
NVIDIA Base Command Manager 10

Containerization Manual
Revision: 0b170b46f

Date: Wed Oct 29 2025

©2025 NVIDIA Corporation & affiliates. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of NVIDIA Corporation.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXlm is a registered
trademark of Flexera Software, Inc. PBS Professional, and Green Provisioning are trademarks of Altair
Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. NVIDIA Corporation shall
not be liable for technical or editorial errors or omissions which may occur in this document. NVIDIA
Corporation shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to NVIDIA Corporation
The NVIDIA Base Command Manager product principally consists of free software that is licensed by
the Linux authors free of charge. NVIDIA Corporation shall have no liability nor will NVIDIA Corpo-
ration provide any warranty for the NVIDIA Base Command Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is
without any warranty, either expressed or implied, including, but not limited to, marketability or suit-
ability for a specific purpose. The user of the NVIDIA Base Command Manager product shall accept
the full risk for the quality or performance of the product. Should the product malfunction, the costs for
repair, service, or correction will be borne by the user of the NVIDIA Base Command Manager prod-
uct. No copyright owner or third party who has modified or distributed the program as permitted in
this license shall be held liable for damages, including general or specific damages, damages caused by
side effects or consequential damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing of data, losses that must be
borne by you or others, or the inability of the program to work together with any other program), even
if a copyright owner or third party had been advised about the possibility of such damages unless such
copyright owner or third party has signed a writing to the contrary.

Table of Contents

Table of Contents . i
0.1 About This Manual . v
0.2 About The Manuals In General . v
0.3 Getting Administrator-Level Support . vi
0.4 Getting Professional Services . vi

1 Introduction To Containerization On NVIDIA Base Command Manager 3

2 Docker Engine 5
2.1 Docker Setup . 5
2.2 Integration With Workload Managers . 7
2.3 DockerHost Role . 7
2.4 Iptables . 10
2.5 Storage Backends . 10

2.5.1 Device Mapper Driver Settings Support . 12
2.6 Docker Monitoring . 13
2.7 Docker Setup For NVIDIA . 14

3 Docker Registries 17
3.1 Docker And Harbor Registries: Introduction . 17

3.1.1 Docker Hub, A Remote Registry . 17
3.1.2 Local Image Registry Options: Classic Docker Registry Vs Harbor 17

3.2 Docker And Harbor Registries: Setup And Configuration 17
3.2.1 Docker Registry Daemon Configuration Using The Docker Registry Role 18
3.2.2 Harbor Daemon Configuration Using The Harbor Role 19

4 Kubernetes 21
4.1 Reference Architecture . 21

4.1.1 Hardware Requirements . 22
4.2 Kubernetes Setup . 22

4.2.1 Kubernetes Networking . 23
4.2.2 Kubernetes Core Add-ons . 24
4.2.3 Kubernetes Optional Add-ons . 25
4.2.4 Helm Kubernetes Package Manager . 26
4.2.5 Kubernetes Setup From The Command Line . 26
4.2.6 Kubernetes Setup From A TUI Session . 31
4.2.7 Testing Kubernetes . 32

4.3 Using GPUs With Kubernetes: NVIDIA GPUs . 33
4.3.1 Prerequisites . 33
4.3.2 New Kubernetes Installation . 34
4.3.3 Existing Kubernetes Installation . 35
4.3.4 An Example Of Running A Workload Using NVIDIA GPUS: LLM Via NIM 35

ii Table of Contents

4.4 Using GPUs With Kubernetes: AMD GPUs . 37
4.4.1 Prerequisites . 37
4.4.2 Managing The YAML File Through CMDaemon . 38
4.4.3 Including Head Nodes as part of the DaemonSet: 38
4.4.4 Running The DaemonSet Only On Specific Nodes 39
4.4.5 Running An Example Workload . 40

4.5 Kubernetes Configuration Overlays . 41
4.6 Removing A Kubernetes Cluster . 42
4.7 Kubernetes Cluster Configuration Options . 43
4.8 EtcdCluster . 45
4.9 Kubernetes Roles . 46

4.9.1 EtcdHost Role . 47
4.9.2 The KubernetesAPIServerProxy Role . 48
4.9.3 The Kubelet Role . 52
4.9.4 Containerd Role . 53

4.10 Security Model . 54
4.10.1 Kyverno . 55
4.10.2 PodSecurityPolicy . 55

4.11 Addition Of New Kubernetes Users . 56
4.11.1 Adding Users Non-Interactively With cm-kubernetes-setup 56

4.12 Getting Information And Modifying Existing Kubernetes Users 58
4.13 List Of Resources Defined For Users . 58
4.14 Kyverno . 60

4.14.1 Kyverno Installation . 60
4.14.2 Kyverno Policies . 61

4.15 Kubernetes Permission Manager . 62
4.16 Providing Access To External Users . 65
4.17 Networking Model . 67
4.18 Kubernetes Monitoring . 67
4.19 Local Path Storage Class . 67
4.20 Setup Of A Storage Class For Ceph . 68
4.21 Integration With Harbor . 71
4.22 Kubernetes Upgrades . 72

4.22.1 Upgrade Prerequisites . 72
4.22.2 Example RHEL9 Cluster . 73
4.22.3 Before Starting The Upgrade . 73
4.22.4 Updating The First Control Plane Node . 73
4.22.5 Updating Subsequent Control Plane Nodes . 76
4.22.6 Updating The Worker Nodes . 77
4.22.7 Updating The Status In BCM . 78
4.22.8 Notes For Ubuntu . 79
4.22.9 Notes For SLES . 79
4.22.10 Other Approaches . 79
4.22.11 Configuring The Ingress HTTPS Server Certificate 80

5 Kubernetes Apps 83

Table of Contents iii

6 Kubernetes Operators 87
6.1 Versions Of Operators Available . 87
6.2 Helm Charts For The BCM Operators . 89
6.3 The Jupyter Kernel Operator . 90

6.3.1 Installing The Jupyter Kernel Operator . 90
6.3.2 Architecture Overview . 91
6.3.3 Running Jupyter Kernel Using The Operator . 92
6.3.4 Jupyter Kernel Operator Tunables . 93
6.3.5 Sidecar Arguments And Environment Variables . 94
6.3.6 Running Spark-based Kernels In Jupyter Kernel Operator 95
6.3.7 Example: Creating An R Kernel From The Kernel Template 95
6.3.8 Example: Letting Kubernetes Access Private Registries From The Kernel Template 100
6.3.9 Example: Adding The PVC Parameter To The Kernel Template 102

6.4 The NVIDIA GPU Operator . 104
6.4.1 Installing The NVIDIA GPU Operator . 104
6.4.2 Installing The NVIDIA GPU Operator On An Existing Kubernetes Cluster 105
6.4.3 Removing The NVIDIA GPU Operator . 106
6.4.4 Validating The NVIDIA GPU Operator . 106
6.4.5 Validating The NVIDIA GPU Operator In Detail . 107
6.4.6 Running A GPU Workload . 111

6.5 The NVIDIA Network Operator . 112
6.5.1 Installing The NVIDIA Network Operator . 112

6.6 The NVIDIA NetQ Operator . 114
6.6.1 NVIDIA NetQ Operator Installation . 114
6.6.2 Accessing The NVIDIA NetQ Operator UI . 116

6.7 The Prometheus Operator Stack . 117
6.7.1 Exporting And Reusing Grafana Dashboards . 117

6.8 The Run:ai Operator . 118
6.8.1 Prerequisites For The Run:ai Operator Installation 119
6.8.2 Installing The Run:ai Operator . 119
6.8.3 Removing The Run:ai Operator . 119
6.8.4 Completing The Run:ai Installation . 120
6.8.5 Run:ai setup Ingress Certificate . 120
6.8.6 Run:ai Setup Through Cluster Installer Wizard . 121
6.8.7 Post-installation . 123

6.9 Kubernetes Spark Operator . 124
6.9.1 Installing The Kubernetes Spark Operator . 125
6.9.2 Example Spark Operator Run: Calculating Pi . 126

6.10 The NVIDIA Postgres Operator . 127
6.10.1 Installing The NVIDIA Postgres Operator . 127

7 Kubernetes On Edge 129
7.1 Flags For Edge Installation . 129

7.1.1 Speeding Up Kubernetes Installation To Edge Nodes With The �-skip-* Flags:
Use Cases . 130

iv Table of Contents

8 Kubernetes Cluster API 131
8.1 Kubernetes Cluster API Components . 131

8.1.1 Kubernetes Management Cluster . 131
8.1.2 Kubernetes CAPI Cluster . 132
8.1.3 BCM CAPI Infrastructure Provider . 132

8.2 The Kubernetes CAPI Wizard . 133
8.2.1 The Install CAPI Option . 133
8.2.2 The Assign CAPI Role Option . 135

8.3 Deploying A Kubernetes Cluster Through CAPI . 137
8.3.1 Machine Provisioning . 139
8.3.2 Accessing The Cluster . 140
8.3.3 Scaling Control Planes Or Workers . 142
8.3.4 Upgrading Control Planes Or Workers . 142

8.4 BCM Host Agent Registration . 144
8.5 Install Process BCM CAPI . 146

8.5.1 Registration Process Of The Node With BCM . 148
8.5.2 Creating A Kubernetes Cluster Via CAPI . 150

8.6 Configuring CAPI Versions In Software Images . 151
8.7 Removing Kubernetes CAPI clusters . 151
8.8 Kubernetes CAPI Templates . 153

9 Apptainer 155
9.1 Use Cases . 155
9.2 Package cm-apptainer . 155
9.3 MPI Integration . 156

A Base Command Manager Essentials And NVIDIA AI Enterprise 157
A.1 Scope Of BCME . 157
A.2 BCME And Support For NVIDIA AI Enterprise . 158

A.2.1 Certified Features Of BCME For NVIDIA AI Enterprise 158
A.2.2 NVIDIA AI Enterprise Compatible Servers . 158
A.2.3 NVIDIA Software Versions Supported . 158
A.2.4 NVIDIA AI Enterprise Product Support Matrix . 158

B Create Self-Signed Server Certificate Pair For Testing Purposes 159

Preface

Welcome to the Containerization Manual for NVIDIA Base Command Manager 10.

0.1 About This Manual
This manual is aimed at helping cluster administrators install, understand, configure, and manage the
containerization integration capabilities of NVIDIA Base Command Manager. The administrator is ex-
pected to be reasonably familiar with the Administrator Manual.

0.2 About The Manuals In General
Name Changes From Version 9.2 To 10
The cluster manager software was originally developed by Bright Computing and the name “Bright” featured
previously in the product, repositories, websites, and manuals.

Bright Computing was acquired by NVIDIA in 2022. The corresponding name changes, to be consistent with
NVIDIA branding and products, are a work in progress. There is some catching up to do in places. For now, some
parts of the manual still refer to Bright Computing and Bright Cluster Manager. These remnants will eventually
disappear during updates.

BCM in particular is a convenient abbreviation that happens to have the same letters as the former Bright
Cluster Manager. With the branding change in version 10, Base Command Manager is the official full name for
the product formerly known as Bright Cluster Manager, and BCM is the official abbreviation for Base Command
Manager.

Regularly updated versions of the NVIDIA Base Command Manager 10 manuals are available on
updated clusters by default at /cm/shared/docs/cm. The latest updates are always online at https:
//docs.nvidia.com/base-command-manager.

• The Installation Manual describes installation procedures for the basic cluster.

• The Administrator Manual describes the general management of the cluster.

• The User Manual describes the user environment and how to submit jobs for the end user.

• The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

• The Developer Manual has useful information for developers who would like to program with BCM.

• The Machine Learning Manual describes how to install and configure machine learning capabilities
with BCM.

• The Edge Manual explains how BCM can be used with edge sites.

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

The manuals constantly evolve to keep up with the development of the BCM environment and the
addition of new hardware and/or applications. The manuals also regularly incorporate feedback from

https://docs.nvidia.com/base-command-manager
https://docs.nvidia.com/base-command-manager

vi Table of Contents

administrators and users, and any comments, suggestions or corrections will be very gratefully accepted
at manuals@brightcomputing.com.

There is also a feedback form available via Base View, via the menu icon, , following the naviga-
tion path:

>Help>Feedback

0.3 Getting Administrator-Level Support
If the reseller from whom BCM was bought offers direct support, then the reseller should be contacted.

Otherwise the primary means of support is via the website https://enterprise-support.nvidia.

com/s/create-case. This allows the administrator to submit a support request via a web form, and
opens up a trouble ticket. It is a good idea to try to use a clear subject header, since that is used as part
of a reference tag as the ticket progresses. Also helpful is a good description of the issue. The followup
communication for this ticket goes via standard e-mail. Section 16.2 of the Administrator Manual has
more details on working with support.

0.4 Getting Professional Services
The BCM support team normally differentiates between

• regular support (customer has a question or problem that requires an answer or resolution), and

• professional services (customer asks for the team to do something or asks the team to provide
some service).

Professional services can be provided via the NVIDIA Enterprise Services page at:
https://www.nvidia.com/en-us/support/enterprise/services/

manuals@brightcomputing.com
https://enterprise-support.nvidia.com/s/create-case
https://enterprise-support.nvidia.com/s/create-case
https://www.nvidia.com/en-us/support/enterprise/services/

©2025 NVIDIA Corporation & affiliates. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of NVIDIA Corporation.

Trademarks
Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXlm is a registered
trademark of Flexera Software, Inc. PBS Professional, and Green Provisioning are trademarks of Altair
Engineering, Inc. All other trademarks are the property of their respective owners.

Rights and Restrictions
All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. NVIDIA Corporation shall
not be liable for technical or editorial errors or omissions which may occur in this document. NVIDIA
Corporation shall not be liable for any damages resulting from the use of this document.

Limitation of Liability and Damages Pertaining to NVIDIA Corporation
The NVIDIA Base Command Manager product principally consists of free software that is licensed by
the Linux authors free of charge. NVIDIA Corporation shall have no liability nor will NVIDIA Corpo-
ration provide any warranty for the NVIDIA Base Command Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is
without any warranty, either expressed or implied, including, but not limited to, marketability or suit-
ability for a specific purpose. The user of the NVIDIA Base Command Manager product shall accept
the full risk for the quality or performance of the product. Should the product malfunction, the costs for
repair, service, or correction will be borne by the user of the NVIDIA Base Command Manager prod-
uct. No copyright owner or third party who has modified or distributed the program as permitted in
this license shall be held liable for damages, including general or specific damages, damages caused by
side effects or consequential damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing of data, losses that must be
borne by you or others, or the inability of the program to work together with any other program), even
if a copyright owner or third party had been advised about the possibility of such damages unless such
copyright owner or third party has signed a writing to the contrary.

1
Introduction To Containerization

On NVIDIA Base Command
Manager

Containerization is a technology that allows processes to be isolated by combining cgroups, Linux names-
paces, and (container) images.

• Cgroups are introduced in section 7.10 on workload management of the Administrator Manual

• Linux namespaces represent independent spaces for different operating system facilities: pro-
cess IDs, network interfaces, mount points, inter-process communication resources and others.
Cgroups and namespaces allow processes to be isolated from each other by separating the avail-
able resources as much as possible.

• A container image is a component of a container, and is a file that contains one or several layers.
The layers cannot be altered as far the container is concerned, and a snapshot of the image can be
used for other containers. A union file system is used to combine these layers into a single image.
Union file systems allow files and directories of separate file systems to be transparently overlaid,
forming a single coherent file system.

Cgroups, namespaces and image are the basis of a container. When the container is created, then a
new process can be started within the container. Containerized processes running on a single machine
all share the same operating system kernel, so they start immediately, without the delay of requiring a
kernel to first boot up. No process is allowed to change the layers of the image. All changes are applied
on a temporary layer created on top of the image, and these changes are destroyed when the container
is removed.

There are several ways to manage the containers, but the most powerful approaches use Docker, also
known as Docker Engine, and Kubernetes.

Docker manages containers on individual hosts, while Kubernetes manages containers across a clus-
ter. BCM integrates both of these solutions, so that setup, configuration and monitoring of containers
becomes an easily-managed part of BCM.

Chapter 2 describes how Docker integration with BCM works.
Chapter 3 covers how Docker registries are integrated.
Chapter 4 covers Kubernetes integration.
Chapter 5 covers Kubernetes application configuration and groups of Kubernetes applications.
Chapter 6 covers Kubernetes operators, which are a way to manage Kubernetes cluster applications.
Chapter 7 covers Kubernetes deployment on edge sites.

4 Introduction To Containerization On NVIDIA Base Command Manager

Chapter 8 describes the installation and usage of the NVIDIA Base Command Manager CAPI exten-
sion called BCM Kubernetes CAPI Infrastructure Provider. Kubernetes Cluster API (CAPI), is an API
for managing Kubernetes clusters.

Chapter 9 describes the use of Apptainer, which is an application containerization tool. Apptainer
is designed to execute containers as if they are just native applications on a host computer, and to work
with HPC.

2
Docker Engine

Docker integration with NVIDIA Base Command Manager 10 for Docker version 26.1.5 is available
at the time of writing of this paragraph (October 2024) on the x86_64 architecture for all the BCM-
supported Linux distributions. For a more up-to-date status, the features matrix at https://support.
brightcomputing.com/feature-matrix/ can be checked.

Docker integration with NVIDIA Base Command Manager 10 is part of BCME (Appendix A), which
means that it is certified for NVIDIA AI Enterprise.

Docker Engine (or just Docker) is a tool for container management. Docker allows containers and
their images to be created, controlled, and monitored on a host using Docker command line tools or the
Docker API.

Swarm mode, which allows containers to spawn on several hosts, is not formally supported by NVIDIA
Base Command Manager 10. This is because NVIDIA Base Command Manager 10 provides Kubernetes
for this purpose instead.

Docker provides a utility called docker, and two daemons: one called containerd (the default pro-
vided by BCM), and the other called dockerd. Additional functionality includes pulling the container
image from a specific image registry (Chapter 3), configuring the container network, setting systemd

limits, and attaching volumes.

2.1 Docker Setup
BCM provides the cm-docker package. The package includes the following components:

• Docker itself, that provides an API and delegates the container management to Containerd;

• Containerd runtime, that manages OCI images and OCI containers (via runC);

• runC, a CLI tool for spawning and running containers according to the OCI specification runtime;

• docker-py, a Python library for the Docker API.

Typically, however, the administrator is expected to simply run the cm-docker-setup utility, which
is provided by BCM’s cm-setup package. Running cm-docker-setup takes care of the installation of the
cm-docker package and also takes care of Docker setup. If run without options then the utility starts up
a TUI dialog (figure 2.1).

https://support.brightcomputing.com/feature-matrix/
https://support.brightcomputing.com/feature-matrix/

6 Docker Engine

Figure 2.1: cm-docker-setup TUI startup

The cm-docker-setup utility asks several questions, such as which Docker registries are to be used,
what nodes Docker is to be installed on, whether the NVIDIA container runtime should be installed, and
so on. If cm-docker-setup is used with the -c option, and given a YAML configuration file <YAMLfile>,
then a runtime configuration is loaded from that file. The YAML file is typically generated and saved
from an earlier run.

When the questions in the TUI dialog have been answered and the deployment is carried out, the
utility:

• installs the cm-docker package, if it has not been installed yet

• then assigns the DockerHost role to the node categories or head nodes that were specified

• adds health checks to the BCM monitoring configuration

• performs the initial configuration of Docker.

The regular nodes on which Docker is to run, are restarted by the utility, if needed. The restart
operation provisions the updated images from the image directory onto the nodes.

The cm-docker package also includes a modules environment file, which must be loaded in order to
use the docker command. The modules environment and modules are introduced in section 2.2 of the
Administrator Manual.

By default only the administrator can run the docker commands after setup (some output ellipsized):

Example

[root@basecm10 ~]# ssh node001

[root@node001 ~]# module load docker

[root@node001 ~]# docker info

...

Containers: 0

Images: 0

...

Docker Root Dir: /var/lib/docker

Debug Mode: false

Experimental: false

Insecure Registries:

127.0.0.0/8

Registry Mirrors:

https://harbor-proxy.brightcomputing.com/

Live Restore Enabled: false

[root@node001 ~]#

and the hello-world image can be run as usual with:

Example

2.2 Integration With Workload Managers 7

[root@node001 ~]# docker run hello-world

Unable to find image 'hello-world:latest' locally

latest: Pulling from library/hello-world

2db29710123e: Pull complete

Digest: sha256:cc15c5b292d8525effc0f89cb299f1804f3a725c8d05e158653a563f15e4f685

Status: Downloaded newer image for hello-world:latest

Hello from Docker!

This message shows that your installation appears to be working correctly.

...

Or, for example, importing and running Apache containers with Docker may result in the following
output:

Example

[root@node001 ~]# module load docker

[root@node001 ~]# docker run httpd & docker run httpd &

... runs a couple of Apache containers...

[root@node001 ~]# docker container ls

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES

acdbe2f3667b httpd "httpd-foreground" 13 seconds ago Up 11 seconds 80/tcp quizzical_bhabha

64787a8524dd httpd "httpd-foreground" 13 seconds ago Up 11 seconds 80/tcp funny_hypatia

...

[root@node001 ~]#

Using Docker directly means being root on the host. It is rarely sensible to carry out regular user
actions as the root user at all times.

So, to make Docker available to regular users, Kubernetes provides a user management layer and
restrictions.

After Docker has been installed, Kubernetes can be set up to allow regular user access to the Docker
containers as covered in Chapter 4. It is a best practice for regular users to use Kubernetes instead of
Docker commands directly.

2.2 Integration With Workload Managers
BCM does not provide integration of Docker with workload managers. The administrator can however
tune the workload managers in some cases to enable Docker support.

• LSF – An open beta version of LSF with Docker support is available from the IBM web site. This
LSF version allows jobs to run in Docker containers, and monitors the container resources per job.

• PBS Professional – Altair provides a hook script that allows jobs to start in Docker containers.
Altair should be contacted to obtain the script and instructions.

2.3 DockerHost Role
When cm-docker-setup is executed, the DockerHost role is assigned to nodes or categories. The Dock-
erHost role is responsible for Docker service management and configuration.

From cmsh, the configuration parameters can be managed from the Docker::Host role:

Example

[root@basecm10 ~]# cmsh

[basecm10]% category use default

[basecm10->category[default]]% roles

8 Docker Engine

[basecm10->category[default]->roles]% assign docker::host

[basecm10->category*[default*]->roles*[Docker::Host*]]% show

Parameter Value

-------------------------------- --

Name Docker::Host

Revision

Type DockerHostRole

Add services yes

Spool /var/lib/docker

Tmp dir $spool/tmp

Enable SELinux yes

Default Ulimits

Debug no

Log Level info

Bridge IP

Bridge

MTU 0

API Sockets unix:///var/run/docker.sock

Iptables yes

User Namespace Remap

Insecure Registries

Enable TLS no

Verify TLS no

TLS CA

TLS Certificate

TLS Key

Certificates Path /etc/docker

Storage Backends <0 in submode>

Containerd Socket

Runtime runc

Options

[basecm10->category*[default*]->roles*[Docker::Host*]]%

The Docker host parameters that CMDaemon can configure in the DockerHost role, along with a
description, are shown in table 2.1:

Parameter Description

Add services∗ Add services to nodes belonging to this node. Care must be taken if setting
this to no. (default: yes)

Spool Root of the Docker runtime (default: /var/lib/docker)

Tmp dir Location for temporary files. Default: $<spool>/tmp, where $<spool> is re-
placed by the path to the Docker runtime root directory

...continues

/var/lib/docker

2.3 DockerHost Role 9

...continued

Parameter Description

Enable SELinux∗ Enable selinux support in Docker daemon (default: yes)

Default Ulimits Set the default ulimit options for all containers

Debug∗ Enable debug mode (default: no)

Log Level Set the daemon logging level. In order of increasing verbosity: fatal,
error, warn, info, debug. (default: info)

Bridge IP Network bridge IP (not defined by default)

Bridge Attach containers to a network bridge (not defined by default)

MTU Set the containers network MTU, in bytes (default: 0, which does not set
the MTU at all)

API Sockets Daemon socket(s) to connect to (default: unix:///var/run/docker.sock)

Iptables∗ Enable iptables rules (default: yes)

User Namespace Remap User/Group setting for user namespaces (not defined by default). It can
be set to any of <UID>, <UID:GID>, <username>, <username:groupname>. If it
is used, then user_namespace.enable=1 must be set in the kernel options
for the relevant nodes, and those nodes must be rebooted to pick up the
new option.

Insecure Registries If registry access uses HTTPS but does not have proper certificates dis-
tributed, then the administrator can make Docker accept this situation by
adding the registry to this list (empty by default)

Enable TLS∗ Use TLS (default: no)

Verify TLS∗ Use TLS and verify the remote (default: no)

TLS CA Trust only certificates that are signed by this CA (not defined by default)

...continues

10 Docker Engine

...continued

Parameter Description

TLS Certificate Path to TLS certificate file (not defined by default)

TLS Key Path to TLS key file (not defined by default)

Certificates Path Path to Docker certificates (default: /etc/docker)

Storage Backends Docker storage back ends. Storage types can be created and managed, in a
submode under this mode. The available types are described in table 2.2.
Each of these storage types has options that can be set from within the
submode.

Containerd Socket Path to the containerd socket (default: not used)

Runtime Docker runtime

Options Additional parameters for docker daemon

* Boolean (takes yes or no as a value)

Table 2.1: Docker::Host role options

2.4 Iptables
By default iptables rules have been added to nodes that function as a Docker host, to let network traffic
go from the containers to outside the pods network. If this conflicts with other software that uses ipta-
bles, then this option can be disabled. For example, if the docker::host role has already been assigned
to the nodes via the default category, then the iptables rules that are set can be disabled by setting the
iptables parameter in the Docker::Host role to no:

Example

[root@basecm10 ~]# cmsh

[basecm10]% category use default

[basecm10->category[default]]% roles

[basecm10->category[default]->roles]% use docker::host

[basecm10->category[default]->roles[Docker::Host]]% set iptables no

[basecm10->category*[default*]->roles*[Docker::Host*]]% commit

2.5 Storage Backends
A core part of the Docker model is the efficient use of containers based on layered images. To implement
this, Docker provides different storage back ends, also called storage drivers. These storage back ends
rely heavily on various filesystem features in the kernel or volume manager. Some storage back ends
perform better than others, depending on the circumstances.

The default storage back end configured by cm-docker-setup is overlay2. Storage back ends sup-
ported by Docker are listed in table 2.2:

2.5 Storage Backends 11

Technology Description Backend Name

OverlayFS
This is a modern union filesystem. It is the preferred storage
driver for recent Docker versions. It has been in the mainline
Linux kernel since version 3.18, with additional improvements
for Docker in version 4.0. All of the distributions that BCM
supports have backported the kernel changes needed for this
to work.

overlay2

Device Mapper Deprecated since Docker Engine 18.09. It is a kernel-based
framework that has been included in the mainline Linux kernel
since version 2.6.9. It underpins many advanced volume man-
agement technologies on Linux. The driver stores every image
and snapshot on its own virtual device, and works at the block
level rather than the file level.

• A loopback mechanism can be implemented using
loop-lvm mode. This allows files on a local disk to be
managed as if they are on a physical disk or block device.
This is simpler than the thin pool mode, but is strongly
discouraged for production use. In BCM this mode is
implemented by selecting the option loopback (testing

only). This is selected in the storage back end selection
screen of the cm-docker-setup installation.

• A thin pool mode can be implemented using direct-lvm

mode. This uses a logical volume as a thin pool to use
as backing for the storage pool, and uses a spare block
device. Configuring this is normally more involved.

In BCM this mode is implemented by selecting the op-
tion block (production ready). This is selected in the
storage back end selection screen of the cm-docker-setup
installation session.

Device mapper options for these modes are described in Ta-
ble 2.3

devicemapper

AUFS This was the first storage back end that Docker used. AUFS is
not included in the mainline Linux kernel. Out of the distribu-
tions that NVIDIA Base Command Manager 8.2 supports, it is
only Ubuntu that supports it.

aufs

Table 2.2: Docker storage back ends

Tab-completion shows the backends that can be added:

Example

[basecm10->category*[default*]->roles*[Docker::Host*]->storagebackends*]% add [TAB][TAB]
aufs devicemapper overlay2

[basecm10->category*[default*]->roles*[Docker::Host*]->storagebackends*]% add overlay2 mylargebackend

The docker info command, amongst many other items, shows the storage driver and related set-
tings that are being used in Docker:

Example

12 Docker Engine

[root@basecm10 ~]# module load docker

[root@basecm10 ~]# docker info

Client:

...

Context: default

Debug Mode: false

...

Server:

Containers: 18

Running: 8

Paused: 6

Stopped: 4

Images: 1

Server Version: 26.1.5

Storage Driver: overlay2

Backing Filesystem: xfs

Supports d_type: true

Using metacopy: false

Native Overlay Diff: true

userxattr: false

Logging Driver: json-file

Cgroup Driver: systemd

Cgroup Version: 2

Plugins:

Volume: local

Network: bridge host ipvlan macvlan null overlay

Log: awslogs fluentd gcplogs gelf journald json-file local splunk syslog

...

Docker data volumes are not controlled by the storage driver. Reads and writes to data volumes
bypass the storage driver. It is possible to mount any number of data volumes into a container. Multiple
containers can also share one or more data volumes.

More information about Docker storage back ends is available at https://docs.docker.com/engine/
userguide/storagedriver.

2.5.1 Device Mapper Driver Settings Support
BCM supports device mapper driver settings more explicitly than the other driver back end settings.

By default the device mapper storage back end is added automatically, and can be configured in the
storagebackends submode of the DockerHost role:

Example

[basecm10->device[basecm10]->roles[docker::host]]% storagebackends

[basecm10->device[basecm10]->roles[docker::host]->storagebackends]% use devicemapper

[basecm10->device[basecm10]->roles[docker::host]->storagebackends[devicemapper]]% show

Parameter Value

-------------------------------- --

Name devicemapper

Revision

Type devicemapper

Loop Data Size

Loop Metadata Size

Loop Device Size

Pool Device

https://docs.docker.com/engine/userguide/storagedriver
https://docs.docker.com/engine/userguide/storagedriver

2.6 Docker Monitoring 13

Filesystem xfs

Block Size 64K

Blk Discard yes

Mkfs Arguments

Mount Options

The parameters that are used in the Docker device mapper back end are described in table 2.3:

Parameter Description Option to docker

Blk Discard∗ Enables or disables the use of blkdiscard when
removing device mapper devices (default: yes)

dm.blkdiscard

Block Size Custom blocksize to use for the thin pool (de-
fault: 64kB)

dm.blocksize

Filesystem Filesystem type to use for the base device (de-
fault: xfs)

dm.fs

Loop Data Size Size to use when creating the loopback file for the
data virtual device which is used for the thin pool
(default: 100GB)

dm.loopdatasize

Loop Device Size Size to use when creating the base device, which
limits the size of images and container (not set by
default)

dm.basesize

Loop Metadata Size Size to use when creating the loopback file for the
metadata device which is used for the thin pool
(default: 2GB)

dm.loopmetadatasize

Mkfs Arguments Extra mkfs arguments to be used when creating
the base device

dm.mkfsarg

Mount Options Extra mount options used when mounting the
thin devices

dm.mountopt

Pool Device Custom block storage device to use for the thin
pool (not set by default)

dm.thinpooldev

* Boolean (takes yes or no as a value)

Table 2.3: Device mapper back end Docker options

For back end driver storage settings other than device mapper, such as AUFS or OverlayFS, settings
can be added as options if needed. In cmsh this can be done by setting the options parameter in the
storagebackend submode under the docker::host role.

2.6 Docker Monitoring
When cm-docker-setup runs, it configures and runs the following Docker health checks:

1. makes a test API call to the endpoint of the Docker daemon

2. checks containers to see that none is in a dead state

The Docker daemon can be monitored outside of BCM with the usual commands directly.
BCM ways to manage or check on Docker include the following:
In CMDaemon, the docker service can be checked:

Example

14 Docker Engine

[basecm10->device[node001]->services]% list

Service (key) Monitored Autostart

------------------------ ---------- ----------

docker yes yes

nslcd yes yes

[basecm10->device[node001]->services]% show docker

Parameter Value

-------------------------------- --

Revision

Service docker

Run if ALWAYS

Monitored yes

Autostart yes

Timeout -1

Belongs to role yes

Sickness check script

Sickness check script timeout 10

Sickness check interval 60

The docker0 interface statistics can be checked within the nodeoverview output:

Example

[basecm10->device[node001]]% nodeoverview

...

Interface Received Transmitted

------------ ------------ ------------

docker0 16.0 KiB 3.16 KiB

ens3 492 MiB 72.5 MiB

ens4 0 B 0 B

...

The health check measurable Docker checks if the docker service is healthy.

Example

[basecm10->device[node001]]% dumpmonitoringdata -1h now Docker

...

Timestamp Value Info

-------------------------- ---------- ----------

2021/11/29 11:52:44.146 PASS

2021/11/30 18:28:44.146 PASS

2.7 Docker Setup For NVIDIA
NVIDIA GPU Cloud (NGC) is a cloud platform that runs on NVIDIA GPUs. NGC containers are
lightweight containers that run applications on NVIDIA GPUs. The applications are typically HPC,
machine learning, or deep learning applications.

An NGC can be set up to run NGC containers from the registry http://ngc.nvidia.com.
Docker can be configured as an NGC running NGC containers by using the NVIDIA Container

Toolkit.
The BCM package provided for this is: cm-nvidia-container-toolkit.
One way to install and deploy this package is as part of the Docker installation, when running

cm-docker-setup (section 2.1), where the cluster administrator selects yes as the answer to the request:
``Do you want to install the NVIDIA Runtime for Docker''.

http://ngc.nvidia.com

2.7 Docker Setup For NVIDIA 15

Alternatively, if Docker has already been installed via cm-docker-setup, and if the package has
not been installed, then it can be installed via the package manager, yum or apt. The toolkit has to
be running on the compute nodes that have GPUs, which means that the installation must go to the
appropriate node image (section 11.4 of the Administrator Manual). For example, if the appropriate
image is gpu-image, then the package manager command for RHEL-based distributions would be:

Example

yum install --installroot=/cm/images/gpu-image cm-nvidia-container-toolkit

The nodes that use that GPU image can then be rebooted to pick up the new package.
The GPU status can then be printed with the NVIDIA system management interface command. For

example, if the image has been picked up by node001:

Example

[root@basecm10 ~]# ssh node001

Last login: Thu Dec 2 09:24:03 2021 from basecm10.cm.cluster

[root@node001 ~]# module load docker

[root@node001 ~]# docker run --runtime=nvidia --rm nvidia/cuda:11.4-base nvidia-smi

Unable to find image 'nvidia/cuda:11.4.0-base' locally

11.4.0-base: Pulling from nvidia/cuda

...

Digest: sha256:f0a5937399da5e4efb37fd7b75beb8c484b84dc381243c4b81fc5f9fcad42b66

Status: Downloaded newer image for nvidia/cuda:11.4.0-base

Mon Mar 7 17:30:48 2022

+---+

| NVIDIA-SMI 440.33.01 Driver Version: 440.33.01 CUDA Version: 11.4 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

|===============================+======================+======================|

| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |

| 23% 32C P8 22W / 235W | 0MiB / 12206MiB | 0% Default |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: GPU Memory |

| GPU PID Type Process name Usage |

|===|

| No running processes found |

+---+

[root@node001 ~]# logout

Connection to node001 closed.

The available CUDA Docker images can be found at https://hub.docker.com/r/nvidia/cuda.

https://hub.docker.com/r/nvidia/cuda

3
Docker Registries

When a user creates a new container, an image specified by the user should be used. The images are
kept either locally on a host, or in a registry. The image registry can be provided by a cloud provider or
locally.

3.1 Docker And Harbor Registries: Introduction
3.1.1 Docker Hub, A Remote Registry
By default, Docker searches for images in Docker Hub, which is a cloud-hosted public and private image
registry. Docker Hub serves a huge collection of existing images that users can make use of. Every user
is allowed to create a new account, and to upload and share images with other users. Using the Docker
client, a user can search for already-published images, and then pull them down to a host in order to
build containers from them.

When an image is found in the registry, the Docker client verifies if the latest version of the image
has already been downloaded. If not, then it downloads the images, and stores them locally. It also tries
to synchronize them when a new container is created. When the latest image is downloaded, Docker
creates a container from the image layers that are formatted to be used by a union file system. Docker
can make use of several union file system variants, including AUFS, btrfs, vfs, and DeviceMapper.

3.1.2 Local Image Registry Options: Classic Docker Registry Vs Harbor
Besides using Docker Hub for the image registry, the administrator can also install a local image registry
on the cluster. BCM provides two ways to integrate such a local registry with the cluster, based on
existing open source projects:

• The first one is the classic docker registry provided by Docker Inc, and can be useful if the registry
is used by trusted users.

• The second registry, Harbor, developed by VMware and introduced in NVIDIA Base Command
Manager version 8.1-5, provides additional features such as security and identity management,
and is aimed at the enterprise.

Both options can be installed with the cm-container-registry-setup utility, which comes with
BCM’s cm-setup package.

3.2 Docker And Harbor Registries: Setup And Configuration
Docker Registry and Harbor can be installed via the cm-container-registry-setup command-line util-
ity. They can also be installed via Base View in NVIDIA Base Command Manager for versions beyond
8.1-6 as follows:

• The Docker Registry Deployment Wizard is launched via the Base View navigation path:
Containers > Docker > Docker Registry Wizard

18 Docker Registries

• Either Docker Registry, or Harbor, should be chosen as a registry.

• A single node is ticked for the deployment. The address, port, and the root directory for storing
the container images are configured. If the head node is selected for Harbor, then the setup later
on asks to open the related port on the head node. This is to make Harbor and the Harbor UI
externally accessible.

• In the summary page, if the Ready for deployment box is ticked, then the administrator can go
ahead with deploying the registry.

• When the deployment is complete, the Docker Registry becomes ready for use. Harbor can take a
few additional minutes to be ready for use.

