
nvJitLink
Release 13.1

NVIDIA Corporation

Jan 08, 2026

Contents

1 Getting Started 3
1.1 System Requirements . 3
1.2 Installation . 3

2 User Interface 5
2.1 Error codes . 5
2.1.1 Enumerations . 5

2.2 Linking . 7
2.2.1 Enumerations . 8
2.2.2 Functions . 9
2.2.3 Typedefs . 14

2.3 Supported Link Options . 14

3 Basic Usage 17

4 Compatibility 19

5 Example: Device LTO (link time optimization) 21
5.1 Code (offline.cu) . 21
5.2 Code (online.cpp) . 21
5.3 Build Instructions . 25
5.4 Notices . 26
5.4.1 Notice . 26
5.4.2 OpenCL . 27
5.4.3 Trademarks . 27

Index 29

i

ii

nvJitLink, Release 13.1

nvJitLink

The User guide to nvJitLink library.

The JIT Link APIs are a set of APIs which can be used at runtime to link together GPU device code.

The APIs accept inputs in multiple formats, either host objects, host libraries, fatbins (including with
relocatable ptx), device cubins, PTX, index files or LTO-IR. The output is a linked cubin that can be
loaded by cuModuleLoadData and cuModuleLoadDataEx of the CUDA Driver API.

Link Time Optimization can also be performed when given LTO-IR or higher level formats that include
LTO-IR.

If an input does not contain GPU assembly code, it is first compiled and then linked.

The functionality in this library is similar to the cuLink* APIs in the CUDA Driver, with the following
advantages:

▶ The cuLink* APIs have been deprecated for use with LTO-IR

▶ Support for Link Time Optimization

▶ Allow users to use runtime linking with the latest Toolkit version that is supported as part of
CUDA Toolkit release. This support may not be available in the CUDADriver APIs if the application
is running with an older driver installed in the system. Refer to CUDA Compatibility for more
details.

▶ The clients get fine grain control and can specify low-level compiler options during linking.

Contents 1

https://docs.nvidia.com/deploy/cuda-compatibility/index.html

nvJitLink, Release 13.1

2 Contents

Chapter 1. Getting Started

1.1. System Requirements

The JIT Link library requires the following system configuration:

▶ POSIX threads support for non-Windows platform.

▶ GPU: Any GPU with CUDA Compute Capability 3.5 or higher.

▶ CUDA Toolkit and Driver.

1.2. Installation

The JIT Link library is part of the CUDA Toolkit release and the components are organized as follows
in the CUDA toolkit installation directory:

▶ On Windows:

▶ include\nvJitLink.h

▶ lib\x64\nvJitLink.dll

▶ lib\x64\nvJitLink_static.lib

▶ On Linux:

▶ include∕nvJitLink.h

▶ lib64∕libnvJitLink.so

▶ lib64∕libnvJitLink_static.a

3

nvJitLink, Release 13.1

4 Chapter 1. Getting Started

Chapter 2. User Interface

This chapter presents the JIT Link APIs. Basic usage of the API is explained in Basic Usage.

▶ Error codes

▶ Linking

▶ Supported Link Options

2.1. Error codes

Enumerations

nvJitLinkResult
The enumerated type nvJitLinkResult defines API call result codes.

2.1.1. Enumerations

enum nvJitLinkResult
The enumerated type nvJitLinkResult defines API call result codes.

nvJitLink APIs return nvJitLinkResult codes to indicate the result.

Values:

enumerator NVJITLINK_SUCCESS

enumerator NVJITLINK_ERROR_UNRECOGNIZED_OPTION
Unrecognized Option.

enumerator NVJITLINK_ERROR_MISSING_ARCH
Option -arch=sm_NN not specified.

enumerator NVJITLINK_ERROR_INVALID_INPUT
Invalid Input.

5

index.html#basic-usage
index.html#error-codes
index.html#linking
index.html#supported-link-options

nvJitLink, Release 13.1

enumerator NVJITLINK_ERROR_PTX_COMPILE
Issue during PTX Compilation.

enumerator NVJITLINK_ERROR_NVVM_COMPILE
Issue during NVVM Compilation.

enumerator NVJITLINK_ERROR_INTERNAL
Internal Error.

enumerator NVJITLINK_ERROR_THREADPOOL
Issue with Thread Pool.

enumerator NVJITLINK_ERROR_UNRECOGNIZED_INPUT
Unrecognized Input.

enumerator NVJITLINK_ERROR_FINALIZE
Finalizer Error.

enumerator NVJITLINK_ERROR_NULL_INPUT
Null Input.

enumerator NVJITLINK_ERROR_INCOMPATIBLE_OPTIONS
Incompatible Options.

