NVIDIA.

CUDA Compiler Driver NVCC

Reference Guide

TRM-06721-001_v11.4 November 2021

Changes from Previous Version

» Major update to the document to reflect recent nvecc changes.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | ii

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
LT DVBIVIBW ..o 1
1.1.1. CUDA Programming Model........c.ooiiiiii e 1

T 1020 CUDA SOUMCES ottt 1
T.1.3. PUrP0Se Of NVCC ..o 2

1.2. Supported Host COmMPILEIS. . ..o 2
Chapter 2. Compilation Phases. ...t a e e 3
2.7. NVCC 1dentification MaCT0. ... oo 3
2.2, NVECC PRaS@S. . ittt 3
2.3. Supported INput File SUFfIXES. ... i 4
2.4, SUPPOTTEA PhaSes. ..o 4
Chapter 3. The CUDA Compilation TrajeCtory.... ... uuuieieieiiiiiiiiiiiiiieieeeiieeieeeeeeeeeeeeeeeeeeeeeeeees 7
Chapter 4. NVCC Command Options.......ooiiiiiiiiiieee et e e e e 9
4.1. Command Option Types and Notation........oooiiiiii e, 9
4.2. Command Option DeSCriPtioN. ... it 9
4.2.1. File and Path Specifications........cooiiiiiiii e 10
4.2.1.1. ——output-file file (0] ... 10
4.2.1.2. --objdir-as-tempdir (-0bJtemp)......ooo e 10
4.2.1.3. --pre-include file,... [<include).........oooiiii e 10
4.2.0.4. --library lbrary,... (=0 10
4.2.1.5. -=define-macro def, .. (=D . o 10
4.2.1.6. ——undefine-macro def, ... (FU) oo 11
4.2.1.7. --include-path path,... (1), 11
4.2.1.8. --system-include path,... [-iSystem]. ..o 11
4.2.1.9. --library-path path,... (<L) K
4.2.1.10. --output-directory directory (-0dir). ..o 11
4.2.1.11. --dependency-output file [-MF). ... 11
4.2.1.12. --generate-dependency-targets (-MP)..........cooiiiiiiii e 11
4.2.1.13. --compiler-bindir directory (-cchin)........cocoooiiiii i 11
4.2.1.14. --allow-unsupported-compiler (-allow-unsupported-compiler).............c.cccc.o.... 12
4.2.1.15. --archiver-binary executable (-arbin). ... 12
4.2.1.16. --cudart {nonelshared|static} (-cudart)............ococoooiiii 12
4.2.1.17. --cudadevrt {nonelstatic} (-cudadevrt].............cocooiiiii, 12
4.2.1.18. --libdevice-directory directory (=ldir)..........c.oooiiiiiii e 12
4.2.1.19. --target-directory string (-target-dir)............ocoooiii 13

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | iii

4.2.2. Options for Specifying the Compilation Phase..........cccooiiiiiii 13

4,227, ==lnK (=UNK) e 13
4.2.2.2. --1ib (1D e 13
4.2.2.3. -=device-link (=dlnK].......c.ooooii e 13
4.2.2.4. —-deVICE-C [=AC) . oo 13
4.2.2.5. -=deVviCe-W [=AW) ... o 14
4.2.2.6. --CUAA [~CUAA)....o i 14
4.2.2.7. --COMPILE [FC)uiiiii e 14
4.2.2.8. --fatbin (-fatbin 14
4.2.2.9. -=CUDIN [=CUDIN] . ..oooi e, 15
£.2.2.10. ==PEX (=PI 15
4.2.2.17. ==preprocess (B ..o 15
4.2.2.12. --generate-dependencies (-MJ ... 15
4.2.2.13. --generate-nonsystem-dependencies (-MM].................cooii 15
4.2.2.14. --generate-dependencies-with-compile (-MDJ..........cocooiiiiiii 16
4.2.2.15. --generate-nonsystem-dependencies-with-compile (-MMD).............ccccoooin 16
4.2.2.16. ==TUN [5TUN] Lo 16
4.2.3. Options for Specifying Behavior of Compiler/Linker...........ccoooiiiiiiiiiiiie 16
£.2.3.1. =PPOfILE [2PG)ererrrrororoeooeeeeeeeee oo 16
£.2.3.2. ==AEDUG [2G)..vvvvvovoooeeeeeeeeeeeeee oo 16
4.2.3.3. -=device-debug (-G ... 16
4.2.3.4. --extensible-whole-program [~eWpJ.........ccooioiiiioiee e 17
4.2.3.5. =-N0-COMPress [-N0-COMPIESS).. oot 17
4.2.3.6. --generate-line-info (-liNeiNfo). ... 17
4.2.3.7. --optimization-info kind,... (=0pt=Info).........c.o i 17
4.2.3.8. -—optimize level (=0 ... 17
4.2.3.9. -=dlink-time-0pt (=dLto) ..o 17
4.2.3.10. --ftemplate-backtrace-limit limit (-ftemplate-backtrace-limit)................ococoooeo 17
4.2.3.11. --ftemplate-depth limit (-ftemplate-depth)...........c.ocoooiiiiiii 18
4.2.3.12. --no-exceptions (-N0eh).. ... 18
4.2.3.13. -=shared [-Shared).........cocooiiii e 18
4.2.3 V4, —-x {cleH+1CUl (=X)L 18
4.2.3.15. --std {c++03|c++ 1T c++T4lc++17} (=std) .o 18
4.2.3.16. --no-host-device-initializer-list (-nohdinitlist).............ccccocooiiiiiiiice 19
4.2.3.17. --expt-relaxed-constexpr (-expt-relaxed-constexpr)............ccoccoooioiiiiiii, 19
4.2.3.18. --extended-lambda (-extended-lambdal...........ccocoooiiiiiii 19
4.2.3.19. --expt-extended-lambda (-expt-extended-lambdal............cccocooiiiii, 19
4.2.3.20. --machine {32164} (=M. ... 19

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | v

£.2.3.27. =2M3B2 [-MB2 e, 20

4.2.3.22. --N64 [=MNOA) ..o 20
4.2.3.23. --host-linker-script {use-lcslgen-les} (-hls). ..o 20
4.2.3.24. --augment-host-linker-script (-aug-hls).........ccocooooiiii 21
4.2.4. Options for Passing Specific Phase Options.........coooiiiiiiiiii 21
4.2.4.1. --compiler-options options,... (-Xcompiler).........c.occoooiiioi e 21
4.2.4.2. --linker-options options,... (<XUNKer)..........ccooooiiiee e 21
4.2.4.3. --archive-options options,... (-Xarchive).............cocoiiiii 21
4.2.4.4. --ptxas-options options,... (-XPIXaSs).....o.ooooviiiiiioeoeee e 21
4.2.4.5. --nvlink-options options,... (-XNVUNK)..........ocooiiii e 21
4.2.5. Options for Guiding the Compiler DIIVEr. ..o 21
4.2.5.1. --forward-unknown-to-host-compiler (-forward-unknown-to-host-compiler].... 21
4.2.5.2. --forward-unknown-to-host-linker (-forward-unknown-to-host-linker]............... 22
4.2.5.3. --dont-use-profile [-NOProfl.. ..o 22
4.2.5.4. -—threads nUMDEr (=t). ... 22
4.2.5.5. ==dryrun [=dryrUn). oo 22
£.2.5.6. ==VEIDOSE [2V)...i oot 22
£.2.5.7. =-KEEP [KEEP) ..o, 23
4.2.5.8. --keep-dir directory (-keep-dir)........c..ocooiiiiiiii e 23
4.2.5.9. --save-temps [-Save-temMPS).o 23
4.2.5.10. --clean-targets (~Clean).. ..o 23
4.2.5.11. --run-args arguments,... [-FUN=argS).........ccoiiiiiiioiee e, 23
4.2.5.12. --input-drive-prefix prefix [=idpl ... 23
4.2.5.13. --dependency-drive-prefix prefix [-ddpl........ccocoooiiiiii 23
4.2.5.14. --drive-prefix prefix (=dp). ... 23
4.2.5.15. --dependency-target-name target (-MT) ... 24
4.2.5.17. --no-device-link (-nodlink)..........ooooiiioe e 24
4.2.5.18. --allow-unsupported-compiler (-allow-unsupported-compiler).............c.c........... 24
4.2.6. Options for Steering CUDA Compilation........cooiiiiiii e 24
4.2.6.1. --default-stream {legacylnulllper-thread} (-default-stream].................cocoooe. 24
4.2.7. Options for Steering GPU Code Generation........ooccoiiiiiiiiiiec e 25
4.2.7.1. --gpu-architecture arch (-arch] ... 25
4.2.7.2. --gpu-code code,... [<COUR).....i i 25
4.2.7.3. --generate-code specification (-gencode)...........c.ocoooiiiiiiiiiii 26
4.2.7.4. --relocatable-device-code {truelfalse} (-rdc) ... 26
4.2.7.5. -—entries entry,... (=€) ... 26
4.2.7.6. --maxrregcount amount (-mMaxrregCoUNt].........ococoiiiiiiiiii 26
4.2.7.7. --use_fast_math (-use_fast math].......cc.oooii i, 27

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | v

4.2.7.8. —=Ftz {ruelfalse} (=Ftz) o oo 27

4.2.7.9. --prec-div {truelfalse} (-prec-div)............ocoooiiiiiii e 27
4.2.7.10. --prec-sqrt {truelfalse} (-prec-sqrt). ... 28
4.2.7.11. —-fmad {truelfalse} (-fmad)..........ocoooiiioo e 28
4.2.7.12. --extra-device-vectorization (-extra-device-vectorization)...............c.ccocooooii. 29
4.2.7.13. --compile-as-tools-patch (-astoolspatch)...........ooooooiiiie 29
4.2.7.14. --keep-device-functions (-keep-device-functions)............c.ocoooiiiiiiiiii 29
4.2.8. Generic TOOL OPtiONS. .. .ci i, 29
4.2.8.1. -=disable-warnings (-W).........oioii oo 29
4.2.8.2. --50Urce-in-ptx [=SrC-iN=pPtX).. ..o, 29
4.2.8.3. --reStrict [-reSIIC . ..o 29
4.2.8.4. --Wno-deprecated-gpu-targets (-Wno-deprecated-gpu-targets).......................... 29
4.2.8.5. --Wno-deprecated-declarations (-Wno-deprecated-declarations)........................ 29
4.2.8.6. --Wreorder [-Wreorder).........coovoiooo oo 30
4.2.8.7. --Wdefault-stream-launch (-Wdefault-stream-launch)..................cooi, 30
4.2.8.8. --Wext-lambda-captures-this (-Wext-lambda-captures-this).............................. 30
4.2.8.9. --Werror Kind,... [-Werror)o.ooioii oo 30
4.2.8.10. --display-error-number (=err=nNo0J........ccooiiiiiii e 30
4.2.8.11. --diag-error errNum,... (<diag-€rror)...........cooooiiiiii e 30
4.2.8.12. --diag-suppress errNum,... (-diag-SUppress).......ccocooooiooiieiceeceeeecee 31
4.2.8.13. --diag-warn errNum,... (-diag-warn]............ccocooiiiiiiiiei e, 31
4.2.8.14. --resource-usage (-res-USage)........cooioiiiiioe e 31
4.2.8.15. —=elp (=N 31
4.2.8.16. =-VETSION [FV).o oo 31
4.2.8.17. --options-file file,... (0Pl i 31
4.2.8.18. --time filename [FHiMe).. ... 31
4.2.8.19. --gpp-config config (-gpp-configl. ..o 31
4.2.8.20. --list-gpu-code (~COAE-LS).....oiviviviiiieieieeceeeee e, 31
4.2.8.21. --list-gpu-arch (~arch-1S). ..o 32
4.2.9. PRase OPtiONS. ..o 32
4.2.9.7 PtXas OPHIONS. o 32
4.2.9.2. NVLINK OPIONS. ¢t 35

4.3. NVCC EnvIronment Variables.oooiiii i 35
Chapter 5. GPU Compilation. et e e e 37
0.1, BPU BeNEIatiONS ..o 37
0.2, GPU FATUIE LISt . i 37
0.3, Application Compatibility......coiiiii 38
0.4, VIrtUAL ArCRITECTUIES. ..o 38

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | vi

5.5, Virtual Architecture Feature List. e 39

0.6, FUMThEr MEChaNISMIS. . o 40
5.6.1. Just-in-Time Compilation. ..o 40
0.6, 2. FalDINATIES oo 41

0.7 NVCC EXGMIPLES. .. e 41
0.7. 7. BaSe NOTATION. ...t 41
0.7.2. SROTTNANG. ..o 41

0.7. 2.0, Shorthand 1. 41
5.7.2.2. SROMTNANG 2. 42
0.7.2.3. Shorthand 3. . 42

0.7.3. Extended NOTatioN. ... oo 42
0.7.4. Virtual Architecture Identification Macro.........ccoooiiiiiiiii 43
Chapter 6. Using Separate Compilation in CUDA.......... A

6.1. Code Changes for Separate Compilation........ccooiiiiiiiiiii VA

6.2. NVCC Options for Separate Compilation.........cooooiiiiiiii e, VA

0.3, LD ES e 45

O EXAMPLES . e 46

6.5. Optimization Of Separate Compilation. ..o 47

6.6. Potential Separate Compilation 1SSUES.......iiiiiiiiiiii e 48
6.6.1. 0bject Compatibility. ..o 48
6.6.2. JIT LINKING SUPPOT . .ottt 48
6.6.3. Implicit CUDA HOSt COTE. ..ot 48
6.6.4. Using _ CUDA _ARCH o i, 49
6.6.9. Device Code IN LIDraries. .. .o 49

Chapter 7. Miscellaneous NVCC Usage.......oooooiiiiiii o0

7.0, Cr0oSS ComMPILAtION. . ot 50

7.2. Keeping Intermediate Phase FIles. ..., 50

7.3. Cleaning Up Generated Files......ooi i, 50

7.4. Printing Code Generation StatiStiCS......oiiiiiiiiii e 51

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | vii

Figure 1.
Figure 2.
Figure 3.