Similar to the case of etcd nodes (section 4.2), nodes that run Harbor or Docker Registry
have the datanode option (page 261 of the Administrator Manual) when installed by BCM utili-
ties. The option helps prevent the registry being wiped out by accident, and is added when the
cm-container-registry-setup utility is used to install Harbor or Docker Registry. This extra protec-
tion is put into place because if a registry is wiped out, then the state of images in the container becomes
incoherent and cannot be restored.

Harbor UI
If the head node is where Harbor is to be installed, and is to be made externally accessible, then the
Harbor UI can be accessed at https://<head node hostname>:9443.

If a different node is used for Harbor to be installed, then the related port must be forwarded locally.
Harbor can be logged into by default with the admin user and the default Harbor12345 password.
It is recommended to change that password after the first login.

Dealing With A Pre-existing Kubernetes Or Harbor Installation
Since Harbor uses Docker internally, and because Kubernetes customizes Docker networking, it means
that nodes where Kubernetes is running cannot be reused for Harbor, and that nodes where Harbor is
running cannot be reused for Kubernetes.

3.2.1 Docker Registry Daemon Configuration Using The Docker Registry Role
The Docker Registry role is used to configure and manage the docker-registry daemon, and its pa-
rameters are described in table 3.1:

Parameter Description

Domain Main domain name (default: hostname of the node)

Alt Domains Alternative domain names (default: FQDN of the node)

Port Port (default: 5000)

...continues

3.2 Docker And Harbor Registries: Setup And Configuration 19

...continued

Parameter Description

Spool Dir Spool directory (default: /var/lib/docker-registry)

* Boolean (takes yes or no as a value)

Table 3.1: Docker Registry role parameters

The values stored in the Docker Registry role are not supposed to be changed, but they are useful for
the uninstall procedure, and also as a record of the settings for the administrator.

[basecm10->device[basecm10]->roles[generic::docker_registry]]% environments

[basecm10->device[basecm10]->roles[generic::docker_registry]->environments]% list

Name (key) Value Node Environment

---------------- ------------------------- ----------------

alt_domains node001.cm.cluster no

domain node001 no

port 5000 no

spool_dir /var/lib/docker-registry no

Further details on the docker-registry daemon can be found at https://github.com/docker/

distribution.

3.2.2 Harbor Daemon Configuration Using The Harbor Role
The Harbor role is used to configure and manage the harbor daemon. The parameters of the role are
described in table 3.2:

Parameter Description

Domain Main domain name (default: hostname of the node)

Alt Domains Alternative domain names (default: FQDN of the node)

Port Port (default: 9443)

Spool Dir Spool directory (default: /var/lib/harbor)

Default Password Default password of the Harbor admin user (default: Harbor12345)

...continues

https://github.com/docker/distribution
https://github.com/docker/distribution

20 Docker Registries

...continued

Parameter Description

DB Password Password of the Harbor database (default: randomly generated)

* Boolean (takes yes or no as a value)

Table 3.2: Harbor role parameters

The values stored in the Harbor role are not supposed to be changed, but they are useful for the
uninstall procedure, and also as reminder of the settings for the administrator.

[basecm10->device[basecm10]->roles[generic::harbor]]% environments

[basecm10->device[basecm10]->roles[generic::harbor]->environments]% list

Name (key) Value Node Environment

------------------ -------------------------- ----------------

alt_domains harbor,node001.cm.cluster no

db_password <generated password> no

domain node001 no

external_network True no

port 9443 no

redirect_port 65535 no

spool_dir /var/lib/harbor no

Further details on Harbor can be found at https://vmware.github.io/harbor.

https://vmware.github.io/harbor

4
Kubernetes

Kubernetes is an open-source platform for automating deployment, scaling, and operations of applica-
tion containers across clusters of hosts. With Kubernetes, it is possible to:

• scale applications on the fly

• seamlessly update running services

• optimize hardware usage by using only the resources that are needed

BCM provides the administrator with the required packages, allows Kubernetes to be set up on
a cluster, and manages and monitors Kubernetes. More information about the design of Kubernetes,
its command line interfaces, and other Kubernetes-specific details, can be found at the official online
documentation at https://kubernetes.io/docs/.

To deploy most of Kubernetes, NVIDIA Base Command Manager from version 10.0 onwards uses
kubeadm (https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/).

BCM runs CoreDNS, the Kubelet component (https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet/), and the entire control plane inside Kubernetes.

The distributed key-value store used for Kubernetes, etcd, is typically run inside of Kubernetes on
control planes. However, in BCM etcd is run outside of Kubernetes.

Kubernetes integration with BCM is available for Kubernetes v1.28, 1.29, v1.30, v1.31, and v1.32
at the time of writing of this paragraph (April 2025). Kubernetes runs on the x86_64 and aarch64

architecture for all the BCM-supported Linux distributions. For a more up-to-date status, the features
matrix at https://support.brightcomputing.com/feature-matrix/ can be checked.

4.1 Reference Architecture
A reference architecture for Kubernetes in BCM comprises:

• etcd nodes: An etcd cluster—the Kubernetes distributed key-value storage—runs on an odd num-
ber (1, 3, 5 ...) of nodes.

• control plane nodes: typically run on head nodes or on dedicated nodes. 2 or 3 are recommended.

• worker nodes: typically run on regular nodes that are designated to run user workloads.

To avoid single point of failure and to achieve high availability, a minimum of three nodes is recom-
mended for etcd, and a minimum of two control plane nodes is recommended.

https://kubernetes.io/docs/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://support.brightcomputing.com/feature-matrix/

22 Kubernetes

Load Balancing An NGINX server is configured on the head node(s) and on all other nodes involved
in the Kubernetes cluster (control plane or worker nodes). This NGINX server takes care of exposing the
Kubernetes API server on a specific port, and load balances requests to the control plane nodes. Should
one of those nodes go down it can detect this and stop sending requests until the node comes back up.

Since BCM version 8.2, multiple clusters of Kubernetes can be deployed. In such a configuration,
the same nodes cannot be shared across different Kubernetes clusters. Because of the NGINX server, a
port is reserved on the head node(s) for every Kubernetes cluster. This is required for Kubernetes HA,
and it also allows kubectl and other tools such as Helm to be used from the head node, to access each
Kubernetes cluster.

The same NGINX server is also used to similarly expose the NGINX Ingress Controller, if this has
been chosen during setup. Alternatively, MetalLB (https://metallb.universe.tf/) is also supported,
and provides a different approach towards load balancing for Kubernetes that is more similar to man-
aged cloud solutions.

4.1.1 Hardware Requirements
To run properly, Kubernetes deployment requires a per-node minimum of

• 16 GB RAM

• two CPU cores

Without these minimum requirements, deployment may succeed, but further configuration, such
as starting up Jupyter kernels, may fail with problems that are hard to diagnose. For example, error
reporting may not show a lack of resources because some components are automatically deleted.

4.2 Kubernetes Setup
BCM deploys Kubernetes with cm-kubernetes-setup, part of the cm-setup package. Several recent
versions of Kubernetes are offered (figure 4.1):

Figure 4.1: Kubernetes setup TUI session (section 4.2.6): version selection screen

BCM provides or uses the following Kubernetes-related packages:

• conntrack (conntrack-tools on RHEL-based distributions) and nginx: These distribution pack-
ages are always installed on the head node(s) and on the master and worker node(s).

• cm-etcd: This BCM package is installed on the nodes selected for etcd. In a similar way to the
case of Harbor or Docker Registry (section 3.2), the nodes that run etcd are protected by BCM with
the datanode option (page 261 of the Administrator Manual). For etcd nodes, the option is added
during the cm-kubernetes-setup installation. As in the case for the registries, the datanode option
is set in order to help prevent the administrator from wiping out the existing state of etcd nodes.
Wiping out the state of etcd nodes means that the Kubernetes cluster becomes incoherent and that
it cannot be restored to where it was just before the etcd nodes were wiped. The etcd version
installed by the BCM package is 3.5.8.

https://metallb.universe.tf/

4.2 Kubernetes Setup 23

• cm-containerd: This BCM package has the containerd runtime.

• cm-nvidia-container-toolkit: This BCM package has the NVIDIA container toolkit (includes
NVIDIA container runtime).

• cm-kube-diagnose: This BCM package has Helper tools to diagnose malfunctioning Kubernetes
clusters.

Kubernetes .rpm and .deb packages themselves are installed from the Kubernetes
community-owned software repositories (https://kubernetes.io/blog/2023/08/15/
pkgs-k8s-io-introduction/). These repositories host Kubernetes versions starting from v1.24.0
at the time of writing of this paragraph (March 2024).

4.2.1 Kubernetes Networking
Early on during the wizard (figure 4.2), a name for the cluster is requested. The wizard pre-fills it with
default, but this should not be confused with the Kubernetes default namespace. Here, the name is
used instead, inside BCM, to identify the cluster, configuration files, and other resources such as module
files.

Figure 4.2: Kubernetes setup TUI session: networking selection screen

This screen also allows the following important choices:

• Kubernetes external FQDN: This is the FQDN that is placed as one of the entries in the public-
facing certificates generated for this Kubernetes cluster.

Configuring the public-facing certificate of the NGINX Ingress Controller is discussed further in
section 4.22.11.

• Service network base address and Service network netmastk bits: These define the CIDR
for the service network. The wizard pre-fills the fields. It also tries to avoid pre-filling them with
overlapping network ranges, by taking any existing network known to BCM into account.

• Pod network base address and Pod network netmask bits: These define the CIDR for the pod
network. The wizard pre-fills these. It also tries to avoid pre-filling them with overlapping net-
work ranges, by taking any existing network known to BCM into account. By default, entire /24
network ranges are assigned to individual Kubernetes nodes from the pod CIDR.

The packages are installed automatically from the repository when the administrator runs
cm-kubernetes-setup from the command line.

The log file produced by the setup can be found in /var/log/cm-kubernetes-setup.log.

https://kubernetes.io/blog/2023/08/15/pkgs-k8s-io-introduction/
https://kubernetes.io/blog/2023/08/15/pkgs-k8s-io-introduction/

24 Kubernetes

4.2.2 Kubernetes Core Add-ons
During setup, some critical add-on components such as the Networking Component for Kubernetes are
automatically deployed. Most components are in the kube-system namespace, but others have their
own namespaces. In BCM some add-ons are treated as Kubernetes applications (Chapter 5), and belong
to the default app group, system. In the future Helm is expected to manage most, if not all, components
instead of BCM Kubernetes applications.

The user is prompted for a Networking Component, Kubernetes operators (managed via Helm),
Kubernetes add-ons (managed via Kubernetes applications), and more. They all result in either Helm
charts being deployed, or in Kubernetes applications being managed from BCM.

A cmsh treeview illustrating the hierarchy to access these applications is:

[cmsh]

|-- ...

|

|-- kubernetes[default]

| `-- appgroups[system]

| `-- applications

|-- ...

Helm charts can be found using the helm command. For example using helm list -A -a on a
cluster (after loading the correct module file).

In the past the DNS component was also provided as an add-on. However since BCM version 10.0,
kubeadm is used to bundle CoreDNS as part of the default control plane.

Kubernetes apps are discussed further in Chapter 5. Kubernetes operators are discussed further in
Chapter 6.

Kubeadm Components
Components deployed as part of the default Kubernetes control plane are:

• Kubernetes API server

• Kubernetes Scheduler

• Kubernetes Controller Manager

• Kubernetes Scheduler

• Kubernetes Proxy

• Core DNS

These are deployed through the “static pod” mechanism (https://kubernetes.io/docs/tasks/
configure-pod-container/static-pod/). Kubernetes control plane components are described at:
https://kubernetes.io/docs/concepts/overview/components/.

CoreDNS CoreDNS is the DNS server add-on for internal service discovery. It reads the IP addresses
of services and pods from etcd, and resolves domain names for them. If a domain name is not found
because the domain is external to the Kubernetes cluster, then CoreDNS forwards the request to the
main DNS server. BCM uses CoreDNS version 1.11.1 with Kubernetes version 1.31.

Networking Component
An important component managed through BCM’s Kubernetes Apps is the Networking component.
This adheres to the Container Networking Interface, or CNI interface. At the time of writing the avail-
able CNIs in the setup wizard are either Calico or Flannel. However BCM does support other CNIs,
for example Cilium, aas described in the knowledge base article at https://kb.brightcomputing.com/
knowledge-base/installing-cilium-networking-for-kubernetes/.

https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/tasks/configure-pod-container/static-pod/
https://kubernetes.io/docs/concepts/overview/components/
https://kb.brightcomputing.com/knowledge-base/installing-cilium-networking-for-kubernetes/
https://kb.brightcomputing.com/knowledge-base/installing-cilium-networking-for-kubernetes/

4.2 Kubernetes Setup 25

Flannel Flannel is a simple and easy way to configure a layer 3 network fabric designed for Kuber-
netes.

Calico Calico is a popular open source networking and network security solution for Kubernetes. It
provides network connectivity between workloads and security policies features. It can be configured
to use eBPF. BCM uses Calico version 3.26.

Further details on Calico can be found at https://docs.projectcalico.org/.
If the Kubernetes cluster is composed of more than 50 nodes, then the Calico component Typha is also

automatically deployed for better scalability. The number of Typha replicas is calculated by allocating
one Typha replica per 150 nodes, with a minimum of 3 (above 50 nodes) and a maximum of 20.

If an initial deployment of the Kubernetes cluster has fewer than 50 nodes, but nodes are then added
to the Kubernetes cluster so that the 50 node threshold is exceeded, then Typha is not automatically
enabled. In this case, Typha can be enabled manually via cmsh as follows:

Example

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]]% environment

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]->environment]% list

Name (key) Value Nodes environment

---------------------- ---------------- ------------------

calico_typha_replicas 0 no

calico_typha_service none no

cidr 10.141.0.0/16 no

[basecm10->kubernetes...[calico]->environment]% set calico_typha_service value calico-typha

[basecm10->kubernetes*...[calico*]->environment*]% set calico_typha_replicas value 3

[basecm10->kubernetes*[default*]->appgroups*[system*]->applications*[calico*]->environment*]% commit

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]->environment]%

Cilium Cilium (https://cilium.io/) is a networking, observability, and security solution with an
eBPF-based dataplane.

4.2.3 Kubernetes Optional Add-ons
The following add-ons are installed by default unless otherwise noted. However, the user can choose to
skip some or all of them during the setup.

NGINX Ingress Controller
The official Kubernetes Ingress controller add-on is built around the Kubernetes Ingress resource, using
a ConfigMap to store the NGINX configuration. Ingress provides HTTP and HTTPS routes from outside
a Kubernetes cluster to services within the cluster. Traffic routing is controlled by rules defined in the
Ingress resource. BCM uses NGINX Ingress Controller version 1.5.1.

By default, BCM suggests the following ports for Ingress: 30080 is the default that is set for the HTTP,
and port 30443 is the default that is set for HTTPS.

These 2 ports are exposed on every Kubernetes node, both masters and workers.
The Ingress Controller is deployed as a NodePort service, which means that it comes with a default

range of possible port values of 30000-32767.

Kubernetes Dashboard
Kubernetes Dashboard is the web user interface add-on for GUI cluster administration and metrics
visualization. BCM uses Kubernetes Dashboard version 2.7.0.

There are two ways to access the dashboard:

• Using kubectl proxy and accessing http://localhost:8001/api/v1/namespaces/

kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/ To use the proxy,
kubectl must be set up locally (section 9.3.2 of the User Manual).

https://docs.projectcalico.org/
https://cilium.io/
https://kubernetes.io/docs/concepts/services-networking/service/#nodeport
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/
http://localhost:8001/api/v1/namespaces/kubernetes-dashboard/services/https:kubernetes-dashboard:/proxy/

26 Kubernetes

• Users on an external network can log in to kubectl or Kubernetes Dashboard by following the
procedures described in section 4.16.

If NGINX Ingress Controller is deployed, then a link pointing to the Kubernetes dashboard can also
found on the BCM landing page.

Kubernetes Metrics Server
The Kubernetes Metrics Server is an add-on that is a replacement for Heapster. It aggregates metrics,
and provides container monitoring and performance analysis. It exposes metrics via an API. BCM runs
Metrics server version 0.6.3.

Kubernetes State Metrics
kube-state-metrics is an add-on agent to generate and expose cluster-level metrics for Kubernetes
objects. The project is not focused on the health of the individual Kubernetes components, but rather on
the health of the various objects inside, such as deployments, nodes and pods.

4.2.4 Helm Kubernetes Package Manager
Helm is an add-on that manages charts, which are packages of pre-configured Kubernetes resources. The
Helm component is installed and properly configured with BCM’s Kubernetes installation by default. It
is initialized and ready for use by every Kubernetes user when the Kubernetes module is loaded. BCM
uses Helm version 3.

When the Helm binary is installed during the Kubernetes setup, an offer is made to deploy charts
during the setup process. Most operators are documented in Chapter 6.

Other parts of the wizard also determine which Helm charts are deployed as part of the setup for the
following:

• Kyverno and Kyverno Policies (section 4.10.1)

• BCM Permissions Manager (section 4.15)

• BCM Local Path Provisioner (section 4.19)

Example

root@basecm10:~# helm list -A -a

NAME NAMESPACE CHART APP VERSION

cluster-installer runai ... cluster-installer-2.15.9 2.15.9

cm-jupyter-kernel-operator cm ... cm-jupyter-kernel-operator-0.1.10 0.1.10

cm-kubernetes-mpi-operator cm ... mpi-operator-0.4.0 0.4.0

gpu-operator gpu-operator ... gpu-operator-v23.9.1 v23.9.1

kyverno kyverno ... kyverno-3.0.4 v1.10.2

kyverno-policies kyverno ... kyverno-policies-3.0.3 v1.10.2

local-path-provisioner cm ... cm-kubernetes-local-path-provisioner-0.0.26 0.0.26

metallb metallb-system ... metallb-0.14.3 v0.14.3

network-operator network-operator ... network-operator-23.10.0 v23.10.0

permissions-manager cm ... cm-kubernetes-permissions-manager-0.4.8 0.4.8

postgres-operator postgres-operator ... postgres-operator-1.10.1 1.10.1

prometheus-adapter prometheus ... prometheus-adapter-3.3.1 v0.9.1

prometheus-operator prometheus ... kube-prometheus-stack-35.5.1 0.56.3

spark-operator spark-operator ... spark-operator-1.1.27 v1beta2-1.3.8-3.1.1

4.2.5 Kubernetes Setup From The Command Line
The cm-kubernetes-setup command line utility has the following usage synopsis:

[root@basecm10 ~]# cm-kubernetes-setup -h

4.2 Kubernetes Setup 27

usage: Kubernetes Setup cm-kubernetes-setup [-c <config_file>]

[--list-versions]

[--list-operators-versions]

[--cluster CLUSTER_NAME]

[--skip-docker]

[--skip-reboot]

[--skip-image-update]

[--skip-dns-configuration-check]

[--skip-package-manager-update-check]

[--skip-install-repos]

[--add-user USERNAME_ADD]

[--list-users]

[--get-user GET_USER]

[--modify-user USERNAME_MODIFY]

[--remove-user USERNAME_REMOVE]

[--namespace NAMESPACE]

[--add-to-namespace]

[--remove-from-namespace]

[--role edit,admin,view,cluster-admin]

[--runas-uid RUNAS_UID]

[--runas-gids RUNAS_GIDS]

[--user-paths USER_PATHS]

[--allow-all-uids]

[--operators OPERATORS]

[--backup-permissions FILE]

[--restore-permissions FILE]

[--list-operators]

[--update-addons]

[--remove]

[--yes-i-really-mean-it]

[--remove-ceph-storage]

[--pull]

[--images IMAGES]

[--nodes NODES]

[--node-selector NODE_SELECTOR]

[--pull-registry-server PULL_REGISTRY_SERVER]

[--pull-registry-username PULL_REGISTRY_USERNAME]

[--pull-registry-email PULL_REGISTRY_EMAIL]

[--pull-registry-password PULL_REGISTRY_PASSWORD]

[--docker-io-username DOCKER_IO_USERNAME]

[--docker-io-password DOCKER_IO_PASSWORD]

[--kubeadm-image-repository KUBEADM_IMAGE_REPOSITORY]

[--containerd-sandbox-image CONTAINERD_SANDBOX_IMAGE]

[--skip-netq-prerequisites-checks]

[--allow-device-mapper]

[-v]

[--store-name-aliases]

[--no-distro-checks]

[--json]

[--output-remote-execution-runner]

[--on-error-action debug,remotedebug,undo,abort]

[--skip-packages]

[--min-reboot-timeout <reboot_timeout_seconds>]

[--allow-running-from-secondary]

[--dev]

28 Kubernetes

[-h]

optional arguments:

--cluster CLUSTER_NAME

Name of the referred Kubernetes cluster

-h, --help Print this screen

common:

Common arguments

-c <config_file> Load runtime configuration for plugins from a YAML config file

Supported versions information:

--list-versions Show supported Kubernetes versions

--list-operators-versions

List available for selection Kubernetes operators versions

installing Kubernetes clusters:

Flags for installing or managing Kubernetes clusters

--skip-docker Skip the Docker installation steps.

--skip-reboot Skip the reboot steps.

--skip-image-update Skip the image update steps.

--skip-dns-configuration-check

Skip DNS configuration check before install (setup will not continue of it finds DNS

malfunctioning).

--skip-package-manager-update-check

Skip Package Manager update/refresh check before install (setup will not continue if

'apt update' fails on Ubuntu for example).

--skip-install-repos Skip installation of kubernetes and helm package repos.(assumes they have been manually

configured, e.g., in the case of air-gapped).

user management:

Flags for adding a new user in a Kubernetes cluster

--add-user USERNAME_ADD

Create a new user in a Kubernetes cluster

--list-users Get information about configured Kubernetes users

--get-user GET_USER Get information about configured Kubernetes users

--modify-user USERNAME_MODIFY

Modify user in a Kubernetes cluster

--remove-user USERNAME_REMOVE

Remove existing user from a Kubernetes cluster

--namespace NAMESPACE

Specify namespace for user (--get-user, --modify-user) role binding

--add-to-namespace Indicate if permissions to manage namespace needs to be granted for a given user

(--modify-user)

--remove-from-namespace

Indicate if permissions to manage namespace needs to be revoked for a given user

(--modify-user)

--role edit,admin,view,cluster-admin

Specify role for the new (--add-user) and existing (--modify-user) role binding

Default: edit)

For 'cluster-admin' namespace flag is ignored

--runas-uid RUNAS_UID

4.2 Kubernetes Setup 29

UID is allowed to be used in unprivileged pods (--add-user, --modify-user)

--runas-gids RUNAS_GIDS

Comma-separated list of GIDs allowed to be used in unprivileged pods (--add-user,

--modify-user)

--user-paths USER_PATHS

Comma-separated list of paths user is able to mount in pods (--add-user, --modify-user)

--allow-all-uids Allow user to run processes in pods as any user (--add-user, --modify-user)

hostPath volumes will be disabled for such pods

--operators OPERATORS

Comma-separated list of operators user has access to (--add-user, --modify-user)

backup or restore Permission Manager user configurations:

Flag for managing permission manager user configuration

--backup-permissions FILE

Save permissions to file

--restore-permissions FILE

Restore permissions from file. Workload which is already run by users in their

namespaces will be affected

list available operators:

Flag to list available Kubernetes operators

--list-operators List available Kubernetes operators

update kubernetes addons:

Flags for updating Kubernetes addons

--update-addons Update Addons

removing Kubernetes clusters:

Flags for removing a Kubernetes cluster

--remove Remove a Kubernetes cluster

--yes-i-really-mean-it

Required for additional safety

--remove-ceph-storage

Remove Kubernetes osd pool from Ceph cluster

pulling images to the nodes:

Flags for pulling images to the nodes

--pull Pull images to the nodes

--images IMAGES Comma-separated list of images to pull (--pull)

--nodes NODES Comma-separated list of nodes to pull images to (--pull)

--node-selector NODE_SELECTOR

Selector (label query) to filter on, supports '=', '==', and '!='.(e.g.

key1=value1,key2=value2) (--pull)

--pull-registry-server PULL_REGISTRY_SERVER

Registry server to authenticate

--pull-registry-username PULL_REGISTRY_USERNAME

Registry username

--pull-registry-email PULL_REGISTRY_EMAIL

Email to authenticate

--pull-registry-password PULL_REGISTRY_PASSWORD

30 Kubernetes

Registry password

docker.io:

Flags for authenticating to docker hub

--docker-io-username DOCKER_IO_USERNAME

Username

--docker-io-password DOCKER_IO_PASSWORD

Password

kubeadm:

Flags for configuring kubeadm

--kubeadm-image-repository KUBEADM_IMAGE_REPOSITORY

Custom imageRepository

containerd:

Flags for configuring containerd

--containerd-sandbox-image CONTAINERD_SANDBOX_IMAGE

Custom sandbox image (e.g. my-registry:5000/pause:3.8)

netq:

Flags for configuring NetQ

--skip-netq-prerequisites-checks

Provide this flag to skip precondition checks such as checking for disk size, Linux

distro, etc.

Docker storage backend specific:

--allow-device-mapper

Allow to select DeviceMapper (DEPRECATED) storage in wizard

advanced:

Various *advanced* configuration options flags.

-v, --verbose Verbose output

--store-name-aliases Store hostname aliases for head nodes (active and passive) and default category

--no-distro-checks Disable distribution checks based on ds.json

--json Use json formatting for log lines printed to stdout

--output-remote-execution-runner

Format output for CMDaemon

--on-error-action debug,remotedebug,undo,abort

Upon encountering a critical error, instead of asking the user for choice, setup will

do selected action.

--skip-packages Skip the any stages which install packages. Requires packages to be already installed.

--min-reboot-timeout <reboot_timeout_seconds>

How long to wait for nodes to finish reboot (default and minimum allowed: 300 seconds).

--allow-running-from-secondary

Allow to run the wizard from the secondary when it is the active head node.

--dev Enables additional command line arguments

The cm-kubernetes-setup utility should be executed on the console.

4.2 Kubernetes Setup 31

Dealing With A Pre-existing Docker Installation
Docker (Chapter 2) is no longer a requirement for Kubernetes configured by BCM. This is because Ku-
bernetes can directly interface with containerd through its Container Runtime Interface (CRI). Docker
can co-exist with Kubernetes, and can be set up as discussed in section 2.1.

4.2.6 Kubernetes Setup From A TUI Session
When the Kubernetes installation is carried out using cm-kubernetes-setup without any options, a
TUI wizard starts up. The administrator can answer several questions in the wizard. Questions that are
asked include questions about which of the node categories or which of the individual nodes should be
configured to run the Kubernetes services. There are also questions about the service and pod networks
parameters, the port numbers that will be configured for the daemons, whether to install specific add-
ons, and so on. After the wizard has been completed, a configuration file can be saved that can be used
to set up Kubernetes.

The configuration file can be deployed immediately from the wizard, or it can be deployed later by
specifying it as an option to cm-kubernetes-setup, in the form -c <file>.

If no deployment has been carried out earlier, then the main operations screen of the wizard shows
just two options, Deploy and Exit.

If deployment has already been carried out, then the further options that are available are also dis-
played (figure 4.3):

Example

[root@basecm10 ~]# cm-kubernetes-setup

TUI session starts up:

Figure 4.3: Kubernetes setup TUI session: main operations screen after a deployment

The deployment via CLI or via TUI assigns the appropriate roles, and adds the new Kubernetes
cluster. The deployment adds health checks to the monitoring configuration, and it generates certificates
for the Kubernetes daemons.

Calico is set as the Kubernetes network plugin by default. Flannel is an option.
The master, worker, and etcd nodes can be assigned to specific nodes or categories.
The network configuration settings for the Kubernetes cluster can be specified. Ports have default

assignments, but can be re-assigned as needed. The etcd spool file path can be set.
The following options are also possible:

• a registry mirror from DockerHub can be specified

• the Kubernetes API server can be exposed to the external network

• the internal network used by Kubernetes nodes can be selected

32 Kubernetes

Add-ons that are available are:

• Ingress Controller (Nginx)

• Kubernetes Dashboard

• Kubernetes Metrics Server

• Kubernetes State Metrics

Operator packages are application managers, and are described further in Chapter 6. Operators that
can be installed are:

• cm-jupyter-kernel-operator

• cm-kubernetes-postgresql-operator

• cm-kubernetes-spark-operator

The permission manager—an application for role-based access control—can also be configured.

4.2.7 Testing Kubernetes
To test that Kubernetes works, the cluster-info command can be run. For example, on the head node,
basecm10:

Example

[root@basecm10 ~]# module load kubernetes #not actually needed -- autoloaded these days

[root@basecm10 ~]# kubectl cluster-info

Kubernetes control plane is running at https://127.0.0.1:10443

CoreDNS is running at https://127.0.0.1:10443/api/v1/namespaces/kube-system/services/kube-dns:dns/proxy

To further debug and diagnose cluster problems, use 'kubectl cluster-info dump'.

After cm-kubernetes-setup finishes, and the regular nodes have been rebooted, the state of the
nodes can be found by running the get nodes command:

Example

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready worker 18h v1.31

node002 Ready worker 18h v1.31

basecm10 Ready control-plane,master 18h v1.31

A six node cluster should show the following Kubernetes installed add-ons, when using kubectl

with the get all -n kube-system option (some lines truncated):

Example

[root@basecm10 ~]# kubectl get all -n kube-system

NAME READY STATUS RESTARTS AGE

pod/calico-kube-controllers-58497c65d5-skhgw 1/1 Running 0 26m

pod/calico-node-27xj7 1/1 Running 0 26m

pod/calico-node-6hmm5 0/1 Running 1 26m

pod/calico-node-987qv 1/1 Running 0 26m

pod/calico-node-gcbcm 1/1 Running 0 26m

pod/calico-node-hlsrj 1/1 Running 0 26m

pod/calico-node-q7k4v 1/1 Running 0 26m

4.3 Using GPUs With Kubernetes: NVIDIA GPUs 33

pod/calico-node-qdbq5 0/1 Running 0 26m

pod/calico-node-v2dxj 1/1 Running 0 26m

pod/coredns-6768db756-8l9fs 1/1 Running 0 26m

pod/coredns-6768db756-cs58q 1/1 Running 0 26m

pod/kube-state-metrics-758ccc75d6-75dsn 1/1 Running 0 26m

pod/metrics-server-7b477dd7b9-2drkg 1/1 Running 0 26m

pod/metrics-server-7b477dd7b9-z6nch 1/1 Running 0 26m

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/calico-typha ClusterIP 10.150.121.25 <none> 5473/TCP 26m

service/kube-dns ClusterIP 10.150.255.254 <none> 53/UDP,53/TCP,9153/TCP 26m

service/kube-state-metrics ClusterIP None <none> 8080/TCP,8081/TCP 26m

service/metrics-server ClusterIP 10.150.99.149 <none> 443/TCP 26m

NAME DESIRED CURRENT READY UP-TO-DATE AVAILABLE NODE SELECTOR AGE

daemonset.apps/calico-node 8 8 6 8 6 kubernetes.io/os=linux 26m

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/calico-kube-controllers 1/1 1 1 26m

deployment.apps/calico-typha 0/0 0 0 26m

deployment.apps/coredns 2/2 2 2 26m

deployment.apps/kube-state-metrics 1/1 1 1 26m

deployment.apps/metrics-server 2/2 2 2 26m

NAME DESIRED CURRENT READY AGE

replicaset.apps/calico-kube-controllers-58497c65d5 1 1 1 26m

replicaset.apps/calico-typha-68857595fc 0 0 0 26m

replicaset.apps/coredns-6768db756 2 2 2 26m

replicaset.apps/kube-state-metrics-758ccc75d6 1 1 1 26m

replicaset.apps/metrics-server-7b477dd7b9 2 2 2 26m

The administrator can now configure the cluster to suit the particular site requirements.

4.3 Using GPUs With Kubernetes: NVIDIA GPUs
4.3.1 Prerequisites
The GPUs have to be recognized by the nodes, and have the appropriate drivers (such as cuda-driver)
installed. Details on how to do this are given in section 9 of the Installation Manual.

To verify the GPUs are recognized and have drivers in place, the nvidia-smi command can be run.
The response displayed for a GPU should look similar to the following:

Example

root@node001:~# nvidia-smi

Tue Dec 7 11:25:21 2021

+---+

| NVIDIA-SMI 470.57.02 Driver Version: 470.57.02 CUDA Version: 11.4 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 Tesla K40c On | 00000000:00:06.0 Off | Off |

| 23% 37C P8 21W / 235W | 0MiB / 12206MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

34 Kubernetes

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

If a non-BCM Containerd has already been deployed before Kubernetes is deployed, then
cm-kubernetes-setup may replace an existing Containerd configuration file in order to enable
NVIDIA GPU integration via a Kubernetes CNI plugin. This is because Containerd is configured by
cm-kubernetes-setup, overwriting any previous configuration.

4.3.2 New Kubernetes Installation
As part of the setup, cm-kubernetes-setup assigns a new role to the Kubernetes worker nodes:
generic::containerd.

The role has a Configurations submode, in which the containerd-cri object can be configured.
The entry for Filename specifies the path to the cri.toml file, which contains content used by the con-
tainer runtime interface on the Kubernetes worker nodes that have been assigned the role.

Example

[basecm10->configurationoverlay[kube-default-worker]->roles]% use generic::containerd

[...]->roles[generic::containerd]]% show

Parameter Value

-------------------------------- --

Name generic::containerd

Type GenericRole

Add services yes

Provisioning associations <0 internally used>

Services containerd

Configurations <2 in submode>

Environments <1 in submode>

Exclude list snippets <1 in submode>

Data node no

[...]->roles[generic::containerd]]% configurations

[...]->roles[generic::containerd]->configurations]% use containerd-cri

[...]->roles[generic::containerd]->configurations[containerd-cri]]% show

Parameter Value

-------------------------------- --

Name containerd-cri

Type static

Create directory yes

Filename /cm/local/apps/containerd/var/etc/conf.d/cri.toml

Filemask directory 0644

User name

Group name

Disabled no

Service action on write RESTART

Service stop on failure yes

Content <645B>

Filemask 0644

The file with the CRI (Container Runtime Interface) configuration is created in directory:

4.3 Using GPUs With Kubernetes: NVIDIA GPUs 35

/cm/local/apps/containerd/var/etc/conf.d

and included into the main Containerd configuration file:

/cm/local/apps/containerd/var/etc/config.toml

with the imports statement:

imports = ["/cm/local/apps/containerd/var/etc/conf.d/*.toml"]

Whatever the container runtime that is selected, if NVIDIA GPU integration is required then the
NVIDIA container toolkit is taken care of by the installer. The configuration for Containerd is added as
a separate configuration file in the configurations submode, as nvidia-cri.

NVIDIA GPUs are integrated into Kubernetes using the NVIDIA GPU operator. This is discussed
further in section 6.4.

4.3.3 Existing Kubernetes Installation
The NVIDIA GPU operator can always be deployed through Helm. The official documentation for the
NVIDIA GPU operator is at

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/overview.html

BCM also has a KB article with more information at:
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-

kubernetes-on-a-bright-cluster/

4.3.4 An Example Of Running A Workload Using NVIDIA GPUS: LLM Via NIM
NIM originally stood for NVIDIA Inference Microservices, but does not stand for anything now. This
is because inference engines—the “I” in NIM—are not the only workloads that are intended to run on
GPUs that use pod microservices.

NIM is now a product name, for a platform that hosts multiple GPU-based microservices. With NIM
as a product name, “NVIDIA NIM microservices” is now regarded as a valid phrase, instead of standing
for the excessively redundant phrase “NVIDIA NVIDIA Inference Microservices microservices”.

Once GPUs are configured and available for pods, then it is easy to deploy NVIDIA NIM microser-
vices.

Requirements For NIM
A minimal setup to run NIM has the following requirements:

• A git CLI installed on the cluster node where the Kubernetes API and Kubernetes CLI are avail-
able.

• Access to the NGC catalog. This is used to acquire a personal API key to download the container
image and model. The key must have access to the following services (figure 4.4):

– AI Foundation Models and Endpoints

– NGC Catalog

– Private Registry

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/overview.html
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster/
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster/

36 Kubernetes

Figure 4.4: NIM personal key generation

• If the image repository does not provide a Helm chart with a container and model already, then

nvcr.io/nim/meta/llama3-8b-instruct

is used by default. Supported GPU configurations for Llama 3 8B are specified at:

https://docs.nvidia.com/nim/large-language-models/latest/support-matrix.html#llama-3-8b-instruct

GPU support configuration for the various LLMs is described at:

https://docs.nvidia.com/nim/large-language-models/latest/support-matrix.html

Setting Up And Running The LLM Via NIM
A running LLM, llama3-8b-instruct, can be created and hosted as a service as follows:

[root@basecm10 ~]# git clone https://github.com/NVIDIA/nim-deploy.git

[root@basecm10 ~]# cd nim-deploy/helm

[root@basecm10 ~]# export NGC_CLI_API_KEY=<personal API key from NGC>
[root@basecm10 ~]# kubectl create namespace nim

[root@basecm10 ~]# helm --namespace nim install my-nim nim-llm/ \
--set model.ngcAPIKey=$NGC_CLI_API_KEY \
--set persistence.enabled=true

The preceding sets up a namespace nim with the name my-nim, deployed with the personal API key
from NGC.

