM Hypervisor
	2.8.1. Getting the BDF and Domain of a GPU on a Linux with KVM Hypervisor
	2.8.2. Preparing the Virtual Function for an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor
	2.8.3. Creating an NVIDIA vGPU on a Linux with KVM Hypervisor
	2.8.3.1. Creating a Legacy NVIDIA vGPU on a Linux with KVM Hypervisor
	2.8.3.2. Creating an NVIDIA vGPU that Supports SR-IOV on a Linux with KVM Hypervisor

	2.8.4. Adding One or More vGPUs to a Linux with KVM Hypervisor VM
	2.8.4.1. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using virsh
	2.8.4.2. Adding One or More vGPUs to a Linux with KVM Hypervisor VM by Using the QEMU Command Line

	2.8.5. Setting vGPU Plugin Parameters on a Linux with KVM Hypervisor
	2.8.6. Deleting a vGPU on a Linux with KVM Hypervisor
	2.8.7. NVIDIA vGPU Information in the sysfs File System

	2.9. Putting a GPU Into Mixed-Size Mode
	2.10. Placing a vGPU on a Physical GPU in Mixed-Size Mode
	2.11. Configuring a GPU for MIG-Backed vGPUs
	2.11.1. Enabling MIG Mode for a GPU
	2.11.2. Creating GPU Instances on a MIG-Enabled GPU
	2.11.3. Optional: Creating Compute Instances in a GPU instance

	2.12. Disabling MIG Mode for One or More GPUs
	2.13. Disabling and Enabling ECC Memory
	2.13.1. Disabling ECC Memory
	2.13.2. Enabling ECC Memory

	2.14. Configuring a vGPU VM for Use with NVIDIA GPUDirect Storage Technology

	Installing and Licensing NVIDIA AI Enterprise Software Components
	3.1. Installing NVIDIA AI Enterprise Software Components by Using Kubernetes
	3.1.1. Installing and Licensing the NVIDIA vGPU Software Graphics Driver by Using NVIDIA GPU Operator
	3.1.2. Transforming Container Images for AI and Data Science Applications and Frameworks into Kubernetes Pods

	3.2. Install NVIDIA AI Enterprise Software Components by Using Docker
	3.2.1. Installing and Licensing the NVIDIA AI Enterprise Graphics Driver Natively
	3.2.2. Installing NVIDIA AI Enterprise Software, Applications, and Deep Learning Framework Components by Using Docker

	3.3. Installing NVIDIA GPU Operator by Using a Bash Shell Script
	3.4. Installing and Licensing NVIDIA AI Enterprise Components Natively
	3.4.1. Installing the NVIDIA AI Enterprise Graphics Driver on Windows
	3.4.2. Installing the NVIDIA AI Enterprise Graphics Driver on Linux
	3.4.2.1. Installing the NVIDIA AI Enterprise Graphics Driver on Ubuntu from a Debian Package
	3.4.2.2. Installing the NVIDIA AI Enterprise Graphics Driver on Red Hat Distributions from an RPM Package
	3.4.2.3. Disabling the Nouveau Driver for NVIDIA Graphics Cards
	3.4.2.4. Disabling the Wayland Display Server Protocol for Red Hat Enterprise Linux

	3.4.3. Configuring a Licensed Client of NVIDIA License System
	3.4.3.1. Proxy Server Requirements and Firewall Rules for a CLS Instance
	3.4.3.2. Configuring a Licensed Client on Windows with Default Settings
	3.4.3.3. Configuring a Licensed Client on Linux with Default Settings
	3.4.3.4. Generating an Encrypted Credentials File
	3.4.3.4.1. Generating an Encrypted Credentials File on Windows
	3.4.3.4.2. Generating an Encrypted Credentials File on Linux

	3.4.3.5. Verifying the NVIDIA AI Enterprise License Status of a Licensed Client

	3.4.4. Installing NVIDIA Container Toolkit
	3.4.5. Verifying the Installation of NVIDIA Container Toolkit
	3.4.6. Installing Software Distributed as Container Images
	3.4.7. Running ResNet-50 with TensorRT
	3.4.8. Running ResNet-50 with TensorFlow
	3.4.9. Optional: Updating NVIDIA Container Toolkit for a MIG-Enabled vGPU

	3.5. The NVIDIA NGC Catalog
	3.5.1. Resources
	3.5.2. Container Images
	3.5.3. Helm Charts
	3.5.4. Models
	3.5.5. Accessing the NVIDIA AI Enterprise Software Suite
	3.5.6. Adding Additional Users from Your Organization to the Enterprise Catalog (Admins Only)

