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Chapter 1.
INTRODUCTION

The cuSolver library is a high-level package based on the cuBLAS and cuSPARSE
libraries. It consists of two modules corresponding to two sets of API:

 1. The cuSolver API on a single GPU
 2. The cuSolverMG API on a single node multiGPU

Each of which can be used independently or in concert with other toolkit libraries.
To simplify the notation, cuSolver denotes single GPU API and cuSolverMg denotes
multiGPU API.

The intent of cuSolver is to provide useful LAPACK-like features, such as common
matrix factorization and triangular solve routines for dense matrices, a sparse
least-squares solver and an eigenvalue solver. In addition cuSolver provides a new
refactorization library useful for solving sequences of matrices with a shared sparsity
pattern.

cuSolver combines three separate components under a single umbrella. The first part
of cuSolver is called cuSolverDN, and deals with dense matrix factorization and solve
routines such as LU, QR, SVD and LDLT, as well as useful utilities such as matrix and
vector permutations.

Next, cuSolverSP provides a new set of sparse routines based on a sparse QR
factorization. Not all matrices have a good sparsity pattern for parallelism in
factorization, so the cuSolverSP library also provides a CPU path to handle those
sequential-like matrices. For those matrices with abundant parallelism, the GPU path
will deliver higher performance. The library is designed to be called from C and C++.

The final part is cuSolverRF, a sparse re-factorization package that can provide very
good performance when solving a sequence of matrices where only the coefficients are
changed but the sparsity pattern remains the same.

The GPU path of the cuSolver library assumes data is already in the device memory.
It is the responsibility of the developer to allocate memory and to copy data between
GPU memory and CPU memory using standard CUDA runtime API routines, such as
cudaMalloc(), cudaFree(), cudaMemcpy(), and cudaMemcpyAsync().
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cuSolverMg is GPU-accelerated ScaLAPACK. By now, cuSolverMg supports 1-D column
block cyclic layout and provides symmetric eigenvalue solver.

The cuSolver library requires hardware with a CUDA compute capability (CC) of at
least 2.0 or higher. Please see the CUDA C++ Programming Guide for a list of the
compute capabilities corresponding to all NVIDIA GPUs.

1.1. cuSolverDN: Dense LAPACK
The cuSolverDN library was designed to solve dense linear systems of the form

where the coefficient matrix  , right-hand-side vector  and solution vector

The cuSolverDN library provides QR factorization and LU with partial pivoting to
handle a general matrix A, which may be non-symmetric. Cholesky factorization is also
provided for symmetric/Hermitian matrices. For symmetric indefinite matrices, we
provide Bunch-Kaufman (LDL) factorization.

The cuSolverDN library also provides a helpful bidiagonalization routine and singular
value decomposition (SVD).

The cuSolverDN library targets computationally-intensive and popular routines in
LAPACK, and provides an API compatible with LAPACK. The user can accelerate these
time-consuming routines with cuSolverDN and keep others in LAPACK without a major
change to existing code.

1.2. cuSolverSP: Sparse LAPACK
The cuSolverSP library was mainly designed to a solve sparse linear system

and the least-squares problem

where sparse matrix  , right-hand-side vector  and solution vector  .
For a linear system, we require m=n.

The core algorithm is based on sparse QR factorization. The matrix A is accepted in CSR
format. If matrix A is symmetric/Hermitian, the user has to provide a full matrix, ie fill
missing lower or upper part.

If matrix A is symmetric positive definite and the user only needs to solve  ,
Cholesky factorization can work and the user only needs to provide the lower triangular
part of A.
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On top of the linear and least-squares solvers, the cuSolverSP library provides a simple
eigenvalue solver based on shift-inverse power method, and a function to count the
number of eigenvalues contained in a box in the complex plane.

1.3. cuSolverRF: Refactorization
The cuSolverRF library was designed to accelerate solution of sets of linear systems by
fast re-factorization when given new coefficients in the same sparsity pattern

where a sequence of coefficient matrices  , right-hand-sides  and solutions
 are given for i=1,...,k.

The cuSolverRF library is applicable when the sparsity pattern of the coefficient matrices
 as well as the reordering to minimize fill-in and the pivoting used during the LU

factorization remain the same across these linear systems. In that case, the first linear
system (i=1) requires a full LU factorization, while the subsequent linear systems
(i=2,...,k) require only the LU re-factorization. The later can be performed using the
cuSolverRF library.

Notice that because the sparsity pattern of the coefficient matrices, the reordering and
pivoting remain the same, the sparsity pattern of the resulting triangular factors  and

 also remains the same. Therefore, the real difference between the full LU factorization
and LU re-factorization is that the required memory is known ahead of time.

1.4. Naming Conventions
The cuSolverDN library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverDn<t><operation>

where <t> can be S, D, C, Z, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively. <operation> can
be Cholesky factorization (potrf), LU with partial pivoting (getrf), QR factorization
(geqrf) and Bunch-Kaufman factorization (sytrf).

The cuSolverSP library functions are available for data types float, double,
cuComplex, and cuDoubleComplex. The naming convention is as follows:

cusolverSp[Host]<t>[<matrix data
format>]<operation>[<output matrix data format>]<based on>

where cuSolverSp is the GPU path and cusolverSpHost is the corresponding
CPU path. <t> can be S, D, C, Z, or X, corresponding to the data types float, double,
cuComplex, cuDoubleComplex, and the generic type, respectively.

The <matrix data format> is csr, compressed sparse row format.
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The <operation> can be ls, lsq, eig, eigs, corresponding to linear solver, least-square
solver, eigenvalue solver and number of eigenvalues in a box, respectively.

The <output matrix data format> can be v or m, corresponding to a vector or a
matrix.

<based on> describes which algorithm is used. For example, qr (sparse QR
factorization) is used in linear solver and least-square solver.

All of the functions have the return type cusolverStatus_t and are explained in more
detail in the chapters that follow.
cuSolverSP API

routine data
format

operation output
format

based on

csrlsvlu csr linear solver (ls) vector (v) LU (lu)
with
partial
pivoting

csrlsvqr csr linear solver (ls) vector (v) QR
factorization
(qr)

csrlsvchol csr linear solver (ls) vector (v) Cholesky
factorization
(chol)

csrlsqvqr csr least-square solver (lsq) vector (v) QR
factorization
(qr)

csreigvsi csr eigenvalue solver (eig) vector (v) shift-
inverse

csreigs csr number of eigenvalues in a
box (eigs)

csrsymrcm csr Symmetric Reverse Cuthill-
McKee (symrcm)

The cuSolverRF library routines are available for data type double. Most of the routines
follow the naming convention:

cusolverRf_<operation>_[[Host]](...)

where the trailing optional Host qualifier indicates the data is accessed on the
host versus on the device, which is the default. The <operation> can be Setup,
Analyze, Refactor, Solve, ResetValues, AccessBundledFactors and
ExtractSplitFactors.

Finally, the return type of the cuSolverRF library routines is cusolverStatus_t.
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1.5. Asynchronous Execution
The cuSolver library functions prefer to keep asynchronous execution as much as
possible. Developers can always use the cudaDeviceSynchronize() function to ensure
that the execution of a particular cuSolver library routine has completed.

A developer can also use the cudaMemcpy() routine to copy data from the
device to the host and vice versa, using the cudaMemcpyDeviceToHost and
cudaMemcpyHostToDevice parameters, respectively. In this case there is no need to add
a call to cudaDeviceSynchronize() because the call to cudaMemcpy() with the above
parameters is blocking and completes only when the results are ready on the host.

1.6. Library Property
The libraryPropertyType data type is an enumeration of library property types.
(ie. CUDA version X.Y.Z would yield MAJOR_VERSION=X, MINOR_VERSION=Y,
PATCH_LEVEL=Z)

typedef enum libraryPropertyType_t
{
        MAJOR_VERSION,
        MINOR_VERSION,
        PATCH_LEVEL
} libraryPropertyType;

The following code can show the version of cusolver library.

    int major=-1,minor=-1,patch=-1;
    cusolverGetProperty(MAJOR_VERSION, &major);
    cusolverGetProperty(MINOR_VERSION, &minor);
    cusolverGetProperty(PATCH_LEVEL, &patch);
    printf("CUSOLVER Version (Major,Minor,PatchLevel): %d.%d.%d\n",
 major,minor,patch);

1.7. high precision package
The cusolver library uses high precision for iterative refinement when necessary.
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Chapter 2.
USING THE CUSOLVER API

2.1. General description
This chapter describes how to use the cuSolver library API. It is not a reference for the
cuSolver API data types and functions; that is provided in subsequent chapters.

2.1.1. Thread Safety
The library is thread-safe, and its functions can be called from multiple host threads.

2.1.2. Scalar Parameters
In the cuSolver API, the scalar parameters can be passed by reference on the host.

2.1.3. Parallelism with Streams
If the application performs several small independent computations, or if it makes data
transfers in parallel with the computation, then CUDA streams can be used to overlap
these tasks.

The application can conceptually associate a stream with each task. To achieve the
overlap of computation between the tasks, the developer should:

 1. Create CUDA streams using the function cudaStreamCreate(), and
 2. Set the stream to be used by each individual cuSolver library routine by calling, for

example, cusolverDnSetStream(), just prior to calling the actual cuSolverDN
routine.

The computations performed in separate streams would then be overlapped
automatically on the GPU, when possible. This approach is especially useful when the
computation performed by a single task is relatively small, and is not enough to fill the
GPU with work, or when there is a data transfer that can be performed in parallel with
the computation.
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2.1.4. Link Third-party LAPACK Library
Starting with CUDA 10.1 update 2, NVIDIA LAPACK library liblapack_static.a
is a subset of LAPACK and only contains GPU accelerated stedc and bdsqr. The
user has to link libcusolver_static.a with liblapack_static.a in order to
build the application successfully. Prior to CUDA 10.1 update 2, the user can replace
liblapack_static.a with a third-party LAPACK library, for example, MKL. In
CUDA 10.1 update 2, the third-party LAPACK library no longer affects the behavior of
cusolver library, neither functionality nor performance. Furthermore the user cannot use
liblapack_static.a as a standalone LAPACK library because it is only a subset of
LAPACK.

Theliblapack_static.a library, which is the binary of CLAPACK-3.2.1, is a new
feature of CUDA 10.0.

‣ If you use libcusolver_static.a, then you must link with
liblapack_static.a explicitly, otherwise the linker will report missing symbols.
No conflict of symbols between liblapack_static.a and other third-party
LAPACK library, you are free to link the latter to your application.

‣ The liblapack_static.a is built inside libcusolver.so. Hence, if you
use libcusolver.so, then you don't need to specify a LAPACK library. The
libcusolver.so will not pick up any routines from the third-party LAPACK
library even you link the application with it.

2.1.5. convention of info
Each LAPACK routine returns an info which indicates the position of invalid
parameter. If info = -i, then i-th parameter is invalid. To be consistent with base-1
in LAPACK, cusolver does not report invalid handle into info. Instead, cusolver
returns CUSOLVER_STATUS_NOT_INITIALIZED for invalid handle.

2.1.6. usage of _bufferSize
There is no cudaMalloc inside cuSolver library, the user must allocate the device
workspace explicitly. The routine xyz_bufferSize is to query the size of workspace of
the routine xyz, for example xyz = potrf. To make the API simple, xyz_bufferSize
follows almost the same signature of xyz even it only depends on some parameters,
for example, device pointer is not used to decide the size of workspace. In most cases,
xyz_bufferSize is called in the beginning before actual device data (pointing by a
device pointer) is prepared or before the device pointer is allocated. In such case, the
user can pass null pointer to xyz_bufferSize without breaking the functionality.
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2.2. cuSolver Types Reference

2.2.1. cuSolverDN Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.
In addition, cuSolverDN uses some familiar types from cuBlas.

2.2.1.1. cusolverDnHandle_t
This is a pointer type to an opaque cuSolverDN context, which the user must initialize
by calling cusolverDnCreate() prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverDN. The handle created and returned by cusolverDnCreate() must be
passed to every cuSolverDN function.

2.2.1.2. cublasFillMode_t
The type indicates which part (lower or upper) of the dense matrix was filled and
consequently should be used by the function. Its values correspond to Fortran characters
‘L’ or ‘l’ (lower) and ‘U’ or ‘u’ (upper) that are often used as parameters to legacy
BLAS implementations.

Value Meaning

CUBLAS_FILL_MODE_LOWER the lower part of the matrix is filled

CUBLAS_FILL_MODE_UPPER the upper part of the matrix is filled

2.2.1.3. cublasOperation_t
The cublasOperation_t type indicates which operation needs to be performed
with the dense matrix. Its values correspond to Fortran characters ‘N’ or ‘n’ (non-
transpose), ‘T’ or ‘t’ (transpose) and ‘C’ or ‘c’ (conjugate transpose) that are often
used as parameters to legacy BLAS implementations.

Value Meaning

CUBLAS_OP_N the non-transpose operation is selected

CUBLAS_OP_T the transpose operation is selected

CUBLAS_OP_C the conjugate transpose operation is selected

2.2.1.4. cusolverEigType_t
The cusolverEigType_t type indicates which type of eigenvalue solver is. Its values
correspond to Fortran integer 1 (A*x = lambda*B*x), 2 (A*B*x = lambda*x), 3 (B*A*x =
lambda*x), used as parameters to legacy LAPACK implementations.

Value Meaning
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CUSOLVER_EIG_TYPE_1 A*x = lambda*B*x

CUSOLVER_EIG_TYPE_2 A*B*x = lambda*x

CUSOLVER_EIG_TYPE_3 B*A*x = lambda*x

2.2.1.5. cusolverEigMode_t
The cusolverEigMode_t type indicates whether or not eigenvectors are computed. Its
values correspond to Fortran character 'N' (only eigenvalues are computed), 'V' (both
eigenvalues and eigenvectors are computed) used as parameters to legacy LAPACK
implementations.

Value Meaning

CUSOLVER_EIG_MODE_NOVECTOR only eigenvalues are computed

CUSOLVER_EIG_MODE_VECTOR both eigenvalues and eigenvectors are computed

2.2.1.6. cusolverIRSRefinement_t
The cusolverIRSRefinement_t type indicates which solver type would be
used for the specific cusolver function. Most of our experimentation shows that
CUSOLVER_IRS_REFINE_GMRES is the best option.

More details about the refinement process can be found in Azzam Haidar, Stanimire Tomov, Jack
Dongarra, and Nicholas J. Higham. 2018. Harnessing GPU tensor cores for fast FP16 arithmetic
to speed up mixed-precision iterative refinement solvers. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Analysis (SC '18).
IEEE Press, Piscataway, NJ, USA, Article 47, 11 pages.