Figure 4.

List of Figures

CUDA Compilation TrajeCtory ..ottt e nneeeeenee 8
Two-Staged Compilation with Virtual and Real Architectures ..o, 39
Just-in-Time Compilation of Device Code ... 40
CUDA Separate Compilation TrajeCtory ... 45

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | viii

Chapter 1. Introduction

1.1. Overview
1.1.1. CUDA Programming Model

The CUDA Toolkit targets a class of applications whose control part runs as a process on a
general purpose computing device, and which use one or more NVIDIA GPUs as coprocessors
for accelerating single program, multiple data (SPMD) parallel jobs. Such jobs are self-
contained, in the sense that they can be executed and completed by a batch of GPU threads
entirely without intervention by the host process, thereby gaining optimal benefit from the
parallel graphics hardware.

The GPU code is implemented as a collection of functions in a language that is essentially C+
+, but with some annotations for distinguishing them from the host code, plus annotations for
distinguishing different types of data memory that exists on the GPU. Such functions may have
parameters, and they can be called using a syntax that is very similar to regular C function
calling, but slightly extended for being able to specify the matrix of GPU threads that must
execute the called function. During its life time, the host process may dispatch many parallel
GPU tasks.

For more information on the CUDA programming model, consult the CUDA C++ Programming

Guide.

1.1.2. CUDA Sources

Source files for CUDA applications consist of a mixture of conventional C++ host code, plus
GPU device functions. The CUDA compilation trajectory separates the device functions from
the host code, compiles the device functions using the proprietary NVIDIA compilers and
assembler, compiles the host code using a C++ host compiler that is available, and afterwards
embeds the compiled GPU functions as fatbinary images in the host object file. In the linking
stage, specific CUDA runtime libraries are added for supporting remote SPMD procedure
calling and for providing explicit GPU manipulation such as allocation of GPU memory buffers
and host-GPU data transfer.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 1

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Introduction

1.1.3. Purpose of NVCC

The compilation trajectory involves several splitting, compilation, preprocessing, and merging
steps for each CUDA source file. It is the purpose of nvce, the CUDA compiler driver, to hide
the intricate details of CUDA compilation from developers. It accepts a range of conventional
compiler options, such as for defining macros and include/library paths, and for steering the
compilation process. All non-CUDA compilation steps are forwarded to a C++ host compiler
that is supported by nvce, and nvec translates its options to appropriate host compiler
command line options.

1.2. Supported Host Compilers

A general purpose C++ host compiler is needed by nvcc in the following situations:

» During non-CUDA phases (except the run phase), because these phases will be forwarded
by nvcce to this compiler.

» During CUDA phases, for several preprocessing stages and host code compilation (see
also The CUDA Compilation Trajectory).

nvce assumes that the host compiler is installed with the standard method designed by the
compiler provider. If the host compiler installation is non-standard, the user must make sure
that the environment is set appropriately and use relevant nvec compile options.

The following documents provide detailed information about supported host compilers:

» NVIDIA CUDA Installation Guide for Linux

» NVIDIA CUDA Installation Guide for Microsoft Windows

On all platforms, the default host compiler executable (gcc and g++ on Linux and c1.exe on
Windows) found in the current execution search path will be used, unless specified otherwise
with appropriate options (see File and Path Specifications).

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 2

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html

Chapter 2. Compilation Phases

2.1. NVCC ldentification Macro

nvcce predefines the following macros:
__NvVCC__
Defined when compiling C/C++/CUDA source files.
__CUDACC__
Defined when compiling CUDA source files.
__CUDACC_RDC___
Defined when compiling CUDA sources files in relocatable device code mode (see NVCC
Options for Separate Compilation).
__CUDACC_EWP___
Defined when compiling CUDA sources files in extensible whole program mode (see
Options for Specifying Behavior of Compiler/Linker).
__CUDACC_DEBUG___
Defined when compiler CUDA source files in the device-debug mode (see Options for
Specifying Behavior of Compiler/Linker).
__CUDACC_RELAXED CONSTEXPR
Defined when the —--expt-relaxed-constexpr flag is specified on the command line.
Refer to CUDA C++ Programming Guide for more details.
___CUDACC_EXTENDED LAMBDA
Defined when the —--expt-extended-lambda or --extended-lambda flag is specified on
the command line. Refer to CUDA C++ Programming Guide for more details.
__CUDACC_VER MAJOR
Defined with the major version number of nvce.
__CUDACC_VER MINOR
Defined with the minor version number of nvcc.
__CUDACC_VER BUILD
Defined with the build version number of nvce.

2.2. NVCC Phases

A compilation phase is the a logical translation step that can be selected by command line
options to nvce. A single compilation phase can still be broken up by nvcc into smaller steps,
but these smaller steps are just implementations of the phase: they depend on seemingly

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 3

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Compilation Phases

arbitrary capabilities of the internal tools that nvcc uses, and all of these internals may
change with a new release of the CUDA Toolkit. Hence, only compilation phases are stable
across releases, and although nvcc provides options to display the compilation steps that it
executes, these are for debugging purposes only and must not be copied and used into build
scripts.

nvcc phases are selected by a combination of command line options and input file name
suffixes, and the execution of these phases may be modified by other command line options.
In phase selection, the input file suffix defines the phase input, while the command line option
defines the required output of the phase.

The following paragraphs will list the recognized file name suffixes and the supported
compilation phases. A full explanation of the nvcc command line options can be found in
NVCC Command Options.

2.3. Supported Input File Suffixes

The following table defines how nvcc interprets its input files:

Input File Prefix Description

.cu CUDA source file, containing host code and device functions

.c C source file

.CC, .CXX, .Cpp C++ source file

.ptx PTX intermediate assembly file (see Figure 1)

.cubin CUDA device code binary file (CUBIN] for a single GPU architecture
(see Figure 1)

.fatbin CUDA fat binary file that may contain multiple PTX and CUBIN files
(see Figure 1)

.0, .ob] Object file

.a, .1lib Library file

.res Resource file

.s0 Shared object file

Note that nvcc does not make any distinction between object, library or resource files. It just
passes files of these types to the linker when the linking phase is executed.

2.4. Supported Phases

The following table specifies the supported compilation phases, plus the option to nvcc that
enables execution of this phase. It also lists the default name of the output file generated by
this phase, which will take effect when no explicit output file name is specified using option --

output-file:

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 4

Phase

CUDA
compilation to
C/C++ source
file

C/C++
preprocessing

C/C++
compilation to
object file

Cubin

generation
from CUDA
source files

Cubin
generation
from PTX
intermediate
files.

PTX generation
from CUDA
source files

Fatbinary
generation
from source,
PTX or cubin
files

Linking
relocatable
device code.

Cubin
generation
from linked
relocatable
device code.

Fatbinary

generation
from linked
relocatable
device code

Linking an
executable

Constructing
an object file
archive, or
library

nvce Option

Long Name Short Name
—-—cuda —cuda
——preprocess | —-E
--compile -c
-—-cubin —-cubin
-—-cubin —-cubin
—-ptx —ptx
-—fatbin -fatbin
--device- -dlink
link

-—device- -dlink =
link == cubin
cubin

—-—device- -dlink =
link e fatbin
fatbin

<no phase option>

--1ib

CUDA Compiler Driver NVCC

Compilation Phases

Default Output File Name

.cpp.ii appended to source file name, as in
x.cu.cpp.ii. This output file can be compiled
by the host compiler that was used by nvcc to
preprocess the .cu file.

<result on standard output>

Source file name with suffix replaced by o on
Linux and Mac 0S X, or obj on Windows

Source file name with suffix replaced by cubin

Source file name with suffix replaced by cubin

Source file name with suffix replaced by ptx

Source file name with suffix replaced by fatbin

a_dlink.obj on Windows ora dlink.o on other

platforms

a dlink.cubin

a dlink.fatbin

a.exe on Windows or a.out on other platforms

a.lib on Windows or a.a on other platforms

TRM-06721-001_v11.4

5

nvce Option
Phase

Long Name
make ——generate-
dependency dependencies
generation
make -—-generate-
dependency nonsystem-
generation dependencies
without
headers in
system paths.
Running an --run
executable
Notes:

Compilation Phases

Default Output File Name

Short Name

-M <result on standard output>
-MM <result on standard output>
—run

» The last phase in this list is more of a convenience phase. It allows running the compiled
and linked executable without having to explicitly set the library path to the CUDA dynamic

libraries.

» Unless a phase option is specified, nvcc will compile and link all its input files.

CUDA Compiler Driver NVCC

TRM-06721-001_v11.4 | 6

Chapter 3. The CUDA Compilation
Trajectory

CUDA compilation works as follows: the input program is preprocessed for device compilation
compilation and is compiled to CUDA binary (cubin] and/or PTX intermediate code, which

are placed in a fatbinary. The input program is preprocessed once again for host compilation
and is synthesized to embed the fatbinary and transform CUDA specific C++ extensions into
standard C++ constructs. Then the C++ host compiler compiles the synthesized host code with
the embedded fatbinary into a host object. The exact steps that are followed to achieve this are

displayed in Figure 1.

The embedded fatbinary is inspected by the CUDA runtime system whenever the device code is
launched by the host program to obtain an appropriate fatbinary image for the current GPU.

CUDA programs are compiled in the whole program compilation mode by default, i.e., the
device code cannot reference an entity from a separate file. In the whole program compilation
mode, device link steps have no effect. For more information on the separate compilation and
the whole program compilation, see Using Separate Compilation in CUDA.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 7

The CUDA Compilation Trajectory

Figure 1. CUDA Compilation Trajectory

.cu
A B
C++ Preprocessor C++ Preprocessor . .)
A is passed to B as an input file.
.cpp4.ii .cppl.ii Ao B

Ais #include'd in B.

cudafe+ + r= .cudafel.stub.ct. cicc
. 3
|

I
.cudafel.cpp o— —

#Repeat| 1 for each .cu input file.

Repeat |:| for each virtual architecture.

Repeat ptxas and nvlink for each virtual/real

ptxas architectureombination.

1

#Device linker consists of steps

.cubin

fatbinary

0

C++ Compiler
o/ .obj L _ fatbin.c

.—.— a_dlink.reg.c
|

a_dlink.cubin

i
i
[
[
[
[
T |
.t) o
a_dlink.fatbin.c— — — —. < link.stub

C++ Compiler

i

a_dlink.o / a_dlink.obj

Host Linker

1

executable

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 8

Chapter 4. NVCC Command Options

4.1. Command Option Types and Notation

Each nvcc option has a long name and a short name, which are interchangeable with each
other. These two variants are distinguished by the number of hyphens that must precede
the option name: long names must be preceded by two hyphens, while short names must be
preceded by a single hyphen. For example, -1 is the short name of --include-path. Long
options are intended for use in build scripts, where size of the option is less important than
descriptive value. In contrast, short options are intended for interactive use.

nvce recognizes three types of command options: boolean options, single value options, and
list options.

