
NVIDIA Base Command Manager 11

User Manual
Revision: d5b5535f1

Date: Wed Oct 29 2025

Table of Contents

Table of Contents . 3
0.1 About This Manual . 7
0.2 Getting User-Level Support . 7

1 Introduction 9
1.1 What Is A Beowulf Cluster? . 9

1.1.1 Background And History . 9
1.1.2 Brief Hardware And Software Description . 9

1.2 Brief Network Description . 10

2 Cluster Usage 13
2.1 Login To The Cluster Environment . 13
2.2 Setting Up The User Environment . 14
2.3 Environment Modules . 14

2.3.1 Available Commands . 14
2.3.2 Managing Environment Modules As A User . 16
2.3.3 Changing The Default Environment Modules . 17

2.4 Compiling Applications . 18
2.4.1 Open MPI And Mixing Compilers . 19

3 Using MPI 21
3.1 Introduction . 21
3.2 MPI Libraries . 21
3.3 MPI Packages And Module Paths . 21

3.3.1 MPI Packages That Can Be Installed, And Their Corresponding Module Paths . . 22
3.3.2 Finding The Installed MPI Packages And Their Available Module Paths 23

3.4 The Appropriate Interconnect, Compiler, And MPI Implementation For A Module 24
3.4.1 Interconnects . 24
3.4.2 Selecting A Compiler And MPI implementation . 24

3.5 Compiling And Carrying Out An MPI Run . 24
3.5.1 Example MPI Run . 25
3.5.2 Hybridization . 30
3.5.3 Support Thread Levels . 32
3.5.4 Further Recommendations . 32

4 Workload Management 33
4.1 What Is A Workload Manager? . 33
4.2 Why Use A Workload Manager? . 33
4.3 How Does A Workload Manager Function? . 33
4.4 Job Submission Process . 34
4.5 What Do Job Scripts Look Like? . 34
4.6 Running Jobs On A Workload Manager . 34

4 Table of Contents

5 Slurm 35
5.1 Loading Slurm Modules And Compiling The Executable 35
5.2 Running The Executable With salloc . 36

5.2.1 Node Allocation Examples . 36
5.3 Running The Executable As A Slurm Job Script . 38

5.3.1 Slurm Job Script Structure . 38
5.3.2 Slurm Job Script Options . 39
5.3.3 Slurm Environment Variables . 39
5.3.4 Submitting The Slurm Job Script With sbatch . 40
5.3.5 Checking And Changing Queued Job Status With squeue, scancel, scontrol And

sview . 40

6 PBS Professional And OpenPBS 43
6.1 Components Of A Job Script . 43

6.1.1 Sample Script Structure . 43
6.1.2 Directives . 44
6.1.3 The Executable Line . 47
6.1.4 Example Batch Submission Scripts . 47
6.1.5 Links To PBS Resources . 49

6.2 Submitting A Job . 49
6.2.1 Preliminaries: Loading The Modules Environment 49
6.2.2 Using qsub . 49
6.2.3 Job Output . 50
6.2.4 Monitoring The Status Of A Job . 50
6.2.5 Deleting A Job . 52
6.2.6 Nodes According To PBS . 52

7 Using GPUs 55
7.1 Packages . 55
7.2 Using CUDA . 55
7.3 Using OpenCL . 56
7.4 Compiling Code . 56
7.5 Available Tools . 57

7.5.1 CUDA gdb . 57
7.5.2 The nvidia-smi Utility . 57
7.5.3 CUDA Utility Library . 58
7.5.4 CUDA “Hello world” Example . 58
7.5.5 OpenACC . 60

8 Using Kubernetes 63
8.1 Introduction To Kubernetes Running Via NVIDIA Base Command Manager 63
8.2 Kubernetes User Privileges . 63
8.3 Kubernetes Quickstarts . 64

8.3.1 Quickstart: Accessing The Kubernetes Dashboard 64
8.3.2 Quickstart: Using kubectl From A Local Machine 66
8.3.3 Quickstart: Submitting Batch Jobs With kubectl . 67
8.3.4 Quickstart: Helm, The Kubernetes Package Manager 68

Table of Contents 5

9 Spark On Kubernetes 71
9.1 Important Requirements . 71
9.2 Running Spark Jobs Via The Kubernetes Spark Operator 71

9.2.1 Example Spark Operator Run: Calculating Pi . 71
9.3 Running Spark Jobs Directly Via spark-submit . 73
9.4 Accessing The Spark User Interface . 73
9.5 Mounting Volumes Into Containers . 74

10 User Portal 79
10.1 Overview Page . 79
10.2 Workload Page . 80
10.3 Nodes Page . 81
10.4 Kubernetes Page . 82
10.5 Monitoring Mode . 83
10.6 Accounting And Reporting Mode . 83

11 Using Jupyter 85
11.1 Introduction . 85
11.2 Jupyter Notebook Examples . 87
11.3 Jupyter Kernels . 88

11.3.1 Jupyter Kernel Provisioning Kernels . 90
11.3.2 Tunables For Kernel Provisioners . 91

11.4 Jupyter Kernel Creator Extension . 93
11.4.1 BCM Predefined Kernel Templates . 94
11.4.2 Using Conda Kernels With Jupyter . 99
11.4.3 Using Enroot And Pyxis With Jupyter . 102

11.5 Changing The User Base Directory In Python Kernels . 104
11.6 Adding Environmental Variables For JupyterLab, Processing And Accessing API keys In

Notebooks . 105
11.7 Jupyter VNC Extension . 105

11.7.1 What Is Jupyter VNC Extension About? . 105
11.7.2 Enabling User Lingering . 105
11.7.3 Starting A VNC Session With The Jupyter VNC Extension 106
11.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC

Extension . 108
11.8 Jupyter WLM Magic Extension . 109

A MPI Examples 113
A.1 “Hello world” . 113
A.2 MPI Skeleton . 114
A.3 MPI Initialization And Finalization . 116
A.4 What Is The Current Process? How Many Processes Are There? 116
A.5 Sending Messages . 116
A.6 Receiving Messages . 116
A.7 Blocking, Non-Blocking, And Persistent Messages . 117

A.7.1 Blocking Messages . 117
A.7.2 Non-Blocking Messages . 117

6 Table of Contents

A.7.3 Persistent, Non-Blocking Messages . 118

B Compiler Flag Equivalence 119

Preface

Welcome to the User Manual for NVIDIA Base Command Manager 11.

0.1 About This Manual
This manual is intended for the end users of a cluster running NVIDIA Base Command Manager (BCM,
also known as “the cluster manager”). This manual tends to see things from a user perspective, and
covers the basics of using BCM’s user environment to run compute jobs on the cluster. Although it does
cover some aspects of general Linux usage, it is by no means comprehensive in this area. Readers are
expected to have some familiarity with the basics of a Linux environment from the regular user point of
view.

Regularly updated production versions of the NVIDIA Base Command Manager 11 manuals are
available on updated clusters by default at /cm/shared/docs/cm. The latest updates are always online
at https://docs.nvidia.com/base-command-manager.

The manuals constantly evolve to keep up with the development of the BCM environment and the
addition of new hardware and/or applications. The manuals also regularly incorporate feedback from
administrators and users, who can submit comments, suggestions or corrections via the website

https://enterprise-support.nvidia.com/s/create-case

Section 14.2 of the Administrator Manual has more details on submitting an issue.

0.2 Getting User-Level Support
A user is first expected to refer to this manual or other supplementary site documentation when deal-
ing with an issue. If that is not enough to resolve the issue, then support for an end-user is typically
provided by the cluster administrator, who is often a unix or Linux system administrator with some
cluster experience. Commonly, the administrator has configured and tested the cluster beforehand, and
therefore has a good idea of its behavior and quirks. The initial step when calling in outside help is thus
often to call in the cluster administrator.

https://docs.nvidia.com/base-command-manager
https://enterprise-support.nvidia.com/s/create-case

1
Introduction

This manual is intended for cluster users who need a quick introduction to the NVIDIA Base Command
Manager, which manages a Beowulf cluster configuration. It explains how to use the MPI and batch
environments, how to submit jobs to the queuing system, and how to check job progress. The specific
combination of hardware and software installed may differ depending on the specification of the cluster,
which means that parts of this manual may not be relevant to the user’s particular cluster.

1.1 What Is A Beowulf Cluster?
1.1.1 Background And History
In the history of the English language, Beowulf is the earliest surviving epic poem written in English. It
is a story about a hero with the strength of many men who defeated a fearsome monster called Grendel.

In computing, a Beowulf class cluster computer is a multiprocessor architecture used for parallel
computations, i.e., it uses many processors together so that it has the brute force to defeat certain “fear-
some” number-crunching problems.

The architecture was first popularized in the Linux community when the source code used for the
original Beowulf cluster built at NASA was made widely available. The Beowulf class cluster computer
design usually consists of one head node and one or more regular nodes connected together via Ethernet
or some other type of network. While the original Beowulf software and hardware has long been super-
seded, the name given to this basic design remains “Beowulf class cluster computer”, or less formally
“Beowulf cluster”.

1.1.2 Brief Hardware And Software Description
On the hardware side, commodity hardware is generally used in Beowulf clusters to keep costs
down. These components are usually x86-compatible processors produced at the Intel and AMD chip
foundries, standard Ethernet adapters, InfiniBand interconnects, and switches. From around 2019 the
ARMv8 processor architecture is also gaining attention.

On the software side, free and open-source software is generally used in Beowulf clusters to keep
costs down. For example: the Linux operating system, the GNU C compiler collection and open-source
implementations of the Message Passing Interface (MPI) standard.

The head node controls the whole cluster and serves files and information to the nodes. It is also the
cluster’s console and gateway to the outside world. Large Beowulf clusters might have more than one
head node, and possibly other nodes dedicated to particular tasks, for example consoles or monitoring
stations. In most cases compute nodes in a Beowulf system are dumb—in general, the dumber the
better—with the focus on the processing capability of the node within the cluster, rather than other
abilities a computer might generally have. A node may therefore have

• one or more processing elements. The processors may be standard CPUs, as well as GPUs, FPGAs,
MICs, and so on.

10 Introduction

• enough local memory—memory contained in a single node—to deal with the processes passed on
to the node

• a connection to the rest of the cluster

Nodes are configured and controlled by the head node, and do only what they are told to do. One
of the main differences between Beowulf and a Cluster of Workstations (COW) is the fact that Beowulf
behaves more like a single machine rather than many workstations. In most cases, the nodes do not
have keyboards or monitors, and are accessed only via remote login or possibly serial terminal. Beowulf
nodes can be thought of as a CPU + memory package which can be plugged into the cluster, just like
a CPU or memory module can be plugged into a motherboard to form a larger and more powerful
machine. A significant difference is that the nodes of a cluster have a relatively slower interconnect.

1.2 Brief Network Description
A Beowulf Cluster consists of a login, compile and job submission node, called the head, and one or
more compute nodes, often referred to as worker nodes. A second (fail-over) head node may be present
in order to take control of the cluster in case the main head node fails. Furthermore, a second fast
network may also have been installed for high-performance low-latency communication between the
(head and the) nodes (see figure 1.1).

Figure 1.1: Cluster layout

The login node is used to compile software, to submit a parallel or batch program to a job queuing
system and to gather/analyze results. Therefore, it should rarely be necessary for a user to log on to
one of the nodes and in some cases node logins are disabled altogether. The head, login and compute
nodes usually communicate with each other through a gigabit Ethernet network, capable of transmitting
information at a maximum rate of 1000 Mbps. In some clusters 10 gigabit Ethernet (10GE, 10GBE, or
10GigE) is used, capable of up to 10 Gbps rates, while higher rates than that are also available.

Sometimes an additional network is used by the cluster for even faster communication between the
compute nodes. This particular network is mainly used for programs dedicated to solving large scale
computational problems, which may require multiple machines and could involve the exchange of vast
amounts of information. One such network topology is InfiniBand, commonly capable of transmitting
information at a maximum effective data rate of about 124Gbps and about 1.2µs end-to-end latency on
small packets, for clusters in 2013. The commonly available maximum transmission rates will increase
over the years as the technology advances.

1.2 Brief Network Description 11

Applications relying on message passing benefit greatly from lower latency. The fast network is
usually complementary to a slower Ethernet-based network.

2
Cluster Usage

2.1 Login To The Cluster Environment
The login node is the node where the user logs in and works from. Simple clusters have a single login
node, but large clusters sometimes have multiple login nodes to improve the availability of the cluster.
In most clusters, the login node is also the head node from where the cluster is monitored and installed.
On the login node:

• applications can be developed

• code can be compiled and debugged

• applications can be submitted to the cluster for execution

• running applications can be monitored

To carry out an ssh login to the cluster, a terminal session can be started from Unix-like operating
systems:

Example

$ ssh myname@cluster.hostname

On a Windows operating system, an SSH client such as PuTTY (http://www.putty.org) can be down-
loaded. Another standard possibility is to run a Unix-like environment such as Cygwin (http://www.
cygwin.com) within the Windows operating system, and then run the SSH client from within it.

A Mac OS X user can use the Terminal application from the Finder, or under
Application/Utilities/Terminal.app. An X11 windowing environment must be installed for
it to work. XQuartz is the recommended X11 windowing environment, and is indeed the only
Apple-backed X11 version available from OS X 10.8 onward.

When using the SSH connection, the cluster’s address must be added. When the connection is made,
a username and password must be entered at the prompt.

If the administrator has changed the default SSH port from 22 to something else, the port can be
specified with the -p <port> option:

$ ssh -X -p <port> <user>@<cluster>

The -X option can be dropped if no X11-forwarding is required. X11-forwarding allows a GUI appli-
cation from the cluster to be displayed locally.

Optionally, after logging in, the password used can be changed using the passwd command:

$ passwd

http://www.putty.org
http://www.cygwin.com
http://www.cygwin.com

14 Cluster Usage

2.2 Setting Up The User Environment
By default, each user uses the bash shell interpreter. In that case, each time a user login takes place, a file
named .bashrc is executed to set up the shell environment for the user. The shell and its environment
can be customized to suit user preferences. For example,

• the prompt can be changed to indicate the current username, host, and directory, for example: by
setting the prompt string variable:

PS1='[\u@\h \W]\$ '

• the size of the command history file can be increased, for example: export HISTSIZE=100

• aliases can be added for frequently used command sequences, for example: alias lart='ls

-alrt'

• environment variables can be created or modified, for example: export MYVAR=MYSTRING

• the location of software packages and versions that are to be used by a user (the path to a package)
can be set.

Because there is a huge choice of software packages and versions, it can be hard to set up the right
environment variables and paths for software that is to be used. Collisions between different versions
of the same package and non-matching dependencies on other packages must also be avoided. To make
setting up the environment easier, BCM provides preconfigured environment modules (section 2.3).

2.3 Environment Modules
For a user to compile and run computational jobs on a cluster, a special shell environment is typically
set up for the software that is used.

However, setting up the right environment for a particular software package and version can be
tricky, and it can be hard to keep track of how it was set up.

For example, users want to have a clean way to bring up the right environment for compiling code
according to the various MPI implementations, but can easily get confused about which libraries have
been used, and can end up with multiple libraries with similar names installed in a disorganized man-
ner.

A user might also like to conveniently test new versions of a software package before permanently
installing the package.

Within a Linux distribution running without special utilities, setting up environments can be com-
plex. However, BCM makes use of the environment modules package, which provides the module

command. The module command is a special utility to make taking care of the shell environment much
easier.

2.3.1 Available Commands
Practical use of the modules commands is given in sections 2.3.2 and 2.3.3.

For reference, the help text for the module command can be viewed as follows:

Example

[me@cluster ~]$ module --help

Modules Release 4.5.3 (2020-08-31)

Usage: module [options] [command] [args ...]

Loading / Unloading commands:

add | load modulefile [...] Load modulefile(s)

rm | unload modulefile [...] Remove modulefile(s)

2.3 Environment Modules 15

purge Unload all loaded modulefiles

reload | refresh Unload then load all loaded modulefiles

switch | swap [mod1] mod2 Unload mod1 and load mod2

Listing / Searching commands:

list [-t|-l|-j] List loaded modules

avail [-d|-L] [-t|-l|-j] [-S|-C] [--indepth|--no-indepth] [mod ...]

List all or matching available modules

aliases List all module aliases

whatis [-j] [modulefile ...] Print whatis information of modulefile(s)

apropos | keyword | search [-j] str

Search all name and whatis containing str

is-loaded [modulefile ...] Test if any of the modulefile(s) are loaded

is-avail modulefile [...] Is any of the modulefile(s) available

info-loaded modulefile Get full name of matching loaded module(s)

Collection of modules handling commands:

save [collection|file] Save current module list to collection

restore [collection|file] Restore module list from collection or file

saverm [collection] Remove saved collection

saveshow [collection|file] Display information about collection

savelist [-t|-l|-j] List all saved collections

is-saved [collection ...] Test if any of the collection(s) exists

Shell's initialization files handling commands:

initlist List all modules loaded from init file

initadd modulefile [...] Add modulefile to shell init file

initrm modulefile [...] Remove modulefile from shell init file

initprepend modulefile [...] Add to beginning of list in init file

initswitch mod1 mod2 Switch mod1 with mod2 from init file

initclear Clear all modulefiles from init file

Environment direct handling commands:

prepend-path [-d c] var val [...] Prepend value to environment variable

append-path [-d c] var val [...] Append value to environment variable

remove-path [-d c] var val [...] Remove value from environment variable

Other commands:

help [modulefile ...] Print this or modulefile(s) help info

display | show modulefile [...] Display information about modulefile(s)

test [modulefile ...] Test modulefile(s)

use [-a|-p] dir [...] Add dir(s) to MODULEPATH variable

unuse dir [...] Remove dir(s) from MODULEPATH variable

is-used [dir ...] Is any of the dir(s) enabled in MODULEPATH

path modulefile Print modulefile path

paths modulefile Print path of matching available modules

clear [-f] Reset Modules-specific runtime information

source scriptfile [...] Execute scriptfile(s)

config [--dump-state|name [val]] Display or set Modules configuration

Switches:

-t | --terse Display output in terse format

-l | --long Display output in long format

-j | --json Display output in JSON format

-d | --default Only show default versions available

16 Cluster Usage

-L | --latest Only show latest versions available

-S | --starts-with

Search modules whose name begins with query string

-C | --contains Search modules whose name contains query string

-i | --icase Case insensitive match

-a | --append Append directory to MODULEPATH

-p | --prepend Prepend directory to MODULEPATH

--auto Enable automated module handling mode

--no-auto Disable automated module handling mode

-f | --force By-pass dependency consistency or confirmation dialog

Options:

-h | --help This usage info

-V | --version Module version

-D | --debug Enable debug messages

-v | --verbose Enable verbose messages

-s | --silent Turn off error, warning and informational messages

--paginate Pipe mesg output into a pager if stream attached to terminal

--no-pager Do not pipe message output into a pager

--color[=WHEN] Colorize the output; WHEN can be 'always' (default if

omitted), 'auto' or 'never'

2.3.2 Managing Environment Modules As A User
There is a good chance the cluster administrator has set up the user’s account, fred for example, so
that some modules are loaded already by default. In that case, the modules loaded into the user’s
environment can be seen with the module list command:

Example

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) shared 2) cmsh 3) cmd 4) cluster-tools/HEAD 5) cm-setup/HEAD 6) gcc/14.2.0

If there are no modules loaded by default, then the module list command just returns nothing.
How does a user know what modules are available? The “module avail” command lists all modules

that are available for loading (some output elided):

Example

fred@basecm11:~$ module avail

---------------------------- /cm/local/modulefiles -----------------------------

boost/1.81.0 dot module-git python312

cluster-tools/11.0 freeipmi/1.6.14 module-info rocm-smi/4.3.0

cm-bios-tools gcc/14.2.0 modules sedutil/1.16.0

cm-image/HEAD gdb/16.2 mpc/1.3.1 shared

cm-nvfwupd/2.0.5 gmp/6.3.0 mpfr/4.2.1 slurm/slurm/24.11

cm-scale/cm-scale.module ipmitool/1.8.19 null use.own

cm-setup/HEAD lua/5.4.7 openldap

cmd luajit prs

cmsh mariadb-libs python3

---------------------------- /cm/shared/modulefiles ----------------------------

cm-pmix3/3.1.7 hpl/2.3 mvapich2/gcc/64/2.3.7 ucx/1.18.0

cm-pmix4/4.1.3 hwloc/1.11.13 openblas/dynamic/0.3.28

default-environment hwloc2/2.8.0 openmpi/gcc/64/4.1.5

hdf5_18/1.8.21 iperf/3.17.1 openmpi4/gcc/4.1.5

2.3 Environment Modules 17

In the list there are two kinds of modules:

• local modules, which are specific to the node, or head node only

• shared modules, which are made available from a shared storage, and which only become avail-
able for loading after the shared module is loaded.

Modules can be loaded using the add or load options. A list of modules can be added by spacing
them:

Example

[fred@basecm11 ~]$ module add shared gcc openmpi/gcc

Tab completion works for suggesting modules for the add/load commands. If the tab completion
suggestion is unique, even though it is not the full path, then it is still enough to specify the module. For
example, looking at the possibile available modules listed by the avail command previously, it turns
out that specifying gcc is enough to specify gcc/14.2.0 because there is no other directory path under
gcc/ besides 14.2.0 anyway.

To remove one or more modules, the module unload or module rm command is used.
To remove all modules from the user’s environment, the module purge command is used.
The user should be aware that some loaded modules can conflict with others loaded at the same

time. This can happen with MPI modules. For example, loading openmpi/gcc without removing an
already loaded intel/mpi/64 can result in conflicts about which compiler should be used.

The shared Module
The shared module provides access to shared libraries. By default these are under /cm/shared.

The shared module is special because often other modules, as seen under /cm/shared/modulefiles,
depend on it. So, if it is to be loaded, then it is usually loaded first, so that the dependent modules can
use it.

The shared module is obviously a useful local module, and is therefore often configured to be loaded
for the user by default. Setting the default environment modules is discussed in section 2.3.3.

2.3.3 Changing The Default Environment Modules
.

If a user has to manually load up the same modules every time upon login it would be inefficient.
That is why an initial default state for modules can be set up by the user, by using the module init*

subcommands:
The more useful ones of these are:

• module initadd: add a module to the initial state

• module initrm: remove a module from the initial state

• module initlist: list all modules loaded initially

• module initclear: clear all modules from the list of modules loaded initially

Example

[fred@basecm11 ~]$ module initclear

[fred@basecm11 ~]$ module initlist

bash initialization file $HOME/.bashrc loads modules:

[fred@basecm11 ~]$ module initadd shared gcc openmpi/gcc

[fred@basecm11 ~]$ module initlist

bash initialization file $HOME/.bashrc loads modules:

shared gcc openmpi/gcc

/cm/shared/modulefiles

18 Cluster Usage

In the preceding example, the modules defined for the new initial environment for the user are
loaded from the next login onward.

Example

[fred@basecm11 ~]$ module list

No Modulefiles Currently Loaded.

[fred@basecm11 ~]$ exit

logout

Connection to basecm11 closed

[root@basejumper ~]# ssh fred@basecm11

fred@basecm11's password:

...

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) shared 2) gcc/9.2.0 3) openmpi/gcc/64/1.10.7

[fred@basecm11 ~]$

If the user is unsure about what the module does, it can be checked using “module whatis”:

$ module whatis openmpi/gcc

----------------------------------- /cm/shared/modulefiles ------------------------------------

openmpi/gcc/64/1.10.7: adds OpenMPI to your environment variables

The man pages for module and modulefile give further details on usage.

2.4 Compiling Applications
Compiling an application is usually done on the head node or login node. Typically, there are several
compilers available on the head node in BCM. These compilers provide different levels of optimization,
standards conformance, and support for accelerators.

For example: The GNU compiler collection, Intel compilers, and the NVIDIA HPC SDK compilers.
The following table summarizes the available compiler commands on a cluster with these compilers:

Language GNU NVIDIA HPC Intel

C gcc nvc and nvcc icc

C++ g++ nvc++ and nvcc icc

Fortran77 gfortran nvfortran ifort

Fortran90 gfortran nvfortran ifort

Fortran95 gfortran nvfortran ifort

GNU compilers are the de facto standard on Linux and are installed by default. They are provided
under the terms of the GNU General Public License. Commercial compilers by Portland and Intel are
available as packages via the BCM YUM repository, and require the purchase of a license to use them. To
make a compiler available to be used in a user’s shell commands, the appropriate environment module
(section 2.3) must be loaded first. On most clusters two versions of GCC are available:

1. The version of GCC that comes along with the Linux distribution. For example, for CentOS 7.x:

Example

[fred@basecm11 ~]$ which gcc; gcc --version | head -1

/usr/bin/gcc

gcc (GCC) 4.8.5 20150623 (Red Hat 4.8.5-39)

2.4 Compiling Applications 19

2. The latest version suitable for general use that is packaged as a module by BCM:

Example

[fred@basecm11 ~]$ module load gcc

[fred@basecm11 ~]$ which gcc; gcc --version | head -1

/cm/local/apps/gcc/9.2.0/bin/gcc

gcc (GCC) 9.2.0

To use the latest version of GCC, the gcc module in a default BCM cluster must be loaded. To
revert to the version of GCC that comes natively with the Linux distribution, the gcc module must be
unloaded.