enumerator NVJITLINK_ERROR_INCORRECT_INPUT_TYPE
Incorrect Input Type.

enumerator NVJITLINK_ERROR_ARCH_MISMATCH
Arch Mismatch.

enumerator NVJITLINK_ERROR_OUTDATED_LIBRARY
Outdated Library.

enumerator NVJITLINK_ERROR_MISSING_FATBIN
Missing Fatbin.

enumerator NVJITLINK_ERROR_UNRECOGNIZED_ARCH
Unrecognized -arch value.

enumerator NVJITLINK_ERROR_UNSUPPORTED_ARCH
Unsupported -arch value.

enumerator NVJITLINK_ERROR_LTO_NOT_ENABLED
Requires -lto.

6 Chapter 2. User Interface

nvJitLink, Release 13.1

2.2. Linking

Enumerations

nvJitLinkInputType
The enumerated type nvJitLinkInputType defines the kind of inputs that can be passed to
nvJitLinkAdd* APIs.

Functions

nvJitLinkResult nvJitLinkAddData(nvJitLinkHandle handle, nvJitLinkInputType inputType, const
void *data, size_t size, const char *name)
nvJitLinkAddData adds data image to the link.

nvJitLinkResult nvJitLinkAddFile(nvJitLinkHandle handle, nvJitLinkInputType inputType, const
char *fileName)
nvJitLinkAddFile reads data from file and links it in.

nvJitLinkResult nvJitLinkComplete(nvJitLinkHandle handle)
nvJitLinkComplete does the actual link.

nvJitLinkResult nvJitLinkCreate(nvJitLinkHandle *handle, uint32_t numOptions, const char **op-
tions)
nvJitLinkCreate creates an instance of nvJitLinkHandle with the given input options, and sets
the output parameter handle .

nvJitLinkResult nvJitLinkDestroy(nvJitLinkHandle *handle)
nvJitLinkDestroy frees the memory associated with the given handle and sets it to NULL.

nvJitLinkResult nvJitLinkGetErrorLog(nvJitLinkHandle handle, char *log)
nvJitLinkGetErrorLog puts any error messages in the log.

nvJitLinkResult nvJitLinkGetErrorLogSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetErrorLogSize gets the size of the error log.

nvJitLinkResult nvJitLinkGetInfoLog(nvJitLinkHandle handle, char *log)
nvJitLinkGetInfoLog puts any info messages in the log.

nvJitLinkResult nvJitLinkGetInfoLogSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetInfoLogSize gets the size of the info log.

nvJitLinkResult nvJitLinkGetLinkedCubin(nvJitLinkHandle handle, void *cubin)
nvJitLinkGetLinkedCubin gets the linked cubin.

nvJitLinkResult nvJitLinkGetLinkedCubinSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetLinkedCubinSize gets the size of the linked cubin.

nvJitLinkResult nvJitLinkGetLinkedPtx(nvJitLinkHandle handle, char *ptx)
nvJitLinkGetLinkedPtx gets the linked ptx.

nvJitLinkResult nvJitLinkGetLinkedPtxSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetLinkedPtxSize gets the size of the linked ptx.

nvJitLinkResult nvJitLinkVersion(unsigned int *major, unsigned int *minor)
nvJitLinkVersion returns the current version of nvJitLink.

2.2. Linking 7

nvJitLink, Release 13.1

Typedefs

nvJitLinkHandle
nvJitLinkHandle is the unit of linking, and an opaque handle for a program.

2.2.1. Enumerations

enum nvJitLinkInputType
The enumerated type nvJitLinkInputType defines the kind of inputs that can be passed to
nvJitLinkAdd* APIs.

Values:

enumerator NVJITLINK_INPUT_NONE
Error Type.

enumerator NVJITLINK_INPUT_CUBIN
For CUDA Binaries.

enumerator NVJITLINK_INPUT_PTX
For PTX.

enumerator NVJITLINK_INPUT_LTOIR
For LTO-IR.

enumerator NVJITLINK_INPUT_FATBIN
For Fatbin.

enumerator NVJITLINK_INPUT_OBJECT
For Host Object.

enumerator NVJITLINK_INPUT_LIBRARY
For Host Library.

enumerator NVJITLINK_INPUT_INDEX
For Index File.

enumerator NVJITLINK_INPUT_ANY
Dynamically chooses from the valid types.

8 Chapter 2. User Interface

nvJitLink, Release 13.1

2.2.2. Functions

static inline nvJitLinkResult nvJitLinkAddData(nvJitLinkHandle handle, nvJitLinkInputType
inputType, const void *data, size_t size, const char
*name)

nvJitLinkAddData adds data image to the link.