Boolean options do not have an argument; they are either specified on a command line or

not. Single value options must be specified at most once, and list options may be repeated.
Examples of each of these option types are, respectively: -—verbose (switch to verbose mode),
--output-file [specify output file), and =—include-path (specify include path).

Single value options and list options must have arguments, which must follow the name of the
option itself by either one of more spaces or an equals character. When a one-character short
name such as -1, -1, and -L is used, the value of the option may also immediately follow the
option itself without being seperated by spaces or an equal character. The individual values of
list options may be separated by commas in a single instance of the option, or the option may
be repeated, or any combination of these two cases.

Hence, for the two sample options mentioned above that may take values, the following
notations are legal:

-o file
-o=file
-Idirl,dir2 -I=dir3 -I dir4,dir5

Long option names are used throughout the document, unless specified otherwise, however,
short names can be used instead of long names to have the same effect.

4.2. Command Option Description

This section presents tables of nvcc options. The option type in the tables can be recognized
as follows: boolean options do not have arguments specified in the first column, while the

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 9

NVCC Command Options

other two types do. List options can be recognized by the repeat indicator , ... at the end of
the argument.

Long options are described in the first columns of the options tables, and short options occupy
the second columns.

4.2.1. File and Path Specifications

4.2.1.1. --output-file file (-o]

Specify name and location of the output file.

4.2.1.2. --objdir-as-tempdir (-ob7jtemp]

Create all intermediate files in the same directory as the object file. These intermediate files

are deleted when the compilation is finished. This option will take effect only if -c, -dc or -dw is
also used. Using this option will ensure that the intermediate file name that is embedded

in the object file will not change in multiple compiles of the same file. However, this is not
guaranteed if the input is stdin. If the same file is compiled with two different options, ex.,
‘nvce -c t.cu” and ‘nvcc -c -ptx t.cu’, then the files should be compiled in different directories.
Compiling them in the same directory can either cause the compilation to fail or produce
incorrect results.

4.2.1.3. --pre-include file,... (-include]

Specify header files that must be pre-included during preprocessing.

4.2.1.4. --library library,... [—l]

Specify libraries to be used in the linking stage without the library file extension.

The libraries are searched for on the library search paths that have been specified using
option —-library-path (see Libraries].

4215, --define-macro def,... (-D)
Define macros to be used during preprocessing.
def can be either name or name=definition.
» name
> Predefine name as a macro.
> name=definition

» The contents of definition are tokenized and preprocessed as if they appear during
translation phase three in a #define directive. The definition will be truncated by
embedded new line characters.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 10

NVCC Command Options

4.2.1.6. --undefine-macro def, ... (-U)

Undefine an existing macro during preprocessing or compilation.

4.2.1.7. --include-path path,... [-I)

Specify include search paths.

4.2.1.8. --system-include path, ... (-isystem)

Specify system include search paths.

4.21.9. --library-path path,... (-1]
Specify library search paths (see Libraries).

4.2.1.10. --output-directory directory (-odir)
Specify the directory of the output file.

This option is intended for letting the dependency generation step (see —-generate-
dependencies] generate a rule that defines the target object file in the proper directory.

4.2.1.11. --dependency-output file (-MF)
Specify the dependency output file.

This option specifies the output file for the dependency generation step (see --generate-

dependencies). The option -—generate-dependencies Or ——generate-nonystem-
dependencies must be specified if a dependency output file is set.

4.2.1.12. ——generate-dependency-targets (-MP)
Add an empty target for each dependency.

This option adds phony targets to the dependency generation step (see -—generate-
dependencies] intended to avoid makefile errors if old dependencies are deleted. The input
files are not emitted as phony targets.

4.2.1.13. ——compiler-bindir directory (-ccbin]
Specify the directory in which the default host compiler executable resides.

The host compiler executable name can be also specified to ensure that the correct
host compiler is selected. In addition, driver prefix options (--input-drive-prefix, --
dependency-drive-prefix, or ——drive-prefix] may need to be specified, if nvec is
executed in a Cygwin shell or a MinGW shell on Windows.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | N

NVCC Command Options

4.2.1.14. -—allow-unsupported-compiler [-allow-
unsupported—compiler]

Disable nvcc check for supported host compiler versions.

Using an unsupported host compiler may cause compilation failure or incorrect run time
execution. Use at your own risk. This option has no effect on MacOS.

4.2.1.15. ——archiver-binary executable (-arbin]

Specify the path of the archiver tool used create static librarie with --1ib.

4.2.1.16. —--cudart {nonelshared|static} (-cudart]

Specify the type of CUDA runtime library to be used: no CUDA runtime library, shared/dynamic
CUDA runtime library, or static CUDA runtime library.

Allowed Values
> none
> shared

> static

Default
The static CUDA runtime library is used by default.

4.2.1.17. --cudadevrt {nonelstatic} (-cudadevrt]

Specify the type of CUDA device runtime library to be used: no CUDA device runtime library, or
static CUDA device runtime library.

Allowed Values
» none

> static

Default

The static CUDA device runtime library is used by default.

4.2.1.18. --libdevice-directory directory (-1dir]
Specify the directory that contains the libdevice library files.

Libdevice library files are located in the nvvm/libdevice directory in the CUDA Toolkit.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 12

NVCC Command Options

4.2.1.19. ——target-directory string(-target-dir]

Specify the subfolder name in the targets directory where the default include and library paths are
located.

4.2.2. Options for Specifying the Compilation Phase

Options of this category specify up to which stage the input files must be compiled.

4.2.21. --1link (-1ink]

Specify the default behavior: compile and link all input files.

Default Output File Name

a.exe on Windows or a.out on other platforms is used as the default output file name.

4.2.2.2. --1ib (-1ib)

Compile all input files into object files, if necessary, and add the results to the specified library
output file.
Default Output File Name

a.libon Windows or a.a on other platforms is used as the default output file name.

4£.2.2.3. --device-link (-dlink]

Link object files with relocatable device code and .ptx, .cubin, and . fatbin files into an object
file with executable device code, which can be passed to the host linker.

Default Output File Name

a_dlink.obj on Windows or a_dlink.o on other platforms is used as the default output
file name. When this option is used in conjunction with --fatbin, a dlink.fatbin is
used as the default output file name. When this option is used in conjunction with --cubin,
a_dlink.cubin is used as the default output file name.

L2724 --device-c [-dc]

Compile each .c, .cc, .cpp, .cxx, and .cuinput file into an object file that contains relocatable
device code.

It is equivalentto --relocatable-device-code=true --compile.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 13

NVCC Command Options

Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms
to create the default output file name. For example, the default output file name for x.cu is
x.obj on Windows and x.o on other platforms.

4.2.2.5. --device-w [—dw]

Compile each .c, .cc, .cpp, .cxx, and . cuinput file into an object file that contains executable
device code.

It is equivalentto --relocatable-device-code=false —-compile.

Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms
to create the default output file name. For example, the default output file name for x.cu is
x.obj on Windows and x.o on other platforms.

L.2.2.6. --cuda (-cudal

Compile each .cuinputfiletoa .cu.cpp.ii file.

Default Output File Name

.cu.cpp.ii is appended to the basename of the source file name to create the default output
file name. For example, the default output file name for x.cuis x.cu.cpp.ii.

4.2.2.7. --compile (-c]

Compile each .c, .cc, .cpp, .cxx, and .cuinput file into an object file.

Default Output File Name

The source file name extension is replaced by .obj on Windows and .o on other platforms
to create the default output file name. For example, the default output file name for x.cu is
x.obj on Windows and x.o on other platforms.

4L.2.28. --fatbin (-fatbin)

Compile all . cu, .ptx, and . cubin input files to device-only . fatbin files.

nvcce discards the host code for each . cu input file with this option.

Default Output File Name

The source file name extension is replaced by . fatbin to create the default output file name.
For example, the default output file name for x.cuis x.fatbin.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 14

NVCC Command Options

4229 --cubin (-cubin]

Compile all . cuand .ptx input files to device-only . cubin files.

nvcc discards the host code for each .cu input file with this option.

Default Output File Name

The source file name extension is replaced by . cubin to create the default output file name.
For example, the default output file name for x.cu is x.cubin.

4.2.2.10. -—ptx [—ptx]

Compile all . cuinput files to device-only .ptx files.

nvcce discards the host code for each . cu input file with this option.

Default Output File Name

The source file name extension is replaced by .ptx to create the default output file name. For
example, the default output file name for x.cu is x.ptx.

4.2.2.11. —-preprocess (-E)

Preprocess all .c, .cc, .cpp, .cxx, and .cuinput files.

Default Output File Name

The output is generated in stdout by default.

4.2.2.12. ——generate-dependencies (-M)

Generate a dependency file that can be included in a Makefile forthe .c, .cc, .cpp, .cxx, and
.cuinput file.

Default Output File Name

The output is generated in stdout by default.

4.2.2.13. -—generate-nonsystem-dependencies (-Mv)

Same as --generate-dependencies but skip header files found in system directories [Linux
only).

Default Output File Name

The output is generated in stdout by default.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 15

NVCC Command Options

4.2.2.14. -—generate-dependencies-with-compile (-MD)

Generate a dependency file and compile the input file. The dependency file can be included in a
Makefileforthe .c, .cc, .cpp, .cxx, and .cuinput file.

This option cannot be specified together with -E. The dependency file name is computed as
follows:

» |If -MF is specified, then the specified file is used as the dependency file name.

» If -ois specified, the dependency file name is computed from the specified file name by
replacing the suffix with ".d".

» Otherwise, the dependency file name is computed by replacing the input file names’s suffix
with ".d".

If the dependency file name is computed based on either -MF or -o, then multiple input files

are not supported.

4.2.2.15. ——-generate-nonsystem-dependencies-with-
compile[—MMD]

Same as --generate-dependencies-with-compile but skip header files found in system
directories (Linux only).

4.2.2.16. ——run (-run)

Compile and link all input files into an executable, and executes it.

When the input is a single executable, it is executed without any compilation or linking. This
step is intended for developers who do not want to be bothered with setting the necessary
environment variables; these are set temporarily by nvce.

4.2.3. Options for Specifying Behavior of Compiler/
Linker

4.2.3.1. --profile (-pg]

Instrument generated code/executable for use by gprof.

4.2.3.2. --debug (-q)

Generate debug information for host code.

4.2.3.3. --device-debug (-G)

Generate debug information for device code.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 16

NVCC Command Options

This option turns off all optimizations on device code. It is not intended for profiling; use --
generate-line-info instead for profiling.

4.2.3.4. --extensible-whole-program (-ewp)

Generate extensible whole program device code, which allows some calls to not be resolved until
linking with libcudadevrt.

4.2.3.5. --no-compress (-no-compress)

Do not compress device code in fatbinary.

4.2.3.6. --generate-line-info [(-lineinfo)

Generate line-number information for device code.

4.2.3.7. --optimization-info kind,... (-opt-info]
Provide optimization reports for the specified kind of optimization.

The following tags are supported:

inline
Emit remarks related to function inlining. Inlining pass may be invoked multiple times by
the compiler and a function not inlined in an earlier pass may be inlined in a subsequent
pass.

4.2.3.8. --optimize level (-0)

Specify optimization level for host code.

4.2.3.9. --dlink-time-opt (-dlto]

Perform link-time optimization of device code. The option -lto"is also an alias to "-dlto". Link-time
optimization must be specified at both compile and link time; at compile time it stores high-level
intermediate code, then at link time it links together and optimizes the intermediate code. If that
intermediate is not found at link time then nothing happens. Intermediate code is also stored at
compile time with the ——gpu-code="1to NN' target. The options -dlto -arch=sm NNwill add a
[to_NN target; if you want to only add a [to_NN target and not the compute_NN that -arch=sm NN
usually generates, use —arch=1to NN.

4.2.3.10. --ftemplate-backtrace-limit I1imit (-
ftemplate—backtrace—limit]

Set the maximum number of template instantiation notes for a single warning or error to limit.

Avalue of 0 is allowed, and indicates that no limit should be enforced. This value is also
passed to the host compiler if it provides an equivalent flag.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 17

NVCC Command Options

4.2.3.11. ——ftemplate-depth Ilimit (-ftemplate-depth]

Set the maximum instantiation depth for template classes to limit.

This value is also passed to the host compiler if it provides an equivalent flag.

4.2.3.12. ——no-exceptions (-noeh]
Disable exception handling for host code.

