
Con�dential Computing Deployment
Guide - (Intel TDX & KVM)

DU-11462-001_3.0 | February 2024

Documentation History

DU-11462-001

Version Date Authors Description of Change

1.0 7/25/2023 Rob Nertney Initial Version for Early Access

2.0 8/30/2023 Rob Nertney Minor �xes. EA2 Updates for Kata/CoCo and TDX
installs

3.0 2/22/2024 Rob Nertney GA Version Release

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 2

Table of Contents

Using This Guide...4

Document Structure... 5
Supported Combinations... 5

Host OS Administrator (Part-1)..6
Setting Up the Host OS... 6

Hardware IT Administrator...9

Selecting Hardware..9
Setting Up the Hardware Setup and Configuring Your System... 10

Host OS Administrator (Part-2)..10
Preparing to Launch a Guest Virtual Machine with KVM..11
(Optional) Setting up the Guest VM...14

Virtual Machine Administrator.. 18

Virtual Machine User..22

Validating Your Con�guration...23

Installing the Attestation SDK..24

Executing an Attestation of the GPU.. 25

Successful Attestation Result.. 27

Conclusion..29

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 3

Using This Guide

This guide is the most distilled set of instructions required to con�gure a system for
Con�dential Computing (CC) with the NVIDIA®Hopper™ H100 GPU. Explanations as to the
value of a particular step, or the details of what is going on behind the scenes are covered
in several of our other collateral, such as our whitepaper, GTC talks, and YouTube videos.

Here, you will �nd instructions that are targeted to various personas who want to use
Hopper Con�dential Compute (HCC). These personas are rough de�nitions of individuals
who might have di�erent responsibilities in the overall con�dential system. The overall �ow
of using one is illustrated in Figure 1.

Figure 1. Overall Work�ow

You can see that not every person involved in enabling and using CC will be required at
every step. For example, a CSP might only provision a VM, and the user then takes over.

Figure 2. Work�ow Example

In this example, the CSP does not require a policy for how often the GPU must be checked
for integrity/validity, nor does it need to consider the infrastructure requirements for
Con�dential Containers. The user/tenant of the CSP does not need to consider the steps
required to con�gure the GPU for con�dential or non-con�dential modes. Depending on
who you are, and what your goals are, you might require all, or only a fraction, of the steps.

The following personas have been de�ned:
● Hardware IT Administrator

● Host OS Administrator

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 4

● Virtual Machine Administrator

● Virtual Machine User

● Container User

You can read the entire documentation or jump directly to the section that most
accurately describes your persona use case. This guide is organized in a linear manner, so
reading all sections in order will make logical sense to a developer who considers
themselves all the above personas.

Document Structure

In this document, for code, if there is no pre�x that is an output from a command.
$ shell-command to execute

(optional) NVIDIA-commentary

sample output 1st row

sample output 2nd row

...

There might be times where, for the sake of simplicity, output will be omitted when not
required to be noted. The below example shows shell-command-A and shell-command-B:
$ shell-command-A

$ shell-command-B

Output might occur after either of these commands, however, the output is not important
(unless there are errors) and will not be included.

Supported Combinations

Due to the nascency of the CC market, many of the vendors, both hardware and software
alike, are currently split in their tested-and-supported environments. As such, there
(currently) is a very speci�c set of supported software/hardware combinations, outlined in
the table below:

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 5

CPU Vendor Host Kernel Hypervisor Guest Kernel Notes

Intel 6.2+ KVM 6.2+ The only validated
Intel TDX branch
for nvTrust
solutions is
currently the
2023ww15 tag.

Host OS Administrator (Part-1)
Figure 3. The Host OS Administrator Persona

The Host OS Administrator is the persona that has received a system with its BIOS/UEFI
con�gured so that it is racked and stacked with the CC modes enabled. This persona is
responsible for selecting the Operating System (OS) that is installed on the host so that
the OS can provision virtual machines (VMs). The roles are System Architects, Cloud
Administrators, or Advanced On-Premise Users.

Setting Up the Host OS
This section provides information about setting up the Host OS.

Installing the Required Host Prerequisites
Install a supported Host OS by following their standard installation instructions. It is not
important if you were using a di�erent Linux kernel other than what is listed above. After
completing these steps you will have the correct kernel installed.

Before building the Linux, some prerequisite software packages must be installed.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 6

https://github.com/intel/tdx-tools/releases/tag/2023ww15
https://github.com/intel/tdx-tools/releases/tag/2023ww15

Preparing the Host
To install the prerequisites, run the following commands.:
Packages to support the build
$ sudo apt update

$ sudo apt install --no-install-recommends --yes build-essential fakeroot \
devscripts wget git equivs liblz4-tool sudo python-is-python3 python3-dev \
pkg-config unzip help2man texinfo xfonts-unifont libfreetype6-dev libdevmapper-dev \
libsdl1.2-dev libfuse3-dev liblzma-dev liblzo2-dev mtools libefiboot-dev \
libefivar-dev qemu-system python3-pip libguestfs-tools python3-libvirt

$ sudo pip3 install numpy flex bison

We will now build a 6.2-based kernel with TDX support. This kernel will be installed on the
host and will be the basis for guests that are created.