Parameters

▶ handle – [in] nvJitLink handle.

▶ inputType – [in] kind of input.

▶ data – [in] pointer to data image in memory.

▶ size – [in] size of the data.

▶ name – [in] name of input object.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkAddFile(nvJitLinkHandle handle, nvJitLinkInputType
inputType, const char *fileName)

nvJitLinkAddFile reads data from file and links it in.

Parameters

▶ handle – [in] nvJitLink handle.

▶ inputType – [in] kind of input.

▶ fileName – [in] name of file.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkComplete(nvJitLinkHandle handle)
nvJitLinkComplete does the actual link.

Parameters
handle – [in] nvJitLink handle.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

2.2. Linking 9

nvJitLink, Release 13.1

static inline nvJitLinkResult nvJitLinkCreate(nvJitLinkHandle *handle, uint32_t numOptions,
const char **options)

nvJitLinkCreate creates an instance of nvJitLinkHandle with the given input options, and sets
the output parameter handle.

It supports options listed in Supported Link Options.

See also:

nvJitLinkDestroy

Parameters

▶ handle – [out] Address of nvJitLink handle.

▶ numOptions – [in] Number of options passed.

▶ options – [in] Array of size numOptions of option strings.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_UNRECOGNIZED_OPTION

▶ NVJITLINK_ERROR_MISSING_ARCH

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkDestroy(nvJitLinkHandle *handle)
nvJitLinkDestroy frees the memory associated with the given handle and sets it to NULL.

See also:

nvJitLinkCreate

Parameters
handle – [in] Address of nvJitLink handle.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetErrorLog(nvJitLinkHandle handle, char *log)
nvJitLinkGetErrorLog puts any error messages in the log.

User is responsible for allocating enough space to hold the log.

10 Chapter 2. User Interface

nvJitLink, Release 13.1

See also:

nvJitLinkGetErrorLogSize

Parameters

▶ handle – [in] nvJitLink handle.

▶ log – [out] The error log.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetErrorLogSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetErrorLogSize gets the size of the error log.

See also:

nvJitLinkGetErrorLog

Parameters

▶ handle – [in] nvJitLink handle.

▶ size – [out] Size of the error log.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetInfoLog(nvJitLinkHandle handle, char *log)
nvJitLinkGetInfoLog puts any info messages in the log.

User is responsible for allocating enough space to hold the log.

See also:

nvJitLinkGetInfoLogSize

Parameters

▶ handle – [in] nvJitLink handle.

▶ log – [out] The info log.

Returns

2.2. Linking 11

nvJitLink, Release 13.1

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetInfoLogSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetInfoLogSize gets the size of the info log.

See also:

nvJitLinkGetInfoLog

Parameters

▶ handle – [in] nvJitLink handle.

▶ size – [out] Size of the info log.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetLinkedCubin(nvJitLinkHandle handle, void *cubin)
nvJitLinkGetLinkedCubin gets the linked cubin.

User is responsible for allocating enough space to hold the cubin.

See also:

nvJitLinkGetLinkedCubinSize

Parameters

▶ handle – [in] nvJitLink handle.

▶ cubin – [out] The linked cubin.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetLinkedCubinSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetLinkedCubinSize gets the size of the linked cubin.

12 Chapter 2. User Interface

nvJitLink, Release 13.1

See also:

nvJitLinkGetLinkedCubin

Parameters

▶ handle – [in] nvJitLink handle.

▶ size – [out] Size of the linked cubin.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetLinkedPtx(nvJitLinkHandle handle, char *ptx)
nvJitLinkGetLinkedPtx gets the linked ptx.

Linked PTX is only available when using the -lto option. User is responsible for allocating enough
space to hold the ptx.

See also:

nvJitLinkGetLinkedPtxSize

Parameters

▶ handle – [in] nvJitLink handle.

▶ ptx – [out] The linked PTX.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

static inline nvJitLinkResult nvJitLinkGetLinkedPtxSize(nvJitLinkHandle handle, size_t *size)
nvJitLinkGetLinkedPtxSize gets the size of the linked ptx.

Linked PTX is only available when using the -lto option.

See also:

nvJitLinkGetLinkedPtx

Parameters

▶ handle – [in] nvJitLink handle.

▶ size – [out] Size of the linked PTX.

2.2. Linking 13

nvJitLink, Release 13.1

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

nvJitLinkResult nvJitLinkVersion(unsigned int *major, unsigned int *minor)
nvJitLinkVersion returns the current version of nvJitLink.

Parameters

▶ major – [out] The major version.

▶ minor – [out] The minor version.