Disable exception handling for host code, by passing "-EHs-c-" [for cl.exe] and "--fno-
exceptions” (for other host compilers) during host compiler invocation. These flags are added
to the host compiler invocation before any flags passed directly to the host compiler with "-
Xcompiler”

Default (on Windows)

» On Windows, nvcc passes /EHsc to the host compiler by default.

Example (on Windows)

» nvcc --no-exceptions —-Xcompiler /EHa x.cu

4.2.3.13. -—shared (-shared)

Generate a shared library during linking.

Use option --1linker-options when other linker options are required for more control.

4.2.3.14. —-x {c|c++|cu} [—X]

Explicitly specify the language for the input files, rather than letting the compiler choose a default
based on the file name suffix.

Allowed Values
> c
Pt

> cu

Default

The language of the source code is determined based on the file name suffix.

4.2.3.15. ——=std {c++03|c++11lc++14|c++17} (-std)

Select a particular C++ dialect.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 18

NVCC Command Options

Allowed Values
> c++03
> c++11
> c++14

> ct++17

Default

The default C++ dialect depends on the host compiler. nvec matches the default C++ dialect
that the host compiler uses.

4.2.3.16. —-no-host-device-initializer-list (-
nohdinitlist]
Do not consider member functions of std: :initializer listas _host ___ device _

functions implicitly.

4.2.3.17. ——expt-relaxed-constexpr (-expt-relaxed-
constexpr]

Experimental flag: Allow host code to invoke device constexpr functions, and device code
toinvoke __host _ constexpr functions.

Note that the behavior of this flag may change in future compiler releases.

4.2.3.18. ——extended-lambda (-extended-1lambda)

Allow host , device annotations in lambda declarations.

4.2.3.19. —-expt-extended-lambda (-expt-extended-
lambda)

Alias for -—extended-lambda.

4.2.3.20. --machine {32]64} (-m)
Specify 32-bit vs. é4-bit architecture.

Allowed Values
> 32

> 64

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 19

NVCC Command Options

Default

This option is set based on the host platform on which nvcc is executed.

4.2.3.21. --m32 (-m32]

Alias for ——-machine=32

4.2.3.22. —-m64 [—m64]

Alias for ——-machine=64

4.2.3.23. ——host-linker-script {use-lcslgen-1cs} (-
hls]

Use the host linker script (GNU/Linux only] to enable support for certain CUDA specific
requirements, while building executable files or shared libraries.

Allowed Values

use-lcs
Prepares a host linker script and enables host linker to support relocatable device object
files that are larger in size, that would otherwise, in certain cases, cause the host linker to
fail with relocation truncation error.

gen-lcs

Generates a host linker script that can be passed to host linker manually, in the case where
host linker is invoked separately outside of nvcc.

The file generated using this options must be provided as the last input file to the host
linker.

The output is generated to stdout by default. Use the option -o filename to specify the
output filename.

A linker script may already be in used and passed to the host linker using the host linker
option --script (or -7J, then the generated host linker script must augment the existing
linker script. In such cases, the option ~aug-h1ls must be used to generate linker script that
contains only the augmentation parts. Otherwise, the host linker behaviour is undefined.

A host linker option, such as -z with a non-default argument, that can modify the default
linker script internally, is incompatible with this option and the behavior of any such usage is
undefined.

Default Value

use-lcs is used as the default type.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 20

NVCC Command Options

4.2.3.24. ——augment-host-linker-script (-aug-hls)

Enables generation of host linker script that augments an existing host linker script (GNU/Linux
only]. See option --host-linker-script for more details.

4.2.4. Options for Passing Specific Phase Options

These allow for passing specific options directly to the internal compilation tools that nvecc
encapsulates, without burdening nvcc with too-detailed knowledge on these tools. A table of
useful sub-tool options can be found at the end of this chapter.

4.2.4.1. --compiler-options options,... (-
Xcompiler]

Specify options directly to the compiler/preprocessor.

4.2.4.2. --linker-options options,...[-Xlinker]

Specify options directly to the host linker.

4.2.4.3. --archive-options options,...[—Xarchive]

Specify options directly to the library manager.

4.2.4.L. --ptxas-options options,... (-Xptxas]

Specify options directly to ptxas, the PTX optimizing assembler.

4.2.4.5. --nvlink-options options, ... (-Xnvlink]

Specify options directly to nv1ink, the device linker.
4.2.5. Options for Guiding the Compiler Driver

4.25.1. --forward-unknown-to-host-compiler (-
forward—unknown—to—host—compiler]

Forward unknown options to the host compiler. An ‘'unknown option'is a command line argument
that starts with - followed by another character, and is not a recognized nvcc flag or an argument
for a recognized nvcc flag.

If the unknown option is followed by a separate command line argument, the argument will
not be forwarded, unless it begins with the '-' character.

For example:

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 21

NVCC Command Options

» ‘'nvcc -forward-unknown-to-host-compiler -foo=bar a.cu will forward '-foo=bar’
to host compiler.

» ‘nvcc -forward-unknown-to-host-compiler -foo bar a.cu will reportan error for
‘bar' argument.

» ‘'nvcc -forward-unknown-to-host-compiler -foo -bar a.cu will forward '-foo" and
‘-bar’ to host compiler.

4.2.5.2. --forward-unknown-to-host-linker [—
forward—unknown—to—host—linker]

Forward unknown options to the host linker. An ‘unknown option’is a command line argument that
starts with '-" followed by another character, and is not a recognized nvcc flag or an argument for a
recognized nvcc flag.

If the unknown option is followed by a separate command line argument, the argument will
not be forwarded, unless it begins with the - character.

For example:

» 'nvcc -forward-unknown-to-host-linker -foo=bar a.cu will forward '-foo=bar'to

host linker.

» ‘nvcc -forward-unknown-to-host-linker -foo bar a.cu will reportan error for
‘bar' argument.

> 'nvcc -forward-unknown-to-host-linker -foo -bar a.cu will forward '-foo' and '-
bar' to host linker.
4.25.3. --dont-use-profile [-noprof)

Do not use configurations from the nvcc.profile file for compilation.

L25.4. --threads number (-t)

Specify the maximum number of threads to be used to execute the compilation steps in parallel.

This option can be used to improve the compilation speed when compiling for multiple
architectures. The compiler creates number threads to execute the compilation steps in
parallel. If numberis 1, this option is ignored. If number is 0, the number of threads used is the
number of CPUs on the machine.

4.2.9.5. ——dryrun[—dryrun]

List the compilation sub-commands without executing them.

L.25.6. --verbose (-v]

List the compilation sub-commands while executing them.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 22

NVCC Command Options

4.2.5.7. --keep [-keep]

Keep all intermediate files that are generated during internal compilation steps.

4.258. --keep-dir directory (-keep-dir]

Keep all intermediate files that are generated during internal compilation steps in this directory.

4.2.5.9. --save-temps [-save-temps]

This option is an alias of ——keep.

4.25.10. ——clean-targets [-clean)

Delete all the non-temporary files that the same nvec command would generate without this
option.

This option reverses the behavior of nvec. When specified, none of the compilation phases will
be executed. Instead, all of the non-temporary files that nvcc would otherwise create will be
deleted.

4.2.5.11. ——run-args arguments, ... (-run-args])

Specify command line arguments for the executable when used in conjunction with —-run.

4.2.5.12. --input-drive-prefix prefix (-idp]
Specify the input drive prefix.

On Windows, all command line arguments that refer to file names must be converted to the
Windows native format before they are passed to pure Windows executables. This option
specifies how the current development environment represents absolute paths. Use /cygwin/
as prefix for Cygwin build environments and / as prefix for MinGW.

4.2.9.13. --dependency-drive-prefix prefix[—ddp]
Specify the dependency drive prefix.

On Windows, when generating dependency files (see -—generate-dependencies), all file
names must be converted appropriately for the instance of make that is used. Some instances
of make have trouble with the colon in absolute paths in the native Windows format, which
depends on the environment in which the make instance has been compiled. Use /cygwin/ as
prefixfora Cygwin make, and / as prefix for MinGW. Or leave these file names in the native
Windows format by specifying nothing.

4.2.5.14. ——drive-prefix prefix (-dp)
Specify the drive prefix.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 23

NVCC Command Options

This option specifies prefix as both ——input-drive-prefix and -—dependency-drive-
prefix.
4.2.5.15. ——dependency-target-name target (-MT)

Specify the target name of the generated rule when generating a dependency file (see --

qenerate—dependencies[

4.2.5.16. —-no-align-double

Specify that -malign-double should not be passed as a compiler argument on 32-bit platforms.

WARNING: this makes the ABI incompatible with the CUDA's kernel ABI for certain 64-bit
types.

4.2.5.17. -—no-device-1link (-nodlink]

Skip the device link step when linking object files.

4.2.5.18. --allow-unsupported-compiler [-allow-
unsupported—compiler]
Disable nvcc check for supported host compiler versions.

Using an unsupported host compiler may cause compilation failure or incorrect run time
execution. Use at your own risk. This option has no effect on MacOS.

4.2.6. Options for Steering CUDA Compilation

4.2.6.1. --default-stream{legacylnulllper-thread} (-
default-stream)

Specify the stream that CUDA commands from the compiled program will be sent to by default.

Allowed Values

legacy

The CUDA legacy stream (per context, implicitly synchronizes with other streams)
per-thread

Normal CUDA stream [per thread, does not implicitly synchronize with other streams)
null

Deprecated alias for legacy

Default

legacy is used as the default stream.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 24

NVCC Command Options

4.2.7. Options for Steering GPU Code Generation

4.2.7.1. --gpu-architecture arch (-arch]

Specify the name of the class of NVIDIA virtual GPU architecture for which the CUDA input files
must be compiled.

With the exception as described for the shorthand below, the architecture specified with
this option must be a virtual architecture (such as compute_50]. Normally, this option alone
does not trigger assembly of the generated PTX for a real architecture (that is the role of
nvce option ——gpu-code, see below]; rather, its purpose is to control preprocessing and
compilation of the input to PTX.

For convenience, in case of simple nvec compilations, the following shorthand is supported. If
no value for option -—gpu-code is specified, then the value of this option defaults to the value
of -—gpu-architecture. In this situation, as only exception to the description above, the value
specified for --gpu-architecture may be a real architecture (such as a sm_50], in which
case nvcc uses the specified real architecture and its closest virtual architecture as effective
architecture values. For example, nvcc --gpu-architecture=sm 50 is equivalentto nvcc
--gpu-architecture=compute 50 --gpu-code=sm 50, compute 50.

See Virtual Architecture Feature List for the list of supported virtual architectures and GPU
Feature List for the list of supported real architectures.

Default

sm_52 Is used as the default value; PTX is generated for compute 52 then assembled and
optimized for sm_52.

4.2.7.2. --gpu-code code, ... (-code)
Specify the name of the NVIDIA GPU to assemble and optimize PTX for.

nvce embeds a compiled code image in the resulting executable for each specified code
architecture, which is a true binary load image for each real architecture (such as sm_50J, and
PTX code for the virtual architecture (such as compute_50).

During runtime, such embedded PTX code is dynamically compiled by the CUDA runtime
system if no binary load image is found for the current GPU.

Architectures specified for options ——gpu-architecture and --gpu-code may be virtual

as well as real, but the code architectures must be compatible with the arch architecture.
When the --gpu-code option is used, the value for the -—gpu-architecture option must be a
virtual PTX architecture.

Forinstance, -—gpu-architecture=compute 60 is not compatible with --gpu-code=sm_52,
because the earlier compilation stages will assume the availability of compute 60 features
that are not present on sm_52.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 25

NVCC Command Options

See Virtual Architecture Feature List for the list of supported virtual architectures and GPU
Feature List for the list of supported real architectures.

4.2.7.3. --generate-code specification (-gencode)

This option provides a generalization of the --gpu-architecture=arch --gpu-
code=code, ... option combination for specifying nvcc behavior with respect to code generation.

Where use of the previous options generates code for different real architectures with
the PTX for the same virtual architecture, option --generate-code allows multiple PTX
generations for different virtual architectures. In fact, --gpu-architecture=arch --gpu-

code=code, ... Isequivalentto --generate-code=arch=arch,code=code, ...
--generate-code options may be repeated for different virtual architectures.

See Virtual Architecture Feature List for the list of supported virtual architectures and GPU
Feature List for the list of supported real architectures.

4.2.7.4. --relocatable-device-code {truelfalse} (-
rdc)

Enable or disable the generation of relocatable device code.

If disabled, executable device code is generated. Relocatable device code must be linked

before it can be executed.

Allowed Values

> true
> false
Default

The generation of relocatable device code is disabled.