Downloading the GitHub Packages
The following commands build the Host and Guest Linux kernel, Qemu, and the Ovmf BIOS
that was used to launch the TDX guests.

Note: Here is some important information:

● The Intel TDX tree is continually evolving in sync with the kernel version.
● The only supported Intel TDX branch for HCC use with KVM is the 2023ww15 tag.

For ease of use, we will be operating in the /shared directory and load all supporting items
in this folder. You can modify the scripts to point to locations more reasonable to your
system
Ensure /shared has read/write permissions for the user via chmod
$ sudo mkdir /shared
$ cd /shared/
$ sudo -R chmod 777 /shared
$ git clone https://github.com/intel/tdx-tools
$ git clone https://github.com/NVIDIA/nvtrust.git
$ cd tdx-tools
$ git checkout -b 2023ww15 refs/tags/2023ww15

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 7

https://github.com/intel/tdx-tools/releases/tag/2023ww15

Preparing to Build the Kernel
For this tag (2023ww15), the shim and grub builds are obsolete and need to be

commented out in build/ubuntu-22.04/build-repo.sh on line 75-76

$ vim build/ubuntu-22.04/build-repo.sh

(...)

#build_shim
#build_grub
build_kernel
build_qemu
build_tdvf
build_libvirt

popd

Build the Kernel
Rebuild and package that are required by the Linux �les.

$ cd build/ubuntu-22.04
$./build-repo.sh

You must ensure that the packages are built. If you experience failures, repeat the

build-repo.sh command again.

Installing the Host OS
Run the following commands to install the TDX-aware host kernel.
$ cd host_repo
$ sudo apt -y --allow-downgrades install ./*.deb

#GRUB should automatically use the new linux image.

#reboot the host:
$ sudo reboot

Ubuntu 22.04’s kernel does not boot when TDX is pre-enabled in the BIOS/UEFI. As such,
your Hardware IT Administrator should be involved in the next steps: con�guring the
System BIOS to enable TDX:

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 8

Hardware IT Administrator

Figure 4. The Hardware IT Administrator Persona

The Hardware IT Administrator persona is near the beginning of the CC chain and
attention needs to be paid to selecting your CPU and GPU. This persona should contain
System Architects and IT Administrators, selects the correct part numbers, and
con�gures the BIOS/UEFI for the subsequent steps.

Selecting Hardware
CC requires CPUs and GPUs with speci�c functionality that enable the security outlined by
the CC Consortium.
● CPU Requirements

○ Intel with TDX support
● GPU Requirements

○ NVIDIA Hopper H100 GPU
● Other Recommendations

○ Your motherboard vendor can be con�gured with Secure Boot and TDX enabled

To set up your system, you need to con�gure the motherboard’s BIOS to enable the CC
mode options. NVIDIA has tested the following motherboard vendors with Hopper CC and
provided the BIOS menu-�ows so that you can easily set them.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 9

Setting Up the Hardware Setup and
Con�guring Your System

Supermicro System: BIOS Firmware Version 2.1
CPU Configuration -->

Processor Configuration -->
Limit CPU PA to 46 Bits -> Disable
Intel TME, Intel TME-MT, Intel TDX -->

Total Memory Encryption (Intel TME) -> Enable
Total Memory Encryption (Intel TME) Bypass -> Auto
Total Memory Encryption Multi-Tenant (Intel TME-MT) -> Enable
Memory Integrity -> Disable
Intel TDX -> Enable
TDX Secure Arbitration Mode Loader (SEAM) -> Enabled
Disable excluding Mem below 1MB in CMR -> Auto
Intel TDX Key Split -> <Non-zero value>

Software Guard Extension -> Enable

With the above System BIOS con�gured for Intel TDX, you are now ready to begin
con�guring the Host Operating System and the Hypervisor.

Host OS Administrator (Part-2)
After ensuring that you have built and installed Linux kernel enabling TDX, and con�guring

your BIOS/UEFI for the feature, you may continue onward:

Validating the Host Detects TDX
After the host reboots, to check that our kernel is the new TDX-aware version, and that our
con�guration options were correctly applied, run the following commands.
$ uname -a
Linux smc1 6.2.0-mvp10v1+8-generic #mvp10v1+tdx SMP PREEMPT_DYNAMIC Tue Sep 26
22:42:08 UTC 2023 x86_64 x86_64 x86_64 GNU/Linux

$ sudo dmesg | grep -i tdx

[sudo] password for user:

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 10

[0.000000] Linux version 6.2.16-mvp30v3+7-generic (root@Viking-EVT1-82) (gcc
(Ubuntu 11.3.0-1ubuntu1~22.04.1) 11.3.0, GNU ld (GNU Binutils for Ubuntu) 2.38)
#mvp30v3+tdx SMP PREEMPT_DYNAMIC Wed Jul 12 05:07:41 EDT 2023

[16.076784] smpboot: CPU0: Intel(R) Xeon(R) Platinum 8480CTDX (family: 0x6, model:
0x8f, stepping: 0x8)

[16.116557] tdx: BIOS enabled: private KeyID range [32, 64)

[26.648559] KVM-debug: PASS: single step TDX module emulated CPUID 0

[26.652557] KVM-debug: PASS: single step TDX module emulated RDMSR 0x1a0

[71.574614] tdx: SEAMCALL failed: leaf 254, error 0xc000050500000000.