Returns

▶ NVJITLINK_SUCCESS

▶ NVJITLINK_ERROR_INVALID_INPUT

▶ NVJITLINK_ERROR_INTERNAL

2.2.3. Typedefs

typedef struct nvJitLink *nvJitLinkHandle
nvJitLinkHandle is the unit of linking, and an opaque handle for a program.

To link inputs, an instance of nvJitLinkHandle must be created first with nvJitLinkCreate().

2.3. Supported Link Options

nvJitLink supports the link options below.

Option names are prefixed with a single dash (-). Options that take a value have an assignment oper-
ator (=) followed by the option value, with no spaces, e.g. "-arch=sm_90".

The supported options are:

▶ -arch=sm_<N> Pass SM architecture value. See nvcc for valid values of <N>. Can use com-
pute_<N> value instead if only generating PTX. This is a required option.

▶ -maxrregcount=<N>Maximum register count.

▶ -time Print timing information to InfoLog.

▶ -verbose Print verbose messages to InfoLog.

▶ -lto Do link time optimization.

▶ -ptx Emit ptx after linking instead of cubin; only supported with -lto

▶ -O<N> Optimization level. Only 0 and 3 are accepted.

14 Chapter 2. User Interface

nvJitLink, Release 13.1

▶ -g Generate debug information.

▶ -lineinfo Generate line information.

▶ -ftz=<n> Flush to zero.

▶ -prec-div=<n> Precise divide.

▶ -prec-sqrt=<n> Precise square root.

▶ -fma=<n> Fast multiply add.

▶ -kernels-used=<name> Pass list of kernels that are used; any not in the list can be removed.
This option can be specified multiple times.

▶ -variables-used=<name> Pass list of variables that are used; any not in the list can be re-
moved. This option can be specified multiple times.

▶ -optimize-unused-variables Normally device code optimization is limited by not knowing
what the host code references. With this option it can assume that if a variable is not referenced
in device code then it can be removed.

▶ -Xptxas=<opt> Pass <opt> to ptxas. This option can be called multiple times.

▶ -split-compile=<N> Split compilation maximum thread count. Use 0 to use all available pro-
cessors. Value of 1 disables split compilation (default).

▶ -split-compile-extended=<N> A more aggressive form of split compilation available in LTO
mode only. Accepts a maximum thread count value. Use 0 to use all available processors. Value
of 1 disables extended split compilation (default). Note: This option can potentially impact per-
formance of the compiled binary.

▶ -jump-table-density=<N> When doing LTO, specify the case density percentage in switch
statements, and use it as a minimal threshold to determine whether jump table(brx.idx instruc-
tion) will be used to implement a switch statement. Default value is 101. The percentage ranges
from 0 to 101 inclusively.

▶ -no-cache Don’t cache the intermediate steps of nvJitLink.

▶ -device-stack-protector Enable stack canaries in device code. Stack canaries make it more
difficult to exploit certain types of memory safety bugs involving stack-local variables. The com-
piler uses heuristics to assess the risk of such a bug in each function. Only those functions which
are deemed high-risk make use of a stack canary.

2.3. Supported Link Options 15

nvJitLink, Release 13.1

16 Chapter 2. User Interface

Chapter 3. Basic Usage

This section of the document uses a simple example to explain how to use the JIT Link APIs to link a
program. For brevity and readability, error checks on the API return values are not shown.

This example assumes we want to link for sm_80, but whatever arch is installed on the system should
be used. We can create the linker and obtain a handle to it as shown in Figure 1.

Figure 1. Linker creation and initialization of a program

nvJitLink_t linker;
const char* link_options[] = { "-arch=sm_80" };
nvJitLinkCreate(&linker, 1, link_options);

Assume that we already have two relocatable input files (a.o and b.o), which could be created with the
nvcc -dc command. We can add the input files as show in Figure 2.

Figure 2. Inputs to linker

nvJitLinkAddFile(linker, NVJITLINK_INPUT_OBJECT, "a.o");
nvJitLinkAddFile(linker, NVJITLINK_INPUT_OBJECT, "b.o");

Now the actual link can be done as shown in Figure 3.

Figure 3. Linking of the PTX program

nvJitLinkComplete(linker);

The linked GPU assembly code can now be obtained. To obtain this we first allocatememory for it. And
to allocate memory, we need to query the size of the image of the linked GPU assembly code which is
done as shown in Figure 4.

Figure 4. Query size of the linked assembly image

nvJitLinkGetLinkedCubinSize(linker, &cubinSize);

The image of the linked GPU assembly code can now be queried as shown in Figure 5. This image can
then be executed on the GPU by passing this image to the CUDA Driver APIs.

Figure 5. Query the linked assembly image

elf = (char*) malloc(cubinSize);
nvJitLinkGetLinkedCubin(linker, (void*)elf);

When the linker is not needed anymore, it can be destroyed as shown in Figure 6.