The compilers—GCC, Intel, Portland—in the preceding table are ordinarily used for applications
that run on a single node. However, the applications used may fork, thread, and run across as many
nodes and processors as they can access if the application is designed that way.

The standard, structured way of running applications in parallel is to use the MPI-based libraries
(Chapter 3). These are the MPICH, MVAPIC, Open MPI, and Intel MPI libraries. The libraries link to
the underlying compilers of the preceding table.

If the parallel library environment has been loaded, then the following MPI compiler commands au-
tomatically use the underlying compilers:

Language C C++ Fortran77 Fortran90

Command mpicc mpicxx mpif77 mpif90

2.4.1 Open MPI And Mixing Compilers
BCM comes with multiple Open MPI packages corresponding to the different available compilers. How-
ever, sometimes mixing compilers is desirable. For example, C-compilation may be preferred using icc

from Intel, while Fortran90-compilation may be preferred using gfortran from the GNU Project. In
such cases it is possible to override the default compiler path environment variable, for example:

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) shared 2) gcc/9.2.0 3) openmpi/gcc/64/1.10.7

[fred@basecm11 ~]$ mpicc --version --showme; mpif90 --version --showme

gcc --version

gfortran --version

[fred@basecm11 ~]$ export OMPI_CC=icc; export OMPI_FC=openf90

[fred@basecm11 ~]$ mpicc --version --showme; mpif90 --version --showme

icc --version

openf90 --version

Variables that may be set are OMPI_CC, OMPI_CXX, OMPI_FC, and OMPI_F77. More on overriding
the Open MPI wrapper settings is documented in the man pages of mpicc in the environment section.

3
Using MPI

3.1 Introduction
The Message Passing Interface (MPI) is a standardized and portable message passing system designed
by a group of researchers from academia and industry to function on a wide variety of parallel comput-
ers. The standard defines the syntax and semantics of a core of library routines useful to a wide range
of users writing portable message-passing programs in Fortran or the C programming language. MPI
libraries allow the compilation of code so that it can be used over a variety of multi-processor systems
from SMP nodes to NUMA (non-Uniform Memory Access) systems and interconnected cluster nodes .

Depending on the cluster hardware, the interconnect available may be Ethernet, Infini-
Band/OmniPath.

Typically, the cluster administrator has already custom-configured the cluster in a way to suit the
workflow of users. However, users that are interested in understanding and using the MPI options
available, should find this chapter helpful.

3.2 MPI Libraries
MPI libraries that are commonly integrated by the cluster administrator with NVIDIA Base Command
Manager are

• MPICH (https://www.mpich.org/)

• MVAPICH (http://mvapich.cse.ohio-state.edu/)

• OpenMPI (https://www.open-mpi.org/)

The preceding MPI libaries can be used with compilers from GCC, or Intel.
The following MPI library implementations may also be integrated with BCM:

• Intel MPI Library (https://software.intel.com/en-us/mpi-library), which works with the
Intel compiler suite.

• Open MPI version 4 library with CUDA-awareness. NVIDIA GPUs using CUDA can make use of
this library.

3.3 MPI Packages And Module Paths
By default, the only MPI implementations installed are the ones that work using GCC.

The cluster administrator can make available for the user a variety of different MPI implementations
for different compilers, by installing the appropriate packages. The actual combination of compiler and
MPI implementation that a user needs for job runs can then be loaded by the user with the help of
modules (section 2.3.2).

https://www.mpich.org/
http://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
https://software.intel.com/en-us/mpi-library

22 Using MPI

3.3.1 MPI Packages That Can Be Installed, And Their Corresponding Module Paths
The following packages are made available from the BCM repositories at the time of writing (October
2022):

Argonne National Laboratory Ethernet implementation for MPI-1, MPI-2, MPI-3

package name module path

mpich-ge-gcc-64 mpich/ge/gcc

mpich-ge-intel-64 mpich/ge/intel

MVAPICH2 InfiniBand implementation for MPI-3

package name module path

mvapich2-gcc-64 mvapich2/gcc

mvapich2-intel-64 mvapich2/intel

MVAPICH2 InfiniBand implementation with performance scaled messaging for MPI-3

package name module path

mvapich2-psmgcc-64 mvapich2/psmgcc

mvapich2-psmintel-64 mvapich2/psmintel

Open MPI version 1 implementation for Ethernet with MPI-3

package name module path

openmpi-ge-gcc-64 openmpi/gcc

openmpi-ge-intel-64 openmpi/intel

Open MPI version 1 implementation for Ethernet and InfiniBand with MPI-3

package name module path

openmpi-geib-gcc-64 openmpi/gcc

openmpi-geib-intel-64 openmpi/intel

Open MPI version 3 implementation for Ethernet and InfiniBand with MPI-3

package name module path

openmpi3-geib-gcc-64 openmpi3/gcc

openmpi3-ge-gcc-64 (only Ethernet, only GCC) openmpi3/gcc

openmpi3-ge-intel-64 (only Ethernet, only Intel compiler) openmpi3/intel

Open MPI version 4 implementation for InfiniBand with MPI-3

package name module path

openmpi4-gcc (GCC) openmpi4/gcc

openmpi4-intel (Intel compiler) openmpi4/intel

3.3 MPI Packages And Module Paths 23

Open MPI version 4 implementation for OFED with MPI-3

package name module path

cm-openmpi4-cuda11.2-ofed47-gcc9 openmpi4-cuda11.2-ofed47-gcc9

cm-openmpi4-cuda11.2-ofed50-gcc9 openmpi4-cuda11.2-ofed50-gcc9

cm-openmpi4-cuda11.2-ofed51-gcc9 openmpi4-cuda11.2-ofed51-gcc9

cm-openmpi4-cuda11.7-ofed47-gcc9 openmpi4-cuda11.7-ofed47-gcc9

cm-openmpi4-cuda11.7-ofed50-gcc9 openmpi4-cuda11.7-ofed50-gcc9

cm-openmpi4-cuda11.7-ofed51-gcc9 openmpi4-cuda11.7-ofed51-gcc9

Intel MPI library implementation for the Intel compiler

package name module path

intel-mpi-2019 intel/mpi/64

intel-mpi-2020 intel/mpi/64

3.3.2 Finding The Installed MPI Packages And Their Available Module Paths
Finding The Installed MPI Packages
The packages installed on the cluster can be found with the rpm -qa query on a RHEL system.

Example

[fred@basecm11 ~]$ # search for packages starting with (open)mpi, mvapich, intel-mpi, cm-openmpi)

[fred@basecm11 ~]$ rpm -qa | egrep '(^mpi|^openmpi|^mvapich|^intel-mpi|cm-openmpi)'

openmpi-geib-gcc-64-1.10.7-656_cm9.2.x86_64

mpich-ge-gcc-64-3.4.2-197_cm9.2.x86_64

mvapich2-gcc-64-2.3.7-213_cm9.2.x86_64

openmpi4-gcc-4.1.2-100042_cm9.2_d17293b429.x86_64

intel-mpi-2020-2019.9-100008_cm9.2_aca4120975.x86_64

cm-openmpi4-cuda11.7-ofed47-gcc9-4.1.4-100012_cm9.2_a9f8de3740.x86_64

openmpi4-intel-4.1.2-100042_cm9.2_d17293b429.x86_64

The interconnect and compiler implementation of a package can be worked out from looking at the
name of the package.
Here, for example,

openmpi-geib-gcc-64-1.10.7-656_cm9.2.x86_64

implies: Open MPI version 1.10.7, compiled for both Gigabit Ethernet (ge) and InfiniBand (ib), with
GCC (gcc, the GNU project cross-compiler) for a 64-bit architecture, packaged as a (BCM) cluster man-
ager (cm) package, for version HEAD for the x86_64 architecture.

Finding The Available MPI Modules
The corresponding module paths can be found by a search through the available modules:

Example

[fred@basecm11 ~]$ # search for modules starting with (open)mpi or mvapich

[fred@basecm11 ~]$ module -l avail | egrep '(^openmpi|^mpi|^mvapich|^intel/mpi)'

intel/mpi/64/ default

intel/mpi/64/2020/4.304 2021/10/23 22:18:12

mpich/ge/gcc/64/3.4.2 2021/11/26 22:33:47

mvapich2/gcc/64/2.3.7 2022/07/14 13:02:23

24 Using MPI

openmpi/gcc/64/1.10.7 2022/10/13 22:45:54

openmpi/gcc/64/4.1.2 2022/09/09 22:52:03

openmpi/intel/64/4.1.2 2022/09/09 23:35:29

openmpi4-cuda11.7-ofed47-gcc9/4.1.4 2022/10/10 22:37:29

openmpi4/gcc/4.1.2 2022/09/09 22:52:03

openmpi4/intel/4.1.2 2022/09/09 23:35:29

Tab-completion when searching for modules is another approach.
As in the case for the MPI library, for a module the interconnect and compiler implementation can

likewise be worked out from looking at the name of the module. So, if a user would like to use an
Open MPI implementation that works with an AMD64 node, using GCC, then loading the module
openmpi/gcc/64 should be suitable.

3.4 The Appropriate Interconnect, Compiler, And MPI Implementation For A
Module

3.4.1 Interconnects
Jobs can use particular networks for inter-node communication. The hardware for these networks can
be Ethernet or InfiniBand, while the software can be a particular MPI implementation.

Gigabit Ethernet
Gigabit Ethernet is an interconnect that is commonly available in consumer computing. For HPC the
next generation 10 Gigabit Ethernet and beyond have also been in use for some time. For Ethernet, no
additional modules or libraries are needed. The Open MPI, MPICH and MVAPICH implementations all
work with any Ethernet technology.

InfiniBand
InfiniBand is a high-performance switched fabric that has come to dominate the connectivity in HPC
applications. An InfiniBand interconnect has a lower latency and somewhat higher throughput than a
comparably-priced Ethernet interconnect. This is because of special hardware, as well as special soft-
ware that shortcuts the networking stack in the operating system layer. This typically provides signif-
icantly greater performance for most HPC applications. Open MPI and MVAPICH are suitable MPI
implementations for InfiniBand.

3.4.2 Selecting A Compiler And MPI implementation
Once the appropriate compiler module has been loaded, the associated MPI implementation is selected
by loading the corresponding library module. In the following simplified list, <compiler> indicates a
choice of gcc, or intel:

• mpich/ge/<compiler>

• mvapich2/<compiler>

• openmpi/<compiler>

• openmpi3/<compiler>

• openmpi4/<compiler>

Section 3.3.1 should be refered to for a more complete list.

3.5 Compiling And Carrying Out An MPI Run
After the appropriate MPI module has been added to the user environment, the user can start compiling
applications.

3.5 Compiling And Carrying Out An MPI Run 25

For a cluster using Ethernet interconnectivity, the mpich and openmpi implementations may be used.
For a cluster using InfiniBand, the mvapich, mvapich2 and openmpi implementations may be used. Open
MPI’s openmpi implementations first attempt to use InfiniBand, but revert to Ethernet if InfiniBand is
not available.

In this section the loading of modules, compilation, and runs are illustrated.

3.5.1 Example MPI Run
This example covers an MPI run, which can be run inside and outside of a queuing system.

Depending on the libraries and compilers installed on the system by the cluster administrator, the
availability of the packages providing these modules may differ. To see a full list of modules on the
system the command module avail can be typed.

Examples Of Loading MPI Modules
To use mpirun, the relevant environment modules must be loaded. For example, to use the mpich over
Gigabit Ethernet (ge) GCC implementation:

$ module add mpich/ge/gcc

or to use the openmpi4 Open MPI version 4 MPI-3 Intel implementation:

$ module add openmpi4/intel

Similarly, to use the mvapich2 InfiniBand GCC implementation:

$ module add mvapich2/gcc

Keeping Loading Of Modules Clean
The preceding modules can actually be loaded concurrently, and it works as expected. Paths supplied
by the most recently-loaded module override the paths of any previous modules.

For example, if mpich/ge/gcc is loaded first, then openmpi4/intel, and then mvapich2/gcc, as sug-
gested in the preceding excerpts, then the modules might be listed as:

$ module list

Currently Loaded Modulefiles:

Currently Loaded Modulefiles:

1) shared 3) cmd 5) cm-setup/9.2 7) openmpi4/intel/4.1.2

2) cmsh 4) cluster-tools/9.2 6) mpich/ge/gcc/64/3.4.2 8) mvapich2/gcc/64/2.3.7

The path of the MPI compiler mpicc is defined by the last module in the modulefiles stack, which is
the MVAPICH GCC implementation, as can be seen with:

$ which mpicc

/cm/shared/apps/mvapich2/gcc/64/2.3.7/bin/mpicc

After removing it, then the path changes to the path supplied by the previous module in the stack,
the Open MPI Intel implementation:

$ module remove mvapich2/gcc/64/2.3.7

$ which mpicc

/cm/shared/apps/openmpi4/intel/4.1.2/bin/mpicc

After removing that module too, the path again changes to the path supplied by the previous module
in the stack, the MPICH GCC implementation:

$ module remove openmpi4/intel/4.1.2

$ which mpicc

/cm/shared/apps/mpich/ge/gcc/64/3.4.2/bin/mpicc

However, because loading modules on top of each other can cause confusion, a user should generally
try adding modules in a simple, clean manner.

26 Using MPI

Examples Compiling And Preparing The MPI Application
The code must be compiled with MPI libraries and an underlying compiler. The correct library com-
mand can be found in the following table:

Language C C++ Fortran77 Fortran90

Command mpicc mpixx mpif77 mpif90

An MPI application myapp.c, built in C, could then be compiled as:

$ mpicc myapp.c

The mpicc compilation requires the underlying compiler (GCC, Intel) already be available. By de-
fault, Linux systems have a version of the GCC compiler already in their paths, even if no modules have
been loaded. So if the module for an MPI implementation based on GCC is loaded without explicitly
loading the GCC compiler, then the mpicc compilation still works in this case.

The a.out binary that is created can then be executed using the mpirun command (section 3.5.1).

Creating A Machine File
A machine file contains a list of nodes which can be used by MPI programs.

The workload management system creates a machine file based on the nodes allocated for a job when
the job is submitted with the workload manager job submission tool. So if the user chooses to have the
workload management system allocate nodes for the job, then creating a machine file is not needed.

However, if an MPI application is being run “by hand” outside the workload manager, then the user
is responsible for creating a machine file manually. Depending on the MPI implementation, the layout
of this file may differ.

Machine files can generally be created in two ways:

• Listing the same node several times to indicate that more than one process should be started on
each node:

node001

node001

node002

node002

• Listing nodes once, but with a suffix for the number of CPU cores to use on each node:

node001:2

node002:2

Running The Application
Creating A Simple Parallel Processing Executable
A simple “hello world” program designed for parallel processing can be built with MPI. After compiling
it, it can be used to send a message about how and where it is running:

[fred@basecm11 ~]$ cat hello.c

#include <stdio.h>

#include <mpi.h>

int main (int argc, char *argv[])

{

int id, np, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

int processor_name_len;

3.5 Compiling And Carrying Out An MPI Run 27

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &np);

MPI_Comm_rank(MPI_COMM_WORLD, &id);

MPI_Get_processor_name(processor_name, &processor_name_len);

for(i=1;i<2;i++)

{printf(

"Hello world from process %03d out of %03d, processor name %s\n",
id, np, processor_name

);}

MPI_Finalize();

return 0;

}

[fred@basecm11 ~]$ module add openmpi/gcc #or as appropriate depnding on installed package

[fred@basecm11 ~]$ mpicc hello.c -o hello

The preceding compilation works for MPI based on gcc because a version of gcc is already available
by default with the distribution. Its version can be found with, for example:

[fred@basecm11 ~]$ gcc --version | head -1

gcc (GCC) 8.5.0 20210514 (Red Hat 8.5.0-10)

If the user has a need for another version of the gcc compiler, then that can be loaded before the
compilation.

[fred@basecm11 ~]$ module load gcc/11.2.0

[fred@basecm11 ~]$ mpicc hello.c -o hello

If the user would like to use the Intel compiler with MPI instead, then the steps would instead be
something like:

[fred@basecm11 ~]$ module load intel/compiler/64/2020/19.1.3 intel/mpi/64/2020/4.304

[fred@basecm11 ~]$ mpicc hello.c -o helloforintel

If in doubt about how things are compiled, then the libraries that the binary was compiled with can
be checked using ldd. For example, the GCC-related libraries used could be checked with:

[fred@basecm11 ~]$ ldd hello |grep gcc |awk '{print $1,$2,$3}'

libmpi.so.12 => /cm/shared/apps/openmpi/gcc/64/1.10.7/lib64/libmpi.so.12

libopen-rte.so.12 => /cm/shared/apps/openmpi/gcc/64/1.10.7/lib64/libopen-rte.so.12

libopen-pal.so.13 => /cm/shared/apps/openmpi/gcc/64/1.10.7/lib64/libopen-pal.so.13

The compiled binary can be run:

[fred@basecm11 ~]$./hello

Hello world from process 000 out of 001, processor name basecm11

However, it still runs on a single processor, and on the node it is started on, unless it is submitted to
the system in a special way.

Running An MPI Executable In Parallel Without A Workload Manager
Compute node environment provided by user’s .bashrc: After the relevant module files are chosen
(section 3.5.1) for MPI, an executable compiled with MPI libraries runs on nodes in parallel when sub-
mitted with mpirun. The executable running on other nodes loads environment modules on those other
nodes by sourcing the .bashrc file of the user (section 2.3.3) and flags passed by the mpirun command. It
is a good idea to ensure that the environment module stack used on the compute node is not confusing.

28 Using MPI

The environment of the user from the interactive shell prompt is not normally carried over auto-
matically to the compute nodes during an mpirun submission. That is, compiling and running the
executable normally only works on the local node without a special treatment. To have the executable
run on the compute nodes, the right environment modules for the job must be made available on the
compute nodes too, as part of the user login process to the compute nodes for that job. Usually the
system administrator takes care of such matters in the default user configuration by setting up a default
user environment (section 2.3.3), with reasonable initrm and initadd options. Users are then typically
allowed to set up their personal default overrides to the default administrator settings, by placing their
own initrm and initadd options to the module command according to their needs, or by specifying an
overriding environment in the job submissions.

Running mpirun outside a workload manager: When using mpirun manually, outside a workload
manager environment, the number of processes (-np) as well as the number of hosts (-machinefile)
should be specified. For example, on a cluster with 2 compute-nodes and a machine file as specified on
page 26:

Example

[fred@basecm11 ~]$ module add mvapich2/gcc gcc/11.2.0 #or as appropriate

[fred@basecm11 ~]$ mpicc hello.c -o hello

[fred@basecm11 ~]$ mpirun -np 4 -machinefile mpirun.hosts ~/hello

Hello world from process 0 of 4 on node001.cm.cluster

Hello world from process 1 of 4 on node002.cm.cluster

Hello world from process 2 of 4 on node001.cm.cluster

Hello world from process 3 of 4 on node002.cm.cluster

If the cluster has no InfiniBand connectors, then the preceding mpirun fails, because MVAPICH re-
quires InfiniBand. That kind of failure displays an output such as:

rdma_open_hca(575)...............: No IB device found

Open MPI implementations are more forgiving. They check for InfiniBand and if that is unavailable
they go ahead with Ethernet. However they have their own quirks. For example, an attempt to carry
out an MPI run with Open MPI might be as follows:

Example

[fred@basecm11 ~]$ module initclear; module initadd openmpi/gcc

[fred@basecm11 ~]$ module add openmpi/gcc #or as appropriate

[fred@basecm11 ~]$ mpicc hello.c -o hello

[fred@basecm11 ~]$ mpirun -np 4 -machinefile mpirun.hosts hello

bash: orted: command not found

--

ORTE was unable to reliably start one or more daemons.

This usually is caused by:

...

output snipped

It is generally a good idea to read through the man page for mpirun for the MPI implementation that
the user is using. In this case, the man page for mpirun for Open MPI reveals that here the problem is
that the environment in the interactive shell is not carried over to the compute nodes during an mpirun

submission. So the path for mpirun should be specified with with either the --prefix option, or as an
absolute path:

Example

3.5 Compiling And Carrying Out An MPI Run 29

[fred@basecm11 ~]$ /cm/shared/apps/openmpi/gcc/64/1.10.7/bin/mpirun -np 4 -machinefile mpirun.hosts hello

Hello world from process 002 out of 004, processor name node002.cm.cluster

Hello world from process 003 out of 004, processor name node001.cm.cluster

Hello world from process 000 out of 004, processor name node002.cm.cluster

Hello world from process 001 out of 004, processor name node001.cm.cluster

The output of the preceding hello.c program is actually printed in random order. This can be mod-
ified as follows, so that only process 0 prints to the standard output, and other processes communicate
their output to process 0:

#include "mpi.h"

#include "string.h"

#include <stdio.h>

int main(int argc, char *argv[])

{

int numprocs, myrank, namelen, i;

char processor_name[MPI_MAX_PROCESSOR_NAME];

char greeting[MPI_MAX_PROCESSOR_NAME + 80];

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

MPI_Get_processor_name(processor_name, &namelen);

sprintf(greeting, "Hello world, from process %d of %d on %s",

myrank, numprocs, processor_name);

if (myrank == 0) {

printf("%s\n", greeting);

for (i = 1; i < numprocs; i++) {

MPI_Recv(greeting, sizeof(greeting), MPI_CHAR,

i, 1, MPI_COMM_WORLD, &status);

printf("%s\n", greeting);

}

}

else {

MPI_Send(greeting, strlen(greeting) + 1, MPI_CHAR,

0, 1, MPI_COMM_WORLD);

}

MPI_Finalize();

return 0;

}

Example

[fred@basecm11 ~]$ module clear

[fred@basecm11 ~]$ module add intel/compiler/64 intel/mpi

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) intel/compiler/64/2020/19.1.3 2) intel/mpi/64/2020/4.304

[fred@basecm11 ~]$ mpicc hello.c -o hello

[fred@basecm11 ~]$ mpirun -np 4 -machinefile mpirun.hosts ./hello

Hello world, from process 0 of 4 on node002

30 Using MPI

Hello world, from process 1 of 4 on node002

Hello world, from process 2 of 4 on node002

Hello world, from process 3 of 4 on node003

Running the executable with mpirun outside the workload manager as shown does not take the
resources of the cluster into account. To handle running jobs with cluster resources is of course what
workload managers such as Slurm are designed to do. Workload managers also typically take care of
what environment modules should be loaded on the compute nodes for a job, via additions that the user
makes to a job script.

Running an application through a workload manager via a job script is introduced in Chapter 4.
Appendix A contains a number of simple MPI programs.

3.5.2 Hybridization
OpenMP is an implementation of multi-threading. This is a method of parallelizing whereby a par-
ent thread—a series of instructions executed consecutively—forks a specified number of child threads,
and a task is divided among them. The threads then run concurrently, with the runtime environment
allocating threads to different processors and accessing the shared memory of an SMP system.

MPI can be mixed with OpenMP to achieve high performance on a cluster/supercomputer of multi-
core nodes or servers. MPI creates processes that reside on the level of node, while OpenMP forks
threads on the level of a core within an SMP node. Each process executes a portion of the overall
computation, while inside each process, a team of threads is created through OpenMP directives to
further divide the problem. This kind of execution makes sense due to:

• the ease of programming that OpenMP provides

• OpenMP not necessarily requiring copies of data structure, which allows for designs that overlap
computation and communication

• overcoming the limits of parallelism within the SMP node is of course still possible by using the
power of other nodes via MPI.