Value Meaning

CUSOLVER_IRS_REFINE_NOT_SET Solver is not set. Default value.

CUSOLVER_IRS_REFINE_NONE No solver

CUSOLVER_IRS_REFINE_CLASSICAL Classical iterative refinement solver. Similar to the
one used in LAPACK routines.

CUSOLVER_IRS_REFINE_GMRES GMRES (Generalized Minimal Residual) based
iterative refinement solver. In recent study, the
GMRES method has drawn the scientific community
attention for its ability to be used as refinement
solver that outperforms the classical iterative
refinement method.

CUSOLVER_IRS_REFINE_CLASSICAL_GMRES Classical iterative refinement solver that uses the
GMRES (Generalized Minimal Residual) internally to
solve the correction equation at each iteration. We
call the classical refinement iteration the outer
iteration while the GMRES is called inner iteration.
Note that if the tolerance of the inner GMRES is
set very low, let say to machine precision, then the
outer classical refinement iteration will performs
only one iteration and thus this option will behaves
like CUSOLVER_IRS_REFINE_GMRES.

CUSOLVER_IRS_REFINE_GMRES_GMRES Similar to
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES which
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is classical refinement process that uses GMRES
to solve the inner correction system, here it is
a GMRES (Generalized Minimal Residual) based
iterative refinement solver that uses another
GMRES internally to solve the preconditionned
system.

2.2.1.7. cusolverDnIRSParams_t
This is a pointer type to an opaque cusolverDnIRSParams_t structure, which holds
parameters for the iterative refinement linear solvers such as cusolverDnXgesv(). Use
corresponding helper functions described below to either Create/Destroy this structure
or Set/Get solver parameters.

2.2.1.8. cusolverDnIRSInfos_t
This is a pointer type to an opaque cusolverDnIRSInfos_t structure, which holds
information about the performed call to an iterative refinement linear solver (e.g.,
cusolverDnXgesv()). Use corresponding helper functions described below to either
Create/Destroy this structure or retrieve solve information.

2.2.1.9. cusolverStatus_t
This is the same as cusolverStatus_t in the sparse LAPACK section.

2.2.2. cuSolverSP Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.

2.2.2.1. cusolverSpHandle_t
This is a pointer type to an opaque cuSolverSP context, which the user must initialize
by calling cusolverSpCreate() prior to calling any other library function. An
un-initialized Handle object will lead to unexpected behavior, including crashes of
cuSolverSP. The handle created and returned by cusolverSpCreate() must be passed
to every cuSolverSP function.

2.2.2.2. cusparseMatDescr_t
We have chosen to keep the same structure as exists in cuSparse to describe the shape
and properties of a matrix. This enables calls to either cuSparse or cuSolver using the
same matrix description.
typedef struct {
    cusparseMatrixType_t MatrixType;
    cusparseFillMode_t FillMode;
    cusparseDiagType_t DiagType;
    cusparseIndexBase_t IndexBase;
} cusparseMatDescr_t;

Please read documenation of CUSPARSE Library to understand each field of
cusparseMatDescr_t.
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2.2.2.3. cusolverStatus_t
This is a status type returned by the library functions and it can have the following
values.

CUSOLVER_STATUS_SUCCESS

The operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED

The cuSolver library was not initialized. This is usually caused by the
lack of a prior call, an error in the CUDA Runtime API called by the
cuSolver routine, or an error in the hardware setup.

To correct: call cusolverCreate() prior to the function call; and
check that the hardware, an appropriate version of the driver, and the
cuSolver library are correctly installed.

CUSOLVER_STATUS_ALLOC_FAILED

Resource allocation failed inside the cuSolver library. This is usually
caused by a cudaMalloc() failure.

To correct: prior to the function call, deallocate previously allocated
memory as much as possible.

CUSOLVER_STATUS_INVALID_VALUE

An unsupported value or parameter was passed to the function (a
negative vector size, for example).

To correct: ensure that all the parameters being passed have valid
values.

CUSOLVER_STATUS_ARCH_MISMATCH

The function requires a feature absent from the device architecture;
usually caused by the lack of support for atomic operations or double
precision.

To correct: compile and run the application on a device with compute
capability 2.0 or above.

CUSOLVER_STATUS_EXECUTION_FAILED

The GPU program failed to execute. This is often caused by a launch
failure of the kernel on the GPU, which can be caused by multiple
reasons.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed.

CUSOLVER_STATUS_INTERNAL_ERROR

An internal cuSolver operation failed. This error is usually caused by a
cudaMemcpyAsync() failure.

To correct: check that the hardware, an appropriate version of the
driver, and the cuSolver library are correctly installed. Also, check
that the memory passed as a parameter to the routine is not being
deallocated prior to the routine’s completion.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED

The matrix type is not supported by this function. This is usually caused
by passing an invalid matrix descriptor to the function.

To correct: check that the fields in descrA were set correctly.
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2.2.3. cuSolverRF Types
cuSolverRF only supports double.

2.2.3.1. cusolverRfHandle_t
The cusolverRfHandle_t is a pointer to an opaque data structure that contains
the cuSolverRF library handle. The user must initialize the handle by calling
cusolverRfCreate() prior to any other cuSolverRF library calls. The handle is passed
to all other cuSolverRF library calls.

2.2.3.2. cusolverRfMatrixFormat_t
The cusolverRfMatrixFormat_t is an enum that indicates the input/output matrix
format assumed by the cusolverRfSetupDevice(), cusolverRfSetupHost(),
cusolverRfResetValues(), cusolveRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines.

Value Meaning

CUSOLVER_MATRIX_FORMAT_CSR matrix format CSR is assumed. (default)

CUSOLVER_MATRIX_FORMAT_CSC matrix format CSC is assumed.

2.2.3.3. cusolverRfNumericBoostReport_t
The cusolverRfNumericBoostReport_t is an enum that indicates whether
numeric boosting (of the pivot) was used during the cusolverRfRefactor() and
cusolverRfSolve() routines. The numeric boosting is disabled by default.

Value Meaning

CUSOLVER_NUMERIC_BOOST_NOT_USED numeric boosting not used. (default)

CUSOLVER_NUMERIC_BOOST_USED numeric boosting used.

2.2.3.4. cusolverRfResetValuesFastMode_t
The cusolverRfResetValuesFastMode_t is an enum that indicates the mode used for
the cusolverRfResetValues() routine. The fast mode requires extra memory and is
recommended only if very fast calls to cusolverRfResetValues() are needed.

Value Meaning

CUSOLVER_RESET_VALUES_FAST_MODE_OFF fast mode disabled. (default)

CUSOLVER_RESET_VALUES_FAST_MODE_ON fast mode enabled.

2.2.3.5. cusolverRfFactorization_t
The cusolverRfFactorization_t is an enum that indicates which (internal)
algorithm is used for refactorization in the cusolverRfRefactor() routine.

Value Meaning
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CUSOLVER_FACTORIZATION_ALG0 algorithm 0. (default)

CUSOLVER_FACTORIZATION_ALG1 algorithm 1.

CUSOLVER_FACTORIZATION_ALG2 algorithm 2. Domino-based scheme.

2.2.3.6. cusolverRfTriangularSolve_t
The cusolverRfTriangularSolve_t is an enum that indicates which (internal)
algorithm is used for triangular solve in the cusolverRfSolve() routine.

Value Meaning

CUSOLVER_TRIANGULAR_SOLVE_ALG0 algorithm 0.

CUSOLVER_TRIANGULAR_SOLVE_ALG1 algorithm 1. (default)

CUSOLVER_TRIANGULAR_SOLVE_ALG2 algorithm 2. Domino-based scheme.

CUSOLVER_TRIANGULAR_SOLVE_ALG3 algorithm 3. Domino-based scheme.

2.2.3.7. cusolverRfUnitDiagonal_t
The cusolverRfUnitDiagonal_t is an enum that indicates whether and
where the unit diagonal is stored in the input/output triangular factors
in the cusolverRfSetupDevice(), cusolverRfSetupHost() and
cusolverRfExtractSplitFactorsHost() routines.

Value Meaning

CUSOLVER_UNIT_DIAGONAL_STORED_L unit diagonal is stored in lower triangular factor.
(default)

CUSOLVER_UNIT_DIAGONAL_STORED_U unit diagonal is stored in upper triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_L unit diagonal is assumed in lower triangular factor.

CUSOLVER_UNIT_DIAGONAL_ASSUMED_U unit diagonal is assumed in upper triangular factor.

2.2.3.8. cusolverStatus_t
The cusolverStatus_t is an enum that indicates success or failure of the cuSolverRF
library call. It is returned by all the cuSolver library routines, and it uses the same
enumerated values as the sparse and dense Lapack routines.

2.3. cuSolver Formats Reference

2.3.1. Index Base Format
The CSR or CSC format requires either zero-based or one-based index for a sparse
matrix A. The GLU library supports only zero-based indexing. Otherwise, both one-
based and zero-based indexing are supported in cuSolver.
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2.3.2. Vector (Dense) Format
The vectors are assumed to be stored linearly in memory. For example, the vector

is represented as

2.3.3. Matrix (Dense) Format
The dense matrices are assumed to be stored in column-major order in memory. The
sub-matrix can be accessed using the leading dimension of the original matrix. For
examle, the m*n (sub-)matrix

is represented as

with its elements arranged linearly in memory as

where lda ≥ m is the leading dimension of A.

2.3.4. Matrix (CSR) Format
In CSR format the matrix is represented by the following parameters

parameter type size Meaning

n (int) the number of rows (and columns) in the
matrix.

nnz (int) the number of non-zero elements in the
matrix.

csrRowPtr (int *) n+1 the array of offsets corresponding to the start
of each row in the arrays csrColInd and
csrVal. This array has also an extra entry at
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the end that stores the number of non-zero
elements in the matrix.

csrColInd (int *) nnz the array of column indices corresponding to
the non-zero elements in the matrix.  It is
assumed that this array is sorted by row and
by column within each row.

csrVal (S|D|C|Z)* nnz the array of values corresponding to the non-
zero elements in the matrix.  It is assumed
that this array is sorted by row and by
column within each row.

Note that in our CSR format sparse matrices are assumed to be stored in row-major
order, in other words, the index arrays are first sorted by row indices and then within
each row by column indices. Also it is assumed that each pair of row and column indices
appears only once.

For example, the 4x4 matrix

is represented as

2.3.5. Matrix (CSC) Format
In CSC format the matrix is represented by the following parameters

parameter type size Meaning

n (int) the number of rows (and columns) in the
matrix.

nnz (int) the number of non-zero elements in the
matrix.

cscColPtr (int *) n+1 the array of offsets corresponding to the start
of each column in the arrays cscRowInd and
cscVal. This array has also an extra entry at
the end that stores the number of non-zero
elements in the matrix.

cscRowInd (int *) nnz the array of row indices corresponding to
the non-zero elements in the matrix.  It is
assumed that this array is sorted by column
and by row within each column.

cscVal (S|D|C|Z)* nnz the array of values corresponding to the non-
zero elements in the matrix.  It is assumed



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 16

that this array is sorted by column and by
row within each column.

Note that in our CSC format sparse matrices are assumed to be stored in column-major
order, in other words, the index arrays are first sorted by column indices and then
within each column by row indices. Also it is assumed that each pair of row and column
indices appears only once.

For example, the 4x4 matrix

is represented as

2.4. cuSolverDN: dense LAPACK Function
Reference
This chapter describes the API of cuSolverDN, which provides a subset of dense
LAPACK functions.

2.4.1. cuSolverDN Helper Function Reference
The cuSolverDN helper functions are described in this section.

2.4.1.1. cusolverDnCreate()

cusolverStatus_t 
cusolverDnCreate(cusolverDnHandle_t *handle);

This function initializes the cuSolverDN library and creates a handle on the cuSolverDN
context. It must be called before any other cuSolverDN API function is invoked. It
allocates hardware resources necessary for accessing the GPU.

parameter Memory In/out Meaning

handle host output the pointer to the handle to the
cuSolverDN context.

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.
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CUSOLVER_STATUS_NOT_INITIALIZED the CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

2.4.1.2. cusolverDnDestroy()

cusolverStatus_t 
cusolverDnDestroy(cusolverDnHandle_t handle);

This function releases CPU-side resources used by the cuSolverDN library.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.4.1.3. cusolverDnSetStream()

cusolverStatus_t 
cusolverDnSetStream(cusolverDnHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverDN library to execute its
routines.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

streamId host input the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.4.1.4. cusolverDnGetStream()

cusolverStatus_t 
cusolverDnGetStream(cusolverDnHandle_t handle, cudaStream_t *streamId)

This function sets the stream to be used by the cuSolverDN library to execute its
routines.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

streamId host output the stream to be used by the library.
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Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.4.1.5. cusolverDnCreateSyevjInfo()

cusolverStatus_t 
cusolverDnCreateSyevjInfo(
    syevjInfo_t *info);

This function creates and initializes the structure of syevj, syevjBatched and sygvj to
default values.

parameter Memory In/out Meaning

info host output the pointer to the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

2.4.1.6. cusolverDnDestroySyevjInfo()

cusolverStatus_t 
cusolverDnDestroySyevjInfo(
    syevjInfo_t info);

This function destroys and releases any memory required by the structure.

parameter Memory In/out Meaning

info host input the structure of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the resources are released successfully.

2.4.1.7. cusolverDnXsyevjSetTolerance()

cusolverStatus_t 
cusolverDnXsyevjSetTolerance(
    syevjInfo_t info,
    double tolerance)

This function configures tolerance of syevj.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

tolerance host input accuracy of numerical eigenvalues.

Status Returned
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CUSOLVER_STATUS_SUCCESS the operation completed successfully.