The existence of the service (sometimes called a microservice) can be checked with:

[root@basecm10 ~]# kubectl get service -n nim

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

my-nim-nim-llm ClusterIP 10.150.226.159 <none> 8000/TCP 2m29s

The API can be tested with:

https://docs.nvidia.com/nim/large-language-models/latest/support-matrix.html#llama-3-8b-instruct
 https://docs.nvidia.com/nim/large-language-models/latest/support-matrix.html

4.4 Using GPUs With Kubernetes: AMD GPUs 37

[root@basecm10 ~]# curl -X POST http://10.150.226.159:8000/v1/completions \
-H 'accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"model": "meta-llama3-8b-instruct", "max_tokens": 64, "prompt": "Once upon a time"}'

A typical response is:

{

"id": "cmpl-9fed783f0c914e8fa82625946a78cd5e",

"object": "text_completion",

"created": 1716571188,

"model": "meta-llama3-8b-instruct",

"choices": [

{

"index": 0,

"text": ", there was a young man named Jack who lived in a small village at the",

"logprobs": null,

"finish_reason": null,

"stop_reason": null

}

],

"usage": {

"prompt_tokens": 5,

"total_tokens": 69,

"completion_tokens": 64

}

}

More About NIM
More documentation on NIM can be found at:

https://docs.nvidia.com/nim/large-language-models/latest/getting-started.html

and
https://github.com/NVIDIA/nim-deploy/tree/main

4.4 Using GPUs With Kubernetes: AMD GPUs
4.4.1 Prerequisites
The GPUs have to be recognized by the node. One way to check this from within BCM is to run sysinfo

for the node:

Example

[basecm10->device[basecm10]]% sysinfo | grep GPU

Number of GPUs 1

GPU Driver Version 4.18.0-193.el8.x86_64

GPU0 Name Radeon Instinct MI25

In order to make Kubernetes aware of nodes that have AMD GPUs, the AMD GPU device plugin has
to be deployed as a DaemonSet inside Kubernetes. The official GitHub repository that hosts this plugin
can be found at:

https://github.com/RadeonOpenCompute/k8s-device-plugin

The device plugin requires Kubernetes v1.16+, which has been around since BCM version 9.0. With
some extra instructions, the plugin can also be made a part of BCM version 8.2.

The DaemonSet YAML file can be deployed with:

https://docs.nvidia.com/nim/large-language-models/latest/getting-started.html
https://github.com/NVIDIA/nim-deploy/tree/main
https://github.com/RadeonOpenCompute/k8s-device-plugin

38 Kubernetes

Example

kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/v1.16/

k8s-ds-amdgpu-dp.yaml

4.4.2 Managing The YAML File Through CMDaemon
The plugin can be added by the user via the Kubernetes appgroups as an application. In the session that
follows, it is given the arbitrary name device-plugin:

Example

[root@basecm10 ~]# wget https://raw.githubusercontent.com/RadeonOpenCompute/k8s-device-plugin/

v1.16/k8s-ds-amdgpu-dp.yaml -O /tmp/k8s-ds-amdgpu-dp.yaml

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes[default]]% appgroups

[basecm10->kubernetes[default]->appgroups]% add amd

[basecm10->kubernetes*[default*]->appgroups*[amd*]]% applications

[basecm10->kubernetes*[default*]->appgroups*[amd*]->applications]% add device-plugin

The configuration of the plugin can be set to the YAML file, by setting the config parameter to take
the value of the YAML file path.

Example

[basecm10->...[amd*]->applications*[device-plugin*]]% set config /tmp/k8s-ds-amdgpu-dp.yaml

[basecm10->kubernetes*[default*]->appgroups*[amd*]->applications*[device-plugin*]]% show

Parameter Value

-------------------------------- --

Name device-plugin

Revision

Format Yaml

Enabled yes

Config <914B>

Environment <0 in submode>

Exclude list snippets <0 in submode>

[basecm10->kubernetes*[default*]->appgroups*[amd*]->applications*[device-plugin*]]% commit

The YAML file can also be edited within cmsh after it has been set, by running set config without a
value.

There are older releases available, starting from Kubernetes v1.10, if needed. Saving this device-
plugin YAML should result in pods being scheduled on all the non-tainted nodes, as seen by listing the
pods (some columns elided):

[root@basecm10 ~]# kubectl get pod -n kube-system -l name=amdgpu-dp-ds -o wide

NAME READY STATUS ... IP NODE ...

amdgpu-device-plugin-daemonset-66jl7 1/1 Running ... 172.29.112.135 gpu001 ...

amdgpu-device-plugin-daemonset-8mh9w 1/1 Running ... 172.29.152.130 gpu002 ...

4.4.3 Including Head Nodes as part of the DaemonSet:
BCM taints head nodes, so that they do not run non-critical pods. The taint can be removed with the
“-” operator to allow non-critical pods to run:

Example

kubectl taint nodes basecm10 node-role.kubernetes.io/control-plane-

4.4 Using GPUs With Kubernetes: AMD GPUs 39

However, a more specific exception can be configured in the DaemonSet itself.
Within the YAML file, the following existing tolerations definition has to be modified, from:

tolerations:

- key: CriticalAddonsOnly

operator: Exists

to:

tolerations:

- key: node-role.kubernetes.io/control-plane

effect: NoSchedule

operator: Exists

The modified toleration tolerates this taint, and therefore has the device plugin run on such tainted
nodes.

Verifying That AMD GPUs Are Recognized By Kubernetes
If Kubernetes is aware of the AMD GPUs for a node then several mentions of amd.com/gpu are displayed
when running the kubectl describe node command for the node. The following session shows output
for a node gpu01, ellipsized for clarity:

Example

[root@basecm10 ~]# kubectl describe node gpu01

Name: gpu01

...

Capacity:

amd.com/gpu: 3

cpu: 64

ephemeral-storage: 1813510Mi

hugepages-1Gi: 0

hugepages-2Mi: 0

memory: 527954676Ki

pods: 50

...

4.4.4 Running The DaemonSet Only On Specific Nodes
The AMD GPU device plugin, unlike the NVIDIA GPU device plugin Daemonset, is scheduled to run
on each Kubernetes host. This means that it runs even if the host has no GPU.

This can be prevented with the following steps:
A LabelSet can be created via cmsh, and the nodes or categories that have GPUs are assigned within

the labelsets mode:

Example

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes[default]]% labelsets

[basecm10->kubernetes[default]->labelsets]% use nvidia

[basecm10->kubernetes[default]->labelsets[nvidia]]% .. #but, we're using AMD GPUs, so let's go back up:

[basecm10->kubernetes[default]->labelsets]% add amd

[basecm10->kubernetes*[default*]->labelsets*[amd*]]% set labels nvidia.com/amd-gpu-accelerator=

[basecm10->kubernetes*[default*]->labelsets*[amd*]]% append categories gpu-nodes

[basecm10->kubernetes*[default*]->labelsets*[amd*]]% commit

This assigns the labels to the nodes with GPUs. This can be verified with:

40 Kubernetes

Example

kubectl get nodes -l nvidia.com/amd-gpu-accelerator=

NAME STATUS ROLES AGE VERSION

gpu001 Ready master 66m v1.18.8

gpu002 Ready master 66m v1.18.8

...

The DaemonSet YAML can now be adjusted to only run the device plugin on nodes with this new
label. This can be done by adding an affinity block after the tolerations block:

Example

tolerations:

- key: CriticalAddonsOnly # toleration may be different, if changes were made to it

operator: Exists

affinity:

nodeAffinity:

requiredDuringSchedulingIgnoredDuringExecution:

nodeSelectorTerms:

- matchExpressions:

- key: 'nvidia.com/amd-gpu-accelerator'

operator: Exists

This results in the device plugin pods being removed immediately from all nodes that do not have
the label.

4.4.5 Running An Example Workload
An example workload can be run as described in the official AMD GPU Kubernetes device plugin doc-
umentation at:

https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/v1.16#example-workload

Thus it should now be possible to run:

[root@basecm10 ~]# kubectl create -f https://raw.githubusercontent.com/RadeonOpenCompute/

k8s-device-plugin/v1.16/example/pod/alexnet-gpu.yaml

The YAML requests only one GPU at the bottom of the YAML file:

apiVersion: v1

kind: Pod

metadata:

name: alexnet-tf-gpu-pod

labels:

purpose: demo-tf-amdgpu

spec:

containers:

- name: alexnet-tf-gpu-container

image: rocm/tensorflow:latest

workingDir: /root

env:

- name: HIP_VISIBLE_DEVICES

value: "0" # # 0,1,2,...,n for running on GPU and select the GPUs, -1 for running on CPU

command: ["/bin/bash", "-c", "--"]

https://github.com/RadeonOpenCompute/k8s-device-plugin/tree/v1.16#example-workload

4.5 Kubernetes Configuration Overlays 41

args: ["python3 benchmarks/scripts/tf_cnn_benchmarks/tf_cnn_benchmarks.py --model=alexnet;\
trap : TERM INT; sleep infinity & wait"]

resources:

limits:

amd.com/gpu: 1 # requesting a GPU

Container creation might take a while due to the image size. Once scheduled, it prints out that it
found exactly one GPU, and proceeds to run a TensorFlow workload.

Example

[root@basecm10 ~]# kubectl logs -f alexnet-tf-gpu-pod

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/compat/v2_compat.py:96:

disable_resource_variables (from tensorflow.python.ops.variable_scope) is deprecated and will be removed

in a future version.

Instructions for updating:

non-resource variables are not supported in the long term

2021-01-08 21:03:29.222293: I tensorflow/core/platform/profile_utils/cpu_utils.cc:104]

CPU Frequency: 2495445000 Hz

2021-01-08 21:03:29.222398: I tensorflow/compiler/xla/service/service.cc:168]

XLA service 0x39f62f0 initialized for platform Host (this does not guarantee that XLA will be used). Devices:

2021-01-08 21:03:29.222420: I tensorflow/compiler/xla/service/service.cc:176]

StreamExecutor device (0): Host, Default Version

2021-01-08 21:03:29.223754: I tensorflow/stream_executor/platform/default/dso_loader.cc:48]

Successfully opened dynamic library libamdhip64.so

2021-01-08 21:03:31.635339: I tensorflow/compiler/xla/service/service.cc:168]

XLA service 0x3a40bb0 initialized for platform ROCM (this does not guarantee that XLA will be used). Devices:

2021-01-08 21:03:31.635363: I tensorflow/compiler/xla/service/service.cc:176]

StreamExecutor device (0): Device 738c, AMDGPU ISA version: gfx908

2021-01-08 21:03:31.931125: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1734]

Found device 0 with properties:

pciBusID: 0000:27:00.0 name: Device 738c ROCm AMD GPU ISA: gfx908

coreClock: 1.502GHz coreCount: 120 deviceMemorySize: 31.98GiB deviceMemoryBandwidth: 1.12TiB/s

...

TensorFlow: 2.3

Model: alexnet

Dataset: imagenet (synthetic)

Mode: training

SingleSess: False

Batch size: 512 global

512 per device

Num batches: 100

Num epochs: 0.04

Devices: ['/gpu:0']

...

Had more GPUs been requested, more would have been made available to the container.
For comparison, a CPU version of the container is also available. The official instructions can be

referred to for these, too.

4.5 Kubernetes Configuration Overlays
A list of configuration overlays can be seen from within configurationoverlay mode:

Example

42 Kubernetes

[basecm10->configurationoverlay]% list

Name (key) Priority Nodes Categories Roles

------------------- -------- ----------------- ---------- -------------------------...

kube-default-etcd 500 node001..node003 Etcd::Host

kube-default-master 510 node001..node003 generic::containerd, kube...

kube-default-worker 500 node004..node006 default generic::containerd, kube...

kube-default-netq 501 node001 generic::netq

The NetQ configuration overlay is only normally displayed if NetQ is deployed.
Configuration overlays can be used to manage the Kubernetes services used with a particular con-

figuration. For example, when managing the Kubernetes services used for a Kubernetes engine within
an Auto Scale tracker (section 8.4.9 of the Administrator Manual).

4.6 Removing A Kubernetes Cluster
A Kubernetes cluster can be removed using cm-kubernetes-setup with the --remove and
--yes-i-really-mean-it options. Also, if there more than one cluster present, then the cluster name
must be specified using the --cluster parameter.

A removal run looks as follows (some output ellipsized):

Example

[root@basecm10 ~]# cm-kubernetes-setup --remove --cluster default --yes-i-really-mean-it

Connecting to CMDaemon

Executing 20 stages

################### Starting execution for 'Kubernetes Setup'

- kubernetes

- docker

Progress: 0

stage: kubernetes: Get Kube Cluster

Progress: 5

stage: kubernetes: Check Kube Cluster Exists

Progress: 10

stage: kubernetes: Find Installed Components

Progress: 15

stage: kubernetes: Find Files On Headnodes

Progress: 20

stage: kubernetes: Firewall Zone Close

Progress: 25

stage: kubernetes: Firewall Interface Close

Progress: 30

stage: kubernetes: Firewall Policy Close

Progress: 35

stage: kubernetes: Nginx Reverse Proxy Close

Progress: 40

stage: kubernetes: IP Ports Close

Progress: 60

stage: kubernetes: Remove Installed Components

Progress: 65

stage: kubernetes: Remove Files On Headnodes

Progress: 70

stage: kubernetes: Remove Etcd Spool

Progress: 80

stage: kubernetes: Set Reboot Required

You need to reboot 2 nodes to cleanup the network configuration

4.7 Kubernetes Cluster Configuration Options 43

Progress: 85

stage: kubernetes: Collection Update Provisioners

Progress: 100

Took: 00:08 min.

Progress: 100/100

################### Finished execution for 'Kubernetes Setup', status: completed

Kubernetes Setup finished!

Using the --remove option removes the Kubernetes cluster configuration from BCM, unassigns
Kubernetes-related roles—including the EtcdHost role—and removes Kubernetes health checks. The
command does not remove packages that were installed with a cm-kubernetes-setup command before
that.

After the disabling procedure has finished, the cluster has no Kubernetes configured and running.

4.7 Kubernetes Cluster Configuration Options
Kubernetes allows many Kubernetes clusters to be configured. These are separated sets of hosts with
different certificates, users and other global settings.

When carrying out the Kubernetes setup run, a Kubernetes cluster name is asked, and a new object
with the cluster settings is then added into the CMDaemon configuration. The administrator can change
the settings of the cluster from within the kubernetesmode of cmsh, or within the Kubernetes Clusters

options window of Base View accessible via the navigation path Containers > Kubernetes Clusters.
The cmsh equivalent looks like:

Example

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes list

Name (key)

default

[basecm10]% kubernetes use default

[basecm10->kubernetes[default]]% show

Parameter Value

------------------------------------ --

Name default

Revision

Etcd Cluster kube-default

Pod Network kube-default-pod

Pod Network Node Mask

Internal Network internalnet

KubeDNS IP 10.150.255.254

Kubernetes API server

Kubernetes API server proxy port 10443

App Groups <1 in submode>

Label Sets <3 in submode>

Notes

Version 1.27.10-150500.1.1

Trusted domains basecm10.openstacklocal,master,localhost,10.141.255.254

Module file template <1.01KiB>

Kubeadm init file <1.19KiB>

Service Network kube-default-service

Kubeadm CERT Key *********

44 Kubernetes

Kube CA Cert *********

Kube CA Key *********

Kubernetes users <0 in submode>

External no

External Kubernetes Ingress server

External port 0

Capi template no

Capi namespace default

Kubernetes management cluster

[basecm10->kubernetes[default]]%

The preceding kubernetes mode parameters are described in table 4.1:

Parameter Description

App Groups Groups of Kubernetes add-ons managed by CMDaemon.

CAPI namespace Namespace where CAPI is deployed (optional).

CAPI template Is this Kubernetes cluster configuration a template for CAPI
workload clusters?

Etcd Cluster The etcd cluster instance.

External Is this Kubernetes cluster configuration for an external Kuber-
netes instance (e.g., cloud)?

External Kubernetes Ingress server The Ingress endpoint for the external Kubernetes.

External port Additional port used by external Kubernetes cluster (unused).

Internal Network Network to back the internal communications.

Kube CA Cert Path to PEM-encoded RSA or ECDSA certificate used for the
CA

Kube CA Key Path to PEM-encoded RSA or ECDSA private key used for the
CA

KubeDNS IP CoreDNS IP Address.

Kubeadm Cert Key Key used to encrypt the control plane certificates in the
kubeadm-certs Secret.

...continues

4.8 EtcdCluster 45

...continued

Parameter Description

Kubeadm Init file Contents of the init configuration file provided to Kubeadm to
initialize or join nodes.

Kubernetes API Server Kubernetes API server address (format: https://<host>:<port
number>).

Kubernetes API Server Proxy Port Kubernetes API server proxy (NGINX LoadBalancer) port (de-
fault: 10443).

Kubernetes Management cluster Relevant to CAPI only: the Kubernetes cluster managing this
CAPI workload cluster (optional).

Kubernetes Users Submode to manage users for this Kubernetes cluster (e.g.:
whether or not to manage their Kube config files)

Label Sets Submode to manage assignment of labels to Kubernetes nodes

Module file template Template used for writing the Kubernetes TCL module file.

Name The name, identifier, or label for the Kubernetes cluster.

Pod Network Network where pod IP addresses are assigned from

Pod Network Node Mask Corresponding subnet mask used to define the size of the ad-
dress space allocated to each node for its pods

Service Network Network from which the service cluster IP addresses are as-
signed, in IPv4 CIDR format. Must not overlap with any
IP address ranges assigned to nodes for pods. Default:
172.29.0.0/16

Trusted Domains Trusted domains to be included in Kubernetes-related certifi-
cates as Alternative Subject Names.

Version Version of the Kubernetes cluster.

Table 4.1: kubernetes mode parameters

4.8 EtcdCluster
The EtcdCluster mode sets the global etcd cluster settings. It can be accessed via the top level etcd mode
of cmsh.

46 Kubernetes

Parameter Description Option to etcd

Name etcd cluster name. --initial-cluster-token

Election Timeout Election timeout, in milliseconds. --election-timeout

Heart Beat Interval Heart beat interval, in milliseconds. --heartbeat-interval

CA The certificate authority (CA) Certifi-
cate path for etcd, used to generate cer-
tificates for etcd.

--peer-trusted-ca-file

CA Key The CA Key path for etcd, used to gen-
erate certificates for etcd.

Member Certificate The certificate path to use for etcd clus-
ter members, signed with the etcd CA.
The EtcdHost role can specify a mem-
ber CA as well, and in that case it over-
writes any value set here.

--peer-cert-file

Member Certificate

Key

The key path to use for etcd cluster
members, signed with the etcd CA. The
EtcdHost role can specify a member CA
as well, and in that case it overwrites
any value set here.

--peer-key-file

Client CA The CA used for client certificates.
When set it is assumed client certificate
and key are generated and signed with
this CA by another party. etcd still ex-
pects the path to be correct for the client
certificate and key.

--trusted-ca-file

Client Certificate The client certificate, used by etcdctl,
for example.

--cert-file

Client Certificate

Key

The client certificate key, used by etcd-
ctl for example.

--key-file

* Boolean (takes yes or no as a value)

Table 4.2: EtcdCluster role parameters and etcd options

4.9 Kubernetes Roles
Kubernetes roles include the following roles:

• EtcdHost (page 47)

• KubernetesApiServerProxy (page 48)

• Kubelet (page 52)

• generic::containerd (page 53)

• generic::netq (page 41)

When nodes are configured using Kubernetes roles, then settings in these roles may sometimes use the
same values (pointer variables).

4.9 Kubernetes Roles 47

Example

[basecm10->configurationoverlay[kube-default-etcd]->roles[Etcd::Host]]% get etcdcluster

kube-default

and

[basecm10->kubernetes[default]]% get etcdcluster

kube-default

Pointer variables such as these have definitions that are shared across the roles, as indicated by the
parameter description tables for the roles, and which are described in the following pages.

In cmsh, the roles can be assigned:

• for individual nodes via the roles submode of device mode

• for a category via the roles submode of a category

• for a configuration overlay via the roles submode of configurationoverlay mode

4.9.1 EtcdHost Role
The EtcdHost role is used to configure and manage the etcd service for a node.

The etcd service manages the etcd database, which is a hierarchical distributed key-value database.
The database is used by Kubernetes to store its configurations. The EtcdHost role parameters are de-
scribed in table 4.3:

Parameter Description Option to etcd

Member Name The human-readable name for this etcd
member ($hostname is replaced by the
node hostname)

--name

Spool Path to the data directory (default:
/var/lib/etcd)

--data-dir

Advertise Client List of client URLs for this member to --advertise-client-urls

URLs advertise publicly (default:
http://$hostname:5001)

Advertise Peers List of peer URLs for this member to --initial-advertise-peer-urls

URLs advertise to the rest of the cluster (de-
fault: http://$hostname:5002)

Listen Client URLs List of URLs to listen on for client
traffic (default: http://$hostname:5001,
http://127.0.0.1:2379)

--listen-client-urls

Listen Peer URLs List of URLs to listen on for peer traffic
(default: http://$hostname:5002)

--listen-peer-urls

Snapshot Count Number of committed transactions that
trigger a snapshot to disk (default:
5000)

--snapshot-count

...continues

48 Kubernetes

...continued

Parameter Description Option to etcd

Debug∗ Drop the default log level to DEBUG for
all subpackages? (default: no)

--debug

Member Certificate etcd member certificate, signed with
CA specified in the etcd cluster. Setting
it overrules the value set in the Etcd-
Cluster object (etcd mode, section 4.8).
Default empty.

--peer-cert-file

Member Certificate

Key

etcd member certificate key, signed
with CA specified in the etcd cluster.
Setting it overrules the value set in
the EtcdCluster object (etcd mode, sec-
tion 4.8). Default empty.

--peer-key-file

Options Additional parameters for the etcd

daemon (empty by default)

* Boolean (takes yes or no as a value)

Table 4.3: EtcdHost role parameters and etcd options

The etcd settings are updated by BCM in /cm/local/apps/etcd/current/etc/cm-etcd.conf.

4.9.2 The KubernetesAPIServerProxy Role
The KubernetesApiServerProxy role sets up a proxy that provides the entry point for one or more in-
stances of the Kubernetes API server. The proxy runs on every node of a Kubernetes cluster instance,
including the head node.

If multiple Kubernetes master nodes are present, then it enables HA for the Kubernetes master com-
ponents (section 4.1).

This means that local port 10443 on all these nodes load balances over all control-plane node API
servers.

Port 10443 can also be opened up for external access. The cm-kubernetes-setup wizard (section 4.2)
in one of its screens (figure 4.5) prompts for this.

Figure 4.5: Wizard question

If the prompt is answered with no, then the firewall role on the head node can still be customized
with cmsh later on:

Example

root@basecm10:~# cmsh

[basecm10]% device use master

[basecm10->device[basecm10]]% roles

[basecm10->device[basecm10]->roles]% use firewall

[basecm10->device[basecm10]->roles[firewall]]% openports

/cm/local/apps/etcd/current/etc/cm-etcd.conf

4.9 Kubernetes Roles 49

[basecm10->device[basecm10]->roles[firewall]->openports]% list

Index Action Network Port Destination Protocol Address Description

------ --------- ------------ ------------ ------------ --------- ------------ ------------------------

0 ACCEPT net 30080 fw TCP 0.0.0.0/0 Kubernetes 'default' In+

1 ACCEPT net 30443 fw TCP 0.0.0.0/0 Kubernetes 'default' In+

[basecm10->device[basecm10]->roles[firewall]->openports]% add ACCEPT net 10443 tcp fw

ok.

[basecm10->device*[basecm10*]->roles*[firewall*]->openports[2]]% commit

[basecm10->device[basecm10]->roles[firewall]->openports[2]]% list

Index Action Network Port Destination Protocol Address Description

------ --------- ------------ ------------ ------------ --------- ------------ ------------------------

0 ACCEPT net 30080 fw TCP 0.0.0.0/0 Kubernetes 'default' In+

1 ACCEPT net 30443 fw TCP 0.0.0.0/0 Kubernetes 'default' In+

2 ACCEPT net 10443 fw TCP 0.0.0.0/0

[basecm10->device[basecm10]->roles[firewall]->openports[2]]%

Thu Oct 31 15:58:56 2024 [notice] basecm10: Service shorewall was restarted

Ingress Server Proxying Using The Default HTTPS Port 443
In BCM 11 a new KubernetesIngressServerProxy role is introduced to allow Ingress Server Proxying.

In BCM 10, to maintain backward compatibility, new roles cannot be introduced. The proxying
functionality of the Ingress server is therefore partly dealt with using the KubernetesApiServerProxy
role.

The proxy provides the entry point for one or more instances of the Kubernetes Ingress server, and
runs on every node of a Kubernetes cluster instance, including the head node. If multiple Kubernetes
master nodes are present, then the role enables HA for the Kubernetes master components (section 4.1).

Before BCM 10.24.11, the Kubernetes Ingress Server bundled NGINX Ingress server as an option,
and used non-standard HTTPS ports. The defaults have always been 30080 for HTTP, and 30443
for HTTPS as NodePort services (https://kubernetes.io/docs/concepts/services-networking/
service/#type-nodeport). These ports are customizable, but a limitation of NodePort services is that
they may only use the port range 30000—32767.

Starting with BCM 10.24.11, during the cm-kubernetes-setup session to install Kubernetes, there is
a screen which asks if the Ingress Server should be available on the default HTTPS port 443 (figure 4.6).

It is recommended to respond with yes, because nowadays services running inside Kubernetes are
commonly run on the default HTTPS port. This in turn results in user redirects from the non-standard
port (for example, 30443) to port 443. Using the default port is also more in line with how Ingress is
offered by cloud-based solutions that provide Kubernetes.

Figure 4.6: Wizard question

Setting 443 for the proxy ensures that local port 443 on all the concerned nodes carries out loadbal-
ancing over all the control-plane node Kubernetes Ingress Servers. It also ensures that the port is opened
in the firewall.

Setting no means that an open port can still be configured later on by carrying the 4 steps that follow
shortly. The discerning cluster administrator should be able to see from these steps how the Ingress
server proxying functionality is implemented without the additional role.

https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport
https://kubernetes.io/docs/concepts/services-networking/service/#type-nodeport

50 Kubernetes

The extra parameters are set per KubeCluster entity inside BCM. This is because Ingress ports can
differ between multiple installations of Kubernetes.

The steps:

1. Ensuring HTTPS is not already in use: If port 443 it is already in use by BCM (for example, if the
BCM landing page is served on port 443 via apache2 or httpd), then that port must be changed or
disabled.

For Ubuntu-based systems, this means commenting out Listen 443 in /etc/apache2/ports.conf.
For RHEL-based systems, that line is located in /etc/httpd/conf.d/ssl.conf.

The web service should then be restarted (apache2 for Ubuntu, httpd for RHEL and Rocky).

2. Assigning the configuration to the KubeCluster entities:

This can be done as follows in cmsh:

Example

This is the KubeCluster entity that the parameters are added to:

root@basecm10:~# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes[default]]% show

Parameter Value

------------------------------------ --

Name default

Revision

Etcd Cluster kube-default

Pod Network kube-default-pod

Pod Network Node Mask

Internal Network internalnet

KubeDNS IP 10.150.255.254

...

The following parameters are set next:

• ingress_proxy_backend_port: a fallback port in case the NGINX NodePort cannot be read
from the applications

• ingress_proxy_listen_port: the port the proxy should listen on (default HTTPS port is 443)

• ingress_proxy_enable: a flag to enable the proxying functionality

In cmsh this can be carried out with special -e|--extra options as follows, which set up new
parameters in the kubernetes instance:

Example

[basecm10->kubernetes[default]]% set -e ingress_proxy_backend_port 30443

[basecm10->kubernetes*[default*]]% set -e ingress_proxy_listen_port 443

[basecm10->kubernetes*[default*]]% set -e ingress_proxy_enable true

[basecm10->kubernetes*[default*]]% commit

[basecm10->kubernetes[default]]% show

Parameter Value

------------------------------------ ---

ingress_proxy_backend_port 30443

ingress_proxy_enable true

4.9 Kubernetes Roles 51

ingress_proxy_listen_port 443

Name default

Revision

Etcd Cluster kube-default

Pod Network kube-default-pod

Pod Network Node Mask

Internal Network internalnet

KubeDNS IP 10.150.255.254

...

In BCM 10, back in the KubernetesApiServerProxy role, a commit then triggers the NGINX con-
figuration reload:

[basecm10->kubernetes[default]]% device use master

[basecm10->device[basecm10]]% roles

[basecm10->device[basecm10]->roles]% use kubernetes::apiserverproxy

[basecm10->device[basecm10]->roles[Kubernetes::ApiServerProxy]]% commit

[basecm10->device[basecm10]->roles[Kubernetes::ApiServerProxy]]%

Fri Nov 22 14:49:15 2024 [notice] basecm10: Service nginx was reloaded

As the preceding session implies, the /etc/nginx/nginx.conf file and nginx service are affected.

Local port 443 should now load balance the Kubernetes Ingress service to all control-plane nodes.

3. Opening the HTTPS port in the firewall:

The port in the default firewall, Shorewall (section 7.2 of the Installation Manual), can be modified
using the firewall role in cmsh.

For historic reasons, ports 30080 and 30443 are still opened up by default in BCM 10. These ports
can also be removed from the entries for the Ingress controller, as shown in the following session:

root@basecm10:~# cmsh

[basecm10]% device use master

[basecm10->device[basecm10]]% roles

[basecm10->device[basecm10]->roles]% use firewall

[basecm10->device[basecm10]->roles[firewall]]% openports

[basecm10->device[basecm10]->roles[firewall]->openports]% list -v

Index Action Network Port Destination Protocol Address Description

------ --------- -------- -------- ------------ --------- ------------ ------------------------

0 ACCEPT net 30080 fw TCP 0.0.0.0/0 Kubernetes 'default' Ingress HTTP

1 ACCEPT net 30443 fw TCP 0.0.0.0/0 Kubernetes 'default' Ingress HTTPS

2 ACCEPT net 10443 fw TCP 0.0.0.0/0

[basecm10->device[basecm10]->roles[firewall]->openports]% remove 0

[basecm10->device*[basecm10*]->roles*[firewall*]->openports*]% remove 1

[basecm10->device*[basecm10*]->roles*[firewall*]->openports*]% add ACCEPT net 443 tcp fw

ok.

[basecm10->device*[basecm10*]->roles*[firewall*]->openports*[3]]% list

Index Action Network Port Destination Protocol Address Description

------ --------- -------- -------- ------------ --------- ------------ ------------

2 ACCEPT net 10443 fw TCP 0.0.0.0/0

3 ACCEPT net 443 fw TCP 0.0.0.0/0

[basecm10->device*[basecm10*]->roles*[firewall*]->openports*[3]]% ..

[basecm10->device*[basecm10*]->roles*[firewall*]->openports*]% commit

[basecm10->device[basecm10]->roles[firewall]->openports]%

Thu Oct 31 16:35:19 2024 [notice] basecm10: Service shorewall was restarted

[basecm10->device[basecm10]->roles[firewall]->openports]% list

52 Kubernetes

Index Action Network Port Destination Protocol Address Description

------ --------- -------- -------- ------------ --------- ------------ ------------

0 ACCEPT net 10443 fw TCP 0.0.0.0/0

1 ACCEPT net 443 fw TCP 0.0.0.0/0

As seen in the preceding session, this immediately affects the /etc/shorewall/rules file and
shorewall service.

4. Fixing the BCM landing page: Finally the landig page YAML file is applied. The file should be
available on the head nodes for BCM version 10.24.11 and beyond.

root@basecm10# kubectl apply -f \
/cm/local/apps/cm-setup/lib/python3.12/site-packages/cmsetup/plugins/kubernetes/addons/1.27/landingpage.yaml

configmap/nginx-proxy-config created

deployment.apps/nginx-proxy created

service/nginx-proxy-service created

Warning: annotation "kubernetes.io/ingress.class" is deprecated, please use 'spec.ingressClassName' instead

ingress.networking.k8s.io/default-ingress created

In the preceding session, a simple Deployment (https://kubernetes.io/docs/concepts/
workloads/controllers/deployment/) is deployed. The Deployment manages a single pod
that runs an NGINX container with the configuration provided as a ConfigMap (https:
//docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/

configmap-resource/). This configuration sets a redirect to the single http://master backend,
where the BCM landing page (section 2.4.1 of the Administrator Manual) is running, and running
with the HTTP rather than the HTTPS protocol.

The service exposes the pod, and an Ingress rule is created and used as a fallback/default handler
for the Kubernetes NGINX Ingress server. This way, if no other Ingress rule matches, then the
BCM landing page is served via the HTTPS port. In other words, the page is served when there is
no other matching domain name or other path-based Ingress rule to take priority over the landing
page. This means that the landing page is still served when the head node IP address is entered
directly in the browser.

4.9.3 The Kubelet Role
The Kubelet role is used to configure and manage the kubelet service. BCM takes care of joining these
nodes with kubeadm join when needed.

Control Plane The Kubelet role has a parameter Control plane that is set to the value yes for control
plane nodes. In that case it also runs Kubernetes control plane services, such as:

• Kubernetes API server (kube-apiserver),

• Kubernetes scheduler (kube-scheduler),

• Kubernetes controller manager (kube-controller-manager),

• Kubernetes network proxy (kube-proxy),

• CoreDNS (coredns).

Workers The Kubelet role has a parameter worker that is set to yes for worker nodes. In that case, the
control plane pods will not be running on the node.

The Kubelet role parameters are described in table 4.4:

https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/
https://docs.nginx.com/nginx-ingress-controller/configuration/global-configuration/configmap-resource/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-apiserver/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-scheduler/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-controller-manager/
https://kubernetes.io/docs/reference/command-line-tools-reference/kube-proxy/
https://coredns.io/manual/toc/#what-is-coredns

4.9 Kubernetes Roles 53

Parameter Description

Kubernetes Cluster The Kubernetes cluster instance (a pointer)

Control plane Is Kubelet running services on this node, making it a control plane node?

Worker Kubelet is a worker flag

Max Pods Configuration to change max number of pods on Kubelet

Options Submode that allows configuration of additional flags to containers speci-
fied in manifest /etc/kubernetes/manifests

* Boolean (takes yes or no as a value)

Table 4.4: Kubelet role parameters and kubelet options

Further details on the Kubelet service can be found at https://kubernetes.io/docs/reference/
command-line-tools-reference/kubelet/.

The options Submode
[basecm10->configurationoverlay[kube-default-master]->roles[kubelet]]% help options

Name:

options - Manage kubelet container command options

Usage:

options [kubelet]

options [kubelet] <filename>

options [kubelet] <filename> set [name] key=value

options [kubelet] <filename> set [name] key

options [kubelet] <filename> clear [name] key

Examples:

options kube-apiserver.yaml set advertise-address=192.168.200.148

[basecm10->configurationoverlay[kube-default-master]->roles[kubelet]]% options

Filename Container Key Value

------------------- --------------- --------------------- ------------------------------------

kube-apiserver.yaml kube-apiserver cors-allowed-origins https://name.run.ai

kube-apiserver.yaml kube-apiserver oidc-client-id runai

kube-apiserver.yaml kube-apiserver oidc-issuer-url https://app.run.ai/auth/realms/name

kube-apiserver.yaml kube-apiserver oidc-username-prefix -

The full path to the files should be specified for the options command. For example,
kube-apiserver.yaml may be specified as /etc/kubernetes/manifests/kube-apiserver.yaml.

4.9.4 Containerd Role
The Containerd role is used to configure and manage the containerd daemon. This is done through a
generic role in BCM. Generic roles under Kubernetes are found under the cmsh path indicated by: cmsh
> configurationoverlay[kube-object] > roles[generic::role]

Example

[basecm10->configurationoverlay[kube-default-master]->roles[generic::containerd]]% show

Parameter Value

-------------------------------- --

Name generic::containerd

Revision

Type GenericRole

Add services yes

https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
https://kubernetes.io/docs/reference/command-line-tools-reference/kubelet/
/etc/kubernetes/manifests/kube-apiserver.yaml

54 Kubernetes

Services containerd

Configurations <2 in submode>

Environments <1 in submode>

Exclude list snippets <2 in submode>

Data node no

The role has several submodes:

• The configurations submode: This contains various configuration drop-ins.

Configuration drop-ins that BCM may manage in the generic::containerd role are:

– NVIDIA Container Toolkit configuration.

– Docker registry certs directory configuration.

– Docker Hub credentials configuration.

– Harbor Registry Mirror configuration.

– CRI cgroup configuration.

– CNI bin dir configuration.

– CRI registry configuration.

– CRI custom sandbox image configuration.

The drop-ins that are actually available depend on choices made by the cluster administrator dur-
ing deployment.

• The environment submode: This has optional environment variables that are made available to
the configuration files and that are to be used as templates.

• The excludelistsnippets submode: This has files related to containerd that need to be excluded,
such as the most obvious directory /var/lib/containerd.

4.10 Security Model
The Kubernetes security model allows authentication using a certificate authority (CA), with the user
and daemon certificates signed by a Kubernetes CA. The Kubernetes CA should not be confused with
the BCM CA.

BCM lets kubeadm create a CA specifically for issuing all Kubernetes-related certificates. The certifi-
cates are put into /etc/kubernetes/pki/<kubeclusterlabel>/ by default.

In Kubernetes terminology a user is a unique identity accessing the Kubernetes API server. The user
may be a human or an automated process. For example an admin or a developer are human users, but
kubelet represents an infrastructure user. Both types of users are authorized and authenticated in the
same way against the API server.

Kubernetes uses client certificates, tokens, or HTTP basic authentication methods to authenticate
users for API calls. BCM configures client certificate usage by default. The authentication is performed
by the API server which validates the user certificate using the common name part of the certificate
subject.

In Kubernetes, authorization happens as a separate step from authentication. Authorization applies
to all HTTP accesses on the main (secure) API server port. BCM by default enables RBAC (Role-Based
Access Control) combined with Node Authorization. The authorization check for any request thus takes
the common name and/or organization part of the certificate subject to determine which roles the user
or service has associated. Roles carry a certain set of privileges for resources within Kubernetes.

/etc/kubernetes/pki/<kube cluster label>/

4.10 Security Model 55

4.10.1 Kyverno
BCM has support for the Kyverno policy engine (https://kyverno.io/). If Kyverno is installed, then
Kubernetes Permissions Manager (section 4.15) creates policy manifests packed as a Helm chart for ev-
ery user added to Kubernetes via cm-kubernetes-setup. In addition, a kyverno-policy chart is installed
in enforce mode to implement Pod Security Standards (https://kyverno.io/policies/). During in-
stallation, some exclusions are added to the policies automatically to make chosen features of Kuber-
netes cluster work.

For every created user the following defaults are applied:

• The user has an associated service account with the same name

• A <username>-restricted namespace is created. So, for a user john the namespace is
john-restricted.