Example

#include<mpi.h>

#include <omp.h>

#include <stdio.h>

#include<stdlib.h>

int main(int argc , char** argv) {

int size, myrank,namelength;

char processor_name[MPI_MAX_PROCESSOR_NAME];

MPI_Init(&argc,&argv);

MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

MPI_Comm_size(MPI_COMM_WORLD,&size);

MPI_Get_processor_name(processor_name,&namelength);

printf("Hello I am Processor %d on %s of %d\n",myrank,processor_name,\

size);

int tid = 0; int n_of_threads = 1;

#pragma omp parallel default(shared) private(tid, n_of_threads)

{

#if defined (_OPENMP)

n_of_threads= omp_get_num_threads();

tid = omp_get_thread_num();

#endif

printf("Hybrid Hello World: I am thread # %d out of %d\n", tid, n_o\

3.5 Compiling And Carrying Out An MPI Run 31

f_threads);

}

MPI_Finalize();

return 0;

}

The program can be compiled as follows:

fred@basecm11 ~]$ mpicc -o hybridhello omphello.c -fopenmp

To specify the number of OpenMP threads per MPI task the environment variable OMP_NUM_THREADS

must be set.

Example

fred@basecm11 ~]$ export OMP_NUM_THREADS=3

The number of threads specified by the variable can then be run over the hosts specified by the
mpirun.hosts file:

fred@basecm11 ~]$ mpirun -np 2 -hostfile mpirun.hosts ./hybridhello

Hello I am Processor 0 on node001 of 2

Hello I am Processor 1 on node002 of 2

Hybrid Hello World: I am thread # 0 out of 3

Hybrid Hello World: I am thread # 2 out of 3

Hybrid Hello World: I am thread # 1 out of 3

Hybrid Hello World: I am thread # 0 out of 3

Hybrid Hello World: I am thread # 2 out of 3

Hybrid Hello World: I am thread # 1 out of 3

Benefits And Drawbacks Of Using OpenMP
The main benefit to using OpenMP is that it can decrease memory requirements, with usually no reduc-
tion in performance. Other benefits include:

• Potential additional parallelization opportunities besides those exploited by MPI.

• Less domain decomposition, which can help with load balancing as well as allowing for larger
messages and fewer tasks participating in MPI collective operations.

• OpenMP is a standard, so any modifications introduced into an application are portable and ap-
pear as comments on systems not using OpenMP.

• By adding annotations to existing code and using a compiler option, it is possible to add OpenMP
to a code somewhat incrementally, almost on a loop-by-loop basis. The vector loops in a code that
vectorize well are good candidates for OpenMP.

There are also some potential drawbacks:

• OpenMP can be hard to program and/or debug in some cases.

• Effective usage can be complicated on NUMA systems due to locality considerations

• If an application is network- or memory- bandwidth-bound, then threading it is not going to help.
In this case it will be OK to leave some cores idle.

• In some cases a serial portion may be essential, which can inhibit performance.

• In most MPI codes, synchronization is implicit and happens when messages are sent and received.
However, with OpenMP, much synchronization must be added to the code explicitly. The pro-
grammer must also explicitly determine which variables can be shared among threads and which
ones cannot (parallel scoping). OpenMP codes that have errors introduced by incomplete or mis-
placed synchronization or improper scoping can be difficult to debug because the error can intro-
duce race conditions which cause the error to happen only intermittently.

32 Using MPI

3.5.3 Support Thread Levels
MPI defines four “levels” of thread safety. The maximum thread support level is returned by the
MPI_Init_thread call in the “provided” argument.

An environment variable MPICH_MAX_THREAD_SAFETY can be set to different values to increase the
thread safety:

MPICH_MAX_THREAD_SAFETY Supported Thread Level

not set MPI_THREAD_SINGLE

single MPI_THREAD_SINGLE

funneled MPI_THREAD_FUNNELED

serialized MPI_THREAD_SERIALIZED

multiple MPI_THREAD_MULTIPLE

3.5.4 Further Recommendations
Users face various challenges with running and scaling large scale jobs on peta-scale production sys-
tems. For example: certain applications may not have enough memory per core, the default environ-
ment variables may need to be adjusted, or I/O may dominate run time.

Possible ways to deal with these are:

• Trying out various compilers and compiler flags, and finding out which options are best for par-
ticular applications.

• Changing the default MPI rank ordering. This is a simple, yet sometimes effective, runtime tuning
option that requires no source code modification, recompilation or re-linking. The default MPI
rank placement on the compute nodes is SMP style. However, other choices are round-robin,
folded rank, and custom ranking.

• Using fewer cores per node is helpful when more memory per process than the default is needed.
Having fewer processes to share the memory and interconnect bandwidth is also helpful in this
case. For NUMA nodes, extra care must be taken.

• Hybrid MPI/OpenMP reduces the memory footprint. Overlapping communication with compu-
tation in hybrid MPI/OpenMP can be considered.

• Some applications may perform better when large memory pages are used.

4
Workload Management

4.1 What Is A Workload Manager?
A workload management system (also known as a queuing system, job scheduler or batch submission
system) manages the available resources such as CPUs, GPUs, and memory for jobs submitted to the
system by users.

Jobs are submitted by the users using job scripts. Job scripts are constructed by users and include
requests for resources. How resources are allocated depends upon policies that the system administrator
sets up for the workload manager.

4.2 Why Use A Workload Manager?
Workload managers are used so that users do not manually have to keep track of node usage in a cluster
in order to plan efficient and fair use of cluster resources.

Users may still perhaps run jobs on the compute nodes outside of the workload manager, if that is
administratively permitted. However, running jobs outside a workload manager tends to eventually
lead to an abuse of the cluster resources as more people use the cluster. This leads to inefficient use
of available resources. It is therefore usually forbidden as a policy by the system administrator on
production clusters.

4.3 How Does A Workload Manager Function?
A workload manager uses policies to ensure that the resources of a cluster are used efficiently, and must
therefore track cluster resources and jobs. A workload manager is therefore generally able to:

• Monitor:

– the node status (up, down)

– all available resources (available cores, memory on the nodes)

– the state of jobs (queued, on hold, deleted, failed, completed)

• Modify:

– the status of jobs (freeze/hold the job, resume the job, delete the job)

– the priority and execution order for jobs

– the run status of a job. For example, by adding checkpoints to freeze a job.

– (optional) how related tasks in a job are handled according to their resource requirements.
For example, a job with two tasks may have a greater need for disk I/O resources for the first
task, and a greater need for CPU resources during the second task.

Some workload managers can adapt to external triggers such as hardware failure, and send alerts or
attempt automatic recovery.

34 Workload Management

4.4 Job Submission Process
Whenever a job is submitted, the workload management system checks on the resources requested by
the job script. It assigns cores, accelerators, local disk space, and memory to the job, and sends the job to
the nodes for computation. If the required number of cores or memory are not yet available, it queues
the job until these resources become available. If the job requests resources that are always going to
exceed those that can become available, then the job accordingly remains queued indefinitely.

The workload management system keeps track of the status of the job and returns the resources to
the available pool when a job has finished (that is, been deleted, has crashed or successfully completed).

4.5 What Do Job Scripts Look Like?
A job script looks very much like an ordinary shell script, and certain commands and variables can be
put in there that are needed for the job. The exact composition of a job script depends on the workload
manager used, but normally includes:

• commands to load relevant modules or set environment variables for the job to run

• directives for the workload manager for items associated with the job. These items can be a request
for resources, output control, or setting the email addresses for messages to go to

• an execution (job submission) line

When running a job script, the workload manager is normally responsible for generating a machine
file based on the requested number of processor cores (np), as well as being responsible for the allocation
any other requested resources.

The executable submission line in a job script is the line where the job is submitted to the workload
manager. This can take various forms.

Example

For the Slurm workload manager, the line might look like:

srun a.out

Example

For PBS Professional it may simply be:

mpirun ./a.out

4.6 Running Jobs On A Workload Manager
The details of running jobs through the following workload managers are discussed later on, for:

• Slurm (Chapter 5)

• PBS Professional (Chapter 6)

5
Slurm

Slurm is a workload management system developed originally at the Lawrence Livermore National
Laboratory. Slurm used to stand for Simple Linux Utility for Resource Management. However Slurm
has evolved since then, and its advanced state nowadays means that the acronym is obsolete.

Slurm has both a graphical interface and command line tools for submitting, monitoring, modifying
and deleting jobs. It is normally used with job scripts to submit and execute jobs. Various settings can be
put in the job script, such as number of processors, resource usage, and application specific variables.

The steps for running a job through Slurm are to:

• Create the script or executable that will be handled as a job

• Create a job script that sets the resources for the script/executable

• Submit the job script to the workload management system

The details of Slurm usage depends upon the MPI implementation used. The description in this
chapter will cover using Slurm’s Open MPI implementation, which is quite standard. Slurm documen-
tation can be consulted (https://slurm.schedmd.com/mpi_guide.html) if the implementation the user
is using is very different.

5.1 Loading Slurm Modules And Compiling The Executable
In section 3.5.1 an MPI “Hello, world!” executable that can run in parallel is created and run in parallel
outside a workload manager.

The executable can be run in parallel using the Slurm workload manager. For this, the Slurm module
should first be loaded by the user on top of the chosen MPI implementation, in this case Open MPI:

Example

[fred@basecm11 ~]$ module list

Currently Loaded Modulefiles:

1) gcc/11.2.0 2) openmpi/gcc/64/4.1.1

[fred@basecm11 ~]$ module add slurm; module list

Currently Loaded Modulefiles:

1) gcc/11.2.0 2) openmpi/gcc/64/4.1.1 3) slurm/slurm/23.11.6

The “hello world” executable from section 3.5.1 can then be compiled and run for one task outside
the workload manager, on the local host, as:

[fred@basecm11 ~]$ mpicc hello.c -o hello

[fred@basecm11 ~]$ mpirun -np 1 hello

Adding a full path to mpirun, and adding a machine file, would allow it to run on the machine file
hosts, instead of just locally.

https://slurm.schedmd.com/mpi_guide.html

36 Slurm

5.2 Running The Executable With salloc

Running it as a job managed by Slurm can be done interactively with the Slurm allocation command,
salloc, as follows

[fred@basecm11 ~]$ salloc mpirun hello

Slurm is more typically run as a batch job (section 5.3). However execution via salloc uses the same
options, and it is more convenient as an introduction because of its interactive behavior.

In a default BCM configuration, Slurm auto-detects the compute node cores available, and by default
spreads the tasks across the cores as part of the allocation request. Specifying a machine file is therefore
not required.

To change how Slurm spreads the executable across compute nodes is typically determined by the
options in the following table:

Short Long
Option Option Description

-N --nodes= Request this many nodes on the cluster.

Use all cores on each node by default

-n --ntasks= Request this many tasks on the cluster.

Defaults to 1 task per node.

-c --cpus-per-task= request this many CPUs per task.

(not implemented by Open MPI yet)

(none) --ntasks-per-node= request this number of tasks per node.

The full options list and syntax for salloc can be viewed with “man salloc”.
The requirement of specified options to salloc must be met before the executable is allowed to run.

So, for example, if --nodes=4 and the cluster only has 3 nodes, then the executable does not run.

5.2.1 Node Allocation Examples
The following session illustrates and explains some node allocation options and issues for Slurm using
a cluster with just 1 compute node and 4 CPU cores:

Default settings: The hello MPI executable with default settings of Slurm runs successfully over the
first (and in this case, the only) node that it finds:

[fred@basecm11 ~]$ salloc mpirun hello

salloc: Granted job allocation 572

Hello world from process 0 out of 4, host name node001

Hello world from process 1 out of 4, host name node001

Hello world from process 2 out of 4, host name node001

Hello world from process 3 out of 4, host name node001

salloc: Relinquishing job allocation 572

The preceding output also displays if -N1 (indicating 1 node) is specified, or if -n4 (indicating 4 tasks) is
specified.

The node and task allocation is almost certainly not going to be done by relying on defaults. Instead,
node specifications are supplied to Slurm along with the executable.

To understand Slurm node specifications, the following cases consider and explain where the node
specification is valid and invalid.

5.2 Running The Executable With salloc 37

Number of nodes requested: The value assigned to the -N|--nodes= option is the number of nodes
from the cluster that is requested for allocation for the executable. In the current cluster example it can
only be 1. For a cluster with, for example, 1000 compute nodes, it could be a number up to 1000.

A resource allocation request for 2 nodes with the --nodes option halts for the current cluster which
only has 1 compute node:

[fred@basecm11 ~]$ salloc -N2 mpirun hello

salloc: Requested partition configuration not available now

salloc: Pending job allocation 573

salloc: job 573 queued and waiting for resources

The default behavior is to patiently wait for resources to become available. This makes sense if a
cluster can increase its available resources within a reasonable time period. The user can interupt an
salloc in this state with a ctrl-c.

Number of tasks requested per cluster: The value assigned to the -n|--ntasks option is the number
of tasks that are requested for allocation from the cluster for the executable. In the current cluster ex-
ample, which has a single compute node with 4 cores, it can be 1 to 4 tasks. The default CPU resources
available on a cluster are the number of available processor cores on the compute nodes, which is 4 on
this cluster with a single compute node of 4 cores.

A resource allocation request for 5 tasks for this cluster halts because it exceeds the default resources
available on the 4-core cluster:

[fred@basecm11 ~]$ salloc -n5 mpirun hello

salloc: Requested partition configuration not available now

salloc: Pending job allocation 574

salloc: job 574 queued and waiting for resources

Adding and configuring just one more compute node to the current cluster would allow the resource
allocation to succeed, since that would provide at least one more core to the cluster.

Number of tasks requested per node: The value assigned to the --ntasks-per-node option is the
number of tasks that are requested for allocation from each compute node on the cluster. In the current
cluster example, it can be 1 to 4 tasks. A resource allocation request for 5 tasks per compute node with
--ntasks-per-node results in a similar output on this cluster running a single compute node with 4-
cores. It gives an output like:

[fred@basecm11 ~]$ salloc --ntasks-per-node=5 mpirun hello

salloc: Requested partition configuration not available now

salloc: Pending job allocation 575

salloc: job 575 queued and waiting for resources

Adding and configuring another 4-core node to the current cluster would still not allow resource
allocation to succeed, because the request is for at least 5 cores per compute node, rather than per cluster.

Restricting the number of tasks that can run per compute node: A resource allocation request for 2
tasks per compute node with the --ntasks-per-node option, and simultaneously an allocation request
for 1 task to run on the cluster using the --ntasks option, runs successfully, although it uselessly leaves
2 cores unused on the compute node:

[fred@basecm11 ~]$ salloc --ntasks-per-node=2 --ntasks=1 mpirun hello

salloc: Granted job allocation 576

Hello world from process 000 out of 002, processor name node001

Hello world from process 001 out of 002, processor name node001

salloc: Relinquishing job allocation 576

38 Slurm

The other way round, that is, a resource allocation request for 1 task per node with the
--ntasks-per-node option, and simultaneously an allocation request for 2 tasks to run on the clus-
ter using the --ntasks option, fails on this cluster running 1 compute node with 4 cores. This is because
although 1 task can be allocated resources from the single node, resources for 2 tasks are being asked for
on the cluster, which requires 2 nodes:

[fred@basecm11 ~]$ salloc --ntasks-per-node=1 --ntasks=2 mpirun hello

salloc: error: Job submit/allocate failed: Requested node configuration is not available

salloc: Job allocation 577 has been revoked.

5.3 Running The Executable As A Slurm Job Script
Instead of using options appended to the salloc command line as in section 5.2, it is usually more
convenient to send jobs to Slurm with the sbatch command acting on a job script.

A job script is also sometimes called a batch file. In a job script, the user can add and adjust the Slurm
options, which are the same as the salloc options of section 5.2. The various settings and variables that
go with the application can also be adjusted.

5.3.1 Slurm Job Script Structure
A job script submission for the Slurm batch job script format is illustrated by the following:

[fred@basecm11 ~]$ cat slurmhello.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --time=30 #time limit to batch job

#SBATCH -N 4

#SBATCH --ntasks=16

#SBATCH --ntasks-per-node=4

module add gcc/9.2.0 openmpi/gcc/64/1.10.7 slurm

mpirun hello

The structure is:

shebang line: shell definition line.

SBATCH lines: optional job script directives (section 5.3.2).

shell commands: optional shell commands, such as loading necessary modules.

application execution line: execution of the MPI application using sbatch, the Slurm submission
wrapper.

In SBATCH lines, �#SBATCH� is used to submit options. The various meanings of lines starting with
�#� are:

Line Starts With Treated As

Comment in shell and Slurm

#SBATCH Comment in shell, option in Slurm

SBATCH Comment in shell and Slurm

5.3 Running The Executable As A Slurm Job Script 39

After the Slurm job script is run with the sbatch command (Section 5.3.4), the output goes into file
my.stdout, as specified by the “-o” command.

If the output file is not specified, then the file takes a name of the form ”slurm-<jobnumber>.out”,
where <jobnumber> is a number starting from 1.

The command “sbatch --usage” lists possible options that can be used on the command line or in
the job script. Command line values override script-provided values.

5.3.2 Slurm Job Script Options
Options, sometimes called “directives”, can be set in the job script file using this line format for each
option:

#SBATCH {option} {parameter}

Directives are used to specify the resource allocation for a job so that Slurm can manage the job
optimally. Available options and their descriptions can be seen with the output of sbatch --help. The
more overviewable usage output from sbatch --usage may also be helpful.

Some of the more useful ones are listed in the following table:

Directive Description Specified As

Name the job <jobname> #SBATCH -J <jobname>

Request at least <minnodes> nodes #SBATCH -N <minnodes>

Request <minnodes> to <maxnodes> nodes #SBATCH -N <minnodes>-<maxnodes>

Request at least <MB> amount of temporary disk space #SBATCH --tmp <MB>

Run job for a time of <walltime> minutes #SBATCH -t <walltime>

Run job at <time> (format: HH:MM MM/DD/YY) #SBATCH --begin <time>

Set the working directory to <directorypath> #SBATCH -D <directorypath>

Set error log name to <jobname.err>* #SBATCH -e <jobname.err>

Set output log name to <jobname.log>* #SBATCH -o <jobname.log>

Mail <user@address> on job state change #SBATCH --mail-user

<user@address>

Mail on all state changes #SBATCH --mail-type=ALL

Mail on job end #SBATCH --mail-type=END

Run job in partition #SBATCH -p <destination>

Run job using GPU with ID <number>, as described in sec-
tion 7.5.2

#SBATCH --gres=gpu:<number>

*By default, both standard output and standard error go to a file:
slurm-<%j>.out

where <%j> is the job number.

5.3.3 Slurm Environment Variables
Available environment variables include:

SLURM_CLUSTER_NAME - name of the Slurm cluster

SLURM_CPUS_ON_NODE - CPUs on allocated node

SLURM_JOB_ID - job ID of executing job

SLURM_JOB_NODELIST - list of nodes allocated to job

SLURM_JOB_NUM_NODES - total number of nodes in job's resource allocation

SLURM_JOB_PARTITION - partition of job

SLURM_NODEID - ID of the nodes allocated

SLURM_NTASKS - total number of processes in current job (same as -n|--ntasks=)

SLURM_PROCID - MPI rank (or relative process ID) of the current process

40 Slurm

SLURM_SUBMIT_DIR - directory from which job was launched

SLURM_TASK_PID - process ID of task started

SLURM_TASKS_PER_NODE - number of tasks to be run on each node (man page gives specification)

Typically, end users use SLURM_PROCID in a program so that an input of a parallel calculation depends
on it. The calculation is thus spread across processors according to the assigned SLURM_PROCID, so that
each processor handles the parallel part of the calculation with different values.

More information on environment variables is also to be found in the man page for sbatch.

5.3.4 Submitting The Slurm Job Script With sbatch

Submitting a Slurm job script created as in the previous section is done by executing the job script with
sbatch:

[fred@basecm11 ~]$ sbatch slurmhello.sh

Submitted batch job 604

[fred@basecm11 ~]$ cat my.stdout

Hello world from process 001 out of 016, processor name node001

...

Queues in Slurm terminology are called “partitions”. Slurm has a default queue called defq. The
administrator may have removed this or created others.

If a particular queue is to be used, this is typically set in the job script using the -p or --partition
option:

#SBATCH --partition=bitcoinsq

It can also be specified as an option to the sbatch command during submission to Slurm.

5.3.5 Checking And Changing Queued Job Status With squeue, scancel, scontrol And
sview

Job Queue Listing With squeue

After a job has gone into a queue, the queue status can be checked using the squeue command. The job
number can be specified with the -j option to avoid seeing other jobs.

Example

[fred@basecm11 ~]$ squeue

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

673 defq slurmhel fred PD 0:00 5 (PartitionNodeLimit)

683 defq slurmhel fred PD 0:00 4 (Resources)

684 defq slurmhel fred PD 0:00 4 (Resources)

685 defq slurmhel fred PD 0:00 4 (Resources)

682 defq slurmhel fred R 0:02 4 node[001-004]

[fred@basecm11 ~]$ squeue -j 673

JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

673 defq slurmhel fred PD 0:00 5 (PartitionNodeLimit)

The man page for squeue covers other options, and explains the meaning of the output.
A backstory for this squeue listing is that in JOBID 673 the user has tried to batch submit the

slurmhello.sh job, while requesting 5 nodes, using the entry #SBATCH -N 5 in slurmhello.sh. How-
ever, since only 4 nodes were available for the cluster at the time, the submission is pending.

After modifying the entry to #SBATCH -N 4, and submitting the job several times, the jobs 674 to 681
complete successfully. The job with the ID 682 is seen in the R (running) state, and the rest are in a PD
(pending) state, with the reasons being either

• Resources (that there are no resources yet available), or

• PartitionNodeLimit (the number of nodes required by this job cannot yet be met because it is
outside of its partition’s current limits).

5.3 Running The Executable As A Slurm Job Script 41

Job Canceling With scancel

Jobs can be canceled quietly by job ID with “scancel <job number>”. The -v option gives some feed-
back. Verbosity increases with -vv, -vvv, and -vvvv.

Example

[fred@basecm11 ~]$ scancel -v 673

scancel: Terminating job 673

Other cancel options, such as per state (with -t|--state=), per partition (with -p|--partition=),
are also possible. The man page for scancel has details.

Queued Job Changes With scontrol

The scontrol command allows users to see and change the job directives while the job is still queued.
For example, a user may have specified a job, using the --begin directive, to start at 10am the next day
by mistake. To change the job to start at 10pm tonight, something like the following session may take
place:

[fred@basecm11 ~]$ scontrol show jobid=254 | grep Time

RunTime=00:00:04 TimeLimit=UNLIMITED TimeMin=N/A

SubmitTime=2011-10-18T17:41:34 EligibleTime=2011-10-19T10:00:00

StartTime=2011-10-18T17:44:15 EndTime=Unknown

SuspendTime=None SecsPreSuspend=0

The parameter that should be changed is “EligibleTime”, which can be done as follows:

[fred@basecm11 ~]$ scontrol update jobid=254 EligibleTime=2011-10-18T22:00:00

GUI Slurm Control sview
An approximate GUI Slurm equivalent to scontrol is the sview tool. This allows the job to be viewed
under its jobs tab, and the job to be edited with a right click menu item. It can also carry out many other
functions, including canceling a job.

Webbrowser-accessible job viewing is possible from the workload tab of the User Portal (section 10.2).

6
PBS Professional And OpenPBS

NVIDIA Base Command Manager works with PBS Professional and OpenPBS, which are the modern
editions of the original Portable Batch System (PBS) software. The original PBS software was a workload
management and job scheduling system to manage computing resources, and was originally developed
at NASA in the 1990s.

In this manual, PBS is used as a shorter form to refer to both the modern editions.
PBS job scripts are used to submit and execute jobs. The user puts values into a job script for the

resources being requested, such as the number of processors to be used, the memory to be used, or
number of nodes required. Other values are also set for the runtime parameters and application-specific
variables.

The steps for running a job through a PBS job script are:

• Creating an application to be run via the job script

• Creating the job script, adding directives, applications, runtime parameters, and application-specific
variables to the script

• Submitting the script to the workload management system

This chapter covers the using the workload managers and job scripts with the PBS variants so that
users can get a basic understanding of how they are used, and can get started with typical cluster usage.

In this chapter:

• section 6.1 covers the components of a job script and job script examples

• section 6.2.1 covers submitting, monitoring, and deleting a job with a job script

More on using PBS is to be found in the PBS Professional Guides, which can be accessed from:
https://community.altair.com/community?id=altair_product_documentation.

6.1 Components Of A Job Script
To use PBS, a batch job script is created by the user. The job script is a shell script containing the set
of commands that the user wants to run. It also contains the resource requirement directives and other
specifications for the job. After preparation, the job script is submitted to the workload manager using
the qsub command. The workload manager then tries to make the job run according to the job script
specifications.

A job script can be resubmitted with different parameters (e.g. different sets of data or variables).