	3.6. The NGC Private Registry
	3.6.1. Accessing Your NGC Private Registry
	3.6.2. Managing Teams and Users
	3.6.2.1. Creating Teams
	3.6.2.2. Creating Users

	Configuring Multinode Scaling
	4.1. Hardware and VM Configuration Requirements for Multinode Scaling
	4.1.1. Hardware Requirements for Multinode Scaling
	4.1.2. VM Requirements for Multinode Scaling

	4.2. Configuring NUMA Affinity for the VMs
	4.2.1. Configuring NUMA Affinity for a Whole-Server VM with Two GPUs and Two NICs Across Both NUMA Nodes
	4.2.2. Configuring NUMA Affinity for a Per-Socket VM with One GPU and One NIC on a Single NUMA Node

	4.3. Configuring RoCE on the NVIDIA Mellanox Spectrum Switch
	4.4. Enabling GPUDirect Technology for Peer-to-Peer Connections
	4.5. Installing the Mellanox OFED Driver
	4.6. Enabling ATS on the NVIDIA ConnectX-6 DX NICs in a VM
	4.7. Building and Installing the NVIDIA Peer Memory Driver

	Modifying a VM's NVIDIA vGPU Configuration
	5.1. Removing a VM’s NVIDIA vGPU Configuration
	5.1.1. Removing a vSphere VM’s vGPU Configuration

	5.2. Modifying GPU Allocation Policy
	5.2.1. Modifying GPU Allocation Policy on VMware vSphere

	5.3. Migrating a VM Configured with vGPU
	5.3.1. Migrating a VM Configured with vGPU on VMware vSphere
	5.3.2. Suspending and Resuming a VM Configured with vGPU on VMware vSphere

	5.4. Modifying a MIG-Backed vGPU's Configuration
	5.5. Enabling Unified Memory for a vGPU
	5.5.1. Enabling Unified Memory for a vGPU on Red Hat Enterprise Linux KVM
	5.5.2. Enabling Unified Memory for a vGPU on VMware vSphere

	5.6. Enabling NVIDIA CUDA Toolkit Development Tools for NVIDIA vGPU
	5.6.1. Enabling NVIDIA CUDA Toolkit Debuggers for NVIDIA vGPU
	5.6.2. Enabling NVIDIA CUDA Toolkit Profilers for NVIDIA vGPU
	5.6.2.1. Supported NVIDIA CUDA Toolkit Profiler Features
	5.6.2.2. Clock Management for a vGPU VM for Which NVIDIA CUDA Toolkit Profilers Are Enabled
	5.6.2.3. Limitations on the Use of NVIDIA CUDA Toolkit Profilers with NVIDIA vGPU
	5.6.2.4. Enabling NVIDIA CUDA Toolkit Profilers for a vGPU VM

	5.7. Enabling the TCC Driver Model for a vGPU

	Monitoring GPU Performance
	6.1. NVIDIA System Management Interface nvidia-smi
	6.2. Using nvidia-smi to Monitor GPU Performance from a Hypervisor
	6.2.1. Getting a Summary of all Physical GPUs in the System
	6.2.2. Getting a Summary of all vGPUs in the System
	6.2.3. Getting Physical GPU Details
	6.2.4. Getting vGPU Details
	6.2.5. Monitoring vGPU engine usage
	6.2.6. Monitoring vGPU engine usage by applications
	6.2.7. Monitoring Encoder Sessions
	6.2.8. Monitoring MIG-backed vGPU activity
	6.2.9. Listing Supported vGPU Types
	6.2.10. Listing the vGPU Types that Can Currently Be Created

	6.3. Monitoring GPU Performance from a Guest VM
	6.3.1. Using nvidia-smi to Monitor GPU Performance from a Guest VM

	Changing Scheduling Behavior for Time-Sliced vGPUs
	7.1. Scheduling Policies for Time-Sliced vGPUs
	7.2. Scheduler Time Slice for Time-Sliced vGPUs
	7.3. RmPVMRL Registry Key
	7.4. Getting the Current Time-Sliced vGPU Scheduling Policy for All GPUs
	7.5. Changing the Time-Sliced vGPU Scheduling Behavior for All GPUs by Using the RmPVMRL Registry Key
	7.6. Changing the Time-Sliced vGPU Scheduling Behavior for Select GPUs by Using the RmPVMRL Registry Key
	7.7. Restoring Default Time-Sliced vGPU Scheduler Settings by Using the RmPVMRL Registry Key

