S

NVIDIA.

NVIDIA Base Command Manager 10

Developer Manual
Revision: 0b170b46f

Date: Wed Oct 29 2025

©2025 NVIDIA Corporation & affiliates. All Rights Reserved. This manual or parts thereof may not be
reproduced in any form unless permitted by contract or by written permission of NVIDIA Corporation.

Linux is a registered trademark of Linus Torvalds. PathScale is a registered trademark of Cray, Inc.
Red Hat and all Red Hat-based trademarks are trademarks or registered trademarks of Red Hat, Inc.
SUSE is a registered trademark of SUSE LLC. NVIDIA, CUDA, GPUDirect, HPC SDK, NVIDIA DGX,
NVIDIA Nsight, and NVLink are registered trademarks of NVIDIA Corporation. FLEXIm is a registered
trademark of Flexera Software, Inc. PBS Professional, and Green Provisioning are trademarks of Altair
Engineering, Inc. All other trademarks are the property of their respective owners.

All statements, specifications, recommendations, and technical information contained herein are current
or planned as of the date of publication of this document. They are reliable as of the time of this writing
and are presented without warranty of any kind, expressed or implied. NVIDIA Corporation shall
not be liable for technical or editorial errors or omissions which may occur in this document. NVIDIA
Corporation shall not be liable for any damages resulting from the use of this document.

The NVIDIA Base Command Manager product principally consists of free software that is licensed by
the Linux authors free of charge. NVIDIA Corporation shall have no liability nor will NVIDIA Corpo-
ration provide any warranty for the NVIDIA Base Command Manager to the extent that is permitted
by law. Unless confirmed in writing, the Linux authors and/or third parties provide the program as is
without any warranty, either expressed or implied, including, but not limited to, marketability or suit-
ability for a specific purpose. The user of the NVIDIA Base Command Manager product shall accept
the full risk for the quality or performance of the product. Should the product malfunction, the costs for
repair, service, or correction will be borne by the user of the NVIDIA Base Command Manager prod-
uct. No copyright owner or third party who has modified or distributed the program as permitted in
this license shall be held liable for damages, including general or specific damages, damages caused by
side effects or consequential damages, resulting from the use of the program or the un-usability of the
program (including, but not limited to, loss of data, incorrect processing of data, losses that must be
borne by you or others, or the inability of the program to work together with any other program), even
if a copyright owner or third party had been advised about the possibility of such damages unless such
copyright owner or third party has signed a writing to the contrary.

Table of Contents

Tableof Contents
0.1 AboutThisManual
0.2 About The ManualsInGeneral
0.3 Getting Administrator-Level Support
0.4 Getting Developer-Level Support L
0.5 Getting Professional Services L L

NVIDIA Base Command Manager Python API

1.1 GettingStarted
1.2 ConnectingToACluster
1.3 InspectingSettings
14 Modifying Settings
1.5 Inspecting The Entire Cluster
1.6 Performing Operations OnEntities
1.7 Monitoring L
1.8 Examples e

Monitoring Data Producers

21 Measurables
22 MeasurablesClasses
2.3 Metric Monitoring Data Producers
2.4 Health Check Monitoring Data Producers
2.5 Collection Monitoring Data Producers
2.6 Perpetual Monitoring Data Producers
2.7 Prometheus Monitoring Data Producers
2.8 NodeExecution Filters L
29 Execution Multiplexers
2.10 Monitoring Resources
2.11 Collection Monitoring Data Producers With Filter And Multiplexer
2.12 Collection Monitoring Data Producers For Standalone Entities
2.13 Debugging Standalone Scripts L L Lo
Monitoring Actions
31 ActionsAnd Triggers
3.2 TimeRestrictions
3.2.1 Time Restriction Syntax In BNF Notation
3.3 CMDaemon Environment Variables
3.3.1 Standard Environment Variables Available In Action Scripts
3.3.2 Extended Environment Variables Available To Action Scripts

3.3.3 Environment Variables Useful For Debugging

iii
iii
iv
iv

iv

Gl = = B WO NN P

O 0 NN N3

e
Nk W WD R = O

ii Table of Contents
4 CMDaemon REST API 27
4.1 Authentication, And Definition Of <curlauth> 27
42 BrowsingThe APL. 27
421 Returning A Status, Or Generating A Status Message, Using /vl/status 29

42.2 Monitoring Using /vl/monitoring 32

423 SessionUsing /vi/session 39

424 VersionUsing /vl/version o 40

425 License Using /vl/license 40

42.6 SysinfoUsing /vi/sysinfo 40

427 Device Information Using /vi/device. 43

42.8 WLM Information Using /v1/workload 44

429 Event Generation Using /vl/event 45

5 BCMJSON API 47
51 APIServices o e 48
51.1 APIServicesList e 49

52 APIEntities o 49
521 APIEntitiesList. o e 50

53 JSON Examples 50

Preface

Welcome to the Developer Manual for NVIDIA Base Command Manager 10.

This manual is aimed at helping developers who would like to program the NVIDIA Base Command
Manager in order to enhance or alter its functionality. It is not intended for end users who simply wish
to submit jobs that run programs to workload managers, which is discussed in the User Manual. The
developer is expected to be reasonably familiar with the parts of the Administrator Manual that is to be
dealt with—primarily CMDaemon, of which cmsh and Base View are the front ends.

This manual discusses the Python API to CMDaemon, and also covers how to program for metric
collections.

Name Changes From Version 9.2 To 10
The cluster manager software was originally developed by Bright Computing and the name “Bright” featured
previously in the product, repositories, websites, and manuals.

Bright Computing was acquired by NVIDIA in 2022. The corresponding name changes, to be consistent with
NVIDIA branding and products, are a work in progress. There is some catching up to do in places. For now, some
parts of the manual still refer to Bright Computing and Bright Cluster Manager. These remnants will eventually
disappear during updates.

BCM in particular is a convenient abbreviation that happens to have the same letters as the former Bright
Cluster Manager. With the branding change in version 10, Base Command Manager is the official full name for
the product formerly known as Bright Cluster Manager, and BCM is the official abbreviation for Base Command
Manager.

Regularly updated versions of the NVIDIA Base Command Manager 10 manuals are available on
updated clusters by default at /cm/shared/docs/cm. The latest updates are always online at https:
//docs.nvidia.com/base-command-manager.

¢ The Administrator Manual describes the general management of the cluster.

* The Installation Manual describes installation procedures for a basic cluster.

® The User Manual describes the user environment and how to submit jobs for the end user.

e The Cloudbursting Manual describes how to deploy the cloud capabilities of the cluster.

® The Developer Manual has useful information for developers who would like to program with BCM.
* The Edge Manual describes how to deploy BCM Edge with BCM.

* The Machine Learning Manual describes how to install and configure machine learning capabilities
with BCM.

* The Containerization Manual describes how to manage containers with BCM.

https://docs.nvidia.com/base-command-manager
https://docs.nvidia.com/base-command-manager

iv Table of Contents

If the manuals are downloaded and kept in one local directory, then in most pdf viewers, clicking
on a cross-reference in one manual that refers to a section in another manual opens and displays that
section in the second manual. Navigating back and forth between documents is usually possible with
keystrokes or mouse clicks.

For example: <Alt>-<Backarrow> in Acrobat Reader, or clicking on the bottom leftmost navigation
button of xpdf, both navigate back to the previous document.

The manuals constantly evolve to keep up with the development of the BCM environment and the
addition of new hardware and/or applications. The manuals also regularly incorporate feedback from
administrators and users, and any comments, suggestions or corrections will be very gratefully accepted
at manuals@brightcomputing. com.

There is also a feedback form available via Base View, via the menu icon, E, following the naviga-
tion path:

E>Help>Feedback

0.3 Getting Administrator-Level Support

Support for BCM subscriptions from version 10 onwards is available via the NVIDIA Enterprise Support
page at:

https://www.nvidia.com/en-us/support/enterprise/

Section 16.2 of the Administrator Manual has more details on working with support.

0.4 Getting Developer-Level Support

Developer support is given free, within reason. For more extensive support, the BCM support team can
be contacted in order to arrange a support contract.

0.5 Getting Professional Services

The BCM support team normally differentiates between
e regular support (customer has a question or problem that requires an answer or resolution), and

¢ professional services (customer asks for the team to do something or asks the team to provide
some service).

Professional services can be provided via the NVIDIA Enterprise Services page at:
https://www.nvidia.com/en-us/support/enterprise/services/

manuals@brightcomputing.com
https://www.nvidia.com/en-us/support/enterprise/
https://www.nvidia.com/en-us/support/enterprise/services/

NVIDIA Base Command
Manager Python API

This chapter introduces the Python API of NVIDIA Base Command Manager.

The Python API package was completely overhauled in NVIDIA Base Command Manager 8.2.

The cmdaemon-pythoncm package now provides a pure Python connection to the cluster manager,
making it possible for cluster administrators to automate cluster operations via Python.

It also makes it possible to run Python code on any operating system that supports Python 3.5 and
higher.

The BCM Python API uses the following extra modules:

—_

. pyOpenSSL

ply

1xml

tabulate
monotonic
humanfriendly

pyYAML

® N o O ok LD

six

On the cluster head node itself the python3 module can simply be loaded:

[root@basecml1O0 ~]# module load python3
To execute or develop the Python code on any other machine usually requires some extra steps:
e Python 3 (3.5, 3.6, 3.7, 3.8 will work) should be installed
* The 8 extra modules listed previously should be installed using Pip

® The /cm/local/apps/cmd/pythoncm/1ib/python3.9/site-packages/pythoncm directory should
be copied over to the site-packages directory of the development machine. The version is enforced
in 1ib/python3.9/site-packages/pythoncm/__init__.py, so version consistency would be required
here.

/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm

2 NVIDIA Base Command Manager Python API

The pythoncm module should then be loaded, to confirm everything was set up correctly:
Example
[alice@desktop ~]# python -c "import pythoncm"

If connecting from outside the cluster, then port 8081 must not be blocked by a firewall.

A certificate is needed by the Python API to identify itself to CMDaemon.

The existence of the certificate on the head node should be checked. It should be copied over to the
development machine, if it is needed there.

Example

[root@basecml10 ~]# 1ls -al .cm/

“rW--—-—---- 1 root root 1708 Dec 11 09:25 admin.key
“rW--———--- 1 root root 1269 Dec 11 09:25 admin.pem
Example

[alice@basecm10 ~]1$ 1s -al .cm/
-rW--—----- 1 root root 1708 Dec 11 09:25 cert.key
“rW--———--- 1 root root 1269 Dec 11 09:25 cert.pem

The developer many need to contact the cluster administrator to get a certificate.