6.1.1 Sample Script Structure
A job script in PBS has a structure illustrated by the following basic example:

Example

https://community.altair.com/community?id=altair_product_documentation

44 PBS Professional And OpenPBS

#!/bin/bash

#

#PBS -l walltime=1:00:00

#PBS -l select=2:ncpus=1:mem=500mb

#PBS -j oe

cd ${HOME}/myprogs

mpirun myprog a b c

The first line is the standard “shebang” line used for scripts.
The lines that start with #PBS are PBS directive lines, described shortly in section 6.1.2.
The last two lines are an example of setting any remaining options or configuration settings up, so

that the script can run. In this case, a change to the directory myprogs is made, and then the executable
myprog is run, with arguments a b c. The line that runs the program is called the executable line (sec-
tion 6.1.3).

To run the executable file in the executable line in parallel, the job launcher mpirun is placed imme-
diately before the executable file. The number of nodes the parallel job is to run on is assumed to have
been specified in the PBS directives.

6.1.2 Directives
Job Script Directives And qsub Options
A job script typically has several configurable values called job script directives, set with job script
directive lines. These are lines that start with a “#PBS”. Any directive lines beyond the first executable
line are ignored.

The lines are comments as far as the shell is concerned because they start with a “#”. However, at
the same time the lines are special commands when the job script is processed by the qsub command.
The difference is illustrated by the following:

• The following shell comment is only a comment for a job script processed by qsub:

PBS

• The following shell comment is also a job script directive when processed by qsub:

#PBS

Job script directive lines with the #PBS part removed are the same as options applied to the qsub

command, so a look at the man pages of qsub describes the possible directives and how they are used.
If there is both a job script directive and a qsub command option set for the same item, then the qsub

option takes precedence.
Since the job script file is a shell script, the shell interpreter used can be changed to another shell

interpreter by modifying the first line (the “#!” line) to the preferred shell. Any shell specified by the
first line can also be overridden by using the “#PBS -S” directive to set the shell path.

Walltime Directive
The workload manager typically has default walltime limits per queue with a value limit set by the
administrator. The user can set a walltime limit for the job by setting the ”#PBS -l walltime” directive
to a specific time. The time specified is the maximum time that the user expects the job should run for,
and it allows the workload manager to work out an optimum time to run the job. The job can then run
sooner than it would by default.

If the walltime limit is exceeded by a job, then the job is stopped, and an error message in the follow-
ing format is displayed:

6.1 Components Of A Job Script 45

=>> PBS: job killed: walltime <running time> exceeded limit <set time>

Here, <running time> is the time that the job actually took to run after it ran, while <set time> is the
time that the user set as the walltime resource limit.

If there is no default walltime set by the cluster administrator, and if the user submits a job with no
walltime set too, then the job only runs when all jobs with a walltime have made room. So to avoid
waiting a very long time, and to experience a reasonably consistent behavior on different clusters, the
user really should set a walltime.

Resource List Directives
Resource list directives specify arguments to the -l directive of the job script, and allow users to specify
values to use instead of the system defaults.

For example, in the sample script structure earlier, a job walltime of one hour and a memory space of
at least 500MB are requested (the script requires the size of the space be spelled in lower case, so “500mb”
is used).

If a requested resource list value exceeds what is available, the job is queued until resources become
available.

For example, if nodes only have 2000MB to spare and 4000MB is requested, then the job is queued
indefinitely, and it is up to the user to fix the problem.

Resource list directives also allow, for example, the number of nodes (-l select=2:) and the number
of processor cores for each node, ncpus, to be specified. If no value is specified, then the default is 1 node,
and 1 core per node (ncpus=1).

As an aside: To avoid specifying ncpus with a directive, the default value for ncpu can be configured
by the cluster administrator with the PBS qmgr configuration setting (section 7.11.1 of the Administrator
Manual):

Example

qmgr -c "set server resources_default.ncpus = 4"

A directive for a resource such as the wall time applies to the entire job. In PBS, such a resource is
called a job-wide resource.

A collection of resources allocated to a job, but with the resources being requested from the
same physical compute node, is called a chunk. A directive can be applied at chunk level with the
select=chunk name option. Typically, an MPI job has one chunk per MPI process (rank).

Thus, requested resources can be job-wide only (for example, walltime), or chunk only (for example,
ncpus). In a job, a resource cannot be used as chunk as well as job-wide—it can only be used as chunk
(one or multiple chunks), or job-wide.

So, to run a job on 8 cores, the job-wide specification could be done with:

#PBS -l select=8:ncpus=1

The preceding specification requests 8 CPU cores, and the cores can be anywhere on the cluster.
To run a job on one chunk, the chunk specification could be done with:

#PBS -l select=1:ncpus=8

The preceding specification requests 8 CPU cores, and the cores must be on the same physical node.
Further examples of node resource specification are given in a table on page 47.

Job Directives: Job Name, Logs, And IDs
If the name of the job script file is jobname, then by default the output and error streams are logged to
jobname.o<number> and jobname.e<number> respectively, where <number> indicates the associated job
number. The default paths for the logs can be changed by using the -o and -e directives respectively,
while the base name (jobname here) can be changed using the -N directive.

46 PBS Professional And OpenPBS

Often, a user may simply merge both logs together into one of the two streams using the -j directive.
Thus, in the preceding example, “-j oe” merges the logs to the output log path, while “-j eo” would
merge it to error log path.

The job ID is an identifier based on the job number and the FQDN of the login node. For a login
node called basecm11.cm.cluster, the job ID for a job number with the associated value <number>
from earlier, would by default be <number>.basecm11.cm.cluster, but it can also simply be abbreviated
to <number>.

Job Queues
Sending a job to a particular job queue is sometimes appropriate. An administrator may have set
queues up so that some queues are for very long term jobs, or some queues are for users that require
GPUs. Submitting a job to a particular queue <destination> is done by using the directive “#PBS -q

<destination>”.

Directives Summary
Some useful job directives are illustrated in the following table:

Directive Description Specified As

Name the job <jobname> #PBS -N <jobname>

Run the job for a maximum runtime of
<walltime>

#PBS -l <walltime>

Run the job for a maximum runtime of
3 hours 10 minutes and 30 seconds

#PBS -l walltime=03:10:30

Run the job at <time> #PBS -a <time>

Set error log name to <jobname.err> #PBS -e <jobname.err>

Set output log name to <jobname.log> #PBS -o <jobname.log>

Join standard error and standard out-
put to standard error

#PBS -j eo

Join standard error and standard out-
put to standard output

#PBS -j oe

Mail to <user@address> #PBS -M <user@address>

Mail on <event> #PBS -m <event>

where <event> takes the (a)bort

value of the letter in (b)egin

the parentheses (e)nd

(n) do not send email

Queue is <destination> #PBS -q <destination>

Login shell path is <shellpath> #PBS -S <shellpath>

Almost every qsub sets a job attribute, and has a corresponding PBS directive with the same syntax
as the option. The man page for qsub and the man page for pbs_job_attributes explain this in detail.

Resource Request Examples
As PBS evolved, the specification for requesting nodes has changed. The form:

#PBS -l nodes=3

is deprecated, and automatically converted to:

#PBS -l select=3

6.1 Components Of A Job Script 47

The deprecated changes are described in detail the man page for pbs_resources, in the section on BACKWARD

COMPATIBILITY.
Examples of requests for select= options are shown in the following table:

Resource Request Example Description #PBS -l Specification

8 nodes, anywhere on the cluster
select=8

2 nodes, 1 processor per node select=2:ncpus=1

3 nodes, 8 processors per node select=3:ncpus=8

5 nodes, 2 processors per node, and 1 GPU per node select=5:ncpus=2:ngpus=1

5 nodes, 2 processors per node, 3 virtual processors for MPI
code

select=5:ncpus=2:mpiprocs=3

5 nodes, 2 processors per node, using any GPU on the nodes select=5:ncpus=2:ngpus=1

5 nodes, 2 processors per node, using a GPU with ID 0 from
nodes

select=5:ncpus=2:gpu_id=0

Some of the examples illustrate requests for GPU resource usage. GPUs and the CUDA utilities for
NVIDIA are introduced in Chapter 7. GPU usage is treated by the workload manager like the attributes
of a resource which the cluster administrator will have pre-configured according to local requirements.

For further details on resources, the man page for pbs_resources can be checked.

6.1.3 The Executable Line
In the job script structure (section 6.1.1), the executable line is launched with the job launcher command
after the directives lines have been dealt with, and after any other shell commands have been carried
out to set up the execution environment.

Using mpirun In The Executable Line
The mpirun command is used for executables compiled with MPI libraries. Executables that have not
been compiled with MPI libraries, or which are launched without any specified number of nodes, run
on a single free node chosen by the workload manager.

The executable line to run a program myprog that has been compiled with MPI libraries is run by
placing the job-launcher command mpirun before it as follows:

mpirun myprog

6.1.4 Example Batch Submission Scripts
Node Availability
The following job script tests which out of 4 nodes requested with “-l nodes” are made available to the
job in the workload manager:

Example

#!/bin/bash

#PBS -l walltime=1:00

#PBS -l nodes=4 <--- legacy

#PBS -l select=4

echo -n "I am on: "

hostname;

echo finding ssh-accessible nodes:

for node in $(cat ${PBS_NODEFILE}) ; do

echo -n "running on: "

/usr/bin/ssh $node hostname

48 PBS Professional And OpenPBS

done

The directive specifying walltime means the script runs at most for 1 minute. The ${PBS_NODEFILE}
array used by the script is created and appended with hosts by the queuing system. The script illus-
trates how the workload manager generates a ${PBS_NODEFILE} array based on the requested number
of nodes, and which can be used in a job script to spawn child processes. When the script is submitted,
the output from the log will look like:

I am on: node001

finding ssh-accessible nodes:

running on: node001

running on: node002

running on: node003

running on: node004

This illustrates that the job starts up on a node, and that no more than the number of nodes that were
asked for in the resource specification are provided.

The list of all nodes for a cluster can be found using the pbsnodes command (section 6.2.6).

Using InfiniBand
A sample PBS script for InfiniBand is:

#!/bin/bash

#!

#! Sample PBS file

#!

#! Name of job

#PBS -N MPI

#! Number of nodes (in this case 8 nodes with 4 CPUs each)

#! The total number of nodes passed to mpirun will be nodes*ppn

#! Second entry: Total amount of wall-clock time (true time).

#! 02:00:00 indicates 02 hours

#PBS -l walltime=02:00:00

#PBS -l select=8:ncpus=4

#! Mail to user when job terminates or aborts

#PBS -m ae

If modules are needed by the script, then source modules environment:

. /etc/profile.d/modules.sh

Add any modules you might require:

module add shared mvapich/gcc pbspro

#! Full path to application + application name

application="<application>"

#! Run options for the application

options="<options>"

#! Work directory

workdir="<work dir>"

6.2 Submitting A Job 49

###

You should not have to change anything below this line

###

#! change the working directory (default is home directory)

cd $workdir

echo Running on host $(hostname)

echo Time is $(date)

echo Directory is $(pwd)

echo PBS job ID is $PBS_JOBID

echo This job runs on the following machines:

echo $(cat $PBS_NODEFILE | uniq)

mpirun_command="mpirun $application $options"

#! Run the parallel MPI executable (nodes*ppn)

echo Running $mpirun_command

eval $mpirun_command

In the preceding script, no machine file is needed, since it is automatically built by the workload
manager and passed on to the mpirun parallel job launcher utility. The job is given a unique ID and run
in parallel on the nodes based on the resource specification.

6.1.5 Links To PBS Resources
A number of useful links are:

• The PBS Professional documentation pages, accessible from https://community.altair.com/

community?id=altair_product_documentation.

• The man pages for qsub, pbs_resources, and pbs_job_attributes, for setting up job scripts.

• The community support pages for PBS Professional, accessible at https://community.altair.
com/community?id=altair_community_home. Commercial support can be arranged for PBS Pro-
fessional using https://www.altair.com/tailored-solutions.

• The OpenPBS community pages, accessible from http://community.openpbs.org/.

6.2 Submitting A Job
6.2.1 Preliminaries: Loading The Modules Environment
To submit a job to the workload management system, the user must ensure that the following environ-
ment modules are loaded:

$ module add shared pbspro

Users can pre-load particular environment modules as their default using the “module init*” com-
mands (section 2.3.3).

6.2.2 Using qsub

The command qsub is used to submit jobs to the workload manager system. The command returns
a unique job identifier, which is used to query and control the job and to identify output. The usage
format of qsub and some useful options are listed here:

https://community.altair.com/community?id=altair_product_documentation
https://community.altair.com/community?id=altair_product_documentation
https://community.altair.com/community?id=altair_community_home
https://community.altair.com/community?id=altair_community_home
https://www.altair.com/tailored-solutions
http://community.openpbs.org/

50 PBS Professional And OpenPBS

USAGE: qsub [<options>] <job script>

Option Hint Description

------ ---- -----------

-a at run the job at a certain time

-l list request certain resource(s)

-q queue job is run in this queue

-N name name of job

-S shell shell to run job under

-j join join output and error files

For example, a job script called mpirun.job with all the relevant directives set inside the script, may
be submitted as follows:

Example

$ qsub mpirun.job

A job may be submitted to a specific queue testq as follows:

Example

$ qsub -q testq mpirun.job

The man page for qsub describes these and other options. The options correspond to PBS directives in
job scripts (section 6.1.1). If a particular item is specified by a qsub option as well as by a PBS directive,
then the qsub option takes precedence.

6.2.3 Job Output
By default, the output from the job script <scriptname> goes into the current working directory for PBS.

By default, error output is written to <scriptname>.e<jobid> and the application output is written to
<scriptname>.o<jobid>, where <jobid> is a unique number that the workload manager allocates. Specific
output and error files can be set using the -o and -e options respectively. The error and output files
can usefully be concatenated into one file with the -j oe or -j eo options. More details on this can be
found in the qsub man page.

6.2.4 Monitoring The Status Of A Job
To use the commands in this section, the appropriate workload manager module must be loaded:

$ module add pbspro

qstat Basics
The main component is qstat, which has several options. In this example, the most frequently used
options are discussed.

In PBS, the command “qstat -an” shows what jobs are currently submitted or running on the queu-
ing system. An example output is:

[fred@basecm11 ~]$ qstat -an

basecm11: Req'd Req'd Elap

Job ID Username Queue Jobname SessID NDS TSK Memory Time S Time

--------------- -------- -------- ---------- ------ --- --- ------ ----- - -----

121.basecm11 noah workq pbjob -- 3 6 -- 01:00 Q --

--

125.basecm11 noah workq pbjob 26615 3 3 -- 01:00 R --

node001/0+node002/0+node003/0

6.2 Submitting A Job 51

The output shows the Job ID, the user who owns the job, the queue, the job name, the session ID for a
running job, the number of nodes requested, the number of CPUs or tasks requested, the time requested
(-l walltime), the job state (S) and the elapsed time. In this example, one job is seen to be running (R),
and one is still queued (Q). The -n parameter causes nodes that are in use by a running job to display at
the end of that line.

Possible job states include:

Job States Description

E Job is exiting after having run

F Job is finished

H Job is held

Q job is queued, eligible to run or routed

R job is running

S job is suspended

T job is being moved to new location

W job is waiting for its execution time

The command “qstat -q” shows what queues are available. In the following example, there is one
job running in the testq queue and 4 are queued.

$ qstat -q

server: master.cm.cluster

Queue Memory CPU Time Walltime Node Run Queue Lm State

---------------- ------ -------- -------- ---- --- ----- -- -----

testq -- -- 23:59:59 -- 1 4 -- E R

default -- -- 23:59:59 -- 0 0 -- E R

---- -----

1 4

Viewing Job Details With qstat

With qstat -f the full output of the job is displayed. The output shows what the jobname is, where the
error and output files are stored, and various other settings and variables.

$ qstat -f

Job Id: 137.pj-cruncher

Job_Name = pbjob

Job_Owner = noah@pj-cruncher.cm.cluster

resources_used.cpupercent = 0

resources_used.cput = 00:00:00

resources_used.mem = 5456kb

resources_used.ncpus = 3

resources_used.vmem = 384164kb

resources_used.walltime = 00:00:11

job_state = R

queue = workq

server = pj-cruncher

Checkpoint = u

ctime = Fri Mar 20 18:07:06 2020

Error_Path = pj-cruncher.cm.cluster:/home/noah/pbjob.e137

exec_host = node001/0+node002/0+node003/0

exec_vnode = (node001:ncpus=1)+(node002:ncpus=1)+(node003:ncpus=1)

Hold_Types = n

52 PBS Professional And OpenPBS

Join_Path = oe

Keep_Files = n

Mail_Points = a

mtime = Fri Mar 20 18:08:52 2020

Output_Path = pj-cruncher.cm.cluster:/home/noah/pbjob.o137

Priority = 0

qtime = Fri Mar 20 18:07:06 2020

Rerunable = True

Resource_List.mpiprocs = 24

Resource_List.ncpus = 3

Resource_List.nodect = 3

Resource_List.place = free

Resource_List.select = 3:ncpus=1:mpiprocs=8

Resource_List.walltime = 01:00:00

stime = Fri Mar 20 18:08:42 2020

session_id = 28107

jobdir = /home/noah

substate = 42

Variable_List = PBS_O_HOME=/home/noah,PBS_O_LANG=en_US.UTF-8,

PBS_O_LOGNAME=noah,

PBS_O_PATH=/cm/shared/apps/openpbs/20.0.1/unsupported/fw/bin:/cm/sha

red/apps/openpbs/20.0.1/unsupported:/cm/shared/apps/openpbs/20.0.1/

sbin:/cm/shared/apps/openpbs/20.0.1/bin:/cm/shared/apps/mpich/ge/gcc/

64/3.3.2/bin:/cm/local/apps/gcc/9.2.0/bin:/cm/local/apps/environment-mo

dules/4.4.0//bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin:/sbi

n:/usr/sbin:/cm/local/apps/environment-modules/4.4.0/bin:/home/noah/.lo

cal/bin:/home/noah/bin,PBS_O_MAIL=/var/spool/mail/noah,

PBS_O_SHELL=/bin/bash,PBS_O_WORKDIR=/home/noah,PBS_O_SYSTEM=Linux,

PBS_O_QUEUE=workq,PBS_O_HOST=pj-cruncher.cm.cluster

comment = Job run at Fri Mar 20 at 18:08 on (node001:ncpus=1)+(node002:ncpu

s=1)+(node003:ncpus=1)

etime = Fri Mar 20 18:07:06 2020

run_count = 1

Submit_arguments = pbjob

project = _pbs_project_default

6.2.5 Deleting A Job
An already submitted job can be deleted using the qdel command:

$ qdel <jobid>

Multiple space-separated job IDs can be specified.

6.2.6 Nodes According To PBS
The nodes that the workload manager knows about can be viewed using the pbsnodes command.

The following output is from a cluster made up of nodes with 4 physical cores, as indicated by the
value of 4 for pcpus. If the node is available to run scripts, then its state is free or time-shared. When
a node is used exclusively (section 7.5.2) by one script, the state is job-exclusive.

For PBS Professional the display resembles (some output elided):

[noah@pj-cruncher ~]$ pbsnodes -a

node001

Mom = node001.cm.cluster

ntype = PBS

state = free

6.2 Submitting A Job 53

pcpus = 4

resources_available.arch = linux

resources_available.host = node001

resources_available.mem = 4044784kb

...

queue = workq

resv_enable = True

sharing = default_shared

...

node002

Mom = node002.cm.cluster

ntype = PBS

state = free

pcpus = 4

resources_available.arch = linux

resources_available.host = node002

resources_available.mem = 4044784kb

...

queue = workq

resv_enable = True

sharing = default_shared

last_state_change_time = Fri Mar 20 18:09:47 2020

last_used_time = Fri Mar 20 18:09:47 2020

...

7
Using GPUs

GPUs (Graphics Processing Units) are chips that provide specialized parallel processing power. Origi-
nally, GPUs were designed to handle graphics processing as part of the video processor, but their ability
to handle non-graphics tasks in a similar manner has become important for general computing. GPUs
designed for general purpose computing task are commonly called General Purpose GPUs, or GPGPUs.

A GPU is suited for processing an algorithm that naturally breaks down into a process requiring
many similar calculations running in parallel. GPUs cores are able to rapidly apply the instruction
on multiple data points organized in a 2-D, and more recently, 3-D, image. The image is placed in a
framebuffer. In the original chips, the data points held in the framebuffer were intended for output to a
display, thereby accelerating image generation.

The similarity between multicore CPU chips and modern GPUs makes it at first sight attractive to use
GPUs for general purpose computing. However, the instruction set on GPGPUs is used in a component
called the shader pipeline. This has, as the name suggests, to do with a limited set of graphics operations,
and so is by its nature rather limited. Using the instruction set for problems unrelated to shader pipeline
manipulations requires that the problems being processed map over to a similar manipulation. This
works best for algorithms that naturally break down into a process requiring an operation to be applied
in the same way on many independent vertices and pixels. In practice, this means that 1-D vector
operations are an order of magnitude less efficient on GPUs than operations on triangular matrices.

Modern GPGPU implementations have matured so that they can now sub-divide their resources be-
tween independent processes that work on independent data, and they provide programmer-friendlier
ways of data transfer between the host and GPU memory.

Physically, one GPU is typically a built-in part of the motherboard of a node or a board in a node,
and consists of several hundred processing cores. There are also dedicated standalone units, commonly
called GPU Units, consisting of several GPUs in one chassis. Several of these can be assigned to partic-
ular nodes, typically via PCI-Express connections, to increase the density of parallelism even further.

NVIDIA Base Command Manager has several tools that can be used to set up and program GPUs
for general purpose computations.

7.1 Packages
A number of different GPU-related packages are included in BCM. The CUDA versions supported are
listed in section 9.1 of the Installation Manual.

The version implemented depends on how the system administrator has installed and configured
CUDA.

7.2 Using CUDA
After installation of the packages, for general usage and compilation it is sufficient to load just the
CUDA<version>/toolkit module, where <version> indicates the CUDA version number. At the time of

56 Using GPUs

writing of this section (May 2023), for Rocky Linux version 9.1, the versions available are 11.7, 11.8, 12.0,
and 12.1.

The toolkit comes with the necessary tools and the NVIDIA compiler wrapper to compile CUDA C
code.

Extensive documentation on how to get started, the various tools, and how to use the CUDA suite is
at https://docs.nvidia.com/cuda.

Also available are several other modules related to CUDA:

• cuda12.1/blas: Provides paths and settings for the CUBLAS library.

• cuda12.1/fft: Provides paths and settings for the CUFFT library.

7.3 Using OpenCL
OpenCL functionality is provided with the cuda<version>/toolkit environment module.

Examples of OpenCL code can be found in the $CUDA_SDK/OpenCL directory.

7.4 Compiling Code
Both CUDA and OpenCL involve running code on different platforms:

• host: with one or more CPUs

• device: with one or more CUDA enabled GPUs

Accordingly, both the host and device manage their own memory space, and it is possible to copy data
between them. The CUDA and OpenCL Best Practices Guides in the doc directory, provided by the
CUDA toolkit package, have more information on how to handle both platforms and their limitations.

The nvcc command by default compiles code and links the objects for both the host system and the
GPU. The nvcc command distinguishes between the two and it can hide the details from the developer.
To compile the host code, nvcc will use gcc automatically.

nvcc [options] <inputfile>

A simple example to compile CUDA code to an executable is:

nvcc testcode.cu -o testcode

The most used options are:

• -g or �debug <level>: This generates debuggable code for the host

• -G or �device-debug <level>: This generates debuggable code for the GPU

• -o or �output-file <file>: This creates an executable with the name <file>

• -arch=sm_13: This can be enabled if the CUDA device supports compute capability 1.3, which
includes double-precision

If double-precision floating-point is not supported or the flag is not set, warnings such as the follow-
ing will come up:

warning : Double is not supported. Demoting to float

The nvcc documentation manual, “The CUDA Compiler Driver NVCC” has more information on com-
piler options.

The CUDA SDK has more programming examples and information accessible from the file
$CUDA_SDK/C/Samples.html.

For OpenCL, code compilation can be done by linking against the OpenCL library:

gcc test.c -lOpenCL

g++ test.cpp -lOpenCL

nvcc test.c -lOpenCL

https://docs.nvidia.com/cuda

7.5 Available Tools 57

7.5 Available Tools
7.5.1 CUDA gdb
The CUDA debugger can be started using: cuda-gdb. Details of how to use it are available in the
“CUDA-GDB (NVIDIA CUDA Debugger)” manual, in the doc directory. It is based on GDB, the GNU
Project debugger, and requires the use of the “-g” or “-G” options compiling.