4.2.75. --entries entry,... (-e]
Specify the global entry functions for which code must be generated.

PTX generated for all entry functions, but only the selected entry functions are assembled.
Entry function names for this option must be specified in the mangled name.

Default

nvce generates code for all entry functions.

4.2.7.6. --maxrregcount amount (-maxrregcount]

Specify the maximum amount of registers that GPU functions can use.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 26

NVCC Command Options

Until a function-specific limit, a higher value will generally increase the performance of
individual GPU threads that execute this function. However, because thread registers are
allocated from a global register pool on each GPU, a higher value of this option will also
reduce the maximum thread block size, thereby reducing the amount of thread parallelism.
Hence, a good maxrregcount value is the result of a trade-off.

Value less than the minimum registers required by ABI will be bumped up by the compiler to
ABI minimum Llimit.

User program may not be able to make use of all registers as some registers are reserved by
compiler.

Default

No maximum is assumed.

4.2.7.7. --use fast math(-use fast math]

Make use of fast math library.

--use fast mathimplies --ftz=true --prec-div=false --prec-sqgrt=false --

fmad=true.

4.2.78. --ftz{truelfalse}(-ftz]
Control single-precision denormals support.
--ftz=true flushes denormal values to zero and --ftz=false preserves denormal values.

--use fast math implies -—-ftz=true.

Allowed Values

> true
> false
Default

This option is set to false and nvcc preserves denormal values.

4.2.7.9. --prec-div {truelfalse}(-prec-div])
This option controls single-precision floating-point division and reciprocals.

--prec-div=true enables the IEEE round-to-nearest mode and --prec-div=false enables
the fast approximation mode.

--use fast math implies ——-prec-div=false.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 27

NVCC Command Options

Allowed Values
> true

> false

Default

This option is set to true and nvcc enables the IEEE round-to-nearest mode.

4.2.7.10. --prec-sqrt {truelfalse} (-prec-sqrt]
This option controls single-precision floating-point square root.

--prec-sqrt=true enables the IEEE round-to-nearest mode and --prec-sqgrt=false
enables the fast approximation mode.

--use fast math implies --prec-sgrt=false.

Allowed Values
> true

> false

Default

This option is set to true and nvcc enables the IEEE round-to-nearest mode.

4.2.7.11. ——fmad {truelfalse} (-fmad]

This option enables [disables] the contraction of floating-point multiplies and adds/subtracts into
floating-point multiply-add operations [FMAD, FFMA, or DFMA).

--use fast math implies --fmad=true.

Allowed Values
> true

> false

Default

This option is set to true and nvcc enables the contraction of floating-point multiplies and
adds/subtracts into floating-point multiply-add operations (FMAD, FFMA, or DFMA].

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 28

NVCC Command Options

4.2.7.12. ——extra-device-vectorization (-extra-
device—vectorization]

This option enables more aggressive device code vectorization.

4.2.7.13. ——compile-as-tools-patch (-astoolspatch)

Compile patch code for CUDA tools. Implies --keep-device-functions.

May only be used in conjunction with ——ptx or ——cubin or --fatbin.

Shall not be used in conjunction with —rdc=true or -ewp.

Some PTX ISA features may not be usable in this compilation mode.

4.2.7.14. —-keep-device-functions (-keep-device-
functions])

In whole program compilation mode, preserve user defined external linkage _ device _ function
definitions in generated PTX.

4.2.8. Generic Tool Options

4.2.8.1. --disable-warnings (-w)

Inhibit all warning messages.

4.2.8.2. --source-in-ptx (-src-in-ptx]
Interleave source in PTX.

May only be used in conjunction with --device-debug or --generate-line-info.

4L.2.8.3. --restrict [-restrict]

Assert that all kernel pointer parameters are restrict pointers.

4.2.8.4. --Wno-deprecated-gpu-targets [-Wno-
deprecated—gpu—targets]

Suppress warnings about deprecated GPU target architectures.

4.2.8.5. --Wno-deprecated-declarations [-Wno-
deprecated—declarations]

Suppress warning on use of a deprecated entity.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 29

NVCC Command Options

L.2.8.6. --Wreorder (-Wreorder)

Generate warnings when member initializers are reordered.

4.2.8.7. --Wdefault-stream-launch (-Wdefault-
Stream—launch]

Generate warning when an explicit stream argument is not provided in the <<<...>>> kernel
launch syntax.

4.2.8.8. --Wext-lambda-captures-this (-Wext-lambda-
captures—this]

Generate warning when an extended lambda implicitly captures this.

4.2.8.9. --Werror kind,... |(-Werror]

Make warnings of the specified kinds into errors.

The following is the list of warning kinds accepted by this option:
all-warnings
Treat all warnings as errors.
cross-execution-space-call
Be more strict about unsupported cross execution space calls. The compiler will generate
an error instead of a warning for a call froma host device toa host
function.
reorder
Generate errors when member initializers are reordered.
default-stream-launch
Generate error when an explicit stream argument is not provided in the <<<...>>> kernel
launch syntax.
ext-lambda-captures-this
Generate error when an extended lambda implicitly captures this.
deprecated-declarations
Generate error on use of a deprecated entity.

4.2.8.10. --display-error-number (-err-no)

This option displays a diagnostic number for any message generated by the CUDA frontend
compiler [note: not the host compiler).

4.2.8.11. --diag-error errNum, ... (-diag-error]

Emit error for specified diagnostic messagels] generated by the CUDA frontend compiler (note:
does not affect diagnostics generated by the host compiler/preprocessor).

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 30

NVCC Command Options

4.2.8.12. --diag-suppress errNum, ... (-diag-
Suppress]

Suppress specified diagnostic message(s] generated by the CUDA frontend compiler [note: does

not affect diagnostics generated by the host compiler/preprocessor).

4.2.8.13. --diag-warn errNum, ... (-diag-warn]

Emit warning for specified diagnostic messagel(s] generated by the CUDA frontend compiler [note:

does not affect diagnostics generated by the host compiler/preprocessor).

4.2.8.14. ——resource-usage [-res-usage)
Show resource usage such as registers and memory of the GPU code.

This option implies --nvlink-options=--verbose when --relocatable-device-
code=true Is set. Otherwise, it implies --ptxas-options=--verbose.

4.2.8.15. ——help (-h]

Print help information on this tool.

4.2.8.16. ——version [—V]

Print version information on this tool.

4.2.8.17. ——options-file file,... (-optf]

Include command line options from specified file.

4.2.8.18. ——time filename [-time]

Generate a comma separated value table with the time taken by each compilation phase, and
append it at the end of the file given as the option argument. If the file is empty, the column
headings are generated in the first row of the table.

If the file name is '-, the timing data is generated in stdout.

4.2.8.19. -——gpp-config config [—qpp—config]

Specify the configuration [[[compiler/]version,]ltarget]] when using g++ host compiler. The
argument will be forwarded to the g++ compiler with its -V flag.

4.2.8.20. —-1ist-gpu-code [-code-1s]

List the gpu architectures [sm_XX] supported by the tool and exit.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 31

NVCC Command Options

If both --list-gpu-code and --list-gpu-arch are set, the list is displayed using the same format
as the --generate-code value.

4.2.8.21. --1list-gpu-arch [-arch-1s)

List the virtual device architectures [compute_XX] supported by the tool and exit.

If both --list-gpu-arch and --list-gpu-code are set, the list is displayed using the same format
as the --generate-code value.

4.2.9. Phase Options

The following sections lists some useful options to lower level compilation tools.

4.2.9.1. Ptxas Options

The following table lists some useful ptxas options which can be specified with nvec option -
Xptxas.

4.29.1.1. --allow-expensive-optimizations (-allow-

expensive—optimizations]

Enable (disable] to allow compiler to perform expensive optimizations using maximum available
resources [memory and compile-time).

If unspecified, default behavior is to enable this feature for optimization level >= 02.

4.29.1.2. --compile-only (-c)

Generate relocatable object.

4.2.9.1.3. --def-load-cache (-dlcm)
Default cache modifier on global/generic load.

Default value: ca.

42914 --def-store-cache (-dscm]

Default cache modifier on global/generic store.

4.2.91.5. --device-debug [-g)

Semantics same as nvcc option ——device-debug.

4.29.1.6. --disable-optimizer-constants (-disable-

optimizer—consts]

Disable use of optimizer constant bank.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 32

NVCC Command Options

4.2.91.7. --entry entry,... (-e

Semantics same as nvcc option ——entries.

4.2.9.1.8. --fmad (-fmad)

Semantics same as nvcc option —-fmad.

4.2.9.1.9. --force-load-cache (-flcm)

Force specified cache modifier on global/generic load.

4.2.9.1.10. -—force-store-cache (-fscm)

Force specified cache modifier on global/generic store.

4.2.91.11. ——generate-line-info (-lineinfo]

Semantics same as nvcc option ——generate-line-info.

4.2.9.1.12. ——gpu-name gpuname (-arch)
Specify name of NVIDIA GPU to generate code for.

This option also takes virtual compute architectures, in which case code generation is
suppressed. This can be used for parsing only.

Allowed values for this option: compute 35, compute 37, compute 50, compute 52,
compute 53, compute 60, compute 61, compute 62, compute 70, compute 72, compute 73,
compute 75, compute 80, compute 86, 1to 35, 1to 37, 1to 50, 1to 52, 1to 53, 1to 60,
lto 61,1to 62,1to 70, 1lto 72,1to 73,1to 75, 1to 80, sm 35, sm 37, sm 50, sm 52,

sm 53, sm_60, sm 61, sm 62, sm 70, sm 72, sm 73, sm_75, sm 80, sm 86

Default value: sm_52.

4.2.9.1.13. --help (-h]

Semantics same as nvcc option ——help.

4.2.9.1.14. —-machine (-m)

Semantics same as nvcc option ——machine.

4.2.9.1.15. ——-maxrregcount amount (-maxrregcount)

Semantics same as nvcc option ——maxrregcount.

4.29.1.16. ——opt-level N(-0)

Specify optimization level.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 33

NVCC Command Options

Default value: 3.

4.2.91.17. ——options-file file,... (-optf]

Semantics same as nvcc option ——options-file.

4.2.9.1.19. ——preserve-relocs (-preserve-relocs)

This option will make ptxas to generate relocatable references for variables and preserve
relocations generated for them in linked executable.

4.2.9.1.20. -—sp-bound-check [-sp-bound-check]

Generate stack-pointer bounds-checking code sequence.

This option is turned on automatically when —-device-debug or ——opt-level=0 is specified.

4.2.9.1.21. -—verbose (-v)

Enable verbose mode which prints code generation statistics.

4.2.9.1.22. —-version [—V]

Semantics same as nvcc option ——version.

4.2.9.1.23. --warning-as-error [—Werror]

Make all warnings into errors.

4.2.9.1.24. ——warn-on-double-precision-use [-warn-double-
usage)

Warning if double(s] are used in an instruction.

4.2.9.1.25. ——warn-on-local-memory-usage (-warn-lmem-usage])

Warning if local memory is used.

4.2.9.1.26. ——warn-on-spills (-warn-spills]

Warning if registers are spilled to local memory.

4.2.91.27. ——compile-as-tools-patch (-astoolspatch]
Compile patch code for CUDA tools.

Shall not be used in conjunction with -Xptxas -c or —ewp.

Some PTX ISA features may not be usable in this compilation mode.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 34

NVCC Command Options

4.2.9.2. NVLINK Options

The following table lists some useful nvlink options which can be specified with nvcc option

--nvlink-options.

4.2.9.2.1. —-—-disable-warnings [—w]

Inhibit all warning messages.

4.29.2.2. --preserve-relocs [-preserve-relocs]

Preserve resolved relocations in linked executable.

4.2.9.2.3. --verbose (-v]

Enable verbose mode which prints code generation statistics.

4.2.9.2.4. --warning-as-error [—Werror]

Make all warnings into errors.

4.2.9.2.5. --suppress-arch-warning [—suppress—arch—warning]

Suppress the warning that otherwise is printed when object does not contain code for target arch.

4.2.9.2.6. --suppress-stack-size-warning (-suppress-stack-

Size—warning]

Suppress the warning that otherwise is printed when stack size cannot be determined.

4.2.9.2.7. --dump-callgraph (-dump-callgraph)

Dump information about the callgraph and register usage.