Figure 6. Destroy the linker

17

index.html#basic-usage-linker-creation
index.html#basic-usage-link-inputs
index.html#basic-usage-linking-of-program
index.html#basic-usage-query-image-size
index.html#basic-usage-query-image
index.html#basic-usage-destroy-linker

nvJitLink, Release 13.1

nvJitLinkDestroy(&linker);

18 Chapter 3. Basic Usage

Chapter 4. Compatibility

The nvJitLink library is compatible acrossminor versions in a release, butmay not be compatible across
major versions. The library version itselfmust be >= themaximumversion of the inputs, and the shared
library version must be >= the version that was linked with.

For example, you can link an object created with 12.0 and one with 12.1 if your nvJitLink library is
version 12.x where x >= 1. If it was linked with 12.1, then you can replace and use the nvJitLink shared
library with any version 12.x where x >= 1. On the flip side, you cannot use 12.0 to link 12.1 objects,
nor use 12.0 nvJitLink library to run 12.1 code.

Linking across major versions (like 11.x with 12.x) works for ELF and PTX inputs, but does not work
with LTOIR inputs. If using LTO, then compatibility is only guaranteed within a major release.

Linking extended ISA sources (like sm_90a) against any other sm version will always fail.

Linkingwith PTX sources fromdifferent architectures (such as compute_89 and compute_90)will work
as long as the final link is the newest of all of the architectures being linked. That is, for any compute_X
and compute_Y, the link is valid if the target is sm_N where N >= max(X,Y).

Linking with LTO sources from different architectures (such as lto_89 and lto_90) will work as long as
the final link is the newest of all of the architectures being linked. That is, for any lto_X and lto_Y, the
link is valid if the target is sm_N where N >= max(X,Y).

Linking with non-PTX, non-LTO sources is limited to link-compatible architectures, such as how sm_80
and sm_86 can link with each other but not sm_90.

19

nvJitLink, Release 13.1

20 Chapter 4. Compatibility

Chapter 5. Example: Device LTO (link
time optimization)

This section demonstrates device link time optimization (LTO). There are two units of LTO IR. The first
unit is generated offline using nvcc, by specifying the architecture as ‘-arch lto_XX’ (see offline.cu).
The generated LTO IR is packaged in a fatbinary.

The second unit is generated online using NVRTC, by specifying the flag ‘-dlto’ (see online.cpp).

These two units are then passed to libnvJitLink* API functions, which link together the LTO IR, run
the optimizer on the linked IR, and generate a cubin (see online.cpp). The cubin is then loaded on the
GPU and executed.

5.1. Code (offline.cu)

__device__ float compute(float a, float x, float y) {
return a * x + y;

}

5.2. Code (online.cpp)

#include <nvrtc.h>
#include <cuda.h>
#include <nvJitLink.h>
#include <nvrtc.h>
#include <iostream>

#define NUM_THREADS 128
#define NUM_BLOCKS 32

#define NVRTC_SAFE_CALL(x) \
do { \

nvrtcResult result = x; \
if (result != NVRTC_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \

<< nvrtcGetErrorString(result) << '\n'; \
exit(1); \

(continues on next page)

21

nvJitLink, Release 13.1

(continued from previous page)

} \
} while(0)

#define CUDA_SAFE_CALL(x) \
do { \

CUresult result = x; \
if (result != CUDA_SUCCESS) { \
const char *msg; \
cuGetErrorName(result, &msg); \
std::cerr << "\nerror: " #x " failed with error " \

<< msg << '\n'; \
exit(1); \

} \
} while(0)

#define NVJITLINK_SAFE_CALL(h,x) \
do { \

nvJitLinkResult result = x; \
if (result != NVJITLINK_SUCCESS) { \
std::cerr << "\nerror: " #x " failed with error " \

<< result << '\n'; \
size_t lsize; \
result = nvJitLinkGetErrorLogSize(h, &lsize); \
if (result == NVJITLINK_SUCCESS && lsize > 0) { \

char *log = (char*)malloc(lsize); \
result = nvJitLinkGetErrorLog(h, log); \
if (result == NVJITLINK_SUCCESS) { \
std::cerr << "error: " << log << '\n'; \
free(log); \

} \
} \
exit(1); \

} \
} while(0)

const char *lto_saxpy = " \n\
extern __device__ float compute(float a, float x, float y); \n\