2.4.1.8. cusolverDnXsyevjSetMaxSweeps()

cusolverStatus_t 
cusolverDnXsyevjSetMaxSweeps(
    syevjInfo_t info,
    int max_sweeps)

This function configures maximum number of sweeps in syevj. The default value is
100.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

max_sweeps host input maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

2.4.1.9. cusolverDnXsyevjSetSortEig()

cusolverStatus_t 
cusolverDnXsyevjSetSortEig(
    syevjInfo_t info,
    int sort_eig)

if sort_eig is zero, the eigenvalues are not sorted. This function only works for
syevjBatched. syevj and sygvj always sort eigenvalues in ascending order. By
default, eigenvalues are always sorted in ascending order.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of syevj.

sort_eig host input if sort_eig is zero, the eigenvalues are
not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

2.4.1.10. cusolverDnXsyevjGetResidual()

cusolverStatus_t 
cusolverDnXsyevjGetResidual(
    cusolverDnHandle_t handle,
    syevjInfo_t info,
    double *residual)

This function reports residual of syevj or sygvj. It does not support
syevjBatched. If the user calls this function after syevjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.
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parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of syevj.

residual host output residual of syevj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

2.4.1.11. cusolverDnXsyevjGetSweeps()

cusolverStatus_t 
cusolverDnXsyevjGetSweeps(
    cusolverDnHandle_t handle,
    syevjInfo_t info,
    int *executed_sweeps)

This function reports number of executed sweeps of syevj or sygvj. It does not
support syevjBatched. If the user calls this function after syevjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of syevj.

executed_sweeps host output number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

2.4.1.12. cusolverDnCreateGesvdjInfo()

cusolverStatus_t 
cusolverDnCreateGesvdjInfo(
    gesvdjInfo_t *info);

This function creates and initializes the structure of gesvdj and gesvdjBatched to
default values.

parameter Memory In/out Meaning

info host output the pointer to the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.
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2.4.1.13. cusolverDnDestroyGesvdjInfo()

cusolverStatus_t 
cusolverDnDestroyGesvdjInfo(
    gesvdjInfo_t info);

This function destroys and releases any memory required by the structure.

parameter Memory In/out Meaning

info host input the structure of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the resources are released successfully.

2.4.1.14. cusolverDnXgesvdjSetTolerance()

cusolverStatus_t 
cusolverDnXgesvdjSetTolerance(
    gesvdjInfo_t info,
    double tolerance)

This function configures tolerance of gesvdj.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

tolerance host input accuracy of numerical singular values.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

2.4.1.15. cusolverDnXgesvdjSetMaxSweeps()

cusolverStatus_t 
cusolverDnXgesvdjSetMaxSweeps(
    gesvdjInfo_t info,
    int max_sweeps)

This function configures maximum number of sweeps in gesvdj. The default value is
100.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

max_sweeps host input maximum number of sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.
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2.4.1.16. cusolverDnXgesvdjSetSortEig()

cusolverStatus_t 
cusolverDnXgesvdjSetSortEig(
    gesvdjInfo_t info,
    int sort_svd)

if sort_svd is zero, the singular values are not sorted. This function only works for
gesvdjBatched. gesvdj always sorts singular values in descending order. By default,
singular values are always sorted in descending order.

parameter Memory In/out Meaning

info host in/out the pointer to the structure of gesvdj.

sort_svd host input if sort_svd is zero, the singular values
are not sorted.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

2.4.1.17. cusolverDnXgesvdjGetResidual()

cusolverStatus_t 
cusolverDnXgesvdjGetResidual(
    cusolverDnHandle_t handle,
    gesvdjInfo_t info,
    double *residual)

This function reports residual of gesvdj. It does not support
gesvdjBatched. If the user calls this function after gesvdjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of gesvdj.

residual host output residual of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

2.4.1.18. cusolverDnXgesvdjGetSweeps()

cusolverStatus_t 
cusolverDnXgesvdjGetSweeps(
    cusolverDnHandle_t handle,
    gesvdjInfo_t info,
    int *executed_sweeps)
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This function reports number of executed sweeps of gesvdj. It does not support
gesvdjBatched. If the user calls this function after gesvdjBatched, the error
CUSOLVER_STATUS_NOT_SUPPORTED is returned.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

info host input the pointer to the structure of gesvdj.

executed_sweeps host output number of executed sweeps.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_SUPPORTED does not support batched version

2.4.1.19. cusolverDnIRSParamsCreate()

cusolverStatus_t 
cusolverDnIRSParamsCreate(cusolverDnIRSParams_t *params);

This function creates and initializes the structure of parameters for an IRS solver such as
the cusolverDnIRSXgesv() function to default values. For this release, this function is
valid for only one call to an IRS solver, thus each new call to the IRS solver will requires
its own Params structure. This restriction is going to be removed in future release and
then if user want to reuse the same configuration to many call to an IRS solver it will
allow him.

parameter Memory In/out Meaning

params host output Pointer to the cusolverDnIRSParams_t
Params structure

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was created and initialized
successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

2.4.1.20. cusolverDnIRSParamsDestroy()

cusolverStatus_t 
cusolverDnIRSParamsDestroy(cusolverDnIRSParams_t params);

This function destroys and releases any memory required by the Params structure. Since
the Infos structure (see cusolverDnIRSInfosCreate() for more details) depends on
the Params structure, this function cannot be called to destroy the Params structure if the
Infos structure was not destroyed. For this release, this function is valid for only one call
to an IRS solver, thus each call to an IRS solver should have its own Params and Infos
structure. This restriction is going to be removed in future release and then if user want
to reuse the same configuration to many call to an IRS solver it will allow him.

parameter Memory In/out Meaning
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params host input The cusolverDnIRSParams_t Params
structure

Status Returned

CUSOLVER_STATUS_SUCCESS The resources are released successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_DESTROYED Not all the Infos structure associated with this
Params structure have been destroyed yet.

2.4.1.21. cusolverDnIRSParamsSetRefinementSolver()

cusolverStatus_t 
cusolverDnIRSParamsSetRefinementSolver(
    cusolverDnIRSParams_t params, 
    cusolverIRSRefinement_t solver);

This function sets the refinement solver to be used in the Iterative Refinement Solver
functions such as the cusolverDnIRSXgesv() function. Details about values that can
be set to and their meaning can be found in the cusolverIRSRefinement_t type
section.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

solver host input Type of the refinement solver to
be used by the IRS solver such as
cusolverDnIRSXgesv()

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.22. cusolverDnIRSParamsSetSolverMainPrecision()

cusolverStatus_t 
cusolverDnIRSParamsSetSolverMainPrecision(
    cusolverDnIRSParams_t params, 
    cudaDataType solver_main_precision);

This function sets the main precision (e.g., the INOUT data type) of the IRS solver. The
value set here should be the same cuda datatype as the third argument on the call to the
IRS solver. Note that, the user has to set the main precision before a first call to the IRS
solver because it is NOT set by default with the Params creation. He can set it by either
calling this function or cusolverDnIRSParamsSetSolverPrecisions(). Possible
values are described in the table of the corresponding IRS solver for example, see the
description of the third argument of the cusolverDnIRSXgesv() IRS function.

parameter Memory In/out Meaning
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params host in/out The cusolverDnIRSParams_t Params
structure

solver_main_precisionhost input Allowed cuda datatype (for example
CUDA_R_FP64). See the corresponding
IRS solver for the table of supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.23. cusolverDnIRSParamsSetSolverLowestPrecision()

cusolverStatus_t 
cusolverDnIRSParamsSetSolverLowestPrecision(
    cusolverDnIRSParams_t params, 
    cudaDataType lowest_precision_type);

This function sets the lowest precision that will be used by Iterative Refinement Solver.
Note that, the user has to set the lowest precision before a first call to the IRS solver
because it is NOT set by default with the Params creation. He can set it by either calling
this function or cusolverDnIRSParamsSetSolverPrecisions(). Usually this
precision define the speedup that can be achieved. The ratio of the performance of the
lowest precision over the inout_data_type precision define somehow the upper bound
of the speedup that could be obtained. More precisely, it depends of many factors, but
for large matrices sizes, it is the ratio of the matrix-matrix rank-k product (e.g., rank-
k GEMM where k is around 256) that define the possible speedup. For instance, if the
inout precision is real double precision FP64 and the lowest precision is FP32, then we
can expect a speedup of at most 2X for large problem sizes. If the lowest precision was
FP16, then we can expect 3X-4X. A reasonable strategy should take the number of right-
hand sides and the size of the matrix as well as the convergence rate into account.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

lowest_precision_typehost input Allowed cuda datatype (for example
CUDA_R_FP16). See the corresponding
IRS solver for the table of supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.
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2.4.1.24. cusolverDnIRSParamsSetSolverPrecisions()

cusolverStatus_t
    cusolverDnIRSParamsSetSolverPrecisions(
            cusolverDnIRSParams_t params,
            cudaDataType solver_main_precision,
            cudaDataType solver_lowest_precision );

This function set both, the main and the lowest precision of the IRS solver. It is
a wrappers to both cusolverDnIRSParamsSetSolverMainPrecision() and
cusolverDnIRSParamsSetSolverLowestPrecision(). Note that, the user has to
set both the main and the lowest precision before a first call to the IRS solver because
they are NOT set by default with the Params creation. He can set it by either calling this
function or both functions cusolverDnIRSParamsSetSolverLowestPrecisions()
and cusolverDnIRSParamsSetSolverMainPrecisions().

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

solver_main_precisionhost input Allowed cuda datatype (for example
CUDA_R_FP64). See the corresponding
IRS solver for the table of supported
precisions.

solver_lowest_precisionhost input Allowed cuda datatype (for example
CUDA_R_FP16). See the corresponding
IRS solver for the table of supported
precisions.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.25. cusolverDnIRSParamsSetTol()

cusolverStatus_t 
cusolverDnIRSParamsSetTol(
            cusolverDnIRSParams_t params,
            cudaDataType data_type,
            double val );

This function sets the tolerance for the refinement solver. By default it is set such that, all
the RHS satisfy:

     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX  where

‣ RNRM is the infinity-norm of the residual
‣ XNRM is the infinity-norm of the solution
‣ ANRM is the infinity-operator-norm of the matrix A
‣ EPS is the machine epsilon that matches LAPACK <t1>LAMCH('Epsilon')

The value BWDMAX is fixed to 1.0.
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The user can use this function to change the tolerance to a lower or higher value. Our
goal is to give the user as much control as we can such a way he can investigate and
control every detail of the IRS solver.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

data_type host input cuda datatype of the inout_data_type

val host input double precision value to which the
refinement tolerance will be set
internally.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.26. cusolverDnIRSParamsSetTolInner()

cusolverStatus_t
    cusolverDnIRSParamsSetTolInner(
            cusolverDnIRSParams_t params,
            cudaDataType data_type,
            double val );

This function sets the tolerance for the inner refinement solver
when the refinement solver consists of two level solvers
(e.g., CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or
CUSOLVER_IRS_REFINE_GMRES_GMRES). It is not referenced in case of
one level refinement solver such as CUSOLVER_IRS_REFINE_CLASSICAL or
CUSOLVER_IRS_REFINE_GMRES. This function set the tolerance for the inner
solver (e.g. the inner GMRES). For example, if the RefinementSolver was set to
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES setting this tolerance mean that the
inner GMRES solver will converge to that tolerance at each outer iteration of the classical
refinement solver. It is set to 1e-4 by default. Our goal is to give the user as much control
as we can such a way he can investigate and control every detail of the IRS solver.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

data_type host input The cuda datatype (for example
CUDA_R_FP64) of the inout data

val host input Double precision real value to which
the refinement tolerance will be set
internally.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.
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2.4.1.27. cusolverDnIRSParamsSetMaxIters()

cusolverStatus_t 
cusolverDnIRSParamsSetMaxIters(
    cusolverDnIRSParams_t params, 
    int max_iters);

This function sets the total number of allowed refinement iterations after which solver
will stop. Total means the maximum number of iterations allowed (e.g., outer and inner
iterations when two level refinement solver is set). Default value is set to 50. Our goal
is to give the user as much control as we can such a way he can investigate and control
every detail of the IRS solver.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

max_iters host input Maximum total number of iterations
allowed for the refinement solver

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.28. cusolverDnIRSParamsSetMaxItersInner()

cusolverStatus_t
    cusolverDnIRSParamsSetMaxItersInner(
            cusolverDnIRSParams_t params,
            cusolver_int_t maxiters_inner );

This function sets the maximal number of iterations allowed for the inner
refinement solver. It is not referenced in case of one level refinement solver such as
CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES. The inner
refinement solver will stop after reaching either the inner tolerance or the MaxItersInner
value. By default, it is set to MaxIters (e.g., 50). Note that this value could not be larger
than MaxIters since MaxIters is the total number of allowed iterations. Note that, if
user call to set MaxIters after calling this function, the MaxIters has priority and will
overwrite MaxItersInner to the minimum value of (MaxIters, MaxItersInner). Our goal
is to give the user as much control as we can such a way he can investigate and control
every detail of the IRS solver.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

maxiters_inner host input Maximum number of allowed inner
iterations for the refinement solver.
Meaningful when the refinement
solver is a two levels solver such as
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES
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or CUSOLVER_IRS_REFINE_GMRES_GMRES.
Value should be less or equal to MaxIters.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_INVALID if the value was larger than MaxIters.

2.4.1.29. cusolverDnIRSParamsGetMaxIters()

cusolverStatus_t
    cusolverDnIRSParamsGetMaxIters(
            cusolverDnIRSParams_t params,
            cusolver_int_t *maxiters );

This function returns the maximal number of iterations MaxIters that is currently
set within the current Params structure. Thus, it returns the value of the MaxIters
parameter.

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

maxiters host output The maximal number of iterations that is
currently set

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.30. cusolverDnIRSInfosCreate()

cusolverStatus_t 
cusolverDnIRSInfosCreate(
    cusolverDnIRSParams_t params,
    cusolverDnIRSInfos_t* infos )

This function creates and initializes the Infos structure that will hold the refinement
informations of an IRS solver. Such information includes the total number of iterations
needed to converge (Niters), the outer number of iterations, and a pointer to the matrix
of the convergence history residual norms. This function need to be called after the
Params structure (see cusolverDnIRSParamsCreate()) has been created and before
the call to an IRS solver such as cusolverDnIRSXgesv(). This function is valid for
only one call to an IRS solver, since it hold info about that solve and thus each solve will
requires its own Infos structure.

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure
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info host output Pointer to the cusolverDnIRSInfos_t Infos
structure

Status Returned

CUSOLVER_STATUS_SUCCESS The structure was initialized successfully.

CUSOLVER_STATUS_ALLOC_FAILED The resources could not be allocated.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.31. cusolverDnIRSInfosDestroy()

cusolverStatus_t 
cusolverDnIRSInfosDestroy(
    cusolverDnIRSParams_t params,
    cusolverDnIRSInfos_t infos );

This function destroys and releases any memory required by the Infos structure. This
function destroy all the informations (e.g., Niters performed, OuterNiters performed,
residual history etc) about a solver call, thus a user is supposed to call it once he is done
from the informations he need.

parameter Memory In/out Meaning

params host in/out The cusolverDnIRSParams_t Params
structure

info host in/out The cusolverDnIRSInfos_t Infos structure

Status Returned

CUSOLVER_STATUS_SUCCESS the resources are released successfully.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

2.4.1.32. cusolverDnIRSInfosGetMaxIters()

cusolverStatus_t
    cusolverDnIRSInfosGetMaxIters(
            cusolverDnIRSParams_t params,
            cusolverDnIRSInfos_t infos,
            cusolver_int_t *maxiters );

This function returns the maximal number of iterations that is currently
set within the current Params structure. This function is a duplicate of
cusolverDnIRSParamsGetMaxIters().