4.3. NVCC Environment Variables

The nvec command line flags can be augmented using the following environment variables, if
set:
NVCC_PREPEND_FLAGS
Flags to be injected before the normal nvcc command line.
NVCC_APPEND_FLAGS
Flags to be injected after the normal nvcc command line.
For example, after setting:

export NVCC PREPEND FLAGS='-G -keep -arch=sm 60'
export NVCC APPEND FLAGS='-DNAME=" foo "'

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 35

NVCC Command Options

The following invocation:

nvcc foo.cu -o foo

Becomes equivalent to:

nvcc -G -keep -arch=sm 60 foo.cu -o foo -DNAME=" foo "

These environment variables can be useful for injecting nvcc flags globally without modifying
build scripts.

The additional flags coming from either NVCC_PREPEND_FLAGS or NVCC_APPEND_FLAGS
will be listed in the verbose log (--verbose).

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 36

Chapter 5. GPU Compilation

This chapter describes the GPU compilation model that is maintained by nvcc, in cooperation
with the CUDA driver. It goes through some technical sections, with concrete examples at the
end.

H.1. GPU Generations

In order to allow for architectural evolution, NVIDIA GPUs are released in different
generations. New generations introduce major improvements in functionality and/or chip
architecture, while GPU models within the same generation show minor configuration
differences that moderately affect functionality, performance, or both.

Binary compatibility of GPU applications is not guaranteed across different generations. For
example, a CUDA application that has been compiled for a Fermi GPU will very likely not run
on a Kepler GPU (and vice versa). This is the instruction set and instruction encodings of a
geneartion is different from those of of other generations.

Binary compatibility within one GPU generation can be guaranteed under certain conditions
because they share the basic instruction set. This is the case between two GPU versions that
do not show functional differences at all (for instance when one version is a scaled down
version of the other), or when one version is functionally included in the other. An example
of the latter is the base Maxwell version sm_52 whose functionality is a subset of all other
Maxwell versions: any code compiled for sm 52 will run on all other Maxwell GPUs.

H.2. GPU Feature List

The following table lists the names of the current GPU architectures, annotated with the
functional capabilities that they provide. There are other differences, such as amounts of
register and processor clusters, that only affect execution performance.

In the CUDA naming scheme, GPUs are named sm_xy, where x denotes the GPU generation
number, and y the version in that generation. Additionally, to facilitate comparing GPU
capabilities, CUDA attempts to choose its GPU names such that if x;y; <= x5y, then all non-
ISA related capabilities of sm_x;y; are included in those of sm_x,y,. From this it indeed follows
that sm_52 is the base Maxwell model, and it also explains why higher entries in the tables are
always functional extensions to the lower entries. This is denoted by the plus sign in the table.
Moreover, if we abstract from the instruction encoding, it implies that sm_52's functionality

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 37

GPU Compilation

will continue to be included in all later GPU generations. As we will see next, this property will
be the foundation for application compatibility support by nvce.
sm_35 Basic features
+ Kepler support
+ Unified memory programming

+ Dynamic parallelism support

sm_50,and sm_53 + Maxwell support
sm_60, sm_61, and + Pascal support
sm_62

sm_70 and sm_72 + Volta support
sm_75 + Turing support
sm_80 and sm_86 + Ampere support

5.3. Application Compatibility

Binary code compatibility over CPU generations, together with a published instruction set
architecture is the usual mechanism for ensuring that distributed applications out there in the
field will continue to run on newer versions of the CPU when these become mainstream.

This situation is different for GPUs, because NVIDIA cannot guarantee binary compatibility
without sacrificing regular opportunities for GPU improvements. Rather, as is already
conventional in the graphics programming domain, nvcc relies on a two stage compilation
model for ensuring application compatibility with future GPU generations.

H.4. Virtual Architectures

GPU compilation is performed via an intermediate representation, PTX, which can be
considered as assembly for a virtual GPU architecture. Contrary to an actual graphics
processor, such a virtual GPU is defined entirely by the set of capabilities, or features, that it
provides to the application. In particular, a virtual GPU architecture provides a (largely) generic
instruction set, and binary instruction encoding is a non-issue because PTX programs are
always represented in text format.

Hence, a nvcc compilation command always uses two architectures: a virtual intermediate
architecture, plus a real GPU architecture to specify the intended processor to execute on. For
such an nvec command to be valid, the real architecture must be an implementation of the
virtual architecture. This is further explained below.

The chosen virtual architecture is more of a statement on the GPU capabilities that the
application requires: using a smallest virtual architecture still allows a widest range of actual
architectures for the second nvcc stage. Conversely, specifying a virtual architecture that
provides features unused by the application unnecessarily restricts the set of possible GPUs
that can be specified in the second nvcc stage.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 38

GPU Compilation

From this it follows that the virtual architecture should always be chosen as low as possible,
thereby maximizing the actual GPUs to run on. The real architecture should be chosen as high
as possible (assuming that this always generates better code), but this is only possible with
knowledge of the actual GPUs on which the application is expected to run. As we will see later,
in the situation of just in time compilation, where the driver has this exact knowledge: the
runtime GPU is the one on which the program is about to be launched/executed.

Figure 2.

virtual compute architecture

real sm architecture

9.9.

compute 35, and
compute 37

compute 50,
compute 52, and
compute 53

compute 60,
compute 61, and
compute 62

compute 70 and
compute 72

compute 75

CUDA Compiler Driver NVCC

x.cu (device code)

|

Stage 1
(PTX Generation)

U U

Stage 2
(Cubin Generation)

x.cubin

Execute

Two-Staged Compilation with Virtual and Real Architectures

Kepler support

Unified memory programming

Dynamic parallelism support

+ Maxwell support

+ Pascal support

+ Volta support

+ Turing support

Virtual Architecture Feature List

TRM-06721-001_v11.4 | 39

GPU Compilation

compute 80 and + Ampere support
compute 86

The above table lists the currently defined virtual architectures. The virtual architecture
naming scheme is the same as the real architecture naming scheme shown in Section GPU
Feature List.

H.6. Further Mechanisms

Clearly, compilation staging in itself does not help towards the goal of application compatibility
with future GPUs. For this we need the two other mechanisms by CUDA Samples: just in time
compilation (JIT) and fatbinaries.

5.6.1. Just-in-Time Compilation

The compilation step to an actual GPU binds the code to one generation of GPUs. Within
that generation, it involves a choice between GPU coverage and possible performance. For
example, compiling to sm_52 allows the code to run on all Maxwell-generation GPUs, but
compiling to sm_53 would probably yield better code if Maxwell GM206 and later are the only
targets.

Figure 3. Just-in-Time Compilation of Device Code

x.cu (device code)

|

Stage 1
(PTX Generation)

virtual compute architecture

P U

[Stage 2
(Cubin Generation)

x.cubin

l

Execute

real sm architecture

By specifying a virtual code architecture instead of a real GPU, nvcc postpones the assembly
of PTX code until application runtime, at which the target GPU is exactly known. For instance,

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 40

GPU Compilation

the command below allows generation of exactly matching GPU binary code, when the
application is launched on an sm_50 or later architecture.

nvcc x.cu --gpu-architecture=compute 50 --gpu-code=compute 50

The disadvantage of just in time compilation is increased application startup delay, but this
can be alleviated by letting the CUDA driver use a compilation cache (refer to "Section 3.1.1.2.
Just-in-Time Compilation” of CUDA C++ Programming Guide] which is persistent over
multiple runs of the applications.

H.6.2. Fatbinaries

A different solution to overcome startup delay by JIT while still allowing execution on newer
GPUs is to specify multiple code instances, as in

nvcc x.cu --gpu-architecture=compute 50 --gpu-code=compute 50,sm 50,sm 52

This command generates exact code for two Maxwell variants, plus PTX code for use by JIT

in case a next-generation GPU is encountered. nvcc organizes its device code in fatbinaries,
which are able to hold multiple translations of the same GPU source code. At runtime, the
CUDA driver will select the most appropriate translation when the device function is launched.

5.7. NVCC Examples
5.7.1. Base Notation

nvce provides the options ——gpu-architecture and —-gpu-code for specifying the target
architectures for both translation stages. Except for allowed short hands described below,

the ——gpu-architecture option takes a single value, which must be the name of a virtual
compute architecture, while option --gpu-code takes a list of values which must all be the
names of actual GPUs. nvcc performs a stage 2 translation for each of these GPUs, and will
embed the result in the result of compilation (which usually is a host object file or executable).

Example

nvcc X.cu --gpu-architecture=compute 50 --gpu-code=sm 50,sm 52

Hh.7.2. Shorthand

nvcc allows a number of shorthands for simple cases.

5.7.2.1. Shorthand 1

--gpu-code arguments can be virtual architectures. In this case the stage 2 translation will
be omitted for such virtual architecture, and the stage 1 PTX result will be embedded instead.
At application launch, and in case the driver does not find a better alternative, the stage 2
compilation will be invoked by the driver with the PTX as input.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 41

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GPU Compilation

Example

nvcc X.cu --gpu-architecture=compute 50 --gpu-code=compute 50,sm 50,sm 52

5.7.2.2. Shorthand 2

The —--gpu-code option can be omitted. Only in this case, the --gpu-architecture value can
be a non-virtual architecture. The -—gpu-code values default to the closest virtual architecture
that is implemented by the GPU specified with -—gpu-architecture, plus the -—gpu-
architecture, value itself. The closest virtual architecture is used as the effective ——gpu-
architecture, value. If the ——gpu-architecture value is a virtual architecture, it is also
used as the effective ——gpu-code value.

Example

nvcc x.cu -—--gpu-architecture=sm 52
nvcc x.cu -—--gpu-architecture=compute 50

are equivalent to

nvcc x.cu -—--gpu-architecture=compute 52 --gpu-code=sm 52, compute 52
nvcc X.cu --gpu-architecture=compute 50 --gpu-code=compute 50

5.7.2.3. Shorthand 3

Both -—gpu-architecture and -—gpu-code options can be omitted.

Example

nvcc x.cu

is equivalent to

nvcc x.cu -—--gpu-architecture=compute 52 --gpu-code=sm 52, compute 52

H.7.3. Extended Notation

The options ——gpu-architecture and ——gpu-code can be used in all cases where code is
to be generated for one or more GPUs using a common virtual architecture. This will cause
a single invocation of nvcce stage 1 (that is, preprocessing and generation of virtual PTX
assembly code), followed by a compilation stage 2 (binary code generation) repeated for each
specified GPU.

Using a common virtual architecture means that all assumed GPU features are fixed for
the entire nvce compilation. For instance, the following nvec command assumes no half-
precision floating-point operation support for both the sm_50 code and the sm_53 code:

nvcc x.cu --gpu-architecture=compute 50 --gpu-code=compute 50,sm 50,sm 53

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 42

GPU Compilation

Sometimes it is necessary to perform different GPU code generation steps, partitioned over
different architectures. This is possible using nvcc option ——generate-code, which then must
be used instead of @ -=—gpu-architecture and -—gpu-code combination.

Unlike option ——gpu-architecture option ——generate-code, may be repeated on the nvcc
command line. It takes sub-options arch and code, which must not be confused with their
main option equivalents, but behave similarly. If repeated architecture compilation is used,
then the device code must use conditional compilation based on the value of the architecture
identification macro cuba ARCH , which is described in the next section.

For example, the following assumes absence of half-precision floating-point operation support
for the sm 50 and sm_52 code, but full support on sm_53:

nvce x.cu \
--generate-code arch=compute 50,code=sm 50 \
--generate-code arch=compute 50, code=sm 52 \
-—generate-code arch=compute 53, code=sm 53

Or, leaving actual GPU code generation to the JIT compiler in the CUDA driver:

nvce x.cu \
--generate-code arch=compute 50,code=compute 50 \
-—generate-code arch=compute 53, code=compute 53

The code sub-options can be combined with a slightly more complex syntax:

nvce x.cu \
--generate-code arch=compute 50,code=[sm 50,sm 52] \
-—generate-code arch=compute 53, code=sm 53

5.7.4. Virtual Architecture Identification Macro

The architecture identification macro _ CUDA ARCH _ is assigned a three-digit value string
xy0 (ending in a literal 0] during each nvce compilation stage 1 that compiles for compute xy.

This macro can be used in the implementation of GPU functions for determining the virtual
architecture for which it is currently being compiled. The host code [the non-GPU code) must
not depend on it.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 43

Chapter 6. Using Separate Compilation
in CUDA

Prior to the 5.0 release, CUDA did not support separate compilation, so CUDA code could

not call device functions or access variables across files. Such compilation is referred to as
whole program compilation. We have always supported the separate compilation of host code,
it was just the device CUDA code that needed to all be within one file. Starting with CUDA 5.0,
separate compilation of device code is supported, but the old whole program mode is still the
default, so there are new options to invoke separate compilation.