[71.582168] tdx: TDDEBUGCONFIG isn't supported.

[71.634570] tdx: TDX module: atributes 0x0, vendor_id 0x8086, major_version 1,
minor_version 0, build_date 20220420, build_num 342

[71.635893] tdx: additional output: rcx 0x0, rdx 0xa00000300000008, r8 0x0, r9 0x0,
r10 0x0, r11 0x0.

[71.655663] tdx: TDX module: features0: 0

[78.608126] tdx: 2101257 pages allocated for PAMT.

[78.608130] tdx: TDX module initialized.

[78.608131] kvm_intel: tdx: max servtds supported per user TD is 0

[78.608133] kvm_intel: tdx: live migration not supported

[78.608133] kvm_intel: TDX is supported.

$ cat /proc/cmdline
BOOT_IMAGE=/vmlinuz-6.2.0-mvp10v1+8-generic root=/dev/mapper/ubuntu--vg-ubuntu--lv ro

Preparing to Launch a Guest Virtual Machine
with KVM
This section covers how the Host Administrator can use KVM/QEMU to launch a
Con�dential VM (CVM) for a guest. These instructions can be followed by new developers
who want to start from scratch , but you can modify the steps at your discretion.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 11

Note:While the hypervisor set up and VM launch steps might be redundant for a
developer who has an existing orchestration �ow, there are steps that must be taken to
enable the NVIDIA H100 in con�dential modes.

(Required) Con�guring the GPU for Con�dential
Compute Mode
The NVIDIA H100 can only be toggled into and out of CC modes with a privileged call from
in the Host.
Here are the main �ags:
● --query-cc-settings

○ Prints the current mode that the GPU is operating in
● --set-cc-mode <MODE>

○ Where MODE is
■ on
■ o�
■ devtools

Refer to our whitepaper for more information about what the modes represent. NVIDIA has
provided the following script to help facilitate this call.:

$ cd /shared/

$ git clone https://github.com/nvidia/gpu-admin-tools

$ cd gpu-admin-tools

Query the current state CC state:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --query-cc-mode

2024-02-01,16:13:54.447 WARNING GPU 0000:1b:00.0 ? 0x2330 BAR0 0x21e042000000 not in
D0 (current state 3), forcing it to D0

Topo:

Intel root port 0000:15:01.0

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 12

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/HCC-Whitepaper-v1.0.pdf

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

2024-02-01,16:13:54.558 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:13:54.558 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode is off

To change the state:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --set-cc-mode=devtools
--reset-after-cc-mode-switch

NVIDIA GPU Tools version %VERSION%

Topo:

Intel root port 0000:15:01.0

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

2024-02-01,16:10:34.040 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:10:34.040 WARNING GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
has CC mode devtools, some functionality may not work

2024-02-01,16:10:34.146 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode set to devtools.

Query the state again:

$ sudo python3 ./nvidia_gpu_tools.py --gpu-bdf=1b:00.0 --query-cc-settings

NVIDIA GPU Tools version %VERSION%

Topo:

Intel root port 0000:15:01.0

PCI 0000:16:00.0 0x15b3:0x1979

PCI 0000:17:02.0 0x15b3:0x1979

PCI 0000:19:00.0 0x15b3:0x1979

PCI 0000:1a:00.0 0x15b3:0x1979

GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 13

2024-02-01,16:07:54.247 INFO Selected GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0
0x21e042000000

2024-02-01,16:07:54.247 WARNING GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
has CC mode devtools, some functionality may not work

2024-02-01,16:07:54.248 INFO GPU 0000:1b:00.0 H100-SXM 0x2330 BAR0 0x21e042000000
CC mode is devtools

The GPU is now con�gured and ready to be directly assigned to your CVM. If you already
have an orchestration �ow for building, con�guring, and so onVMs with KVM, you can skip
the next section.

(Optional) Setting up the Guest VM
This section provides information about how to set up the guest VM.

Identifying the GPUs to be Passed Through to the
Guest
In the Host OS, to identify an H100 to pass to our new Guest VM.
1. Identify the NVIDIA devices in the system.

$ lspci -d 10de:
81:00.0 3D controller: NVIDIA Corporation Device 2336 (rev a1)

The value above tells us about an H100 that is found in the system:

● The slot ID: 81:00.0
● The device ID of the speci�c H100 in slot 81:00.0: 2336

KVM a Virtual Function I/O (VFIO), which is a Linux kernel feature that allows a VM to
access and control physical hardware devices for improved performance as if they were
directly connected to it.