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

infos host in The cusolverDnIRSInfos_t Infos structure
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maxiters host output The maximal number of iterations that is
currently set

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.33. cusolverDnIRSInfosGetNiters()

cusolverStatus_t cusolverDnIRSInfosGetNiters(
            cusolverDnIRSParams_t params,
            cusolverDnIRSInfos_t infos,
            cusolver_int_t *niters );

This function returns the total number of iterations performed by the IRS solver. If it was
negative it means that the IRS solver had numerical issues a fall back to a full precision
solution most like happened. Please refer to the description of negative niters values in
the corresponding IRS linear solver functions such as cusolverDnXgesv().

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

infos host in The cusolverDnIRSInfos_t Infos structure

niters host output The total number of iterations performed
by the IRS solver

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.34. cusolverDnIRSInfosGetOuterNiters()

cusolverStatus_t
    cusolverDnIRSInfosGetOuterNiters(
            cusolverDnIRSParams_t params,
            cusolverDnIRSInfos_t infos,
            cusolver_int_t *outer_niters );

This function returns the number of iterations performed by outer refinement
loop of the IRS solver. When RefinementSolver consists of one level solver such
as CUSOLVER_IRS_REFINE_CLASSICAL or CUSOLVER_IRS_REFINE_GMRES,
it is the same as Niters. When RefinementSolver consists of two levels
solver such as CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or
CUSOLVER_IRS_REFINE_GMRES_GMRES, it is the number of the outer iteration. See
description of cusolverIRSRefinementSolver_t type section for more details.
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parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

infos host in The cusolverDnIRSInfos_t Infos structure

outer_niters host output The number of iterations of the outer
refinement loop of the IRS solver

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.35. cusolverDnIRSInfosRequestResidual()

cusolverStatus_t cusolverDnIRSInfosRequestResidual(
        cusolverDnIRSParams_t params,
        cusolverDnIRSInfos_t infos );

This function, once called, tell the IRS solver to store the convergence history of the
refinement phase in a matrix, that could be accessed via a pointer returned by the
cusolverDnIRSInfosGetResidualHistory() function.

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

infos host in The cusolverDnIRSInfos_t Infos structure

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.

2.4.1.36. cusolverDnIRSInfosGetResidualHistory()

cusolverStatus_t 
cusolverDnIRSInfosGetResidualHistory(
    cusolverDnIRSParams_t params,
    cusolverDnIRSInfos_t infos,
    void **residual_history );

If the user called cusolverDnIRSInfosRequestResidual() before the call to the IRS
solve function, this function return a pointer to the matrix of the convergence history
residual norms. Precision of residual norms depends on the IRS input data type. If inout
datatype has double precision (CUDA_R_FP64 or CUDA_C_FP64 inout datatype), this
residual will be real double precision. Otherwise (CUDA_R_FP32 or CUDA_C_FP32
inout datatype) - residual will be with real single precision.
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The residual history matrix consists of two columns (even for NRHS case) of MaxIters+1
rows, thus a matrix of size (MaxIters+1,2). Only the first OuterNiters+1 rows contains
the needed informations the other (e.g., OuterNiters+2:Maxiters+1) are garbage. On the
first column, each row "i" specify the total number of iterations happened at this outer
iteration "i" and on the second columns the residual norm corresponding to this outer
iteration "i". Thus, the first row (e.g., outer iteration "0") consists of the initial residual
(e.g., the residual before the refinement loop start) then the consecutive OuterNiters
rows are the residual obtained at each outer iteration of the refinement loop. Note, it
only consists of the history of the outer loop.

Thus, if the Refinementsolver was CUSOLVER_IRS_REFINE_CLASSICAL or
CUSOLVER_IRS_REFINE_GMRES, then OuterNiters=Niters (Niters is the total number
of iterations performed) and there is Niters+1 rows of norms that correspond to the
Niters outer iterations.

If the Refinementsolver was CUSOLVER_IRS_REFINE_CLASSICAL_GMRES or
CUSOLVER_IRS_REFINE_GMRES_GMRES, then OuterNiters <= Niters corresponds to
the outer iterations performed by the outer refinement loop. Thus there is OuterNiters+1
residual norms where row "i" correspond to the outer iteration "i" and the first column
specify the total number of iterations (outer and inner) that were performed while the
second columns correspond to the residual norm at this stage.

For example, let say the user specify CUSOLVER_IRS_REFINE_CLASSICAL_GMRES as
a Refinementsolver and let say it needed 3 outer iterations to converge and 4,3,3 inner
iterations at each outer respectively. This consists of 10 total iterations. Thus on row 0
is for the first residual before the refinement start, so it has 0 iteration. On row 1 which
correspond to the outer iteration 1, it will be shown 4 (4 is the total number of iterations
that were performed till now) on row 2, it will be 7 and on row 3 it will be 10.

As summary, let define ldh=Maxiters+1, the leading dimension of the residual matrix.
then residual_history[i] shows the total number of iterations performed at the outer
iteration "i" and residual_history[i+ldh] correspond to its norm of the residual at this
stage.

parameter Memory In/out Meaning

params host in The cusolverDnIRSParams_t Params
structure

infos host in The cusolverDnIRSInfos_t Infos
structure

residual_history host output Returns a void pointer to the
matrix of the convergence history
residual norms. See the description
above for the relation between the
residual norm types and the inout
datatype.

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.

CUSOLVER_STATUS_IRS_PARAMS_NOT_INITIALIZEDThe Params structure was not created.

CUSOLVER_STATUS_IRS_INFOS_NOT_INITIALIZED The Infos structure was not created.
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CUSOLVER_STATUS_INVALID_VALUE This function was called without calling
cusolverDnIRSInfosRequestResidual() in
advance.

2.4.2. Dense Linear Solver Reference
This chapter describes linear solver API of cuSolverDN, including Cholesky
factorization, LU with partial pivoting, QR factorization and Bunch-Kaufman (LDLT)
factorization.

2.4.2.1. cusolverDn<t>potrf()
These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotrf_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 float *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t
cusolverDnDpotrf_bufferSize(cusolveDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 double *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t 
cusolverDnCpotrf_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 cuComplex *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t 
cusolverDnZpotrf_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 cuDoubleComplex *A,
                 int lda,
                 int *Lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSpotrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           float *A,
           int lda,
           float *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnDpotrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           double *A,
           int lda,
           double *Workspace,
           int Lwork,
           int *devInfo );

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCpotrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuComplex *A,
           int lda,
           cuComplex *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnZpotrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuDoubleComplex *A,
           int lda,
           cuDoubleComplex *Workspace,
           int Lwork,
           int *devInfo );

This function computes the Cholesky factorization of a Hermitian positive-definite
matrix.

A is a n×n Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A
is processed, and replaced by lower triangular Cholesky factor L.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular Cholesky factor U.
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The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
potrf_bufferSize().

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite,
or equivalently some diagonal elements of L or U is not a real number. The output
parameter devInfo would indicate smallest leading minor of A which is not positive
definite.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of potrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of Workspace, returned by
potrf_bufferSize.

devInfo device output if devInfo = 0, the Cholesky
factorization is successful. if devInfo
= -i, the i-th parameter is wrong (not
counting handle). if devInfo = i, the
leading minor of order i is not positive
definite.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.2. cusolverDn<t>potrs()

cusolverStatus_t 
cusolverDnSpotrs(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           int nrhs,
           const float *A,
           int lda,
           float *B,
           int ldb,
           int *devInfo);

cusolverStatus_t 
cusolverDnDpotrs(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           int nrhs,
           const double *A,
           int lda,
           double *B,
           int ldb,
           int *devInfo);

cusolverStatus_t 
cusolverDnCpotrs(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           int nrhs,
           const cuComplex *A,
           int lda,
           cuComplex *B,
           int ldb,
           int *devInfo);

cusolverStatus_t 
cusolverDnZpotrs(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           int nrhs,
           const cuDoubleComplex *A,
           int lda,
           cuDoubleComplex *B,
           int ldb,
           int *devInfo);

This function solves a system of linear equations

where A is a n×n Hermitian matrix, only lower or upper part is meaningful. The input
parameter uplo indicates which part of the matrix is used. The function would leave
other part untouched.

The user has to call potrf first to factorize matrix A. If input parameter uplo is
CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L correspoding to
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 . If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is upper triangular
Cholesky factor U corresponding to  .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading
dimension ldb.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of potrs

parameter Memory In/out Meaning

handle host input handle to the cuSolveDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

nrhs host input number of columns of matrix X and B.

A device input <type> array of dimension lda * n with
lda is not less than max(1,n). A is either
lower cholesky factor L or upper Cholesky
factor U.

lda host input leading dimension of two-dimensional
array used to store matrix A.

B device in/out <type> array of dimension ldb * nrhs.
ldb is not less than max(1,n). As an
input, B is right hand side matrix. As an
output, B is the solution matrix.

devInfo device output if devInfo = 0, the Cholesky
factorization is successful. if devInfo
= -i, the i-th parameter is wrong (not
counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.3. cusolverDn<t>potri()
These helper functions calculate the necessary size of work buffers.

cusolverStatus_t
cusolverDnSpotri_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 float *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t
cusolverDnDpotri_bufferSize(cusolveDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 double *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t 
cusolverDnCpotri_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 cuComplex *A,
                 int lda,
                 int *Lwork );

cusolverStatus_t 
cusolverDnZpotri_bufferSize(cusolverDnHandle_t handle,
                 cublasFillMode_t uplo,
                 int n,
                 cuDoubleComplex *A,
                 int lda,
                 int *Lwork);

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSpotri(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           float *A,
           int lda,
           float *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnDpotri(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           double *A,
           int lda,
           double *Workspace,
           int Lwork,
           int *devInfo );
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCpotri(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuComplex *A,
           int lda,
           cuComplex *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnZpotri(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuDoubleComplex *A,
           int lda,
           cuDoubleComplex *Workspace,
           int Lwork,
           int *devInfo );

This function computes the inverse of a positive-definite matrix A using the Cholesky
factorization

computed by potrf().

A is a n×n matrix containing the triangular factor L or U computed by the Cholesky
factorization. Only lower or upper part is meaningful and the input parameter uplo
indicates which part of the matrix is used. The function would leave the other part
untouched.

If the input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of
A is processed, and replaced the by lower triangular part of the inverse of A.

If the input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part
of A is processed, and replaced by the upper triangular part of the inverse of A.

The user has to provide the working space which is pointed to by input parameter
Workspace. The input parameter Lwork is the size of the working space, returned by
potri_bufferSize().

If the computation of the inverse fails, i.e. some leading minor of L or U, is null, the
output parameter devInfo would indicate the smallest leading minor of L or U which is
not positive definite.

If the output parameter devInfo = -i (less than zero), the i-th parameter is wrong
(not counting the handle).
API of potri

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.
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uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension lda * n where
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of Workspace, returned by
potri_bufferSize.

devInfo device output if devInfo = 0, the computation of
the inverse is successful. if devInfo =
-i, the i-th parameter is wrong (not
counting handle). if devInfo = i, the
leading minor of order i is zero.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.4. cusolverDn<t>getrf()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSgetrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      float *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnDgetrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      double *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnCgetrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      cuComplex *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnZgetrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      cuDoubleComplex *A,
                      int lda,
                      int *Lwork );

The S and D data types are real single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgetrf(cusolverDnHandle_t handle,
           int m,
           int n,
           float *A,
           int lda,
           float *Workspace,
           int *devIpiv,
           int *devInfo );

cusolverStatus_t 
cusolverDnDgetrf(cusolverDnHandle_t handle,
           int m,
           int n,
           double *A,
           int lda,
           double *Workspace,
           int *devIpiv,
           int *devInfo );



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 43

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgetrf(cusolverDnHandle_t handle,
           int m,
           int n,
           cuComplex *A,
           int lda,
           cuComplex *Workspace,
           int *devIpiv,
           int *devInfo );

cusolverStatus_t 
cusolverDnZgetrf(cusolverDnHandle_t handle,
           int m,
           int n,
           cuDoubleComplex *A,
           int lda,
           cuDoubleComplex *Workspace,
           int *devIpiv,
           int *devInfo );

This function computes the LU factorization of a m×n matrix

where A is a m×n matrix, P is a permutation matrix, L is a lower triangular matrix with
unit diagonal, and U is an upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
getrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter devInfo=i
indicates U(i,i) = 0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

If devIpiv is null, no pivoting is performed. The factorization is A=L*U, which is not
numerically stable.

No matter LU factorization failed or not, the output parameter devIpiv contains
pivoting sequence, row i is interchanged with row devIpiv(i).

The user can combine getrf and getrs to complete a linear solver. Please refer to
appendix D.1.
API of getrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).
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lda host input leading dimension of two-dimensional
array used to store matrix A.

Workspace device in/out working space, <type> array of size
Lwork.

devIpiv device output array of size at least min(m,n),
containing pivot indices.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i, the U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.5. cusolverDn<t>getrs()

cusolverStatus_t 
cusolverDnSgetrs(cusolverDnHandle_t handle,
           cublasOperation_t trans,
           int n,
           int nrhs,
           const float *A,
           int lda,
           const int *devIpiv,
           float *B,
           int ldb,
           int *devInfo );

cusolverStatus_t 
cusolverDnDgetrs(cusolverDnHandle_t handle,
           cublasOperation_t trans,
           int n,
           int nrhs,
           const double *A,
           int lda,
           const int *devIpiv,
           double *B,
           int ldb,
           int *devInfo );

cusolverStatus_t 
cusolverDnCgetrs(cusolverDnHandle_t handle,
           cublasOperation_t trans,
           int n,
           int nrhs,
           const cuComplex *A,
           int lda,
           const int *devIpiv,
           cuComplex *B,
           int ldb,
           int *devInfo );

cusolverStatus_t 
cusolverDnZgetrs(cusolverDnHandle_t handle,
           cublasOperation_t trans,
           int n,
           int nrhs,
           const cuDoubleComplex *A,
           int lda,
           const int *devIpiv,
           cuDoubleComplex *B,
           int ldb,
           int *devInfo );

This function solves a linear system of multiple right-hand sides
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where A is a n×n matrix, and was LU-factored by getrf, that is, lower trianular part of
A is L, and upper triangular part (including diagonal elements) of A is U. B is a n×nrhs
right-hand side matrix.

The input parameter trans is defined by

The input parameter devIpiv is an output of getrf. It contains pivot indices, which are
used to permutate right-hand sides.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine getrf and getrs to complete a linear solver. Please refer to
appendix D.1.