1.2 Connecting To A Cluster

The first step when working with the Python API is to establish a connection to the CMDaemon process
on the cluster:

#!/usr/bin/env python

from pythoncm.cluster import Cluster
from pythoncm.settings import Settings

cluster = Cluster()
If working outside the cluster, then the settings for connecting to the cluster must be specified:

settings = Settings(host='<head-node-hostname>',
port=8081,
cert_file='/some/path/cert.pem',
key_file='/some/path/cert.key',
ca_file='.../site-packages/pythoncm/etc/cacert.pem')

if not settings.check_certificate_files():

print ('Unable to load certificates')
else:

cluster = Cluster(settings)

1.3 Inspecting Settings

All settings in BCM are stored inside an entity.
Each entity has a type and a unique name among the entities of the same type.
To inspect an entity it should first be found inside the cluster:

node001 = cluster.get_by_name ('node001')

If the name node001 was also given a different entity, then the type must be specified to ensure that
the correct entity is returned:

1.4 Modifying Settings 3

node001 = cluster.get_by_name('node001', pythoncm.entity.Node)
node001 = cluster.get_by_name('node001', 'Node')

Once the node entity is found, inspecting the settings is a matter of printing the desired field:

print (node001.hostname)
print (node001.mac)

Complex settings, such as network interfaces, have their own settings:

for interfaces in node0Ol.interfaces:

print (interface.name, interface.ip)

Because many nodes could have a network interface called eth0, such a setting cannot be found from
the cluster: The following code will return None.

ethO = cluster.get_by_name('eth0')
To find all eth0 interfaces, all nodes need to be found, and then iterated over:

nodes = cluster.get_by_type(pythoncm.entity.Node)
all_ethO = [interface

for node in nodes

for interface in node.interfaces

if interface.name == 'eth(']

Basic entity settings are exported as Python properties and can simply be changed:

node001.mac = '00:00:00:00:00:00"'
node001.category = cluster.get_by_name('gpu', 'Category')

Similarly interfaces settings can be accessed and changed directly:

node001.interfaces[0].ip = '1.2.3.4'
node001.interfaces[0] .network = cluster.get_by_name('ib', 'Network')

Removing an interface from a node can be done in various Pythonic ways:

node001.interfaces.remove (0)

del node001.interfaces[0]

node001.interfaces = [interface for interface in node0O01.interfaces
if interface.name != 'eth0']

To add a new interface, the entity instance needs to be created first, and then added to the node:

ethl = pythoncm.entity.NetworkPhysicalInterface()
ethl.name = 'ethl'

ethl.ip = '1.2.3.4'

ethl.network = cluster.get_by_name('ib', 'Network')
node001.interfaces.append(ethl)

All changes are made on a local copy of the entity. The cluster has no knowledge of the changes until
they are committed.

It is recommended to make many changes locally, and only commit once at the end.

The return value of the commit operation should always be checked.

Committing a badly-configured node will be blocked by the head node:

commit_result = node001.commit ()
if not commit_result.good:
print (commit_result)

4 NVIDIA Base Command Manager Python API

An entity found from via the cluster object is removed differently.
As with commit, the result should always be checked: a removal can fail if a node is UP:

remove_result = node001.remove ()
if not remove_result.good:
print (remove_result)

1.5 Inspecting The Entire Cluster

The example directory contains a script to inspect the entire cluster.
Example

[root@basecm10 ~I# cd /cm/local/examples/cmd/pythoncm/
[root@basecml0 pythoncml# module load python3
[root@basecmlO pythoncm]# ./print-all.py

The example directory also contains a script that prints all metadata for all available entities in BCM:
Example

[root@basecml0 pythoncm]# ./entity_info.py

1.6 Performing Operations On Entities

All Python API functionality is contained in /cm/local/apps/cmd/pythoncm/1ib/python3.9/site-packages/
pythoncm.
Methods are documented inside the python code itself.

node001 = cluster.get_by_name('node001')
node001.power_on()

When operating on multiple entities, it is possible to iterate over them and do each operation indi-
vidually.

nodes = cluster.get_by_type('Node')
for node in nodes:

node.power_on()

However the same can also be done with a parallel version of the operation. When possible the
parallel version should be used, because it is faster and requires less network traffic.

nodes = cluster.get_by_type('Node')

cluster.parallel.power_on(nodes)

1.7 Monitoring

All monitoring data can be accessed using the Python APL
Monitoring is a set of operations performed on entities.
For example, to get latest data for a single entity:

print (node001.get_latest_monitoring_data())

Monitoring operations on multiple operations should be done using the monitoring module:

data = cluster.monitoring.get_latest_monitoring_data([node001,
node002,
node003])

/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm
/cm/local/apps/cmd/pythoncm/lib/python3.9/site-packages/pythoncm

1.8 Examples

1.8 Examples

The best way to get going is by looking at the examples. These can be found on the head node, at

/cm/local/examples/cmd/pythoncm:
Example

[root@basecm10 pythoncml# 1s
add-collection.py
add-healthcheck.py
add-metric.py
add-node-group.py
add-role.py

add-user.py
all-background-tasks.py
all-nodes.py
arch_os_image_info.py
certificate-info.py
charge-back.py
clone-many-nodes.py
clone-node-group.py
clone-node.py
cm-job-analytics.py
cm-job-gpu.py
cm-network-traffic-monitor-setup.py
config-writer.py
cookie.py
create-certificate.py
create-ramdisk-task.py

dump- job-monitoring-data.py
dump-monitoring-data.py
entity_info.py

execute.py
fabric-bindings.py
fake-file-write.py
free_port.py
get-all-wlm-jobs.py
get-status.py
health-overview.py
instance_by_name.py
instant-query.py
key_value_pair.py
latest-counter-data.py
latest-health-data.py
monitoring-push.py
move-to-new-pdu.py
new-nodes.py
parallel-execute-async.py
parallel-execute-check-status.py
parallel-execute.py

The examples can be tried out after loading the Python environment:

Example

[root@basecm10 ~]# cd /cm/local/examples/cmd/pythoncm/

[root@basecmlO pythoncm]# module load python3

[root@basecmlO pythoncm]# ./power-status.py

INFO (25-May-2020 18:29:25) [cluster.py
10.141.255.254

INFO (25-May-2020 18:29:25) [cluster.py
42949672967

success: True

L

"uniqueKey": 1125899906842642,
"oldLocalUniqueKey": O,

"baseType": "PowerStatus",
"childType": "",
"revision": "",

"modified": false,
"toBeRemoved": false,
"readonly": false,
"not_set_fields": [],
"device": 38654705666,
"host": 38654705665,
"powerDistributionUnit": O,
"gpu": -1,

"prt": O,

power-history.py
power-parallel-status.py
power-status.py
print-all.py
range-expander-test.py
remove-many-nodes.py
remove-node-group.py
sample-all-checks.py
sample-now-checks.py
sample-now-parallel.py
select-devices.py
service.py
service-status.py
set-node-image.py
test-add-update-remove.py
tftpboot-file-information.py
total-job-power-usage.py
up-percentage.py
user-data.py
wait-for-provisioning.py
wait-for-up.py

:207] Follow redirection to active head IP:

:298] Start event thread for session

/cm/local/examples/cmd/pythoncm

6 NVIDIA Base Command Manager Python API

"name": "custom",
"state": "ON",
"msg": "",
"extendedMsg": "",
"indexes": [
2
1,
"tracker": O,
"retries": 0
]
INFO (25-May-2020 18:29:28) [entity_change.py : 38] Stop event change watcher
[root@basecml0 pythoncm]#

Monitoring Data Producers

This chapter covers how to add a new metrics and health checks scripts with cmsh.
Five different types of Monitoring Data Producers can be added:

® metric: a script which produces a single value.
® health check: a script which produces a PASS, FAIL, UNKNOWN, or no data value.
® collection: a script that produces zero or more metrics, health checks, or a combination of both.

* perpetual a script that is started once over the lifetime of the BCM cmd process. The script pro-
duces zero or more metrics, health checks, or a combination of both on its own timing mechanism.

* prometheus one or more URLs to Prometheus metric exporters.

A monitoring data producer cannot be plotted in cmsh or Base View, because it contains no data. A
producer defines measurables: metrics and/or health checks. It also generates data for these measur-
ables, which can be plotted.

There are three types of measurable:
® metric: a numeric value, or no data.
e health check: PASS/FAIL/UNKNOWN/no data.

¢ enum metric: one of a set of user-defined string based values, or no data.

All measurables are grouped into classes. A class is a user-defined free string field, with / as delimiters.
Base View uses this class to build a tree for easy search and access.

A metric data producer script generates one data point.
For example, as in the following script:

[root@basecmlO0 ~]# cat /path/to/my/metric
#!/bin/bash
info_fd=${CMD_INFO_FD:=3} #set CMD_INFO_FD to 3 by default only if nothing set

8 Monitoring Data Producers

CMD_INFO_FD:=3 <--- same as: if [-z "$CMD_INFO_FD"]; then CMD_INFO_FD=3; fi
echo $((RANDOM))

Optionally provide extra information

echo "Extra information" >&$info_f£fd

The script can be defined as a metric script via the monitoring setup mode of cmsh:
Example

[basecm10]% monitoring setup
[basecm10->monitoring->setupl’% add metric my-metric
..my-metric]’, set script /path/to/my/metric
..my-metric]’, set class My/Class

..my-metric]’, set unit B

..my-metric]) set interval im

L I s T s T s N |

..my-metricl’ commit

All nodes then execute the script every minute, and produce a random number.

2.4 Health Check Monitoring Data Producers

A health check data producer script generates one data point. The data point can be one of four possible
values expected of it: PASS, FAIL, UNKNOWN, or no data. Other file descriptors can be used to provide
extra information.

For example, as in the following script:

Example

[root@basecm10 ~1# cat /path/to/my/health-check

#!/bin/bash

info_fd=${CMD_INFO_FD:=3} #set CMD_INFO_FD to 3 by default if nothing set
if [$((RANDOM)) -gt 8000]; then

echo "PASS"
else
echo "FAIL"

Optionally provide extra information
echo "Extra information" >&$info_fd
fi

The script can be defined as a health check script via the monitoring setup mode of cmsh:
Example

[basecm10]% monitoring setup

[basecm10->monitoring->setupl’ add healthcheck my-health-check
[...my-check]) set script /path/to/my/health-check
[...my-checkl’% set class My/Class

[...my-check]’ set interval 1m

[...my-check]’ commit

All nodes then execute the script every minute, and produce data values with roughly 75% PASS and
25% FAIL.

2.5 Collection Monitoring Data Producers 9

2.5 Collection Monitoring Data Producers

A collection data producer script can generate multiple data points in one run. Data points can be a
combination of metrics and health checks. Collection scripts are also allowed to produce no data.
A collection script has two modes: initialize mode and sample mode.

® initialize: defines the measurables that data values are generated for.
¢ sample: returns the data values for all the measurables defined in initialize mode.

During normal cluster operation the initialize mode is called only once, during boot. Afterwards,
the script is called in sample mode at the desired interval.