2. Tell the host kernel that these device IDs should be allocated for VMs.
$ sudo sh -c "echo 10de 2336 > /sys/bus/pci/drivers/vfio-pci/new_id"

3. Increase the dma_entry_limit (required for TDX)
$ sudo sh -c "echo 1048576 >
/sys/module/vfio_iommu_type1/parameters/dma_entry_limit"

The dma_entry_limitmight vary based on the system requirement.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 14

Note: This assignment must be done each time the Host reboots. You can restart Guests
multiple times or reassign the GPU(s) without repeating the steps.

Create the VM Base Image
The GPU is now con�gured for CC mode, we have installed Ubuntu on a VM, and con�gured
the H100 in the system for VM attachment, we are ready to launch our VM in Con�dential
mode!

The Intel-TDX Repository provides a series of scripts which simpli�es con�guration and
launching of a Virtual Machine. The scripts provided will obtain the Ubuntu 22.04 cloud
image and perform all the required con�guration of the CVM guest.

Note: The guest image will be created with a default size of 20GB. Please update the script
or increase the guest image size according to your requirements.

$ cd /shared/tdx-tools/build/ubuntu-22.04/guest-image

Update the guest image size to 100G
$ vim tdx-guest-stack.sh
$ qemu-img resize ${TD_IMG} +100G

$ sudo ./tdx-guest-stack.sh.

You will need to modify 2 lines of code to con�gure your CPU core count and memory
allocated to your CVM, as well as another line to direct the CVM to attach the H100 we
identi�ed earlier:
Modify /shared/tdx-tools/start-qemu.sh to your desired CPU cores and Memory:
CPUS=16
MEM=64G

Modify /shared/tdx-tools/start-qemu.sh to include your H100; note the host=81:00.0
this will be specific to the step “Identifying the GPUs to be Passed Through to the
Guest”
HVC_CONSOLE="-chardev stdio,id=mux,mux=on,logfile=$CURR_DIR/vm_log_$(date
+"%FT%H%M").log \

-device virtio-serial,romfile= \
-device virtconsole,chardev=mux -monitor chardev:mux \
-serial chardev:mux -nographic \

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 15

-no-hpet -nodefaults -device pcie-root-port,id=pci.1,bus=pcie.0 -device
vfio-pci,host=81:00.0,bus=pci.1 -fw_cfg name=opt/ovmf/X-PciMmio64,string=262144

Once the above steps are completed, you are ready to launch the CVM
$ cd /shared/tdx-tools/
$ sudo ./start-qemu.sh -i build/ubuntu-22.04/guest-image/td-guest-ubuntu-22.04.qcow2
-b grub

If you wish to launch a CVM without the TDX isolations in place, add the following �ag:

$ sudo ./start-qemu.sh -i build/ubuntu-22.04/guest-image/td-guest-ubuntu-22.04.qcow2
-b grub -t efi

Set up SSH on the Guest
Intel’s scripts require SSH key authentication rather than passwords. After launching the
CVM above, log in with the credentials:

● Username = root
● Password = 123456

Open another terminal window to your Host.

On the Host, generate an SSH keypair and accept the default save locations; do not enter a
passphrase

$ ssh-keygen
Generating public/private rsa key pair.
Enter file in which to save the key (/home/user/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/user/.ssh/id_rsa
Your public key has been saved in /home/user/.ssh/id_rsa.pub
The key fingerprint is:
SHA256:L5AGw0Q6ChZ6JWqFK0nCXVYJ5+ZLDWI3DuHaGSK5Uf0 user@hcc-tdx-rob
The key's randomart image is:
+---[RSA 3072]----+
|..++*=oo. |
|o==Bo.+. |
|*B=.+*.* |
|*++.=oXE+ |
|o. . o++S. |
| |
| .. . |
| . |

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 16

| |
+----[SHA256]-----+

$

On the Host, ensure the permissions are correct:
$ chmod 700 ~/.ssh/id_rsa

On the Host, print the public portion of the key so you can copy it (note this public key
ends with .pub)
$ cat ~/.ssh/id_rsa.pub
ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABgQCUTprQkXIShPKWi7EXZOBoXXHrsHtp9i89BaI2hSaUIYUUxcVlpH2Smq
E8n5FFeu84JT6NIyQjsOpuiD8jhM0bCj4RxQWFq+h7/0yQ8MEnIhKQOShlhSUitoKiH3fnRfqUx8tg5x89GyhB
7aLnZjSuS0LQhdsNJr+Drm3B7pFL1H9LAsP68Ruwd1SNqId7325ZwyKxeeYN+ntgh1fkc5KuUVBeD+NEE1XI9Z
aSqGHujBjPTXc3GbV53x6szfAHG83D/pRdK821PRcXKJbDoyDH0k9+j+qt9MykrdrJ9KqDGNkCGTkeLt4fi443
bQp6Rnaxi9dsUJE8fzPIVff0z2egeR32KUnwFE4UZQ9lHRKhTXZHAnSDaBm0IPbV1XNclvhPyywVffucA6yp2v
VQM6keaWY3nyJhJpsaye+eN9AK/I0U40lPlld971hhviLEYPjahZ6CRNK30DG7wsxrqDNt+dCX2O286Q0iEzUx
hchwgBfH3B3t0NhCUeuILTbs8vs= user@hcc-tdx

In the Guest window, create the SSH directory and the correct �les to enable authorized
key login:

Within the Guest VM:

$ mkdir ~/.ssh/

$ vim ~/.ssh/authorized_keys
Use your favorite Linux editor to open ~/.ssh/authorized_keys and paste in the
entire ssh-rsa string printed before

On the Guest, change the permissions appropriately:
Within the Guest VM:

$ chmod 600 ~/.ssh/authorized_keys

With this, you should be able to SSH to the guest from the host, which will greatly enhance
the user experience of the terminal.