6.1. Code Changes for Separate
Compilation

The code changes required for separate compilation of device code are the same as what you
already do for host code, namely using extern and static to control the visibility of symbols.
Note that previously extern was ignored in CUDA code; now it will be honored. With the use of
static it is possible to have multiple device symbols with the same name in different files. For
this reason, the CUDA API calls that referred to symbols by their string name are deprecated;
instead the symbol should be referenced by its address.

6.2. NVCC Options for Separate
Compilation

CUDA works by embedding device code into host objects. In whole program compilation,

it embeds executable device code into the host object. In separate compilation, we embed
relocatable device code into the host object, and run nv1ink, the device linker, to link all the
device code together. The output of nvlink is then linked together with all the host objects by
the host linker to form the final executable.

The generation of relocatable vs executable device code is controlled by the ——relocatable-
device-code option.

The —-compile option is already used to control stopping a compile at a host object, so a
new option --device-c is added that simply does --relocatable-device-code=true --

compile .

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 44

Using Separate Compilation in CUDA

To invoke just the device linker, the ——device-1ink option can be used, which emits a host
object containing the embedded executable device code. The output of that must then be
passed to the host linker. Or:

nvcc <objects>
can be used to implicitly call both the device and host linkers. This works because if the device
linker does not see any relocatable code it does not do anything.

Figure 4 shows the flow (nvee --device-c has the same flow as #unique 50/
unique 50 Connect 42 cuda-compilation-from-cu-to-o])

Figure 4. CUDA Separate Compilation Trajectory

X.cu y.cu z.cpp

! ! !

[nvcc --device-c j [nvcc --device-c j [C++ Compiler j

x.0 / x.obj _l l/ y.0 / y.obj z.0/ z.obj
[Device Linker j

a_dlink.o / a_dlink.obj

(Host Linker w

N J

executable / library

6.3. Libraries

The device linker has the ability to read the static host library formats (.a on Linux and Mac
0S X, .1ib on Windows). It ignores any dynamic (.so or .d11] libraries. The -=-1ibrary and
--library-path options can be used to pass libraries to both the device and host linker. The
library name is specified without the library file extension when the --1ibrary option is used.

nvcc --gpu-architecture=sm 50 a.o b.o --library-path=<path> --library=foo

Alternatively, the library name, including the library file extension, can be used without the -—
library option on Windows.

nvcc —--gpu-architecture=sm 50 a.obj b.obj foo.lib --library-path=<path>

Note that the device linker ignores any objects that do not have relocatable device code.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 45

6

Using Separate Compilation in CUDA

4. Examples

Suppose we have the following files:

#d
ex

ex

#1i

efine N 8
tern device int g[N];

tern device void bar(void);

nclude "b.h"

__device int g[N];

__device void bar (void)

{

#i
#i

}

gl[threadIdx.x]++;

nclude <stdio.h>
nclude "b.h"

global void foo (void) {

__shared int a[N];
althreadIdx.x] = threadIdx.x;

__syncthreads () ;
gl[threadIdx.x] = a[blockDim.x - threadIdx.x - 1];

bar();

int main (void) {

CUDA Compiler Driver NVCC

unsigned int i;
int *dg, hg[N];
int sum = 0;

foo<<<l, N>>>();

i1f (cudaGetSymbolAddress ((void**) &dg, g)) {
printf ("couldn't get the symbol addr\n");
return 1;

}

if (cudaMemcpy (hg, dg, N * sizeof (int), cudaMemcpyDeviceToHost)) {
printf ("couldn't memcpy\n") ;
return 1;

}

for (i = 0; 1 < N; i++) {
sum += hgl[i];

}

if (sum == 306) {
printf ("PASSED\n") ;
} else {

printf ("FAILED (%d)\n", sum);
}

return 0;

TRM-06721-001_v11.4

46

Using Separate Compilation in CUDA

}

These can be compiled with the following commands (these examples are for Linux):

nvcc --gpu-architecture=sm 50 --device-c a.cu b.cu
nvcc —-gpu-architecture=sm 50 a.o b.o

If you want to invoke the device and host linker separately, you can do:

nvcc --gpu-architecture=sm 50 --device-c a.cu b.cu
nvcc —-gpu-architecture=sm 50 --device-link a.o b.o --output-file link.o
g++ a.o b.o link.o --library-path=<path> --library=cudart

Note that all desired target architectures must be passed to the device linker, as that specifies
what will be in the final executable (some objects or libraries may contain device code for
multiple architectures, and the link step can then choose what to put in the final executable).

If you want to use the driver APl to load a linked cubin, you can request just the cubin:

nvcc --gpu-architecture=sm 50 --device-link a.o b.o \
--cubin --output-file link.cubin

The objects could be putinto a library and used with:

nvcc —--gpu-architecture=sm 50 --device-c a.cu b.cu
nvcc --1lib a.o b.o --output-file test.a
nvcc —--gpu-architecture=sm 50 test.a

Note that only static libraries are supported by the device linker.
A PTX file can be compiled to a host object file and then linked by using:

nvcc --gpu-architecture=sm 50 --device-c a.ptx

An example that uses libraries, host linker, and dynamic parallelism would be:

nvcc —--gpu-architecture=sm 50 --device-c a.cu b.cu
nvcc —--gpu-architecture=sm 50 --device-link a.o b.o --output-file link.o
nvcc --1lib --output-file libgpu.a a.o b.o link.o
g++ host.o --library=gpu --library-path=<path> \
—--library=cudadevrt --library=cudart

It is possible to do multiple device links within a single host executable, as long as each device
link is independent of the other. This requirement of independence means that they cannot
share code across device executables, nor can they share addresses (e.g., a device function
address can be passed from host to device for a callback only if the device link sees both the
caller and potential callback callee; you cannot pass an address from one device executable to
another, as those are separate address spaces).

6.9. Optimization Of Separate Compilation

Separately compiled code may not have as high of performance as whole program code
because of the inability to inline code across files. A way to still get optimal performance is
to use link-time optimization, which stores intermediate code which is then linked together
to perform high level optimizations. This can be done with the --dlink-time-opt or -

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 47

Using Separate Compilation in CUDA

dlto option. This option must be specified at both compile and link time. If only some of

the files are compiled with -d1to, then those will be linked and optimized together while

the rest uses the normal separate compilation. A side effect is that this shifts some of the
compile time to the link phase, and there may be some scalability issues with really large
codes. If you want to compile using -gencode to build for multiple arch, use -dc -gencode
arch=compute NN, code=1to NN to specify the intermediate IR to be stored [where NN is the
SM architecture version). Then use -d1to option to link for a specific architecture. There is no
runtime JIT support for LTO codes so you need to statically link to a final sm_NN architecture.
There is support for LTO with the driver APIs as of CUDA 11.4 as a preview feature, see the
CUDA Driver APl doc for more information.

6.6. Potential Separate Compilation
Issues

6.6.1. Object Compatibility

Only relocatable device code with the same ABI version, link-compatible SM target
architecture, and same pointer size (32 or 64) can be linked together. Incompatible objects
will produce a link error. Link-compatible SM architectures are ones that have compatible
SASS binaries that can combine without translating, e.g. sm_52 and sm_50. An object could
have been compiled for a different architecture but also have PTX available, in which case the
device linker will JIT the PTX to cubin for the desired architecture and then link. Relocatable
device code requires CUDA 5.0 or later Toolkit.

If a kernel is limited to a certain number of registers with the launch bounds attribute or the
--maxrregcount option, then all functions that the kernel calls must not use more than that
number of registers; if they exceed the limit, then a link error will be given.

6.6.2. JIT Linking Support

CUDA 5.0 does not support JIT linking, while CUDA 5.5 does. This means that to use JIT linking
you must recompile your code with CUDA 5.5 or later. JIT linking means doing a relink of the
code at startup time. The device linker [nv1ink] links at the cubin level. If the cubin does not
match the target architecture at load time, the driver re-invokes the device linker to generate
cubin for the target architecture, by first JIT'ing the PTX for each object to the appropriate
cubin, and then linking together the new cubin.

6.6.3. Implicit CUDA Host Code

A file like b.cu above only contains CUDA device code, so one might think that the b.o object
doesn't need to be passed to the host linker. But actually there is implicit host code generated
whenever a device symbol can be accessed from the host side, either via a launch or an API
call like cudaGetSymbolAddress (). This implicit host code is put into b. o, and needs to be
passed to the host linker. Plus, for JIT linking to work all device code must be passed to the
host linker, else the host executable will not contain device code needed for the JIT link. So

a general rule is that the device linker and host linker must see the same host object files [if

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 48

Using Separate Compilation in CUDA

the object files have any device references in them—if a file is pure host then the device linker
doesn't need to see it). If an object file containing device code is not passed to the host linker,
then you will see an error message about the function cudaRegisterLinkedBinary name
calling an undefined or unresolved symbol fatbinwrap name.

6.6.4. Using _ CUDA_ARCH__

In separate compilation, CUDA ARCH _ must not be used in headers such that different
objects could contain different behavior. Or, it must be guaranteed that all objects will compile
for the same compute_arch. If a weak function or template function is defined in a header and
its behavior depends on cUDA ARCH__, then the instances of that function in the objects
could conflict if the objects are compiled for different compute arch. For example, if an a.h
contains:

template<typename T>
__device T* getptr(void)
{
#if CUDA ARCH == 500
return NULL; /* no address */
#else
__shared T arr([256];
return arr;
fendif
}

Then if a.cu and b.cu both include a.h and instantiate getptr for the same type, and b.cu
expects a non-NULL address, and compile with:

nvcc -—--gpu-architecture=compute 50 --device-c a.cu
nvcc --gpu-architecture=compute 52 --device-c b.cu
nvcc —--gpu-architecture=sm 52 a.o b.o

At link time only one version of the getptris used, so the behavior would depend on which
version is picked. To avoid this, either a.cu and b.cu must be compiled for the same compute
arch, or _cupa ARCH _ should not be used in the shared header function.

6.6.5. Device Code in Libraries

If a device function with non-weak external linkage is defined in a library as well as a non-
library object (or another library), the device linker will complain about the multiple definitions
(this differs from traditional host linkers that may ignore the function definition from the
library object, if it was already found in an earlier object].

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 49

Chapter 7. Miscellaneous NVCC Usage

7.1. Cross Compilation

Cross compilation is controlled by using the following nvec command line options:

» --compiler-bindir is used for cross compilation, where the underlying host compiler is
capable of generating objects for the target platform.

» --machine=32. This option signals that the target platform is a 32-bit platform. Use this
when the host platform is a 64-bit platform.

On a x86 system, if a CUDA toolkit installation has been configured to support cross
compilation to both Tegra and non-Tegra ARM targets, then nvcc will use the non-Tegra
configuration by default, when an ARM host cross compiler has been specified. To use the
Tegra configuration instead, pass "~target-dir aarché64-linux" to nvcc.

7.2. Keeping Intermediate Phase Files

nvcc stores intermediate results by default into temporary files that are deleted immediately
before it completes. The location of the temporary file directories used are, depending on the
current platform, as follows:
Windows
Value of environment variable TEMP is used. If it is not set, C:\Windows\temp is used
instead.
Other Platforms
Value of environment variable TMPDIR is used. If it is not set, /tmp is used instead.

Option --keep makes nvcc store these intermediate files in the current directory or in the
directory specified by --keep-dir instead, with names as described in Supported Phases.

7.3. Cleaning Up Generated Files

All files generated by a particular nvec command can be cleaned up by repeating the
command, but with additional option ——clean-targets. This option is particularly useful after
using -—keep, because the --keep option usually leaves quite an amount of intermediate files
around.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 50

Miscellaneous NVCC Usage

Because using --clean-targets will remove exactly what the original nvec command
created, it is important to exactly repeat all of the options in the original command. For
instance, in the following example, omitting —-keep, or adding --compile will have different
cleanup effects.

nvcc acos.cu —--keep
nvcc acos.cu —--keep --clean-targets

7.4. Printing Code Generation Statistics

A summary on the amount of used registers and the amount of memory needed per compiled
device function can be printed by passing option --resource-usage to nvcc:

$ nvcc --resource-usage acos.cu -arch sm 80
ptxas info : 1536 bytes gmem
ptxas info : Compiling entry function 'acos main' for 'sm 80'
ptxas info : Function properties for acos main

0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 6 registers, 1536 bytes smem, 32 bytes cmem[0]

As shown in the above example, the amount of statically allocated global memory (gmem] is
listed.