The following example combines both of the metric and health check examples from earlier on.
However, this time it is written as a single script, using JSON as the output format:

Example

[root@basecml1Q ~]# cat /path/to/my/collection
#!/usr/bin/python

import sys
import json
import random

def initialize():
metric = {"metric": "my.collection.metric",
"unit": "B",
"class": "My/Collection"}
check = {"check": "my.collection.check",
"class": "My/Collection"}
return [metric, checkl]

def sample():
metric = {"metric": "my.collection.metric",
"value": random.randint (0, 32767)}
check = {"check": "my.collection.check",
"info": "random with 25% failure rate",
"value": 'PASS' if random.randint (0, 32767) > 8000 else 'FAIL'}
return [metric, checkl]

def main():
if len(sys.argv) > 1 and sys.argv[l] == "--initialize":
data = initialize()
else:
data = sample()
print (json.dumps(data, indent=4))

if __name == '__main__":

main()

The script can be defined as a collection script via the monitoring setup mode of cmsh:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setupl’% add collection my-collection
[...my-collection]’% set script /path/to/my/collection
[...my-collection]’ set format JSON

10 Monitoring Data Producers

[...my-collection]’ set interval 1m

[...my-collection]’% commit

All nodes then execute the script every minute and produce two data points upon each execution.
That is, one metric and one health check per execution.

2.6 Perpetual Monitoring Data Producers

A perpetual data producer script is a special case of a collection data producer script. It is intended to
be used if the script needs permanent memory storage.

Example

[root@basecmlO ~]# cat /path/to/my/perpetual
#!/usr/bin/python

import my_sampler_module
import json
import time

create single instance

sampler = my_sampler_module.MySampler ()
load important data into memory
sampler.load()

Infinite loop with its own timing
delay = 0O
while True:
time.sleep(delay)
(definitions, values, delay) = sampler.process()
if definitions:
Print new measurables
print (json.dumps(definitions))
Print data

print (json.dumps(values))
The my_sampler_module is the part which does the important work.
Example

[root@basecmlO ~]# cat /path/to/my/my_sampler_module.py
class MySampler:
def __init__(self):
self.initialized = False
self.definitions = None

def load(self):

Do time consuming work here

metric = {"metric": "my.collection.metric",
"unit": "B",
"class": "My/Collection"}

check = {"check": "my.collection.check",
"class": "My/Collection"}

self.definitions = [metric, check]

def process(self):
metric = {"metric": "my.collection.metric",

2.7 Prometheus Monitoring Data Producers 11

"value": random.randint(0, 32767)}
check = {'"check" : "my.collection.check",
"value" : 'PASS' if random.randint (0, 32767) > 8000 else 'FAIL'}
values = metric, check
return definitions once, afterwards they never change
but new definitions could be added this way
definitions = self.definitions
self.definitions = None
return definitions, values, 60

The script can be defined as a perpetual script via the monitoring setup mode of cmsh:
Example

[basecm10]% monitoring setup
[basecm10->monitoring->setupl’ add perpetual my-perpetual
[...my-perpetuall’ set script /path/to/my/perpetual
[...my-perpetuall’ set format JSON

[...my-perpetuall’, commit

2.7 Prometheus Monitoring Data Producers

Prometheus is a monitoring and alerting toolkit (https://prometheus.io). A Prometheus monitor-
ing data producer script parses data from a Prometheus exporter (https://prometheus.io/docs/
instrumenting/exporters/)

The script can be defined as a Prometheus script via the monitoring setup mode of cmsh:

Example

[basecm10]’ monitoring setup

[basecm10->monitoring->setupl’ add prometheus my-prometheus-exporter
[...my-prometheus-exporter]’, set urls http://my.prometheus.exporter:80
[...my-prometheus-exporter]’, set interval 1m
[...my-prometheus-exporter]’ commit

If multiple URLSs are defined, then only the data values from the first successful HTTP GET are used.

2.8 Node Execution Filters

By default a monitoring data producer script is executed on every node. When this is not desirable, a
node execution filter should be created. A node execution filter defines the nodes on which the producer
script should be executed.

For example, a filter to execute the script only on cloud nodes can be configured as follows:

Example

[basecm10]% monitoring setup use my-check
[...my-check]’ nodeexecutionfilters
[...nodeexecutionfiltersl’ add type Cloud
[...nodeexecutionfilters*[Cloud*]]1% set cloudnode yes

[...nodeexecutionfilters*[Cloud#*]]’ show

Parameter Value

Base type MonitoringExecutionFilter
Name Cloud

Type Type

Head node no

https://prometheus.io
https://prometheus.io/docs/instrumenting/exporters/
https://prometheus.io/docs/instrumenting/exporters/

12 Monitoring Data Producers

Physical node no
Cloud node yes
Virtual node no
Lite node no

[...nodeexecutionfilters*[Cloud*]]}, commit

It is also possible to filter based on the specific resources associated with a node:

[basecm10]’% monitoring setup use my-IB-check
[...my-IB-check]’% nodeexecutionfilters
[...nodeexecutionfilters]’ add resource IB
[...nodeexecutionfilters*[IB*]]% set resources IB
[...nodeexecutionfilters*[IB*]]% commit

Because of high availability, a special resource, active, is defined for the active head node.

[basecm10]% monitoring setup use my-metric
[...my-metric]¥% nodeexecutionfilters
[...nodeexecutionfilters]) active

Added active resource filter
[...nodeexecutionfilters*]% commit

By default a monitoring data producer script is executed once: the node executes the script only for
itself.

However, some scripts, such as BMC samplers, must be sampled from the active head node for all
nodes.

In the following example a BMC script is run on each node that has the ipmi or drac resource:

[basecm10]’ monitoring setup use my-ipmi-collection
..my-ipmi-collection]’ executionmultiplexers
..executionmultiplexers]) add resource ipmi
..executionmultiplexers*[ipmi*]]% set resources ipmi drac
..executionmultiplexers*[ipmi*]]% set operator OR

Lo T s T s I e B |

..executionmultiplexers*[ipmi*]]} commit

If an execution multiplexer <multiplexer> is defined, then there should also be a node execution filter
<filter> associated with it to restrict the number of nodes on which the script runs.

This is because having the script run on many nodes for many other nodes is unlikely to be a desired
configuration.

The combination of the execution filter and the multiplexer should be read as:

for every node that matches filter, run script, for each node that matches multiplexer.

A more specific example, using two of the preceding examples, with a filter based on the resource
IB, and multiplexers based on the IPMI/Drac resources, the combination should be read as:

for every node that matches IB, run script, for each node that matches ipmi or drac.

2.10 Monitoring Resources 13

2.10 Monitoring Resources

Every device in BCM has one or more resources. These resources are automatically calculated from:
* Roles
¢ Hardware
® Settings
Resources for a specific node can be viewed as follows:
Example

[basecm10]% device use node001
[basecm10]% monitoringresources
Cent0S7ub

Ethernet

category:default

It is possible to add one or more custom resources to a device:
Example

[basecm10]% device use node001

[basecm10]’, add userdefinedresources MyResource

[basecm10]’, append userdefinedresources MyOtherResource
[basecm10]% # wait “10 seconds for the settings to propagate
[basecm10]% monitoringresources

Cent0S7ub

Ethernet

category:default

MyResource

MyOtherResource

Any of these resources can be used to filter and multiplex monitoring data producers.
If a resources changes because of a settings change, then monitoring automatically stops or starts
sampling.

2.11 Collection Monitoring Data Producers With Filter And Multiplexer

If a script has an execution multiplexer set, then it needs to determine for which nodes the script runs:
Example

[root@basecm10~]# cat /path/to/my/collection
#!/usr/bin/python

import sys
import json
import random

def initialize(entity):
metric = {"metric": "my.collection.metric",
"entity": entity,
"unit": "B",
"class": "My/Collection"}
check = {"check": "my.collection.check",
"entity": entity,

14 Monitoring Data Producers

"class": "My/Collection"}
return [metric, checkl]

def sample(entity):
metric = {"metric": "my.collection.metric",
"entity": entity,
"value": random.randint (0, 32767)}
check = {"check" : "my.collection.check",
"entity": entity,
"value" : 'PASS' if random.randint (0, 32767) > 8000 else 'FAIL'}
return [metric, checkl]

def main():

try:
determine for which node we are sampling
entity = os.environ['CMD_HOSTNAME']
except:
sys.stderr.write('Target device not specified in environment\n')
return
if len(sys.argv) > 1 and sys.argv[l] == "--initialize":
data = initialize(entity)
else:

data = sample(entity)
print (json.dumps(data, indent=4))

if __name == '__main__":

main()

It can be defined with a filter to run on the active head for all nodes in the GPU category:

Example

[basecm10]% monitoring setup

[basecm10->monitoring->setupl’% add collection my-collection
..my-collection]¥% set script /path/to/my/collection
..my-collection]’% set format JSON

..my-collection]’ set interval 1m

..my-collection]’ nodeexecutionfilters

Lo IO s T s I e B |

. .nodeexecutionfilters]’ active

Added active resource filter

. .nodeexecutionfilters]’, exit

..my-collection]’ executionmultiplexers
..executionmultiplexers]y, add category

. .executionmultiplexers*[GPUx]}, add category GPU

Lo T s T s O s B |

..executionmultiplexers*[GPU*]’, commit

The script is then executed on the head, once for each node in the category of GPU.

2.12 Collection Monitoring Data Producers For Standalone Entities

Sometimes monitoring data does not belong to a BCM entity.
For this reason the standalone monitored entity was added in NVIDIA Base Command Manager 8.0.
This entity can be anything with a name and custom type.
BCM does nothing with this kind of entity, except allow it to store monitoring data.
Each standalone entity which needs to be monitored should be added:

2.12 Collection Monitoring Data Producers For Standalone Entities

15

Example

[basecm10]% monitoring standalone
[basecm10->monitoring->standalonel]? add MSD.O
.standalone*[MSD.0*]]% set type Lustre
.standalone* [MSD.0*]]% commit

.standalone* [MSD.0*]]% add MSD.1
.standalone*[MSD.1*]]7, set type Lustre
.standalone* [MSD.1%]]% commit

Lo I s T e B s B |

A script can be created that produces data for all MSD entities:

Example

[root@basecm10 ~]1# cat /path/to/my/collection
#!/usr/bin/python

import sys
import json

def initialize():

msd_0 = {"metric": "lustre.free.space",
"entity": "MSD.O",
ll.lmitll . IlBll’
"class": "Lustre"}

msd_1 = {"metric": "lustre.free.space",
"entity": "MSD.1",
llmitll : IlBll’
"class": "Lustre"}

return [msd_0, msd_1]

def sample():

msd_0 = {"metric": "lustre.free.space",
"entity": "MSD.O",
"value": 12345,
"class": "Lustre"}

msd_1 = {"metric": "lustre.free.space",
"entity": "MSD.1",
"value": 54321}

return [msd_0, msd_1]

def main():
if len(sys.argv) > 1 and sys.argv[l] == "--initialize":
data = initialize()
else:
data = sample()
print (json.dumps(data, indent=4))

if __name__ == '__main__"':

main ()
It can be defined to run on only the active head node:
Example

[basecm10]% monitoring setup
[basecm10->monitoring->setupl’% add collection my-collection

16 Monitoring Data Producers

..my-collection]’ set script /path/to/my/collection
..my-collection]’ set format JSON

..my-collection]’ set interval 5m

..my-collection]¥% nodeexecutionfilters

Lo I s T e I s B |

. .nodeexecutionfilters]y, active
Added active resource filter
[...nodeexecutionfilters]’), commit

The script is then executed on the active head every 5 minutes and collects one data point for each
MSD.
Data for a standalone script can be viewed with the same commands as for regular BCM nodes.