Validating the TDX Guest:
Once the CVM guest is launched, log in via SSH and check the dmesg log to validate the
TDX hooks are detected.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 17

Log In:
$ ssh -p10026 root@localhost

Password not required, but is 123456 if required later for user authentication

The kernel version should have the string “mvp” in it:

root@ubuntu:~# uname -a
Linux tdx-guest 6.2.16-mvp30v3+7-generic #mvp30v3+tdx SMP PREEMPT_DYNAMIC Wed Jul 12
05:07:41 EDT 2023 x86_64 x86_64 x86_64 GNU/Linux

Check the kernel logs for TDX support:

nvidia@tdx-guest:~$ sudo dmesg | grep -i tdx
[0.000000] tdx: Guest detected
[0.000000] TDX: Disabled TDX guest filter support
[0.000000] Linux version 6.2.0-mvp10v1+8-generic (lab@viking-evt1-66) (gcc (Ubuntu
11.3.0-1ubuntu1~22.04) 11.3.0, GNU ld (GNU Binutils for Ubuntu) 2.38) #mvp10v1+tdx SMP
PREEMPT_DYNAMIC Tue May 2 04:54:19 UTC 2023
[8.940162] Memory Encryption Features active: Intel TDX
[8.950644] process: using TDX aware idle routine
[8.964881] KVM-debug: PASS: single step TDX module emulated CPUID 0
[8.964881] KVM-debug: PASS: single step TDX module emulated RDMSR 0x1a0

To authorize the GPUs in the guest, update the guest command line.

Update the grub file

$ vim /etc/default/grub

GRUB_CMDLINE_LINUX="authorize_allow_devs=pci:ALL"

$ update-grub

$ reboot

$ cat /proc/cmdline

BOOT_IMAGE=/boot/vmlinuz-6.2.0-mvp10v1+8-generic

root=UUID=4a01875a-75bb-4778-b1a6-dd6c5f270fc1 ro authorize_allow_devs=pci:ALL

console=tty1 console=ttyS0

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 18

Note: Due to TDX limitations, a reboot command terminates the VM. This is expected for
all subsequent reboots.

At this point, the Host OS Administrator persona has completed the required work to
enable a Con�dential VM with a Con�dential H100 attached to it. The next steps will be
from the persona of a user who has received access to a VM and is ready to develop or
deploy a con�dential application.

Virtual Machine Administrator
Figure 8. Virtual Machine Administrator

The Virtual Machine Administrator persona assumes that the hardware is correctly
con�gured and expects to receive a CVM that can be attested to, with a GPU attached to it
by the hypervisor. This persona might (or might not) have awareness about the lower-level
details of the system, such as the BIOS or Host OS con�guration.Most users will begin
their journey here.

Note: The sample code snippets in this section will be presented as a continuation from
the previous steps of this document, which means a clean Ubuntu 22.04 install. If you
have been provided a CVM from your System Administrators, you might have a slightly
di�erent output, but the overall �ow and instructions should not di�er greatly.

Log into your CVM.
hostUser@host:~$ $ ssh -p10026 root@localhost

Enabling LKCA on the Guest VM

LKCA is required for Hopper CC all operation modes, so we recommend that you enable it in
the guest VM.

1. Create a /etc/modprobe.d/nvidia-lkca.conf �le and add this line to it:
install nvidia /sbin/modprobe ecdsa_generic ecdh; /sbin/modprobe --ignore-install
nvidia

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 19

2. Update the initramfs.
sudo update-initramfs -u
sudo reboot

Installing the NVIDIA Driver and CUDA Toolkit
We recommend you use the Package Manager method of installing the NVIDIA drivers.
OpenRM is the open-source version of our Kernel drivers, and the source can be found on
our GitHub.

Hopper CC is enabled starting with CUDA 12.4 and is paired with driver r550-TRD1
(550.54.15), which can be downloaded as described below:
In the Guest:

Obtain the NVIDIA keys to download the CUDA Toolkit
$ wget
https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-keyrin
g_1.1-1_all.deb
$ sudo dpkg -i cuda-keyring_1.1-1_all.deb
$ sudo apt-get update

Install the toolkit
$ sudo apt-get -y install cuda-toolkit-12-4

Install the Driver
$ sudo apt install nvidia-driver-550-server-open

Setting up the NVIDIA Driver to be in Persistence Mode
When the NVIDIA driver loads, we will automatically establish a secured SPDM session with
the H100. As part of this session, secure ephemeral encryption keys are exchanged
between the host and the device.