Global memory and some of the constant banks are module scoped resources and not per
kernel resources. Allocation of constant variables to constant banks is profile specific.

Followed by this, per kernel resource information is printed.

Stack frame is per thread stack usage used by this function. Spill stores and loads represent
stores and loads done on stack memory which are being used for storing variables that
couldn't be allocated to physical registers.

Similarly number of registers, amount of shared memory and total space in constant bank
allocated is shown.

CUDA Compiler Driver NVCC TRM-06721-001_v11.4 | 51

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	List of Figures
	Introduction
	1.1. Overview
	1.1.1. CUDA Programming Model
	1.1.2. CUDA Sources
	1.1.3. Purpose of NVCC

	1.2. Supported Host Compilers

	Compilation Phases
	2.1. NVCC Identification Macro
	2.2. NVCC Phases
	2.3. Supported Input File Suffixes
	2.4. Supported Phases

	The CUDA Compilation Trajectory
	NVCC Command Options
	4.1. Command Option Types and Notation
	4.2. Command Option Description
	4.2.1. File and Path Specifications
	4.2.1.1. --output-file file (-o)
	4.2.1.2. --objdir-as-tempdir (-objtemp)
	4.2.1.3. --pre-include file,... (-include)
	4.2.1.4. --library library,... (-l)
	4.2.1.5. --define-macro def,... (-D)
	4.2.1.6. --undefine-macro def,... (-U)
	4.2.1.7. --include-path path,... (-I)
	4.2.1.8. --system-include path,... (-isystem)
	4.2.1.9. --library-path path,... (-L)
	4.2.1.10. --output-directory directory (-odir)
	4.2.1.11. --dependency-output file (-MF)
	4.2.1.12. --generate-dependency-targets (-MP)
	4.2.1.13. --compiler-bindir directory (-ccbin)
	4.2.1.14. --allow-unsupported-compiler (-allow-unsupported-compiler)
	4.2.1.15. --archiver-binary executable (-arbin)
	4.2.1.16. --cudart {none|shared|static} (-cudart)
	4.2.1.17. --cudadevrt {none|static} (-cudadevrt)
	4.2.1.18. --libdevice-directory directory (-ldir)
	4.2.1.19. --target-directory string (-target-dir)

	4.2.2. Options for Specifying the Compilation Phase
	4.2.2.1. --link (-link)
	4.2.2.2. --lib (-lib)
	4.2.2.3. --device-link (-dlink)
	4.2.2.4. --device-c (-dc)
	4.2.2.5. --device-w (-dw)
	4.2.2.6. --cuda (-cuda)
	4.2.2.7. --compile (-c)
	4.2.2.8. --fatbin (-fatbin)
	4.2.2.9. --cubin (-cubin)
	4.2.2.10. --ptx (-ptx)
	4.2.2.11. --preprocess (-E)
	4.2.2.12. --generate-dependencies (-M)
	4.2.2.13. --generate-nonsystem-dependencies (-MM)
	4.2.2.14. --generate-dependencies-with-compile (-MD)
	4.2.2.15. --generate-nonsystem-dependencies-with-compile (-MMD)
	4.2.2.16. --run (-run)

	4.2.3. Options for Specifying Behavior of Compiler/Linker
	4.2.3.1. --profile (-pg)
	4.2.3.2. --debug (-g)
	4.2.3.3. --device-debug (-G)
	4.2.3.4. --extensible-whole-program (-ewp)
	4.2.3.5. --no-compress (-no-compress)
	4.2.3.6. --generate-line-info (-lineinfo)
	4.2.3.7. --optimization-info kind,... (-opt-info)
	4.2.3.8. --optimize level (-O)
	4.2.3.9. --dlink-time-opt (-dlto)
	4.2.3.10. --ftemplate-backtrace-limit limit (-ftemplate-backtrace-limit)
	4.2.3.11. --ftemplate-depth limit (-ftemplate-depth)
	4.2.3.12. --no-exceptions (-noeh)
	4.2.3.13. --shared (-shared)
	4.2.3.14. --x {c|c++|cu} (-x)
	4.2.3.15. --std {c++03|c++11|c++14|c++17} (-std)
	4.2.3.16. --no-host-device-initializer-list (-nohdinitlist)
	4.2.3.17. --expt-relaxed-constexpr (-expt-relaxed-constexpr)
	4.2.3.18. --extended-lambda (-extended-lambda)
	4.2.3.19. --expt-extended-lambda (-expt-extended-lambda)
	4.2.3.20. --machine {32|64} (-m)
	4.2.3.21. --m32 (-m32)
	4.2.3.22. --m64 (-m64)
	4.2.3.23. --host-linker-script {use-lcs|gen-lcs} (-hls)
	4.2.3.24. --augment-host-linker-script (-aug-hls)

	4.2.4. Options for Passing Specific Phase Options
	4.2.4.1. --compiler-options options,... (-Xcompiler)
	4.2.4.2. --linker-options options,... (-Xlinker)
	4.2.4.3. --archive-options options,... (-Xarchive)
	4.2.4.4. --ptxas-options options,... (-Xptxas)
	4.2.4.5. --nvlink-options options,... (-Xnvlink)

	4.2.5. Options for Guiding the Compiler Driver
	4.2.5.1. --forward-unknown-to-host-compiler (-forward-unknown-to-host-compiler)
	4.2.5.2. --forward-unknown-to-host-linker (-forward-unknown-to-host-linker)
	4.2.5.3. --dont-use-profile (-noprof)
	4.2.5.4. --threads number (-t)
	4.2.5.5. --dryrun (-dryrun)
	4.2.5.6. --verbose (-v)
	4.2.5.7. --keep (-keep)
	4.2.5.8. --keep-dir directory (-keep-dir)
	4.2.5.9. --save-temps (-save-temps)
	4.2.5.10. --clean-targets (-clean)
	4.2.5.11. --run-args arguments,... (-run-args)
	4.2.5.12. --input-drive-prefix prefix (-idp)
	4.2.5.13. --dependency-drive-prefix prefix (-ddp)
	4.2.5.14. --drive-prefix prefix (-dp)
	4.2.5.15. --dependency-target-name target (-MT)
	4.2.5.16. --no-align-double
	4.2.5.17. --no-device-link (-nodlink)
	4.2.5.18. --allow-unsupported-compiler (-allow-unsupported-compiler)

	4.2.6. Options for Steering CUDA Compilation
	4.2.6.1. --default-stream {legacy|null|per-thread} (-default-stream)

	4.2.7. Options for Steering GPU Code Generation
	4.2.7.1. --gpu-architecture arch (-arch)
	4.2.7.2. --gpu-code code,... (-code)
	4.2.7.3. --generate-code specification (-gencode)
	4.2.7.4. --relocatable-device-code {true|false} (-rdc)
	4.2.7.5. --entries entry,... (-e)
	4.2.7.6. --maxrregcount amount (-maxrregcount)
	4.2.7.7. --use_fast_math (-use_fast_math)
	4.2.7.8. --ftz {true|false} (-ftz)
	4.2.7.9. --prec-div {true|false} (-prec-div)
	4.2.7.10. --prec-sqrt {true|false} (-prec-sqrt)
	4.2.7.11. --fmad {true|false} (-fmad)
	4.2.7.12. --extra-device-vectorization (-extra-device-vectorization)
	4.2.7.13. --compile-as-tools-patch (-astoolspatch)
	4.2.7.14. --keep-device-functions (-keep-device-functions)

	4.2.8. Generic Tool Options
	4.2.8.1. --disable-warnings (-w)
	4.2.8.2. --source-in-ptx (-src-in-ptx)
	4.2.8.3. --restrict (-restrict)
	4.2.8.4. --Wno-deprecated-gpu-targets (-Wno-deprecated-gpu-targets)
	4.2.8.5. --Wno-deprecated-declarations (-Wno-deprecated-declarations)
	4.2.8.6. --Wreorder (-Wreorder)
	4.2.8.7. --Wdefault-stream-launch (-Wdefault-stream-launch)
	4.2.8.8. --Wext-lambda-captures-this (-Wext-lambda-captures-this)
	4.2.8.9. --Werror kind,... (-Werror)
	4.2.8.10. --display-error-number (-err-no)
	4.2.8.11. --diag-error errNum,... (-diag-error)
	4.2.8.12. --diag-suppress errNum,... (-diag-suppress)
	4.2.8.13. --diag-warn errNum,... (-diag-warn)
	4.2.8.14. --resource-usage (-res-usage)
	4.2.8.15. --help (-h)
	4.2.8.16. --version (-V)
	4.2.8.17. --options-file file,... (-optf)
	4.2.8.18. --time filename (-time)
	4.2.8.19. --qpp-config config (-qpp-config)
	4.2.8.20. --list-gpu-code (-code-ls)
	4.2.8.21. --list-gpu-arch (-arch-ls)

	4.2.9. Phase Options
	4.2.9.1. Ptxas Options
	4.2.9.1.1. --allow-expensive-optimizations (-allow-expensive-optimizations)
	4.2.9.1.2. --compile-only (-c)
	4.2.9.1.3. --def-load-cache (-dlcm)
	4.2.9.1.4. --def-store-cache (-dscm)
	4.2.9.1.5. --device-debug (-g)
	4.2.9.1.6. --disable-optimizer-constants (-disable-optimizer-consts)
	4.2.9.1.7. --entry entry,... (-e)
	4.2.9.1.8. --fmad (-fmad)
	4.2.9.1.9. --force-load-cache (-flcm)
	4.2.9.1.10. --force-store-cache (-fscm)
	4.2.9.1.11. --generate-line-info (-lineinfo)
	4.2.9.1.12. --gpu-name gpuname (-arch)
	4.2.9.1.13. --help (-h)
	4.2.9.1.14. --machine (-m)
	4.2.9.1.15. --maxrregcount amount (-maxrregcount)
	4.2.9.1.16. --opt-level N (-O)
	4.2.9.1.17. --options-file file,... (-optf)
	4.2.9.1.19. --preserve-relocs (-preserve-relocs)
	4.2.9.1.20. --sp-bound-check (-sp-bound-check)
	4.2.9.1.21. --verbose (-v)
	4.2.9.1.22. --version (-V)
	4.2.9.1.23. --warning-as-error (-Werror)
	4.2.9.1.24. --warn-on-double-precision-use (-warn-double-usage)
	4.2.9.1.25. --warn-on-local-memory-usage (-warn-lmem-usage)
	4.2.9.1.26. --warn-on-spills (-warn-spills)
	4.2.9.1.27. --compile-as-tools-patch (-astoolspatch)

	4.2.9.2. NVLINK Options
	4.2.9.2.1. --disable-warnings (-w)
	4.2.9.2.2. --preserve-relocs (-preserve-relocs)
	4.2.9.2.3. --verbose (-v)
	4.2.9.2.4. --warning-as-error (-Werror)
	4.2.9.2.5. --suppress-arch-warning (-suppress-arch-warning)
	4.2.9.2.6. --suppress-stack-size-warning (-suppress-stack-size-warning)
	4.2.9.2.7. --dump-callgraph (-dump-callgraph)

	4.3. NVCC Environment Variables

	GPU Compilation
	5.1. GPU Generations
	5.2. GPU Feature List
	5.3. Application Compatibility
	5.4. Virtual Architectures
	5.5. Virtual Architecture Feature List
	5.6. Further Mechanisms
	5.6.1. Just-in-Time Compilation
	5.6.2. Fatbinaries

	5.7. NVCC Examples
	5.7.1. Base Notation
	5.7.2. Shorthand
	5.7.2.1. Shorthand 1
	5.7.2.2. Shorthand 2
	5.7.2.3. Shorthand 3

	5.7.3. Extended Notation
	5.7.4. Virtual Architecture Identification Macro

	Using Separate Compilation in CUDA
	6.1. Code Changes for Separate Compilation
	6.2. NVCC Options for Separate Compilation
	6.3. Libraries
	6.4. Examples
	6.5. Optimization Of Separate Compilation
	6.6. Potential Separate Compilation Issues
	6.6.1. Object Compatibility
	6.6.2. JIT Linking Support
	6.6.3. Implicit CUDA Host Code
	6.6.4. Using __CUDA_ARCH__
	6.6.5. Device Code in Libraries

	Miscellaneous NVCC Usage
	7.1. Cross Compilation
	7.2. Keeping Intermediate Phase Files
	7.3. Cleaning Up Generated Files
	7.4. Printing Code Generation Statistics