Example

[basecm10]% monitoring standalone
[basecm10->monitoring->standalone]’, use MSD.O
[...standalone*[MSD.0*]], latestmetricdata

lustre.free.space 12345 3m 47s

2.13 Debugging Standalone Scripts

Page 641 of the Administrator Manual describes how debugging information can be obtained when run-
ning samplenow with the --debug option with the ntp healthcheck script.

Many scripts under /cm/local/apps/cmd/scripts/ can have their debug output inspected with
samplenow --debug.

A recursive grep on the head node, similar to the following, should show which scripts have a
settable debug environment:

grep -r CMD_DEBUG /cm/local/apps/cmd/scripts/
The debug output in the script can be specified along the lines of the following code snippet:
Example

import os

debug = os.environ.get('CMD_DEBUG', '0') == '1'
info_fd = int(os.environ.get('CMD_INFO_FD', '3'))
if debug:

os.write(info_fd, 'debug message')

/cm/local/apps/cmd/scripts/

Monitoring Actions

This chapter covers how to manage monitoring-driven actions with cmsh.

A monitoring action is a script that is executed by CMDaemon. It runs when triggered by the monitored

data.

An action by itself does nothing—it needs a trigger (section 12.4.5 of the Administrator Manual) to be
defined to execute the action.
By default, several actions (section 12.4.4 of the Administrator Manual) are predefined:

Drain: Drain node (node refuses new WLM jobs)

Event: Send an event to users with connected client
ImageUpdate: Update the image on the node

Power0ff: Power off a device

PowerOn: Power on a device:

PowerReset: Power reset a device

Reboot: Reboot a node

Send e-mail to administrators: Send e-mail

Shutdown: Shutdown a node

Undrain: Undrain node (node accepts new WLM jobs)
killprocess: /cm/local/apps/cmd/scripts/actions/killprocess.pl
remount: /cm/local/apps/cmd/scripts/actions/remount

testaction: /cm/local/apps/cmd/scripts/actions/testaction

A new action script can be created as follows:

[basecm10]’% monitoring action

[basecm10->monitoring->action]’, add script MyScript
[...MyScript*]% set script /path/to/MyScript
[...MyScript*]% commit

/cm/local/apps/cmd/scripts/actions/killprocess.pl
/cm/local/apps/cmd/scripts/actions/remount
/cm/local/apps/cmd/scripts/actions/testaction

18 Monitoring Actions

3.2 Time Restrictions

It is possible to allow actions to only be executed at certain times, with the allowedtime setting.
Example

[basecm10]’% monitoring action
[basecm10->monitoring->action]’, add script MyScript
[...MyScript*]% set script /path/to/MyScript
[...MyScript*]} set allowedtime "9:00-17:00"
[...MyScript*]% commit

More complex timing restrictions are possible:
Example

monday-friday{9:00-17:00}
monday-friday{00:00-09:00;17:00-00:00} ; saturday-sunday
november-march{monday-saturday{13:00-17:00}}
may-september{monday-friday{09:00-18:00};saturday-sunday{13:00-17:00}}

Further examples can be seen in section 12.4.4 of the Administrator Manual, page 612.

3.2.1 Time Restriction Syntax In BNF Notation
The allowed values can be written as a BNF grammar:

Example

<start> =
time_intervals
| nn
<time_intervals> = <time_interval> (; <time_interval>)=*
<time_interval> = <inner_time_interval>{<time_intervals}
<inner_time_interval> =
<day_of_week_interval>
| <time_of_day_interval>
| <day_of_month_interval>
| <month_interval>
<day_of_week_interval> =
(<day_of_week>-<day_of _week>)
| (<day_of_week> (, day_of_week)*)
<day_of_week> = sunday | monday | tuesday | wednesday | thursday | friday | saturday
<time_of_day_interval> = <time_of_day>-<time_of_day>
<time_of_day>= \d?\d:\d\d
<month_interval> = (<month>-<month>)
| (<month> (, month)*)
<month> = january | february | march | april | may | june | july | august | september
| october | november | december
<day_of_month_interval> = (<day_of_month>-<day_of_month>)
| (<day_of_month> (, day_of_month)*)
<day_of_month> = \d?\d

3.3 CMDaemon Environment Variables

3.3.1 Standard Environment Variables Available In Action Scripts

3.3 CMDaemon Environment Variables 19

Name

Description

CMD_ENTITY_UUID

CMD_ENTITY_NAME

CMD_ENTITY_TYPE

CMD_MEASURABLE_NAME

CMD_MEASURABLE_PARAMETER

CMD_MEASURABLE_TYPE

CMD_VALUE

CMD_RAW_VALUE

CMD_VALUE_TIME

CMD_INFO_MESSAGE

CMD_PRODUCER_NAME

The UUID of the entity that triggered the action.

The name of the entity that triggered the action.

The type of entity that triggered the action.

The name of the measurable that triggered the action.

The parameter of the measurable that triggered the action.
The type of the measurable.

The value that triggered the action.

The raw value.

The time on which the value was measured, in ms elapsed since
Unix epoch.

Extra information sampled along with the value.

The name of the monitoring data producer that samples the
measurable.

...continues

20 Monitoring Actions

...continued
Name Description
CMD_ACTION_NAME The name of the action that was triggered.
CMD_TRIGGER_NAME The name of the trigger.
CMD_TRIGGER_EXPRESSION The expression that was evaluated.
CMD_VALUE_EVAL The result of the evaluated expression.
CMD_VALUE_COUNT The number of times the expression evaluated to the same value.
CMD_SEVERITY The assigned severity of the trigger.
CMD_STATE_FLAPPING Is the measurable flapping?
CMD_JSON_DATA If set to yes, then a JSON blob is passed on STDIN. The blob con-

tains the information normally in env. CMD_JSON_DATA is used by the
Send e-mail action

CMD_MEASURABLE_UUID The UUID of the measurable used

CMD_MULTI_ACTION Data values from measurables or triggers are dealt with together in
some way if the action is yes

Example

If the value of the parameter mergedmeasurables is set to yes, and if more than one data value is
gathered within a period that is specified by the value of mergedelay, then the data values for a
measurable are dealt with together in some way by the action.

Merge delay, Merge triggers, and Merge measurables are parameters that are available within
some monitoring actions.

[basecm10->monitoring->action]’ list -f name:0,mergedelay,mergemeasurables
name (key) mergedelay mergemeasurables

Send e-mail to administrators 2s yes

The Send e-mail action in this supports CMD_MULTI_ACTION=yes by sending one email with mul-
tiple values, instead of one e-mail per measured or triggered value:

...continues

3.3 CMDaemon Environment Variables 21

...continued
Name Description
CMD_TRIGGER_UUID UUID of the trigger
CMD_SCRIPTTIMEOUT script timeout, in seconds, when CMDaemon runs an action script

All action scripts have the preceding standard environment variables set.

In cmsh, if the action object has its node environment parameter set to the value yes, then scripts
running on a node are enabled with an extended environment that provides many more CMD_x* environ-
ment variables. Otherwise they run in the standard environment. There are more environment variables
besides the standard and node environment ones.

A list of the standard or extended environment variables can be dumped by running the system
command env > /tmp/dumpfile within an action script, such as the test example script, and triggering
the script to run.

Many of the environment variables are similar to the ones used by initialize and finalize scripts
(section E.3 of the Administrator Manual) in the node-installer environment.

3.3.2 Extended Environment Variables Available To Action Scripts
If the action object has its node environment parameter set to the value yes, then scripts run in an
extended environment that provides many more CMD_#* environment variables. Otherwise they run in
the standard environment of section 3.3.1.

The following table shows the extended as well as the standard environment variables, with some
example values:

22

Monitoring Actions

Table 3.3.2: Environment Variables For Nodes In

The Extended Environment

Variable

Example Value

CMD_ACTION_NAME
CMD_ACTIVE_HEAD_NODE_IP
CMD_CLUSTERNAME
CMD_DEVICE_TYPE
CMD_ENTITY_NAME
CMD_ENTITY_TYPE

CMD_ENTITY_UUID
CMD_ENVIRONMENT_CACHE_EPOCH_MILLISECONDS
CMD_ENVIRONMENT _CACHE_UPDATES
CMD_EXPORTS

CMD_FSEXPORT__SLASH_cm_SLASH_node_DASH_

installer<node-installer values>

where <node-installer values> takes these substitutions:

myaction

10.141.255.254

basecml10

HeadNode

basecm10

HeadNode
78d29abb-b415-486f-ad6a-04c5a983110f
1733150703765

15

/cm/node-installer@internalnet
/cm/node-installer/certificates@internalnet
/var/spool/burn@internalnet
/home@internalnet

/cm/shared@internalnet

<node-installer values>

example value

_installer_AT_internalnet_ALLOWWRITE
_AT_internalnet_HOSTS

_AT_internalnet_PATH
_SLASH_certificates_AT_internalnet_ALLOWWRITE
_SLASH_certificates_AT_internalnet_HOSTS

_SLASH_certificates_AT_internalnet_PATH

false
10.141.0.0/16
/cm/node-installer
true

10.141.0.0/16

/cm/node-installer/certificates

CMD_FSEXPORT__SLASH_<path values>

where <path values> takes these substitutions:

<path values>

example value

cm_SLASH_shared_AT_internalnet_ALLOWWRITE
cm_SLASH_shared_AT_internalnet_HOSTS
cm_SLASH_shared_AT_internalnet_PATH
home_AT_internalnet_ALLOWWRITE
home_AT_internalnet_HOSTS

home_AT_internalnet_PATH

var_SLASH_spool_SLASH_burn_AT_internalnet_ALLOWWRITE

var_SLASH_spool_SLASH_burn_AT_internalnet_HOSTS
var_SLASH_spool_SLASH_burn_AT_internalnet_PATH

true
10.141.0.0/16
/cm/shared

true
10.141.0.0/16
/home

true
10.141.0.0/16
/var/spool/burn

CMD_HOSTNAME
CMD_HTTP_PORT
CMD_INFO_MESSAGE

basecm10

8080

...continues

3.3 CMDaemon Environment Variables 23

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable

Example Value

The interfaces ethO and eth1 that make up the environment variable names listed next are for a
Type 1 network with ethernet interfaces. The environment variable names change if the interface
names change. For example, with InfiniBand interfaces, the eth0, eth1 strings become ib0, ib1.