In a typical operation, when the NVIDIA device resources are no longer being used, the
NVIDIA kernel driver will tear down the device state. However, in the CC mode, this leads to
destroying the shared-secret and the shared keys that were established during the setup
SPDM phase of the driver. Due to security concerns, the GPU will not allow the restart of
an SPDM session establishment without an FLR which resets and scrubs the GPU.

To avoid this situation, nvidia-persistenced provides a con�guration option called
persistence mode that can be set by NVIDIA management software, such as nvidia-smi.
When the persistence mode is enabled, the NVIDIA kernel driver is prevented from exiting.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 20

https://github.com/NVIDIA/open-gpu-kernel-modules

nvidia-persistenced does not use any device resources. It simply sleeps while maintaining a
reference to the NVIDIA device state.
1. Determine whether nvidia-persistenced is already running.

$ ps -aux | grep nvidia-persistenced
nvidia-+ 797 0.0 0.0 5472 1852 ? Ss 17:23 0:00
/usr/bin/nvidia-persistenced --user nvidia-persistenced --no-persistence-mode
--verbose

2. If you see the above with --no-persistence-mode or the only output is the grep
command:
$ ps -aux | grep nvidia-persistenced
user 25944 0.0 0.0 4032 2180 pts/0 S+ 18:52 0:00 grep
--color=auto nvidia-persistenced

then we must make changes for Con�dential Computing modes.

a. Modify the service that automatically launches nvidia-persistenced:
On the Guest:
Edit /usr/lib/systemd/system/nvidia-persistenced.service

Change:
ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced

--no-persistence-mode --verbose

to this:
ExecStart=/usr/bin/nvidia-persistenced --user nvidia-persistenced

--uvm-persistence-mode --verbose

b. Tell systemd to reload its modules, and reboot the guest
On the Guest:

$ sudo systemctl daemon-reload
$ sudo reboot

Validating State and Versions
1. With the driver in persistent mode, you can check the status of the GPU to ensure that

it is con�gured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

2. Ensure that the �rmware on the H100 is at a minimum version of 96.00.5E.00.00
$ nvidia-smi -q | grep VBIOS

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 21

VBIOS Version : 96.00.5E.00.25

If you have an earlier version of the VBIOS, contact NVIDIA for instructions on how to
upgrade to version 96.00.5E.00.00.

You have successfully con�gured the Guest CVM to operate in the CC mode with a secured
H100 accelerator! The next section is the persona for CVM users. However, before this
persona can use the GPU, we strongly recommend that you complete the attestation of
the GPU.

Virtual Machine User
Figure 9. Virtual Machine Administrator

The Virtual Machine user might (or might not) be the administrator of the system (refer to
Virtual Machine Administrator for more information). This Persona assumes that the
system is correctly con�gured for CC.

Note: We recommend that you complete your work in the /shared folder in the guest VM.

At this point, users must begin the attestation work�ow to ensure the system is authentic
and valid. Attestation is the process of challenging the GPU where measurements are
collected and signed by the GPU, and these measurements are compared to known-good,
golden measurements. After the veri�cation passes, you might want to enable the GPU by
setting its ReadyState.

Note: The GPU will not accept any work until an enlightened CVM user sets the
ReadyState. This is to prevent accidental usage before the con�rmation of the GPU is
complete.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 22

Figure 10. Attesting the GPU

The recommended �ow for attestation is to directly use the Attestation SDK and its APIs .
However, you can directly call the Local GPU Veri�er. This �ow to learn more about the
Local GPU Veri�er, refer to the NVIDIA Attestation SDK guide at
https://docs.nvidia.com/nvtrust

Validating Your Con�guration
After the driver is successfully installed, and you can query the device, the next step is to

attest to the GPU.

1. If you are coming directly to this persona section, ensure that nvidia-persistenced is

already running. If you started in the previous persona, you skip this veri�cation step.

$ ps -aux | grep nvidia-persistenced
root 2327 20.1 0.0 5312 1788 ? Ss 08:57 0:05
nvidia-persistenced

2. If nothing is returned, run the following command to start it.
$ sudo nvidia-persistenced

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 23

https://docs.nvidia.com/nvtrust

3. Check the status of the GPU to ensure that it is con�gured in a CC mode.
$ nvidia-smi conf-compute -f
CC status: ON

Installing the Attestation SDK
Before you begin, install the Local GPU Veri�er, which is also in the nvTrust repository. To
keep it simple, perform another clone of the repo:
$ cd /shared
$ git clone https://github.com/nvidia/nvtrust

$ cd nvtrust/guest_tools/

Installation Prerequisites
The Attestation SDK and the Local GPU Veri�er require Python3. We also recommend that
you also install the Virtual Environment module, which can keep your primary system
Python environment clean.
$ sudo apt install python3-pip

Optionally install:
$ sudo apt install python3.10-venv

(Optional) Con�guring a Python Virtual Environment
Create a new virtual env named nvAttest
python3 -m venv /shared/nvAttest

Configure the shell to use nvAttest
$ source /shared/nvAttest/bin/activate
(nvAttest) user@guestVM:/shared/$

Your Python virtual environment will now always be pre�xed with (nvAttest). If you do not
see this string on your terminal (for example, after changing terminal windows, logging out,
and so on), run the following command again.
$ source /shared/nvAttest/bin/activate

Installing the Local GPU Veri�er
You must install the plugins before you install the Attestation SDK, otherwise you will get
errors.

