aiq.data_models.evaluate#

Classes#

Module Contents#

class EvalCustomScriptConfig(/, **data: Any)#

Bases: pydantic.BaseModel

script: pathlib.Path#
kwargs: dict[str, str]#
class EvalOutputConfig(/, **data: Any)#

Bases: pydantic.BaseModel

dir: pathlib.Path#
remote_dir: str | None = None#
custom_scripts: dict[str, EvalCustomScriptConfig]#
s3: aiq.data_models.dataset_handler.EvalS3Config | None = None#
cleanup: bool = True#
workflow_output_step_filter: list[aiq.data_models.intermediate_step.IntermediateStepType] | None = None#
class EvalGeneralConfig(/, **data: Any)#

Bases: pydantic.BaseModel

max_concurrency: int = 8#
output_dir: pathlib.Path#
output: EvalOutputConfig | None = None#
dataset: aiq.data_models.dataset_handler.EvalDatasetConfig | None = None#
profiler: aiq.data_models.profiler.ProfilerConfig | None = None#
classmethod override_output_dir(values)#
class EvalConfig(/, **data: Any)#

Bases: pydantic.BaseModel

general: EvalGeneralConfig#
evaluators: dict[str, aiq.data_models.evaluator.EvaluatorBaseConfig]#
classmethod rebuild_annotations()#