Example

nvcc -g -G testcode.cu -o testcode

7.5.2 The nvidia-smi Utility
The NVIDIA System Management Interface command, nvidia-smi, can be used to allow exclusive
access to the GPU. This means only one application can run on a GPU. By default, a GPU will allow
multiple running applications.
Syntax:

nvidia-smi [OPTION1 [ARG1]] [OPTION2 [ARG2]] ...

The steps for making a GPU exclusive:

• List GPUs

• Select a GPU

• Lock GPU to a compute mode

• After use, release the GPU

After setting the compute rule on the GPU, the first application that executes on the GPU blocks out
any of the others attempting to run. The first application does not have to be from the user that set the
exclusivity lock on the GPU.

To list the GPUs, the -L argument can be used:

$ nvidia-smi -L

GPU 0: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 706539258209)

GPU 1: (05E710DE:068F10DE) Tesla T10 Processor (S/N: 2486719292433)

To set the ruleset on the GPU, the -c|--compute-mode option can be used:

$ nvidia-smi -i 0 -c 1

The ruleset may be one of the following:

• 0 - Default mode (multiple applications allowed on the GPU)

• 1 - Exclusive thread mode (only one compute context is allowed to run on the GPU, usable from
one thread at a time)

• 2 - Prohibited mode (no compute contexts are allowed to run on the GPU)

• 3 - Exclusive process mode (only one compute context is allowed to run on the GPU, usable from
multiple threads at a time)

To check the state of the GPU, the -q|--query option can be used:

$ nvidia-smi -i 0 -q

COMPUTE mode rules for GPU 0: 1

In this example, GPU0 is locked, and there is a running application using GPU0. A second applica-
tion attempting to run on this GPU will not be able to run on this GPU.

58 Using GPUs

$ histogram --device=0

main.cpp(101) : cudaSafeCall() Runtime API error :

no CUDA-capable device is available.

After use, the GPU can be unlocked to allow multiple users:

nvidia-smi -i 0 -c 0

7.5.3 CUDA Utility Library
CUTIL is a simple utility library designed for use in the CUDA SDK samples. There are 2 parts for CUDA
and OpenCL. The locations are:

• $$CUDA_SDK/C/lib

• $$CUDA_SDK/OpenCL/common/lib

Other applications may also refer to them, and the toolkit libraries have already been pre-configured
accordingly. However, they need to be compiled prior to use. Depending on the cluster, this might have
already have been done.

[fred@demo ~] cd

[fred@demo ~] cp -r $CUDA_SDK

[fred@demo ~] cd $(basename $CUDA_SDK); cd C

[fred@demo C] make

[fred@demo C] cd $(basename $CUDA_SDK); cd OpenCL

[fred@demo OpenCL] make

CUTIL provides functions for:

• parsing command line arguments

• read and writing binary files and PPM format images

• comparing data arrays (typically used for comparing GPU results with CPU results)

• timers

• macros for checking error codes

• checking for shared memory bank conflicts

7.5.4 CUDA “Hello world” Example
A hello world example code using CUDA is:

Example

/*

CUDA example

"Hello World" using shift13, a rot13-like function.

Encoded on CPU, decoded on GPU.

rot13 cycles between 26 normal alphabet characters.

shift13 shifts 13 steps along the normal alphabet characters

So it translates half the alphabet into non-alphabet characters

shift13 is used because it is simpler than rot13 in c

7.5 Available Tools 59

so we can focus on the point

(c) NVIDIA

Taras Shapovalov <tshapovalov@nvidia.com>

*/

#include <cuda.h>

#include <stdio.h>

// CUDA kernel definition: undo shift13

__global__ void helloWorld(char* str) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

str[idx] -= 13;

}

void checkCudaError(cudaError_t err, const char *msg) {

if (err != cudaSuccess) {

fprintf(stderr, "CUDA error: %s: %s\n", msg, cudaGetErrorString(err));

exit(EXIT_FAILURE);

}

}

int main(int argc, char **argv) {

char s[] = "Hello World!";

printf("String for encode/decode: %s\n", s);

// CPU shift13

int len = sizeof(s);

for (int i = 0; i < len; i++) {

s[i] += 13;

}

printf("String encoded on CPU as: %s\n", s);

// Allocate memory on the CUDA device

char *cuda_s;

checkCudaError(cudaMalloc((void**)&cuda_s, len), "cudaMalloc");

// Copy the string to the CUDA device

checkCudaError(cudaMemcpy(cuda_s, s, len, cudaMemcpyHostToDevice), "cudaMemcpy");

// Set the grid and block sizes (dim3 is a type)

// and "Hello World!" is 12 characters, say 3x4

dim3 dimGrid(3);

dim3 dimBlock(4);

// Invoke the kernel to undo shift13 in GPU

helloWorld<<< dimGrid, dimBlock >>>(cuda_s);

checkCudaError(cudaGetLastError(), "kernel execution");

// Retrieve the results from the CUDA device

checkCudaError(cudaMemcpy(s, cuda_s, len, cudaMemcpyDeviceToHost), "cudaMemcpy");

// Free up the allocated memory on the CUDA device

checkCudaError(cudaFree(cuda_s), "cudaFree");

printf("String decoded on GPU as: %s\n", s);

60 Using GPUs

return 0;

}

The hello world code example may be compiled and run on a node with a GPU and CUDA 12.1
with:

[fred@node001 ~]$ module load shared

[fred@node001 ~]$ module load cuda12.1

[fred@node001 ~]$ nvcc hello.cu -o hellocuda

[fred@node001 ~]$./hellocuda

String for encode/decode: Hello World!

String encoded on CPU as: Uryy|-d|yq.

String decoded on GPU as: Hello World!

[fred@node001 ~]$

The number of characters displayed in the encoded string are less than the number in the unencoded
string. This is because there are unprintable characters generated by the encoding, because the cipher
used is not exactly rot13.

To make it run from a head node via a workload manager such as Slurm, on a compute node with a
GPU, the following batch file could be built and run:

[fred@basecm11 ~]$ cat helloslurm.sh

#!/bin/sh

#SBATCH -o my.stdout

#SBATCH --ntasks-per-node=1

#SBATCH -p defq #assuming node in defq has a GPU

#SBATCH --gpus=1

module clear -f

./hellocuda

[fred@basecm11 ~]$ sbatch helloslurm.sh

[fred@basecm11 ~]$ cat my.stdout

String for encode/decode: Hello World!

String encoded on CPU as: Uryy|-d|yq.

String decoded on GPU as: Hello World!

7.5.5 OpenACC
OpenACC (http://www.openacc-standard.org) is a new open parallel programming standard aiming
at simplifying the programmability of heterogeneous CPU/GPU computing systems. OpenACC allows
parallel programmers to provide OpenACC directives to the compiler, identifying which areas of code to
accelerate. This frees the programmer from carrying out time-consuming modifications to the original
code itself. By pointing out parallelism to the compiler, directives get the compiler to carry out the
details of mapping the computation onto the accelerator.

Using OpenACC directives requires a compiler that supports the OpenACC standard.
In the following example, where π is calculated, adding the #pragma directive is sufficient for the

compiler to produce code for the loop that can run on either the GPU or CPU:

Example

#include <stdio.h>

#define N 1000000

int main(void) {

double pi = 0.0f; long i;

#pragma acc parallel loop reduction(+:pi)

for (i=0; i<N; i++) {

http://www.openacc-standard.org

7.5 Available Tools 61

double t= (double)((i+0.5)/N);

pi +=4.0/(1.0+t*t);

}

printf("pi=%16.15f\n",pi/N);

return 0;

}

8
Using Kubernetes

8.1 Introduction To Kubernetes Running Via NVIDIA Base Command Manager
Kubernetes is a system for managing containerized applications across multiple hosts in a cluster.

• A container is an extremely lightweight virtualized operating system that runs without the un-
needed extra emulated hardware components of a regular virtualized operating system.

• A containerized application runs within a container, and it only accesses files, environment vari-
ables, and libraries within the container, unless volumes are mounted and used.

• A containerized application provides services to other software or users. Kubernetes thus manages
containerized applications as a service, and is aware of the container states and resources used.

Kubernetes provides mechanisms for application deployment, scheduling, updating, maintenance,
and scaling. It actively manages the containers to ensure that the state of the cluster continually matches
the user’s intentions. The user’s desired state is communicated to the Kubernetes API server, typically
in the form of a YAML file. Kubernetes stores the YAML file in Etcd, and ensures it is reflected by the
current state of the containers.

This chapter describes how Kubernetes works with BCM, which currently supports Kubernetes 1.32.
For details on Kubernetes that are outside the scope of its use with BCM, the official Kubernetes docu-
mentation at https://kubernetes.io/docs/ can be consulted.

By default, in BCM the user is given access to containers only via Kubernetes. The administrator
can however configure direct access if required. In this chapter, only container access via Kubernetes is
described.

The kubectl utility is normally used to communicate with Kubernetes, although using the API
directly instead of using kubectl is also possible. The kubectl utility can be used to get informa-
tion about Kubernetes runtime, creation and management of resources, as well for other tasks. Re-
sources are items such as pods (https://kubernetes.io/docs/concepts/workloads/pods/) and vol-
umes (https://kubernetes.io/docs/concepts/storage/volumes/), that are consumed while contain-
ers are in use.

The official Kubernetes documentation has some introductory tutorials, including:
https://kubernetes.io/docs/tutorials/kubernetes-basics/

Familiarity with the concepts in those tutorials is recommended before continuing with the rest of
this chapter.

8.2 Kubernetes User Privileges
The privileges (view-only, edit or admin) that a user has depends on the permissions granted to the user
by the Kubernetes Administrator. Since BCM version 9.0 (known earlier as Bright Cluster manager 9.0),
a custom namespace is created for each user, <user>, according to the following format:

https://kubernetes.io/docs/
https://kubernetes.io/docs/concepts/workloads/pods/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/tutorials/kubernetes-basics/

64 Using Kubernetes

<user>-restricted
This is intended to be a sandbox for the user.
The default setting in NVIDIA Base Command Manager version 9.0 is to have the PodSecurityPoli-

cies (PSP) feature inactive. Users can check with their BCM administrator if that is indeed the case. If
PSP is not active, then users have access to the default namespace.

In future versions of BCM, the default namespace will no longer be available for users by default.
If the Administrator enables the PSP features, then permissions to the default namespace are also

not added by default for new users. Role bindings to the default namespace for existing users are also
removed.

This “restricted” namespace is always created by default, and users are encouraged to use this
namespace.

8.3 Kubernetes Quickstarts
This section provides quickstart recipes on some common tasks for an end user using Kubernetes.

Requirements:

• A Kubernetes cluster on BCM. The administrator should have set this up as described in Chapter 4
of the Containerization Manual.

• a dedicated user on the Kubernetes cluster

The simplest way for a user to use a BCM-managed Kubernetes cluster is if the cluster administrator
has configured it for use via the head node. A user can then simply connect to the Kubernetes cluster
via an ssh connection to the head node, and then load the environment via module load kubernetes.
The remainder of this section can then be skipped.

An alternative way for a user to use a BCM-managed Kubernetes cluster avoids going via the head
node, and uses a local PC.

8.3.1 Quickstart: Accessing The Kubernetes Dashboard
The Kubernetes Dashboard is a web browser-based way to manage Kubernetes tasks.

Requirements:

• from the local PC it should be possible to access the Kubernetes Dashboard URL at:
https://dashboard.<kubernetes cluster name>:30443

If that does not work, then the cluster administrator has probably modified the standard configu-
ration, and should be consulted on how to access the Kubernetes Dashboard.

• If the Dashboard is accessible, then the user needs a token to authenticate with the Kubernetes
Dashboard.

Obtaining And Using The Token
A user test is assumed to have been created according to the procedure in section 4.11 of the Con-
tainerization Manual. For the user test, a token can be obtained from the head node with the following
procedure, using the namespace and username of the user:

Example

[test@basecm11 ~]$ module load kubernetes

[test@basecm11 ~]$ USERNAME=test

[test@basecm11 ~]$ NS=${USERNAME}-restricted

[test@basecm11 ~]$ kubectl create token -n $NS $USERNAME

eyJhbGciOiJSUzI1NiIsImtpZCI6InZMcThEdlFucXo3cGZ3Yk5zQnB1VDdxTlRYVnpMWl92M2VVaDJGTU9CQlUifQ.\
eyJhdWQiOlsiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWwiXSwiZXhwIjoxNzA2NTM\
3ODAwLCJpYXQiOjE3MDY1MzQyMDAsImlzcyI6Imh0dHBzOi8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGVyLm\

8.3 Kubernetes Quickstarts 65

xvY2FsIiwia3ViZXJuZXRlcy5pbyI6eyJuYW1lc3BhY2UiOiJhbGljZS1yZXN0cmljdGVkIiwic2VydmljZWFjY291b\
nQiOnsibmFtZSI6ImFsaWNlIiwidWlkIjoiODQ1NTYyNmMtMGM4OC00Yzg0LTliZDEtZjdlYTEyNWI2MjNlIn19LCJu\
YmYiOjE3MDY1MzQyMDAsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDphbGljZS1yZXN0cmljdGVkOmFsaWNlIn0\
.kq5qXkNuh3pApYorNf2JCPfl4lQ8LS6oHJ4z73AWMD0Zmv-_J13L5YvSP2dBBY8-dUzxDY-SyPLjK8gT20sXJhSXY-\
tTEp7PvMme77R82IpWpgPJVQxv_d52btUPBoi6cqwi-14gsv-qOX40uxJr2ITQvurHRY8V1rewmyTgz-JCdvPNoqMtU\
x6Uv61Oh1cwJWrnlqhWYpzHL6YT2OvbV9manV0_-V2I6f5ci-wytFu0-r6goczrunuRDIGn9_ZUVUqe7XH6FEqMueGM\
bbF7AArq1-R52EA9ArzjzyXMRGEj2KdbKr_NXh-09FuxZ4-mGhBuk9-0PyUbHXn8M2WFhQ

If the username and related namespace are not known to the user, then the cluster administrator
should be asked to provide these.

The created token can be pasted from the terminal into the web browser, at the place where the token
is asked for (figure 8.1):

Figure 8.1: Kubernetes User Dashboard Authentication, Using Token Copy-Paste From A Terminal

After a successful authentication, the Dashboard displayed should appear as in figure 8.2:

66 Using Kubernetes

Figure 8.2: Kubernetes User Dashboard After Authentication

The user can now deploy a job using the previously-defined default namespace, as in the following
example. The task can be submitted as a YAML file, via the Dashboard URL

https://dashboard.<kubernetes cluster name>:30443#!/deploy?namespace=default

The task could be the pi-job.yml job of section 8.3.3. The result—π to 4000 places—can be seen in
the log associated with the jobs, accessible from the Dashboard URL

https://dashboard.<kubernetes cluster name>:30443#!/job?namespace=default

8.3.2 Quickstart: Using kubectl From A Local Machine
The advantage of connecting from a local PC is that there is no need to connect to the head node via
SSH.

Requirements:

8.3 Kubernetes Quickstarts 67

• the local PC should be able to access the Kubernetes API server at https://dashboard.<kubernetes
cluster name>:30443. The URL that is actually used is set up by the cluster administrator, who
should be contacted for details.

• The local PC should be Linux-based and run on an amd64 architecture.

Steps:

• On the PC, kubectl for Kubernetes 1.32 should be downloaded from the head node <headnode>.
It can be downloaded to a directory in the user path, such as /usr/bin

Example

$ rsync <username>@<headnode>:/cm/local/apps/kubernetes/current/bin/kubectl \
<directory in the user path>

• The user can make a .kube directory on the PC. The Kubernetes configuration for the user <user-
name> can then be picked up from <headnode>. This includes the keys and the certificates:

$ mkdir ~/.kube

$ rsync <username>@<headnode>:.kube/config-<cluster name> ~/.kube/config

• <cluster name> must be replaced with the fully qualified domain name of the Kubernetes cluster

• The user can check if kubectl is able to connect to the cluster by running the following commands:

Example

$ kubectl cluster-info

$ kubectl get nodes

$ kubectl get all

8.3.3 Quickstart: Submitting Batch Jobs With kubectl

A batch job can be created in Kubernetes. It is simply referred to as a “job”. It is basically made up of
non-persistent pods that run a one-off task.

A simple job to calculate π can be created by building a pi-job.yml file with the following content:

Example

apiVersion: batch/v1

kind: Job

metadata:

name: pi

spec:

completions: 8

parallelism: 1

template:

metadata:

name: pi

spec:

containers:

- name: pi

image: perl

command: ["perl", "-Mbignum=bpi", "-wle", "print bpi(4000)"]

restartPolicy: Never

/usr/bin

68 Using Kubernetes

This carries out a Perl-based calculation of π to 4000 places. Running it from the command line in
Bash directly could be done with:

Example

$ perl -Mbignum=bpi -wle "print bpi(4000)"

However, the idea here is to demonstrate Kubernetes batch jobs firing up and scaling pods for this
task instead, which is described next:

If the administrator has allowed the user access via Kubernetes policies, and has made the user a
Kubernetes user, then the job can be submitted with:

$ kubectl apply -f pi-job.yml

job "pi" created

If the job is horizontally scalable, then the number of replicas can be scaled with:

$ kubectl scale job/pi --replicas=4

job "pi" scaled

Information about the job can be obtained with (output truncated):

$ kubectl get job/pi

NAME DESIRED SUCCESSFUL AGE

pi 8 8 6m

$ kubectl describe job/pi

Name: pi

Namespace: default

...

The jobs can be followed with (output truncated):

$ kubectl get pods -aw

NAME READY STATUS RESTARTS AGE

pi-74gnd 0/1 Completed 0 6m

...

The logs of a pod can be viewed with:

$ kubectl logs -f <pod name>

An output is shown that starts with:

3.141592653589793238462643383279502884197169399375105820974...

Further information on the following job topics can be found at the associated links:

• job: https://kubernetes.io/docs/concepts/workloads/controllers/job/

• job parallelism: https://kubernetes.io/docs/tasks/job/parallel-processing-expansion/

8.3.4 Quickstart: Helm, The Kubernetes Package Manager
Helm (https://docs.helm.sh/) is a tool for managing charts. Charts are packages of pre-configured
Kubernetes resources.

Helm is installed and properly configured by default as a Kubernetes add-on. It is initialized for
every Kubernetes user when the Kubernetes module is loaded—there is no helm init or similar that
needs to be carried out first. For example (some text elided):

Example

https://kubernetes.io/docs/concepts/workloads/controllers/job/
https://kubernetes.io/docs/tasks/job/parallel-processing-expansion/
https://docs.helm.sh/

8.3 Kubernetes Quickstarts 69

$ module load kubernetes

$ helm version

version.BuildInfo{Version:"v3.18.3", GitCommit:"6838ebcf265a3842d1433956e8a622e3290cf324",\ GitTreeState:"clean",

GoVersion:"go1.24.4"}

Choices can be made from among the charts at the official repository at https://github.com/

kubernetes/charts. For example, GitLab and WordPress can be installed with:

$ helm install stable/gitlab --name my-gitlab

$ helm install stable/wordpress --name my-wordpress

A tutorial on using Helm is available at https://docs.helm.sh/using_helm/#using-helm

https://github.com/kubernetes/charts
https://github.com/kubernetes/charts
https://docs.helm.sh/using_helm/#using-helm

9
Spark On Kubernetes

Apache Spark is “a lightning-fast unified analytics engine for big data and machine learning”.
Since NVIDIA Base Command Manager version 9.0, the recommended way to run Spark workloads

inside BCM is within Kubernetes.
Documentation for Spark is available at https://spark.apache.org/docs/.

9.1 Important Requirements
By default only the root user of the cluster can access Kubernetes. Since that is not very useful, the clus-
ter administrator can grant access to regular users by using cm-kubernetes-setup with the �-add-user
flag.

The regular user should check that Kubernetes can be accessed via the user’s account (sections 8.2–
8.3), or Spark workloads will fail to run. Being able to load the kubernetes module and being able to
run the kubectl commands suggests that Kubernetes is properly accessible to the user:

Example

[test@cluster ~]$ module load kubernetes/default

[test@cluster ~]$ kubectl get all

NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE

service/kubernetes ClusterIP 10.150.0.1 <none> 443/TCP 8h

9.2 Running Spark Jobs Via The Kubernetes Spark Operator
Spark jobs can be run within Kubernetes if the cluster administrator has installed the
cm-kubernetes-spark-operator package. The installation can be done

• as part of cm-kubernetes-setup (page 40 of the Containerization Manual) or

• as part of the Base View Kubernetes Wizard using the navigation path:
Containers > Kubernetes > Kubernetes Wizard.

The following session assumes that the cluster administrator has configured Spark to run as a Ku-
bernetes operator (Chapter 6 of the Containerization Manual). In the session, a user alice carries out a
Spark way of calculating pi. This can be regarded as a "Hello world!" type of demonstration for Spark
users.

9.2.1 Example Spark Operator Run: Calculating Pi
For alice, a YAML file based on the specification at https://github.com/GoogleCloudPlatform/

spark-on-k8s-operator/blob/master/examples/spark-py-pi.yaml can be used:

Example

https://spark.apache.org/docs/
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/examples/spark-py-pi.yaml
https://github.com/GoogleCloudPlatform/spark-on-k8s-operator/blob/master/examples/spark-py-pi.yaml

72 Spark On Kubernetes

[alice@basecm11 ~]$ module load kubernetes

[alice@basecm11 ~]$ cat <<EOF > pi-spark.yaml

apiVersion: "sparkoperator.k8s.io/v1beta2"

kind: SparkApplication

metadata:

name: pyspark-pi

spec:

type: Python

pythonVersion: "3"

mode: cluster

image: "gcr.io/spark-operator/spark-py:v3.1.1"

imagePullPolicy: Always

mainApplicationFile: local:///opt/spark/examples/src/main/python/pi.py

sparkVersion: "3.1.1"

restartPolicy:

type: OnFailure

onFailureRetries: 3

onFailureRetryInterval: 10

onSubmissionFailureRetries: 5

onSubmissionFailureRetryInterval: 20

driver:

cores: 1

coreLimit: "1200m"

memory: "512m"

labels:

version: 3.1.1

serviceAccount: spark

executor:

cores: 1

instances: 1

memory: "512m"

labels:

version: 3.1.1

EOF

[alice@basecm11 ~]$ kubectl apply -f pi-spark.yaml

sparkapplication.sparkoperator.k8s.io/pyspark-pi created

[alice@basecm11 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 0/1 ContainerCreating 0 1s

[alice@basecm11 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 1/1 Running 0 3s

[alice@basecm11 ~]$ kubectl get sparkapplications

NAME AGE

pyspark-pi 7s

[alice@basecm11 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 1/1 Running 0 14s

pythonpi-e768128383a881b3-exec-1 0/1 ContainerCreating 0 0s

[alice@basecm11 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

pyspark-pi-driver 0/1 Completed 0 34s

pythonpi-e768128383a881b3-exec-1 0/1 Terminating 0 20s

[alice@basecm11 ~]$ kubectl get pods

NAME READY STATUS RESTARTS AGE

9.3 Running Spark Jobs Directly Via spark-submit 73

pyspark-pi-driver 0/1 Completed 0 36s

Instead of tracking the pod with:
kubectl get pods

as in the preceding session, or with the more convenient:
watch kubectl get pods

the pod could be tracked with the -f| --follow option to stream the driver logs:

Example

[alice@basecm11 ~]$ kubectl logs pyspark-pi-driver -f

To get intended output of the pi run—the calculated value of pi—it is sufficient to grep the log as
follows:

Example

[alice@basecm11 ~]$ kubectl logs pyspark-pi-driver | grep �Pi

Pi is roughly 3.148800

After the pi run has completed, the resources can be removed from the namespace:

[alice@basecm11 ~]$ kubectl delete -f pi-spark.yaml

sparkapplication.sparkoperator.k8s.io "pyspark-pi" deleted

[alice@basecm11 ~]$ kubectl get pods

No resources found in alice-restricted namespace.

[alice@basecm11 ~]$ kubectl get sparkapplications

No resources found in alice-restricted namespace.

9.3 Running Spark Jobs Directly Via spark-submit

The Spark documentation covers a pi run via spark-submit. The BCM knowledge base explains
how to use spark-submit to run a job with older BCM versions (https://kb.brightcomputing.
com/knowledge-base/how-to-deploy-spark-with-kubernetes-on-bright-9-0-9-1-9-2/). How-
ever, using the Kubernetes operator submission method (section 9.2) is recommended instead in more
recent versions.

9.4 Accessing The Spark User Interface
If a job is run via the Kubernetes Operator or spark-submit, then the Spark User Interface (Spark UI)
can be used to monitor the job. The Spark UI is shut down once the job has finished, so it only makes
sense to access the Spark UI for longer-running jobs.