\n\
extern \"C\" __global__ \n\
void saxpy(float a, float *x, float *y, float *out, size_t n) \n\
{ \n\

size_t tid = blockIdx.x * blockDim.x + threadIdx.x; \n\
if (tid < n) { \n\

out[tid] = compute(a, x[tid], y[tid]); \n\
} \n\

} \n";

int main(int argc, char *argv[])
{

size_t numBlocks = 32;
size_t numThreads = 128;
∕∕ Create an instance of nvrtcProgram with the code string.
nvrtcProgram prog;
NVRTC_SAFE_CALL(

nvrtcCreateProgram(&prog, ∕∕ prog
lto_saxpy, ∕∕ buffer
"lto_saxpy.cu", ∕∕ name
0, ∕∕ numHeaders

(continues on next page)

22 Chapter 5. Example: Device LTO (link time optimization)

nvJitLink, Release 13.1

(continued from previous page)

NULL, ∕∕ headers
NULL)); ∕∕ includeNames

∕∕ specify that LTO IR should be generated for LTO operation
const char *opts[] = {"-dlto",

"--relocatable-device-code=true"};
nvrtcResult compileResult = nvrtcCompileProgram(prog, ∕∕ prog

2, ∕∕ numOptions
opts); ∕∕ options

∕∕ Obtain compilation log from the program.
size_t logSize;
NVRTC_SAFE_CALL(nvrtcGetProgramLogSize(prog, &logSize));
char *log = new char[logSize];
NVRTC_SAFE_CALL(nvrtcGetProgramLog(prog, log));
std::cout << log << '\n';
delete[] log;
if (compileResult != NVRTC_SUCCESS) {

exit(1);
}
∕∕ Obtain generated LTO IR from the program.
size_t LTOIRSize;
NVRTC_SAFE_CALL(nvrtcGetLTOIRSize(prog, <OIRSize));
char *LTOIR = new char[LTOIRSize];
NVRTC_SAFE_CALL(nvrtcGetLTOIR(prog, LTOIR));
∕∕ Destroy the program.
NVRTC_SAFE_CALL(nvrtcDestroyProgram(&prog));

CUdevice cuDevice;
CUcontext context;
CUmodule module;
CUfunction kernel;
CUDA_SAFE_CALL(cuInit(0));
CUDA_SAFE_CALL(cuDeviceGet(&cuDevice, 0));
CUDA_SAFE_CALL(cuCtxCreate(&context, NULL, 0, cuDevice));

∕∕ Load the generated LTO IR and the LTO IR generated offline
∕∕ and link them together.
nvJitLinkHandle handle;
∕∕ Dynamically determine the arch to link for
int major = 0;
int minor = 0;
CUDA_SAFE_CALL(cuDeviceGetAttribute(&major,

CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MAJOR, cuDevice));
CUDA_SAFE_CALL(cuDeviceGetAttribute(&minor,

CU_DEVICE_ATTRIBUTE_COMPUTE_CAPABILITY_MINOR, cuDevice));
int arch = major*10 + minor;
char smbuf[16];
sprintf(smbuf, "-arch=sm_%d", arch);
const char *lopts[] = {"-lto", smbuf};
NVJITLINK_SAFE_CALL(handle, nvJitLinkCreate(&handle, 2, lopts));

∕∕ NOTE: assumes "offline.fatbin" is in the current directory
∕∕ The fatbinary contains LTO IR generated offline using nvcc
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddFile(handle, NVJITLINK_INPUT_FATBIN,

"offline.fatbin"));
NVJITLINK_SAFE_CALL(handle, nvJitLinkAddData(handle, NVJITLINK_INPUT_LTOIR,

(continues on next page)

5.2. Code (online.cpp) 23

nvJitLink, Release 13.1

(continued from previous page)

(void *)LTOIR, LTOIRSize, "lto_online"));

∕∕ The call to nvJitLinkComplete causes linker to link together the two
∕∕ LTO IR modules (offline and online), do optimization on the linked LTO IR,
∕∕ and generate cubin from it.
NVJITLINK_SAFE_CALL(handle, nvJitLinkComplete(handle));
size_t cubinSize;
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubinSize(handle, &cubinSize));
void *cubin = malloc(cubinSize);
NVJITLINK_SAFE_CALL(handle, nvJitLinkGetLinkedCubin(handle, cubin));
NVJITLINK_SAFE_CALL(handle, nvJitLinkDestroy(&handle));
CUDA_SAFE_CALL(cuModuleLoadData(&module, cubin));
CUDA_SAFE_CALL(cuModuleGetFunction(&kernel, module, "saxpy"));

∕∕ Generate input for execution, and create output buffers.
size_t n = NUM_THREADS * NUM_BLOCKS;
size_t bufferSize = n * sizeof(float);
float a = 5.1f;
float *hX = new float[n], *hY = new float[n], *hOut = new float[n];
for (size_t i = 0; i < n; ++i) {

hX[i] = static_cast<float>(i);
hY[i] = static_cast<float>(i * 2);