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

trans host input operation op(A) that is non- or (conj.)
transpose.

n host input number of rows and columns of matrix A.

nrhs host input number of right-hand sides.

A device input <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

devIpiv device input array of size at least n, containing pivot
indices.

B device output <type> array of dimension ldb * nrhs
with ldb is not less than max(1,n).

ldb host input leading dimension of two-dimensional
array used to store matrix B.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n) or ldb<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.6. cusolverDn<t>geqrf()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSgeqrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      float *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnDgeqrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      double *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnCgeqrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      cuComplex *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnZgeqrf_bufferSize(cusolverDnHandle_t handle,
                      int m,
                      int n,
                      cuDoubleComplex *A,
                      int lda,
                      int *Lwork );

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgeqrf(cusolverDnHandle_t handle,
           int m,
           int n,
           float *A,
           int lda,
           float *TAU,
           float *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnDgeqrf(cusolverDnHandle_t handle,
           int m,
           int n,
           double *A,
           int lda,
           double *TAU,
           double *Workspace,
           int Lwork,
           int *devInfo );
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgeqrf(cusolverDnHandle_t handle,
           int m,
           int n,
           cuComplex *A,
           int lda,
           cuComplex *TAU,
           cuComplex *Workspace,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnZgeqrf(cusolverDnHandle_t handle,
           int m,
           int n,
           cuDoubleComplex *A,
           int lda,
           cuDoubleComplex *TAU,
           cuDoubleComplex *Workspace,
           int Lwork,
           int *devInfo );

This function computes the QR factorization of a m×n matrix

where A is a m×n matrix, Q is a m×n matrix, and R is a n×n upper triangular matrix.

The user has to provide working space which is pointed by input parameter Workspace.
The input parameter Lwork is size of the working space, and it is returned by
geqrf_bufferSize().

The matrix R is overwritten in upper triangular part of A, including diagonal elements.

The matrix Q is not formed explicitly, instead, a sequence of householder vectors are
stored in lower triangular part of A. The leading nonzero element of householder vector
is assumed to be 1 such that output parameter TAU contains the scaling factor τ. If v
is original householder vector, q is the new householder vector corresponding to τ,
satisying the following relation

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of geqrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m).
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lda host input leading dimension of two-dimensional
array used to store matrix A.

TAU device output <type> array of dimension at least
min(m,n).

Workspace device in/out working space, <type> array of size
Lwork.

Lwork host input size of working array Workspace.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.7. cusolverDn<t>ormqr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSormqr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const float *A,
    int lda,
    const float *tau,
    const float *C,
    int ldc,
    int *lwork);

cusolverStatus_t 
cusolverDnDormqr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const double *A,
    int lda,
    const double *tau,
    const double *C,
    int ldc,
    int *lwork);

cusolverStatus_t
cusolverDnCunmqr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    const cuComplex *C,
    int ldc,
    int *lwork);

cusolverStatus_t
cusolverDnZunmqr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    const cuDoubleComplex *C,
    int ldc,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSormqr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const float *A,
    int lda,
    const float *tau,
    float *C,
    int ldc,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t
cusolverDnDormqr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const double *A,
    int lda,
    const double *tau,
    double *C,
    int ldc,
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCunmqr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    cuComplex *C,
    int ldc,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZunmqr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasOperation_t trans,
    int m,
    int n,
    int k,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    cuDoubleComplex *C,
    int ldc,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function overwrites m×n matrix C by

The operation of Q is defined by

Q is a unitary matrix formed by a sequence of elementary reflection vectors from QR
factorization (geqrf) of A.

Q=H(1) H(2) ... H(k)

Q is of order m if side = CUBLAS_SIDE_LEFT and of order n if side =
CUBLAS_SIDE_RIGHT.
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The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
geqrf_bufferSize() or ormqr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine geqrf, ormqr and trsm to complete a linear solver or a least-
square solver. Please refer to appendix C.1.
API of ormqr

parameter Memory In/out Meaning

handle host input Handle to the cuSolverDn library context.

side host input Indicates if matrix Q is on the left or right
of C.

trans host input Operation op(Q) that is non- or (conj.)
transpose.

m host input Number of columns of matrix C.

n host input Number of rows of matrix C.

k host input Number of elementary relfections whose
product defines the matrix Q.

A device in/out <type> array of dimension lda * k
with lda is not less than max(1,m). The
matrix A is from geqrf, so i-th column
contains elementary reflection vector.

lda host input Leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension at least
min(m,n). The vector tau is from geqrf,
so tau(i) is the scalar of i-th elementary
reflection vector.

C device in/out <type> array of size ldc * n. On exit, C
is overwritten by op(Q)*C.

ldc host input Leading dimension of two-dimensional
array of matrix C. ldc >= max(1,m).

work device in/out Working space, <type> array of size
lwork.

lwork host input Size of working array work.

devInfo device output If devInfo = 0, the ormqr is successful.
If devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS The operation completed successfully.
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CUSOLVER_STATUS_NOT_INITIALIZED The library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE Invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH The device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR An internal operation failed.

2.4.2.8. cusolverDn<t>orgqr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSorgqr_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    const float *A,
    int lda,
    const float *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnDorgqr_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    const double *A,
    int lda,
    const double *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnCungqr_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnZungqr_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    int *lwork);



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 55

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSorgqr(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    float *A,
    int lda,
    const float *tau,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDorgqr(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    double *A,
    int lda,
    const double *tau,
    double *work,
    int lwork,
    int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCungqr(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    cuComplex *A,
    int lda,
    const cuComplex *tau,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t
cusolverDnZungqr(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int k,
    cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function overwrites m×n matrix A by
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where Q is a unitary matrix formed by a sequence of elementary reflection vectors stored
in A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgqr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The user can combine geqrf, orgqr to complete orthogonalization. Please refer to
appendix C.2.
API of ormqr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix Q. m >= 0;

n host input number of columns of matrix Q. m >= n >=
0;

k host input number of elementary relfections whose
product defines the matrix Q. n >= k >= 0;

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,m).
i-th column of A contains elementary
reflection vector.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m).

tau device output <type> array of dimension k. tau(i) is
the scalar of i-th elementary reflection
vector.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the orgqr is successful. if
info = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,k<0, n>m,
k>n or lda<m).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.
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CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.2.9. cusolverDn<t>sytrf()
These helper functions calculate the size of the needed buffers.

cusolverStatus_t 
cusolverDnSsytrf_bufferSize(cusolverDnHandle_t handle,
                      int n,
                      float *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnDsytrf_bufferSize(cusolverDnHandle_t handle,
                      int n,
                      double *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnCsytrf_bufferSize(cusolverDnHandle_t handle,
                      int n,
                      cuComplex *A,
                      int lda,
                      int *Lwork );

cusolverStatus_t 
cusolverDnZsytrf_bufferSize(cusolverDnHandle_t handle,
                      int n,
                      cuDoubleComplex *A,
                      int lda,
                      int *Lwork );

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSsytrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           float *A,
           int lda,
           int *ipiv,
           float *work,
           int lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnDsytrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           double *A,
           int lda,
           int *ipiv,
           double *work,
           int lwork,
           int *devInfo );
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCsytrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuComplex *A,
           int lda,
           int *ipiv,
           cuComplex *work,
           int lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnZsytrf(cusolverDnHandle_t handle,
           cublasFillMode_t uplo,
           int n,
           cuDoubleComplex *A,
           int lda,
           int *ipiv,
           cuDoubleComplex *work,
           int lwork,
           int *devInfo );

This function computes the Bunch-Kaufman factorization of a n×n symmetric indefinite
matrix

A is a n×n symmetric matrix, only lower or upper part is meaningful. The input
parameter uplo which part of the matrix is used. The function would leave other part
untouched.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of
A is processed, and replaced by lower triangular factor L and block diagonal matrix D.
Each block of D is either 1x1 or 2x2 block, depending on pivoting.

If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular factor U and block diagonal matrix D.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sytrf_bufferSize().

If Bunch-Kaufman factorization failed, i.e. A is singular. The output parameter devInfo
= i would indicate D(i,i)=0.

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The output parameter devIpiv contains pivoting sequence. If devIpiv(i) = k > 0,
D(i,i) is 1x1 block, and i-th row/column of A is interchanged with k-th row/column
of A. If uplo is CUBLAS_FILL_MODE_UPPER and devIpiv(i-1) = devIpiv(i) = -
m < 0, D(i-1:i,i-1:i) is a 2x2 block, and (i-1)-th row/column is interchanged
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with m-th row/column. If uplo is CUBLAS_FILL_MODE_LOWER and devIpiv(i+1) =
devIpiv(i) = -m < 0, D(i:i+1,i:i+1) is a 2x2 block, and (i+1)-th row/column is
interchanged with m-th row/column.
API of sytrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input indicates if matrix A lower or upper
part is stored, the other part is not
referenced.

n host input number of rows and columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

ipiv device output array of size at least n, containing pivot
indices.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working space work.

devInfo device output if devInfo = 0, the LU factorization is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i, the D(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.2.10. cusolverDn<t>potrfBatched()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSpotrfBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    float *Aarray[],
    int lda,
    int *infoArray,
    int batchSize);

cusolverStatus_t 
cusolverDnDpotrfBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    double *Aarray[],
    int lda,
    int *infoArray,
    int batchSize);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCpotrfBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuComplex *Aarray[],
    int lda,
    int *infoArray,
    int batchSize);

cusolverStatus_t 
cusolverDnZpotrfBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *Aarray[],
    int lda,
    int *infoArray,
    int batchSize);

This function computes the Cholesky factorization of a squence of Hermitian positive-
definite matrices.

Each Aarray[i] for i=0,1,..., batchSize-1 is a n×n Hermitian matrix, only
lower or upper part is meaningful. The input parameter uplo indicates which part of the
matrix is used.

If input parameter uplo is CUBLAS_FILL_MODE_LOWER, only lower triangular part of A
is processed, and replaced by lower triangular Cholesky factor L.
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If input parameter uplo is CUBLAS_FILL_MODE_UPPER, only upper triangular part of A
is processed, and replaced by upper triangular Cholesky factor U.

If Cholesky factorization failed, i.e. some leading minor of A is not positive definite,
or equivalently some diagonal elements of L or U is not a real number. The output
parameter infoArray would indicate smallest leading minor of A which is not positive
definite.

infoArray is an integer array of size batchsize. If potrfBatched returns
CUSOLVER_STATUS_INVALID_VALUE, infoArray[0] = -i (less than zero), meaning
that the i-th parameter is wrong (not counting handle). If potrfBatched returns
CUSOLVER_STATUS_SUCCESS but infoArray[i] = k is positive, then i-th matrix is
not positive definite and the Cholesky factorization failed at row k.

Remark: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains cholesky factor U and lower
triangle of A is destroyed after potrfBatched.
API of potrfBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input indicates if lower or upper part is stored,
the other part is used as a workspace.

n host input number of rows and columns of matrix A.

Aarray device in/out array of pointers to <type> array of
dimension lda * n with lda is not less
than max(1,n).

lda host input leading dimension of two-dimensional
array used to store each matrix
Aarray[i].

infoArray device output array of size batchSize. infoArray[i]
contains information of factorization of
Aarray[i]. if potrfBatched returns
CUSOLVER_STATUS_INVALID_VALUE,
infoArray[0] = -i (less than zero)
means the i-th parameter is wrong
(not counting handle). if potrfBatched
returns CUSOLVER_STATUS_SUCCESS,
infoArray[i] = 0 means the Cholesky
factorization of i-th matrix is successful,
and infoArray[i] = k means the
leading submatrix of order k of i-th
matrix is not positive definite.

batchSize host input number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or
lda<max(1,n) or batchSize<1).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.2.11. cusolverDn<t>potrsBatched()

cusolverStatus_t 
cusolverDnSpotrsBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    int nrhs,
    float *Aarray[],
    int lda,
    float *Barray[],
    int ldb,
    int *info,
    int batchSize);

cusolverStatus_t 
cusolverDnDpotrsBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    int nrhs, 
    double *Aarray[],
    int lda,
    double *Barray[],
    int ldb,
    int *info,
    int batchSize);

cusolverStatus_t
cusolverDnCpotrsBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    int nrhs,
    cuComplex *Aarray[],
    int lda,
    cuComplex *Barray[],
    int ldb,
    int *info,
    int batchSize);

cusolverStatus_t
cusolverDnZpotrsBatched(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    int nrhs,
    cuDoubleComplex *Aarray[],
    int lda,
    cuDoubleComplex *Barray[],
    int ldb,
    int *info,
    int batchSize);



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 63

This function solves a squence of linear systems

where each Aarray[i] for i=0,1,..., batchSize-1 is a n×n Hermitian matrix,
only lower or upper part is meaningful. The input parameter uplo indicates which part
of the matrix is used.

The user has to call potrfBatched first to factorize matrix Aarray[i]. If input
parameter uplo is CUBLAS_FILL_MODE_LOWER, A is lower triangular Cholesky factor L
correspoding to  . If input parameter uplo is CUBLAS_FILL_MODE_UPPER, A is
upper triangular Cholesky factor U corresponding to  .

The operation is in-place, i.e. matrix X overwrites matrix B with the same leading
dimension ldb.

The output parameter info is a scalar. If info = -i (less than zero), the i-th
parameter is wrong (not counting handle).

Remark 1: only nrhs=1 is supported.

Remark 2: infoArray from potrfBatched indicates if the matrix is positive definite.
info from potrsBatched only shows which input parameter is wrong (not counting
handle).

Remark 3: the other part of A is used as a workspace. For example, if uplo is
CUBLAS_FILL_MODE_UPPER, upper triangle of A contains cholesky factor U and lower
triangle of A is destroyed after potrsBatched.
API of potrsBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolveDN library context.

uplo host input indicates if matrix A lower or upper part
is stored.

n host input number of rows and columns of matrix A.

nrhs host input number of columns of matrix X and B.

Aarray device in/out array of pointers to <type> array of
dimension lda * n with lda is not less
than max(1,n). Aarray[i] is either
lower cholesky factor L or upper Cholesky
factor U.

lda host input leading dimension of two-dimensional
array used to store each matrix
Aarray[i].