The kubectl port-forward command can be used to allow access to the Spark UI:

[test@cluster ~]$ module load kubernetes

[test@cluster ~]$ kubectl get pod

NAME READY STATUS RESTARTS AGE

spark-pi-1540840666830-driver 0/1 Completed 0 4m34s

spark-pi-1540840938874-driver 0/1 Running 0 2s

[test@cluster ~]$ kubectl port-forward spark-pi-1540840938874-driver 3000:4040

Forwarding from 127.0.0.1:3000 -> 4040

Forwarding from [::1]:3000 -> 4040

Handling connection for 3000

https://kb.brightcomputing.com/knowledge-base/how-to-deploy-spark-with-kubernetes-on-bright-9-0-9-1-9-2/
https://kb.brightcomputing.com/knowledge-base/how-to-deploy-spark-with-kubernetes-on-bright-9-0-9-1-9-2/

74 Spark On Kubernetes

The preceding example makes the dashboard available via local port 3000 on the machine where
the port-forward command is executed. The Spark UI runs on port 4040 inside the pod, and displays
something like in figure 9.1:

Figure 9.1: The Spark dashboard, forwarded on port 3000

9.5 Mounting Volumes Into Containers
The official documentation at https://spark.apache.org/docs/latest/running-on-kubernetes.

html#using-kubernetes-volumes gives an outline of how volumes can be mounted into containers.
In summary, there are 3 ways a Kubernetes volume (https://kubernetes.io/docs/concepts/

storage/volumes) can be mounted:

1. hostPath: mounts a file or directory from the host node’s filesystem into a pod.

2. emptyDir: an initially empty volume, created when a pod is assigned to a node.

3. persistentVolumeClaim: used to mount a PersistentVolume into a pod.

Mounting A hostPath

The official documentation mentions adding the following two flags to specify how the volume is
mounted inside the container:

--conf spark.kubernetes.driver.volumes.[VolumeType].[VolumeName].mount.path=<mount path>
--conf spark.kubernetes.driver.volumes.[VolumeType].[VolumeName].mount.readOnly=<true|false>

The following flag should also be added, to specify the path on the host:

--conf spark.kubernetes.driver.volumes.[VolumeType].[VolumeName].options.path=<mount path>

https://spark.apache.org/docs/latest/running-on-kubernetes.html#using-kubernetes-volumes
https://spark.apache.org/docs/latest/running-on-kubernetes.html#using-kubernetes-volumes
https://kubernetes.io/docs/concepts/storage/volumes
https://kubernetes.io/docs/concepts/storage/volumes

9.5 Mounting Volumes Into Containers 75

The volumes can be specified for each executor as well as for the driver. For an executor, the specifi-
cation should use spark.kubernetes.executor instead of spark.kubernetes.driver.

For example, the NFS share /cm/shared of a typical BCM setup could be made available on executor
pods by adding the following 3 flags to the spark-submit command:

Example

module load kubernetes/default

module load spark

spark-submit \

--master k8s://https://localhost:10443 \

--deploy-mode cluster \

--name spark-pi \

--class org.apache.spark.examples.SparkPi \

--conf spark.kubernetes.namespace=default \

--conf spark.executor.instances=2 \

--conf spark.kubernetes.container.image=docker.io/brightcomputing/spark:2.4.0 \

--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \

--conf spark.kubernetes.executor.volumes.hostPath.cmshared.options.path=/cm/shared \

--conf spark.kubernetes.executor.volumes.hostPath.cmshared.mount.path=/data \

--conf spark.kubernetes.executor.volumes.hostPath.cmshared.mount.readOnly=false \

local:///opt/spark/examples/jars/spark-examples_2.11-2.4.0.jar 10000

This results in /cm/shared being mounted in read-write mode on the mount path /data:

[root@cluster ~]# kubectl get pod

NAME READY STATUS RESTARTS AGE

spark-pi-1552563523319-driver 0/1 Completed 0 23h

spark-pi-1552648768369-driver 0/1 Completed 0 5m40s

spark-pi-1552648961734-driver 0/1 Completed 0 2m26s

spark-pi-1552649048516-driver 1/1 Running 0 59s

spark-pi-1552649048516-exec-1 1/1 Running 0 53s

spark-pi-1552649048516-exec-2 1/1 Running 0 53s

[root@cluster ~]# kubectl exec -it spark-pi-1552649048516-exec-1 /bin/bash

bash-4.4# mount | grep shared

master:/cm/shared on /data type nfs (rw,relatime,vers=3,...)

bash-4.4# ls -l /data

total 12

drwxr-xr-x 39 root root 4096 Mar 13 10:11 apps

drwxr-xr-x 13 root root 162 Mar 3 21:22 docs

drwxr-xr-x 3 root root 43 Mar 3 21:22 examples

-rw-r--r-- 1 root root 101 Mar 14 11:14 init.sh

drwxr-xr-x 3 root root 16 Mar 3 21:29 licenses

drwxr-xr-x 28 root root 4096 Mar 12 13:31 modulefiles

bash-4.4#

Using Persistent Volume Claims
Spark in this case assumes that the Kubernetes cluster being managed by the user has persistent volumes
available. A list of persistent volumes types can be found at: https://kubernetes.io/docs/concepts/
storage/persistent-volumes/#types-of-persistent-volumes.

Claims to specific types of storage can be created for use with Spark. If spark-submit tries to use a
persistent volume claim, then it assumes the claim already exists. It does not initiate a claim by itself.

In the following specification, for demonstration purposes, a claim my-claim is created:

apiVersion: v1

kind: PersistentVolumeClaim

https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#types-of-persistent-volumes

76 Spark On Kubernetes

metadata:

name: my-claim

spec:

accessModes:

- ReadWriteOnce

resources:

requests:

storage: 1000Gi

This claim should bind to a persistent volume that meets the criteria. If none are configured, then
the user can create a local volume for /cm/shared, for example with:

kind: PersistentVolume

apiVersion: v1

metadata:

name: kube-pv-volume

labels:

type: local

spec:

capacity:

storage: 1000Gi

accessModes:

- ReadWriteOnce

hostPath:

path: /cm/shared

Applying the above two YAML configurations should result in the persistent volume claim object
my-claim, and the persistent volume kube-pv-volume in Kubernetes:

[root@cluster ~]# kubectl get pv

NAME CAPACITY ACCESS MODES RECLAIM POLICY STATUS CLAIM STORAGECLASS

kube-pv-volume 1000Gi RWO Retain Bound default/my-claim

[root@cluster ~]# kubectl get pvc

NAME STATUS VOLUME CAPACITY ACCESS MODES STORAGECLASS AGE

my-claim Bound kube-pv-volume 1000Gi RWO 5m35s

Example

Invoking spark-submit as follows will then try to find the claim with name my-claim.

module load kubernetes/default

module load spark

spark-submit \

--master k8s://https://localhost:10443 \

--deploy-mode cluster \

--name spark-pi \

--class org.apache.spark.examples.SparkPi \

--conf spark.kubernetes.namespace=default \

--conf spark.executor.instances=2 \

--conf spark.kubernetes.container.image=docker.io/brightcomputing/spark:2.4.0 \

--conf spark.kubernetes.authenticate.driver.serviceAccountName=spark \

--conf \

spark.kubernetes.executor.volumes.persistentVolumeClaim.cmshared.options.claimName=my-claim \

--conf spark.kubernetes.executor.volumes.persistentVolumeClaim.cmshared.mount.path=/data \

--conf spark.kubernetes.executor.volumes.persistentVolumeClaim.cmshared.mount.readOnly=false \

local:///opt/spark/examples/jars/spark-examples_2.11-2.4.0.jar 10000

9.5 Mounting Volumes Into Containers 77

[root@cluster ~]# kubectl get pod

NAME READY STATUS RESTARTS AGE

spark-pi-1552563523319-driver 0/1 Completed 0 24h

spark-pi-1552648768369-driver 0/1 Completed 0 22m

spark-pi-1552648961734-driver 0/1 Completed 0 18m

spark-pi-1552649048516-driver 0/1 Completed 0 17m

spark-pi-1552649606812-driver 0/1 Completed 0 8m9s

spark-pi-1552650084516-driver 1/1 Running 0 11s

spark-pi-1552650084516-exec-1 1/1 Running 0 4s

spark-pi-1552650084516-exec-2 1/1 Running 0 3s

The claim that was specified can be found in the pod description:

[root@cluster ~]# kubectl describe pod spark-pi-1552650084516-exec-1 | grep my-claim -C 2

cmshared:

Type: PersistentVolumeClaim (reference to a PersistentVolumeClaim in the same namespace)

ClaimName: my-claim

ReadOnly: false

default-token-rvrf8:

Inside the executor pods /data is then found to be available, and presents the contents of /cm/shared
from the host OS.

10
User Portal

The user portal allows users to log in via a browser and view the state of the cluster themselves. The
interface does not allow administration, but presents data about the system. The presentation of the
data can be adjusted in many cases.

The user portal is accessible at a URL with the format of https://<head node host name, or IP ad-
dress>:8081/userportal, unless the administrator has changed it.

The first time a browser is used to log in to the cluster portal, a warning about the site certificate
being untrusted appears in a default NVIDIA Base Command Manager configuration. This can safely
be accepted.

The user portal has several modes.

• The Overview mode () is opened by default, and allows a user to access the following pages via
links in the left hand column:

– Overview (section 10.1)

– Workload (section 10.2)

– Nodes (section 10.3)

– Kubernetes (section 10.4)

• The Monitoring mode (section 10.5) () allows a user to plot device measurables

• The Accounting and reporting mode (section 10.6) () allows a user to plot job-based resource
consumption.

10.1 Overview Page
The default Overview page allows a quick glance to convey the most important cluster-related informa-
tion for users (figure 10.1):

80 User Portal

Figure 10.1: User Portal: Overview Page

The following items are displayed on a default home page:

• a Message Of The Day. The administrator may put up important messages for users here

• links to the documentation for the cluster

• contact information. This typically shows how to contact technical support

• an overview of the cluster state, displaying some cluster parameters

10.2 Workload Page
The Workload page allows a user to see workload-related information for the cluster (figure 10.2). The
columns are sortable.

By default, only the cluster administrator can see information for all users. The administrator can
adjust the profile for a user to allow that user to view information from other users.

10.3 Nodes Page 81

Figure 10.2: User Portal: Workload Page

The workload jobs are organized in tables according to:

• Queues

• Parent Jobs

• Jobs

10.3 Nodes Page
The Nodes page shows nodes on the cluster (figure 10.3), along with some of their properties. Nodes
and their properties are arranged in sortable columns.

Figure 10.3: User Portal: Nodes Page

The following information about the head or regular nodes is presented:

• HOSTNAME: the node name

• STATE: For example, UP, DOWN, INSTALLING, along with some other information

• MEMORY: RAM on the node

82 User Portal

• CORES: Number of cores on the node

• CPU: Type of CPU, for example, Dual-Core AMD Opteron™

• SPEED: Processor speed

• GPU: GPUs on the node, if any

• NICS: Number of network interface cards on the node, if any

• IB: Number of InfiniBand interconnects on the node, if any

• CATEGORY: The node category that the node has been allocated by the administrator (by default it
is default)

10.4 Kubernetes Page
The Kubernetes page (figure 10.4) shows an overview of the resources available in clusters running
Kubernetes.

Figure 10.4: User Portal: Kubernetes Page

The Kubernetes cluster is subset of a BCM cluster, and is the part of the BCM cluster that runs and
controls pods. The items shown are:

• NAME: The Kubernetes Cluster name

• VERSION: The Kubernetes version

• NODES: The number of nodes in the Kubernetes cluster

• NAMESPACES: The number of namespaces defined for the Kubernetes cluster

• SERVICES: The number of services that are served by the Kubernetes cluster

• REPLICATION CONTROLLERS: The number of replication controllers that run on the Kubernetes clus-
ter

• PERSISTENT VOLUMES: The number of persistent volumes created for the pods of the Kubernetes
cluster

10.5 Monitoring Mode 83

• PERSISTENT VOLUMES CLAIMS: The number of persistent volumes claims created on the Kuber-
netes cluster

Some notes are also presented for the user on how to access the Kubernetes Dashboard.

10.5 Monitoring Mode
By default the Monitoring mode page displays two empty plot panels within the dashboard section of
the page.

The panels can have measurables drag-and-dropped into them from the measurables navigation tree
on the left hand side of the page (figure 10.5). The tree can be partly or fully expanded.

A filter can be used to select from visible measurables. For example, after expanding the tree, it is
possible to find a measurable related to the cluster occupation rate (Appendix G of the Administrator
Manual) by using the key word "occupation" in the filter. The measurable can then be dragged from the
options that remain visible.

Extra plot panel widgets can be added to the page by clicking on the Add new widget option (the©+
button) in the panels section of the dashboard page.

Figure 10.5: User Portal: Monitoring Page Plots

A new dashboard tab can be added to the page by clicking on the Add new dashboard option (the©+
button) in the dashboard tabs section of the page.

10.6 Accounting And Reporting Mode
The Accounting and reporting mode page allows resource use to be displayed and reported by run-
ning PromQL queries. Further background on this can be found in Chapter 12 of the Administrator
Manual.

Resource reports can be created per user and per account by running selected PromQL queries (fig-
ure 10.6). The reports can be gathered in dashboard tabs.

84 User Portal

Figure 10.6: User Portal: Dashboard Tabs

The browser configuration that generates the reports can be saved, and the report data values can be
displayed in the browser in a table for instant queries and range queries, as well as displayed as a pie
chart for instant queries (figure 10.7). The data values can also be exported to CSV or Microsoft Excel
format and downloaded.

Figure 10.7: User Portal: Simple Accounts

11
Using Jupyter

11.1 Introduction
Jupyter is a general name given to a system of software components integrated with Jupyter Notebook.

Chapter 16 of the Administrator Manual describes Jupyter for NVIDIA Base Command Manager, but
is meant for cluster administrators rather than end users.

For the orientation of end users, excerpts from that chapter that give a short overview of the Jupyter
components are repeated in this introductory section here. How a user can use the components is de-
scribed in greater detail in the remaining sections of this chapter.

What Is Jupyter Notebook?
Jupyter Notebook (https://jupyter-notebook.readthedocs.io/), or Jupyter, is a client-server open-
source application that provides a convenient way for a cluster user to write and execute notebook docu-
ments in an interactive environment.

In Jupyter, a notebook document, or notebook, is content that can be managed by the application.
Notebooks are organized in units called cells and can contain both executable code, as well as items that
are not meant for execution.

Items not meant for execution can be, for example: explanatory text, figures, formulas, or tables.
Notebooks can also store the inputs and outputs of an interactive session.

Notebooks can thus serve as a complete record of a user session, interleaving code with rich repre-
sentations of resulting objects.

These documents are encoded as JSON files and saved with the .ipynb extension. Since JSON is a
plain text format, notebooks can be version-controlled, shared with other users and exported to other
formats, such as HTML, LATEX, PDF, and slide shows.

What Is A Notebook Kernel?
A notebook kernel (often shortened to kernel) is a computational engine that handles the various types of
requests in a notebook (e.g. code execution, code completions, inspection) and provides replies to the
user (https://jupyter.readthedocs.io/en/latest/projects/kernels.html). Usually kernels only
allow execution of a single language. There are kernels available for many languages, of varying quality
and features.

What Is JupyterHub?
Jupyter on its own provides a single user service. JupyterHub (https://jupyterhub.readthedocs.io/)
allows Jupyter to provide a multi-user service, and is therefore commonly installed with it. JupyterHub
is an open-source project that supports a number of authentication protocols, and can be configured in
order to provide access to a subset of users.

https://jupyter-notebook.readthedocs.io/
https://jupyter.readthedocs.io/en/latest/projects/kernels.html
https://jupyterhub.readthedocs.io/

86 Using Jupyter

What Is JupyterLab?
JupyterLab (https://jupyterlab.readthedocs.io/) is a modern and powerful interface for Jupyter. It
enables users to work with notebooks and other applications, such as terminals or file browsers. It is
open-source, flexible, integrated, and extensible.

JupyterLab works out of the box with JupyterHub. It can be used to arrange the user interface to
support a wide range of workflows in data science, scientific computing, and machine learning.

JupyterLab is extensible with plugins that can customize or enhance any part of the interface. Plugins
exist for themes, file editors, keyboard shortcuts, as well as for other components.

What Is A Jupyter Extension?
Several components of the Jupyter environment can be customized in different ways with extensions.
Some types of extensions are:

• IPython extensions (https://ipython.readthedocs.io/en/stable/config/extensions/
#ipython-extensions)

• Jupyter Notebook server extensions (https://jupyter-notebook.readthedocs.io/en/stable/
extending/index.html)

• JupyterLab extensions (https://jupyterlab.readthedocs.io/en/stable/user/extensions.
html)

Extensions are usually developed, bundled, released, installed, and enabled in different ways.
Each extension provides a new functionality for a specific component. For example, JupyterLab

extensions can customize or enhance any part of the JupyterLab user interface. Extensions can provide
new themes, file viewers, editors and renderers for rich output in notebooks. They can also add settings,
add keyboard shortcuts, or add items to the menu or command palette.

What Is Jupyter Kernel Provisionning?
By default, Jupyter runs kernels locally, which can exhaust server resources. A resource manager, such
as a workload manager (Slurm, PBS, LSF) or Kubernetes, can be used to deal with this issue.

Jupyter Kernel Provisioning (https://jupyter-client.readthedocs.io/en/latest/provisioning.
html#kernel-provisioning) provides a pluggable interface to distribute kernels across the compute
cluster, and uses local underlying resource managers.

The Jupyter Kernel Provisioning framework provides scalability, an improved multi-user support,
and a more granular security for Jupyter, in comparison with Jupyter Enterprise Gateway.

In BCM, all the technologies mentioned in these sections are combined to provide a powerful, cus-
tomizable and user-friendly JupyterLab web interface running on a lightweight, multi-tenant, multi-
language, scalable and secure environment, ready for a wide range of enterprise scenarios.

For convenience, in the following sections, Jupyter is generally used to collectively refer to Jupyter
Notebook, JupyterHub and JupyterLab

BCM Jupyter Extensions
For a default deployment of Jupyter, BCM installs and enables the following extensions to the Jupyter
environment:

• Jupyter Addons: A Jupyter Notebook server extension that performs API calls to CMDaemon and
manages other server extensions;

• Jupyter Kernel Provisioning modules: A set of modules created to handle Jupyter kernels’ life-
cycles in different possible BCM configurations. The modules available are: Slurm, PBS, LSF,
Kubernetes.

• Jupyter Kernel Creator (section 11.4): A Jupyter Notebook server extension that provides a new
interactive and user-friendly way to create kernels;

https://jupyterlab.readthedocs.io/
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://ipython.readthedocs.io/en/stable/config/extensions/#ipython-extensions
https://jupyter-notebook.readthedocs.io/en/stable/extending/index.html
https://jupyter-notebook.readthedocs.io/en/stable/extending/index.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyterlab.readthedocs.io/en/stable/user/extensions.html
https://jupyter-client.readthedocs.io/en/latest/provisioning.html#kernel-provisioning
https://jupyter-client.readthedocs.io/en/latest/provisioning.html#kernel-provisioning

11.2 Jupyter Notebook Examples 87

• Jupyter VNC (section 11.7): A Jupyter Notebook server extension that enables remote desktops
with VNC from notebooks;

• JupyterLab Tools: A JupyterLab extension that exposes BCM server extensions functionalities to
the users and shows the Cluster View section;

• Jupyter WLM Magic (section 11.8): An IPython extension that simplifies scheduling of workload
manager jobs from the notebook;

• Jupyter Kubernetes Operators Manager (section 16.9 of the Administrator Manual): An extension
that integrates with Kubernetes clusters, and for which it provides basic overview and manage-
ment features.

The default setup for the user is described in the next sections. It may however be the case that
the cluster administrator has customized Jupyter for the needs of the organization, in which case the
description that follows may differ from the real life situation.

For example, if the Jupyter login host is at an IP address of 10.2.75.147 then the URL the user uses
to log in from with a browser (figure 11.1) is by default:

https://10.2.75.147:8000

Figure 11.1: JupyterHub User Login Screen

11.2 Jupyter Notebook Examples
The default BCM implementation of Jupyter provides a number of machine learning notebook examples
that can be executed with Jupyter.

The notebooks include some applications developed with TensorFlow, PyTorch, MXNet, and other
frameworks. The applications can be found in the /cm/shared/examples/jupyter/notebooks/ direc-
tory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/examples/jupyter/notebooks/

Keras+TensorFlow2-addition.ipynb psql-example.ipynb Spark+XGBoost-mortgage.ipynb

llm-bcm-manuals-rag Pytorch-cartpole.ipynb TensorFlow-minigo.ipynb

llm-codellama-local R-iris.ipynb

/cm/shared/examples/jupyter/notebooks/

88 Using Jupyter

MXNet-superresolution.ipynb Spark-pipeline.ipynb

The datasets needed to execute these notebooks can be found in the /cm/shared/examples/jupyter/
datasets/ directory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/examples/jupyter/datasets/

880f8b8a6fd-mortgage-small.tar.gz kaggle-iris.csv

Users can copy these examples to their home directories, create or choose appropriate kernels to
execute them, and interactively run them from Jupyter. In order to edit notebooks, the write permissions
must be kept during the copy.

It is the responsibility of users to make sure that the required modules are loaded by their Jupyter
kernels. The list of frameworks and libraries required to run an example is usually available at the
beginning of each notebook.

11.3 Jupyter Kernels
In Jupyter, kernels are defined as JSON files.

Any user that the cluster administrator has registered in the Linux-PAM system can list the available
Jupyter kernels via the command line. The following example is run in the initial Jupyter environment:

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter kernelspec list

Available kernels:

python3 /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3

Each kernel directory contains a kernel.json file describing how Jupyter spawns that kernel:

Example

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/apps/jupyter/current/share/jupyter/kernels/*/kernel.json

/cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

In addition to specifications for shared kernels, each user can define new personal ones in the home
directory. By default, the Jupyter data directory for a user is located at $HOME/.local/share/jupyter.

This path can be verified with Jupyter by using the --paths option:

Example

[jupyterhubuser@basecm11 ~]$ jupyter --paths

config:

/home/jupyterhubuser/.jupyter

/home/jupyterhubuser/.local/etc/jupyter

/cm/local/apps/jupyter/conf

/cm/shared/apps/jupyter/current/etc/jupyter

data:

/home/jupyterhubuser/.local/share/jupyter

/cm/shared/apps/jupyter/current/share/jupyter

runtime:

/home/jupyterhubuser/.local/share/jupyter/runtime

The simplest definition for a Python3 kernel designed to run on the login node is:

/cm/shared/examples/jupyter/datasets/
/cm/shared/examples/jupyter/datasets/

11.3 Jupyter Kernels 89

{

"argv": ["python",

"-m",

"ipykernel_launcher",

"-f",

"{connection_file}"

],

"display_name": "Python 3",

"language": "python"

}

In the preceding kernel definition:

• argv: is the command to be executed to locally spawn the kernel

• "display_name": is the name to be displayed in the JupyterLab interface

• "language": is the supported programming language ("language")

• "{connection_file}" (https://jupyter-client.readthedocs.io/en/stable/kernels.html#
connection-files) is a placeholder, and is replaced by Jupyter with the actual path to the con-
nection file before starting the kernel.

The following kernel is Jupyter’s default Python 3 kernel distributed by BCM in the initial environ-
ment:

Example

[jupyterhubuser@basecm11 ~]$ cat /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3/kernel.json

{

"argv": [

"/cm/local/apps/python312/bin/python3.12",

"-m",

"ipykernel_launcher",

"--InteractiveShellApp.extra_extensions=cm_jupyter_wlm_magic",

"--TerminalIPythonApp.extra_extensions=cm_jupyter_wlm_magic",

"-f",

"{connection_file}"

],

"display_name": "Python 3",

"language": "python",

"env": {

"PYTHONPATH": "/cm/shared/apps/jupyter/current/lib64/python3.12/site-packages:/cm/shared/apps/jupyter/

current/lib/python3.12/site-packages"

}

}

The two kernels are not very different. They differ from each other in the Python 3 binary path, the
IPython extension (Jupyter WLM Magic), and the exported PYTHONPATH environment variable ("env").

https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files
https://jupyter-client.readthedocs.io/en/stable/kernels.html#connection-files

90 Using Jupyter

11.3.1 Jupyter Kernel Provisioning Kernels
Jupyter is designed to run both the kernel processes, as well as the user interface (JupyterLab or
Jupyter Notebook) on the same host. The kernel {connection_file} is therefore stored in the
~/.local/share/jupyter/runtime directory, or in the /run directory.