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 24

(nvAttest) $ cd /shared/nvtrust/guest_tools/gpu_verifiers/local_gpu_verifier
(nvAttest) $ pip3 install .

Installing the Attestation SDK
Note: Ensure you are running in the same python environment (either the optional virtual
environment nvAttest created above or your default one).

(nvAttest) $ cd /shared/nvtrust/guest_tools/attestation_sdk/
(nvAttest) $ pip3 install .

Executing an Attestation of the GPU
After the components have been installed, you are ready to perform an attestation using
the SDK. The sample code can be found on the nvTrust GitHub under
nvtrust/guest_tools/attestation_sdk/tests/SmallGPUTest.py

However, here is the Python code, and you can run this code on the python3 command line.
from nv_attestation_sdk import attestation

Create a Attestation object
client = attestation.Attestation("test_node")

Add the type of verifier that you would like to use
client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "", "")

Set the Attestation Policy that you want to validate your token against.
attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \

'"x-nv-gpu-attestation-report-available":true}}'

Run Attest
print(client.attest())

Call validate_token to validate the results against the Appraisal policy for
Attestation Results
print(client.validate_token(attestation_results_policy))

The primary focus of the attestation should be the yellow highlighted variable. As the
developer, you can decide which claims constitute a pass or a fail result from the
Attestation SDK. In the example above, the code will return TRUE as long as there is an

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 25

NVIDIA GPU detected in the CVM and the process to obtain the GPU measurements was
returned properly.

We provide a full list of all the possible claims that returned during an attestation query. It
is listed below for your reference.
/shared/nvtrust/guest_tools/attestation_sdk/tests/NVGPUPolicyExample.json

{

"version":"1.0",

"authorization-rules":{

"x-nv-gpu-available":true,

"x-nv-gpu-attestation-report-available":true,

"x-nv-gpu-info-fetched":true,

"x-nv-gpu-arch-check":true,

"x-nv-gpu-root-cert-available":true,

"x-nv-gpu-cert-chain-verified":true,

"x-nv-gpu-ocsp-cert-chain-verified":true,

"x-nv-gpu-ocsp-signature-verified":true,

"x-nv-gpu-cert-ocsp-nonce-match":true,

"x-nv-gpu-cert-check-complete":true,

"x-nv-gpu-measurement-available":true,

"x-nv-gpu-attestation-report-parsed":true,

"x-nv-gpu-nonce-match":true,

"x-nv-gpu-attestation-report-driver-version-match":true,

"x-nv-gpu-attestation-report-vbios-version-match":true,

"x-nv-gpu-attestation-report-verified":true,

"x-nv-gpu-driver-rim-schema-fetched":true,

"x-nv-gpu-driver-rim-schema-validated":true,

"x-nv-gpu-driver-rim-cert-extracted":true,

"x-nv-gpu-driver-rim-signature-verified":true,

"x-nv-gpu-driver-rim-driver-measurements-available":true,

"x-nv-gpu-driver-vbios-rim-fetched":true,

"x-nv-gpu-vbios-rim-schema-validated":true,

"x-nv-gpu-vbios-rim-cert-extracted":true,

"x-nv-gpu-vbios-rim-signature-verified":true,

"x-nv-gpu-vbios-rim-driver-measurements-available":true,

"x-nv-gpu-vbios-index-conflict":true,

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 26

"x-nv-gpu-measurements-match":true

}

}

Successful Attestation Result

When the Attestation SDK has successfully returned a valid result, you should see

something like below (varies slightly based on your speci�c system):

python3
Python 3.10.6 (main, May 29 2023, 11:10:38) [GCC 11.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> from nv_attestation_sdk import attestation
>>> client = attestation.Attestation("test_node")
>>> client.add_verifier(attestation.Devices.GPU, attestation.Environment.LOCAL, "",
"")
>>> attestation_results_policy =
'{"version":"1.0","authorization-rules":{"x-nv-gpu-available":true,' \
...
'"x-nv-gpu-attestation-report-available":true,"x-nv-gpu-info-fetched":true,' \
...
'"x-nv-gpu-arch-check":true,"x-nv-gpu-root-cert-available":true,' \
...
'"x-nv-gpu-cert-chain-verified":true,"x-nv-gpu-ocsp-cert-chain-verified":true,' \
...
'"x-nv-gpu-ocsp-signature-verified":true,"x-nv-gpu-cert-ocsp-nonce-match":true,' \
...
'"x-nv-gpu-cert-check-complete":true,"x-nv-gpu-measurement-available":true,' \
...
'"x-nv-gpu-attestation-report-parsed":true,"x-nv-gpu-nonce-match":true,' \
...
'"x-nv-gpu-attestation-report-driver-version-match":true,' \
...
'"x-nv-gpu-attestation-report-vbios-version-match":true,' \
...
'"x-nv-gpu-attestation-report-verified":true,"x-nv-gpu-driver-rim-schema-fetched":true
,' \
...
'"x-nv-gpu-driver-rim-schema-validated":true,"x-nv-gpu-driver-rim-cert-extracted":true
,' \
... '"x-nv-gpu-driver-rim-signature-verified":true,' \
...
'"x-nv-gpu-driver-rim-driver-measurements-available":true,' \