CMD_INTERFACE_ethO_IP
CMD_INTERFACE_ethO_MAC
CMD_INTERFACE_ethO_MASK_BITS
CMD_INTERFACE_ethO_MTU
CMD_INTERFACE_ethO_SPEED
CMD_INTERFACE_ethO_STARTIF
CMD_INTERFACE_ethO_TYPE
CMD_INTERFACE_ethl_GATEWAY
CMD_INTERFACE_eth1_IP
CMD_INTERFACE_eth1_MAC
CMD_INTERFACE_eth1_MASK_BITS
CMD_INTERFACE_ethl_MTU
CMD_INTERFACE_ethl_SPEED
CMD_INTERFACE_ethl_STARTIF
CMD_INTERFACE_ethl_TYPE
CMD_INTERFACES

CMD_IP

CMD_JSON_DATA

CMD_MAC
CMD_MANAGEMENT_IP
CMD_MEASURABLE_NAME
CMD_MEASURABLE_PARAMETER
CMD_MEASURABLE_TYPE
CMD_MEASURABLE_UUID

10.141.255.254
00:00:00:00:00:00
16

1500

ALWAYS
NetworkPhysicalInterface
192.168.255.254
192.168.244.169
00:00:00:00:00:00

20

1500

ALWAYS
NetworkPhysicalInterface

ethO ethl

10.141.255.254
no
FA:16:3E:33:8E:10
10.141.255.254
PageOut

MonitoringMeasurableMetric

24321ecl1-275c-4£d2-92eb-2ad7494216a8

...continues

24

Monitoring Actions

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable

Example Value

CMD_MULTI_ACTION
CMD_MYSQL_SOCKET
CMD_NODEGROUPS
CMD_NODE_INSTALLER_PATH
CMD_PARTITION
CMD_PASSIVE_HEAD_NODE_IP
CMD_PORT
CMD_PRIMARY_HEAD_NODE
CMD_PRODUCER_NAME
CMD_PROTOCOL
CMD_RAW_VALUE

CMD_ROLES

CMD_SCRIPTTIMEQUT
CMD_SEVERITY
CMD_SHARED_HEAD_NODE_IP
CMD_STATE_FLAPPING
CMD_STATUS_BURNING
CMD_STATUS_CLOSED
CMD_STATUS_HEALTHCHECK_FAILED
CMD_STATUS_HEALTHCHECK_UNKNOWN
CMD_STATUS_MESSAGE
CMD_STATUS_MUTED
CMD_STATUS_RESTART_REQUIRED
CMD_STATUS_STATEFLAPPING
CMD_STATUS_TERMINATED
CMD_STATUS_TOOLMESSAGE
CMD_STATUS
CMD_STATUS_UPDATE_INDEX

no

/var/run/mysqld/mysqld.sock

/cm/node-installer

base

8081

basecm10
ProcVMStat
https
103603.200000

SlurmServer Storage Backup
Boot Provisioning Monitoring

SlurmAccounting Firewall HeadNode

SlurmSubmit
5
10

no
NO
NO
YES
NO

NO
NO
NO
NO

UP

...continues

3.3 CMDaemon Environment Variables

25

Table 3.3.2: Environment Variables For Nodes In The Extended Environment ...continued

Variable Example Value
CMD_STATUS_USERMESSAGE
CMD_SYSINFO_SYSTEM_MANUFACTURER OpenStack Foundation

CMD_SYSINFO_SYSTEM_NAME OpenStack Nova

CMD_TRIGGER_EXPRESSION (basecm10, *, *) > 50
CMD_TRIGGER_NAME killallyestrigger

CMD_TRIGGER_UUID 1b784150-3f4f-4cb2-af37-993bbbe3deasd

CMD_UPDATE_EPOCH_MILLISECONDS 1733150703765
CMD_USERDEFINED1
CMD_USERDEFINED2

CMD_UUID 78d29ab5-b415-486f-ad6a-04c5a983110f
CMD_VALUE 101 KiB/s

CMD_VALUE_COUNT 1

CMD_VALUE_EVAL true

CMD_VALUE_TIME 1733151851527

3.3.3 Environment Variables Useful For Debugging
The following environmental variables can be handy for debugging:

Table 3.3.2: Environment Variables For Nodes In The Extended Environment

Variable Description

CMD_INFO_FD Set file descriptor used by CMDaemon for collecting information (default value: 3)
CMD_DEBUG Setting this to a value of 1 often gives more debug output (default value: 0)

Examples of their use are given in sections 2.3, 2.4, and 2.13.

CMDaemon REST API

Some data from CMDaemon can be accessed via its REST APL
The REST API typically allows data only to be retrieved for most calls. Exceptions are:

¢ the Status call, which can generate status notifications (section 4.2.1), and
e the Event call, which can generate events (section 4.2.9),

and which can take POST input to specify their calls.

Two forms of authentication are supported:
¢ Basic: HTTP authentication (--basic option of curl)

¢ Certificate: Certificate-based authentication (--cert option of curl). Certificate-based authentica-
tion is covered in section 6.4.2 of the Administrator Manual.

The following two commands give identical results:

[alice@basecm10 ~1$ curl -k --basic --user "alice:password" "https://master:8081/rest"
[alice@basecm1O ~1$ curl --cert “/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081/rest"

For security, it is best to use the certificate key-based version.

For convenience, the command and authority parts of the preceding two commands—that is the
string in the line that includes the text from curl to 8081 in the two curl commands—is designated by
<curlauth> in this chapter. Thus, each of the commands can be represented by:

[alice@basecm10 ~1$ <curlauth>/rest"

This allows the reader to focus on the path segment and variables part of the APL

A summary diagram of the REST API is shown in figure 4.1:

28 CMDaemon REST API

returns cluster manager sessions

/session
(section 4.2.3) generates status messages
returns status
?name=node001
?name=node001..node004
/status
(section
4.2.1) ?name=node001&verbose=1
returns a response for testing purposes
/check returns list of monitored entities

?name=node001
?name=node001..node004

/entity
(page 32)

?type=node

?like=node
?like=node0*1

returns list of measurables

/measurable / ?name=loadone

(page 34) ?like=load

returns list of (entity, measurable) pairs
https:/master:8081/rest/v1 /usage
(page 35)

/monitoring

?name=node001
?name=node001..node002

?type=node
?entity=node001

?measurable=loadone
returns latest monitoring data for all (entity, measurable) pairs

(section 4.2.2)
i ?entity=node001
/latest ?entity=node001..node004
(page 36)\ ?measurable=loadone
?entity=node001&measurable=loadone

returns monitoring data over period (last 1hr by default)

?entity=node001

?measurable=loadone

?start=-1h (default)
?start=-30m

/dump
(page 38)

?end=now (default)
?intervals=0 (default, = raw data)

?epoch=1 (unix epoch time)

/chargeback
returns chargeback-related data

/license (section 4.2.5)

/device (section 4.2.7)
/version (section 4.2.4)

/sysinfo (section 4.2.6)

/workload/jobs (section 4.2.8)

/event
generate CMDaemon event (section 4.2.9)

Figure 4.1: REST API summary tree

The remainder of this section elaborates upon the diagram.
The API directory structure is documented within the directory itself.

4.2 Browsing The API 29

A GET operation on the main /rest entry point can list all subdirectories:

Example

[alice@basecm10 ~1$ <curlauth>/rest"
[Ilvlll]

New lines are not part of the output by default. Setting a parameter of 1, 2, or more, for the indent
variable uses newlines and an indentation of one, two, or more spaces. This makes the API output more
readable for all API resource paths:

Example

[alice@basecm10 ~1$ <curlauth>/rest?indent=1"
L
||v1l|

]

Appending /v1 to the URL gives the functionality available in the first version of the REST API.

Example

[alice@basecm10 ~1$ <curlauth>/rest/vi?indent=1"
[
"monitoring",
"chargeback",
"status",
"session",
"check",
"version",
"license",
"sysinfo",
"device",
"workload",
"event"

Appending /monitoring to the URL lists the subdirectory functionality available for monitoring.

Example

[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring?indent=1"
L

"entity",

"measurable",

"latest",

"dump",

"usage"

4.2.1 Returning A Status, Or Generating A Status Message, Using /v1/status
Returning A Status Using /v1/status
The status resource path returns the UP/DOWN status for all devices:

Example

30 CMDaemon REST API

[alice@basecm10 ~1$ <curlauth>/rest/v1/status?indent=2"

L
{
"hostname": "basecmlQ",
"status": "UP"
},
{
"hostname": "node001",
"status": "UP"
},
{
"hostname": "node002",
"status": "DOWN"
}
]

The status can also be requested for a single device:

Example

[alice@basecm10 ~1$ <curlauth>/rest/v1/status?name=node001&indent=2"
L

"hostname": "node001",
"status": "UP"

The “two dots” list specification format (section 2.5.5 of the Administrator Manual) used in Base View
and cmsh can also be used in the API:

Example

[alice@basecm10 ~1$ <curlauth>/rest/v1/status?name=node001..node002&indent=2"
L

{
"hostname": "node001",
"status": "UP"
1,
{
"hostname": "node002",
"status": "DOWN"
}
]
For more detailed information, the verbose parameter can be added (output truncated):
Example

[alice@basecm10 ~1$ <curlauth>/rest/v1/status?verbose=1&indent=2"
L

"health_check_failed": true,
"health_check_unknown": false,
"hostname": "basecml1Q",
"provisioning_failed": false,
"restart_required": false,

4.2 Browsing The API 31

"status": "UP"

},

{
"health_check_failed": true,
"health_check_unknown": false,
"hostname": "node001",

"provisioning_failed": false,

Generating A Status Message Using /v1/status
A message can be associated with the status. An input can be as in the following rest. in file:

[alice@basecmlO ~1$ cat /tmp/rest.in

[
{
"hostname": "node001",
"user": "user messagel",
"info": "info messagel",
"tool": tool messagel"
3,
{
"hostname": "node002",
"user": "user message2",
"info": "info message2",
"tool": tool message2"
}
]

The usual curl authentication string used so far, <curlauth> (section 4.1) is slightly modified from its
value of:

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081

to

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k --data "@/tmp/rest.in" "https://master:8081

This modified version allows POST data to be entered. The modified version can be called <curlau-
thpost>, and can be used as follows, returning a vector with the components having an integer value of
0, up to 3:

[alice@basecml1O ~1$ <curlauthpost>/rest/vl/status"
L

B

0
3
]

The dimension of the vector is in the current example is 2, and corresponds to the number of host-
names. Thus, the first component is associated with the hostname node001, and the second component
is associated with hostname node002.

The value of each component returns the number of fields in the POST file that were modified by the
API call. The fields that are evaluated are the optional fields user, info, and tool.

The event is logged in the event logger, by default at /var/spool/cmd/events.log, as:

/var/spool/cmd/events.log

32 CMDaemon REST API

Example

Mon Jun 17 18:15:50 2024 [notice] basecmlO: node001, status: UP, reported: UP, time: 1718113341752,
info message: info nodel, user message: user nodel, tool message: tool nodel (index: 27, display: 1)

Mon Jun 17 18:20:30 2024 [notice] basecm10: node002, status: UP, reported: UP, time: 1718113666566,
info message: info node2, user message: user node2, tool message: tool node2 (index: 28, display: 1)

An entry is also made in /var/log/cmdaemon:
Example

Jun 17 18:51:57 basecml10 cmd[2586]: [CMD] Info: [Service::post_vl_status], update node001, changes:
Jun 17 18:51:57 basecml0 cmd[2586]: [CMD] Info: [Service::post_vl_status], update node002, changes:

With the default settings of cmsh, a window running cmsh shows:
Example

[root@basecm1O0 ~1# cmsh

[basecm10]%

Mon Jun 17 18:51:58 2024 [notice] basecm10: node001 [UP] (info nodel) (user nodel) (tool mnodel)
Mon Jun 17 18:51:58 2024 [notice] basecm10: node002 [UP] (info node2) (user node2) (tool mnode2)

Messaging via the REST API is somewhat similar to the event bucket InfoMessages feature (sec-
tion 12.10.4 of the Administrator Manual) but developers should find the REST API version cleaner.