JupyterLab can delegate the task of spawning kernels to another component, Jupyter Kernel Provi-
sioning, as defined in the kernel’s JSON file for kernel_provisioner. Jupyter Kernel Provisioning allows
the complete life-cycle of several Jupyter kernels to be managed at the same time—their start, status
monitoring, and termination, but the particular Jupyter kernels that run are otherwise independent of
Jupyter Kernel Provisioning, and can be managed by third parties.

Jupyter Kernel Provisioning requires an extended kernel.json definition to describe a particular
process-proxy module to handle the kernel.

A simple definition for a Python3 kernel designed to be scheduled via JEG is:

{

"display_name": "Python 3.12 via SLURM 250102185019",

"language": "python",

"metadata": {

"kernel_provisioner": {

"provisioner_name": "slurm-provisioner",

"config": {

"timeout": 60,

"response_manager": {

"version": 2

},

"submit_cmd": {

"path": "templates/submit_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"query_cmd": {

"path": "templates/query_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"info_cmd": {

"path": "templates/info_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"cancel_cmd": {

"path": "templates/cancel_cmd.sh.j2",

"vars": {

"modules": "shared slurm jupyter-eg-kernel-wlm-py312"

}

},

"submit_script": {

"path": "templates/submit_script.sh.j2",

"vars": {

"job_prefix": "jupyter-kernel-slurm-py312",

"partition": "",

"ntasks": "1",

"gres": "",

11.3 Jupyter Kernels 91

"work_dir": "/home/alice",

"modules": "shared slurm jupyter-eg-kernel-wlm-py312",

"oversubscribe": false,

"pythonuserbase_loc": "temp"

}

}

}

}

},

"argv": []

}

In this example, the "metadata" entry has been added. It includes "kernel_provisioner" and
"provisioner_name", which define the exact provisioner being used to manage the life-cycle of the
kernel. The provisioner is defined via Python’s entry points specification.

It also contains paths to several script templates used to spawn the job within the context
that the kernel process runs, and sets the corresponding environment variables and other vari-
ables for the templates. The "argv": [] is empty because it is replaced by a script defined in
templates/submit_script.sh.j2

BCM is equipped with several types of provisioners to interact with a wide range of resource man-
agers, such as Kubernetes or Slurm. This allows kernels to be scheduled across compute nodes.

BCM recommends that kernels using the Jupyter Kernel Provisioning mechanism are created and
used with the Jupyter Kernel Creator (section 11.4) extension.

11.3.2 Tunables For Kernel Provisioners
BCM provides defaults for all the templates. The aim is to have the kernels that are created just work
on a typical cluster. However a better fit to the running environment may be possible with some further
fine-tuning.

Configuration parameters for modifying the kernel templates can be added with cmsh. These pa-
rameters are put into the Jupyter configuration file at /cm/local/apps/jupyter/conf/jupyterhub_

config.py, and become accessible when JupyterLab starts. Templates or already-created kernels can
be edited—which might be a preferred approach to test a parameter before simply adding it via cmsh.
Parameters that are set in the kernel specification (the kernel.json file) have precedence over the ones
set in jupyterhub_config.py

The following example shows a session that adds the c.KernelResponseManager.public_ip configura-
tion parameters within cmsh:

Example

[root@basecm11 ~]# cmsh

[basecm11]% configurationoverlay

[basecm11->configurationoverlay]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]]% roles

[basecm11->configurationoverlay[jupyterhub]->roles]% use jupyterhub

[basecm11->configurationoverlay[jupyterhub]->roles[jupyterhub]]% configs

[basecm11->...]->roles[jupyterhub]->configs]% add c.KernelResponseManager.public_ip

[basecm11->...]->roles*[jupyterhub*]->configs*[c.KernelResponseManager.public_ip*]]% set value "'10.10.1.1'"

[basecm11->...]->roles*[jupyterhub*]->configs*[c.KernelResponseManager.public_ip*]]% commit

On commit, the cm-jupyter service is restarted, which means that all user sessions are dropped. To
avoid this, editing the templates directly in the /cm/shared/apps/jupyter/current/share/jupyter/

kerneltemplates directory can be considered.

/cm/local/apps/jupyter/conf/jupyterhub_config.py
/cm/local/apps/jupyter/conf/jupyterhub_config.py
 /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates
 /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates

92 Using Jupyter

Table 11.3.2: Jupyter Kernel Tunables

Configuration parameter
Path in kernel.json

Default Description(metadata.kernel_

provisioner.config)

c.CMKernelProvisionerBase. .timeout 5 Timeout starting kernel
timeout

c.CMKernelProvisionerBase. .include_regex_env ^(.+_API_(KEY|TOKEN| Regex for environment
include_regex_env HOST|TYPE|ORG_ID| variable names to be

ENDPOINT)|HF_.+)$ inherited from JupyterLab
process running on login
node

c.CMKernelProvisionerBase. .exclude_regex_env ^(JPY_API_TOKEN| Regex for environment
exclude_regex_env JUPYTERHUB_.+|PYTHON.+| variable names not to be

JUPYTERLAB_.+|PATH| passed to running
LD_LIBRARY_PATH.*)$ kernels

c.CMJKProvisioner. .poll_interval 5 Polling interval and
poll_interval interval between retries for

k8s operations

c.CMJKProvisioner. .operation_timeout 5 Timeout for running
operation_timeout commands interacting with

k8s

c.KernelResponseManager. .response_manager. Detected The IP address on the login
public_ip public_ip automatically node that jupyter-kernel-

starter will use for call-
backs when the kernel is
started on the compute node

c.KernelResponseManager. .response_manager. Detected The network on the login
public_network public_network automatically node that jupyter-kernel-

starter will use for call-
backs when the kernel is
started on the compute node

c.KernelResponseManager. .response_manager. Detected External hostname of the
public_hostname public_hostname automatically login node can be specified,

and the public IP address
will be detected by resolving

c.KernelResponseManager .response_manager. Detected The IP address used by the
bind_ip bind_ip automatically the response manager to

bind the socket that lis-
tens for callbacks from
jupyter-kernel-starter

...continues

11.4 Jupyter Kernel Creator Extension 93

...continued

Configuration parameter
Path in kernel.json

Default Description(metadata.kernel_

provisioner.config)

c.KernelResponseManager. .response_manager. Detected The IP address used by
bind_network bind_network automatically the response manager to

bind the socket that lis-
tens for callbacks from
jupyter-kernel-starter

c.KernelResponseManager. .response_manager. 1025 The start of the port range
bind_port_range_start bind_port_range_start within which the response

manager tries to obtain a
port, for listening to call-
backs from the kernel

c.KernelResponseManager. .response_manager. 65535 The end of the port range
bind_port_range_end bind_port_range_end within which the response

manager tries to obtain a
port, for listening to call-
backs from the kernel

c.KernelResponseManager. .response_manager. 16 How many times the
bind_port_retries bind_port_retries response manager tries to

find a free port

c.KernelResponseManager. .response_manager. 5 How many incoming
max_in_requests max_in_requests messages to the kernel

starter can be buffered

c.KernelResponseManager. .response_manager. 5 How many outgoing
max_out_requests max_out_requests 5 messages to the kernel

starter can be buffered

The response manager in the preceding table is a part of WLM kernel provisioners. It is dedicated to
getting callbacks and managing signal communications with the running kernel. It acts as a proxy for
system signals and informs the kernel provisioner about the kernel being started and which ports it is
listening to. The response manager works in tandem with jupyter-kernel-starter.

11.4 Jupyter Kernel Creator Extension
Creating or editing kernels can be cumbersome and error-prone for users, depending on the features of
the execution context desired for their notebooks.

To provide a more user-friendly experience, BCM includes the Jupyter Kernel Creator extension in
JupyterLab. This extension is accessed from the navigation pane in the JupyterLab interface, by clicking
on the BCM icon.

Jupyter Kernel Creator allows users to create kernels using the JupyterLab interface, without the
need to directly edit JSON files. With this interface users can create kernels by customizing an available

94 Using Jupyter

template according to their needs.
A template can be considered to be the skeleton of a kernel, with several preconfigured options, and

others options that are yet to be specified. Common customizations for templates include environment
modules to be loaded, workload manager queues to be used, number and type of GPUs to acquire, and
so on.

Templates are usually defined by administrators according to cluster capabilities, programming lan-
guages and user requirements. Each template can provide different options for customizations.

Administrators often create different templates to take advantage of different workload managers,
programming languages and hardware resources. For example, an administrator may define a template
for scheduling Python kernels via Kubernetes, another one for R kernels via Slurm, and yet another one
for Bash kernels via Platform LSF.

11.4.1 BCM Predefined Kernel Templates
To simplify Jupyter configuration for administrators, BCM distributes a number of pre-defined tem-
plates with Jupyter Kernel Creator. These templates can be used for default configurations of BCM
workload managers, and can be customized and extended for more advanced use. Kernel templates de-
fined by BCM can be found in the Jupyter installation directory, under the kerneltemplates directory:

[jupyterhubuser@basecm11 ~]$ ls /cm/shared/apps/jupyter/current/share/jupyter/kerneltemplates/

filter.yaml k8s-cmjkop-py lsf-py312 pbspro-bash slurm-py312 slurm-pyxis-r

k8s-cmjkop-julia k8s-cmjkop-py-spark openpbs-bash pbspro-py312 slurm-py-conda

k8s-cmjkop-ngc-py lsf-bash openpbs-py312 slurm-bash slurm-pyxis-py

BCM Predefined Kernel Templates Seen By Users
Users can view the available predefined kernel templates in the Jupyter web browser interface, within
the KERNEL TEMPLATES section of the dedicated BCM extensions panel (figure 11.2):

Figure 11.2: JupyterLab BCM extensions section with kernel templates

11.4 Jupyter Kernel Creator Extension 95

However, the templates provided by BCM are listed in the panel only if they can be used on the
cluster. This means that the templates are listed only after the associated workload manager instance,
or associated Kubernetes configuration (such as a Kubernetes operator), have been deployed by cluster
manager utilities. For example:

• After running the cm-wlm-setup cluster manager utility to deploy an OpenPBS workload manager,
the openpbs-bash and openpbs-py312 templates become available. The templates are listed as:

– Bash via OpenPBS

– Python 3.12 via OpenPBS

and accessed via the navigation path: menu > dedicated BCM extension panel > kernel templates section.

• After running the cm-kubernetes-setup cluster manager utility to deploy a Kubernetes cluster,
the Kubernetes cluster instance is displayed (navigation path: menu > dedicated BCM extension
panel > Kubernetes clusters section)

Then, after running the cm-jupyter-kernel-operator cluster manager utility to deploy a Jupyter
kernel operator package, and configuring a user (section 6.3 of the Containerization Manual), the
templates k8s-cmjkop-julia, k8s-cmjkop-py, and k8s-cmjkop-py-spark become available.

The templates are listed as:

– Julia on Kubernetes Operator

– Python on Kubernete Operator

– Python+Spark on Kubernetes Operator

and accessed via the navigation path: menu > dedicated BCM extension panel > kernel templates section.

Users can instantiate a kernel template to create an actual kernel from the dedicated BCM extensions
section using the + button of the template. A dialog is dynamically generated for the template being
instantiated, and users are asked to fill a number of customization options defined by administrators
(figure 11.3):

96 Using Jupyter

Figure 11.3: Jupyter kernel template customization screen

Once the template is completely customized, the kernel can be created. It automatically appears
in the JupyterLab Launcher screen (figure 11.4) and can be used to run notebooks or a console session
(figure 11.4):

11.4 Jupyter Kernel Creator Extension 97

Figure 11.4: JupyterLab Launcher screen with new custom kernel

A user who lists available Jupyter kernels via the command line now sees the newly-created kernel:

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter kernelspec list

Available kernels:

k8s-cmjkop-py-1gii7nm01 /home/alice/.local/share/jupyter/kernels/k8s-cmjkop-py-1gii7nm01

python3 /cm/shared/apps/jupyter/current/share/jupyter/kernels/python3

The new kernel directory will contain the JSON definition generated by the Jupyter Kernel Creator:

[jupyterhubuser@basecm11 ~]$ cat .local/share/jupyter/kernels/k8s-cmjkop-py-1gii7nm01/kernel.json

{

"language": "python",

"display_name": "Datascience Notebook Kernel",

"metadata": {

"kernel_provisioner": {

"provisioner_name": "cmjk-provisioner",

"config": {

"timeout": 280,

"template": {

"path": "templates/cmjk.yaml.j2",

"env_module": "kubernetes",

"vars": {

"image": "quay.io/jupyter/datascience-notebook",

"namespace": "alice-restricted",

"image_pull_policy": "IfNotPresent",

"gpu_limit": 0,

98 Using Jupyter

"pythonuserbase_loc": "temp"

}

}

}

}

},

"argv": []

}

Jupyter kernel names need not be unique. Users should therefore choose meaningful and distin-
guishable display names for their kernels. Doing so makes the JupyterLab Launcher screen easier to
use.

For convenience, a summary of the available kernel templates and their requirements is shown in
table 11.1:

Table 11.1: Available Jupyter kernel templates for BCM and their requirements

Template name Requirement Description

k8s-cmjkop-julia Kubernetes Jupyter official image via Jupyter Ker-
nel Operator (using Julia)

k8s-cmjkop-ngc-py Kubernetes NGC images via Jupyter Kernel Oper-
ator

k8s-cmjkop-py Kubernetes Jupyter official image via Jupyter Ker-
nel Operator (Python)

k8s-cmjkop-py-spark Kubernetes1 Python + Spark via Jupyter Kernel Op-
erator (using Python and Spark

lsf-bash Platform LSF Bash via Platform LSF

lsf-py312 Platform LSF Python 3.12 via Platform LSF

openpbs-bash Open PBS Bash via Open PBS

openpbs-py312 Open PBS Python 3.12 via Open PBS

pbspro-bash PBS Professional Bash via PBS Professional

pbspro-py312 PBS Professional Python 3.12 via PBS Professional

slurm-bash Slurm Bash via Slurm

slurm-py312 Slurm Python 3.12 via Slurm

slurm-py-conda Slurm + Conda2 Python 3.12 and Conda via Slurm

slurm-pyxis-py Slurm + Enroot Python running inside imported
Pyxis+Enroot image in Slurm

...continues

11.4 Jupyter Kernel Creator Extension 99

Table 11.1: Available Jupyter kernel templates...continued

Template name Requirement Description

slurm-pyxis-r Slurm + Enroot R running inside imported
Pyxis+Enroot image in Slurm

1 Docker image: docker.io/brightcomputing/jupyter-kernel-sample:k8s-spark-3.5.3-py38-cuda12.6-rapids24.08-2
2 Conda needs to be installed for the user, and the Conda environment needs to be configured in the user’s Bash
shell (section 11.4.2).
DockerHub kernels page: https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags

11.4.2 Using Conda Kernels With Jupyter
Conda is a package manager for languages. Miniconda installs a minimal Conda environment.

Installing Conda With Miniconda And Initializing Conda
If Slurm is the workload manager that is installed and available to the Jupyter user, then Conda tem-
plates can be installed and made available to the user by installing Miniconda 3. Miniconda installation
is described in the official Conda documentation at:

https://docs.conda.io/projects/miniconda/en/latest/

At the time of writing (February 2024), the “Quick command line install” for Linux at https://
docs.anaconda.com/free/miniconda/ explains how to carry out a Linux command line installation for
Miniconda 3. The following is an excerpt from that text, slightly modified for BCM use:

These four commands quickly and quietly install the latest 64-bit version of the installer and then clean
up after themselves. To install a different version or architecture of Miniconda for Linux, change the
name of the .sh installer in the wget command.

[jupyterhubuser@basecm11 ~]$ mkdir -p ~/miniconda3

[jupyterhubuser@basecm11 ~]$ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh \
-O ~/miniconda3/miniconda.sh

[jupyterhubuser@basecm11 ~]$ bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3

[jupyterhubuser@basecm11 ~]$ rm -rf ~/miniconda3/miniconda.sh

If the user has modules (section 2.3) loaded that set $PYTHONPATH—for example by default—then it
can cause Python version incompatibilities later on when using a Conda environment that uses another
version of Python. This is explained further in the section “Avoiding Python Version Incompatibilities
With Conda” (page 101). A warning is given during the Miniconda installation if an existing $PYTHONPATH

is detected. However it is up to the user to ensure that modules are not left in place that interfere with
regular Python usage within Conda, for example by checking the ~/.bash_profile and similar files for
what modules are normally loaded in the shell.

After installation, the newly-installed Conda must be initialized:

[jupyterhubuser@basecm11 ~]$ ~/miniconda3/bin/conda init bash

...

modified /home/jupyterhubuser/.bashrc

==> For changes to take effect, close and re-open your current shell. <==

Users may use other shells, but initialization must be done with Bash.
On restarting the shell, the base environment is indicated with the prompt:

(base) [jupyterhubuser@basecm11 ~]$

The Python version for the Conda environment can be seen by running python -V. Typically it differs
from the system version.

https://hub.docker.com/r/brightcomputing/jupyter-kernel-sample/tags
https://docs.conda.io/projects/miniconda/en/latest/
https://docs.anaconda.com/free/miniconda/
https://docs.anaconda.com/free/miniconda/

100 Using Jupyter

When a Miniconda installation is completed with the preceding conda init bash command, Conda
templates become available in the kernel templates list (figure 11.5).

Figure 11.5: Conda template item showing up in the menu

Creating And Running A Conda Environment Compatible With Jupyter
The Conda virtual environment by default has its own version of Python. The Conda virtual environ-
ment can be created with a minimal set of packages to run a Jupyter kernel.

To make a kernel compatible with Jupyter Kernel Provisioning, the cm-jupyter-eg-kernel-wlm

package needs to be installed in the Conda virtual environment with a particular version of Python.
This can be carried out with:

Example

(base) [jupyterhubuser@basecm11 ~]$ conda config --append channels conda-forge

(base) [jupyterhubuser@basecm11 ~]$ conda create -n myenv python=3.11 -y

Channels:

- defaults

- conda-forge

...

Executing transaction: done

#

To activate this environment, use

#

$ conda activate myenv

#

To deactivate an active environment, use

#

$ conda deactivate

(base) [jupyterhubuser@basecm11 ~]$ module remove jupyter #do not mix Python versions

(myenv) [jupyterhubuser@basecm11 ~]$ conda activate myenv

(myenv) [jupyterhubuser@basecm11 ~]$ conda install -y -c file:///cm/shared/apps/jupyter/current/\
share/conda-repo cm-jupyter-eg-kernel-wlm

Channels:

- file:///cm/shared/apps/jupyter/current/share/conda-repo

- defaults

- conda-forge

...

Downloading and Extracting Packages:

11.4 Jupyter Kernel Creator Extension 101

Preparing transaction: done

Verifying transaction: done

Executing transaction: done

Avoiding Python Version Incompatibilities With Conda
In the preceding example, the Conda environment myenv is set explicitly to use Python version 3.11.

Some BCM environment modules, such as the jupyter environment module. define the $PYTHONPATH

environment variable. Before activating a Conda environment, unloading such BCM environment mod-
ules is recommended. For example, in the case of Jupyter, with module unload jupyter. This is because
the value of $PYTHONPATH from Jupyter sets the version of Python that is used, which may conflict with
that intended by Conda. Having Python modules that have a version incompatible with the one that of
Conda can cause issues that are hard to debug.

Besides Jupyter, software that has modules that can affect Python versions in this way are also found
in the Machine Learning (ML) group. The ML group is the group that is specified by the ML selection
option in https://support.brightcomputing.com/packages-dashboard/.

If needed, additional software can be installed into the environment from the Conda channels using
its -c|--channel option. For example, PyTorch—which outside Conda is a package in the ML group—
can be provided within Conda with:

Example

(myenv) [jupyterhubuser@basecm11 ~]$ conda install pytorch torchvision torchaudio pytorch-cuda=11.8 \
-c pytorch -c nvidia

The preceding PyTorch installation is based on the guidance at https://pytorch.org/get-started/
locally/.

Available environments appear in a list dropdown:

https://support.brightcomputing.com/packages-dashboard/
https://pytorch.org/get-started/locally/
https://pytorch.org/get-started/locally/

102 Using Jupyter

Figure 11.6: Conda template: environment list dropdown

11.4.3 Using Enroot And Pyxis With Jupyter
If Slurm is configured by the cluster administrator with Enroot and Pyxis support, then a template for
running kernels inside Enroot containers appears in the list.

Enroot must be configured by the administrator with both of the following settings enabled:

• Share raw images among users and nodes

• Share unpacked image files among nodes

The first invocation of the command:
enroot list

must be performed by the administrator too.
Before creating a kernel from a template, the image must be imported, so that it can be prepared to

have the kernel run within it. The Jupyter package has a script to do this:

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import -h

Usage: jupyter-enroot-import --container-image <image> [--container-name <name>] [--as-sqsh]

[--partition <partition>] [--install-script]

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image nvcr.io#nvidia/pytorch:23.12-py3

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image python:3.11

The container can also be pulled as a SquashFS file:

Example

11.4 Jupyter Kernel Creator Extension 103

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image nvcr.io#nvidia/pytorch:23.12-py3 \
--as-sqsh --container-name /home/alice/images/pytorch_23.12_py3.sqsh

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image python:3.11 --as-sqsh \
--container-name /home/alice/images/python_3_11.sqsh

A job is submitted to pull and unpack the image. The script uses the default Slurm module that
is available, and uses the default Slurm queue. If necessary, a specific module can be loaded, and a
particular queue specified. The container name can also be customized. If the name is not specified,
then it is chosen based on the container image name.

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ module load slurmslurm/slurm/23.11.3

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image \
quay.io#jupyter/datascience-notebook:latest --partition defq

When the jobs are finished then the imported images can be displayed in the enroot list output:

[jupyterhubuser@basecm11 ~]$ enroot list

pyxis_nvcr_io_nvidia_pytorch_23_12_py3

pyxis_python_3_11

The template can then be instantiated and the kernel created. If NGC containers are to be used, then
a GPU resource must be added to the kernel.

Figure 11.7: Pyxis template for Python

Alternatively, an image based on the R language can be imported and used:

104 Using Jupyter

Example

[jupyterhubuser@basecm11 ~]$ module load jupyter

[jupyterhubuser@basecm11 ~]$ jupyter-enroot-import --container-image quay.io#jupyter/r-notebook:latest

Figure 11.8: Pyxis template for R

11.5 Changing The User Base Directory In Python Kernels
BCM-provided Python kernel templates can change the user base directory (site.USER_BASE) during
creation. It can be set to take the value of temp, permanent, or not set on kernel creation.

Figure 11.9: Setting PYTHONUSERBASE

The setting affects the path where pip packages are installed and searched (that is, when running
!pip install in the Notebook) by setting $PYTHONUSERBASE environmental variable. Further details
on $PYTHONUSERBASE and site.USER_BASE can be found in the official Python documentation at https:
//docs.python.org/3/using/cmdline.html#envvar-PYTHONUSERBASE

• not set: does not set PYTHONUSERBASE. So, if notebook installs additional pip packages then
they are installed in ~/.local/lib/pythonX.Y[t]/site-packages. In such a case, other kernels

https://docs.python.org/3/using/cmdline.html#envvar-PYTHONUSERBASE
https://docs.python.org/3/using/cmdline.html#envvar-PYTHONUSERBASE
~/.local/lib/pythonX.Y[t]/site-packages

11.6 Adding Environmental Variables For JupyterLab, Processing And Accessing API keys In
Notebooks 105

with the same Python version might be affected. The directory with installed packages is not
cleared after kernel removal.

• permanent: the pip packages are installed into the /home/alice/.local/share/jupyter/kernels/
kernel-name/ directory so that other kernels are not affected. The directory is removed if the ker-
nel is removed. Both the not set and the permanent setting survive restarts of the kernel.

• temp: The pip packages are installed in an individual subdirectory. This is in /tmp on compute
nodes, or within a running Docker container. The installed packages disappear when the kernel is
restarted.

11.6 Adding Environmental Variables For JupyterLab, Processing And
Accessing API keys In Notebooks

are To change the behavior of JupyterLab as spawned by JupyterHub, the init.rc file is processed by
the /cm/shared/apps/jupyter/current/bin/jupyterhub-singleuser-gw script. The init.rc file can
be used to export environmental variables such as JUPYTER_LOG_LEVEL to increase verbosity.

The init.rc file can also contain API keys exported as variables, such as NVCF_API_KEY,
OPENAI_API_KEY, or HF_TOKEN.