}
CUdeviceptr dX, dY, dOut;
CUDA_SAFE_CALL(cuMemAlloc(&dX, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dY, bufferSize));
CUDA_SAFE_CALL(cuMemAlloc(&dOut, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dX, hX, bufferSize));
CUDA_SAFE_CALL(cuMemcpyHtoD(dY, hY, bufferSize));
∕∕ Execute SAXPY.
void *args[] = { &a, &dX, &dY, &dOut, &n };
CUDA_SAFE_CALL(

cuLaunchKernel(kernel,
NUM_BLOCKS, 1, 1, ∕∕ grid dim
NUM_THREADS, 1, 1, ∕∕ block dim
0, NULL, ∕∕ shared mem and stream
args, 0)); ∕∕ arguments

CUDA_SAFE_CALL(cuCtxSynchronize());
∕∕ Retrieve and print output.
CUDA_SAFE_CALL(cuMemcpyDtoH(hOut, dOut, bufferSize));

for (size_t i = 0; i < n; ++i) {
std::cout << a << " * " << hX[i] << " + " << hY[i]

<< " = " << hOut[i] << '\n';
}
∕∕ Release resources.
CUDA_SAFE_CALL(cuMemFree(dX));
CUDA_SAFE_CALL(cuMemFree(dY));
CUDA_SAFE_CALL(cuMemFree(dOut));
CUDA_SAFE_CALL(cuModuleUnload(module));
CUDA_SAFE_CALL(cuCtxDestroy(context));
free(cubin);
delete[] hX;
delete[] hY;
delete[] hOut;
delete[] LTOIR;

(continues on next page)

24 Chapter 5. Example: Device LTO (link time optimization)

nvJitLink, Release 13.1

(continued from previous page)

return 0;
}

5.3. Build Instructions

Assuming the environment variable CUDA_PATH points to CUDA Toolkit installation directory, build this
example as:

▶ Compile offline.cu to fatbinary containing LTO IR (change lto_100 to a different lto_XX archi-
tecture as appropriate).

nvcc -arch lto_100 -rdc=true -fatbin offline.cu

▶ With nvJitLink shared library (note that if test didn’t use nvrtc then it would not need to link with
nvrtc):

▶ Windows:

cl.exe online.cpp ∕Feonline ^
∕I "%CUDA_PATH%\include" ^
"%CUDA_PATH%"\lib\x64\nvrtc.lib ^
"%CUDA_PATH%"\lib\x64\nvJitLink.lib ^
"%CUDA_PATH%"\lib\x64\cuda.lib

▶ Linux:

g++ online.cpp -o online \
-I $CUDA_PATH∕include \
-L $CUDA_PATH∕lib64 \
-lnvrtc -lnvJitLink -lcuda \
-Wl,-rpath,$CUDA_PATH∕lib64

▶ With nvJitLink static library (note that the static library requires linking with nvptxcom-
piler_static):

▶ Windows:

cl.exe online.cpp ∕Feonline ^
∕I "%CUDA_PATH%"\include ^
"%CUDA_PATH%"\lib\x64\nvrtc_static.lib ^
"%CUDA_PATH%"\lib\x64\nvrtc-builtins_static.lib ^
"%CUDA_PATH%"\lib\x64\nvJitLink_static.lib ^
"%CUDA_PATH%"\lib\x64\nvptxcompiler_static.lib ^
"%CUDA_PATH%"\lib\x64\cuda.lib user32.lib Ws2_32.lib

▶ Linux:

g++ online.cpp -o online \
-I $CUDA_PATH∕include \
-L $CUDA_PATH∕lib64 \
-lnvrtc_static -lnvrtc-builtins_static -lnvJitLink_static -