4.2.2 Monitoring Using /v1/monitoring

Entities Via /vl/monitoring/entity

The entity resource returns information about the entities that are known to the monitoring system. It
is possible for an entity known to the monitoring system to have no data.

Example

[alice@basecml1O ~1$ <curlauth>/rest/vi/monitoring/entity?indent=1"

{

"entities": [

{
"key": 12884901889,
"name": "default",
"type": "Category"

1,

{
"key": 17179869185,
"name": "globalnet",
"type": "Network"

1,

{
"key": 17179869186,
"mame": "internalnet",
"type": "Network"

1,

[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/entity?name=node001&indent=1"
{
"entities": [
{
"key": 38654705666,

/var/log/cmdaemon

4.2 Browsing The API

"name'": '"node0O01",
"type": "PhysicallNode"
}
]
}
[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring/entity?type=node&indent=1"
{

"entities": [

{
"key": 38654705665,
"name": "basecml10",

"type": "HeadNode"
1,
{
"key": 38654705666,
"name": "nodeQO01",
"type": "PhysicallNode"
1,
{
"key": 38654705667,
"name": "node002",
"type": "PhysicallNode"
}
]
}
[alice@basecml1O ~1$ <curlauth>/rest/vi/monitoring/entity?name=node001..node002&indent=1"
{

"entities": [

{
"key": 38654705666,
"name": "nodeQO01",

"type": "PhysicalNode"
},
{
"key": 38654705667,
"name": "node002",
"type": "PhysicalNode"
}
1
}

A regex matcher can be used to find entities based on a name match:
Example

[alice@basecm10 ~1$ <curlauth>/rest/v1/monitoring/entity?like=lobal&indent=1"
{

"entities": [
{
"key": 17179869185,
"name": "globalnet",
"type": "Network"
}
1

}

34 CMDaemon REST API

[alice@basecm1O ~1$ <curlauth>/rest/vl1/monitoring/entity?like=nod.0*1&indent=1"
{

"entities": [

{
"key": 38654705666,
"name": '"node0O01",

"type": "PhysicallNode"
}
]
}

Regexes are based on the ECMAScript specification (https://en.cppreference. com/w/cpp/regex/
ecmascript).

Measurables Via /v1/monitoring/measurable
This entry returns information about the defined measurables.

Example

[alice@basecm1O ~1$ <curlauth>/rest/vl1/monitoring/measurable?indent=1"

{

"measurables": [

{
"key": 261993005057,
"name": "IpForwDatagrams",
"type": "metric"

1,

{
"key": 261993005058,
"name": "IpFragCreates",
"type": "metric"

1,

{
"key": 261993005059,
"name": "IpFragFails",
"type": "metric"

1,

. . . typically hundreds more lines. . .

[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring/measurable?name=loadone&indent=1"

{

"measurables": [

{
"key": 261993005138,
"name": "LoadOne",
"type": "metric"

}

]

}
[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring/measurable?like=load&indent=1"
{

"measurables": [

{
"key": 261993005136,
"nmame": "LoadFifteen",

"type": "metric"

https://en.cppreference.com/w/cpp/regex/ecmascript
https://en.cppreference.com/w/cpp/regex/ecmascript

4.2 Browsing The API 35

},
{
"key": 261993005137,
"name": "LoadFive",
"type": "metric"
},
{
"key": 261993005138,
"name": "LoadOne",
"type": "metric"
}
]
}

Data Usage Via /v1/monitoring/usage
The usage resource is intended to show which (entity, measurable) pairs have data. For example, nodes
with only 1 disk do not have data, if their associated measurables have the string sdb in their name.

To get the complete usage:

Example

[alice@basecm1O ~1$ <curlauth>/rest/vl1/monitoring/usage?indent=1"
{
"data": [
{
"entity": "default",
"measurable": "CoresTotal"
1,
{
"entity": "default",
"measurable": "CoresUp"

}’

. . . typically hundreds more lines. . .

It is also possible to get all the measurables for which a specific entity, such as node001, has data.
Example

[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/usage?entity=node001&indent=1"
{

"data": [
{
"entity": '"node001",
"measurable": "IpForwDatagrams"
1,
{
"entity": '"nodeOO1",
"measurable": "IpFragCreates"
1,
{
"entity": '"nodeOO1",
"measurable": "IpFragFails"
1,

.. . typically hundreds more lines. . .

36 CMDaemon REST API

Or all entities which have data for a specific measurable such as loadone:

[alice@basecm10 ~1$ <curlauth>/rest/v1/monitoring/usage?measurable=loadone&indent=1"
{
"data": [
{
"entity": "basecmlO",
"measurable": "LoadOne"
},
{
"entity": "node0O1",
"measurable": "LoadOne"
}
]
}

The Latest Monitoring Data Via /v1/monitoring/latest
The latest resource can be used to retrieve the last known sampled data points.
It is possible to get the latest monitoring data for all (entity, measurable) pairs.
This may result in a lot of information: about 125 bytes per (entity, measurable) pair.

[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/latest?indent=1"
{
"data": [
{
"age": 47.868,
"entity": "default",
"measurable": "CoresTotal",
"raw": 1.0,
"time": 1540476088861,
"value": "1"

}’

"age': 47.868,

"entity": "default",
"measurable": "CoresUp",
"raw": 1.0,

"time": 1540476088861,
"value": "1"

}’

"age'": 47.868,

"entity": "default",
"measurable'": "NodesClosed",
"raw": 0.0,

"time": 1540476088861,
"value": "QO"

}’

"age": 47.868,
"entity": "default",
"measurable": "NodesDown",

"raw": 0.0,

4.2 Browsing The API

"time": 1540476088861,
Ilvaluell : lloll
} s
. . . typically thousands more lines. . .

The latest data can be requested for a selection of entities and measurables.

Example

[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring/latest?entity=node001&indent=1"
{
"data": [
{
"age'": 138.625,
"entity": '"nodeOO1",
"measurable": "IpForwDatagrams",
"raw": 0.0,
"time": 1540476100389,
"value": "0/s"

}’

"age": 138.625,

"entity": "node001",
"measurable": "IpFragCreates",
"raw": 0.0,

"time": 1540476100389,
"value": "0/s"

}’

"age'": 138.625,

"entity": '"nodeOO1",
"measurable": "IpFragFails",
"raw": 0.0,

"time": 1540476100389,
"value": "0/s"

}’

. . . typically hundreds more lines. . .

[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/latest?entity=node001..node004&indent=1"
. . .as for previous output but for the range of nodes001..node004. ..

[alice@basecm10 ~1$ <curlauth>/rest/vl1/monitoring/latest?measurable=LoadOne&indent=1"
{
"data": [
{
"age'": 114.099,
"entity": "basecmlQ",
"measurable'": "LoadOne",
"raw": 0.03,
"time": 1540476351361,
"value": "0.03"
1,
{
"age": 155.07,
"entity": '"node001",

38 CMDaemon REST API

"measurable": "LoadOne",
"raw": 0.0,
"time": 1540476310390,
"value": "0Q"
}
]
}
[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/latest?entity=node00l&measurable=LoadOne&indent=1"
{
"data": [
{
"age": 106.706,
"entity": '"node001",
"measurable": "LoadOne",
"raw": 0.0,
"time": 1540476790390,
"value": "0"
}
]
}

Historic Data Dump Via /v1/monitoring/dump
Dumping historic data can be done using the entry point:

[alice@basecml1O ~1$ <curlauth>/rest/v1/monitoring/dump?<options>"

The dump resource has several options:

* entity: name or range of entities

® measurable: name of the measurable

® start: time to be plotted (default: -1h)

* end: end to be plotted (default: now)

* intervals: number of interpolation intervals (default: 0, raw data)
¢ epoch: display timestamps as unix epoch (default: 0)

The time specification format is the same one used for the dumpmonitoringdata command (sec-
tion 12.6.4 of the Administrator Manual).

To prevent gigabytes of data being retrieved when no options are specified, entity and measurable
must be specified.

If there is a need to dump all the monitoring data, then it can be done by specifying empty strings for
both entity and measurable. For example, the following command dumps all raw data for the default
last hour:

[alice@basecml1O ~1$ <curlauth>/rest/v1i/monitoring/dump?entity=&measurable=?indent=1"
{
"data": [
{
"entity": "default",
"measurable": "CoresTotal",

4.2 Browsing The API

39

"raw": 1.0,

"time": "2018/10/25 13:15:28",

Ilvaluell B n 1 n

}’

{
"entity": "default",
"measurable": "CoresTotal",

"raw": 1.0,

"time": "2018/10/25 16:35:28",

"value": "1"

}’

"entity": "default",
"measurable": "CoresUp",
"raw": 1.0,

"time": "2018/10/25 13:49:28",

llvaluell . II1II

} >
. . . typically thousands more lines. . .

4.2.3 Session Using /v1/session

The response to the sessions endpoint is similar to the output from listing in session mode of cmsh

(cmsh -c "session list")

The endpoint lists the sessions that the cluster manager is involved with.

Example

[alice@basecm10 ~1$ <curlauth>/rest/vi/session?indent=1"

L

{
"address": "127.0.0.1",
"group": "admin",
"node": "basecmlQ",
"type": "node",
"username": ""

},

{
"address": "10.141.255.254",
"group": "admin",
"type": "node",
"username": ""

},

{
"address": "10.141.0.1",
"group": "node",
"node": '"nodeOO01",
"type": "node",
"username": ""

},

{

"address": "10.141.0.2",
"group": "node",

"node": "node002",
lltypell . llnodell .

"username": ""

40 CMDaemon REST API

4.2.4 Version Using /v1/version
The version endpoint returns version parameters.

[alice@basecml10 ~1$ <curlauth>/rest/vl/version?indent=1"

{
"build_hash": "daf30669f1",
"build_index": 152175,
"cm_version": "9.2",
"cmd_version": "2.2",
"database_version": 36280
}

4.2.5 License Using /vl/license
The license endpoint returns license parameters.

Example

[alice@basecm10 ~1$ <curlauth>/rest/vl/license?indent=1"
{
"acceleratorNodeCount": O,
"accountingAndReporting": true,
"baseType": "Licenselnfo",
"burstNodeCount": O,
"childType": "",
"edgeSites": true,
"edition": "Advanced",
"endTime": 2177449140,
"licenseType": "Commercial",
"licensedAcceleratorNodes": 80,
"licensedBurstNodes": 1000,
"licensedNodes": 100,
"licensee": "/C=US/ST=None/L=None/0=None/0U=None/CN=basecml10",
"macAddress": "FA:16:3E:3B:94:98",
"message": "",
"modified": false,
"nodeCount": 3,
"oldLocalUniqueKey": O,
"refPartitionUniqueKey": 21474836481,
"revision": "",
"serial": 1017214,
"startTime": 1508108400,
"toBeRemoved": false,
"uniqueKey": 281474976710653,
"version": "7.0 and above"

4.2.6 Sysinfo Using /v1/sysinfo
The sysinfo endpoint is similar to the sysinfo command in the device mode of cmsh. It returns infor-
mation about some basic system hardware parameters.