Barray device in/out array of pointers to <type> array of
dimension ldb * nrhs. ldb is not less
than max(1,n). As an input, Barray[i]
is right hand side matrix. As an output,
Barray[i] is the solution matrix.
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ldb host input leading dimension of two-dimensional
array used to store each matrix
Barray[i].

info device output if info = 0, all parameters are correct.
if info = -i, the i-th parameter is
wrong (not counting handle).

batchSize host input number of pointers in Aarray.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0, nrhs<0,
lda<max(1,n), ldb<max(1,n) or batchSize<0).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.2.12. cusolverDn<t1><t2>gesv()
These functions are modelled after functions DSGESV and ZCGESV from LAPACK
and compute the solution to a system of linear equations with multiple right hand sides
using mixed precision iterative refinement

Where  A  is  n-by-n matrix and  X  and  B  are  n-by-nrhs matrices.

Functions are designed to be as close to LAPACK drop-in replacements as possible.
Parameters and behaviour are mostly the same as LAPACK counterparts. Description of
LAPACK functions and differences from them are below.

<t1><t2>gesv() functions are designated by two floating point precisions - data type (full)
precision and internal lower precision. cusolver<t1><t2>gesv() first attempts to factorize
the matrix in lower precision and use this factorization within an iterative refinement
procedure to obtain a solution with same normwise backward error as full precision. If
the approach fails to converge, then the method switches to a full precision factorization
and solve.

Note that in addition to the data type / lower floating point precision functions available
in LAPACK - also functions with half precision as a lower precision are present. The
following table specifies which precisions will be used for which interface function:
Supported combinations of floating point precisions for cusolver <t1><t2>gesv()
functions

Interface function Data type (matrix,
rhs and solution)

Data floating point
precision

Internal (compute)
floating point
precision

cusolverDnDDgesv double double double

cusolverDnDSgesv double double single

cusolverDnDHgesv double double half
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cusolverDnSSgesv float single single

cusolverDnSHgesv float single half

cusolverDnZZgesv cuDoubleComplex double double

cusolverDnZCgesv cuDoubleComplex double single

cusolverDnZKgesv cuDoubleComplex double half

cusolverDnCCgesv cuComplex single single

cusolverDnCKgesv cuComplex single half

The iterative refinement process is stopped if
 
     ITER > ITERMAX
 
or for all the RHS we have:
 
     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX
 
where

‣ ITER is the number of the current iteration in the iterative refinement process
‣ RNRM is the infinity-norm of the residual
‣ XNRM is the infinity-norm of the solution
‣ ANRM is the infinity-operator-norm of the matrix A
‣ EPS is the machine epsilon that matches LAPACK <t1>LAMCH('Epsilon')

The value ITERMAX and BWDMAX are fixed to 50 and 1.0 respectively.

Solve process results will be indicated by output parameter  info , see parameter
description.

User should provide a large enough workspace allocated on the device for the
<t1><t2>gesv() functions. The amount of bytes required can be queried by the respective
<t1><t2>gesv_bufferSize() functions.
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cusolverDn<t1><t2>gesv_bufferSize() functions will return workspace buffer size in
bytes required for corresponding cusolverDn<t1><t2>gesv() function.

cusolverStatus_t
cusolverDnDDgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    double                      *   dA, 
    int                             ldda,
    int                         *   dipiv,
    double                      *   dB, 
    int                             lddb,
    double                      *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnDSgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    double                      *   dA, 
    int                             ldda,
    int                         *   dipiv,
    double                      *   dB, 
    int                             lddb,
    double                      *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);
 
cusolverStatus_t
cusolverDnDHgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    double                      *   dA, 
    int                             ldda,
    int                         *   dipiv,
    double                      *   dB, 
    int                             lddb,
    double                      *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnSSgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    float                       *   dA, 
    int                             ldda,
    int                         *   dipiv,
    float                       *   dB, 
    int                             lddb,
    float                       *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnSHgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    float                       *   dA, 
    int                             ldda,
    int                         *   dipiv,
    float                       *   dB, 
    int                             lddb,
    float                       *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnZZgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    cuDoubleComplex             *   dA, 
    int                             ldda,
    int                         *   dipiv,
    cuDoubleComplex             *   dB, 
    int                             lddb,
    cuDoubleComplex             *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnZCgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    cuDoubleComplex             *   dA, 
    int                             ldda,
    int                         *   dipiv,
    cuDoubleComplex             *   dB, 
    int                             lddb,
    cuDoubleComplex             *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);
 
 
cusolverStatus_t
cusolverDnZKgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    cuDoubleComplex             *   dA, 
    int                             ldda,
    int                         *   dipiv,
    cuDoubleComplex             *   dB, 
    int                             lddb,
    cuDoubleComplex             *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);

cusolverStatus_t
cusolverDnCCgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    cuComplex                   *   dA, 
    int                             ldda,
    int                         *   dipiv,
    cuComplex                   *   dB, 
    int                             lddb,
    cuComplex                   *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);
 
cusolverStatus_t
cusolverDnCKgesv_bufferSize(
    cusolverHandle_t                handle,
    int                             n, 
    int                             nrhs,
    cuComplex                   *   dA, 
    int                             ldda,
    int                         *   dipiv,
    cuComplex                   *   dB, 
    int                             lddb,
    cuComplex                   *   dX, 
    int                             lddx,
    void                        *   dwork, 
    size_t                      *   lwork_bytes);
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Parameters of cusolverDn<T1><T2>gesv_bufferSize() functions

parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to solve.
Should be non-negative. nrhs is
limited to 1 if selected IRS solver is
CUSOLVER_IRS_GMRES.

dA device in Matrix  A  with size n-by-n. Can be
NULL.

ldda host input leading dimension of two-dimensional
array used to store matrix A. lda >= n.

dipiv device None Pivoting sequence. Not used and can be
NULL.

dB device in Set of right hand sides B of size n-by-
nrhs. Can be NULL.

lddb host input leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n.

dX device in Set of soultion vectors  X  of size n-by-
nrhs. Can be NULL.

lddx host input leading dimension of two-dimensional
array used to store matrix of solution
vectors X. ldx >= n.

dwork device none Pointer to device workspace. Not used
and can be NULL.



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 68

lwork_bytes host out Pointer to a variable where required size
of temporary workspace in bytes will be
stored. Can't be NULL.

cusolverStatus_t cusolverDnZZgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        cuDoubleComplex     *   dA, 
        int                     ldda,
        int                 *   dipiv,
        cuDoubleComplex     *   dB, 
        int                     lddb,
        cuDoubleComplex     *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnZCgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        cuDoubleComplex     *   dA, 
        int                     ldda,
        int                 *   dipiv,
        cuDoubleComplex     *   dB, 
        int                     lddb,
        cuDoubleComplex     *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnZKgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        cuDoubleComplex     *   dA, 
        int                     ldda,
        int                 *   dipiv,
        cuDoubleComplex     *   dB, 
        int                     lddb,
        cuDoubleComplex     *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnCCgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        cuComplex           *   dA, 
        int                     ldda,
        int                 *   dipiv,
        cuComplex           *   dB, 
        int                     lddb,
        cuComplex           *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnCKgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        cuComplex           *   dA, 
        int                     ldda,
        int                 *   dipiv,
        cuComplex           *   dB, 
        int                     lddb,
        cuComplex           *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnDDgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        double              *   dA, 
        int                     ldda,
        int                 *   dipiv,
        double              *   dB, 
        int                     lddb,
        double              *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnDSgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        double              *   dA, 
        int                     ldda,
        int                 *   dipiv,
        double              *   dB, 
        int                     lddb,
        double              *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnDHgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        double              *   dA, 
        int                     ldda,
        int                 *   dipiv,
        double              *   dB, 
        int                     lddb,
        double              *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnSSgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        float               *   dA, 
        int                     ldda,
        int                 *   dipiv,
        float               *   dB, 
        int                     lddb,
        float               *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);

cusolverStatus_t cusolverDnSHgesv(
        cusolverDnHandle_t      handle,
        int                     n, 
        int                     nrhs,
        float               *   dA, 
        int                     ldda,
        int                 *   dipiv,
        float               *   dB, 
        int                     lddb,
        float               *   dX, 
        int                     lddx,
        void                *   dWorkspace, 
        size_t                  lwork_bytes,
        int                 *   iter,
        int                 *   d_info);
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Parameters of cusolverDn<T1><T2>gesv() functions

parameter Memory In/out Meaning

handle host input Handle to the cusolverDN library context.

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to solve.
Should be non-negative. nrhs is
limited to 1 if selected IRS solver is
CUSOLVER_IRS_GMRES.

dA device in/out Matrix A with size n-by-n. Can't be NULL.
On return - unchanged if solve process
iterative refinement converged. If not -
will contain full precision factorization
of matrix A : A = P * L * U, where P
- permutation matrix defined by vector
ipiv, L and U - lower and upper triangular
matrices.

ldda host input leading dimension of two-dimensional
array used to store matrix A. lda >= n.

dipiv device in/out Vector that defines permutation matrix
for factorization - row i was interchanged
with row ipiv[i] If NULL then no
pivoting is performed.

dB device in/out Set of right hand sides  B  of size  n-by-
nrhs . Can't be NULL.

lddb host input leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n.

dX device in/out Set of soultion vectors X of size n-by-
nrhs. Can't be NULL.

lddx host input leading dimension of two-dimensional
array used to store matrix of solution
vectors X. ldx >= n.

dWorkspace device in/out Pointer to a workspace in device memory
of size lwork_bytes.

lwork_bytes host in Size of provided device
workspace in bytes. Should be
at least what was returned by
cusolverDn<T1><T2>gesv_bufferSize()
function

iter host output If iter is

‣ <0 : iterative refinement has failed,
full precision factorization has been
performed.

‣ -1 : taking into account machine
parameters, n, nrhs, it is determined
a priori it is not worth working in
lower precision
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‣ -2 : overflow of an entry when
moving from double to lower
precision

‣ -3 : failure of gesv function
‣ -31: solver stopped the iterative

refinement after reaching maximum
allowed iterations

‣ >0 : iter is a number of iterations
solver perfromed to reach
convergence criteria

info device output Status of the iterative refinement on
the return. If 0 - solve was successful. If
info = -i then i-th argument has is not
valid. If info = i, then U(i,i) computed
in full precision is exactly zero. The
factorization has been completed, but the
factor U is exactly singular, so the solution
could not be computed.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed:

‣ n<0
‣ ldda<max(1,n)
‣ lddb<max(1,n)
‣ lddx<max(1,n)
‣ NULL where it's not allowed
‣ nrhs is larger than allowed

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 7.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.2.13. cusolverDnIRSXgesv()
This function is designed to perform same functionality as
cusolverDn<T1><T2>gesv() functions, but wrapped in a more generic and
expert interface that gives user more control to parametrize the function as well
as it provides more informations on output. See cusolverDn<T1><T2>gesv()
description for detailed explanation of the algorithm functionality and behaviour.
cusolverDnIRSXgesv() allows additional control of the solver parameters such as setting
the - lowest floating point precision authorized to be used by the solver, refinement
solver type, maximum allowed number of iterative solver iterations, tolerance of
the refinement solver - through Xgesv parameters structure and helper functions.
cusolverDnIRSXgesv() provides additional informations on the output such as the
convergence history of the residual array and the number of iterations needed to
converge.
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Following table provides authorized values for lowest precision parameter for specified
full data type. Note that if lowest precision matches full datatype, then full precision
factorization will be used
Supported lower floating point precisions for factorization for provided full datatype

Data Type Supported values for lowest precision in Xgesv
parameters structure

CUDA_R_32F CUDA_R_32F, CUDA_R_16F

CUDA_R_64F CUDA_R_64F, CUDA_R_32F, CUDA_R_16F

CUDA_C_32F CUDA_C_32F, CUDA_C_16F

CUDA_C_64F CUDA_C_64F, CUDA_C_32F, CUDA_C_16F

Solve process results will be indicated by output parameter info, see parameter
description.

User should provide large enough workspace allocated on device for the
cusolverDnIRSXgesv() function. Amount of bytes required for the function can be
retrieved by respective function cusolverDnIRSXgesv_bufferSize()

cusolverDnIRSXgesv_bufferSize() functions will return workspace buffer size in bytes
required for corresponding cusolverDnXgesv() function with given parameters.

cusolverStatus_t
cusolverDnIRSXgesv_bufferSize(
        cusolverDnHandle_t          handle,
        cusolverDnIRSParams_t       params,
        cusolver_int_t              n, 
        cusolver_int_t              nrhs,
        size_t                  *   lwork_bytes);

Parameters of cusolverDnIRSXgesv_bufferSize() functions

parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

params host input Xgesv solve parameters

n host input Number of rows and columns of the
square matrix A. Should be non-negative.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that, nrhs is limited to 1 if
the selected IRS refinement solver
is CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.

lwork_bytes host out Pointer to a variable, where the
required size in bytes, of the
workspace will be stored after a call to
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cusolverDnIRSXgesv_bufferSize. Can't be
NULL.

cusolverStatus_t cusolverDnIRSXgesv(
        cusolverDnHandle_t          handle,
        cusolverDnIRSParams_t       gesv_irs_params,
        cusolverDnIRSInfos_t        gesv_irs_infos,
        cudaDataType                inout_data_type,
        int                         n, 
        int                         nrhs,
        void                    *   dA, 
        int                         ldda,
        int                     *   dipiv,
        void                    *   dB,     
        int                         lddb,
        void                    *   dX, 
        int                         lddx,
        void                    *   dWorkspace, 
        size_t                      lwork_bytes,
        int                     *   niters,
        int                     *   dinfo);

Parameters of cusolverDnIRSXgesv() functions

parameter Memory In/out Meaning

handle host input Handle to the cusolverDn library context.

gesv_irs_params host input Solve parameters handle

gesv_irs_infos host in/out Info structure parameter handle where
information about performed solve will be
stored.

inout_data_type host input Datatype of Matrix, right hand side and
solution

n host input Number of rows and columns of square
matrix A. Should be non-negative.

nrhs host input Number of right hand sides to
solve. Should be non-negative.
Note that, nrhs is limited to 1 if
the selected IRS refinement solver
is CUSOLVER_IRS_REFINE_GMRES,
CUSOLVER_IRS_REFINE_GMRES_GMRES,
CUSOLVER_IRS_REFINE_CLASSICAL_GMRES.
Number of right hand sides to solve.
Should be non-negative.

dA device in Matrix A with size n-by-n. Can't be NULL.
On return - unchanged if the iterative
refinement solver converged. If not -
will contain full precision factorization
of matrix A : A = P * L * U, where P
- permutation matrix defined by vector
ipiv, L and U - lower and upper triangular
matrices.

ldda host input leading dimension of two-dimensional
array used to store matrix A. lda >= n..
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dipiv device in/out Vector that defines permutation matrix
for factorization - row i was interchanged
with row ipiv[i] If NULL then no
pivoting is performed.

dB device in Set of right hand sides  B  of size  n-by-
nrhs . Can be NULL.

lddb host input leading dimension of two-dimensional
array used to store matrix of right hand
sides B. ldb >= n..

dX device in Set of soultion vectors  X  of size  n-by-
nrhs . Can be NULL.

lddx host input leading dimension of two-dimensional
array used to store matrix of solution
vectors X. ldx >= n..

dWorkspace device in/out Pointer to a workspace in device memory
of size lwork_bytes.

lwork_bytes host in Size of device workspace. Should
be at least what was returned by
cusolverDnIRSXgesv_bufferSize()
function

niters host output If iter is

‣ <0 : iterative refinement has failed,
full precision factorization has been
performed.