• An edit cluster role is bound to the service account in <username>-restricted namespace. The user
is allowed to create pods, services, configmaps, etc. in the namespace

• The user is allowed to list nodes in the cluster

• Kyverno policies are applied to the resources in <username>-restricted namespace or to pod created
or updated by the associated user

– If hostPath is not the home directory of the user (of the format /home/<username>) then the
creation of the resource is denied

– The UID and GID of the running process are set to the same value as the UID and GID of the
PAM user

Modifications from the defaults are:

• If the Allow any UID process in pods checkbox is ticked, or if the --allow-all-uids argument
is specified, then the UID and GID of the running process becomes the user’s UID and GID only if
the hostPath volume is specified. Otherwise it can be set to any UID and GID.

• Cluster roles can be set not only to

– edit

but also to

– view

– admin

– cluster-admin

More details on these roles can be found at:
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles.

• In addition, the user can be given access to custom CRDs, such as Postgres Operator, Jupyter
Operator or Google Spark Operator

4.10.2 PodSecurityPolicy
PodSecurityPolicy (PSP) was available in older versions of BCM. However, PSP support was completely
removed in Kubernetes v1.25. BCM therefore now uses Kyverno (section 4.10.1) for an equivalent func-
tionality.

https://kyverno.io/
https://kyverno.io/policies/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles

56 Kubernetes

4.11 Addition Of New Kubernetes Users
BCM users can use Kubernetes by making them Kubernetes users. This means having Kubernetes con-
figuration and access set up for them. This can be carried out a via the cm-kubernetes-setup TUI utility,
and choosing the Add user option (figure 4.3). The utility then prompts for

• a Kubernetes cluster

• a user name

• a namespace that the privileges are to be assigned to

• a role for the user, with choices provided from:

– cluster-admin: cluster-wide administrator

– admin: administrator

– edit: regular user

– view: read-only user

• a switch if the user is allowed to run as any user, including root, inside pods

• a comma-separated list of paths that the user is able to mount to pods

• the UIDs and GIDs for user processes in pods

• a list of the Kubernetes operators that a user can use

Based on the input, a YAML for the Kubernetes Permission Manager is generated. This in turn,
creates a Helm chart with all the required roles, role bindings, and Kyverno rules.

Creation of the user also triggers CMDaemon to create certificate and configuration files in the
�/.kube directory

4.11.1 Adding Users Non-Interactively With cm-kubernetes-setup

The cm-kubernetes-setup CLI wizard provides the following options:

cm-kubernetes-setup -h

usage: Kubernetes Setup cm-kubernetes-setup

[-c <config_file>]

[--cluster CLUSTER_NAME]

[--skip-docker] [--skip-reboot]

[--skip-image-update]

[--add-user USERNAME_ADD] [--list-users] [--get-user GET_USER]

[--modify-user USERNAME_MODIFY] [--remove-user USERNAME_REMOVE]

[--namespace NAMESPACE] [--add-to-namespace] [--remove-from-namespace]

[--role edit,admin,view,cluster-admin]

[--runas-uid RUNAS_UID] [--runas-gids RUNAS_GIDS]

[--user-paths USER_PATHS]

[--allow-all-uids]

[--operators OPERATORS]

[--backup-permissions FILE] [--restore-permissions FILE]

[--list-operators]

[--update-addons] [--remove]

[--yes-i-really-mean-it]

[--remove-ceph-storage] [--pull]

[--images IMAGES] [--nodes NODES]

[--node-selector NODE_SELECTOR]

[--pull-registry-server PULL_REGISTRY_SERVER]

4.11 Addition Of New Kubernetes Users 57

[--pull-registry-username PULL_REGISTRY_USERNAME]

[--pull-registry-email PULL_REGISTRY_EMAIL]

[--pull-registry-password PULL_REGISTRY_PASSWORD]

[--allow-device-mapper] [-v]

[--no-distro-checks] [--json]

[--output-remote-execution-runner]

[--on-error-action debug,remotedebug,undo,abort]

[--skip-packages]

[--min-reboot-timeout <reboot_timeout_seconds>]

[--allow-running-from-secondary]

[--dev] [-h]

...

The user has to be a user that exists on the cluster already and available via PAM.
If --add-to-namespace is specified, then the namespace has to exist on the Kubernetes cluster al-

ready.

Example

cm-kubernetes-setup --add-user john

The preceding example creates a user john for the default john-restricted namespace. It also
assigns the edit role, and gives permission to run processes in the pod with the current UID/GIDs of
the user. The ability to mount ~/john as a hostPath is also provided.

A way to assign any of the default Kubernetes user-facing roles is also provided by using
--role key, as documented at https://kubernetes.io/docs/reference/access-authn-authz/rbac/
#user-facing-roles

The possible roles are: view, edit, admin, and cluster-admin.

Example

cm-kubernetes-setup --add-user john --role view

The preceding example creates a user johnwith view privileges only, for the default john-restricted
namespace.

Example

cm-kubernetes-setup --add-user john --user-paths /home/john,/scratch --allow-all-uids \

--operators cm-jupyter-kernel-operator

The preceding example creates a user john with the following privileges:

• edit privileges

• able to mount /home/john and /scratch as hostPath volume, when the process runs with
UID/GIDs taken from the PAM subsystem on the moment of creation

• able to run as any user, including root (attempts to mount any hostPath volume will be rejected)

• access to the Jupyter Kernel Operator, i.e. with access to the resource kind:

CmKubernetesOperatorPermissionsJupyterKernel

https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles
https://kubernetes.io/docs/reference/access-authn-authz/rbac/#user-facing-roles

58 Kubernetes

4.12 Getting Information And Modifying Existing Kubernetes Users
It is possible to edit user properties and permissions. cm-kubernetes-setup provides 2 ways of doing
it: interactively or via CLI options.

Modifying users can be done interactively by choosing Modify User in the cm-kubernetes-setup

main menu. Guidance is then given on choosing the cluster, users, and on modifying permissions.
Modifying users can also be done via CLI options, by specifying the --modify-user argument:

Example

cm-kubernetes-setup --add-user john --user-paths /home/john \

--allow-all-uids --operators cm-jupyter-kernel-operator

The default john-restricted namespace is created as user john is added, along with the settings speci-
fied by the other options. The following example then adds permission to mount the /scratch hostPath
into pods, and gives access to the Postgres Operator:

cm-kubernetes-setup --modify-user john --user-paths /home/john,/scratch --namespace john-restricted\

--allow-all-uids --operators cm-jupyter-kernel-operator,cm-kubernetes-postgresql-operator

Information about existing users can be found with:

Example

cm-kubernetes-setup --list-users

Permission for user john to operate in the dev namespace can be added with:

Example

kubectl create namespace dev

cm-kubernetes-setup --modify-user john --namespace dev --add-to-namespace

Permission for the user john to operate in the dev namespace can be revoked with:

Example

kubectl create namespace dev

cm-kubernetes-setup --modify-user john --namespace dev --remove-from-namespace

4.13 List Of Resources Defined For Users
These resources are rendered by the Permission Manager Operator, and can therefore be found inside
Kubernetes.

The Role Bindings Deployed For Every User By Default
By default, the role bindings deployed for the user john created in the preceding section are:

• ClusterRole/john-nodes (in namespace john-restricted)

• ClusterRoleBinding/john-nodes (in namespace john-restricted)

User john is given read-only rights for the Nodes resource (for kubectl get nodes).

4.13 List Of Resources Defined For Users 59

The Secure Namespace Related Resources
The secure namespace for user john is:

• Namespace/john-restricted

The service account used by john:

• ServiceAccount/john (in namespace john-restricted)

This is found referenced, for example, in john’s $HOME/.kube/config.
The PodSecurityPolicy that defines the user can run non-privileged pods, and use only ports above

1024, and so on:

• PodSecurityPolicy/john-restricted (in namespace john-restricted)

More details on this can be found in section 4.10, page 55. This policy will only do something as soon
as the PodSecurityPolicy Admission Controller is enabled in the API server.

A PodSecurityPolicy that defines the user can run as root as well, but without hostPath volumes:

• PodSecurityPolicy/john-restricted-root (in namespace john-restricted)

To give the aforementioned privileges to john’s secure namespace, so that john can run workloads,
execute kubectl get all, and more:

• Role/john-restricted (in namespace john-restricted)

• RoleBinding/john-restricted (in namespace john-restricted)

The RoleBinding assigns it to the user john and ServiceAccount account for john. The
upstream documentation at https://kubernetes.io/docs/reference/access-authn-authz/

service-accounts-admin has more details on this.
The user john can be given the ability to use the PodSecurityPolicy defined earlier in his secure

namespace, but also in other namespaces:

• ClusterRole/john-psp (in namespace john-restricted)

• ClusterRoleBinding/john-psp (in namespace john-restricted)

The same ability can be given for the second root but no hostPath PodSecurityPolicy:

• ClusterRole/john-psp-root (in namespace john-restricted)

• ClusterRoleBinding/john-psp-root (in namespace john-restricted)

If the Kyverno engine is installed then several policies are added:

• clusterpolicies.kyverno.io/john-*-drop-privs-w-hostpath*: Policy to modify pod mani-
fests to run process with specified UID/GID

• clusterpolicies.kyverno.io/john-*-limit-hostpath-vols: Policy to deny pods if hostPath
volumes does not match specified paths

The full content of all the documents created for the user can be viewed by checking the generated
Helm manifest:

Example

helm get manifest -n cm-permissions john-XXXXXX

https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin
https://kubernetes.io/docs/reference/access-authn-authz/service-accounts-admin

60 Kubernetes

4.14 Kyverno
Kyverno (https://kyverno.io/) is a policy engine designed for Kubernetes. With Kyverno, policies
are managed as Kubernetes resources, and no new language is required to write policies. This allows
the use of familiar tools such as kubectl, git, and kustomize to manage policies. Kyverno policies can
validate, mutate, and generate Kubernetes resources, as well as ensure OCI image supply chain security.

4.14.1 Kyverno Installation
Kyverno engine and Kyverno policy Helm charts can be installed as a part of cm-kubernetes-setup:

Figure 4.7: Choosing Kyverno installation

Figure 4.8: Kyverno high availability setup

https://kyverno.io/

4.14 Kyverno 61

Figure 4.9: Kyverno policy setup

The installation adds 2 Helm charts in the namespace ’kyverno’:

[root@basecm10 ~]# module load kubernetes/

[root@basecm10 ~]# helm list -n kyverno

NAME NAMESPACE STATUS ... CHART APP VERSION

kyverno kyverno deployed ... kyverno-v2.5.2 v1.7.2

kyverno-policies kyverno deployed ... kyverno-policies-v2.5.2 v1.7.2

If the HA option is chosen, then the replica count value is set to 3.

[root@basecm10 ~]# helm get values -n kyverno kyverno

USER-SUPPLIED VALUES:

replicaCount: 3

This means that at any given time Kubernetes scheduler tries to run 3 pods at the same time:

[root@basecm10 ~]# kubectl get pods -n kyverno

NAME READY STATUS RESTARTS AGE

kyverno-5bfb99b9c9-ddmmw 1/1 Running 0 1h

kyverno-5bfb99b9c9-hgfsc 1/1 Running 0 1h

kyverno-5bfb99b9c9-n67rv 1/1 Running 0 1h

4.14.2 Kyverno Policies
It is also recommended to install Kyverno policies in order to enforce Pod Security Standards https:

//kyverno.io/policies/. BCM configures Kyverno policies in ’enforce’ mode, adding service names-
paces as exclusions. The list of namespaces to be excluded from particular policies depend on the se-
lected features during install:

[root@basecm10 ~]# helm get values -n kyverno kyverno-policies

USER-SUPPLIED VALUES:

validationFailureAction: enforce

policyExclude:

disallow-host-namespaces:

any:

- resources:

kinds:

https://kyverno.io/policies/
https://kyverno.io/policies/

62 Kubernetes

- Pod

namespaces:

- default

- prometheus

disallow-host-path:

any:

- resources:

kinds:

- Pod

namespaces:

- default

- local-path-storage

- '*-restricted'

- prometheus

- kube-system

- gpu-operator

disallow-host-ports:

any:

- resources:

kinds:

- Pod

namespaces:

- default

- prometheus

In the preceding output, all namespaces that match the wildcard *-restricted are excluded from
the policy named ’disallow-host-path’ (https://kyverno.io/policies/pod-security/baseline/
disallow-host-path/disallow-host-path/). This means that, without additional restrictions, all
pods in the user namespaces can mount any host path from an underlying node.

To prevent that Kubernetes Permission Manager creates a Kyverno Cluster Policy for every newly-
created user, and restricts the hostPath to only the home directory of the user:

[root@basecm10 ~]# kubectl get clusterpolicies.kyverno.io | grep john

john-n730sr0-drop-privs-w-hostpath false enforce true

john-n730sr0-drop-privs-w-hostpath-containers false enforce true

john-n730sr0-drop-privs-w-hostpath-initcontainers false enforce true

john-n730sr0-limit-hostpath-vols false enforce true

4.15 Kubernetes Permission Manager
The Kubernetes permission manager is a custom operator based on Helm. It helps to manage user
and system account permissions, roles, role bindings and pod security policies. The operator itself
is packed and distributed as a Helm chart, so it can be installed during Kubernetes cluster creation
via the cm-kubernetes-setup TUI. The Helm chart for the operator is located in /cm/shared/apps/

kubernetes-permissions-manager/current/helm. The output to the following command shows if it
is installed:

[root@basecm10 ~]# module load kubernetes/

[root@basecm10 ~]# helm list -n cm

NAME NAMESPACE STATUS ... CHART APP VERSION

local-path-provisioner cm deployed ... cm-kubernetes-local-path-provisioner-0.0.20 0.0.20

permissions-manager cm deployed ... cm-kubernetes-permissions-manager-0.0.1 0.0.1

The Helm chart of the operator includes custom resource definitions (CRD), and makes it possible for
the administrator to manage resources using the kubectl tool:

https://kyverno.io/policies/pod-security/baseline/disallow-host-path/disallow-host-path/
https://kyverno.io/policies/pod-security/baseline/disallow-host-path/disallow-host-path/
/cm/shared/apps/kubernetes-permissions-manager/current/helm
/cm/shared/apps/kubernetes-permissions-manager/current/helm

4.15 Kubernetes Permission Manager 63

Example

[root@basecm10 ~]# cat > permissions.yaml<<EOF

apiVersion: charts.brightcomputing.com/v1alpha1

kind: CmKubernetesPermissionUser

metadata:

labels:

namespace: cmsupport-restricted

username: cmsupport

name: cmsupport-c7tk7ft

namespace: cm-permissions

spec:

allow_all_uids: false

allowPrivilegeEscalation: false

allowPrivileged: false

create_namespace: true

create_service_account: true

gids:

- 1000

namespace: cmsupport-restricted

psp_spec_override:

role: edit

uid: 1000

user_paths:

- /home/cmsupport

username: cmsupport

EOF

[root@basecm10 ~]# kubectl apply -f permissions.yaml

cmkubernetespermissionuser.charts.brightcomputing.com/cmsupport-c7tk7ft created

[root@basecm10 ~]# kubectl get cmkubernetespermissionusers -A

NAMESPACE NAME AGE

cm-permissions cmsupport-c7tk7ft 22s

At the time of writing of this section (December 2021), the permission manager handles these 4 CRDs:

1. cmkubernetespermissionusers to manage user access to generic resources of the cluster, such as
pods, services, secrets, configmaps, etc.

2. cmkubernetesoperatorpermissionsjupyterkernels to manage access to the Jupyter Kernels.

3. cmkubernetesoperatorpermissionspostgresqls to manage access to the Postgres operator (https:
//github.com/zalando/postgres-operator).

4. cmkubernetesoperatorpermissionssparks to manage access to the Google Spark operator (https:
//github.com/GoogleCloudPlatform/spark-on-k8s-operator).

Providing access to third party operators is necessary if pod security policy is enabled. This is be-
cause, by default, not only does the user have no access to CRDs, but also the service accounts of the
third party operators have no access to the user namespace.

The following example is a YAML document that provides access to the Jupyter Kernel Operator:

apiVersion: charts.brightcomputing.com/v1alpha1

kind: CmKubernetesOperatorPermissionsJupyterKernel

metadata:

labels:

namespace: cmsupport-restricted

username: cmsupport

https://github.com/zalando/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator

64 Kubernetes

name: cmsupport-unz4wlf

namespace: cm-permissions

spec:

namespace: cmsupport-restricted

username: cmsupport

Every installed CRD document triggers the Kubernetes permission operator to create a correspond-
ing Helm chart:

helm get values -n cm-permissions cmsupport-unz4wlf

USER-SUPPLIED VALUES:

namespace: cmsupport-restricted

username: cmsupport

helm get manifest -n cm-permissions cmsupport-unz4wlf

Source: cm-kubernetes-operator-permissions-jupyter-kernel/templates/user-permissions.yaml

Bind policy to service user

apiVersion: rbac.authorization.k8s.io/v1

kind: ClusterRoleBinding

metadata:

name: cmsupport-unz4wlf-cmsupport-psp

labels:

helm.sh/chart: cmsupport-unz4wlf

app.kubernetes.io/name: cm-kubernetes-operator-permissions-jupyter-kernel

app.kubernetes.io/instance: cmsupport-unz4wlf

app.kubernetes.io/version: "0.0.1"

app.kubernetes.io/managed-by: Helm

subjects:

- kind: ServiceAccount

name: default

namespace: cmsupport-restricted

roleRef:

kind: ClusterRole

name: cmsupport-psp

apiGroup: rbac.authorization.k8s.io

...

It is also possible to customize the resulting Helm chart by specifying additional values to specify a
section of the CRD. Available values for the Jupyter kernel can be checked using the following command:

kubectl exec -it -n cmkpm-system \

$(kubectl get pods -n cmkpm-system -l control-plane=controller-manager -o name) \

-c manager -- \

cat /opt/helm/helm-charts/cm-kubernetes-operator-permissions-jupyter-kernel/values.yaml

Similarly, tunables for the generic user permissions of the user are available via:

kubectl exec -it -n cmkpm-system \

$(kubectl get pods -n cmkpm-system -l control-plane=controller-manager -o name) \

-c manager -- cat /opt/helm/helm-charts/cm-kubernetes-permission-user/values.yaml

The output should be similar to:

username: "" # name of the user

create_service_account: true # whether to create kubernetes serviceaccount for the user

role: edit # user role

user_paths: [] # hostPath user able to mount to pods

4.16 Providing Access To External Users 65

uid: -1 # UID to run process inside pods

gids: [-1] # list of the GIDs for process inside pods

namespace: "" # namespace to give user permissions to

create_namespace: true # create or not the namespace

allowPrivilegeEscalation: false

allowPrivileged: false

allow_all_uids: true # allow or not to run process as any user including root

if 'true' and process is run not with user's UID, then

all hostPath volumes are denied

psp_spec_override: # custom PSP definition for the user

4.16 Providing Access To External Users
To provide access to users on an external network, the requirements are:

• for kubectl, an entry in the company/internal DNS server should resolve the external FQDN to
the head node or to one of the nodes where Kubernetes is running;

• for the Kubernetes Dashboard, dashboard is a subdomain that must be included as a DNS entry
under the external FQDN.

The external FQDN, which is set during the Kubernetes cluster setup, is the first item in the list of
trusted domains. This can be retrieved from the Kubernetes cluster entity with cmsh as follows:

Example

[basecm10->kubernetes[default]]% get trusteddomains

basecm10.example.com

kubernetes

kubernetes.default

kubernetes.default.svc

master

localhost

In the preceding example, the FQDN of the cluster is basecm10.example.com. The cluster adminis-
trator managing their own cluster will have another FQDN, and not this FQDN.

For kubectl, the Kubernetes API server proxy port should be open to the external network. The
proxy port can be retrieved from the Kubernetes cluster entity as follows:

[basecm10->kubernetes[default]]% get kubernetesapiserverproxyport

10443

For the Kubernetes Dashboard, the Ingress Controller HTTPS port should be open to the external
network. This port, by default with a value of 30443, can be retrieved from the ingress_controller

add-on environment:

Example

[basecm10->kubernetes[default]]% appgroups

[basecm10->kubernetes[default]->appgroups]% applications system

[basecm10->kubernetes[default]->appgroups[system]->applications]% environment ingress_controller

[basecm10->...applications[ingress_controller]->environment]% list

Name (key) Value Nodes environment

--------------------------- --------------------------------------- ------------------

CM_KUBE_EXTERNAL_FQDN basecm10.example.com yes

CM_KUBE_INGRESS_HTTPS_PORT 30443 yes

CM_KUBE_INGRESS_HTTP_PORT 30080 yes

ingress_controller_label brightcomputing.com/ingress-controller no

replicas 1 no

66 Kubernetes

If exposing the Kubernetes API server to the external network is selected during setup with
cm-kubernetes-setup, then the HTTPS and HTTP ports in the preceding example are opened on the
Shorewall service that runs on the head node. Exposure to the external network is enabled by default.

Convention Of Using A Domain Name As A Prefix Label
In the preceding example, the brightcomputing.com prefix that is part of the value for
ingress_controller_label is just a label rather than a domain. The reason that prefix is used is
that it simply follows the convention of using domain names as labels, such as is done by the Kuber-
netes community (domain: kubernetes.io) and RHEL OpenShift (domain: openshift.io). The prefix
brightcomputing.com could equally well have been the prefix brightaccess instead. However it is
probably less confusing now to follow the established convention. So that is what is done here for the
label.

Users Can Access The Kubernetes Dashboard
Users can access the Kubernetes Dashboard using dashboard. By default, the URL takes the FQDN and
the port value along with the dashboard subdomain, and has the form:

https://dashboard.<CM_KUBE_EXTERNAL_FQDN>:<CM_KUBE_INGRESS_HTTPS_PORT>

So, for example, it could be something like:

Example

https://dashboard.basecm10.example.com:30443

Ingress Configuration For Dashboard In cmsh

The default Ingress rule described earlier can be found as an object within cmsh:

[basecm10->kubernetes[default]->appgroups[system]->applications[dashboard_ingress]]% get config

apiVersion: networking.k8s.io/v1beta1

kind: Ingress

metadata:

name: kubernetes-dashboard

namespace: kubernetes-dashboard

annotations:

kubernetes.io/ingress.class: "nginx"

nginx.ingress.kubernetes.io/secure-backends: "true"

nginx.ingress.kubernetes.io/ssl-passthrough: "true"

nginx.ingress.kubernetes.io/backend-protocol: "HTTPS"

spec:

rules:

- host: "dashboard.$CM_KUBE_EXTERNAL_FQDN"

http:

paths:

- path: /

backend:

serviceName: kubernetes-dashboard

servicePort: 443

Using kubectl, the Ingress resource can be found with:

bash$ kubectl get ingress -n kubernetes-dashboard

NAME HOSTS ADDRESS PORTS AGE

kubernetes-dashboard dashboard.cluster1.local 10.150.153.251 80 45h

kubernetes.io
openshift.io

4.17 Networking Model 67

The official documentation for Ingress, at https://v1-16.docs.kubernetes.io/docs/concepts/
services-networking/ingress/, explains it well. Path rewrites without domain names can also be
used to set up Ingress with multiple backends (serviceName and servicePort pairs), without having to
deal with setting up a DNS.

Ingress Controller Running On Compute Nodes
For scenarios where the head node is not involved in a Kubernetes setup, BCM does not currently
set up any forwarding for the Ingress Controller. BCM does set up an NGINX proxy to expose the
Kubernetes API Server in such cases, and accessing the Dashboard can then be done with the kubectl

proxy approach.
For now a workaround to forward Ingress to a compute node can be achieved with port-forwarding,

for example by adding the following line to /etc/shorewall/rules in Shorewall (section 7.2 of the
Installation Manual):

Example

DNAT net nat:10.141.0.1:30443 tcp 30443

Using One Ingress Controller For Multiple Kubernetes Clusters
BCM does not offer an out-of-the-box solution for one Ingress Controller with multiple Kubernetes
clusters. This configuration can be achieved by configuring software such as NGINX to proxy, based on
the domain name to the appropriate backend(s).

4.17 Networking Model
Kubernetes expects all pods to have unique IP addresses, which are reachable from within the cluster.
This can be implemented in several ways, including adding pod network interfaces to a network bridge
created on each host, or by using 3rd party tools to manage pod virtual networks.

With BCM the default pod network provider is Calico (https://www.projectcalico.org/). Calico
uses the Border Gateway Protocol (BGP) to distribute routes for every Kubernetes pod. This allows
the Kubernetes cluster to be integrated without the need for overlays (IP-in-IP). Calico is particularly
suitable for large Kubernetes deployments on bare metal, or in private clouds. This is because for larger
deployments the performance and complexity costs of overlay networks can become significant.

4.18 Kubernetes Monitoring
When cm-kubernetes-setup is run, it configures the following Kubernetes-related health checks:

1. KubernetesChildNode: checks if all the expected agents and services are up and running for active
nodes

2. KubernetesComponentsStatus: checks if all the daemons running on a node are healthy

3. KubernetesNodesStatus: checks if Kubernetes nodes have a status of Ready

4. KubernetesPodsStatus: checks if all the pods are in one of these states: Running, Succeeded, or
Pending

4.19 Local Path Storage Class
For storage, instead of creating Kubernetes PersistentVolumes every time, a modern and practical way
is to use the StorageClass feature.

Further documentation on StorageClass is available at:

• http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html

https://v1-16.docs.kubernetes.io/docs/concepts/services-networking/ingress/
https://v1-16.docs.kubernetes.io/docs/concepts/services-networking/ingress/
https://www.projectcalico.org/
http://blog.kubernetes.io/2016/10/dynamic-provisioning-and-storage-in-kubernetes.html

68 Kubernetes

• https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses

As a part of initial installation it is possible to choose a Local Path Storage class to utilize the shared
storage mounted on every node of the Kubernetes cluster. Possible options include any POSIX shared
filesystems, such as NFS, BeeGFS, LustreFS, etc.

Figure 4.10: Kubernetes setup TUI session: local storage configuration

During setup, the installation wizard asks for a path for where Kubernetes physical volumes (PV)
will be physically located. This path should be located on a shared filesystem accessible from all nodes.

After installation, the storage class can be seen to be available with:

kubectl get storageclasses.storage.k8s.io

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

local-path (default) rancher.io/local-path Delete Immediate false 1h

Users of the cluster can then freely create persistent volume claims (PVC) resources and use them in
running pods.

4.20 Setup Of A Storage Class For Ceph
Pods running on Kubernetes can use Ceph as a distributed storage system to store data in a persistent
way.

This section assumes a working Ceph cluster. Ceph installation for BCM is covered in Chapter 9 of
the Administrator Manual.

A new pool kube can be created with a replication factor of 3:

Example

[root@basecm10 ~]# ceph osd pool create kube 100 100

pool 'kube' created

[root@basecm10 ~]# ceph osd pool set kube size 3

set ppol 1 size to 3

[root@basecm10 ~]# ceph osd pool set kube min_size 1

set pool 1 min_size to 1

The parameters settings in the preceding example are documented at the Ceph website, at

• http://docs.ceph.com/docs/master/rados/operations/pools/ for documentation on Ceph op-
erations

• http://docs.ceph.com/docs/master/rados/configuration/pool-pg-config-ref/ for documen-
tation on Ceph pool and PG (placement group) configuration

The pods of a given namespace have to have access to the Ceph RBD images created to back the
volumes.

A kube client can be created with:

Example

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#storageclasses
http://docs.ceph.com/docs/master/rados/operations/pools/
http://docs.ceph.com/docs/master/rados/configuration/pool-pg-config-ref/

4.20 Setup Of A Storage Class For Ceph 69

[root@basecm10 ~]# ceph auth get-or-create client.kube mon 'allow r' osd 'allow rwx pool=kube'

[client.kube]

key = AQCnOvdZpYewBBAAWv1d7c7/XbEvj7QO7N0THg==

A list of the current users, and their access control can be viewed with (some output elided):

Example

[root@basecm10 ~]# ceph auth list

installed auth entries:

osd.0

key: AQD9M/dZw8HPNRAAT+X8mGSgRUkjLnQo38j4EA==

caps: [mon] allow rwx

caps: [osd] allow *

osd.1

...

client.admin

key: AQCnM/dZONOPMxAAwqY9ADbJV+6i2Uq/ZNqh5A==

auid: 0

caps: [mds] allow *

caps: [mgr] allow *

caps: [mon] allow *

caps: [osd] allow *

...

client.kube

key: AQCnOvdZpYewBBAAWv1d7c7/XbEvj7QO7N0THg==

caps: [mon] allow r

caps: [osd] allow rwx pool=kube

The kube user must be able to map images. The kube configuration must therefore look similar to
the section for client.kube in the preceding example.

A Kubernetes secret must be created in the default namespace, and in every Kubernetes namespace
that needs storage, using the Ceph user key:

Example

[root@basecm10 ~]# kubectl create secret generic ceph-secret-user \
--from-literal=userKey=$(ceph auth get-key client.kube) --from-literal=userID=kube \
--namespace=default

secret "ceph-secret-user" created

The Ceph cluster ID can be retrieved by running Ceph’s fsid command. The fsid command was
given its name because it originally retrieved a file system ID. However, Ceph has evolved since that
time, and a file system is not required for the ID to be retrieved for Ceph storage. The ID is now a general
ID for the Ceph storage system:

Example

[root@basecm10 ~]# ceph fsid

fe513405-53f6-40a0-8ccb-651e1935c5e4

Ceph monitor <IP address>:<port> values can be found by running ceph mon stat:

Example

[root@basecm10 ~]# ceph mon stat

e1: 3 mons at {node001=10.141.0.1:6789/0,node002=10.141.0.2:6789/0,node003=10.141.0.3:6789/0},\
election epoch 38, quorum 0,1,2 node001,node002,node003

70 Kubernetes

The Helm repository ceph-csi has the container storage interface drivers for Ceph. It can be added
with:

Example

[root@basecm10 ~]# helm repo add ceph-csi https://ceph.github.io/csi-charts

"ceph-csi" has been added to your repositories

A request can be made to add a chart ceph-csi-rbd for a RADOS block device image that provides
default information for the pods to come up:

Example

[root@basecm10 ~]# helm install --namespace "ceph-csi-rbd" "ceph-csi-rbd" ceph-csi/ceph-csi-rbd \
--create-namespace --set nodeplugin.httpMetrics.containerPort=8082 \
--set provisioner.httpMetrics.containerPort=8082

The configmap has to be adjusted to add the Ceph cluster that is used for the storageclass in config.json.
The cluster ID, as well as the Ceph monitor IP addresses and ports match the Ceph information from
earlier on.

Example

kubectl describe configmap -n ceph-csi-rbd ceph-csi-config

Name: ceph-csi-config

Namespace: ceph-csi-rbd

Labels: app=ceph-csi-rbd

app.kubernetes.io/managed-by=Helm

chart=ceph-csi-rbd-3.9.0

component=nodeplugin

heritage=Helm

release=ceph-csi-rbd

Annotations: meta.helm.sh/release-name: ceph-csi-rbd

meta.helm.sh/release-namespace: ceph-csi-rbd

Data

====

cluster-mapping.json:

[]

config.json:

[

{

"clusterID": "fe513405-53f6-40a0-8ccb-651e1935c5e4",

"monitors":["10.141.0.1:6789", "10.141.0.2:6789", "10.141.0.3:6789"]

}

]

BinaryData

====

Events: <none>

At this point, a storage-class.yml file can then be created, similar to:

Example

4.21 Integration With Harbor 71

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

name: fast

parameters:

clusterID: fe513405-53f6-40a0-8ccb-651e1935c5e4

imageFeatures: layering

imageFormat: "2"

pool: kube

csi.storage.k8s.io/provisioner-secret-name: ceph-secret-user

csi.storage.k8s.io/provisioner-secret-namespace: default

provisioner: rbd.csi.ceph.com

reclaimPolicy: Delete

volumeBindingMode: Immediate

In the preceding YAML file clusterID and pool must be set to the appropriate values.
Details about the StorageClass parameters can be found at: https://github.com/ceph/ceph-csi/

blob/devel/examples/rbd/storageclass.yaml

The Kubernetes storage class for Ceph RBD can now be created:

Example

[root@basecm10 ~]# kubectl apply -f storage-class.yml

storageclass.storage.k8s.io/fast created

To verify that it has been created, the new StorageClass can be listed with:

Example

[root@basecm10 ~]# kubectl get sc

NAME PROVISIONER RECLAIMPOLICY VOLUMEBINDINGMODE ALLOWVOLUMEEXPANSION AGE

fast rbd.csi.ceph.com Delete Immediate false 33s

4.21 Integration With Harbor
In order to spawn pods that use images from the Harbor registry, a secret must first be created with the
credentials:

[root@basecm10 ~]# kubectl create secret docker-registry myregistrykey \
--docker-server=node001:9443 --docker-username=admin --docker-password=Harbor12345

The secret must then be referenced from the pod:

apiVersion: v1

kind: Pod

metadata:

name: foo

spec:

containers:

- name: foo

image: node001:9443/library/nginx

imagePullSecrets:

- name: myregistrykey

Further information on this is available at https://kubernetes.io/docs/concepts/containers/
images/#specifying-imagepullsecrets-on-a-pod.

https://github.com/ceph/ceph-csi/blob/devel/examples/rbd/storageclass.yaml
https://github.com/ceph/ceph-csi/blob/devel/examples/rbd/storageclass.yaml
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod
https://kubernetes.io/docs/concepts/containers/images/#specifying-imagepullsecrets-on-a-pod

72 Kubernetes

4.22 Kubernetes Upgrades
This section assumes that an upgrade to a BCM Kubernetes is being considered. This means that it is
assumed to have been set up with cm-kubernetes-setup.

Upgrades to Kubernetes can be done by following the principles behind the official upstream docu-
mentation at https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/.

The following points must be kept in mind when upgrading a BCM Kubernetes cluster:

• Nodes that are part of the cluster may be provisioned through their software image.

• The Kubernetes version in BCM must manually be updated to match the version of the upgrade.

• Only some Kubernetes versions are supported. A list of supported available versions can be re-
trieved with:

Example

[root@basecm10 ~]# cm-kubernetes-setup --list-versions

1.30

1.29 (NVIDIA AI Enterprise certified)

1.28 (NVIDIA AI Enterprise certified)

1.27 (NVIDIA AI Enterprise certified)

In the example that follows, a BCM cluster is upgraded from Kubernetes 1.27.13 to Kubernetes 1.28.9.
At the time of writing (May 2024) the URL for the upstream documentation redirects the readers to

the upgrade instructions for, among others, 1.27 to 1.28.

4.22.1 Upgrade Prerequisites
Kubernetes is not a single entity for upgrade purposes. There is a single driver, the kubeadm program,
which is used to plan and execute the upgrade, but it does it only for itself and a handful of components
central to Kubernetes’ functionality. Kubernetes does not have ways to manage its third-party compo-
nents with kubeadm’s upgrade planning and execution. This means that multiple Kubernetes compo-
nents that are essential to Kubernetes are not involved in the upgrade process. If these components are
neglected during an upgrade, then they can either prevent successful completion of the upgrade, or can
themselves fail as a result of the upgrade.

Some noteworthy components that are excluded by upgrades are the etcd database, CNIs, CSIs,
container runtimes, as well as individual pods not managed by higher-level entities such as Deployment,
ReplicaSet and so on. The Kubernetes documentation at

https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#pod-disruption-budgets

describes the workings of the eviction process in greater detail.
Kubernetes upgrades assume that various entities, in particular, pods, can migrate away from the

node being upgraded. This assumption may not be true because of various constraints on pod schedul-
ing. The constraints need to be satisfied or worked around in order for migration to work. Particular
care has to be taken when dealing with persistent volumes or physical resources such as GPUs that
cannot migrate, but are needed for a pod to be deployed.

Hot And Cold Upgrades
• A hot upgrade is one that allows the system to stay online at all times.

• A cold upgrade is one that requires at least a brief service interruption.

Since Kubernetes is aimed at providing 100% system uptime, the upgrade process is designed to be hot.
The cluster administrator carrying out the hot upgrade does however need to make an effort for the
instances where Kubernetes cannot ensure service uptime.

https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/concepts/workloads/pods/disruptions/#pod-disruption-budgets

4.22 Kubernetes Upgrades 73

Upgrading components that cannot be stopped in a regular manner: One common problem with hot
upgrades is the need to migrate or to stop DaemonSet pods. These are intended to run on all Kuber-
netes nodes, even those being drained. Kubernetes can be told to ignore DaemonSet pods by using the
--ignore-daemonsets option. The problem with doing that is that it avoids upgrading those pods, and
also typically avoids upgrading the third-party component that created them. To ensure upgrade com-
pletion, the administrator has to carry out a separate upgrade action, appropriate for each component
ignored in this way.

Upgrading gradually: Kubernetes upgrades come without any tools to perform upgrades at scale.
The available tools can only upgrade a single node at a time. This means that, especially for larger
clusters, the administrator needs to carry out the upgrade gradually, and has to plan and allocate extra
capacity to accommodate pods migrated from nodes being upgraded. Special precautions need to be
taken when dealing with deployments which require larger replica counts. Administrators may need
to perform special procedures. Third-party components in particular may require the simultaneous
presence of multiple entities across multiple nodes, in order to be able to upgrade those components
without a service interruption.

Finally, it is possible that some components are simply not designed for hot upgrades. In that case,
administrators have to remove those components from the system, and install the newer version, with
the downtime depending on each individual case.

4.22.2 Example RHEL9 Cluster
A cluster with 3 nodes that run the control plane, and based on RHEL9, is considered as a reference
example. One control plane node is the single head node, and the other two control plane nodes are
two regular (compute) nodes. There are four additional worker-only nodes, and all the non-head nodes
share the same category and software image.

[root@basecm10 ~]# module load kubernetes

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready control-plane,master,worker 8m25s v1.27.13

node002 Ready control-plane,master,worker 8m25s v1.27.13

node003 Ready worker 8m43s v1.27.13

node004 Ready worker 8m41s v1.27.13

node005 Ready worker 8m42s v1.27.13

node006 Ready worker 8m41s v1.27.13

basecm10 Ready control-plane,master 9m22s v1.27.13

4.22.3 Before Starting The Upgrade
The upstream instructions at https://v1-28.docs.kubernetes.io/docs/tasks/administer-cluster/
kubeadm/kubeadm-upgrade/#before-you-begin, on preparing for the upgrade should be read. A node
that is to be upgraded must be drained.