Example

[alice@basecm1O ~1$ <curlauth>/rest/v1/sysinfo?indent=1"
{
"node001": {
"baseType": "SysInfoCollector",

4.2 Browsing The API

41

"biosDate": "04/01/2014",
"biosVendor": "SeaBIODS",
"biosVersion": "1.13.0-1ubuntul.1",
"bootIf": "ens3",
"childType": "",
"clusterRandomNumber": 6332472641088672013,
"diskCount": 2,
"diskTotalSpace": 10745806848,
"disks": [
{
"baseType": "DiskInfo",
"childType": "",
"ioScheduler": "[mg-deadline] kyber bfq none",
"model": "virtio",
"modified": false,
"name": "vda",
"oldLocalUniqueKey": O,
"revy": "",
"revision'": "",
"size": 8388608,
"toBeRemoved": false,
"uniqueKey": 281474976710948,
"vendor": ""

"baseType": "DiskInfo",

"childType": "",

"ioScheduler": "[mg-deadline] kyber bfq none",

"model": "virtio",

"modified": false,

"mame": "vdb",

"oldLocalUniqueKey": O,

"revy": "",
"revision": "",
"size": 10737418240,
"toBeRemoved": false,
"uniqueKey": 281474976710949,
"vendor": ""

}

1,

"extra": null,

"fabric": false,

"fips": false,

"fpgas" : [,
"gpus" : [,
"ibGUIDs": [],

"interconnects": [],
"memory": [

{
"IDs": [
llo/oll
]’
"baseType": "MemoryInfo",
"childType": "",

"description": "DIMM RAM",

42

CMDaemon REST API

"locations": [
"DIMM O"

1,

"modified": false,

"oldLocalUniqueKey": O,

"revision": "",
"size": 1073741824,
"speed": O,

"toBeRemoved": false,
"uniqueKey": 281474976710950
}
1,
"memorySwap": O,
"memoryTotal": 1016152064,
"modified": false,
"motherboardManufacturer": "",
"motherboardName'": "",
"nics": [
"ens3"
1,
"oldLocalUniqueKey": O,
"osFlavor": "Rocky8ub",
"osName": "Linux",
"osVersion": "4.18.0-348.e18.0.2.x86_64",
"parentUniqueKey": 85899345921,
"processors": [
{
"IDs": [
0
1,
"baseType": "Processor",
"bogomips": 4190.15,
"cacheSize": 16777216,
"childType": "",
"corelDs": [
0
1,
"cores": 1,
"model": "Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz",
"modified": false,
"oldLocalUniqueKey": O,
"physicalIDs": [
0
1,
"revision": "",
"speed": 2095078000.0,
"toBeRemoved": false,
"uniqueKey": 281474976710947,
"vendor": "GenuinelIntel"
}
1,
"raidControllers": [],
"refDeviceUniqueKey": 38654705666,
"revision": "",

"seLinux": false,

4.2 Browsing The API

"systemManufacturer": "OpenStack Foundation",
"systemName": "OpenStack Nova",
"timestamp": 1651158566,
"toBeRemoved": false,
"uniqueKey": 85899345921,
"updateCount": 5,
"vendorTag": "5bf2ab543-542d-4391-946c-abb648a09158",
"virtualCluster": true
1,
"node002": {
"baseType": "SysInfoCollector",
"biosDate": "04/01/2014",

4.2.7 Device Information Using /v1/device
Example

[alice@basecm10 ~1$ <curlauth>/rest/v1i/device?indent=1"
L

{
"cluster": "basecmlQ",
"hostname": "basecml1Q",
"ip": "10.141.255.254",
"mac": "FA:16:3E:EF:71:05",
"network": "internalnet",
"roles": [
"backup",
"storage",
"firewall",
"headnode",
"monitoring",
"provisioning",
"boot"
1,
"type": "HeadNode"
},
{
"category": "default",
"cluster": "basecmlQ",
"hostname": "node001",
"ip": "10.141.0.1",
"mac": "FA:16:3E:2B:A4:31",
"network": "internalnet",
"type": "PhysicalNode"
},
{
"category": "default",
"cluster": "basecmlQ",
"hostname": "node002",

"ip": "10.141.0.2",

"mac": "FA:16:3E:D4:C8:5A",
"network": "internalnet",
"type": "PhysicalNode"

44

CMDaemon REST API

4.2.8 WLM Information Using /v1/workload
The workkoad path has the following endpoints:

® jobs
® drain

These return information related to the endpoints.
The workload jobs path returns running jobs:

Example

[alice@basecml1O ~1$ <curlauth>/rest/vi/workload/jobs?indent=1"

[
{
"account": "projecty",
"group": "alice",
"job_id": "2301",
"job_name": "iozone",
"nodes": [
"node001"
1,
"queue": '"defq",
"run_time": "4m 39s",
"start_time": "2023/06/08 14:24:53",
"state": "RUNNING",
"submit_time": "2023/06/08 14:24:53",
"user": "alice"
1,
{
"account": "projectx",
"group": "charlie",
"job_id": "2306",
"job_name": "sleep",
"nodes": [
"node001"
1,
"queue": "defq",
"run_time": "3m 34s",
"start_time": "2023/06/08 14:25:58",
"state": "RUNNING",
"submit_time": "2023/06/08 14:25:57",
"user": "charlie"
1,
{
"account": "projecty",
"group": "alice",
"job_id": "2307",
"job_name": "iozone",
The workload drain path returns node drain status information:
Example

[alice@basecm10 ~1$ <curlauth>/rest/v1/workload/drain?indent=1"

[

4.2 Browsing The API 45

"hostname": "node001",

"queue": "defq",

llreasonll . nn R
"status": "UNDRAINED"
} bl
{
"hostname": "node002",

"queue": "defq",

Ilreasonll . nn R

"status": "UNDRAINED"
} 3

4.2.9 Event Generation Using /v1/event
An event (section 12.10 of the Administrator Manual) can be generated in CMDaemon from a JSON format
input used with the event endpoint.

An input can be as in the following rest. in file:

Example

[alice@basecmlO ~1$ cat /tmp/rest.in

{
"message": "hello world",
"details": "send via rest",
"severity": "notice"

}

The usual curl authentication string used so far, <curlauth> (section 4.1) is slightly modified from its
value of:

curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k "https://master:8081
to
curl --cert ~/.cm/cert.pem --key ~/.cm/cert.key -k --data "@/tmp/rest.in" "https://master:8081

This modified version allows POST data to be entered. The modified version can be called <curlau-
thpost>, and can be used as follows, returning true:

Example

[alice@basecm10 ~1$ <curlauthpost>/rest/vi/event"
true

The event is logged in the event logger, by default at /var/spool/cmd/events.log, as:
Example

Tues Jun 4 11:09:21 2024 [notice] basecm10: hello world
send via rest

With the default settings of cmsh, a window running cmsh shows:
Example

[root@basecmlO0 ~1# cmsh

[basecm10]7%

Tue Jun 4 11:09:21 2024 [notice] basecm10: hello world
For details type: events details 1

/var/spool/cmd/events.log

46 CMDaemon REST API

and, if as suggested, events details 1 is typed, the value of details from the input is seen:

[basecm10]/ events details 1
send via rest

BCM JSON API

This chapter documents the JSON API services and entities available for NVIDIA Base Command Man-
ager.

The BCM head node landing page (section 2.4.1 of the Administrator Manual) links via the CM API
Docs tile (the second tile in figure 5.1) to the API reference documentation for all available services and
entities:

NVIDIA

Welcome to

Base Command Manager software automates the process of building and managing modern high-performance
Linux clusters, eliminating complexity and enabling flexibility.

B ADMINMANUAL | B USER MANUAL

Base View NVIDIA. NVIDIA.

Base View CM API Docs User Portal Ceph Dashboard

The web application for cluster Cluster Manager APl documentation. View the state of the cluster. This Object. block, and file system storage
management in Base Command interface presents data about the in a single unified storage duster.
Manager. system.

Figure 5.1: Head node hostname or IP address landing page at https://<host name or IP address>

It can also be accessed via the user portal of the cluster by clicking on the JSON API documentation
link in the documentation section of the home page (Section 12.8.4 of the Administrator Manual).
By default, the direct API URL takes the form:

https://<head node address name or IP address>:8081/api
At that URL:
¢ the Search page can be used to list services, entities, events, and RPCs

* the Inheritance page can be used to display the entities hierarchy

Within the search page (figure 5.2),

48 BCM JSON API

“E nVIDIA Bright API Docs Search Inheritance About Toggle theme

Figure 5.2: Search page for API documentation

¢ if the Type option is set to Service, then the drop-down list for Search presents the list of services

e if the Type option is set to Entity, then the drop-down list for Search presents the list of entities
ype Op y P p

If a service is selected from the drop-down list for Search, then its RPCs are displayed. Each RPC shows
the tokens required for its use. Each RPC in turn can be expanded to display its request format (call and
arguments) and response format (figure 5.3):

(‘E NVIDIA. Bright APl Docs search Inheritance About Toggle theme

CMAuUth

CMAuth

SERVICE

RPC name
available
getProfiles GET_PROFILE_TOKEN

getProfile GET_PROFILE_TOKEN

ELEE Response

Name Datatype Default Name Datatype

profileld string profile

Figure 5.3: Example of an API documentation search page display result for the expanded view of the
getProfile RPC of the CMAuth service

5.2 API Entities 49

5.1.1 API Services List
The list of services are:

CMAuth
CMBeeGFS
CMCeph
CMCert
CMCloud
CMDevice
CMEtcd
CMGui
CMJob
CMKube
CMMain
CMMon
CMNet
CMPart
CMProc
CMProv
CMServ
CMSession
CMStatus
CMTest
CMUser

5.2 API Entities
If an entity is selected from the drop-down list for Search, then its properties are displayed. (figure 5.4):

50

BCM JSON API

<ANVIDIA. Bright APl Docs Search Inheritance

SlurmJobQueue

SlurmJobQueue

ENTITY

Parent chain
Entity
Children

Field name

baseType
childType

allocNodes

defaultQueue

minNo:
maxNo:
defaultTime

maxTime

SlurmJobQueue

Datatype

" JobQueue”

“SlurmJobQueue "

Comma separated list of nodes from which users can
submit jobs in the partition

bool
string
string

string

string

Toggle theme

Entity

Can be instantiated

Yes

Default

"UNLIMITED"
"UNLIMITED"

"UNLIMITED"

Figure 5.4: Example of an API documentation search page display result for the SlurmJobQueue entity

Each entity parameter typically has hovertext that describes it. For example, in figure 5.4 the terse
allocNodes parameter of the SlurmJobQueue entity has a helpful associated hovertext description of
Comma-separated list of nodes from which users can submit jobs into the system.