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 27

...
'"x-nv-gpu-driver-vbios-rim-fetched":true,"x-nv-gpu-vbios-rim-schema-validated":true,'
\
...
'"x-nv-gpu-vbios-rim-cert-extracted":true,"x-nv-gpu-vbios-rim-signature-verified":true
,' \
...
'"x-nv-gpu-vbios-rim-driver-measurements-available":true,' \
...
'"x-nv-gpu-vbios-index-conflict":true,"x-nv-gpu-measurements-match":true}}'
>>> client.attest()
Number of GPUs available : 1

Fetching GPU 0 information from GPU driver.
VERIFYING GPU : 0

Driver version fetched : 535.86.05
VBIOS version fetched : 96.00.5e.00.01
Validating GPU certificate chains.

GPU attestation report certificate chain validation successful.
The certificate chain revocation status verification successful.

Authenticating attestation report
The nonce in the SPDM GET MEASUREMENT request message is matching with the

generated nonce.
Driver version fetched from the attestation report : 535.86.05
VBIOS version fetched from the attestation report : 96.00.5e.00.01
Attestation report signature verification successful.
Attestation report verification successful.

Authenticating the RIMs.
Authenticating Driver RIM

RIM Schema validation passed.
driver RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
driver RIM signature verification successful.
Driver RIM verification successful

Authenticating VBIOS RIM.
RIM Schema validation passed.
vbios RIM certificate chain verification successful.
The certificate chain revocation status verification successful.
vbios RIM signature verification successful.
VBIOS RIM verification successful

Comparing measurements (runtime vs golden)
The runtime measurements are matching with the golden measurements.

GPU is in expected state.
GPU 0 verified successfully.
GPU Attested Successfully

True

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 28

>>> client.validate_token(attestation_results_policy)

Conclusion

With this guide, we have provided information about the process from when the machine is
racked and stacked to con�guring the host and guest operating systems, and �nally to
attaching an H100 in a CVM. This �ow can be modi�ed to suit your speci�c needs, and we
encourage you to provide feedback, comments, or questions.. You can reach out to us on
our forum page:
https://forums.developer.nvidia.com/c/accelerated-computing/con�dential-computing/663
.
Stay tuned to our GitHub for the latest updates, news, and solutions in the meantime.
Happy coding!

Con�dential Computing Deployment Guide DU-11462-001_2.0 | 29

https://forums.developer.nvidia.com/c/accelerated-computing/confidential-computing/663

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality,
condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no representations or warranties, expressed or
implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for
any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (de�ned below), code, or functionality.

NVIDIA reserves the right to make corrections, modi�cations, enhancements, improvements, and any other changes to this
document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is
current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order
acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized representatives of NVIDIA
and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with
regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either
directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life
support equipment, nor in applications where failure or malfunction of the NVIDIA product can reasonably be expected to
result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of
NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any speci�ed use.
Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s sole responsibility to
evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and �t
for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may a�ect the quality and reliability of the NVIDIA
product and may result in additional or di�erent conditions and/or requirements beyond those contained in this document.
NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i) the
use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual
property right under this document. Information published by NVIDIA regarding third-party products or services does not
constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such
information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced
without alteration and in full compliance with all applicable export laws and regulations, and accompanied by all associated
conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS,
AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY
DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER
CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for
any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein shall
be limited in accordance with the Terms of Sale for the product.

Trademarks
NVIDIA, the NVIDIA logo, and Hopper are trademarks and/or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with which they are
associated.

VESA DisplayPort
DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort
Compliance Logo for Active Cables are trademarks owned by the Video Electronics Standards Association in the United
States and other countries.

HDMI
HDMI, the HDMI logo, and High-De�nition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing
LLC.

Arm
Arm, AMBA, and ARM Powered are registered trademarks of Arm Limited. Cortex, MPCore, and Mali are trademarks of Arm
Limited. All other brands or product names are the property of their respective holders. ʺArmʺ is used to represent ARM
Holdings plc; its operating company Arm Limited; and the regional subsidiaries Arm Inc.; Arm KK; Arm Korea Limited.; Arm
Taiwan Limited; Arm France SAS; Arm Consulting (Shanghai) Co. Ltd.; Arm Germany GmbH; Arm Embedded Technologies Pvt.
Ltd.; Arm Norway, AS, and Arm Sweden AB.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Copyright

© 2023 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051

http://www.nvidia.com

http://www.nvidia.com