4.22.4 Updating The First Control Plane Node
The first control plane node is upgraded in this section.

Instead of going into much detail on upgrades—the official documentation at https://kubernetes.
io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/ does a good job—an example cov-
ering an upgrade to a Rocky cluster running Kubernetes version 1.27 is shown that uses the official
documentation for guidance. Instructions for Ubuntu differ slightly but can be carried out in a similar
way.

Typically the control plane is on the head node, so that the cluster administrator starts with updating
the control plane being run by the head node. However, for completeness, the two subsections that
follow describe updating the control plane if starting with:

https://v1-28.docs.kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/#before-you-begin
https://v1-28.docs.kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/#before-you-begin
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/

74 Kubernetes

• either the head node

• or a compute node

Upgrading A Control Plane Node Starting With The Head Node
To upgrade the control plane when the head node is the first node to be upgraded, the repository entry
for picking up packages from the Kubernetes repository should have the new version set.

Example

[root@basecm10 ~]# grep -ir kubernetes /etc/yum.repos.d/* #is anything already there?

/etc/yum.repos.d/kubernetes.repo:[kubernetes]

/etc/yum.repos.d/kubernetes.repo:name=Kubernetes

/etc/yum.repos.d/kubernetes.repo:exclude=kubelet kubeadm kubectl cri-tools kubernetes-cni

[root@basecm10 ~]# grep v /etc/yum.repos.d/kubernetes.repo #what version is fetched?

baseurl=https://pkgs.k8s.io/core:/stable:/v1.27/rpm/

gpgkey=https://pkgs.k8s.io/core:/stable:/v1.27/rpm/repodata/repomd.xml.key

The grep outputs confirm there is a repository file, and that it is set to pick up Kubernetes version
1.27. The .27 indicates what is called the minor version in Kubernetes. To instead pick up version
1.28, the upstream documentation instructs changing the minor version in the repository file to the next
minor version upgrade number, so here from v1.27 to v1.28. Skipping minor versions for upgrades is
unsupported.

An additional check to confirm the running version is:

[root@basecm10 ~]# kubeadm version

kubeadm version: &version.Info{Major:"1", Minor:"27", GitVersion:"v1.27.13", GitCommit: ...

The minor version in kubernetes.repo is changed from v1.27 to v1.28 using a text editor. The
installation for a new kubeadm can then be carried out with:

[root@basecm10 ~]# yum install -y kubeadm --disableexcludes=kubernetes

...

[root@basecm10 ~]# kubeadm version #should now show we are at version 1.28

kubeadm version: &version.Info{Major:"1", Minor:"28", GitVersion:"v1.28.9", ...

The upgrade plan can be inspected:

[root@basecm10 ~]# kubeadm upgrade plan

...

You can now apply the upgrade by executing the following command:

kubeadm upgrade apply v1.28.9

...

In this case it gives a recommended upgrade command to run on the head node:
The upgrade is now made to version 1.28.9, as suggested. The curious cluster administrator can

view the list of available versions can be viewed with the �showduplicates option to yum:

Example

[root@basecm10 ~]# yum list --showduplicates kubeadm --disableexcludes=kubernetes

...

Installed Packages

kubeadm.x86_64 1.28.9-150500.2.1 @kubernetes

Available Packages

kubeadm.aarch64 1.28.0-150500.1.1 kubernetes

kubeadm.ppc64le 1.28.0-150500.1.1 kubernetes

4.22 Kubernetes Upgrades 75

kubeadm.s390x 1.28.0-150500.1.1 kubernetes

kubeadm.src 1.28.0-150500.1.1 kubernetes

kubeadm.x86_64 1.28.0-150500.1.1 kubernetes

...

Most cluster administrators stick to the recommendation.

[root@basecm10 ~]# kubeadm upgrade apply v1.28.9

...

[upgrade/version] You have chosen to change the cluster version to "v1.28.9"

[upgrade/versions] Cluster version: v1.27.13

[upgrade/versions] kubeadm version: v1.28.9

[upgrade] Are you sure you want to proceed? [y/N]: y

...

[upgrade/successful] SUCCESS! Your cluster was upgraded to "v1.28.9". Enjoy!

[upgrade/kubelet] Now that your control plane is upgraded, please proceed with upgrading your kubelets

if you haven't already done so.

The host should now be drained, if it has not already been drained:

[root@basecm10 ~]# kubectl drain $(hostname) --ignore-daemonsets

As suggested, the kubelets are now upgraded. Updating the kubectl version at the same time is also
a good idea:

[root@basecm10 ~]# yum install -y kubelet kubectl --disableexcludes=kubernetes

The kubelets can be restarted so that the new versions run:

[root@basecm10 ~]# kubelet --version

Kubernetes v1.28.9

[root@basecm10 ~]# systemctl status kubelet

...

Active: active (running) since ...; 21h ago #need to reload kubelets to new versions

...

[root@basecm10 ~]# systemctl daemon-reload

[root@basecm10 ~]# systemctl restart kubelet && systemctl status kubelet | grep Active

Active: active (running) since ... 14ms ago

This ends the procedure of upgrading the control plane by first starting on a head node. Upgrading
the control plane by first starting with a regular node instead is described next.

Upgrading The Control Plane Node Starting With A Compute Node
This section describes the list of commands for upgrading the control plane when it is the first control
plane node to be upgraded. For example node001, rather than a head node.

The appropriate software image and related information for the node must first be found. For
node001 this can be done with:

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% get softwareimage

default-image (category:default)

[basecm10->device[node001]]% softwareimage

[basecm10->softwareimage]% use default-image

[basecm10->softwareimage[default-image]]% get path

/cm/images/default-image

76 Kubernetes

The software image is then entered and modified via a chroot jail.
The repository file of the image, with an absolute path outside the chroot jail of /cm/images/default-image/

etc/yum.repos.d/kubernetes.repo, has its minor version changed appropriately:

[root@basecm10 ~]# cm-chroot-sw-img /cm/images/default-image

[root@default-image /]# grep v /etc/yum.repos.d/kubernetes.repo #what version would be fetched?

/etc/yum.repos.d/kubernetes.repo:baseurl=https://pkgs.k8s.io/core:/stable:/v1.27/rpm/

/etc/yum.repos.d/kubernetes.repo:gpgkey=https://pkgs.k8s.io/core:/stable:/v1.27/rpm/repodata/repomd.xml.key

[root@default-image /]# vi /etc/yum.repos.d/kuberenetes.repo #modify the point version in the image

... modifications done...

[root@default-image /]# grep v /etc/yum.repos.d/kubernetes.repo #will fetch this version now

/etc/yum.repos.d/kubernetes.repo:baseurl=https://pkgs.k8s.io/core:/stable:/v1.28/rpm/

/etc/yum.repos.d/kubernetes.repo:gpgkey=https://pkgs.k8s.io/core:/stable:/v1.28/rpm/repodata/repomd.xml.key

The package versions available for installation in the image can be checked with:

[root@default-image /]# yum info kubeadm kubelet kubectl --disableexcludes=kubernetes

In this case versions 1.28.9 are seen to be available.
The kubeadm, kubelet and kubectl packages are upgraded in advance, and the chroot environment

is then exited:

[root@default-image /]# yum install -y kubeadm kubelet kubectl --disableexcludes=kubernetes

...

[root@default-image /]# exit #leave the chroot

The following set of commands then carries out the update on node001:

[root@basecm10 ~]# export host=node001

[root@basecm10 ~]# cmsh -c "device use $host; imageupdate -w --wait" #update running image on node

[root@basecm10 ~]# ssh $host kubeadm version #what version to fetch now

[root@basecm10 ~]# ssh $host kubeadm upgrade plan #get suggested upgrade plan

[root@basecm10 ~]# ssh $host kubeadm upgrade apply v1.28.9 #apply the upgrade

[root@basecm10 ~]# kubectl drain $host --ignore-daemonsets #drain the host

[root@basecm10 ~]# ssh $host sudo systemctl daemon-reload #reload systemd manager config

[root@basecm10 ~]# ssh $host sudo systemctl restart kubelet #restart kubelet

[root@basecm10 ~]# kubectl uncordon $host #new pods may now run on node

4.22.5 Updating Subsequent Control Plane Nodes
If there is only one control plane node, then this section can be skipped.

If there is more than one control plane node, and if the first control plane node is a head node that has
been updated, then the remaining control plane nodes should be updated. The kubectl command can
be used to orient the cluster administrator, by displaying the state of the upgrade, roles, and Kubernetes
versions per node:

Example

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready control-plane,master,worker 26m v1.27.13

node002 Ready control-plane,master,worker 26m v1.27.13

node003 Ready worker 26m v1.27.13

node004 Ready worker 26m v1.27.13

node005 Ready worker 26m v1.27.13

node006 Ready worker 26m v1.27.13

basecm10 Ready control-plane,master 27m v1.28.9

/cm/images/default-image/etc/yum.repos.d/kubernetes.repo
/cm/images/default-image/etc/yum.repos.d/kubernetes.repo

4.22 Kubernetes Upgrades 77

The remaining control plane nodes can now be updated. In the reference example case, these control
plane nodes are node001 and node002 as seen in the preceding example. The commands in the section
on Upgrading The Control Plane Node Starting With A Compute Node (page 75) should be followed,
but with one small difference. Instead of running:

kubeadm upgrade apply v1.28.9

the command
kubeadm upgrade node

is run.
The software image should also be prepared with the new packages before exiting the chroot jail.

After exiting the chroot jail the remaining control plane nodes can then be updated with the following
set of commands:

Example

[root@basecm10 ~]# export host=node001

[root@basecm10 ~]# cmsh -c "device use $host; imageupdate -w --wait"

[root@basecm10 ~]# ssh $host kubeadm version

[root@basecm10 ~]# ssh $host kubeadm upgrade plan

[root@basecm10 ~]# ssh $host kubeadm upgrade node # I'm special! (apply not used here)

[root@basecm10 ~]# kubectl drain $host --ignore-daemonsets

[root@basecm10 ~]# ssh $host sudo systemctl daemon-reload

[root@basecm10 ~]# ssh $host sudo systemctl restart kubelet

[root@basecm10 ~]# kubectl uncordon $host

Output after this should now look similar to:

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready control-plane,master,worker 30m v1.28.9

node002 Ready control-plane,master,worker 30m v1.27.13

node003 Ready worker 30m v1.27.13

node004 Ready worker 30m v1.27.13

node005 Ready worker 30m v1.27.13

node006 Ready worker 30m v1.27.13

basecm10 Ready control-plane,master 31m v1.28.9

The procedure can be repeated for node002 in the reference example system. After that, the control
plane nodes are all in an updated state. The worker nodes still need updating.

4.22.6 Updating The Worker Nodes
The commands for the worker nodes follow a similar pattern. They are updated one by one, and the
software images must also be updated, if it has not already been done. The software image update
follows the procedure described in the section on Upgrading The Control Plane Node Starting With A
Compute Node (page 75), where a chroot jail is entered, the updates are carried out, and the chroot jail
is left.

Since nodes are drained as part of their update procedure, it is best to do them one by one, or at most
in limited batches to avoid doing too many at once.

The set of commands to update a single worker is:

[root@basecm10 ~]# export host=node003

[root@basecm10 ~]# cmsh -c "device use $host; imageupdate -w --wait"

[root@basecm10 ~]# ssh $host kubeadm upgrade node

[root@basecm10 ~]# kubectl drain $host --ignore-daemonsets

[root@basecm10 ~]# ssh $host sudo systemctl daemon-reload

[root@basecm10 ~]# ssh $host sudo systemctl restart kubelet

[root@basecm10 ~]# kubectl uncordon $host

78 Kubernetes

The kubectl drain command might complain for other reasons. The administrator can decide on
proceeding further by adding additional flags.

For example:

kubectl drain $host �ignore-daemonsets �delete-emptydir-data

forces the drain even if some pods have stateful data in emptyDir volumes.
Multiple nodes can be updated as follows:

Example

[root@basecm10 ~]# export hosts='node00[4-6]'

[root@basecm10 ~]# cmsh -c "device; imageupdate -n $hosts -w --wait"

[root@basecm10 ~]# pdsh -w $hosts kubeadm upgrade node

[root@basecm10 ~]# pdsh -N -w $hosts hostname | xargs -n 1 kubectl drain {} --ignore-daemonsets \
--delete-emptydir-data

[root@basecm10 ~]# pdsh -w $hosts sudo systemctl daemon-reload

[root@basecm10 ~]# pdsh -w $hosts sudo systemctl restart kubelet

[root@basecm10 ~]# pdsh -N -w $hosts hostname | xargs -n 1 kubectl uncordon {}

[root@basecm10 ~]#

Output after all the worker nodes are updated too should look similar to:

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready control-plane,master,worker 35m v1.28.9

node002 Ready control-plane,master,worker 35m v1.28.9

node003 Ready worker 35m v1.28.9

node004 Ready worker 35m v1.28.9

node005 Ready worker 35m v1.28.9

node006 Ready worker 35m v1.28.9

basecm10 Ready control-plane,master 36m v1.28.9

4.22.7 Updating The Status In BCM
At the time of writing of this section (May 2024), the following change is not yet carried out automati-
cally by BCM. It is however necessary in order to get the correct version of Kubernetes reflected in the
module file. The procedure to update the old version can be as follows:

[root@basecm10 ~]# module load kubernetes/<TAB><TAB> #what do we have?

module load kubernetes/default/1.27.13-150500.2.1

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes[default]]% get version

1.27.13-150500.2.1

[basecm10->kubernetes[default]]% !yum info kubeadm | grep -E '(^Source|^Version|^Release)'

Version : 1.28.9

Release : 150500.2.1

Source : kubeadm-1.28.9-150500.2.1.src.rpm

[basecm10->kubernetes[default]]% set version 1.28.9-150500.2.1

[basecm10->kubernetes*[default*]]% commit

[basecm10->kubernetes[default]]% quit

[root@basecm10 ~]# module load kubernetes/<TAB><TAB> #what do we have now?

module load kubernetes/default/1.28.9-150500.2.1

...

4.22 Kubernetes Upgrades 79

4.22.8 Notes For Ubuntu
The upstream documentation covers Ubuntu upgrades when it diverges from RHEL procedures. As an
aid, the following commands, discussed in the procedure for RHEL within section 4.22 are followed by
the corresponding commands for Ubuntu:

RHEL

grep v /etc/yum.repos.d/kubernetes.repo

vi /etc/yum.repos.d/kubernetes.repo #to change minor number

yum list --showduplicates kubeadm --disableexcludes=kubernetes #see the versions

sudo yum install -y kubeadm kubelet kubectl --disableexcludes=kubernetes #installs from repo

Ubuntu

grep v /etc/apt/sources.list.d/kubernetes.list

vi /etc/apt/sources.list.d//kubernetes.list #to change minor number

apt-get update; apt-cache madison kubeadm # update for a fresh cache to see the versions

madison option lists versions and origin repos

apt-mark unhold kubeadm kubelet kubectl && \

apt-get update && apt-get install -y kubeadm kubelet kubectl && \

apt-mark hold kubeadm kubelet kubectl #steps from upstream docs, installs from repo

4.22.9 Notes For SLES
The upstream documentation does not provide explicit instructions for distributions other than RHEL-
based and Ubuntu-based for v1.28. However, starting with v1.29, SLES-based distributions are included.

For v1.28, for SLES, BCM uses the “tarball” approach. The installation of such non-package-manager
packages is documented at https://kubernetes.io/docs/setup/production-environment/tools/

kubeadm/install-kubeadm/, in the “Without a package manager” section. The commands in that sec-
tion there can be used as a guide to find alternatives for the yum and apt commands used so far.

For example, the following command from the installation instructions documentation can be used
to get the binaries for the same Kubernetes version used so far in the reference example: This is the
“Without a package manager” equivalent of the previous yum install and apt install commands:

RELEASE="v1.28.9"

ARCH="amd64"

pushd /usr/bin/

sudo curl -L --remote-name-all \

https://dl.k8s.io/release/${RELEASE\}/bin/linux/${ARCH}/{kubeadm,kubelet,kubectl}

sudo chmod +x {kubeadm,kubelet,kubectl}

popd

4.22.10 Other Approaches
When carrying out the steps described in this chapter, some things may in practice end up being done
differently from what is suggested.

For example: control plane nodes often have different categories and software-images compared to
the workers. For example, perhaps the master nodes do not have GPUs, and need different packages.
In that case, multiple software images have to be prepared with new packages.

Earlier on, a process to update nodes one at a time was described. However, when a software image
is updated, and multiple nodes are tied to that software image, then those nodes can all be provisioned
at the same time. The binaries in the updated software image can therefore also be provisioned to all the
nodes using that image.

https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/
https://kubernetes.io/docs/setup/production-environment/tools/kubeadm/install-kubeadm/

80 Kubernetes

The problem with this is that it could result in nodes getting the new binaries prematurely if they
happen to reboot during the update. If this is an unwanted risk, then it can be avoided in several ways,
described next.

Additional Software Images
A separate software image can be introduced. Nodes can be moved to the new software image one at a
time. A software image can also be overruled at the level of a node.

Example

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% get softwareimage

default-image (category:default)

[basecm10->device[node001]]% set softwareimage my-new-image

[basecm10->device*[node001*]]% commit

[basecm10->device[node001]]% get softwareimage

my-new-image

[basecm10->device[node001]]% quit

The cluster administrator should remember to undo the preceding settings, or should move the new
software image to the appropriate category, and then clear the node-level override again. This is so that,
after the upgrade, the system is organized as before.

Using NOSYNC
The other option is to configure the nodes with NOSYNC for their Next install mode. This prevents
them from syncing with their software image when rebooting (in the case that they still reboot):

Example

[root@basecm10 ~]# cmsh

[basecm10]% device use node001

[basecm10->device[node001]]% set nextinstallmode nosync

[basecm10->device*[node001*]]% commit

Both these approaches make updating slightly more tedious, but also more straighforward.
During testing by BCM developers, nodes getting their binaries updated prematurely due to an

unexpected reboot was not seen to be a significant issue. This is presumably because as long as the first
control plane node is updated succesfully, and the reboot of the extra node is by accident, there is an
interruption anyway. The kubelet simply comes back up with the new version. However this is not the
official recommended approach.

4.22.11 Configuring The Ingress HTTPS Server Certificate
Kubernetes applications that are exposed via the Kubernetes Ingress server on BCM use HTTPS on port
30443 by default. This port number is not the default value of 443 that is typically used by Kubernetes
Ingress. Some Kubernetes applications may have issues with this, due to hard-coding of the value of
443. An example is an HTML page with a hyperlink that points to port 443 instead of 30443, which in
turn leads to a non-existent page. Keeping an eye out for this and related issues is a good idea.

For Ingress, it is assumed that

• the cluster administrator has provided the cluster with a domain name, for example
my-cluster.nvidia.local

• there is a DNS entry present that makes this domain name resolve to the cluster IP address

• a matching server.key and server.crt server certificate key pair file has been provided

4.22 Kubernetes Upgrades 81

Ingress Self-signed Certificate
For Kubernetes Ingress testing purposes it is possible to create a self-signed certificate with a private
certificate authority (CA) owned by the cluster administrator for its HTTPS protocol. That is, using
that instead of a trusted (third-party) CA. However the effort needed to configure this means that the
procedure is not generally recommended. Reasons to avoid using a self-signed certificate are:

• each user needs the self-signed CA certificate pairs working on their system between the appro-
priate applications

• each user also needs to override a warning about the untrusted certificate by accepting the self-
signed certificate on browsers such as Chrome.

• it is very easy to run into subtle issues later on that are hard to uncover

That said, appendix B has instructions on setting up a self-signed certificate for testing purposes. The
steps that are needed to also make the certificates trusted on any given subsystem or application such
as the web browser, are outside the scope of the manuals and BCM support. It is assumed that this has
already been set up by the organization.

Ingress Trusted CA Certificate
In case no self-signed certificate is to be used—for example if there is already a trusted CA certificate
to use for this purpose—then another Kubernetes wizard session can be run from the active head node
to help make the necessary changes to the Ingress controller. The cluster administrator carries out the
following procedure:

• uses SSH to get into the active head node

• copies certificate pair files, server.crt and server.key, over to the head node (e.g., to the /root

directory)

• invokes cm-kubernetes-setup and chooses (figure 4.11):
Configure Ingress (Configure Ingress Server Certificate)

• answers yes when the wizard prompts:

Do you want to configure an existing, properly signed Server certificate pair?

• sets paths to the certificate pair files, so that the Ingress controller then uses the trusted CA certifi-
cate pair, instead of generating a self-signed pair

• goes along with other steps such as Kubernetes secret creation, patching the appropriate YAML,
and so on

• waits for the configuration change (a minute or so) to restart the Ingress controller

• confirms that the HTTPS certificate is working correctly, via the SAN check (described shortly)

Figure 4.11: Option to configure Server Certificate for Ingress Controller

82 Kubernetes

The SAN check: The following command can be used to inspect the SAN (Subject Alternative Name)
part of the certificate currently running on the Ingress port:

Example

[root@basecm10 ~]# openssl s_client -connect localhost:30443 < /dev/null 2>/dev/null | \
openssl x509 -noout -text | grep -A1 'Subject Alternative Name'

X509v3 Subject Alternative Name:

DNS:my-cluster.nvidia.local, DNS:*.apps.my-cluster.nvidia.local, DNS:master.cm.cluster

5
Kubernetes Apps

Kubernetes add-ons were introduced in an older version NVIDIA Base Command Manager (at that time
still called Bright Cluster Manager) version 8.1 Add-ons could be managed in that version as part of the
addons submode of the kubernetes mode in cmsh. The feature later (in version 8.2) was expanded into
the Kubernetes Applications & Groups feature. Kubernetes Applications & Groups, less formally called
app groups, can be accessed via the appgroups submode of cmsh:

Example

root@basecm10 ~# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes[default]]% appgroups

[basecm10->kubernetes[default]->appgroups]% list

Name (key) Applications

------------ ------------------------------

system <13 in submode>

[basecm10->kubernetes[default]->appgroups]%

Versions from 9.2 onward started deploying operators as Helm chart packages, such as for the
NVIDIA GPU operator, Run:ai, and NetQ. Moving some of the remaining apps, such as the Kuber-
netes Dashboard, Ingress Controller, and so on, to an equivalent Helm chart is on the road map for the
future.

The legacy version 8.1 addons mode parameters are now accessed from version 8.2 onward via a
default system app group instance. The system instance is accessed in the appsgroup submode.

Example

[basecm10->kubernetes[default]->appgroups]% use system

[basecm10->kubernetes[default]->appgroups[system]]% show

Parameter Value

-------------------------------- --

Name system

Revision

Enabled yes

applications <13 in submode>

[basecm10->kubernetes[default]->appgroups[system]]% applications

[basecm10->kubernetes[default]->appgroups[system]->applications]% list

Name (key) Format Enabled

------------------- ------ -------

bootstrap Yaml yes

calico Yaml yes

dashboard Yaml yes

84 Kubernetes Apps

dashboard_ingress Yaml yes

flannel Yaml no

ingress_controller Yaml yes

kubernetes_ingress Yaml no

kubestatemetrics Yaml yes

metrics_server Yaml yes

root Yaml yes

A Kubernetes application can span multiple namespaces. A name in appgroups therefore only exists
to group logically-related applications. Each application contains a YAML configuration file, which
BCM synchronizes to the Kubernetes API.

The default system app group is pre-defined. Other app groups can be created as needed. For exam-
ple, an app group called monitoring could be created to group applications for running Prometheus,
node exporters, and anything else related to exposing or viewing Prometheus metrics.

Toggling the Enable parameter of an app group enables or disables all of its application components
in Kubernetes. Finer-grained control is possible within the applications mode level, by toggling the
enabled parameter per application component instance. For example, within the calico application
component instance:

Example

[basecm10->kubernetes[default]->appgroups[system]->applications]% use calico

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]]% show

Parameter Value

-------------------------------- --

Name calico

Revision

Format Yaml

Enabled yes

Config <244KiB>

Environment <3 in submode>

Exclude list snippets <2 in submode>

A large YAML configuration file for each application component instance can be configured via the
Config parameter property, using the set option of cmsh. This opens up a text editor and allows the
environment variables in the YAML configuration file to be managed.

Exclude list snippets are short exclude lists that can be set up for Kubernetes apps computing within
the excludelistsnippets submode. They are used to prevent BCM software image updates from over-
writing the provisioned files or directories of the container image that are important to the associated
Kubernetes application.

Using exclude list snippets within an excludelistsnippets submode is discussed in detail in sec-
tion 4.4.1 of the Cloudbursting Manual. Similar to the case of Kubernetes apps images, in cloud comput-
ing exclude list snippets are used to prevent overwriting of the provisioned files and directories of cloud
images.

Environment entries can be set via the Environment submode. Environment entries are similar to en-
vironment variables, and are used to replace variables inside the YAML configuration file. Environment
entries can be added to the environment as well, if the Nodes environment value inside the Environment
submode is set to yes.

Example

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]]% environment

[basecm10->kubernetes[default]->appgroups[system]->applications[calico]->environment]% list

Name (key) Value Nodes environment

---------------------- ---------------- ------------------

85

calico_typha_replicas 0 no

calico_typha_service none no

head_node_internal_ip 10.141.255.254 no

6
Kubernetes Operators

Kubernetes operators are the modern way to manage Kubernetes cluster applications (https://
kubernetes.io/docs/concepts/extend-kubernetes/operator/). It is usually recommended that Ku-
bernetes operators are used instead of the legacy applications.

At the time of writing of this section (March 2024), NVIDIA Base Command Manager provides and
packages several operators which are validated to perform basic functionalities on a Kubernetes BCM
setup.

• the NVIDIA GPU Operator (section 6.4)

• the NVIDIA Network Operator (section 6.5)

• the NVIDIA NetQ Operator (section 6.6)

• the Prometheus Operator Stack (section 6.7)

• the Prometheus Adapter Operator

• the Run:ai Operator (section 6.8)

• the Jupyter Kernel Operator (section 6.3)

• the Spark Operator (section 6.9)

• the Postgres Operator (section 6.10)

• the MPI Operator

• the MetalLB Operator

• the Kubeflow Training Operator

6.1 Versions Of Operators Available
The versions of the operators that are available can be listed with the cm-kubernetes-setup

--list-operators-versions command.
The versions available at the time of writing (November 2024) for the operators are shown in the

following table:

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

88 Kubernetes Operators

Kubernetes Operator Default Possible versions

NVIDIA GPU Operator 24.6.2E 24.6.2E, 24.6.1, 24.6.0, 24.3.0, 23.9.2, 23.9.1E,
23.9.0E, 23.6.2, 23.6.1E, 23.6.0, 23.3.2E, 23.3.1E,
23.3.0, 22.9.2, 22.9.1E, 22.9.0E

MetalLB 0.14.8 0.14.8

NetQ Operator 4.9 (Kubernetes 1.27),
4.10 (Kubernetes 1.28),
4.11 (Kubenetes 1.29),
4.12 (Kubernetes 1.30),
4.13 (Kubernetes (1.31)

4.9, 4.10, 4.11, 4.12, 4.13

Network Operator 24.7.0 24.7.0, 24.4.1, 24.4.0, 23.10.0, 23.7.0E, 23.5.0E,
23.1.0E

OVN CNI 1.1.5 1.1.5

Postgres Operator 1.13.0 1.13.0, 1.12.2, 1.10.1, 1.10.0, 1.9.0

Prometheus Adapter 4.11.0 4.11.0

Prometheus Operator
Stack

62.7.0 62.7.0

Run:ai 2.18.45 2.18.45

SDN 1.0.3 1.0.3

CM Jupyter Kernel Op-
erator

0.2.1 0.2.1

...continues

6.2 Helm Charts For The BCM Operators 89

...continued

Kubernetes Operator Default Possible versions

CM Kubernetes MPI
Operator

0.5.0 0.5.0

Spark Operator 1.4.6 1.4.6

E NVAIE-certified

During the initial setup, the installation wizard displays a menu to select which operators are to be
installed (figure 6.1).

Figure 6.1: Kubernetes setup TUI session: selection of operator packages to be installed

After selecting the operators to be used, the actual operator versions available depend on package
management resolution.

In the case of BCM operators, the installation wizard uses a Helm chart from the OS package manager
for some of the .deb or .rpm packages being deployed. In the case of cloud operators, the installation
wizard uses a Helm chart from the Helm repository for deployment.

6.2 Helm Charts For The BCM Operators
Based on the operators that are to be installed, the wizard asks for configuration options to the Helm
charts that are to be installed (figure 6.2):

90 Kubernetes Operators

Figure 6.2: Kubernetes setup TUI session: prompting for Helm chart configuration options

The Helm charts that are selected are installed with sensible defaults. If additional tuning is needed,
then the charts can be installed manually after cm-kubernetes-setup finishes:

[root@basecm10 ~]# yum install cm-jupyter-kernel-operator -y

[root@basecm10 ~]# helm install cm-jupyter-kernel-operator -n cm --wait \

/cm/shared/apps/jupyter-kernel-operator/current/helm/*.tgz

If additional tuning is required then tunable values can be set with a command line similar to the
following::

[root@basecm10 ~]# helm install cm-jupyter-kernel-operator -n cm --wait \

--values tunables.yaml \

/cm/shared/apps/jupyter-kernel-operator/current/helm/*.tgz

Possible values can be displayed as follows:

[root@basecm10 ~]# helm show values /cm/shared/apps/jupyter-kernel-operator/current/helm/*.tgz

Installed operators can be listed by using the CLI option --list-operators:

[root@basecm10 ~]# cm-kubernetes-setup --list-operators

...

stage: kubernetes: Display Available Operators

OPERATOR________________________________: api_available___________________________

cm-jupyter-kernel-operator : 1

postgresql-operator : 1

spark-operator : 1

cm-kubernetes-mpi-operator : 1

...

6.3 The Jupyter Kernel Operator
6.3.1 Installing The Jupyter Kernel Operator
The Kubernetes Jupyter Kernel Operator can be installed as a part of the cm-kubernetes-setup proce-
dure (section 4.2.6), which eventually leads to the selection screen displayed in figure 6.1.

The Kubernetes Jupyter Kernel Operator can alternatively be installed later on using the OS package
manager and Helm:

[root@basecm10 ~]# yum install cm-jupyter-kernel-operator -y

[root@basecm10 ~]# helm install cm-jupyter-kernel-operator \

/cm/shared/apps/jupyter-kernel-operator/current/helm/cm-jupyter-kernel-operator-*.tgz

The Jupyter Kernel Operator can be removed with:

Example

[root@basecm10 ~]# helm uninstall cm-jupyter-kernel-operator

6.3 The Jupyter Kernel Operator 91

It is recommended to enable a pod security policy using Kyverno (section 4.10.1) for the cluster
before allowing a user, for example alice, to create resources in the Kubernetes cluster.

The Kubernetes Jupyter Kernel Operator Helm chart creates a CRD that can be used in the Kuber-
netes API. To check the availability of the CRD, the following command can be run:

Example

[root@basecm10 ~]# module load kubernetes

[root@basecm10 ~]# kubectl get crd | grep jupyterkernels

cmjupyterkernels.apps.brightcomputing.com 2022-11-07T09:49:48Z

cmkubernetesoperatorpermissionsjupyterkernels.charts.brightcomputing.com 2022-11-07T09:18:32Z

6.3.2 Architecture Overview
The Kubernetes Jupyter Kernel Operator has two main components:

• the operator itself

• the sidecar. This is attached to every user-defined kernel pod, and communicates with Jupyter
Enterprise Gateway, acting as a proxy for the kernel process.

The following is an overview of the kernel setup and pod lifecycle when the user runs the Kubernetes
Jupyter Kernel Operator:

1. User initiates creating kernel in JupyterLab.

2. JupyterLab delegates this task to Jupyter Enterprise Gateway (JEG).

3. JEG opens a service TCP/IP socket and creates a CRD in Kubernetes specifying this port.

4. KubeApi notifies Jupyter Kernel Operator about the newly created CRD.

5. Jupyter Kernel Operator creates services, configmaps, secrets.

6. Jupyter Kernel Operator creates pod to run Jupyter kernel based on the specification. The sidecar
is added to the kernel pod during this step.

7. The sidecar waits for the connection file created by the kernel. Alternatively, it relies on the con-
nection file created by the operator (if requested), as not all kernels create a connection file.

8. The sidecar runs a proxy to forward kernel communications to JEG (stdin, shell, iopub, etc).

9. The sidecar notifies JEG about connection parameters and handles kernel communications.

10. If JEG disappears, or if communication drops, then the sidecar stops. This causes the kernel oper-
ator to get a notification via the KubeApi service.

11. The Kubernetes Jupyter Kernel Operator removes the unneeded pod, service, configmap and se-
crets. It also tries to gather stdout and std error of the kernel pod for debug purposes.

The pod created in step 6 is heavily customized by the kernel operator. For security reasons, running
a process inside the pod must be carried out as an unprivileged user.

For the convenience of the Jupyter user, the UID/GID of the process inside the pod should match the
UID/GID of the Jupyter user. If that is not the case, then the files created in the container are inaccessible
for the Jupyter user.

To achieve matching UID/GIDs, the operator dynamically creates /etc/passwd and /etc/group files
inside the pod and populates them with the data from corresponding templates. At the same time the
operator can create a kernel communication file, if requested—some kernels rely on that.

92 Kubernetes Operators

6.3.3 Running Jupyter Kernel Using The Operator
An example of a basic YAML definition for the CMJupyterKernel is:

[alice@basecm10 ~]$ cat cmjk.yaml

apiVersion: apps.brightcomputing.com/v1

kind: CMJupyterKernel

metadata:

name: cmjk-test

namespace: alice-restricted

spec:

username: alice

uid: 1001

gid: 1001

kernel_id: testtesttest

homedir: /home/alice

pod:

volumes:

- name: homedir

hostPath:

path: /home/alice

type: DirectoryOrCreate

containers:

- name: kernel

image: jupyter/datascience-notebook

command:

- "python"

args:

- "-m"

- "ipykernel_launcher"

- "-f"

- "/var/tmp/kernel-parm.json"

workingDir: /home/alice

securityContext:

allowPrivilegeEscalation: false

privileged: false

runAsNonRoot: true

runAsUser: 1001

runAsGroup: 1001

volumeMounts:

- name: homedir

mountPath: /home/alice

This can be submitted, but the operator removes it in approximately 1 minute:

[alice@basecm10 ~]$ module load kubernetes

[alice@basecm10 ~]$ kubectl apply -f cmjk.yaml

The logs of the operator can be checked for debug purposes:

[root@basecm10 ~]# module load kubernetes

[root@basecm10 ~]# kubectl logs \

-n cm-jupyter-kernel-operator-system \

-l control-plane=controller-manager \

--tail -1 \

-c manager

6.3 The Jupyter Kernel Operator 93

...

2022-02-14T18:26:01.005Z INFO controllers.CMJupyterKernel Container is

stopped. Logs are below "cmjupyterkernel": "alice-restricted/cmjk-test"

...

2022-02-14T18:26:01.190Z INFO controllers.CMJupyterKernel cmjksidecar:

2022/02/14 18:26:00 Timeout receiving pings from server for 60 sec.

Shutting down. "cmjupyterkernel": "alice-restricted/cmjk-test"

...

This indicates that the sidecar was stopped because there was no connection from Jupyter Enterprise
Gateway to the kernel. This is expected, since the kernel has been run manually, and not using Jupyter.
After the sidecar shutdown, the kube-api server notifies the operator, which, in turn, removes objects
such as CMJupyterKernel, pods, and services.

6.3.4 Jupyter Kernel Operator Tunables

Table 6.1: Tunable Options for Jupyter Kernel Operators

Option Description

kernel_idR Kernel identifier (random UUID) given by Jupyter server

usernameO Name of the user

uidR, gidR, homedirO, usershellO UID, GID, home directory and default shell of the user

image_os_flavorO Defines template of /etc/passwd and /etc/group files,
where uid, gid, homedir, and usershell will be added.
Could be one of ubuntu1604, ubuntu1804, ubuntu2004,
ubuntu2404, rhel7, centos7, rhel8, centos8, sles12,
sles15.

etc_passwdO, etc_groupO Custom content of the /etc/passwd or /etc/group, if
necessary.

sidecar_commandO,
sidecar_argsO

Commands and arguments to run the sidecar. By default
empty. Most of the arguments for the sidecar are passed
via environment variables (section 6.3.5).

...continues

94 Kubernetes Operators

...continued

Option Description

kernel_connection_file_pathO Where to expect to find kernel connection file. Default:
/var/tmp/kernel-parm.json

create_connection_fileO Does the operator need to create and populate kernel
connection file before the pod starts? Default: false

spark_pod_template_pathO,
spark_pod_templateO

Options to store or override the Spark executor template

podR Kubernetes Pod definition

serviceO Kubernetes Service definition

Legend:

O: Optional

R: Required

6.3.5 Sidecar Arguments And Environment Variables
Sidecar Arguments
A timeout can be set as an argument for the sidecar.

• --timeout: Defines how long, in seconds, that the sidecar waits for the Jupyter Enterprise Gate-
way proxy to connect before shutdown. Default: 60

Environment Variables
The following environment variables can be used by the sidecar:

Table 6.2: Environment Variables For The Sidecar

Environment Variable Description

CMJK_CONNECTION_FILE Path to find a connection file. The sidecar uses the file to establish a
connection to the kernel and to pass data between Jupyter Enterprise
Gateway and the kernel. Default: /var/tmp/kernel-parm.json.

CMJK_KERNEL_ID Unique identifier of the kernel. Usually the UUID in table 6.1.

...continues

6.3 The Jupyter Kernel Operator 95

...continued

Environment Variable Description

CMJK_SHELL_PORT Proxy port to open to forward shell communication. Default: 5001.

CMJK_IOPUB_PORT Proxy port to open to forward iopub communication. Default: 5002.

CMJK_STDIN_PORT Proxy port to open to forward stdin communication. Default: 5003.

CMJK_CONTROL_PORT Proxy port to open to forward control communication. Default:
5004.

CMJK_HB_PORT Proxy port to open to forward heartbeat communication. Default:
5005.

CMJK_COMM_PORT Proxy port to open to forward comm communication. Default: 5006.