The list of API entities can be viewed in the search page display (figure 5.2).
By default the Inheritance page for API entities is located at

https://<head node address name or IP address>:8081/api/inheritance

The list of API entities can also conveniently be viewed there in a hierarchy:

Entity

| -- ANFVolume

|-- AccessSettings

| -- Arch0SInfo

| '-- ArchOS

| -- AzureDisk

| |-- AzureDataDisk
| '-- AzureOSDisk

complete.sh
#!/bin/bash

5.3 JSON Examples 51

URL=https://localhost:8081/json/
user=root

pass=secretrootpassword

echo " login "

curl -c curl.cookiest.txt -i -k -X POST -4 \

'{"service":"login", "username":"root", "password":"'$pass'"}' $URL; echo
echo "========= master =========="

curl --cookie curl.cookiest.txt -i -k -X POST -d \
'{"service":"cmdevice","call":"getNode", "arg":"master"}' $URL; echo

echo "========== Jogout =========="
curl --cookie curl.cookiest.txt -i -k -X POST -d \
'{"service":"logout"}' $URL; echo

echo "========== denied ==========
curl --cookie curl.cookiest.txt -i -k -X POST -d \
'{"service":"cmdevice","call":"getNode", "arg":"master"}' $URL; echo
rm -f curl.cookiest.txt

echo cert
curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -4 \
'{"service":"cmdevice","call":"getNode","arg": "master"}' $URL; echo

curl.sh
#!/bin/bash

URL=https://localhost:8081/json/

if [-z "$1"]; then

read -p "pass: " -s pass
else

pass=$1
fi

curl -c curl.cookiest.txt -i -k -X POST -d \
'{"service":"login", "username":"root", "password":"'$pass'"}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -d \
'{"service":"cmsession","call":"getLastEvents","args":[0,256]}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -4 \
'{"service":"cmmain","call":"getProfile"}' $URL

curl --cookie curl.cookiest.txt -i -k -X POST -4 \
'{"service":"cmmain","call":"getSubjectName"}' $URL

devices.sh
#!/bin/bash
URL=https://localhost:8081/json/

52 BCM JSON API

if ["$1" == "gzip" 1; then
wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \
--header="'Accept-Encoding: gzip' \
--no-check-certificate --server-response -qO0- $URL \
--post-data='{"service":"cmdevice","call":"getDevices"}'

else
wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key --no-check-certificate \
--server-response -qO0- $URL --post-data='{"service":"cmdevice","call":"getDevices"}'

fi

Tip: run as ./devices.sh | python -mjson.tool.

loadone.sh
#!/bin/bash

URL=https://localhost:8081/json/
not perfect but gets the job done
function jsonval {
temp=$ (echo $json | sed 's/\\\\\//\//g' | sed 's/[{}1//g"' |
awk -v k="text" '{n=split($0,a,","); for (i=1; i<=n; i++) print alil}' |
sed 's/\"\:\"/\|/g"' | sed 's/[\,1/ /g' | sed 's/\"//g' | grep -w $prop)

r=$(echo ${temp##*|} | tr 'I' ' ' | tr ' ' '\n' | cut -d: -f2 | sort -n)
echo $(echo $r | cut -d' ' -f 1)

prop='uuid'

node=master

json=$(2>/dev/null wget --certificate=$HOME/.cm/admin.pem \
--private-key=$HOME/.cm/admin.key \
--no-check-certificate \
--server-response \
-q0- $URL \
--post-data='{"service":"cmdevice","call":"getDevice","arg":"'$node'"}")

nkey=$(jsonval)

if [-z "$nkey"]; then
echo "$json"
exit 1

fi

echo "$node.uuid = $nkey"

json=$(2>/dev/null wget --certificate=$HOME/.cm/admin.pem \
--private-key=$HOME/.cm/admin.key \
--no-check-certificate \
--server-response \
-q0- $URL \
--post-data='{"service":"cmmon","call":"getMonitoringMeasurable","name":"LoadOne"}"')

mkey=$ (jsonval)

echo "loadone.uuid = $mkey"

now=$ (date +¥%s)

day=$ ((now-86400))

echo "now is $now"

echo "day is $day"

5.3 JSON Examples 53

cat <<EQF > /tmp/plot.json

{ "service" : "cmmon",
llcallll B Ilplotll’
"request" : { "entities" : ["$nkey"],

"measurables" : ["$mkey"],
"intervals" : 25,
"rangeStart" : $((day*1000)),
"rangeEnd" : $((now*1000))

}

}

EOF

2>/dev/null wget --certificate=$HOME/.cm/admin.pem \
--private-key=$HOME/.cm/admin.key \
--no-check-certificate \
-q0- $URL \
--post-file=/tmp/plot. json | \
python -mjson.tool

login.sh

#!/bin/bash

URL=https://localhost:8081/json/

user=$USER

pass=secretpassword

wget --keep-session-cookies --save-cookies cookie.txt --no-check-certificate \
mmon

--server-response -q0- $URL --post-data='{"service":"login","username":"'$user'","password":"'$pass'"}'
echo

logout.sh

#!/bin/bash

URL=https://localhost:8081/json/

wget --load-cookies cookie.txt --no-check-certificate --server-response -qO0- $URL \
--post-data='{"service":"logout"}'

rm cookie.txt

echo

node001.sh
#!/bin/bash
URL=https://localhost:8081/json/

if [-z "$1"]; then
node=node001

else
node=$1

fi

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \
--no-check-certificate --server-response -qO0- $URL \

--post-data='{"service":"cmdevice","call":"getDevice","arg":"'$node'"}' | python -mjson.tool

54 BCM JSON API

basic_information.sh

#!/bin/bash

URL=https://localhost:8081/json/

wget --certificate=$HOME/.cm/admin.pem --private-key=$HOME/.cm/admin.key \
--no-check-certificate --server-response -q0- $URL \
--post-data='{"service":"cmpart","call":"getBasicEntityInformation"}'

push_to_CMDaemon.sh
In the following example, the health check ManagedServices0K, is pushed to CMDaemon with a FAIL
value.

[root@basecm1Q ~]# cat push_to_CMDaemon.sh

#!/bin/bash
URL='https://master:8081/monitoring/push/ManagedServicesOk?info=brol&class=Push/Single&healthcheck=yes'
value='FAIL'

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d "$value" $URL; echo

Its behavior can be verified by checking the latest value for ManagedServicesOK before and after the
push_to_CMDaemon. sh script is run:

[root@basecmlO ~]# curl --cert ~/.cm/admin.pem --key ~/.cm/admin.key -k
"https://master:8081/rest/vl/monitoring/latest?measurable=ManagedServicesOK&entity=basecm10&indent=1"
{
"data": [
{
"age'": 89.735,
"entity": "basecmlQ",
"measurable": "ManagedServices(Ok",
"raw": 0.0,
"time": 1586450030968,
"value": "PASS"

[root@basecm1O ~]#./push_to_CMDaemon.sh
HTTP/1.1 200 OK

Content-Length: 55

Content-Type: application/json

{

"values": {
"added": 1,
"provided": 1

}

}

[root@basecmlO ~]# curl --cert ~/.cm/admin.pem --key ~/.cm/admin.key -k
"https://master:8081/rest/vl/monitoring/latest?measurable=ManagedServicesO0K&entity=basecm10&indent=1"
{

"data": [

{

5.3 JSON Examples 55

"age": 3.357,

"entity": "basecmlO",

"info": "brol",

"measurable": "ManagedServices(Ok",

"raw": 2.0,
"time": 1586450124437,
"value": "FAIL"

A metric version of the push, using the measurable push-test-02 might look like:

#!/bin/bash
URL='https://localhost:8081/monitoring/push/push-test-02?7info=brol&class=Push/Single&unit=s'
value=$(date +Js)

curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d "$value" $URL; echo

A collection can be pushed as follows: To initialize (once):

#!/bin/bash
URL='https://localhost:8081/monitoring/initialize’
curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -4 \
'L
{"metric":"push-collection-01","class":"Push/Collection"},
{"metric":"push-collection-02","class":"Push/Collection"}
1" $URL; echo

After initializing, sampling can be done with:

#!/bin/bash
URL='https://localhost:8081/monitoring/push’
curl --cert $HOME/.cm/admin.pem --key $HOME/.cm/admin.key -i -k -X POST -d \
'L
{"metric":"push-collection-01","value":31},
{"metric":"push-collection-02","value":32,"info":"Some message"}
1" $URL; echo

	Table of Contents
	0.1 About This Manual
	0.2 About The Manuals In General
	0.3 Getting Administrator-Level Support
	0.4 Getting Developer-Level Support
	0.5 Getting Professional Services
	1 NVIDIA Base Command Manager Python API
	1.1 Getting Started
	1.2 Connecting To A Cluster
	1.3 Inspecting Settings
	1.4 Modifying Settings
	1.5 Inspecting The Entire Cluster
	1.6 Performing Operations On Entities
	1.7 Monitoring
	1.8 Examples

	2 Monitoring Data Producers
	2.1 Measurables
	2.2 Measurables Classes
	2.3 Metric Monitoring Data Producers
	2.4 Health Check Monitoring Data Producers
	2.5 Collection Monitoring Data Producers
	2.6 Perpetual Monitoring Data Producers
	2.7 Prometheus Monitoring Data Producers
	2.8 Node Execution Filters
	2.9 Execution Multiplexers
	2.10 Monitoring Resources
	2.11 Collection Monitoring Data Producers With Filter And Multiplexer
	2.12 Collection Monitoring Data Producers For Standalone Entities
	2.13 Debugging Standalone Scripts

	3 Monitoring Actions
	3.1 Actions And Triggers
	3.2 Time Restrictions
	3.2.1 Time Restriction Syntax In BNF Notation

	3.3 CMDaemon Environment Variables
	3.3.1 Standard Environment Variables Available In Action Scripts
	3.3.2 Extended Environment Variables Available To Action Scripts
	3.3.3 Environment Variables Useful For Debugging

	4 CMDaemon REST API
	4.1 Authentication, And Definition Of <curlauth>
	4.2 Browsing The API
	4.2.1 Returning A Status, Or Generating A Status Message, Using /v1/status
	4.2.2 Monitoring Using /v1/monitoring
	4.2.3 Session Using /v1/session
	4.2.4 Version Using /v1/version
	4.2.5 License Using /v1/license
	4.2.6 Sysinfo Using /v1/sysinfo
	4.2.7 Device Information Using /v1/device
	4.2.8 WLM Information Using /v1/workload
	4.2.9 Event Generation Using /v1/event

	5 BCM JSON API
	5.1 API Services
	5.1.1 API Services List

	5.2 API Entities
	5.2.1 API Entities List

	5.3 JSON Examples