↪→lnvptxcompiler_static -lcuda \
-lpthread

5.3. Build Instructions 25

nvJitLink, Release 13.1

5.4. Notices

5.4.1. Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a
certain functionality, condition, or quality of a product. NVIDIA Corporation (“NVIDIA”) makes no repre-
sentations or warranties, expressed or implied, as to the accuracy or completeness of the information
contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall
have no liability for the consequences or use of such information or for any infringement of patents
or other rights of third parties that may result from its use. This document is not a commitment to
develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any
other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that
such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the
time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by
authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects
to applying any customer general terms and conditions with regards to the purchase of the NVIDIA
product referenced in this document. No contractual obligations are formed either directly or indirectly
by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military,
aircraft, space, or life support equipment, nor in applicationswhere failure ormalfunction of theNVIDIA
product can reasonably be expected to result in personal injury, death, or property or environmental
damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or
applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIAmakes no representation or warranty that products based on this document will be suitable for
any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA.
It is customer’s sole responsibility to evaluate and determine the applicability of any information con-
tained in this document, ensure the product is suitable and fit for the application planned by customer,
and perform the necessary testing for the application in order to avoid a default of the application or
the product. Weaknesses in customer’s product designs may affect the quality and reliability of the
NVIDIA product andmay result in additional or different conditions and/or requirements beyond those
contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or prob-
lem which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is
contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other
NVIDIA intellectual property right under this document. Information published by NVIDIA regarding
third-party products or services does not constitute a license from NVIDIA to use such products or
services or a warranty or endorsement thereof. Use of such information may require a license from a
third party under the patents or other intellectual property rights of the third party, or a license from
NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA
in writing, reproduced without alteration and in full compliance with all applicable export laws and
regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENTANDALLNVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE

26 Chapter 5. Example: Device LTO (link time optimization)

nvJitLink, Release 13.1

BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WAR-
RANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.
TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENTWILL NVIDIA BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CON-
SEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARIS-
ING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCHDAMAGES. Notwithstanding any damages that customermight incur for any reasonwhatso-
ever, NVIDIA’s aggregate and cumulative liability towards customer for the products described herein
shall be limited in accordance with the Terms of Sale for the product.

5.4.2. OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

5.4.3. Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the
U.S. and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

© 2022-2022 NVIDIA Corporation & affiliates. All rights reserved.

Copyright

©2022-2026, NVIDIA Corporation & affiliates. All rights reserved

5.4. Notices 27

nvJitLink, Release 13.1

28 Chapter 5. Example: Device LTO (link time optimization)

Index

N
nvJitLinkAddData (C++ function), 9
nvJitLinkAddFile (C++ function), 9
nvJitLinkComplete (C++ function), 9
nvJitLinkCreate (C++ function), 10
nvJitLinkDestroy (C++ function), 10
nvJitLinkGetErrorLog (C++ function), 10
nvJitLinkGetErrorLogSize (C++ function), 11
nvJitLinkGetInfoLog (C++ function), 11
nvJitLinkGetInfoLogSize (C++ function), 12
nvJitLinkGetLinkedCubin (C++ function), 12
nvJitLinkGetLinkedCubinSize (C++ func-

tion), 12
nvJitLinkGetLinkedPtx (C++ function), 13
nvJitLinkGetLinkedPtxSize (C++ function),

13
nvJitLinkHandle (C++ type), 14
nvJitLinkInputType (C++ enum), 8
nvJitLinkInputType::NVJITLINK_INPUT_ANY

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_CUBIN

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_FATBIN

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_INDEX

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_LIBRARY

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_LTOIR

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_NONE

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_OBJECT

(C++ enumerator), 8
nvJitLinkInputType::NVJITLINK_INPUT_PTX

(C++ enumerator), 8
nvJitLinkResult (C++ enum), 5
nvJitLinkResult::NVJITLINK_ERROR_ARCH_MISMATCH

(C++ enumerator), 6
nvJitLinkResult::NVJITLINK_ERROR_FINALIZE

(C++ enumerator), 6
nvJitLinkResult::NVJITLINK_ERROR_INCOMPATIBLE_OPTIONS

(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_INCORRECT_INPUT_TYPE
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_INTERNAL
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_INVALID_INPUT
(C++ enumerator), 5

nvJitLinkResult::NVJITLINK_ERROR_LTO_NOT_ENABLED
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_MISSING_ARCH
(C++ enumerator), 5

nvJitLinkResult::NVJITLINK_ERROR_MISSING_FATBIN
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_NULL_INPUT
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_NVVM_COMPILE
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_OUTDATED_LIBRARY
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_PTX_COMPILE
(C++ enumerator), 5

nvJitLinkResult::NVJITLINK_ERROR_THREADPOOL
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_UNRECOGNIZED_ARCH
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_UNRECOGNIZED_INPUT
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_ERROR_UNRECOGNIZED_OPTION
(C++ enumerator), 5

nvJitLinkResult::NVJITLINK_ERROR_UNSUPPORTED_ARCH
(C++ enumerator), 6

nvJitLinkResult::NVJITLINK_SUCCESS (C++
enumerator), 5

nvJitLinkVersion (C++ function), 14

29

	Getting Started
	System Requirements
	Installation

	User Interface
	Error codes
	Enumerations

	Linking
	Enumerations
	Functions
	Typedefs

	Supported Link Options

	Basic Usage
	Compatibility
	Example: Device LTO (link time optimization)
	Code (offline.cu)
	Code (online.cpp)
	Build Instructions
	Notices
	Notice
	OpenCL
	Trademarks

	Index