6.3.6 Running Spark-based Kernels In Jupyter Kernel Operator
Jupyter integration for BCM provides a kernel template (jupyter-eg-kernel-k8s-cmjkop-py-spark)
and a sample container image (brightcomputing/jupyter-kernel-sample:k8s-spark-py39-2.0.0)
to run Jupyter kernels in a Spark environment. The image can be altered or created from scratch based
on the scripts provided in /cm/shared/examples/jupyter/kubernetes-kernel-image-spark-py39/.

The Jupyter kernel is not run directly. Instead, the kernel process is run and controlled by the
spark-submit executable inside the container.

Jupyter Kernel Operator alters the provided image based on the CRD definition.
Spark-specific tunables are spark_pod_template_path and spark_pod_template. The operator cre-

ates a file inside of the Spark driver pod and puts the content of spark_pod_template in it. After that,
spark-submit uses this file, via the --spark.kubernetes.executor.podTemplateFile configuration
option, to create executor pods.

6.3.7 Example: Creating An R Kernel From The Kernel Template
The Jupyter Kernel Operator can be used out-of-the-box to support more kernels.

For example, an R kernel can be added.
The official jupyter/r-notebook R image can be taken from the Jupyter project, from https://

jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-r-notebook.
The default entry point cannot be used as that would start Jupyter notebook, while the aim for this

section is to use the kernel only.
Some exploratory investigation should reveal the command to start the kernel:
The pod can be run interactively in a Jupyter notebook terminal by a user:

kubectl run -i --tty testnotebook --image=jupyter/r-notebook --restart=Never -- bash

The kernel specifications can then be investigated:

jupyter-kernelspec list

Available kernels:

ir /opt/conda/share/jupyter/kernels/ir

python3 /opt/conda/share/jupyter/kernels/python3

The ir kernel is what is of interest here. The command line that is used to start the kernel can be
found:

brightcomputing/jupyter-kernel-sample:k8s-spark-py39-2.0.0
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-r-notebook
https://jupyter-docker-stacks.readthedocs.io/en/latest/using/selecting.html#jupyter-r-notebook

96 Kubernetes Operators

cat /opt/conda/share/jupyter/kernels/ir/kernel.json

"argv": ["R", "--slave", "-e", "IRkernel::main()", "--args", "connection_file"],

"display_name":"R",

"language":"R"

Based on this information the Jupyter Kernel Operator CRD can be created for the user:

cat cmjk-ir.yaml

apiVersion: apps.brightcomputing.com/v1

kind: CMJupyterKernel

metadata:

name: cmjk-test

namespace: alice-restricted

spec:

username: alice

uid: 1001

gid: 1001

kernel_id: testtesttest

homedir: /home/alice

create_connection_file: true # R kernel expects connection file be created

pod:

volumes:

- name: homedir

hostPath:

path: /home/alice

type: DirectoryOrCreate

containers:

- name: kernel

image: jupyter/r-notebook # image

command:

- "R"

args:

- "--slave"

- "-e"

- "IRkernel::main()"

- "--args"

- "/var/tmp/kernel-parm.json" # we have static connection file

workingDir: /home/alice

securityContext:

allowPrivilegeEscalation: false

privileged: false

runAsNonRoot: true

runAsUser: 1001

runAsGroup: 1001

volumeMounts:

- name: homedir

mountPath: /home/alice

There are several changes from the previous (section 6.3.3) YAML, and from the IR command line:

• create_connection_file: true

If this is not specified then the kernel complains with the following message during startup:

6.3 The Jupyter Kernel Operator 97

kernel: cannot open file '/var/tmp/kernel-parm.json': No such file or directory

This means that the kernel expected this file to be created before the start.

• image: jupyter/r-notebook

Another image needs to be used.

• args: ... "/var/tmp/kernel-parm.json"

The spec file has a fixed path and name, instead of "connection_file" as in kernel.json ear-
lier

The resulting cmjk-ir.yaml file can be submitted to Kubernetes, but it will be removed by the oper-
ator after one minute, as it is not being started from the Jupyter Enterprise Gateway.

The next step is to create a kernel template. The Python kernel can be used as a reference:

cd /cm/shared/apps/jupyter/current

cd lib/python*/site-packages/cm_jupyter_kernel_creator/kerneltemplates

cp -pr jupyter-eg-kernel-k8s-cmjkop-py jupyter-eg-kernel-k8s-cmjkop-r

The files meta.yaml, kernel.json, and templates/cmjk.yaml.j2 need to be changed in order to
able to provide the correct image and command:

vim jupyter-eg-kernel-k8s-cmjkop-r/meta.yaml

vim jupyter-eg-kernel-k8s-cmjkop-r/kernel.json.j2

vim templates/cmjk.yaml.j2

The changes that are applied should look similar to the following:

diff -u jupyter-eg-kernel-k8s-cmjkop-py/kernel.json.j2 jupyter-eg-kernel-k8s-cmjkop-r/kernel.json.j2

--- jupyter-eg-kernel-k8s-cmjkop-py/kernel.json.j2 2022-01-25 21:13:52.000000000 +0100

+++ jupyter-eg-kernel-k8s-cmjkop-r/kernel.json.j2 2022-02-16 12:22:23.610382929 +0100

@@ -15,8 +15,8 @@

}

},

"argv": [

- "python",

- "-m", "ipykernel_launcher",

- "-f", "/var/tmp/kernel-parm.json"

+ "R",

+ "--slave", "-e", "IRkernel::main()",

+ "--args", "/var/tmp/kernel-parm.json"

]

}

diff -u jupyter-eg-kernel-k8s-cmjkop-py/meta.yaml jupyter-eg-kernel-k8s-cmjkop-r/meta.yaml

--- jupyter-eg-kernel-k8s-cmjkop-py/meta.yaml 2022-01-25 21:13:52.000000000 +0100

+++ jupyter-eg-kernel-k8s-cmjkop-r/meta.yaml 2022-02-16 12:20:57.500974886 +0100

@@ -1,5 +1,5 @@

-display_name: "Python on Kubernetes Operator"

+display_name: "R on Kubernetes Operator"

features: "k8s-jupyter-operator-enabled"

parameters:

display_name:

98 Kubernetes Operators

@@ -7,7 +7,7 @@

definition:

getter: shell

exec:

- - echo "Python on Kubernetes Operator $(date +%y%m%d%H%M%S)"

+ - echo "R on Kubernetes Operator $(date +%y%m%d%H%M%S)"

display_name: "Display name of the kernel"

k8s_env_module:

type: str

@@ -20,9 +20,9 @@

definition:

getter: static

default:

- - "jupyter/datascience-notebook"

+ - "jupyter/r-notebook"

values:

- - "jupyter/datascience-notebook"

+ - "jupyter/r-notebook"

display_name: "Image to run"

limits:

max_len: 1

diff -u jupyter-eg-kernel-k8s-cmjkop-py/templates/cmjk.yaml.j2\
jupyter-eg-kernel-k8s-cmjkop-r/templates/cmjk.yaml.j2

--- jupyter-eg-kernel-k8s-cmjkop-py/templates/cmjk.yaml.j2 2022-01-25 21:13:52.000000000 +0100

+++ jupyter-eg-kernel-k8s-cmjkop-r/templates/cmjk.yaml.j2 2022-02-16 12:24:25.375373991 +0100

@@ -9,6 +9,7 @@

gid: gid

kernel_id: kernel_id

homedir: homedir

+ create_connection_file: true

pod:

volumes:

- name: homedir

After instantiating a kernel spec from the template, the R kernel is ready for use:

6.3 The Jupyter Kernel Operator 99

Figure 6.3: Jupyter Kernel Creator: creating the IR kernel spec

100 Kubernetes Operators

Figure 6.4: JupyterLab: running the IR kernel

6.3.8 Example: Letting Kubernetes Access Private Registries From The Kernel Template
To be able to pull images from private registries, Kubernetes needs to be instructed about the credentials
to use.

Creating The Secret
This can be achieved by specifying the secret to spec.imagePullSecrets of the pod definition.

For Jupter Kernel Operator this is spec.pod.imagePullSecrets:

Example

pod:

containers:

- name: kernel

image: image

...

imagePullSecrets:

- name: regcred

...

Creating secrets can be carried out with kubectl

Example

kubectl create \

--namespace alice-restricted \

secret docker-registry regcred \

--docker-server=<your-registry-server> \

--docker-username=<your-name> \

--docker-password=<your-pword> \

--docker-email=<your-email>

6.3 The Jupyter Kernel Operator 101

More details about managing certificates can be found in the Kubernetes documentation at:
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

Parameterizing The Secret
The name of the secret can be parameterized, so that users are allowed to select from secrets in their
namespaces.

Figure 6.5: Jupyter Kernel Creator: secret selection

For parameterization, the meta.yaml and kernel.json.j2 files must also then be modified:

Example

cat meta.yaml

...

parameters:

...

image_pull_secret_name:

type: str

definition:

getter: static

default: ""

display_name: "Name of the secret to pull images"

cat kernel.json.j2

https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/

102 Kubernetes Operators

...

"metadata": {

"process_proxy": {

"class_name": "cm_jupyter_kernel_creator.eg_processproxies.k8scmjkop.KubernetesCMJupyterKernelOperator",

"config": {

...

"image_pull_policy": "{{ image_pull_policy[0] }}",

"namespace": "{{ kubernetes_namespace }}",

"image_pull_secret_name": "{{ image_pull_secret_name }}",

"gpu_limit": {{ gpu_limit }}

}

...

cat templates/cmjk.yaml.j2

...

pod:

...

{%- if image_pull_secret_name %}

imagePullSecrets:

- name: {{ image_pull_secret_name }}

{%- endif %}

containers:

- name: kernel

image: {{ image }}

...

6.3.9 Example: Adding The PVC Parameter To The Kernel Template
The PVC that is to be mounted can be set in the template:

6.3 The Jupyter Kernel Operator 103

Figure 6.6: Jupyter Kernel Creator, PVC selection.

The settings in meta.yaml, kernel.json.j2 and templates/cmjk.yaml.j2 for this are:

Example

cat meta.yaml

...

parameters:

...

pvc_name:

type: list

definition:

getter: shell

exec:

- source /etc/profile.d/modules.sh

- module load kubernetes

- kubectl get pvc -o jsonpath="{range .items[*]}{.metadata.name}{'\\n'}{end}"

display_name: "PVC to mount"

limits:

max_len: 1

min_len: 1

104 Kubernetes Operators

pvc_mountpoint:

type: str

definition:

getter: static

default: "/data"

display_name: "Mountpoint to PVC"

cat kernel.json.j2

...

"metadata": {

"process_proxy": {

"class_name": "cm_jupyter_kernel_creator.eg_processproxies.k8scmjkop.KubernetesCMJupyterKernelOperator",

"config": {

...

"image_pull_policy": "{{ image_pull_policy[0] }}",

"namespace": "{{ kubernetes_namespace }}",

"pvc_name": "{{ pvc_name[0] }}",

"pvc_mountpoint": "{{ pvc_mountpoint }}",

"gpu_limit": {{ gpu_limit }}

}

...

cat templates/cmjk.yaml.j2

...

pod:

volumes:

...

{%- if pvc_name and pvc_mountpoint %}

- name: pvc

persistentVolumeClaim:

claimName: {{ pvc_name }}

{%- endif %}

containers:

- name: kernel

image: {{ image }}

imagePullPolicy: {{ image_pull_policy }}

command: {{ command }}

...

volumeMounts:

- name: homedir

mountPath: {{ homedir }}

{%- if pvc_name and pvc_mountpoint %}

- name: pvc

mountPath: {{ pvc_mountpoint }}

{%- endif %}

...

6.4 The NVIDIA GPU Operator
6.4.1 Installing The NVIDIA GPU Operator
The NVIDIA GPU operator can be installed as a part of the installation session by the
cm-kubernetes-setup wizard (section 4.2.6). During the setup session, a checkbox can be checkmarked
to install and enable the GPU operator (figure 6.1). Nodes that run DGX OS are also supported by the
wizard.

A specific version can be selected for the installation (figure 6.7):

6.4 The NVIDIA GPU Operator 105

Figure 6.7: GPU operator version selection screen

The NVIDIA GPU operator can also be deployed on an existing BCM Kubernetes cluster, as de-
scribed next.

6.4.2 Installing The NVIDIA GPU Operator On An Existing Kubernetes Cluster
If the NVIDIA GPU Operator (https://docs.nvidia.com/datacenter/cloud-native/gpu-operator)
is to be installed within an existing BCM Kubernetes cluster, then it must always be deployed using
Helm.

Prerequisites: If the existing cluster uses the NVIDIA device plugin add-on, even if configured by
NVIDIA Base Command Manager, then it may be necessary to disable the add-on. This add-on is now
deprecated, and will be removed in a future release.

[cluster->kubernetes[default]->appgroups[system]->applications[nvidia]]% set enabled no

[cluster->kubernetes*[default*]->appgroups*[system*]->applications*[nvidia*]]% commit

One of the prerequisites for the preceding add-on is that it uses labels to identify the nodes to be
managed by the add-on. These labels are unnecessary for the GPU operator, and may be removed:

[cluster->kubernetes[default]->labelsets]% remove nvidia

[cluster->kubernetes*[default*]->labelsets*]% commit

Installing The NVIDIA GPU Operator: A knowledge base article that describes how to prepare soft-
ware images, and how to deploy the NVIDIA GPU Operator using Helm, can be found at:

https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-

on-a-bright-cluster/

The article also covers how to deploy the Prometheus Operator Stack, and the Prometheus Adapter
for monitoring GPU usage. Deploying these is optional.

Validation methods are described for each step of the deployment.

• For containerd, Helm installation is carried out by the root user with the following options:

helm install --wait -n gpu-operator --create-namespace \

--version v1.10.1 \

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster/
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster/

106 Kubernetes Operators

--set driver.enabled=false \

--set operator.defaultRuntime=containerd \

--set toolkit.enabled=true \

--set toolkit.env[0].name=CONTAINERD_CONFIG \

--set toolkit.env[0].value=/cm/local/apps/containerd/var/etc/conf.d/nvidia-cri.toml \

gpu-operator nvidia/gpu-operator

• For docker, Helm installation is carried out by the root user with the following options:

helm install --wait -n gpu-operator --create-namespace \

--version v1.10.1 \

--set driver.enabled=false \

--set operator.defaultRuntime=docker \

--set toolkit.enabled=true \

gpu-operator nvidia/gpu-operator

Helm chart options are documented at https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/
latest/getting-started.html#common-chart-customization-options.

NVIDIA GPU Operator containerd configuration: The operator provides the toolkit binaries and con-
tainerd configuration (nvidia-cri.toml) on each host where a GPU is auto-detected via a host-mount.

The flag that enables this is --set toolkit.enabled=true. The path for the configuration file should
be set to: /cm/local/apps/containerd/var/etc/conf.d/nvidia-cri.toml, which is where BCM’s
cm-containerd package expects to find it.

The operator provides a similar configuration functionality for the CUDA drivers. However this is
not used in BCM, and it is disabled with the �set driver.enabled=false flag. This is because BCM
supports CUDA on more Linux distributions and kernel versions than the NVIDIA GPU Operator does.
CUDA drivers are therefore expected to already be present on the relevant nodes that have GPUs.

NVIDIA GPU Operator Docker configuration: This is only relevant for older Kubernetes deploy-
ments that are deployed on top of Docker or BCM Docker.

Default paths are used, so nothing particularly special has to be done for the operator to deploy
properly.

6.4.3 Removing The NVIDIA GPU Operator
The NVIDIA GPU Operator can be found in the gpu-operator namespace inside Helm and Kubernetes.

root@basecm10 ~# helm list -n gpu-operator

NAME NAMESPACE REVISION ... STATUS CHART APP VERSION

gpu-operator gpu-operator 1 ... deployed gpu-operator-v1.10.1 v1.10.1

A helm uninstall gpu-operator command can be used to uninstall the operator.

6.4.4 Validating The NVIDIA GPU Operator
A pragmatic way to validate the NVIDIA GPU Operator is to check if the validator pods can be run. A
Running status for the pods that are to have a GPU on them can be seen with:

Example

root@basecm10 ~# kubectl get pod -n gpu-operator -l app=nvidia-operator-validator -o wide

NAME READY STATUS ... IP NODE NOMINATED NODE READINESS GATES

nvidia-operator-validator-2qvz6 1/1 Running ... 172.29.152.172 node001 <none> <none>

nvidia-operator-validator-xkwwv 1/1 Running ... 172.29.112.154 node002 <none> <none>

https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/getting-started.html#common-chart-customization-options
https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/getting-started.html#common-chart-customization-options

6.4 The NVIDIA GPU Operator 107

The preceding shows succesfully running pods. The log output should show all validations are

successful:

Example

root@basecm10 ~# kubectl logs -n gpu-operator -l app=nvidia-operator-validator -c nvidia-operator-validator

all validations are successful

all validations are successful

6.4.5 Validating The NVIDIA GPU Operator In Detail
The set of pods associated with the NVIDIA GPU Operator can be examined in more detail. The follow-
ing shows outputs from a GPU operator deployment that is working correctly:

Example

root@basecm10 ~# helm list -n gpu-operator

NAME NAMESPACE ... STATUS CHART APP VERSION

gpu-operator gpu-operator ... deployed gpu-operator-v1.10.1 v1.10.1

root@basecm10 ~# kubectl get all -n gpu-operator -o wide

NAME READY STATUS RESTARTS ... NODE

pod/gpu-feature-discovery-gk892 1/1 Running 0 ... node001

pod/gpu-feature-discovery-rmkvj 1/1 Running 0 ... node002

pod/gpu-operator-798c6ddc97-lmclm 1/1 Running 0 ... basecm10

pod/gpu-operator-node-feature-discovery-master-6c65c99969-cjlpq 1/1 Running 0 ... basecm10

pod/gpu-operator-node-feature-discovery-worker-cgxzl 1/1 Running 0 ... node002

pod/gpu-operator-node-feature-discovery-worker-ds5mb 1/1 Running 0 ... basecm10

pod/gpu-operator-node-feature-discovery-worker-jf65c 1/1 Running 0 ... node001

pod/nvidia-container-toolkit-daemonset-ffbk7 1/1 Running 1 (46m ago)... node002

pod/nvidia-container-toolkit-daemonset-lqfkq 1/1 Running 0 ... node001

pod/nvidia-cuda-validator-pxs9b 0/1 Completed 0 ... node001

pod/nvidia-cuda-validator-v7gfz 0/1 Completed 0 ... node002

pod/nvidia-dcgm-exporter-bxjrv 1/1 Running 0 ... node001

pod/nvidia-dcgm-exporter-qll9z 1/1 Running 0 ... node002

pod/nvidia-device-plugin-daemonset-698hd 1/1 Running 0 ... node001

pod/nvidia-device-plugin-daemonset-xd4kj 1/1 Running 0 ... node002

pod/nvidia-device-plugin-validator-5crlc 0/1 Completed 0 ... node001

pod/nvidia-device-plugin-validator-wh27x 0/1 Completed 0 ... node002

pod/nvidia-operator-validator-2qvz6 1/1 Running 0 ... node001

pod/nvidia-operator-validator-xkwwv 1/1 Running 0 ... node002

...

On this particular example cluster, there are two compute nodes with GPUs, and there is one control
plane node without a GPU:

root@basecm10 ~# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node001 Ready worker 3h2m v1.24.0

node002 Ready worker 3h2m v1.24.0

basecm10 Ready control-plane,master 3h2m v1.24.0

Feature discovery pods: Node Feature Discovery (NFD, https://intel.github.io/kubernetes-docs/
nfd/index.html) is an add-on that is initiated after the operator is installed. A master pod collects dis-
covery information from the worker pods, and schedules more pods in case GPUs have been detected.

In the preceding GPU operator output,

https://intel.github.io/kubernetes-docs/nfd/index.html
https://intel.github.io/kubernetes-docs/nfd/index.html

108 Kubernetes Operators

• the master pod is running on node001 with the name:
gpu-operator-node-feature-discovery-master-6c65c99969-wtzcx

• the worker pods run on each node. For example, the worker pod for node002 is:
gpu-operator-node-feature-discovery-worker-z4skv

The output for the pods is not very verbose by default, but if more pods under the nvidia- name-
space are scheduled on a node, besides the gpu-operator-node-feature-discovery-* pods, then that
means that NFD has detected one or more GPUs.

For example, a GPU discovered on node001 results in a scheduling of the following pods on that
node:

• container toolkit

• device plugin

• validator

Container toolkit pods: For nodes that have GPUs, the NVIDIA container toolkit installation pods are
started. Pod logs show exactly what is being installed.

One of the requirements for the NVIDIA container toolkit installation pods is that the driver has to
be in working order, or the init container driver-validation will fail. The following is the log from a
successful installation:

Example

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-container-toolkit-daemonset-ffbk7

Defaulted container "nvidia-container-toolkit-ctr" out of: nvidia-container-toolkit-ctr, driver-validation (init)

...

time="2022-12-06T14:31:36Z" level=info msg="Installing toolkit"

time="2022-12-06T14:31:36Z" level=info msg="Parsing arguments: [/usr/local/nvidia/toolkit]"

time="2022-12-06T14:31:36Z" level=info msg="Successfully parsed arguments"

time="2022-12-06T14:31:36Z" level=info msg="Installing NVIDIA container toolkit to '/usr/local/nvidia/toolkit'"

...

time="2022-12-06T14:31:36Z" level=info msg="Installing NVIDIA container toolkit config

'/usr/local/nvidia/toolkit/.config/nvidia-container-runtime/config.toml'"

time="2022-12-06T14:31:36Z" level=info msg="Setting up runtime"

time="2022-12-06T14:31:36Z" level=info msg="Starting 'setup' for containerd"

time="2022-12-06T14:31:36Z" level=info msg="Parsing arguments: [/usr/local/nvidia/toolkit]"

time="2022-12-06T14:31:36Z" level=info msg="Successfully parsed arguments"

time="2022-12-06T14:31:36Z" level=info msg="Loading config: /runtime/config-dir/nvidia-cri.toml"

...

Device plugin pods: The device plugin pods are started up next. These have the toolkit as a require-
ment. If the toolkit is not in working order, then the init container toolkit-validation fails. The
following is the log from a successful startup:

Example

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-device-plugin-daemonset-698hd

Defaulted container "nvidia-device-plugin-ctr" out of: nvidia-device-plugin-ctr, toolkit-validation (init)

2022/12/06 14:32:20 Loading NVML

2022/12/06 14:32:20 Starting FS watcher.

2022/12/06 14:32:20 Starting OS watcher.

2022/12/06 14:32:20 Retreiving plugins.

2022/12/06 14:32:20 No MIG devices found. Falling back to mig.strategy=&

6.4 The NVIDIA GPU Operator 109

2022/12/06 14:32:20 Starting GRPC server for 'nvidia.com/gpu'

2022/12/06 14:32:20 Starting to serve 'nvidia.com/gpu' on /var/lib/kubelet/device-plugins/nvidia-gpu.sock

2022/12/06 14:32:20 Registered device plugin for 'nvidia.com/gpu' with Kubelet

The pod log output suggests that the GPU is now registered with the Kubelet as a resource. This can
be checked by querying the Node resource:

Example

root@basecm10 ~# kubectl describe node node001 | grep nvidia

nvidia.com/cuda.driver.major=520

nvidia.com/cuda.driver.minor=61

nvidia.com/cuda.driver.rev=05

nvidia.com/cuda.runtime.major=11

nvidia.com/cuda.runtime.minor=8

nvidia.com/gfd.timestamp=1670337142

nvidia.com/gpu.compute.major=7

nvidia.com/gpu.compute.minor=0

nvidia.com/gpu.count=1

nvidia.com/gpu.deploy.container-toolkit=true

nvidia.com/gpu.deploy.dcgm=true

nvidia.com/gpu.deploy.dcgm-exporter=true

nvidia.com/gpu.deploy.device-plugin=true

nvidia.com/gpu.deploy.driver=true

nvidia.com/gpu.deploy.gpu-feature-discovery=true

nvidia.com/gpu.deploy.node-status-exporter=true

nvidia.com/gpu.deploy.operator-validator=true

nvidia.com/gpu.family=volta

nvidia.com/gpu.machine=OpenStack-Nova

nvidia.com/gpu.memory=32768

nvidia.com/gpu.present=true

nvidia.com/gpu.product=Tesla-V100-SXM3-32GB

nvidia.com/mig.strategy=single

nvidia.com/run.ai-swap.enabled=false

nvidia.com/gpu: 1

nvidia.com/gpu: 1

...

Validator pods: If anything goes wrong with either the driver, toolkit, CUDA, or the plugin, then
validator pods are a good place to start looking.

If all goes well, the main container outputs all validations are successful:

Example

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-operator-validator-2qvz6

Defaulted container "nvidia-operator-validator" out of: nvidia-operator-validator, driver-validation (init),

toolkit-validation (init), cuda-validation (init), plugin-validation (init)

all validations are successful

It is possible for an init container to fail. The output for the container should then be checked.
The following shows output from successful init containers:

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-operator-validator-2qvz6 -c driver-validation

running command chroot with args [/run/nvidia/driver nvidia-smi]

Tue Dec 6 15:32:14 2022

+---+

110 Kubernetes Operators

| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 Tesla V100-SXM3... On | 00000000:00:06.0 Off | 0 |

| N/A 32C P0 46W / 350W | 2MiB / 32768MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-operator-validator-2qvz6 -c toolkit-validation

Tue Dec 6 14:32:16 2022

+---+

| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 Tesla V100-SXM3... On | 00000000:00:06.0 Off | 0 |

| N/A 32C P0 46W / 350W | 2MiB / 32768MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-operator-validator-2qvz6 -c cuda-validation

time="2022-12-06T14:32:17Z" level=info msg="pod nvidia-cuda-validator-pxs9b is curently in Pending phase"

time="2022-12-06T14:32:22Z" level=info msg="pod nvidia-cuda-validator-pxs9b is curently in Pending phase"

time="2022-12-06T14:32:27Z" level=info msg="pod nvidia-cuda-validator-pxs9b is curently in Pending phase"

time="2022-12-06T14:32:32Z" level=info msg="pod nvidia-cuda-validator-pxs9b have run successfully"

root@basecm10 ~# kubectl logs -f -n gpu-operator nvidia-operator-validator-2qvz6 -c plugin-validation

time="2022-12-06T14:32:33Z" level=info msg="pod nvidia-device-plugin-validator-5crlc is curently in Pending phase"

time="2022-12-06T14:32:38Z" level=info msg="pod nvidia-device-plugin-validator-5crlc is curently in Pending phase"

time="2022-12-06T14:32:43Z" level=info msg="pod nvidia-device-plugin-validator-5crlc have run successfully"

This also explains where the pods earlier on came from, the ones marked with status Completed.
They are used as part of certain validation steps.

Which init container prints out error messages should indicate where the problem lies—either with
the CUDA drivers, or the toolkit, and so on. If the driver or toolkit is not validating correctly, then it may

6.4 The NVIDIA GPU Operator 111

result in a lot of pods stuck in a Pending or an Init stage. Looking at what init container is associated
with the stuck pod helps in diagnosing the problem.

DCGM exporter pods: These pods expose metrics endpoints for scraping, and can be considered less
critical. They are involved in GPU metrics collection, and can be utilized with, for example, Prometheus
Stack Operator, or the Prometheus Adapter, for horizontal pod autoscaling based on GPU metrics.

More information on the Prometheus Stack Operator and the Prometheus Adapter Operator can be
found at:

https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-

on-a-bright-cluster

6.4.6 Running A GPU Workload
A GPU workload can be run with the following configuration:

Example

root@basecm10 ~# cat << EOF > gpu.yaml

apiVersion: v1

kind: Pod

metadata:

name: gpu-pod

spec:

restartPolicy: Never

containers:

- name: cuda-container

image: nvidia/cuda:11.0.3-base-ubuntu20.04

command: ["nvidia-smi"]

resources:

limits:

nvidia.com/gpu: 1

EOF

root@basecm10 ~# kubectl create -f gpu.yaml

pod/gpu-pod created

On a cluster with GPUs available, this pod should get scheduled, and should not stay stuck in the
Pending phase.

The preceding example just invokes nvidia-smi in the container. The output can be viewed to
confirm that it worked:

Example

root@basecm10 ~# kubectl logs -f gpu-pod

Tue Dec 6 15:08:03 2022

+---+

| NVIDIA-SMI 520.61.05 Driver Version: 520.61.05 CUDA Version: 11.8 |

|-------------------------------+----------------------+----------------------+

| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |

| | | MIG M. |

|===============================+======================+======================|

| 0 Tesla V100-SXM3... On | 00000000:00:06.0 Off | 0 |

| N/A 34C P0 47W / 350W | 2MiB / 32768MiB | 0% Default |

| | | N/A |

+-------------------------------+----------------------+----------------------+

https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster
https://kb.brightcomputing.com/knowledge-base/the-nvidia-gpu-operator-with-kubernetes-on-a-bright-cluster

112 Kubernetes Operators

+---+

| Processes: |

| GPU GI CI PID Type Process name GPU Memory |

| ID ID Usage |

|===|

| No running processes found |

+---+

6.5 The NVIDIA Network Operator
6.5.1 Installing The NVIDIA Network Operator
The upstream documentation for the NVIDIA Network Operator is quite extensive, and more details
can be found there at https://docs.nvidia.com/networking/display/cokan10/network+operator.

Going Through The Kubernetes Setup Wizard
The Network operator installation is also part of the initial Kubernetes cluster setup. One of the steps
in the wizard asks the cluster administrator to select operators from a list. The Network operator is one
of them. If the Network operator is selected (figure 6.8), then the setup wizard continues with some
follow-up checks and questions.

Figure 6.8: Kubernetes operators selection, with Network operator selected

The wizard then asks which version of the operator should be installed (figure 6.9):

https://docs.nvidia.com/networking/display/cokan10/network+operator

6.5 The NVIDIA Network Operator 113

Figure 6.9: Network operator version selection screen

The wizard then prompts for a custom YAML configuration file to use for the Helm chart deployment
(figure 6.10):

Figure 6.10: Network operator prompt for custom YAML configuration for Helm

If a custom YAML configuration file is not chosen, then options for a Helm chart can be set (fig-
ure 6.11):

Figure 6.11: Network operator options for Helm chart prompt.

Result Of The Network Operator Helm Chart
If all goes well, then the Helm chart should be deployed successfully:

Example

root@basecm10 ~# module load kubernetes/default/1.27.11-1.1

root@basecm10 ~# helm list -A -a

NAME NAMESPACE ... STATUS CHART APP VERSION

local-path-provisioner cm ... deployedcm-kubernetes-local-path-provisioner-0.0.26 0.0.26

network-operator network-operator... deployednetwork-operator-23.7.0 v23.7.0

permissions-manager cm ... deployedcm-kubernetes-permissions-manager-0.4.8 0.4.8

root@bright:~# helm history -n network-operator

REVISION UPDATED STATUS CHART APP VERSION DESCRIPTION

1 Thu Feb 29 14:43:20 2024 deployed network-operator-23.7.0 v23.7.0 Install complete

114 Kubernetes Operators

6.6 The NVIDIA NetQ Operator
6.6.1 NVIDIA NetQ Operator Installation
Prerequisites

• The only supported OS is Ubuntu 20.04.

• The number of NetQ nodes can be 1 or 3 nodes only. These must be regular compute nodes.

• The NetQ nodes require at least 250 GiB of diskspace to be available.

• The NetQ nodes require at least 64 GiB of memory.

• The NVIDIA Base Command Manager default ports cannot be used.

• Kyverno is not supported in combination with NetQ at the time of writing (March 2024) of this
section.

The default ports can be changed on the pctive and passive head nodes as follows.

cm-cmd-ports --http 8083 --https 8084 && systemctl restart cmd

Going Through The Kubernetes Setup Wizard
The NetQ installation is part of the initial Kubernetes cluster setup. One of the steps in the wizard
asks the cluster administrator to choose operators from a list of operators. NetQ is one of the possible
operators. If the NetQ operator is selected (figure 6.12), then the setup wizard continues with some
follow-up checks and questions.

Figure 6.12: Kubernetes NetQ Operator Selection

Node selection asks which nodes are to be assigned to NetQ (see figure 6.13). The options are:

• for a single-deployment (this is NetQ terminology), one node should be selected

• For a cluster-deployment (also NetQ terminology), three nodes should be selected

6.6 The NVIDIA NetQ Operator 115

Figure 6.13: NetQ nodes selection

After node selection, the nodes are inspected to see if they meet the prerequisites for running NetQ.
One potential issue it detects is if NVIDIA Base Command Manager is already running on the default
ports. It suggests the commands to execute to fix that, (figure 6.14). NetQ prerequisites and how to carry
out changing the default ports is described further in section 6.6.1. After carrying out the port changes,
the wizard must be restarted from the beginning.

Figure 6.14: Warning presented if NVIDIA Base Command Manager still uses default port 8081.

lf all prerequisites are met, then the next dialog asks for a few files. These have to be provided by
NetQ and stored somewhere on the active head node (figure 6.15).

Figure 6.15: Dialog asking for NetQ tarball and packages for agent and apps.

When the required files are downloaded, and saved to, for example, /root:

Example

root@basecm10 ~# ls -alh | grep -i netq

-rw-r--r-- 1 root root 35M Jan 9 09:05 netq-agent_4.9.0-ub20.04u45~1703950858.128b0741e_amd64.deb

-rw-r--r-- 1 root root 32M Jan 9 09:05 netq-apps_4.9.0-ub20.04u45~1703950858.128b0741e_amd64.deb

-rw-r--r-- 1 root root 13G Jan 9 09:09 NetQ-bcm-4.9.0-SNAPSHOT.tgz

the dialog can then be filled in (figure 6.16):

116 Kubernetes Operators

Figure 6.16: Filled-in dialog asking for NetQ files.

Depending on whether a single-node or cluster (three-node) setup is being done, the next dialog
will only be shown in the case of a cluster install, and asks for a virtual IP to be used for the NetQ
LoadBalancer (figure 6.17).

Figure 6.17: NetQ prompt for virtual IP to use for load balancing

The dialog by default suggests an IP address that is not in use, according to NVIDIA Base Command
Manager’s internal database. The address is part of the chosen internal network for the Kubernetes pod
network.

After the wizard completes it input stage, the actual setup is executed. The setup can take signifi-
cantly more time than the wizard input stage. The amount of time taken is largely dependent on file I/O
speed—bigger files require some time to be synchronized to the appropriate nodes. In addition, NetQ
installation itself can take around an hour to finish deploying. The deployment of NetQ is almost the
very last step of the setup process. For a successful installation, the last stage of the output displayed
looks similar to figure 6.18:

Figure 6.18: Kubernetes with NetQ installation finished, and relevant URLs on display

6.6.2 Accessing The NVIDIA NetQ Operator UI
In section 6.6.1 a NetQ deployment is described.

6.7 The Prometheus Operator Stack 117

If the setup is for a single-node deployment, then a NodePort service is used to expose the NetQ UI.
The URL is printed at the end of the setup (figure 6.18), but it can also be found by one of the following
methods:

• via kubectl

root@basecm10 ~# module load kubernetes/default/1.27.11-1.1

root@basecm10 ~# kubectl get svc -l app=netq-gui -n netq

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

netq-gui NodePort 10.150.11.218 <none> 80:30029/TCP 17m

• via searching back in the Kubernetes setup file:

root@basecm10 ~# tac /var/log/cm-kubernetes-setup.log | grep -m 1 "NetQ GUI:"

I 24-02-29 13:40:46 | cmsetup.plugins.kubernetes.stages.stages | - NetQ GUI: \
https://basecm10.openstacklocal:30029

If the setup is for a cluster deployment, then the virtual IP address also exposes the NetQ GUI on the
default HTTPS port. For the cluster, that is: https://10.141.255.253. This virtual IP address is the one
that is set during installation (figure 6.17). Figure 6.19 shows that IP address in use:

Figure 6.19: NetQ GUI screenshot

6.7 The Prometheus Operator Stack
6.7.1 Exporting And Reusing Grafana Dashboards
After a dashboard has been created, the user may wish to export it for backup purposes, or to reuse it in
another Grafana instance.

Exporting A Dashboard
Exporting the dashboard as a JSON file can be carried out by following the Grafana documentation
instructions at:

https://grafana.com/docs/grafana/latest/dashboards/share-dashboards-panels/#export-a-

dashboard-as-json

https://grafana.com/docs/grafana/latest/dashboards/share-dashboards-panels/#export-a-dashboard-as-json
https://grafana.com/docs/grafana/latest/dashboards/share-dashboards-panels/#export-a-dashboard-as-json

118 Kubernetes Operators

Storing A Dashboard
The exported JSON file can be added to a Git repository, or stored in a ConfigMap. A ConfigMap can be
created and labeled for Grafana with:

Example

kubectl create configmap my-grafana-dashboard --from-file=my-dashboard-1739813945293.json -n default

kubectl label configmap my-grafana-dashboard grafana_dashboard='1' -n default

By default, Grafana automatically loads dashboards when using ConfigMaps containing the
grafana_dashboard='1'

label in any namespace.

6.8 The Run:ai Operator
Run:ai has two main installation options: Classic (SaaS), and Self-hosted. Installation types are described
at https://docs.run.ai/v2.13/admin/runai-setup/installation-types/.

The SaaS option has a specialized mode of deployment, referred to as the “Run:ai & NVIDIA DGX
Bundle”. This is documented upstream at Run:ai at https://docs.run.ai/latest/admin/runai-setup/
cluster-setup/dgx-bundle/. This bundle aims to make the Run:ai deployment on top of BCM Kuber-
netes, with the control plane in the cloud, as easy as possible.

Run:ai consists of two components: the datascience GPU cluster (BCM cluster in BCM terms) and
the control plane. For an SaaS deployment, the control plane runs in the Run:ai cloud. For a Self-hosted
deployment, the control plane is also installed on the cluster.

The Self-hosted deployment comes in two variants of itself:

1. Connected: the organization can freely download from the internet, though upload is not allowed

2. Air-gapped: the organization has no connection to the internet

All installation options are possible on top of a BCM Kubernetes cluster. However, at the time of
writing of this section (March 2024), the Self-hosted option is out of scope for the Run:ai operator. The
next sections assume that the aim is to deploy the Classic SaaS installation.