‣ -1 : taking into account machine
parameters, n, nrhs, it is a priori not
worth working in lower precision

‣ -2 : overflow of an entry when
moving from double to lower
precision

‣ -3 : failure of gesv function
‣ -maxiter: solver stopped the

iterative refinement after reaching
maximum allowed iterations

‣ >0 : iter is a number of iterations
solver perfromed to reach
convergence criteria

dinfo device output Status of the iterative refinement on
the return. If 0 - solve was successful. If
dinfo = -i then i-th argument has is not
valid. If dinfo = i, then U(i,i) computed
in full precision is exactly zero. The
factorization has been completed, but the
factor U is exactly singular, so the solution
could not be computed.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed:

‣ n<0
‣ lda<max(1,n)
‣ ldb<max(1,n)
‣ ldx<max(1,n)
‣ NULL where it's not allowed
‣ nrhs is larger than allowed

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 7.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.3. Dense Eigenvalue Solver Reference
This chapter describes eigenvalue solver API of cuSolverDN, including
bidiagonalization and SVD.

2.4.3.1. cusolverDn<t>gebrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSgebrd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *Lwork );

cusolverStatus_t 
cusolverDnDgebrd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *Lwork );

cusolverStatus_t
cusolverDnCgebrd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *Lwork );

cusolverStatus_t 
cusolverDnZgebrd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *Lwork );
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgebrd(cusolverDnHandle_t handle,
           int m,
           int n,
           float *A,
           int lda,
           float *D,
           float *E,
           float *TAUQ,
           float *TAUP,
           float *Work,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnDgebrd(cusolverDnHandle_t handle,
           int m,
           int n,
           double *A,
           int lda,
           double *D,
           double *E,
           double *TAUQ,
           double *TAUP,
           double *Work,
           int Lwork,
           int *devInfo );

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgebrd(cusolverDnHandle_t handle,
           int m,
           int n,
           cuComplex *A,
           int lda,
           float *D,
           float *E,
           cuComplex *TAUQ,
           cuComplex *TAUP,
           cuComplex *Work,
           int Lwork,
           int *devInfo );

cusolverStatus_t 
cusolverDnZgebrd(cusolverDnHandle_t handle,
           int m,
           int n,
           cuDoubleComplex *A,
           int lda,
           double *D,
           double *E,
           cuDoubleComplex *TAUQ,
           cuDoubleComplex *TAUP,
           cuDoubleComplex *Work,
           int Lwork,
           int *devInfo );
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This function reduces a general m×n matrix A to a real upper or lower bidiagonal form B
by an orthogonal transformation: 

If m>=n, B is upper bidiagonal; if m<n, B is lower bidiagonal.

The matrix Q and P are overwritten into matrix A in the following sense:

if m>=n, the diagonal and the first superdiagonal are overwritten with the upper
bidiagonal matrix B; the elements below the diagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above the
first superdiagonal, with the array TAUP, represent the orthogonal matrix P as a product
of elementary reflectors.

if m<n, the diagonal and the first subdiagonal are overwritten with the lower bidiagonal
matrix B; the elements below the first subdiagonal, with the array TAUQ, represent the
orthogonal matrix Q as a product of elementary reflectors, and the elements above
the diagonal, with the array TAUP, represent the orthogonal matrix P as a product of
elementary reflectors.

The user has to provide working space which is pointed by input parameter Work.
The input parameter Lwork is size of the working space, and it is returned by
gebrd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).

Remark: gebrd only supports m>=n.
API of gebrd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n).

lda host input leading dimension of two-dimensional
array used to store matrix A.

D device output real array of dimension min(m,n). The
diagonal elements of the bidiagonal
matrix B: D(i) = A(i,i).

E device output real array of dimension min(m,n). The
off-diagonal elements of the bidiagonal
matrix B: if m>=n, E(i) = A(i,i+1) for
i = 1,2,...,n-1; if m<n, E(i) = A(i
+1,i) for i = 1,2,...,m-1.

TAUQ device output <type> array of dimension min(m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Q.

TAUP device output <type> array of dimension min(m,n). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix P.
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Work device in/out working space, <type> array of size
Lwork.

Lwork host input size of Work, returned by
gebrd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0, or
lda<max(1,m)).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.2. cusolverDn<t>orgbr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSorgbr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    const float *A,
    int lda,
    const float *tau,
    int *lwork);

cusolverStatus_t
cusolverDnDorgbr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    const double *A,
    int lda,
    const double *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnCungbr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnZungbr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSorgbr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    float *A,
    int lda,
    const float *tau,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDorgbr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    double *A,
    int lda,
    const double *tau,
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCungbr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    cuComplex *A,
    int lda,
    const cuComplex *tau,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZungbr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    int m,
    int n,
    int k,
    cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function generates one of the unitary matrices Q or P**H determined by gebrd
when reducing a matrix A to bidiagonal form: 

Q and P**H are defined as products of elementary reflectors H(i) or G(i) respectively.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgbr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of orgbr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

side host input if side = CUBLAS_SIDE_LEFT, generate
Q. if side = CUBLAS_SIDE_RIGHT,
generate P**T.

m host input number of rows of matrix Q or P**T.

n host input if side = CUBLAS_SIDE_LEFT,
m>= n>= min(m,k). if side =
CUBLAS_SIDE_RIGHT, n>= m>= min(n,k).

k host input if side = CUBLAS_SIDE_LEFT, the
number of columns in the original m-
by-k matrix reduced by gebrd. if side
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= CUBLAS_SIDE_RIGHT, the number of
rows in the original k-by-n matrix reduced
by gebrd.

A device in/out <type> array of dimension lda * n
On entry, the vectors which define the
elementary reflectors, as returned by
gebrd. On exit, the m-by-n matrix Q or
P**T.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,m);

tau device output <type> array of dimension min(m,k)
if side is CUBLAS_SIDE_LEFT;
of dimension min(n,k) if side is
CUBLAS_SIDE_RIGHT; tau(i) must contain
the scalar factor of the elementary
reflector H(i) or G(i), which determines Q
or P**T, as returned by gebrd in its array
argument TAUQ or TAUP.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if info = 0, the ormqr is successful. if
info = -i, the i-th parameter is wrong
(not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda ).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.3. cusolverDn<t>sytrd()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSsytrd_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *d,
    const float *e,
    const float *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnDsytrd_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *d,
    const double *e,
    const double *tau,
    int *lwork);

cusolverStatus_t
cusolverDnChetrd_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const float *d,
    const float *e,
    const cuComplex *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnZhetrd_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const double *d,
    const double *e,
    const cuDoubleComplex *tau,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSsytrd(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *d,
    float *e,
    float *tau,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDsytrd(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *d,
    double *e,
    double *tau,
    double *work,
    int lwork,
    int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnChetrd(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    float *d,
    float *e,
    cuComplex *tau,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t CUDENSEAPI cusolverDnZhetrd(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *d,
    double *e,
    cuDoubleComplex *tau,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);
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This function reduces a general symmetric (Hermitian) n×n matrix A to real symmetric
tridiagonal form T by an orthogonal transformation: 

As an output, A contains T and householder reflection vectors. If uplo =
CUBLAS_FILL_MODE_UPPER, the diagonal and first superdiagonal of A are overwritten
by the corresponding elements of the tridiagonal matrix T, and the elements above the
first superdiagonal, with the array tau, represent the orthogonal matrix Q as a product
of elementary reflectors; If uplo = CUBLAS_FILL_MODE_LOWER, the diagonal and first
subdiagonal of A are overwritten by the corresponding elements of the tridiagonal
matrix T, and the elements below the first subdiagonal, with the array tau, represent the
orthogonal matrix Q as a product of elementary reflectors.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sytrd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of sytrd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (columns) of matrix A.

A device in/out <type> array of dimension lda * n
with lda is not less than max(1,n). If
uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular part
of A contains the upper triangular part
of the matrix A, and the strictly lower
triangular part of A is not referenced. If
uplo = CUBLAS_FILL_MODE_LOWER, the
leading n-by-n lower triangular part of A
contains the lower triangular part of the
matrix A, and the strictly upper triangular
part of A is not referenced. On exit,
A is overwritten by T and householder
reflection vectors.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

D device output real array of dimension n. The diagonal
elements of the tridiagonal matrix T:
D(i) = A(i,i).

E device output real array of dimension (n-1).
The off-diagonal elements of
the tridiagonal matrix T: if uplo
= CUBLAS_FILL_MODE_UPPER,
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E(i) = A(i,i+1). if uplo =
CUBLAS_FILL_MODE_LOWER E(i) = A(i
+1,i).

tau device output <type> array of dimension (n-1). The
scalar factors of the elementary reflectors
which represent the orthogonal matrix Q.

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
sytrd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed
(n<0, or lda<max(1,n), or uplo is
not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.4. cusolverDn<t>ormtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSormtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    const float *A,
    int lda,
    const float *tau,
    const float *C,
    int ldc,
    int *lwork);

cusolverStatus_t 
cusolverDnDormtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    const double *A,
    int lda,
    const double *tau,
    const double *C,
    int ldc,
    int *lwork);

cusolverStatus_t 
cusolverDnCunmtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    const cuComplex *C,
    int ldc,
    int *lwork);

cusolverStatus_t 
cusolverDnZunmtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    const cuDoubleComplex *C,
    int ldc,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSormtr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    float *A,
    int lda,
    float *tau,
    float *C,
    int ldc,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDormtr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    double *A,
    int lda,
    double *tau,
    double *C,
    int ldc,
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCunmtr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    cuComplex *A,
    int lda,
    cuComplex *tau,
    cuComplex *C,
    int ldc,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZunmtr(
    cusolverDnHandle_t handle,
    cublasSideMode_t side,
    cublasFillMode_t uplo,
    cublasOperation_t trans,
    int m,
    int n,
    cuDoubleComplex *A,
    int lda,
    cuDoubleComplex *tau,
    cuDoubleComplex *C,
    int ldc,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function overwrites m×n matrix C by

where Q is a unitary matrix formed by a sequence of elementary reflection vectors from
sytrd.

The operation on Q is defined by

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
ormtr_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
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API of ormtr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

side host input side = CUBLAS_SIDE_LEFT, apply
Q or Q**T from the Left; side =
CUBLAS_SIDE_RIGHT, apply Q or Q**T
from the Right.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

trans host input operation op(Q) that is non- or (conj.)
transpose.

m host input number of rows of matrix C.

n host input number of columns of matrix C.

A device in/out <type> array of dimension lda * m if
side = CUBLAS_SIDE_LEFT; lda * n if
side = CUBLAS_SIDE_RIGHT. The matrix
A from sytrd contains the elementary
reflectors.

lda host input leading dimension of two-dimensional
array used to store matrix A. if side is
CUBLAS_SIDE_LEFT, lda >= max(1,m);
if side is CUBLAS_SIDE_RIGHT, lda >=
max(1,n).

tau device output <type> array of dimension (m-1) if side
is CUBLAS_SIDE_LEFT; of dimension
(n-1) if side is CUBLAS_SIDE_RIGHT;
The vector tau is from sytrd, so tau(i)
is the scalar of i-th elementary reflection
vector.

C device in/out <type> array of size ldc * n. On exit, C
is overwritten by op(Q)*C or C*op(Q).

ldc host input leading dimension of two-dimensional
array of matrix C. ldc >= max(1,m).

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if devInfo = 0, the ormqr is successful.
if devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0 or wrong
lda or ldc).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.4.3.5. cusolverDn<t>orgtr()
These helper functions calculate the size of work buffers needed.

cusolverStatus_t 
cusolverDnSorgtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnDorgtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnCungtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const cuComplex *tau,
    int *lwork);

cusolverStatus_t 
cusolverDnZungtr_bufferSize(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSorgtr(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    const float *tau,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDorgtr(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    const double *tau,
    double *work,
    int lwork,
    int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCungtr(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    const cuComplex *tau,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZungtr(
    cusolverDnHandle_t handle,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *tau,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function generates a unitary matrix Q which is defined as the product of n-1
elementary reflectors of order n, as returned by sytrd:

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
orgtr_bufferSize().
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If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle).
API of orgtr

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

uplo host input uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A contains elementary
reflectors from sytrd. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A contains elementary
reflectors from sytrd.

n host input number of rows (columns) of matrix Q.

A device in/out <type> array of dimension lda * n On
entry, matrix A from sytrd contains the
elementary reflectors. On exit, matrix A
contains the n-by-n orthogonal matrix Q.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda >=
max(1,n).

tau device output <type> array of dimension (n-1) tau(i)
is the scalar of i-th elementary reflection
vector.

work device in/out working space, <type> array of size
lwork.

lwork host input size of working array work.

devInfo device output if devInfo = 0, the orgtr is successful.
if devInfo = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0 or wrong lda
).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.6. cusolverDn<t>gesvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSgesvd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *lwork );

cusolverStatus_t 
cusolverDnDgesvd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *lwork );

cusolverStatus_t 
cusolverDnCgesvd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *lwork );

cusolverStatus_t
cusolverDnZgesvd_bufferSize(
    cusolverDnHandle_t handle,
    int m,
    int n,
    int *lwork );
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgesvd (
    cusolverDnHandle_t handle,
    signed char jobu,
    signed char jobvt,
    int m,
    int n,
    float *A,
    int lda,
    float *S,
    float *U,
    int ldu,
    float *VT,
    int ldvt,
    float *work,
    int lwork,
    float *rwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDgesvd (
    cusolverDnHandle_t handle,
    signed char jobu,
    signed char jobvt,
    int m,
    int n,
    double *A,
    int lda,
    double *S,
    double *U,
    int ldu,
    double *VT,
    int ldvt,
    double *work,
    int lwork,
    double *rwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgesvd (
    cusolverDnHandle_t handle,
    signed char jobu,
    signed char jobvt,
    int m,
    int n,
    cuComplex *A,
    int lda,
    float *S,
    cuComplex *U,
    int ldu,
    cuComplex *VT,
    int ldvt,
    cuComplex *work,
    int lwork,
    float *rwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZgesvd (
    cusolverDnHandle_t handle,
    signed char jobu,
    signed char jobvt,
    int m,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *S,
    cuDoubleComplex *U,
    int ldu,
    cuDoubleComplex *VT,
    int ldvt,
    cuDoubleComplex *work,
    int lwork,
    double *rwork,
    int *devInfo);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is
an m×m unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are
the singular values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
gesvd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong
(not counting handle). if bdsqr did not converge, devInfo specifies how many
superdiagonals of an intermediate bidiagonal form did not converge to zero.
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The rwork is real array of dimension (min(m,n)-1). If devInfo>0 and rwork is not
nil, rwork contains the unconverged superdiagonal elements of an upper bidiagonal
matrix. This is slightly different from LAPACK which puts unconverged superdiagonal
elements in work if type is real; in rwork if type is complex. rwork can be a NULL
pointer if the user does not want the information from supperdiagonal.