These variables are passed by default in running kernels if they match rules defined
in the include_regex_env and exclude_regex_env tunables. If the content of ~/.jupyter/

jupyterhub-singleuser-gw/init.rc changes, then JupyterLab needs to be restarted from the Jupyter-
Hub console, using the navigation path:

File > Hub Control Panel > Stop My server > Start My Server

Configuration parameters can be set by an adminstrator on a per-cluster basis using the tunables:

• c.CMKernelProvisionerBase.include_regex_env

• c.CMKernelProvisionerBase.exclude_regex_env

They can also be set in the kernel.json.j2 template, via

• metadata.kernel_provisioner.config.include_regex_env

• metadata.kernel_provisioner.config.exclude_regex_env.

Alternatively these variables can be configured manually in the kernel.json files. Default values
are:

• include_regex_env: ^(.+_API_(KEY|TOKEN|HOST|TYPE|ORG_ID|ENDPOINT)|HF_.+)$

• exclude_regex_env: ^(JPY_API_TOKEN|JUPYTERHUB_.+|PYTHON.+|JUPYTERLAB_.+|PATH|LD_LIBRARY_PATH.*)$

11.7 Jupyter VNC Extension
11.7.1 What Is Jupyter VNC Extension About?
VNC (Virtual Network Computing) is a screen sharing service that can work in a browser.

If VNC is allowed by the cluster administrator, then the Jupyter environment configured by BCM
can be used to start and control remote desktops via VNC with the Jupyter VNC extension.

11.7.2 Enabling User Lingering
User lingering is a systemd setting that sets a user manager for a user at boot and keeps it around after
logout. This allows that user to run long-running sessions despite not being logged in. Enabling user
lingering may be required for Jupyter VNC extension to run for a relatively complicated desktop such
as KDE or GNOME.

For each user on each machine where these environments are installed, the following command must
be run:

/home/alice/.local/share/jupyter/kernels/kernel-name/
/home/alice/.local/share/jupyter/kernels/kernel-name/
~/.jupyter/jupyterhub-singleuser-gw/init.rc
~/.jupyter/jupyterhub-singleuser-gw/init.rc

106 Using Jupyter

loginctl enable-linger <username>

The command may also be carried out using prolog/epilog scripts in the chosen WLM.

11.7.3 Starting A VNC Session With The Jupyter VNC Extension
Users can start a VNC session with the button added by Jupyter VNC (figure 11.10). Additional VNC
parameters can be optionally specified.

Figure 11.10: Starting Jupyter VNC session from kernel

If VNC is available and correctly configured on the node where the kernel is running, then a new
tab is automatically created by Jupyter VNC containing the new session (figure 11.11). A user can now
freely interact in JupyterLab both with the notebook and with the desktop environment.

11.7 Jupyter VNC Extension 107

Figure 11.11: Running Jupyter VNC session from kernel

To provide a user-friendly experience, Jupyter VNC also allows the graphical viewport to be resized,
so that the desktop application can run full-screen (figure 11.12).

108 Using Jupyter

Figure 11.12: Running Jupyter VNC session from kernel (full-screen)

11.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC
Extension

Once the VNC session is correctly started and the new JupyterLab tab has been created, Jupyter VNC
automatically exports the DISPLAY environment variable to the running notebook (figure 11.13). Doing
so means that any application or library running in the notebook can make use of the freshly created
desktop environment. An example of such a library is OpenAI Gym, a toolkit for developing and com-
paring reinforcement learning algorithms, that is distributed by BCM.

Among the examples distributed by BCM (section 11.2), a notebook running PyTorch in the OpenAI
Gym CartPole environment can be found. If executed after a VNC session has been started, a user can
then observe the model being trained in real time in the graphical environment.

Figure 11.13: Automatic configuration of DISPLAY environment variable

11.8 Jupyter WLM Magic Extension 109

11.8 Jupyter WLM Magic Extension
In the Jupyter environment configured by BCM, the Jupyter WLM Magic extension can be used to sched-
ule workload manager jobs from notebooks.

The Jupyter WLM Magic extension is an IPython extension. It is designed to improve the capabilities
of Jupyter’s default Python 3 kernel, which runs on the login node.

The Jupyter WLM Magic extension should therefore not be used from kernels running on compute
nodes, such as those typically created with BCM’s Jupyter Kernel Creator extension (section 11.4), and
submitted via Jupyter Kernel Provisioning. Indeed, compute nodes running these kernels are often
incapable of starting workload manager jobs in many default WLM configurations.

Jupyter WLM Magic extension makes it possible for users to programmatically submit WLM jobs,
and then interact with their results. This can be done while using the Python programming language
and its libraries, which are available in the notebook.

Users submit jobs and check their progress from the login node. The actual computation is dis-
tributed by the underlying workload manager across compute nodes, which means that server resources
are spared.

Jupyter WLM Magic commands are available in the IPython kernel as magic functions (https://
ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions). A new line
magic (%) and a new cell magic (%%) are now added in the kernel, according to the workload manager:

• Platform LSF: %lsf_job and %%lsf_job

• PBS Professional: %pbspro_job and %%pbspro_job

• Slurm: %slurm_job and %%slurm_job

A user can list the magic functions in the kernel to see if they are available, with Jupyter’s
builtin command %lsmagic (https://ipython.readthedocs.io/en/stable/interactive/magics.
html#magic-lsmagic):

Example

In []: %lsmagic

Out []: root:

line:

automagic:"AutoMagics"

autocall:"AutoMagics"

[...]

slurm_job:"SLURMMagic"

pbspro_job:"PBSProMagic"

lsf_job:"LSFMagic"

cell:

js:"DisplayMagics"

javascript:"DisplayMagics"

[...]

slurm_job:"SLURMMagic"

pbspro_job:"PBSProMagic"

lsf_job:"LSFMagic"

The magic functions introduced by this BCM extension share a similar syntax. For convenience,
Slurm is used as an example in this section. However, the same instructions are valid for the other
WLMs.

Users can check which options are available for a WLM function with the line magic helper:

Example

https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/tutorial.html#magic-functions
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic
https://ipython.readthedocs.io/en/stable/interactive/magics.html#magic-lsmagic

110 Using Jupyter

In []: %slurm_job --help

Out []: usage: %slurm_job [-h] [--module MODULE] [--module-load-cmd MODULE_LOAD_CMD]

[--shell SHELL] [--submit-command SUBMIT_COMMAND]

[--cancel-command CANCEL_COMMAND]

[--control-command CONTROL_COMMAND]

[--stdout-file STDOUT_FILE] [--stderr-file STDERR_FILE]

[--preamble PREAMBLE] [--timeout TIMEOUT]

[--check-condition-var CHECK_CONDITION_VAR]

[--job-id-var JOB_ID_VAR]

[--stdout-file-var STDOUT_FILE_VAR]

[--stderr-file-var STDERR_FILE_VAR] [--dont-wait]

[--write-updates WRITE_UPDATES]

[--check-status-every CHECK_STATUS_EVERY]

optional arguments:

-h, --help show this help message and exit

[...]

Line magic functions are typically used to set options with a global scope in the notebook. By doing
so, a user will not need to specify the same option every time a job will be submitted via cell magic. For
example, if two Slurm instances are deployed on the cluster and their associated environment modules
are slurm-primary and slurm-secondary, a user could run the following line magic once to configure
the Jupyter WLM Magic extension to always use the second deployment:

Example

In []: %slurm_job --module slurm-secondary

Out []:

Now, jobs will always be submitted to slurm-secondary. This is more convenient than repeatedly
defining the same module option for every cell magic upon scheduling a job:

Example

In []: %%slurm_job --module slurm-secondary

<WLM JOB DEFINITION>

Out []: <WLM JOB OUTPUT>

In []: %%slurm_job --module slurm-secondary

<WLM JOB DEFINITION>

Out []: <WLM JOB OUTPUT>

It should be noted that line magic functions cannot be used to submit WLM jobs. Cell magic func-
tions have to be used instead.

A well-defined cell contains the WLM cell magic function provided by the extension, followed by
the traditional job definition. For example, a simple MPI job running on two nodes can be submitted to
Slurm by defining and running this cell:

Example

In []: %%slurm_job

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: COMPLETED

STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-1.out

11.8 Jupyter WLM Magic Extension 111

node001

node001

node002

node002

Users can take advantage of the Jupyter WLM Magic extension to store some information into Python
variables about the job being submitted. The information could be the ID or the output file name, for
example. Users can then later programmatically interact with them in Python. This feature is conve-
nient when a user wants to, for example, programmatically carry out new actions depending on the job
output:

Example

In []: %%slurm_job --job-id-var my_job_id --stdout-file-var my_job_out

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: COMPLETED

STDOUT file content: /home/demo/.jupyter/wlm_magic/slurm-2.out

node001

node001

node002

node002

In []: print(f"Job id {my_job_id} was written to {my_job_out}")

print(f"Output lines: {open(my_job_out).readlines()}")

Out []: Job id 2 was written to /home/demo/.jupyter/wlm_magic/slurm-2.out

Output lines: ['node001\n', 'node001\n', 'node002\n', 'node002\n']

Users can also exploit Python variables to define the behavior of the Jupyter WLM Magic extension.
For example, they can define a Python boolean variable to submit a WLM job only if a condition is true:

Example

In []: run_job = 1 == 2

Out []:

In []: %%slurm_job --check-condition-var run_job

#SBATCH -J mpi-job-example

#SBATCH -N 2

module load openmpi

mpirun hostname

Out []: Variable run_job is 'False'. Skipping submit.

A
MPI Examples

A.1 “Hello world”
A quick application to test the MPI libraries and the network.

/*

``Hello World'' Type MPI Test Program

*/

#include <mpi.h>

#include <stdio.h>

#include <string.h>

#define BUFSIZE 128

#define TAG 0

int main(int argc, char *argv[])

{

char idstr[32];

char buff[BUFSIZE];

int numprocs;

int myid;

int i;

MPI_Status stat;

/* all MPI programs start with MPI_Init; all 'N' processes exist thereafter */

MPI_Init(&argc,&argv);

MPI_Comm_size(MPI_COMM_WORLD,&numprocs); /* find out how big the SPMD world is */

MPI_Comm_rank(MPI_COMM_WORLD,&myid); /* and this processes' rank is */

/* At this point, all the programs are running equivalently, the rank is used to

distinguish the roles of the programs in the SPMD model, with rank 0 often used

specially... */

if(myid == 0)

{

printf("%d: We have %d processors\n", myid, numprocs);

for(i=1;i<numprocs;i++)

{

sprintf(buff, "Hello %d! ", i);

MPI_Send(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD);

}

for(i=1;i<numprocs;i++)

{

114 MPI Examples

MPI_Recv(buff, BUFSIZE, MPI_CHAR, i, TAG, MPI_COMM_WORLD, &stat);

printf("%d: %s\n", myid, buff);

}

}

else

{

/* receive from rank 0: */

MPI_Recv(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD, &stat);

sprintf(idstr, "Processor %d ", myid);

strcat(buff, idstr);

strcat(buff, "reporting for duty\n");

/* send to rank 0: */

MPI_Send(buff, BUFSIZE, MPI_CHAR, 0, TAG, MPI_COMM_WORLD);

}

/* MPI Programs end with MPI Finalize; this is a weak

synchronization point */

MPI_Finalize();

return 0;

}

A.2 MPI Skeleton
The sample code below contains the complete communications skeleton for a dynamically load balanced
head/compute node application. Following the code is a description of some of the functions necessary
for writing typical parallel applications.

include <mpi.h>

#define WORKTAG 1

#define DIETAG 2

main(argc, argv)

int argc;

char *argv[];

{

int myrank;

MPI_Init(&argc, &argv); /* initialize MPI */

MPI_Comm_rank(

MPI_COMM_WORLD, /* always use this */

&myrank); /* process rank, 0 thru N-1 */

if (myrank == 0) {

head();

} else {

computenode();

}

MPI_Finalize(); /* cleanup MPI */

}

head()

{

int ntasks, rank, work;

double result;

MPI_Status status;

MPI_Comm_size(

MPI_COMM_WORLD, /* always use this */

&ntasks); /* #processes in application */

A.2 MPI Skeleton 115

/*

* Seed the compute nodes.

*/

for (rank = 1; rank < ntasks; ++rank) {

work = /* get_next_work_request */;

MPI_Send(&work, /* message buffer */

1, /* one data item */

MPI_INT, /* data item is an integer */

rank, /* destination process rank */

WORKTAG, /* user chosen message tag */

MPI_COMM_WORLD);/* always use this */

}

/*

* Receive a result from any compute node and dispatch a new work

* request work requests have been exhausted.

*/

work = /* get_next_work_request */;

while (/* valid new work request */) {

MPI_Recv(&result, /* message buffer */

1, /* one data item */

MPI_DOUBLE, /* of type double real */

MPI_ANY_SOURCE, /* receive from any sender */

MPI_ANY_TAG, /* any type of message */

MPI_COMM_WORLD, /* always use this */

&status); /* received message info */

MPI_Send(&work, 1, MPI_INT, status.MPI_SOURCE,

WORKTAG, MPI_COMM_WORLD);

work = /* get_next_work_request */;

}

/*

* Receive results for outstanding work requests.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Recv(&result, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

}

/*

* Tell all the compute nodes to exit.

*/

for (rank = 1; rank < ntasks; ++rank) {

MPI_Send(0, 0, MPI_INT, rank, DIETAG, MPI_COMM_WORLD);

}

}

computenode()

{

double result;

int work;

MPI_Status status;

for (;;) {

MPI_Recv(&work, 1, MPI_INT, 0, MPI_ANY_TAG,

MPI_COMM_WORLD, &status);

/*

116 MPI Examples

* Check the tag of the received message.

*/

if (status.MPI_TAG == DIETAG) {

return;

}

result = /* do the work */;

MPI_Send(&result, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

}

}

Processes are represented by a unique rank (integer) and ranks are numbered 0, 1, 2, ..., N-1.
MPI_COMM_WORLD means all the processes in the MPI application. It is called a communicator and
it provides all information necessary to do message passing. Portable libraries do more with communi-
cators to provide synchronisation protection that most other systems cannot handle.

A.3 MPI Initialization And Finalization
As with other systems, two functions are provided to initialize and clean up an MPI process:

MPI_Init(&argc, &argv);

MPI_Finalize();

A.4 What Is The Current Process? How Many Processes Are There?
Typically, a process in a parallel application needs to know who it is (its rank) and how many other
processes exist.

A process finds out its own rank by calling:

MPI_Comm_rank():

Int myrank;

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

The total number of processes is returned by MPI_Comm_size():

int nprocs;

MPI_Comm_size(MPI_COMM_WORLD, &nprocs);

A.5 Sending Messages
A message is an array of elements of a given data type. MPI supports all the basic data types and
allows a more elaborate application to construct new data types at runtime. A message is sent to a
specific process and is marked by a tag (integer value) specified by the user. Tags are used to distinguish
between different message types a process might send/receive. In the sample code above, the tag is
used to distinguish between work and termination messages.

MPI_Send(buffer, count, datatype, destination, tag, MPI_COMM_WORLD);

A.6 Receiving Messages
A receiving process specifies the tag and the rank of the sending process. MPI_ANY_TAG and
MPI_ANY_SOURCE may be used optionally to receive a message of any tag and from any sending pro-
cess.

MPI_Recv(buffer, maxcount, datatype, source, tag, MPI_COMM_WORLD, &status);

A.7 Blocking, Non-Blocking, And Persistent Messages 117

Information about the received message is returned in a status variable. The received message tag is
status.MPI_TAG and the rank of the sending process is status.MPI_SOURCE. Another function, not used
in the sample code, returns the number of data type elements received. It is used when the number of
elements received might be smaller than maxcount.

MPI_Get_count(&status, datatype, &nelements);

A.7 Blocking, Non-Blocking, And Persistent Messages
MPI_Send and MPI_Receive cause the running program to wait for non-local communication from a
network. Most communication networks function at least an order of magnitude slower than local com-
putations. When an MPI process has to wait for non-local communication CPU cycles are lost because
the operating system has to block the process, then has to wait for communication, and then resume the
process.

An optimal efficiency is usually best achieved by overlapping communication and computation.
Blocking messaging functions only allow one communication to occur at a time. Non-blocking messaging
functions allow the application to initiate multiple communication operations, enabling the MPI imple-
mentation to proceed simultaneously. Persistent non-blocking messaging functions allow a communica-
tion state to persist, so that the MPI implementation does not waste time on initializing or terminating
a communication.

A.7.1 Blocking Messages
In the following example, the communication implementation executes in a sequential fashion causing
each process, MPI_Recv, then MPI_Send, to block while waiting for its neighbor:

Example

while (looping) {

if (i_have_a_left_neighbor)

MPI_Recv(inbuf, count, dtype, left, tag, comm, &status);

if (i_have_a_right_neighbor)

MPI_Send(outbuf, count, dtype, right, tag, comm);

do_other_work();

}

MPI also has the potential to allow both communications to occur simultaneously, as in the following
communication implementation example:

A.7.2 Non-Blocking Messages
Example

while (looping) {

count = 0;

if (i_have_a_left_neighbor)

MPI_Irecv(inbuf, count, dtype, left, tag, comm, &req[count++]);

if (i_have_a_right_neighbor)

MPI_Isend(outbuf, count, dtype, right, tag, comm, &req[count++]);

MPI_Waitall(count, req, &statuses);

do_other_work();

}

In the example, MPI_Waitall potentially allows both communications to occur simultaneously. How-
ever, the process as show is blocked until both communications are complete.

118 MPI Examples

A.7.3 Persistent, Non-Blocking Messages
A more efficient use of the waiting time means to carry out some other work in the meantime that does
not depend on that communication. If the same buffers and communication parameters are to be used
in each iteration, then a further optimization is to use the MPI persistent mode. The following code
instructs MPI to set up the communications once, and communicate similar messages every time:

Example

int count = 0;

if (i_have_a_left_neighbor)

MPI_Recv_init(inbuf, count, dtype, left, tag, comm, &req[count++]);

if (i_have_a_right_neighbor)

MPI_Send_init(outbuf, count, dtype, right, tag, comm, &req[count++]);

while (looping) {

MPI_Startall(count, req);

do_some_work();

MPI_Waitall(count, req, &statuses);

do_rest_of_work();

}

In the example, MPI_Send_init and MPI_Recv_init perform a persistent communication initializa-
tion.

B
Compiler Flag Equivalence

The following table is an overview of some of the compiler flags that are equivalent or almost equiva-
lent.

Cray Intel GCC Explanation

default default -O3 -ffast-math Produce high level of optimization

-Oomp (default) -openmp -fopenmp Activate OpenMP directives and pragmas
in the code

-h byteswapio -convert

big_endian

-fconvert=swap Read and write Fortran unformatted data
files as big-endian

-f fixed -fixed -ffixed-form Process Fortran source using fixed form
specifications.

-f free -free -ffree-form Process Fortran source using free form
specifications.

-V --version --version Dump version.

-h zero N/A -finit-local-zero Zero fill all uninitialized variables.

-e m Creates .mod files to hold Fortran90 mod-
ule information for future compiles.

-j <dir_name> Specifies the directory <dir_name> to
which .mod files are written when the
-e m option is specified

	Table of Contents
	0.1 About This Manual
	0.2 Getting User-Level Support
	1 Introduction
	1.1 What Is A Beowulf Cluster?
	1.1.1 Background And History
	1.1.2 Brief Hardware And Software Description

	1.2 Brief Network Description

	2 Cluster Usage
	2.1 Login To The Cluster Environment
	2.2 Setting Up The User Environment
	2.3 Environment Modules
	2.3.1 Available Commands
	2.3.2 Managing Environment Modules As A User
	2.3.3 Changing The Default Environment Modules

	2.4 Compiling Applications
	2.4.1 Open MPI And Mixing Compilers

	3 Using MPI
	3.1 Introduction
	3.2 MPI Libraries
	3.3 MPI Packages And Module Paths
	3.3.1 MPI Packages That Can Be Installed, And Their Corresponding Module Paths
	3.3.2 Finding The Installed MPI Packages And Their Available Module Paths

	3.4 The Appropriate Interconnect, Compiler, And MPI Implementation For A Module
	3.4.1 Interconnects
	3.4.2 Selecting A Compiler And MPI implementation

	3.5 Compiling And Carrying Out An MPI Run
	3.5.1 Example MPI Run
	3.5.2 Hybridization
	3.5.3 Support Thread Levels
	3.5.4 Further Recommendations

	4 Workload Management
	4.1 What Is A Workload Manager?
	4.2 Why Use A Workload Manager?
	4.3 How Does A Workload Manager Function?
	4.4 Job Submission Process
	4.5 What Do Job Scripts Look Like?
	4.6 Running Jobs On A Workload Manager

	5 Slurm
	5.1 Loading Slurm Modules And Compiling The Executable
	5.2 Running The Executable With salloc
	5.2.1 Node Allocation Examples

	5.3 Running The Executable As A Slurm Job Script
	5.3.1 Slurm Job Script Structure
	5.3.2 Slurm Job Script Options
	5.3.3 Slurm Environment Variables
	5.3.4 Submitting The Slurm Job Script With sbatch
	5.3.5 Checking And Changing Queued Job Status With squeue, scancel, scontrol And sview

	6 PBS Professional And OpenPBS
	6.1 Components Of A Job Script
	6.1.1 Sample Script Structure
	6.1.2 Directives
	6.1.3 The Executable Line
	6.1.4 Example Batch Submission Scripts
	6.1.5 Links To PBS Resources

	6.2 Submitting A Job
	6.2.1 Preliminaries: Loading The Modules Environment
	6.2.2 Using qsub
	6.2.3 Job Output
	6.2.4 Monitoring The Status Of A Job
	6.2.5 Deleting A Job
	6.2.6 Nodes According To PBS

	7 Using GPUs
	7.1 Packages
	7.2 Using CUDA
	7.3 Using OpenCL
	7.4 Compiling Code
	7.5 Available Tools
	7.5.1 CUDA gdb
	7.5.2 The nvidia-smi Utility
	7.5.3 CUDA Utility Library
	7.5.4 CUDA ``Hello world'' Example
	7.5.5 OpenACC

	8 Using Kubernetes
	8.1 Introduction To Kubernetes Running Via NVIDIA Base Command Manager
	8.2 Kubernetes User Privileges
	8.3 Kubernetes Quickstarts
	8.3.1 Quickstart: Accessing The Kubernetes Dashboard
	8.3.2 Quickstart: Using kubectl From A Local Machine
	8.3.3 Quickstart: Submitting Batch Jobs With kubectl
	8.3.4 Quickstart: Helm, The Kubernetes Package Manager

	9 Spark On Kubernetes
	9.1 Important Requirements
	9.2 Running Spark Jobs Via The Kubernetes Spark Operator
	9.2.1 Example Spark Operator Run: Calculating Pi

	9.3 Running Spark Jobs Directly Via spark-submit
	9.4 Accessing The Spark User Interface
	9.5 Mounting Volumes Into Containers

	10 User Portal
	10.1 Overview Page
	10.2 Workload Page
	10.3 Nodes Page
	10.4 Kubernetes Page
	10.5 Monitoring Mode
	10.6 Accounting And Reporting Mode

	11 Using Jupyter
	11.1 Introduction
	11.2 Jupyter Notebook Examples
	11.3 Jupyter Kernels
	11.3.1 Jupyter Kernel Provisioning Kernels
	11.3.2 Tunables For Kernel Provisioners

	11.4 Jupyter Kernel Creator Extension
	11.4.1 BCM Predefined Kernel Templates
	11.4.2 Using Conda Kernels With Jupyter
	11.4.3 Using Enroot And Pyxis With Jupyter

	11.5 Changing The User Base Directory In Python Kernels
	11.6 Adding Environmental Variables For JupyterLab, Processing And Accessing API keys In Notebooks
	11.7 Jupyter VNC Extension
	11.7.1 What Is Jupyter VNC Extension About?
	11.7.2 Enabling User Lingering
	11.7.3 Starting A VNC Session With The Jupyter VNC Extension
	11.7.4 Running Examples And Applications In The VNC Session With The Jupyter VNC Extension

	11.8 Jupyter WLM Magic Extension

	A MPI Examples
	A.1 ``Hello world''
	A.2 MPI Skeleton
	A.3 MPI Initialization And Finalization
	A.4 What Is The Current Process? How Many Processes Are There?
	A.5 Sending Messages
	A.6 Receiving Messages
	A.7 Blocking, Non-Blocking, And Persistent Messages
	A.7.1 Blocking Messages
	A.7.2 Non-Blocking Messages
	A.7.3 Persistent, Non-Blocking Messages

	B Compiler Flag Equivalence