The Run:ai documentation documents the cluster installer bundle for NVIDIA DGX at: https://

docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/.

Figure 6.20: Run:ai installer available from the BCM landing page

https://docs.run.ai/v2.13/admin/runai-setup/installation-types/
https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/
https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/
https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/
https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/

6.8 The Run:ai Operator 119

6.8.1 Prerequisites For The Run:ai Operator Installation
The following prerequisites must be met for Kubernetes and Run:ai installation:

• The cluster must be running an updated BCM (for example, for Ubuntu: apt update; apt upgrade)

• The cluster allows outbound traffic to the Run:ai cloud

• The user has the Run:ai credentials:

– tenant name

– application secret

– username and password for the admin user

• An available hostname that can be used instead of the cluster IP external address

• A DNS entry for the hostname that resolves to the cluster IP address.

• A trusted server certificate and key file for the hostname.

The hostname is used by clients, such as the primary Run:ai web interface to connect to Run:ai APIs
on the cluster through the Ingress Controller over HTTPS.

6.8.2 Installing The Run:ai Operator
The Run:ai operator can be installed as a part of the cm-kubernetes-setup procedure (section 4.2.6).

It is possible to install Run:ai after having first deployed Kubernetes without Run:ai, with manual
effort. However, this is currently not documented.

Assuming Run:ai has been deployed, the Helm status can be checked with:

Example

root@basecm10 ~# helm list -n runai

NAME NAMESPACE ... STATUS CHART APP VERSION

cluster-installer runai ... deployed cluster-installer-2.8.8 0.0.1

root@basecm10 ~# helm history -n runai runai-cluster

REVISION ... STATUS CHART APP VERSION DESCRIPTION

1 ... deployed runai-cluster-2.13.7 Install complete

root@basecm10 ~# kubectl get all -n runai

NAME READY STATUS RESTARTS AGE

pod/cluster-installer-deployment-5f4c4cbf4c-82gmx 1/1 Running 0 5m9s

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/cluster-installer-service ClusterIP 10.150.117.247 <none> 8080/TCP 5m9s

NAME READY UP-TO-DATE AVAILABLE AGE

deployment.apps/cluster-installer-deployment 1/1 1 1 5m9s

NAME DESIRED CURRENT READY AGE

replicaset.apps/cluster-installer-deployment-5f4c4cbf4c 1 1 1 5m9s

6.8.3 Removing The Run:ai Operator
The Run:ai operator can be removed via Helm:

Example

[root@basecm10 ~]# helm uninstall cluster-installer -n runai

120 Kubernetes Operators

Removal of Run:ai access from the BCM head node landing page (figure 6.20) can be carried with a
removal of the associated JSON file:

Example

root@basecm10 ~# ls -al /var/www/html/kubernetes/runai/

total 4

drwxr-xr-x 2 root root 26 Dec 6 12:21 .

drwxr-xr-x 4 root root 51 Dec 1 16:24 ..

-rw-r--r-- 1 root root 317 Dec 6 12:21 default.json

root@basecm10 ~# rm -rf /var/www/html/kubernetes/runai/default.json

root@basecm10 ~#

Each Kubernetes cluster has its own JSON file.
Uninstalling the Kubernetes cluster automatically cleans up everything associated with it.

6.8.4 Completing The Run:ai Installation
When cm-kubernetes-setup is run, a summary is shown at the end of the installation. This includes
URLs that point to the Run:ai installer:

Example

[root@basecm10 ~]# cm-kubernetes-setup

...

stage: kubernetes: Print Summary

Installation completed. Pods might still be initializing.

To add users to the cluster use: refer to `cm-kubernetes-setup --help'

To use kubectl load the module file: kubernetes/default/1.24

Common URLs:

- Kubernetes API server: https://runai-cluster.nvidia.com:10443

- Kubernetes dashboard: https://dashboard.runai-cluster.nvidia.com:30443/

- Kubernetes dashboard: https://0.0.0.0:30443/dashboard/

- Run:ai installer: http://runai-cluster.nvidia.com:30080/runai-installer

- Run:ai installer: https://runai-cluster.nvidia.com/#runai

Progress: 100

Took: 13:18 min.

Progress: 100/100

################### Finished execution for 'Kubernetes Setup', status: completed

Kubernetes Setup finished!

From this it is seen that for this cluster the FQDN is “runai-cluster.nvidia.com”, and that the default
port for HTTPS ingress is 30443. These two values must be noted down, as they are needed for the
cluster installer later.

6.8.5 Run:ai setup Ingress Certificate
Section 6.8.4 concluded with Kubernetes being configured with an FQDN of “runai-cluster.nvidia.com“.
A matching server certificate from the organization is also obtained as part of the prerequisites (sec-
tion 6.8.1).

With these files the instructions from section 4.22.11 can now be followed.

6.8 The Run:ai Operator 121

6.8.6 Run:ai Setup Through Cluster Installer Wizard
In section 6.8.5 the Ingress Controller was configured with an appropriate domain.

After the Kubernetes setup completion, the URL to the wizard was printed, and has a form similar to
http://runai-cluster.nvidia.com:30080/runai-installer. However, the Run:ai installer can also
easily be found via the BCM landing page otherwise (figure 6.20).

The Run:ai installer is run next. The installer first checks for dependencies (figure 6.21):

Figure 6.21: Run:ai installer: verification screen

The user is then asked for credentials, Cluster URL, and certificates:

http://runai-cluster.nvidia.com:30080/runai-installer

122 Kubernetes Operators

Figure 6.22: Run:ai installer: fields to be filled by the user

• The Tenant name, and Application secret key are provided by Run:ai.

• The Cluster URL has to be the domain name that was noted in section 6.8.4 when the Ingress
Controller was configured, and the Ingress HTTPS port was appended to it. For example:
runai-cluster.nvidia.com:30443

This is the FQDN that the wizard also prompts for in figure 4.2.

• The Private key and Certificate files are the server key and PEM files provided earlier by the
system administrator (section 6.8.1).

The wizard finalizes the Run:ai setup, and then carries out the installation. A progress meter is
displayed during installation:

6.8 The Run:ai Operator 123

Figure 6.23: Run:ai Installer: installation progress

On completion, the wizard redirects the user to the Run:ai dashboard. The NVIDIA Base Command
Manager head node landing page is also updated to point to the Run:ai dashboard. The "+" sign of
figure 6.20 now shows a link icon instead, indicating that Run:ai is now installed:

Figure 6.24: Run:ai is now accessible from the BCM head node landing page

6.8.7 Post-installation
The Run:ai documentation has post-installation steps at the following URL: https://docs.run.ai/
latest/admin/runai-setup/cluster-setup/dgx-bundle/#post-installation. However, these are
only fully relevant for BCM version 9.2. The OIDC configuration is done differently in NVIDIA Base
Command Manager version 10.23.11 and later, and relies an interactive wizard. The wizard is accessed
and run as follows:

https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/#post-installation
https://docs.run.ai/latest/admin/runai-setup/cluster-setup/dgx-bundle/#post-installation

124 Kubernetes Operators

• An SSH connection is made to the active head node

• cm-kubernetes-setup is run, and “Enable Run:ai Config (Configure Run:ai CLI binary and OIDC
settings)” is chosen (figure 6.25).

• The steps of the wizard are followed. The wizard takes care of configuring the Kubernetes API
server.

• The configuration change may take a minute to restart the Kubernetes API server, and may result
in a minute of downtime.

• The HTTPS certificate can now be checked to see if it is working correctly

Figure 6.25: Option to automatically add Run:ai configuration to Kubernetes API server and installing
the correct runai binary on the system

The most important aspect is configuring Researcher Access Control in BCM: https://docs.run.
ai/latest/admin/runai-setup/authentication/researcher-authentication/.

This includes going to cmsh and configuring the Kubernetes API server with additional OIDC pa-
rameters.

The runai binary can be downloaded in various ways, the Run:ai environment has an option where
the binary can be downloaded from the cluster itself. The binary can be copied to /usr/bin and made
executable by the system administrator.

Figure 6.26: runai binary download

6.9 Kubernetes Spark Operator
Using the Kubernetes Spark Operator is a simpler alternative to using the spark-submit tool for job
submission.

https://docs.run.ai/latest/admin/runai-setup/authentication/researcher-authentication/
https://docs.run.ai/latest/admin/runai-setup/authentication/researcher-authentication/

6.9 Kubernetes Spark Operator 125

6.9.1 Installing The Kubernetes Spark Operator
The Kubernetes Spark Operator can be installed as a part of the cm-kubernetes-setup procedure (sec-
tion 4.2.6), which eventually leads to a display listing the operator packages that may be installed (fig-
ure 6.1).

The Kubernetes Spark Operator can alternatively be installed later on using the OS package manager
and Helm:

[root@basecm10 ~]# yum install cm-kubernetes-spark-operator -y

[root@basecm10 ~]# helm install cm-kubernetes-spark-operator \

/cm/shared/apps/kubernetes-spark-operator/current/helm/spark-operator-*.tgz

The Kubernetes Spark Operator can be removed with:

Example

[root@basecm10 ~]# helm uninstall cm-kubernetes-spark-operator

The operator installation state can be verified with --list-operators:

Example

[root@basecm10 ~]# cm-kubernetes-setup --list-operators

...

OPERATOR________________________________: api_available___________________________

cm-jupyter-kernel-operator : 0

cm-kubernetes-postgresql-operator : 0

cm-kubernetes-spark-operator : 1

...

The Helm status can be checked with, for example:

Example

[root@basecm10 ~]# helm list

NAME NAMESPACE ... STATUS CHART APP VERSION

cm-kubernetes-spark-operator default ... deployed spark-operator-1.0.8 v1beta2-1.2.0-3.0.0

[root@basecm10 ~]# helm status cm-kubernetes-spark-operator

NAME: cm-kubernetes-spark-operator

LAST DEPLOYED: Mon Sep 19 11:17:21 2022

NAMESPACE: default

STATUS: deployed

REVISION: 1

TEST SUITE: None

[root@basecm10 ~]#

The Permission Manager (section 4.15) and PodSecurityPolicy (PSP, section 4.10.2) must both be
enabled for the cluster, before allowing a user to create resources in the Kubernetes cluster in their
namespace:

Example

[root@basecm10 ~]# cm-kubernetes-setup --psp

The user alice can be allowed to use the Spark operator, and allowed to run a process as any UID
in the pod:

Example

[root@basecm10 ~]# cm-kubernetes-setup --add-user alice --operators cm-kubernetes-spark-operator \
--allow-all-uids

The Kubernetes Spark operator Helm chart creates a CRD that can be used in the Kubernetes API.
For Alice, the CRD is available and can be used with a Spark operator YAML, to build a Spark

application carry out a pi run in the restricted namespace.

126 Kubernetes Operators

6.9.2 Example Spark Operator Run: Calculating Pi
Continuing on with the user alice of the preceding section, a YAML file based on the
specification at https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/
examples/spark-py-pi.yaml can be used:

Example

[root@basecm10 �]# su - alice

[alice@basecm10 ~]$ module load kubernetes

[alice@basecm10 ~]$ cat <<EOF > pi-spark.yaml

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

name: pyspark-pi

spec:

type: Python

pythonVersion: "3"

mode: cluster

image: "gcr.io/spark-operator/spark-py:v3.1.1"

imagePullPolicy: Always

mainApplicationFile: local:///opt/spark/examples/src/main/python/pi.py

sparkVersion: "3.1.1"

restartPolicy:

type: OnFailure

onFailureRetries: 3

onFailureRetryInterval: 10

onSubmissionFailureRetries: 5

onSubmissionFailureRetryInterval: 20

driver:

cores: 1

coreLimit: "1200m"

memory: "512m"

labels:

version: 3.1.1

serviceAccount: spark

executor:

cores: 1

instances: 1

memory: "512m"

labels:

version: 3.1.1

EOF

[alice@basecm10 ~]$ kubectl apply -f pi-spark.yaml

sparkapplication.sparkoperator.k8s.io/pyspark-pi created

[alice@basecm10 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 0/1 ContainerCreating 0 1s

[alice@basecm10 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 1/1 Running 0 3s

[alice@basecm10 ~]$ kubectl get sparkapplications

NAME AGE

pyspark-pi 7s

[alice@basecm10 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 1/1 Running 0 14s

https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/examples/spark-py-pi.yaml
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/examples/spark-py-pi.yaml

6.10 The NVIDIA Postgres Operator 127

pythonpi-e768128383a881b3-exec-1 0/1 ContainerCreating 0 0s

[alice@basecm10 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 0/1 Completed 0 34s

pythonpi-e768128383a881b3-exec-1 0/1 Terminating 0 20s

[alice@basecm10 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 0/1 Completed 0 36s

Instead of tracking the pod with:
kubectl get pods

as in the preceding session, or with the more convenient:
watch kubectl get pods

the pod could be tracked with the -f| --follow option to stream the driver logs:

Example

[alice@basecm10 ~]$ kubectl logs pyspark-pi-driver -f

To get intended output of the pi run—the calculated value of pi—it is sufficient to grep the log as
follows:

Example

[alice@basecm10 ~]$ kubectl logs pyspark-pi-driver | grep �Pi

Pi is roughly 3.148800

After the pi run has completed, the resources can be removed from the namespace:

[alice@basecm10 ~]$ kubectl delete -f pi-spark.yaml

sparkapplication.sparkoperator.k8s.io "pyspark-pi" deleted

[alice@basecm10 ~]$ kubectl get pods

No resources found in alice-restricted namespace.

[alice@basecm10 ~]$ kubectl get sparkapplications

No resources found in alice-restricted namespace.

6.10 The NVIDIA Postgres Operator
6.10.1 Installing The NVIDIA Postgres Operator
The upstream documentation for the Postgres Operator is at https://operatorhub.io/operator/

postgres-operator.

Going Through The Kubernetes Setup Wizard
The Postgres operator installation is part of the initial Kubernetes cluster setup. Its installation is one
of the options made available to the cluster administrator during the selection of operator packages
(figure 6.1).

The wizard later asks which version of the Postgres operator should be installed (figure 6.27):

https://operatorhub.io/operator/postgres-operator
https://operatorhub.io/operator/postgres-operator

128 Kubernetes Operators

Figure 6.27: Postgres operator version selection screen

7
Kubernetes On Edge

How edge sites can be configured is described in Chapter 2 of the Edge Manual.
If there are BCM Edge sites configured in the cluster, then the Kubernetes setup prompts the user

with edge sites that Kubernetes can be deployed on.

Figure 7.1: cm-kubernetes-setup prompting for edge sites.

If an edge site is selected, then the rest of the wizard prompts only for nodes available within that
edge site; prompts only for the associated network interfaces; and so on.

7.1 Flags For Edge Installation
Edge directors often lack high-bandwidth connectivity to the central head node, or they often may ben-
efit from coming up as quickly as possible. It can therefore sometimes be useful to skip stages of the
setup.

Running cm-kubernetes-setup �-help displays some additional flags that allow some setup stages,
that bring up a cloud director, to be skipped explicitly:

cm-kubernetes-setup --help

...

installing Kubernetes clusters:

Flags for installing or managing Kubernetes clusters

--skip-package-install

Skip the package installation steps. Ignores skip_packages

flags in the config.

--skip-reboot Skip the reboot steps.

--skip-image-update Skip the image update steps.

--skip-disksetup-changes

Never change the disk-setup. Use this flag if you manually

configure a partition or device for docker thin pool devices

for example.

130 Kubernetes On Edge

...

7.1.1 Speeding Up Kubernetes Installation To Edge Nodes With The �-skip-* Flags: Use
Cases

Explanations and use cases for these flags are given in the following table:

Flag Use case

�-skip-package-install all edge directors share the same software image, and the im-
age is already up to date. So the installer does not need to
install packages from that image to the edge director.

�-skip-image-update and all edge directors are already provisioned with the up-to-date
�-skip-reboot software image. So the installer does not need to carry out an

update from the ISO or head node, and then reboot the edge
director.

�-skip-disksetup-changes all edge directors already have the correct disk layout. This
flag can be set if the disk layout was already configured up-
front, in order to avoid full provisioning.

These flags can also be configured in the YAML configuration file of the cm-kubernetes-setup wiz-
ard.

The flags can be used for scripted installations for quick Kubernetes setups. For a scripted installation
of an edge director, preparations can be done beforehand so that all the requirements in the software
images that the edge directors use are already installed, the right disk layouts are already configured,
and packages are already updated.

All the stages in the flag options can then be skipped for installing onto edge sites. This can make
the setup take just a few seconds per Kubernetes deployment.

8
Kubernetes Cluster API

The Kubernetes Cluster API (CAPI), as explained in the introduction to the online Cluster API Book at
https://cluster-api.sigs.k8s.io/), "is a Kubernetes sub-project focused on providing declarative
APIs and tooling to simplify provisioning, upgrading, and operating multiple Kubernetes clusters".
The Cluster API Book is the official Kubernetes project documentation for CAPI.

This chapter describes the installation and usage of the NVIDIA Base Command Manager CAPI
extension called BCM Kubernetes CAPI Infrastructure Provider.

8.1 Kubernetes Cluster API Components
An overview of the CAPI components is shown in figure 8.1. Further details about the components are
given in the sections of this chapter that follow.

Figure 8.1: CAPI components

Figure 8.1 shows a standard Kubernetes cluster deployed on an active head node. The cluster
has been modified to become a Kubernetes management cluster using the BCM CAPI Infrastructure
Provider, and has successfully deployed two additional Kubernetes clusters through CAPI. These addi-
tional clusters may be running different versions of Kubernetes.

The system administrator receives module files and kubeconfig files for all three Kubernetes clusters.

8.1.1 Kubernetes Management Cluster
In BCM documentation, the term Kubernetes management cluster is used specifically and precisely to
refer to a Kubernetes cluster that operates as the management cluster for CAPI.

The ability to modify an external Kubernetes cluster to operate as a Kubernetes management cluster
is under preparation at the time of writing (June 2023) of this section. This includes scenarios such as
using an existing Kubernetes cluster, hosted on a public cloud, to serve as the Kubernetes management

https://cluster-api.sigs.k8s.io/
https://cluster-api.sigs.k8s.io/

132 Kubernetes Cluster API

cluster for a Kubernetes cluster deployed through BCM. At present, any Kubernetes cluster deployed
through BCM (Chapter 4) can be modified into a CAPI management cluster.

8.1.2 Kubernetes CAPI Cluster
BCM documentation uses the term Kubernetes CAPI cluster to refer specifically to a Kubernetes cluster
deployed via the Cluster API. Upstream Kubernetes documentation also sometimes refers to a Kuber-
netes cluster deployed via CAPI as a workload cluster.

8.1.3 BCM CAPI Infrastructure Provider
The BCM CAPI Infrastructure Provider is a derivative of the Bring Your Own Host (BYOH) CAPI
provider. The BYOH CAPI provider can also be referred to as the BYOH CAPI Infrastructure Provider,
and is available as a GitHub project at:
https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost

Similar to other CAPI providers, the BCM CAPI Infrastructure Provider is an extension of CAPI
itself, and both the CAPI provider and CAPI are required on the Kubernetes management cluster.

The BCM CAPI Operator
The BCM CAPI operator is an operator deployed in the byoh-system namespace on the Kubernetes
management cluster. The operator serves as the central point of connection for BCM CAPI host agents
(section 8.1.3). It also monitors the state of clusters and machines for the Kubernetes CAPI clusters.

root@headnode:~# kubectl get pod -n byoh-system

NAME READY STATUS RESTARTS AGE

byoh-controller-manager-6c98cbf44c-7gdbx 2/2 Running 2 (5h55m ago) 23h

BCM CAPI Host Agents
BCM CAPI host agents are scheduled to run on selected hosts. These hosts are defined by the cluster
administrator when the cm-kubernetes-capi-setup wizard (section 8.2.2) is run. The wizard ensures
that a selected host gets the right packages in its software image, and that the host is assigned the right
BCM roles.

For CAPI calls to function, the CapiRole is assigned. Assignment can be done either before or after
creating a Kubernetes CAPI cluster via the Kubernetes management cluster. The role sets up a capi-
agent service on the host for the associated Kubernetes management cluster.

When the role is:

• assigned: BCM initiates and bootstraps the service

• unassigned: BCM halts the service and makes it unavailable for use by CAPI on the associated
Kubernetes management cluster

This differs from cloud-based CAPI providers, which do not require managing a limited number of
pre-existing nodes, but instead start up new nodes on demand as needed.

If a Kubernetes CAPI cluster receives a cluster request and there are no hosts available, then ma-
chines remain in a Pending state until hosts become available. Once hosts become available, the status
transitions to Provisioning, and then eventually to Running (section 8.3.1).

BCM CAPI Vs BYOH
Once the actual Kubernetes CAPI clusters are deployed on designated CAPI hosts, BCM uses its Python
API to carry out the following operations:

• The requested Kubernetes version for each node is stored in the BCM database.

• The requested Kubernetes version is made available in the corresponding software image for the
node.

https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost

8.2 The Kubernetes CAPI Wizard 133

• The node is provisioned with the software image.

• The installer is notified that the Kubernetes installation can proceed.

In contrast to the BYOH provider, BCM CAPI has the following extra features:

• Linux distributions can be other than just Ubuntu 20.04.

• Kubernetes versions can be other than only those for which parcels have been created, as the BCM
Kubernetes integration does not rely on parcels.

8.2 The Kubernetes CAPI Wizard
The cm-kubernetes-capi-setup wizard installs the BCM CAPI Infrastructure Provider, and assigns the
CAPI role to nodes.

Figure 8.2: CAPI setup wizard

8.2.1 The Install CAPI Option
The Install CAPI option of figure 8.2 leads to a screen that prompts the user to select the Kubernetes
cluster instance on which to install the BCM CAPI Infrastructure Provider.

Figure 8.3: Selection of Kubernetes cluster for installation of the BCM CAPI Infrastructure Provider

If needed:

• cert-manager and the Cluster API itself are installed

• the CAPI clusterctl tool is run in the back end to carry out initialization

The Install CAPI Option Actions
Execution of the Install CAPI operation:

• prepares a Kubernetes cluster template for CAPI (section 8.8).

• installs the BCM CAPI Infrastructure Provider on the Kubernetes Cluster with the command:
clusterctl init infrastructure byoh.

• waits for the BCM CAPI operator to be ready for operation.

134 Kubernetes Cluster API

• patches the BCM CAPI operator to use the appropriate image. Patching is required until the BCM
changes get into the upstream repository.

• makes the capi module available for loading

The Install CAPI Option Changes To Kubernetes Management Cluster
After the Install CAPI option has run, the operators installed and running on the Kubernetes manage-
ment cluster can be seen (some output truncated):

Example

[root@basecm10 ~]# module load kubernetes

[root@basecm10 ~]# kubectl get pod -A | grep -E "byoh-system|capi|cert-manager"

byoh-system byoh-controller-manager-ff7f68bb4-vprrz 2/2 ...

capi-kubeadm-bootstrap-system capi-kubeadm-bootstrap-controller-manager-7945579f8c-4ntb2 1/1 ...

capi-kubeadm-control-plane-system capi-kubeadm-control-plane-controller-manager-66cdfb477b-h5779 1/1 ...

capi-system capi-controller-manager-64cb86f545-8k9zt 1/1 ...

cert-manager cert-manager-5d4c5bc8bc-j5hbp 1/1 ...

cert-manager cert-manager-cainjector-79bc559d9d-qfvph 1/1 ...

cert-manager cert-manager-webhook-5cf45f5b6-9gwlx 1/1 ...

The Install CAPI Changes To BCM
A new Kubernetes cluster template is generated in BCM on running Install CAPI. The template nam-
ing convention used follows the form:

capi-<mgmt_cluster_name>-template

In the present example, where the name of the Kubernetes management cluster is default, the re-
sulting template would be called capi-default-template. The name default is set by default when
creating a Kubernetes instance (figure 4.2).

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes]% list

Name (key)

capi-default-template

default

[basecm10->kubernetes]% show capi-default-template

Parameter Value

------------------------------------ --

Name capi-default-template

Revision

Etcd Cluster

Pod Network

Pod Network Node Mask

Internal Network

KubeDNS IP 0.0.0.0

Kubernetes API server

Kubernetes API server proxy port 6444

App Groups <0 in submode>

Label Sets <0 in submode>

Notes

Version

Trusted domains kubernetes,kubernetes.default,kubernetes.default.svc,master,localhost

Module file template <690B>

8.2 The Kubernetes CAPI Wizard 135

Kubeadm init file <0B>

Service Network

Kubeadm CERT Key < not set >

Kube CA Cert < not set >

Kube CA Key < not set >

Kubernetes users <0 in submode>

External no

External Kubernetes Ingress server

External port 0

Capi template yes

Capi namespace default

Kubernetes management cluster default

This becomes the default template used for generating Kubernetes CAPI clusters associated with this
specific Kubernetes management cluster. Users can modify this template, and can even create additional
templates as needed. The YAML configuration for a CAPI cluster also lets users specify a template, via
annotations within the YAML file (section 8.8).

8.2.2 The Assign CAPI Role Option
After the Install CAPI operation has completed its run, the Assign CAPI Role operation can be car-
ried out from the setup screen of figure 8.2. The Assign CAPI Role operation carries out a CAPI role
assignment to a group of nodes by creating a configuration overlay (section 4.5). The role can then be
assigned either to a category, or to individual nodes.

The software images on the chosen nodes get the packages needed to run the CAPI agents.
When the Assign CAPI Role operation is carried out, the screens in figures 8.4-8.7 may be displayed:

Figure 8.4: Select a Kubernetes management cluster

Figure 8.5: Customize the configuration overlay

Figure 8.6: Choose nodes via categories

136 Kubernetes Cluster API

Figure 8.7: Choose nodes directly

Some of the screens may be skipped if they are not needed. For example, the screen for selecting
individual nodes (figure 8.7) is not displayed if all the nodes have already been assigned during selection
via categories.

The Assign CAPI Role Actions
During execution of the Assign CAPI Role operation, the wizard:

• prepares the Kubeadm and Helm repositories in the software images for the nodes.

• writes the IP Forwarding configuration to the software images for the nodes.

• installs necessary packages in the software images for the nodes (for example: cm-capi).

• provisions the nodes from their software images.

• creates a configuration overlay in BCM.

• assigns the selected categories and nodes to the overlay.

• assigns the capi role and containerd roles to the overlay.

The Assign CAPI Role Changes To BCM
The configuration overlay created during the execution of the Assign CAPI Role operation is now visi-
ble in the configurationoverlay mode (some output elided):

Example

[root@basecm10 ~]# cmsh

[basecm10]% configurationoverlay

[basecm10->configurationoverlay]% list

Name (key) Priority All head nodes Nodes Categories Roles

-------------------- ---------- -------------- ---------------- ---------------- -----------------

capi-default 500 no node001,node002 capi

kube-default-etcd 500 no node003 Etcd::Host

...

[basecm10->configurationoverlay]% show capi-default

Parameter Value

-------------------------------- --

Name capi-default

Revision

All head nodes no

Priority 500

Nodes node001,node002

Categories

Roles capi

Customizations <0 in submode>

8.3 Deploying A Kubernetes Cluster Through CAPI 137

The preceding overlay shows that the capi role has been assigned to nodes node001 and node002.
The capi role sets the capi-agent service for a node. If it is set, then BCM bootstraps the agent

(section 8.4) and initiates the capi-agent systemd service that runs on the node.
The containerd role takes care of the containerd service, so that containerd is also started on the

nodes.
The containerd service is needed after the agent initiates the provisioning of its node to integrate it

into a Kubernetes CAPI cluster. This is because a kubelet service is eventually started, which relies on
containerd.

CAPI uses kubeadm for node provisioning and management, which means that containerd must be
running in advance. Therefore, as part of its pre-launch checks, kubeadm verifies that the containerd
service is operational.

The Assign CAPI Role Changes To the Kubernetes management cluster
The BCM CAPI host agents should register with the Kubernetes management cluster, and can then be
seen on running kubectl with the get byohost option:

Example

[root@basecm10 ~]# module load kubernetes/default/1.26.5-0

[root@basecm10 ~]# kubectl get byohost -A

NAMESPACE NAME OSNAME OSIMAGE ARCH

default node001 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node002 linux Rocky Linux 8.7 (Green Obsidian) amd64

Registration does not necessarily make these hosts a part of any Kubernetes CAPI cluster. However,
if there are clusters that have been created beforehand, and there are machines that are awaiting addi-
tional resources, then it might be that some or all of these hosts are immediately provisioned. A simple
method to check this is by querying the machine resource.

[root@basecm10 ~]# kubectl get machine -A

No resources found

If however there were machines that were pending, the output might look like:

[root@basecm10 ~]# kubectl get machines

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-cluster-control-plane-h2d64 byoh-cluster Provisioning 4s v1.26.1

byoh-cluster-md-0-56985bf9d6xkhj68-dxvkc byoh-cluster Pending 6s v1.26.1

When the machines are provisioned, the Kubernetes CAPI cluster output state might look like:

[root@basecm10 ~]# kubectl get ma #ma|machine|machines are synonymous. Also byom|byomachine|byomachines

NAME CLUSTER NODENAME PROVIDERID PHASE AGE ...

byoh-cluster-control-plane-h2d64 byoh-cluster node001 byoh://node001/e7fq1b Running 3h3m...

byoh-cluster-md-0-56985bf9d6xkhj68-dxvkc byoh-cluster node002 byoh://node002/ngkju0 Running 3h3m...

This is discussed further in section 8.3.

8.3 Deploying A Kubernetes Cluster Through CAPI
The BCM CAPI Infrastructure Provider configures the Kubernetes management cluster. A Kubernetes
cluster can then be created through CAPI, and deployed on the available CAPI nodes.

If resources are not available, then the cluster cannot assign nodes to the newly-created cluster defi-
nition for provisioning. This results in a persistent Pending state for various resources.

The capi module makes the command line tool clusterctl available, which can be used to generate
a cluster manifest. In the following example, the tool is used to define a cluster with Kubernetes version
1.26.0, comprising one control plane node and one worker node.

138 Kubernetes Cluster API

Example

[root@headnode ~]# module load capi/1.3.0

[root@headnode ~]# CONTROL_PLANE_ENDPOINT_IP=10.141.168.1 clusterctl generate cluster byoh-cluster \

--infrastructure byoh --kubernetes-version v1.26.0 \

--control-plane-machine-count 1 --worker-machine-count 1 > cluster.yaml

The environment variable CONTROL_PLANE_ENDPOINT_IP must be set by the cluster administrator to a
valid unused IP address. The IP address must be within the internal network of the nodes that have
been assigned the CAPI role. Here the IP address of 10.141.168.1 is set.

The YAML file that is generated is typically several hundred lines long:

Example

[root@headnode ~]# wc -l cluster.yaml

218 cluster.yaml

The start of it looks like:

Example

[root@headnode ~]# head cluster.yaml

apiVersion: bootstrap.cluster.x-k8s.io/v1beta1

kind: KubeadmConfigTemplate

metadata:

name: byoh-cluster-md-0

namespace: default

spec:

template:

spec: {}

apiVersion: cluster.x-k8s.io/v1beta1

The cluster can now be created with kubectl:

Example

[root@headnode ~]# kubectl create -f cluster.yaml

kubeadmconfigtemplate.bootstrap.cluster.x-k8s.io/byoh-cluster-md-0 created

cluster.cluster.x-k8s.io/byoh-cluster created

machinedeployment.cluster.x-k8s.io/byoh-cluster-md-0 created

kubeadmcontrolplane.controlplane.cluster.x-k8s.io/byoh-cluster-control-plane created

byocluster.infrastructure.cluster.x-k8s.io/byoh-cluster created

byomachinetemplate.infrastructure.cluster.x-k8s.io/byoh-cluster-control-plane created

byomachinetemplate.infrastructure.cluster.x-k8s.io/byoh-cluster-md-0 created

k8sinstallerconfigtemplate.infrastructure.cluster.x-k8s.io/byoh-cluster-control-plane created

k8sinstallerconfigtemplate.infrastructure.cluster.x-k8s.io/byoh-cluster-md-0 created

The very first control plane node is assigned this IP address initially, and any other control planes
nodes do not try to take it at that time. Only one of the control plane nodes use this IP address at a time.

Load balancing between all three nodes is however possible—it is just not currently configured out-
of-the-box at the time of writing (July 2023).

When all prerequisites are met, the BCM CAPI Infrastructure Provider initiates node provisioning,
and creates the cluster. BCM generates a module file and kubeconfig for the cluster automatically.

8.3 Deploying A Kubernetes Cluster Through CAPI 139

8.3.1 Machine Provisioning
Applying the YAML for the cluster creates the machine resources. These are initially in a Pending state:

Example

[root@basecm10 ~]# kubectl get machines

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-cluster-control-plane-jzm22 byoh-cluster Pending 2s v1.26.0

byoh-cluster-md-0-5c594b479cx9jcz8-ws56w byoh-cluster Pending 4s v1.26.0

The operator in the byoh-system namespace then allocates resources. It first selects the machine for
the control plane:

[root@basecm10 ~]# kubectl logs -n byoh-system -l cluster.x-k8s.io/provider=infrastructure-byoh

I0601 06:16:18.202787 .. "msg"="Attempting host reservation" "cluster"="byoh-cluster" ...

I0601 06:16:18.318478 .. "msg"="Successfully attached Byohost" "byohost"="node001" "cluster"="byoh-cluster" ...

The capi-agent service on the node finds an installation script and invokes it, as indicated by the log
entry:

Example

[root@node001 ~]# journalctl -u capi-agent.service -g executing

Jun 01 06:16:20 .. controller/byohost "msg"="executing install script" "name"="node001" ...

At this point the ByoHost resource should be linked to a ByoMachine resource, which is linked to a
Machine resource. Until the installation script has completed, it is not easy to go the other way around
from a Machine resource to find the related ByoHost resource. Once the installation script has completed,
the Machine resource updates the ProviderID column with a value, but it can take some time to show
up. It shows up later in this session as the value byoh://node001/f3j7mt in this example session.

The output for the installation script is only printed on completion, and the installation script is
automatically removed. Figure 8.9 has more details on the installation process.

The machine transitions to the Provisioning state, and also the ByoHost resource is now tied to the
given Machine:

Example

[root@basecm10 ~]# kubectl get machines

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-cluster-control-plane-jzm22 byoh-cluster Provisioning 4s v1.26.0

byoh-cluster-md-0-5c594b479cx9jcz8-ws56w byoh-cluster Pending 6s v1.26.0

The journal for BCM displays output similar to the following (some output ellipsized):

Example

[root@basecm10 ~]# journalctl -u cmd.service | grep -i register

Jun 01...Info: [Capi...::register_node], create new kube cluster: byoh-cluster, unable to find template:...

Jun 01...Info: [Capi...::register_node], create new kube cluster: byoh-cluster, from: capi-mgmt-template...

Jun 01...Info: [Capi...::register_node], add node: 3b45eb7c-c93b-4102-914f-4bddbeb3a8a4, version: 1.26.0...

Jul 01...Info: [CapiRegisterNode::async_work]: registered: node002

The registration of a node by the wizard is done automatically in the background, by using BCM’s
Python API (PythonCM, Chapter 1 of the Developer Manual). The node is registered with the active head
node, triggering a cascade of events using:

cm-kubernetes-capi-setup --register-node node001

140 Kubernetes Cluster API

Script logs can be found in the log file /var/log/cm-kubernetes-capi-setup.log. More on what
the script does can be found in section 8.5.

If multiple nodes are being provisioned at the same time, then BCM invokes the script with more
nodes as arguments so that the work is parallelized. On completion, the machine transitions to the
Running state:

Example

[root@basecm10 ~]# kubectl get machine

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-clus.. byoh-cluster node001 byoh://node001/e7fq1b Running 3m4s v1.26.0

byoh-clus.. byoh-cluster Provisioning 3m6s v1.26.0

Section 8.5.1 covers the process from a different perspective, which may clarify matters further.

8.3.2 Accessing The Cluster
Assuming a Kubernetes CAPI cluster named byoh-cluster has been deployed, with three control
planes, one worker, with the following machines all running:

Example

[root@basecm10 ~]# kubectl get machines

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-clus... byoh-cluster node006 byoh://node006/ytvpbd Running 26m v1.26.1

byoh-clus... byoh-cluster node004 byoh://node004/7rczjg Running 22m v1.26.1

byoh-clus... byoh-cluster node002 byoh://node002/i0tj4j Running 44m v1.26.1

byoh-clus... byoh-cluster node003 byoh://node003/f18zem Running 44m v1.26.1

The KubeCluster entity can then be seen in cmsh:

Example

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes]% show byoh-cluster

Parameter Value

------------------------------------ --

Name byoh-cluster

Revision

Etcd Cluster

Pod Network

Pod Network Node Mask

Internal Network

KubeDNS IP 0.0.0.0

Kubernetes API server

Kubernetes API server proxy port 6444

App Groups <0 in submode>

Label Sets <0 in submode>

Notes

Version 1.26.1

Trusted domains kubernetes,kubernetes.default,kubernetes.default.svc,master,localhost

Module file template <690B>

Kubeadm init file <0B>

Service Network

Kubeadm CERT Key < not set >

Kube CA Cert < not set >

8.3 Deploying A Kubernetes Cluster Through CAPI 141

Kube CA Key < not set >

Kubernetes users <0 in submode>

External no

External Kubernetes Ingress server

External port 0

Capi template no

Capi namespace default

Kubernetes management cluster default

There should also be a byoh-cluster module file available on the head node:

Example

[root@basecm10 ~]# module unload kubernetes/mgmt/1.24.9-00

[root@basecm10 ~]# module load kubernetes/byoh-cluster/1.26.1

[root@basecm10 ~]# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node002 NotReady control-plane 29m v1.26.1

node003 NotReady <none> 25m v1.26.1

node004 NotReady control-plane 23m v1.26.1

node006 NotReady control-plane 25m v1.26.1

By default, Kubernetes CAPI clusters do not come with a networking implementation configured.
This can be created by the cluster administrator, to see if this improves the state of the cluster (sec-
tion 4.2.2):

Example

root@rb-capi2:~# kubectl create -f https://raw.githubusercontent.com/projectcalico/calico/v3.24.5 ...