	Troubleshooting
	8.1. Known issues
	8.2. Troubleshooting steps
	8.2.1. Verifying the NVIDIA Kernel Driver Is Loaded
	8.2.2. Verifying that nvidia-smi works
	8.2.3. Examining NVIDIA kernel driver output
	8.2.4. Examining NVIDIA Virtual GPU Manager Messages
	8.2.4.1. Examining VMware vSphere vGPU Manager Messages

	8.3. Capturing configuration data by running nvidia-bug-report.sh

	Additional Information
	Virtual GPU Types for Supported GPUs
	A.1. NVIDIA A800 PCIe 80GB, NVIDIA A800 PCIe 80GB Liquid Cooled, and NVIDIA AX800 Virtual GPU Types
	A.2. NVIDIA A800 PCIe 40GB Virtual GPU Types
	A.3. NVIDIA A800 HGX Virtual GPU Types
	A.4. NVIDIA A100 PCIe 40GB Virtual GPU Types
	A.5. NVIDIA A100 HGX 40GB Virtual GPU Types
	A.6. NVIDIA A100 PCIe 80GB, NVIDIA A100 PCIe 80GB Liquid Cooled and NVIDIA A100X Virtual GPU Types
	A.7. NVIDIA A100 HGX 80GB Virtual GPU Types
	A.8. NVIDIA A40 Virtual GPU Types
	A.9. NVIDIA A30, NVIDIA A30X, and NVIDIA A30 Liquid Cooled Virtual GPU Types
	A.10. NVIDIA A16 Virtual GPU Types
	A.11. NVIDIA A10 Virtual GPU Types
	A.12. NVIDIA H100 PCIe 94GB (H100 NVL) Virtual GPU Types
	A.13. NVIDIA H100 SXM5 94GB Virtual GPU Types
	A.14. NVIDIA H100 PCIe 80GB Virtual GPU Types
	A.15. NVIDIA H100 SXM5 80GB Virtual GPU Types
	A.16. NVIDIA H100 SXM5 64GB Virtual GPU Types
	A.17. NVIDIA H800 PCIe 94GB (H800 NVL) Virtual GPU Types
	A.18. NVIDIA H800 PCIe 80GB Virtual GPU Types
	A.19. NVIDIA H800 SXM5 80GB Virtual GPU Types
	A.20. NVIDIA L40 Virtual GPU Types
	A.21. NVIDIA L40S Virtual GPU Types
	A.22. NVIDIA L20 Virtual GPU Types
	A.23. NVIDIA L4 Virtual GPU Types
	A.24. NVIDIA L2 Virtual GPU Types
	A.25. NVIDIA RTX 6000 Ada Virtual GPU Types
	A.26. NVIDIA RTX 5880 Ada Virtual GPU Types
	A.27. NVIDIA RTX 5000 Ada Virtual GPU Types
	A.28. NVIDIA RTX A6000 Virtual GPU Types
	A.29. NVIDIA RTX A5500 Virtual GPU Types
	A.30. NVIDIA RTX A5000 Virtual GPU Types
	A.31. Tesla T4 Virtual GPU Types
	A.32. Tesla V100 SXM2 Virtual GPU Types
	A.33. Tesla V100 SXM2 32GB Virtual GPU Types
	A.34. Tesla V100 PCIe Virtual GPU Types
	A.35. Tesla V100 PCIe 32GB Virtual GPU Types
	A.36. Tesla V100S PCIe 32GB Virtual GPU Types
	A.37. Tesla V100 FHHL Virtual GPU Types
	A.38. Quadro RTX 8000 Passive Virtual GPU Types
	A.39. Quadro RTX 6000 Passive Virtual GPU Types

	vGPU Placements for GPUs in Mixed-Size Mode
	B.1. vGPU Placements for GPUs with 94 GB of Frame Buffer
	B.2. vGPU Placements for GPUs with 80 GB of Frame Buffer
	B.3. vGPU Placements for GPUs with 64 GB of Frame Buffer
	B.4. vGPU Placements for GPUs with 48 GB of Frame Buffer
	B.5. vGPU Placements for GPUs with 40 GB of Frame Buffer
	B.6. vGPU Placements for GPUs with 32 GB of Frame Buffer
	B.7. vGPU Placements for GPUs with 24 GB of Frame Buffer
	B.8. vGPU Placements for GPUs with 20 GB of Frame Buffer
	B.9. vGPU Placements for GPUs with 16 GB of Frame Buffer