... /manifests/calico-typha.yaml

poddisruptionbudget.policy/calico-kube-controllers created

poddisruptionbudget.policy/calico-typha created

serviceaccount/calico-kube-controllers created

serviceaccount/calico-node created

configmap/calico-config created

customresourcedefinition.apiextensions.k8s.io/bgpconfigurations.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/bgppeers.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/blockaffinities.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/caliconodestatuses.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/clusterinformations.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/felixconfigurations.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/globalnetworkpolicies.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/globalnetworksets.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/hostendpoints.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/ipamblocks.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/ipamconfigs.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/ipamhandles.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/ippools.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/ipreservations.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/kubecontrollersconfigurations.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/networkpolicies.crd.projectcalico.org created

customresourcedefinition.apiextensions.k8s.io/networksets.crd.projectcalico.org created

clusterrole.rbac.authorization.k8s.io/calico-kube-controllers created

clusterrole.rbac.authorization.k8s.io/calico-node created

clusterrolebinding.rbac.authorization.k8s.io/calico-kube-controllers created

clusterrolebinding.rbac.authorization.k8s.io/calico-node created

service/calico-typha created

142 Kubernetes Cluster API

daemonset.apps/calico-node created

deployment.apps/calico-kube-controllers created

deployment.apps/calico-typha created

The preceding session ends up with the nodes then ends up configured with Calico networking:

Example

root@rb-capi2:~# kubectl get nodes

NAME STATUS ROLES AGE VERSION

node002 Ready control-plane 31m v1.26.1

node003 Ready <none> 27m v1.26.1

node004 Ready control-plane 25m v1.26.1

node006 Ready control-plane 28m v1.26.1

8.3.3 Scaling Control Planes Or Workers
Control planes can be scaled at the level of the KubeadmControlPlane resource (some output ellipsized):

Example

[root@basecm10 ~]# module load kubernetes/default

[root@basecm10 ~]# kubectl get kubeadmcontrolplane

NAME CLUSTER INITIALIZED ... REPLICAS ... UPDATED UNAVAILABLE ...

byoh-cluster-control-plane byoh-cluster true ... 1 ... 1 1 ...

[root@basecm10 ~]# kubectl patch kubeadmcontrolplane byoh-cluster-control-plane \
--patch='{"spec": {"replicas": 3}}' \
--type=merge

kubeadmcontrolplane.controlplane.cluster.x-k8s.io/byoh-cluster-control-plane patched

Workers can be scaled at the level of the MachineDeployment resource:

Example

[root@basecm10 ~]# kubectl get machinedeployment

NAME CLUSTER REPLICAS ... UPDATED UNAVAILABLE PHASE AGE VERSION

byoh-cluster-md-0 byoh-cluster 1 ... 1 1 ScalingUp 14h v1.26.1

[root@basecm10 ~]# kubectl scale --replicas=2 machinedeployment/byoh-cluster-md-0

machinedeployment.cluster.x-k8s.io/byoh-cluster-md-0 scaled

8.3.4 Upgrading Control Planes Or Workers
For this section, some background understanding of how Kubernetes upgrades work is recommended.
A good introduction can be found at:

https://cluster-api.sigs.k8s.io/tasks/upgrading-clusters.html

Further hints and suggestions on upgrading can be found at:

• https://github.com/kubernetes/sig-release/blob/master/release-engineering/

versioning.md#kubernetes-release-versioning: discusses release versioning, and is a
recommended first read

• https://kubernetes.io/releases/version-skew-policy/: discusses version skew policy, but
is also a document that provides more detailed information

One suggestion from these resources that should be followed, is first to upgrade to the latest patch
version of the current minor version, and then to upgrade to the next minor version.

Typically all the control planes are upgraded first, and then the workers.

https://cluster-api.sigs.k8s.io/tasks/upgrading-clusters.html
https://github.com/kubernetes/sig-release/blob/master/release-engineering/versioning.md#kubernetes-release-versioning
https://github.com/kubernetes/sig-release/blob/master/release-engineering/versioning.md#kubernetes-release-versioning
https://kubernetes.io/releases/version-skew-policy/

8.3 Deploying A Kubernetes Cluster Through CAPI 143

Rolling Upgrades
The default upgrade method is with rolling upgrades. More information on rolling upgrades can be
found at:

https://cluster-api.sigs.k8s.io/tasks/upgrading-clusters.html#

upgrading-machines-managed-by-a-machinedeployment

The rolling upgrades method requires that at least one spare ByoHost is available, since machines are
replaced one by one, and both the old and new machine need to run at the same time during a part of the
procedure. If assigning an extra CAPI role is a problem, then the upgrade strategy based on OnDelete

can be followed instead, which is also described at that URL.
Another option, depending on the cluster, could be to temporarily scale down the workers by one

during the rolling upgrade, via the MachineDeployment resource.

Deprecated APIs
• The deprecation guide at:

https://kubernetes.io/docs/reference/using-api/deprecation-guide/

should be read before carrying out upgrades. The cluster administrator should check the changel-
ogs and upstream documentation for obsolete APIs in the target version.

• The pluto utility (https://github.com/FairwindsOps/pluto) can check for deprecated API us-
age.

• The kubent utility (https://github.com/doitintl/kube-no-trouble) can also be used, but seems
a few Kubernetes versions behind at the time of writing (June 2023).

Upgrading The Control Plane
The following example session upgrades the control plane from version v1.26.1 to v1.26.2:

Example

[root@basecm10 ~]# kubectl get kubeadmcontrolplane

NAME CLUSTER INITIALIZED .. REPLICAS .. UPDATED UNAVAILABLE AGE VERSION

byoh-cluster-control-plane byoh-cluster true .. 1 .. 1 1 16h v1.26.1

[root@basecm10 ~]# kubectl patch kubeadmcontrolplane byoh-cluster-control-plane \
--type=merge \
-p '{"spec": {"version": "v1.26.2"}}'

kubeadmcontrolplane.controlplane.cluster.x-k8s.io/byoh-cluster-control-plane patched

The resource immediately shows the new version. However, the upgrade is not performed immedi-
ately:

[root@basecm10 ~]# kubectl get kubeadmcontrolplane

NAME CLUSTER INITIALIZED .. REPLICAS .. UPDATED UNAVAILABLE AGE VERSION

byoh-cluster-control-plane byoh-cluster true .. 1 .. 0 1 16h v1.26.2

First a new control plane is provisioned with the new version. Only when it is fully up, is the old
control plane deleted:

[root@basecm10 ~]# kubectl get machine

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-clus.. byoh-cluster node001 byoh://node005/gije0o Running 125m v1.26.1

byoh-clus.. byoh-cluster Provisioning 7s v1.26.2

byoh-clus.. byoh-cluster node002 byoh://node004/98s8gu Running 98m v1.26.1

https://cluster-api.sigs.k8s.io/tasks/upgrading-clusters.html#upgrading-machines-managed-by-a-machinedeployment
https://cluster-api.sigs.k8s.io/tasks/upgrading-clusters.html#upgrading-machines-managed-by-a-machinedeployment
https://kubernetes.io/docs/reference/using-api/deprecation-guide/
https://github.com/FairwindsOps/pluto
https://github.com/doitintl/kube-no-trouble

144 Kubernetes Cluster API

The deletion is not carried out immediately. There is a grace period in which both control planes run.
The old control plane is deleted shortly afterwards.

[root@basecm10 ~]# kubectl get machine

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-clus.. byoh-cluster node001 byoh://node005/gije0o Running 127m v1.26.1

byoh-clus.. byoh-cluster node003 byoh://node003/mjvvvg Running 2m30s v1.26.2

byoh-clus.. byoh-cluster node004 byoh://node004/98s8gu Running 101m v1.26.1

If there is than one control plane, then a rolling upgrade takes place, one control plane at a time.

Upgrading The Workers
The following session shows the workers being upgraded from version v1.26.1 to v1.26.2.

Example

[root@basecm10 ~]# kubectl get machinedeployment

NAME CLUSTER REPLICAS .. UPDATED UNAVAILABLE PHASE AGE VERSION

byoh-cluster-md-0 byoh-cluster 3 .. 3 3 ScalingUp 17h v1.26.1

In this case there are three workers. The version is patched with:

Example

[root@basecm10 ~]# kubectl patch machinedeployment byoh-cluster-md-0 \
--type=merge \
-p '{"spec": {"template": {"spec": {"version": "v1.26.2"}}}}'

machinedeployment.cluster.x-k8s.io/byoh-cluster-md-0 patched

The resource immediately shows the new desired version. However, the upgrade is not performed
immediately:

Example

[root@basecm10 ~]# kubectl get machinedeployment

NAME CLUSTER REPLICAS .. UPDATED UNAVAILABLE PHASE AGE VERSION

byoh-cluster-md-0 byoh-cluster 4 .. 1 4 ScalingUp 17h v1.26.2

First a new worker is provisioned with the new version. Only when it is fully up, is the old worker
deleted:

[root@basecm10 ~]# kubectl get machine

NAME CLUSTER NODENAME PROVIDERID PHASE AGE VERSION

byoh-clus.. byoh-cluster node003 byoh://node003/mjvvvg Running 5m45s v1.26.2

byoh-clus.. byoh-cluster node004 byoh://node004/98s8gu Running 104m v1.26.1

byoh-clus.. byoh-cluster node002 byoh://node002/f3j7mt Running 107m v1.26.1

byoh-clus.. byoh-cluster node006 byoh://node006/paityf Running 139m v1.26.1

byoh-clus.. byoh-cluster Provisioning 7s v1.26.2

The process repeats itself until all the workers are upgraded.

8.4 BCM Host Agent Registration
The registration process in figure 8.8 is sourced from the documentation at the upstream BYOH project:

https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost/blob/main/docs/

https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost/blob/main/docs/

8.4 BCM Host Agent Registration 145

Figure 8.8: BYOH bootstrap flow

146 Kubernetes Cluster API

The roles of the platform operator and site operator in the illustration are automated by BCM.
The process initiated by BCM CAPI Infrastructure Provider starts with BCM.
When initiating, the capi-agent service verifies the existence of a configuration before launching. If a

configuration does not exist, then the BCM API is used to request one.
BCM then automates all the steps necessary to generate this configuration, and prepares it for the

capi-agent so it can start its process.
To clarify figure 8.8 further, before step 9 (create a new kubeconfig file at ~/.kube/config), only the

bootstrap configuration exists on the node. However, after this step, two configuration files exist: the
bootstrap and the definitive configuration files. The presence of these files enables BCM to determine the
current phase of the bootstrap process that the capi-agent is in.

Manual generation of bootstrap configurations is also possible. Details on this are given in the docu-
mentation at https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost/blob/
main/docs/getting_started.md#register-byoh-host-to-management-cluster

The host agent registration process described in the preceding is part of what is carried out for nodes
when running the Assign Capi Role option in section 8.2.2.

[root@basecm10 ~]# kubectl get byohost -A

NAMESPACE NAME OSNAME OSIMAGE ARCH

default node001 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node002 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node003 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node004 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node005 linux Rocky Linux 8.7 (Green Obsidian) amd64

default node006 linux Rocky Linux 8.7 (Green Obsidian) amd64

8.5 Install Process BCM CAPI
The preceding section (section 8.4) focused on BCM CAPI host agent registration. The current section
(section 8.5) discusses the deployment of Kubernetes clusters on these CAPI Hosts.

The deployment uses installation scripts transmitted to the designated nodes through “installation
secrets”.

Node registration with BCM is also carried out as part of the deployment of Kubernetes on the CAPI
hosts, and is distinct from the host agent registration of section 8.4. The deployment process flow is
illustrated in figure 8.9:

~/.kube/config
https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost/blob/main/docs/getting_started.md#register-byoh-host-to-management-cluster
https://github.com/vmware-tanzu/cluster-api-provider-bringyourownhost/blob/main/docs/getting_started.md#register-byoh-host-to-management-cluster

8.5 Install Process BCM CAPI 147

Figure 8.9: BYOH installer flow

148 Kubernetes Cluster API

8.5.1 Registration Process Of The Node With BCM
With BCM CAPI Infrastructure Provider, the installation script is a pythoncm script. It establishes com-
munication with BCM on the active Head Node. This is referred to as “registering” the node with BCM.

The registration process involves essential bookkeeping tasks, such as tracking which nodes belong
to specific Kubernetes CAPI clusters, and preparing software images with the appropriate Kubernetes
versions.

The example that follows illustrates various components involved in creating a Kubernetes cluster
using CAPI. In the example, a single head node operates as the Kubernetes management cluster, and
multiple nodes are assigned the CAPI role. A cluster definition is generated for a control plane node and
a worker node using the procedure described in section 8.3. An overview of the components involved
when the cluster definition is applied is seen in figure 8.10:

8.5 Install Process BCM CAPI 149

Figure 8.10: CAPI summary

150 Kubernetes Cluster API

In figure 8.10, the Kubernetes CAPI cluster has the control plane deployed on node001, followed by
the deployment of the worker node software image on node002. The diagram of the is expanded from
the node001 CAPI agent block illustrates the steps executed by the node001 capi-agent.

Upon registering with the BCM API, the more important actions that BCM carries out are:

• Step 1: Preparation of Kubernetes version 1.26.0 within the software image for the registering
node.

• Step 2: Provisioning of the node through an image update, for example using the imageupdate

command of cmsh (section 5.6.2 of the Administrator Manual), to ensure that it stays synchronized
with its software image.

• Step 3: Handing control back to the capi-agent, which proceeds with the subsequent step in the
CAPI cluster creation process.

The steps also include processes beside the ones illustrated in figure 8.10. The more complete se-
quence is:

• Step 1: The installation script is invoked with contextual information, such as the desired Kuber-
netes version (for example: 1.26.0) and the cluster name.

• Step 2: The installation script, implemented as a PythonCM script, establishes communication
with BCM. It registers itself with the active head node and remains in a waiting state until notified
to terminate.

• Step 3: BCM creates a mapping that specifies which node should be provisioned with the corre-
sponding Kubernetes version.

• Step 4: BCM ensures that the software image for the node contains the requested Kubernetes
version.

• Step 5: BCM ensures that the node is provisioned with its designated software image.

• Step 6: BCM signals to the node that the installation script has completed.

From this point onward, the default logic for the BCM CAPI operator takes over, and kubeadm initializes
the node accordingly.

8.5.2 Creating A Kubernetes Cluster Via CAPI
The steps in section 8.5.1, are about the node registration process and node provisioning during Ku-
bernetes cluster creation with CAPI. The following steps zoom out further, and describe the complete
process of creating a Kubernetes cluster through CAPI.

• Step 1: The system administrator defines a cluster to be deployed by the BCM CAPI operator, and
feeds it to the Kubernetes API server using kubectl.

• Step 2: The definition results in a number of Kubernetes resources being created, such as a Cluster,
ByoCluster, MachineDeployment.

• Step 3: The BCM CAPI operator responds to these newly-created resources.

• Step 4: CAPI starts assigning CAPI agents to reconcile specific Machines, beginning with the first
control plane. This is indicated by the red provisioning line, numbered with a 1.

• Step 5: BCM prepares a module file and kubeconfig for the new Kubernetes CAPI cluster, and
writes these to disk for the system administrator.

• Step 6: BCM CAPI operator updates its records using the newly-created control plane and pro-
ceeds with provisioning the additional control planes or workers, such as the additional worker.
This is indicated by the red line numbered with a 2.

8.6 Configuring CAPI Versions In Software Images 151

8.6 Configuring CAPI Versions In Software Images
BCM takes care of configuring CAPI versions in software images automatically. This is part of its BCM
CAPI node registration process, as mentioned earlier in section 8.5.

An alternative is to manually pre-install a specific version of Kubernetes in a software image. This
can be done from within the softwareimage mode of cmsh:

[root@basecm10 ~]# cmsh

[basecm10]% softwareimage

[basecm10->softwareimage]% use default-image

[basecm10->softwareimage[default-image]]% help capi

Name:

capi - Manage Kubernetes CAPI versions on the image

Usage:

capi [OPTIONS] list

capi [OPTIONS] add <version> [<version> ...]

capi [OPTIONS] remove <version> [<version> ...]

capi [OPTIONS] clear

Options:

-v, --verbose

Be more verbose

-d, --delimiter <string>

Use <string> as delimiter between columns. Use {} for JSON, and {<digit>} for JSON with a specific indentation.

--image, -i <list of images>

Perform action on comma separated list of images

--repo-refresh, -r

Refresh the repository cache before adding new versions

--debug

Run script with debug on

Examples:

capi list List CAPI versions on all / current image

capi clear Remove all CAPI versions on all / current image

capi add 1.26.0 1.27.* Add specified versions on all / current image

Example

[basecm10->softwareimage[default-image]]% capi list

Node image versions Result Error

------------- ------------------------- ------------------------------- -------- -----

basecm10 /cm/images/default-image 1.24.9, 1.23.0, 1.26.1, 1.26.2 good

[basecm10->softwareimage[default-image]]% capi add 1.27.*

Node image versions Result Error

------------- ------------------------- --- -------- -----

basecm10 /cm/images/default-image 1.24.9, 1.23.0, 1.26.1, 1.26.2, 1.27.0, 1.27.1, 1.27.2 good

8.7 Removing Kubernetes CAPI clusters
The following steps remove the CAPI clusters:

• Step 1: The removal of the CAPI clusters is started with the kubectl delete command:

152 Kubernetes Cluster API

[root@basecm10 ~]# kubectl delete -f cluster.yaml

...

• Step 2: If all CAPI hosts are not part of any significant clusters, then the configuration overlay
configuration overlays are removed:

[root@basecm10 ~]# cmsh

[basecm10]% configurationoverlay

[basecm10->configurationoverlay]% remove capi-mgmt

[basecm10->configurationoverlay*]% commit

Successfully removed 1 ConfigurationOverlays

Successfully committed 0 ConfigurationOverlays

The removal of the configuration overlays causes containerd and the CAPI agents to stop on the
hosts.

• Step 3: For additional cleanliness, the bootstrap configurations for each of the hosts should be
removed:

[root@basecm10 ~]# kubectl delete bootstrapkubeconfig --all

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node001" deleted

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node002" deleted

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node003" deleted

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node004" deleted

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node005" deleted

bootstrapkubeconfig.infrastructure.cluster.x-k8s.io "bootstrap-kubeconfig-node006" deleted

• Step 4: The infrastructure provider is then removed:

[root@basecm10 ~]# module load capi/1.3.0

[root@basecm10 ~]# clusterctl delete --infrastructure byoh

Deleting Provider="infrastructure-byoh" Version="" Namespace="byoh-system"

• Step 5: The removal of all the ByoHost resources can be checked:

[root@basecm10 ~]# kubectl get byohost

No resources found

For clean-up the command

kubectl delete byohost ...

can be used.

• Step 6: Finally, the Kubernetes CAPI clusters is eliminated from BCM itself:

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes]% remove byoh-cluster

[basecm10->kubernetes*]% commit

[basecm10->kubernetes]%

8.8 Kubernetes CAPI Templates 153

8.8 Kubernetes CAPI Templates
In BCM, each Kubernetes cluster is represented as a KubeCluster entity stored in the BCM database.
These entities can be viewed in the kubernetes submode of cmsh:

Example

[root@basecm10 ~]# cmsh

[basecm10]% kubernetes

[basecm10->kubernetes]% list

Name (key)

default

• For every Kubernetes management cluster, a default KubeCluster CAPI template is generated
once the CAPI role node is assigned using the wizard, as discussed in section 8.2.2. This template
serves as a base for all subsequent Kubernetes clusters created via CAPI.

• For example, if an administrator creates a cluster my-capi-cluster via CAPI, for the Kubernetes
management cluster mgmt, then BCM clones the capi-mgmt-template KubeCluster entity to create
a new KubeCluster my-capi-cluster.

• At the time of CAPI cluster creation, the KubeCluster template can also be customized using an
annotation in the Cluster resource definition:

Example

apiVersion: cluster.x-k8s.io/v1beta1

kind: Cluster

metadata:

labels:

cni: byoh-cluster-crs-0

crs: "true"

infrav1.nvidia.x-k8s.io/capi-kube-template: "my-capi-cluster-template"

name: byoh-cluster

namespace: default

spec:

clusterNetwork:

pods:

cidrBlocks:

- 192.168.0.0/16

serviceDomain: cluster.local

services:

cidrBlocks:

- 10.128.0.0/12

controlPlaneRef:

apiVersion: controlplane.cluster.x-k8s.io/v1beta1

kind: KubeadmControlPlane

name: byoh-cluster-control-plane

infrastructureRef:

apiVersion: infrastructure.cluster.x-k8s.io/v1beta1

kind: ByoCluster

name: byoh-cluster

The provided YAML illustrates a cluster byoh-cluster definition, with the specified capi-template
set to my-capi-cluster-template. If present, then this is used instead of the default.

154 Kubernetes Cluster API

• The fallback sequence for the CAPI template is: The specified label (for example:
my-capi-cluster-template) is used if it exists; otherwise the default capi-mgmt-template is
used. If neither is available, then capi-template is used.

9
Apptainer

BCM provides an application containerization tool called Apptainer. Apptainer is designed to execute
containers as if they are just native applications on a host computer, and to work with HPC. Apptainer
users can therefore run Apptainer containers just as they run any other program on an HPC cluster.

9.1 Use Cases
Adding Apptainer to BCM brings a stronger integration of containerization with HPC. While Docker
and Kubernetes can work within HPC, some drawbacks still prevent the use of HPC resources in the
way that HPC users and administrators are used to.

Besides the use of Apptainer containers in HPC jobs, Apptainer users can create portable images with
their applications. Apptainer images are files that represent the container filesystem. These images can
be copied from one environment (cluster) to another and executed without modification. Thus, when a
user creates a container image file, it is up to the user what files, or which RPMs, to install in the image.
For example, the user can create an image file that bundles Open MPI with the user’s application. This
guarantees that the application will be able to run if it requires that MPI implementation, even if no MPI
libraries are installed on the execution host or if there is some version incompatibility.

There is no need for a special configuration inside workload managers in order to use Apptainer.
This is because the containers are designed to be run like any application on the system. Users need
just to use the image file as the usual script or binary to be executed in their jobscripts or in a shell.
The apptainer command can also be used to apply special options to the container, when executing the
image file in the jobscript or shell.

9.2 Package cm-apptainer

Apptainer is packaged and distributed as a package called cm-apptainer. The package should be in-
stalled by the cluster administrator in the software image for each node. The user is able to run a
Apptainer image only if the Apptainer package is installed on the node. In order to allow users to build
an image, it makes sense to install the package on the head and login nodes as well. The tool does not
provide services that run in the background, so a simple installation of the package is enough to start
using it.

Apptainer contexts are always run as the user running them. This means that there is no risk in
allowing the containers to have access to, and interact with, the file system of the host.

This means that, if an image is created by the root user on a machine, then the files that require
root access inside the image, still need to be allowed root permissions on any other machine. Thus, if a
user crates an image on a laptop, and adds a file that can be read only by the root user, then when the
container is started on another machine by a regular user, that regular user has no access to the root-only
readable file inside the container.

While there is no daemon running as root, nor any persistent processes that an attacker may use to
escalate privileges, there is a need to run some system calls as root so that the container is encapsulated.

156 Apptainer

For this part of the run flow, there is a single SUID binary called Sexec (Apptainer Exec). This is a
simple binary that is as small as possible, and which the Apptainer developers claim has been audited
by multiple security experts.

9.3 MPI Integration
Because of the nature of Apptainer, all MPI implementations should work fine inside a Apptainer con-
tainer. The developers of the tool have spent a lot of effort in making Apptainer aware of Open MPI,
as well as adding a Apptainer module into Open MPI so that running at extreme scale is as efficient as
possible. However, in some cases, starting an MPI process may not be as optimal as execution outside
the container. So, specifically for Open MPI, Apptainer provides a special mechanism to handle the exe-
cution of MPI processes. It adds all the MPI processes of the same MPI application to the same container
on a host. This also reduces the application startup time. The Open MPI daemon orted in this case is
not added to the running container, which means the overhead of starting up daemons is reduced.

When an Open MPI application that has been packaged to an image is started, the following steps
take place:

1. mpirun is called;

2. mpirun forks and executes orted;

3. orted initializes the PMI (process management interface);

4. orted forks as many times as the number of processes per node requested;

5. the container image is started in each fork (because it is the original command specified in mpirun

arguments);

6. each container process executes the command (that is, the MPI application) passed inside the given
container;

7. each of the MPI process links to the dynamic Open MPI library, which loads shared libraries with
dlopen system call;

8. Open MPI libraries connect back to the original orted process via PMI;

9. all non-shared memory communication then occurs through the PMI, and then passes on to local
network interfaces.

Additional information about Apptainer usage can be found in Chapter 11 of the User Manual. The
official web site of the tool is https://www.apptainer.org.

https://www.apptainer.org

A
Base Command Manager

Essentials And NVIDIA AI
Enterprise

Base Command Manager Essentials (BCME) is a product version of BCM for the NVIDIA AI Enterprise
(https://docs.nvidia.com/ai-enterprise/index.html) edition of Base Command Manager.

A.1 Scope Of BCME
BCME:

• provisions clusters. This includes:

– operating system installation

– networking setup

– security configuration

– DNS configuration

while ensuring cluster integrity

• automates server management and updates, preventing server drift

• manages AI workloads with:

– Kubernetes

– automated scaling

– a tightly integrated Run:ai

• can install and manage Slurm workload manager

• enables a streamlined Jupyter setup with NGC containers

• provides comprehensive management for cluster control and job monitoring. This includes man-
aging and monitoring for

– GPU metrics

– resource allocation

– access control

– chargeback options

https://docs.nvidia.com/ai-enterprise/index.html

158 Base Command Manager Essentials And NVIDIA AI Enterprise

A.2 BCME And Support For NVIDIA AI Enterprise
A.2.1 Certified Features Of BCME For NVIDIA AI Enterprise
Some features of BCME are certified for NVIDIA AI Enterprise.

A.2.2 NVIDIA AI Enterprise Compatible Servers
BCME must be deployed on NVIDIA AI Enterprise compatible servers.

The NVIDIA Qualified System Catalog at:

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/

displays a complete list of NVIDIA AI Enterprise compatible servers if the NVAIE Compatible option
is selected.

A.2.3 NVIDIA Software Versions Supported
NVIDIA AI Enterprise supports specific versions of NVIDIA software, including

• NVIDIA drivers

• NVIDIA containers

• the NVIDIA Container Toolkit

• the NVIDIA GPU Operator

• the NVIDIA Network Operator

The NVIDIA AI Enterprise Catalog On NGC at:

https://catalog.ngc.nvidia.com/enterprise

lists the specific versions of software included in a release.

A.2.4 NVIDIA AI Enterprise Product Support Matrix
The NVIDIA AI Enterprise Product Support Matrix at:

https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html

lists the platforms that are supported.

https://www.nvidia.com/en-us/data-center/data-center-gpus/qualified-system-catalog/
https://catalog.ngc.nvidia.com/enterprise
https://docs.nvidia.com/ai-enterprise/latest/product-support-matrix/index.html

B
Create Self-Signed Server

Certificate Pair For Testing
Purposes

The cluster administrator can issue self-signed server certificates. For testing purposes, a self-signed
certificate pair can be installed on any device where authentication is needed via the web interface,
for example on an Ingress client connecting to an Ingress server (section 4.22.11). The configuration is
carried out as follows:

The cm-kubernetes-setup wizard is started up on the active head node by the cluster administrator.
The menu item Configure Ingress is selected (figure B.1).

Figure B.1: Option to configure Ingress

The Kubernetes cluster is chosen in the next screen. The Kubernetes cluster is the one on which
Ingress is to be configured (figure B.2)

Figure B.2: Prompt for the Kubernetes cluster to configure Ingress for

A prompt appears asking if an existing server certificate pair should be used. Since a self-signed pair

160 Create Self-Signed Server Certificate Pair For Testing Purposes

is to be used for testing purposes, no is selected (figure B.3)

Figure B.3: Prompt to select existing certificate (choose “no” here for self-signed.)

A list of domains to customize is displayed (figure B.4)

Figure B.4: Prompt for customizing trusted domains that need to be part of the self-signed certificate.

For this example, the domain is customized to superpod.nvidia.local (figure B.5)

Figure B.5: Prompt answered with an entry superpod.nvidia.local

All the names entered end up in the SAN part of the server certificate as valid DNS names. Contin-
uing with Ok executes steps to take care of the configuration (figure B.6)

161

Figure B.6: The output when the self-signed configuration has completed.

So far in the procedure, the following has been carried out:

• a private CA key pair has been created (ingeress-ca.key and ingress-ca.crt in figure B.7)

• a server certificate (ingress-server.crt) has been made and signed by the private CA

• Ingress has been patched to use the server certificate pair (ingress-server.crt and ingres-server.key)

Figure B.7: The server certificate files on the active head node.

The default in this path is the label of the Kubernetes cluster for which the certificates have been
created.

Specific Note on Run:ai The use of self-signed certificates is not recommended. It is only useful for
testing purposes. The use of self-signed certificates may cause users can run into obscure issues, where
it is hard to uncover that the problem is because of self-signed certificates.

In case the self-signed certificates are being used for a Run:ai SaaS deployment, the Run:ai cluster
installer can be run again and all the fields can be configured (figure B.8).

162 Create Self-Signed Server Certificate Pair For Testing Purposes

Figure B.8: The Run:ai wizard.

In figure B.8 the domain superpod.nvidia.local is used, and the Ingress HTTPS port (30443) is
used for the cluster URL.

The private key for the server certificate has been uploaded, from its location on the active head node
at:
/etc/kubernetes/pki/default/ingress-server.key

The certificate has also been uploaded from its location on the active head node at:
/etc/kubernetes/pki/default/ingress-server.crt

The self-signed CA, taken from: /etc/kubernetes/pki/default/ingress-ca.crt, can alternatively
be installed on the local machine (the cluster administrator laptop, for example) in order for the browser
to recognize the certificate as trusted. Details are typically OS dependent, but for Chrome on a Linux
system it follows a method of accepting the certificate by ignoring a warning about the site certificate
being untrusted.

The warning is due to the CA server not being a recognized Certificate Authority (CA) like the CAs
that are recognized by a browser.

If there is no internet access to the cluster URL, then the warning about the CA not being a recognized
Certificate Authority is not an issue, and the user can simply accept the “untrusted” certificate.

If there is internet access to the cluster URL, then some cluster administrators may regard it as more
secure to trust the self-signed certificate rather than external certificate authorities anyway.

	Table of Contents
	0.1 About This Manual
	0.2 About The Manuals In General
	0.3 Getting Administrator-Level Support
	0.4 Getting Professional Services
	1 Introduction To Containerization On NVIDIA Base Command Manager
	2 Docker Engine
	2.1 Docker Setup
	2.2 Integration With Workload Managers
	2.3 DockerHost Role
	2.4 Iptables
	2.5 Storage Backends
	2.5.1 Device Mapper Driver Settings Support

	2.6 Docker Monitoring
	2.7 Docker Setup For NVIDIA

	3 Docker Registries
	3.1 Docker And Harbor Registries: Introduction
	3.1.1 Docker Hub, A Remote Registry
	3.1.2 Local Image Registry Options: Classic Docker Registry Vs Harbor

	3.2 Docker And Harbor Registries: Setup And Configuration
	3.2.1 Docker Registry Daemon Configuration Using The Docker Registry Role
	3.2.2 Harbor Daemon Configuration Using The Harbor Role

	4 Kubernetes
	4.1 Reference Architecture
	4.1.1 Hardware Requirements

	4.2 Kubernetes Setup
	4.2.1 Kubernetes Networking
	4.2.2 Kubernetes Core Add-ons
	4.2.3 Kubernetes Optional Add-ons
	4.2.4 Helm Kubernetes Package Manager
	4.2.5 Kubernetes Setup From The Command Line
	4.2.6 Kubernetes Setup From A TUI Session
	4.2.7 Testing Kubernetes

	4.3 Using GPUs With Kubernetes: NVIDIA GPUs
	4.3.1 Prerequisites
	4.3.2 New Kubernetes Installation
	4.3.3 Existing Kubernetes Installation
	4.3.4 An Example Of Running A Workload Using NVIDIA GPUS: LLM Via NIM

	4.4 Using GPUs With Kubernetes: AMD GPUs
	4.4.1 Prerequisites
	4.4.2 Managing The YAML File Through CMDaemon
	4.4.3 Including Head Nodes as part of the DaemonSet:
	4.4.4 Running The DaemonSet Only On Specific Nodes
	4.4.5 Running An Example Workload

	4.5 Kubernetes Configuration Overlays
	4.6 Removing A Kubernetes Cluster
	4.7 Kubernetes Cluster Configuration Options
	4.8 EtcdCluster
	4.9 Kubernetes Roles
	4.9.1 EtcdHost Role
	4.9.2 The KubernetesAPIServerProxy Role
	4.9.3 The Kubelet Role
	4.9.4 Containerd Role

	4.10 Security Model
	4.10.1 Kyverno
	4.10.2 PodSecurityPolicy

	4.11 Addition Of New Kubernetes Users
	4.11.1 Adding Users Non-Interactively With cm-kubernetes-setup

	4.12 Getting Information And Modifying Existing Kubernetes Users
	4.13 List Of Resources Defined For Users
	4.14 Kyverno
	4.14.1 Kyverno Installation
	4.14.2 Kyverno Policies

	4.15 Kubernetes Permission Manager
	4.16 Providing Access To External Users
	4.17 Networking Model
	4.18 Kubernetes Monitoring
	4.19 Local Path Storage Class
	4.20 Setup Of A Storage Class For Ceph
	4.21 Integration With Harbor
	4.22 Kubernetes Upgrades
	4.22.1 Upgrade Prerequisites
	4.22.2 Example RHEL9 Cluster
	4.22.3 Before Starting The Upgrade
	4.22.4 Updating The First Control Plane Node
	4.22.5 Updating Subsequent Control Plane Nodes
	4.22.6 Updating The Worker Nodes
	4.22.7 Updating The Status In BCM
	4.22.8 Notes For Ubuntu
	4.22.9 Notes For SLES
	4.22.10 Other Approaches
	4.22.11 Configuring The Ingress HTTPS Server Certificate

	5 Kubernetes Apps
	6 Kubernetes Operators
	6.1 Versions Of Operators Available
	6.2 Helm Charts For The BCM Operators
	6.3 The Jupyter Kernel Operator
	6.3.1 Installing The Jupyter Kernel Operator
	6.3.2 Architecture Overview
	6.3.3 Running Jupyter Kernel Using The Operator
	6.3.4 Jupyter Kernel Operator Tunables
	6.3.5 Sidecar Arguments And Environment Variables
	6.3.6 Running Spark-based Kernels In Jupyter Kernel Operator
	6.3.7 Example: Creating An R Kernel From The Kernel Template
	6.3.8 Example: Letting Kubernetes Access Private Registries From The Kernel Template
	6.3.9 Example: Adding The PVC Parameter To The Kernel Template

	6.4 The NVIDIA GPU Operator
	6.4.1 Installing The NVIDIA GPU Operator
	6.4.2 Installing The NVIDIA GPU Operator On An Existing Kubernetes Cluster
	6.4.3 Removing The NVIDIA GPU Operator
	6.4.4 Validating The NVIDIA GPU Operator
	6.4.5 Validating The NVIDIA GPU Operator In Detail
	6.4.6 Running A GPU Workload

	6.5 The NVIDIA Network Operator
	6.5.1 Installing The NVIDIA Network Operator

	6.6 The NVIDIA NetQ Operator
	6.6.1 NVIDIA NetQ Operator Installation
	6.6.2 Accessing The NVIDIA NetQ Operator UI

	6.7 The Prometheus Operator Stack
	6.7.1 Exporting And Reusing Grafana Dashboards

	6.8 The Run:ai Operator
	6.8.1 Prerequisites For The Run:ai Operator Installation
	6.8.2 Installing The Run:ai Operator
	6.8.3 Removing The Run:ai Operator
	6.8.4 Completing The Run:ai Installation
	6.8.5 Run:ai setup Ingress Certificate
	6.8.6 Run:ai Setup Through Cluster Installer Wizard
	6.8.7 Post-installation

	6.9 Kubernetes Spark Operator
	6.9.1 Installing The Kubernetes Spark Operator
	6.9.2 Example Spark Operator Run: Calculating Pi

	6.10 The NVIDIA Postgres Operator
	6.10.1 Installing The NVIDIA Postgres Operator

	7 Kubernetes On Edge
	7.1 Flags For Edge Installation
	7.1.1 Speeding Up Kubernetes Installation To Edge Nodes With The —skip-* Flags: Use Cases

	8 Kubernetes Cluster API
	8.1 Kubernetes Cluster API Components
	8.1.1 Kubernetes Management Cluster
	8.1.2 Kubernetes CAPI Cluster
	8.1.3 BCM CAPI Infrastructure Provider

	8.2 The Kubernetes CAPI Wizard
	8.2.1 The Install CAPI Option
	8.2.2 The Assign CAPI Role Option

	8.3 Deploying A Kubernetes Cluster Through CAPI
	8.3.1 Machine Provisioning
	8.3.2 Accessing The Cluster
	8.3.3 Scaling Control Planes Or Workers
	8.3.4 Upgrading Control Planes Or Workers

	8.4 BCM Host Agent Registration
	8.5 Install Process BCM CAPI
	8.5.1 Registration Process Of The Node With BCM
	8.5.2 Creating A Kubernetes Cluster Via CAPI

	8.6 Configuring CAPI Versions In Software Images
	8.7 Removing Kubernetes CAPI clusters
	8.8 Kubernetes CAPI Templates

	9 Apptainer
	9.1 Use Cases
	9.2 Package cm-apptainer
	9.3 MPI Integration

	A Base Command Manager Essentials And NVIDIA AI Enterprise
	A.1 Scope Of BCME
	A.2 BCME And Support For NVIDIA AI Enterprise
	A.2.1 Certified Features Of BCME For NVIDIA AI Enterprise
	A.2.2 NVIDIA AI Enterprise Compatible Servers
	A.2.3 NVIDIA Software Versions Supported
	A.2.4 NVIDIA AI Enterprise Product Support Matrix

	B Create Self-Signed Server Certificate Pair For Testing Purposes