Appendix G.1 provides a simple example of gesvd.

Remark 1: gesvd only supports m>=n.

Remark 2: the routine returns  , not V.
API of gesvd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobu host input specifies options for computing all or part
of the matrix U: = 'A': all m columns of
U are returned in array U: = 'S': the first
min(m,n) columns of U (the left singular
vectors) are returned in the array U; =
'O': the first min(m,n) columns of U (the
left singular vectors) are overwritten on
the array A; = 'N': no columns of U (no left
singular vectors) are computed.

jobvt host input specifies options for computing all or
part of the matrix V**T: = 'A': all N rows
of V**T are returned in the array VT; =
'S': the first min(m,n) rows of V**T (the
right singular vectors) are returned in the
array VT; = 'O': the first min(m,n) rows
of V**T (the right singular vectors) are
overwritten on the array A; = 'N': no rows
of V**T (no right singular vectors) are
computed.

m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

S device output real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m with
ldu is not less than max(1,m). U contains
the m×m unitary matrix U.

ldu host input leading dimension of two-dimensional
array used to store matrix U.
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VT device output <type> array of dimension ldvt * n
with ldvt is not less than max(1,n). VT
contains the n×n unitary matrix V**T.

ldvt host input leading dimension of two-dimensional
array used to store matrix Vt.

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
gesvd_bufferSize.

rwork device input real array of dimension min(m,n)-1. It
contains the unconverged superdiagonal
elements of an upper bidiagonal matrix if
devInfo > 0.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo > 0, devInfo indicates how
many superdiagonals of an intermediate
bidiagonal form did not converge to zero.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldvt<max(1,n) ).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.7. cusolverDn<t>gesvdj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSgesvdj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int econ,
    int m,
    int n, 
    const float *A,
    int lda,
    const float *S,
    const float *U,
    int ldu,
    const float *V,
    int ldv, 
    int *lwork,
    gesvdjInfo_t params);

cusolverStatus_t
cusolverDnDgesvdj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    const double *A,      
    int lda,             
    const double *S, 
    const double *U,      
    int ldu,              
    const double *V,      
    int ldv,              
    int *lwork,
    gesvdjInfo_t params);

cusolverStatus_t
cusolverDnCgesvdj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    const cuComplex *A,      
    int lda,             
    const float *S, 
    const cuComplex *U,      
    int ldu,              
    const cuComplex *V,      
    int ldv,              
    int *lwork,
    gesvdjInfo_t params);

cusolverStatus_t
cusolverDnZgesvdj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    const cuDoubleComplex *A,      
    int lda,             
    const double *S, 
    const cuDoubleComplex *U,      
    int ldu,              
    const cuDoubleComplex *V,      
    int ldv,              
    int *lwork,
    gesvdjInfo_t params);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgesvdj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int econ,
    int m,
    int n,
    float *A,
    int lda,
    float *S,
    float *U,
    int ldu,
    float *V,
    int ldv,
    float *work,
    int lwork,
    int *info,
    gesvdjInfo_t params);

cusolverStatus_t 
cusolverDnDgesvdj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    double *A,            
    int lda,              
    double *S,       
    double *U,            
    int ldu,              
    double *V,            
    int ldv,              
    double *work,
    int lwork,
    int *info,
    gesvdjInfo_t params);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgesvdj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    cuComplex *A,            
    int lda,              
    float *S,       
    cuComplex *U,            
    int ldu,              
    cuComplex *V,            
    int ldv,              
    cuComplex *work,
    int lwork,
    int *info,
    gesvdjInfo_t params);

cusolverStatus_t 
cusolverDnZgesvdj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int econ,             
    int m,                
    int n,                
    cuDoubleComplex *A,            
    int lda,              
    double *S,       
    cuDoubleComplex *U,            
    int ldu,              
    cuDoubleComplex *V,            
    int ldv,              
    cuDoubleComplex *work,
    int lwork,
    int *info,
    gesvdjInfo_t params);

This function computes the singular value decomposition (SVD) of a m×n matrix A and
corresponding the left and/or right singular vectors. The SVD is written

where Σ is an m×n matrix which is zero except for its min(m,n) diagonal elements, U is
an m×m unitary matrix, and V is an n×n unitary matrix. The diagonal elements of Σ are
the singular values of A; they are real and non-negative, and are returned in descending
order. The first min(m,n) columns of U and V are the left and right singular vectors of A.

gesvdj has the same functionality as gesvd. The difference is that gesvd uses QR
algorithm and gesvdj uses Jacobi method. The parallelism of Jacobi method gives GPU
better performance on small and medium size matrices. Moreover the user can configure
gesvdj to perform approximation up to certain accuracy.
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gesvdj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where S is diagonal and diagonal of E is zero.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down
to zero, S is the set of singular values. In practice, Jacobi method stops if

where eps is given tolerance.

gesvdj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXgesvdjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXgesvdjSetMaxSweeps
to set a proper bound. The experimentis show 15 sweeps are good enough to converge
to machine accuracy. gesvdj stops either tolerance is met or maximum number of
sweeps is met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number
of sweeps. To guarantee certain accuracy, the user should configure tolerance only.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
gesvdj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). If info = min(m,n)+1, gesvdj does not converge under given
tolerance and maximum sweeps.

If the user sets an improper tolerance, gesvdj may not converge. For example, tolerance
should not be smaller than machine accuracy.

Appendix G.2 provides a simple example of gesvdj.

Remark 1: gesvdj supports any combination of m and n.

Remark 2: the routine returns V, not  . This is different from gesvd.
API of gesvdj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

econ host input econ = 1 for economy size for U and V.
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m host input number of rows of matrix A.

n host input number of columns of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,m). On exit,
the contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

S device output real array of dimension min(m,n). The
singular values of A, sorted so that S(i)
>= S(i+1).

U device output <type> array of dimension ldu * m if
econ is zero. If econ is nonzero, the
dimension is ldu * min(m,n). U contains
the left singular vectors.

ldu host input leading dimension of two-dimensional
array used to store matrix U. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n if
econ is zero. If econ is nonzero, the
dimension is ldv * min(m,n). V contains
the right singular vectors.

ldv host input leading dimension of two-dimensional
array used to store matrix V. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input size of work, returned by
gesvdj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info =
min(m,n)+1, gesvdj dose not converge
under given tolerance and maximum
sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm and results of gesvdj.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)
or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR ).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.8. cusolverDn<t>gesvdjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSgesvdjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int m,
    int n,
    const float *A,
    int lda,
    const float *S,
    const float *U,
    int ldu,
    const float *V,
    int ldv,
    int *lwork,
    gesvdjInfo_t params,
    int batchSize);

cusolverStatus_t 
cusolverDnDgesvdjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int m,                
    int n,                
    const double *A,      
    int lda,              
    const double *S, 
    const double *U,      
    int ldu,              
    const double *V,     
    int ldv,              
    int *lwork,
    gesvdjInfo_t params,
    int batchSize);

cusolverStatus_t 
cusolverDnCgesvdjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int m,                
    int n,                
    const cuComplex *A,      
    int lda,              
    const float *S, 
    const cuComplex *U,      
    int ldu,              
    const cuComplex *V,     
    int ldv,              
    int *lwork,
    gesvdjInfo_t params,
    int batchSize);

cusolverStatus_t 
cusolverDnZgesvdjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int m,                
    int n,                
    const cuDoubleComplex *A,      
    int lda,              
    const double *S, 
    const cuDoubleComplex *U,      
    int ldu,              
    const cuDoubleComplex *V,     
    int ldv,              
    int *lwork,
    gesvdjInfo_t params,
    int batchSize);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSgesvdjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int m,
    int n,
    float *A,
    int lda,
    float *S,
    float *U,
    int ldu,
    float *V,
    int ldv,
    float *work,
    int lwork,
    int *info,
    gesvdjInfo_t params,
    int batchSize);

cusolverStatus_t
cusolverDnDgesvdjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    int m,           
    int n,           
    double *A,       
    int lda,         
    double *S,  
    double *U,       
    int ldu,         
    double *V,       
    int ldv,         
    double *work,
    int lwork,
    int *info,       
    gesvdjInfo_t params,
    int batchSize);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCgesvdjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int m,
    int n,
    cuComplex *A,
    int lda,
    float *S,
    cuComplex *U,
    int ldu,
    cuComplex *V,
    int ldv,
    cuComplex *work,
    int lwork,
    int *info,
    gesvdjInfo_t params,
    int batchSize);

cusolverStatus_t
cusolverDnZgesvdjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int m,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *S,
    cuDoubleComplex *U,
    int ldu,
    cuDoubleComplex *V,
    int ldv,
    cuDoubleComplex *work,
    int lwork,
    int *info,
    gesvdjInfo_t params,
    int batchSize);

This function computes singular values and singular vectors of a squence of general m×n
matrices

where  is a real m×n diagonal matrix which is zero except for its min(m,n) diagonal
elements.  (left singular vectors) is a m×m unitary matrix and  (right singular
vectors) is a n×n unitary matrix. The diagonal elements of  are the singular values of

 in either descending order or non-sorting order.

gesvdjBatched performs gesvdj on each matrix. It requires that all matrices are of the
same size m,n no greater than 32 and are packed in contiguous way,
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Each matrix is column-major with leading dimension lda, so the formula for random
access is  .

The parameter S also contains singular values of each matrix in contiguous way,

The formula for random access of S is  .

Except for tolerance and maximum sweeps, gesvdjBatched can either sort the singular
values in descending order (default) or chose as-is (without sorting) by the function
cusolverDnXgesvdjSetSortEig. If the user packs several tiny matrices into diagonal
blocks of one matrix, non-sorting option can separate singular values of those tiny
matrices.

gesvdjBatched cannot report residual and executed sweeps by function
cusolverDnXgesvdjGetResidual and cusolverDnXgesvdjGetSweeps. Any call of
the above two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute
residual explicitly.

The user has to provide working space pointed by input parameter work. The
input parameter lwork is the size of the working space, and it is returned by
gesvdjBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] =
min(m,n)+1, gesvdjBatched does not converge on i-th matrix under given tolerance
and maximum sweeps.

Appendix G.3 provides a simple example of gesvdjBatched.
API of syevjBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

m host input number of rows of matrix Aj. m is no
greater than 32.

n host input number of columns of matrix Aj. n is no
greater than 32.

A device in/out <type> array of dimension lda * n *
batchSize with lda is not less than
max(1,n). on Exit: the contents of Aj are
destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix Aj.
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S device output a real array of dimension
min(m,n)*batchSize. It stores the
singular values of Aj in descending order
or non-sorting order.

U device output <type> array of dimension ldu * m *
batchSize. Uj contains the left singular
vectors of Aj.

ldu host input leading dimension of two-dimensional
array used to store matrix Uj. ldu is not
less than max(1,m).

V device output <type> array of dimension ldv * n *
batchSize. Vj contains the right singular
vectors of Aj.

ldv host input leading dimension of two-dimensional
array used to store matrix Vj. ldv is not
less than max(1,n).

work device in/out <type> array of size lwork, working
space.

lwork host input size of work, returned by
gesvdjBatched_bufferSize.

info device output an integer array of dimension batchSize.
If CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is wrong
(not counting handle). Otherwise,
if info[i] = 0, the operation is
successful. if info[i] = min(m,n)+1,
gesvdjBatched dose not converge on
i-th matrix under given tolerance and
maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm.

batchSize host input number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m)
or ldv<max(1,n) or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR , or batchSize<0
).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.9. cusolverDn<t>gesvdaStridedBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSgesvdaStridedBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const float *A,
    int lda,
    long long int strideA,
    const float *S,
    long long int strideS,
    const float *U,
    int ldu,
    long long int strideU,
    const float *V,
    int ldv,
    long long int strideV,
    int *lwork,
    int batchSize);

cusolverStatus_t 
cusolverDnDgesvdaStridedBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const double *A,
    int lda,
    long long int strideA,
    const double *S,
    long long int strideS,
    const double *U,
    int ldu,
    long long int strideU,
    const double *V,
    int ldv,
    long long int strideV,
    int *lwork,
    int batchSize);

cusolverStatus_t 
cusolverDnCgesvdaStridedBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const cuComplex *A,
    int lda,
    long long int strideA,
    const float *S,
    long long int strideS,
    const cuComplex *U,
    int ldu,
    long long int strideU,
    const cuComplex *V,
    int ldv,
    long long int strideV,
    int *lwork,
    int batchSize);

cusolverStatus_t 
cusolverDnZgesvdaStridedBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const cuDoubleComplex *A,
    int lda,
    long long int strideA,
    const double *S,
    long long int strideS,
    const cuDoubleComplex *U,
    int ldu,
    long long int strideU,
    const cuDoubleComplex *V,
    int ldv,
    long long int strideV,
    int *lwork,
    int batchSize);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSgesvdaStridedBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const float *A,
    int lda,
    long long int strideA,
    float *S,
    long long int strideS,
    float *U,
    int ldu,
    long long int strideU,
    float *V,
    int ldv,
    long long int strideV,
    float *work,
    int lwork,
    int *info,
    double *h_R_nrmF,
    int batchSize);

cusolverStatus_t 
cusolverDnDgesvdaStridedBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const double *A,
    int lda,
    long long int strideA,
    double *S,
    long long int strideS,
    double *U,
    int ldu,
    long long int strideU,
    double *V,
    int ldv,
    long long int strideV,
    double *work,
    int lwork,
    int *info,
    double *h_R_nrmF,
    int batchSize);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCgesvdaStridedBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const cuComplex *A,
    int lda,
    long long int strideA,
    float *S,
    long long int strideS,
    cuComplex *U,
    int ldu,
    long long int strideU,
    cuComplex *V,
    int ldv,
    long long int strideV,
    cuComplex *work,
    int lwork,
    int *info,
    double *h_R_nrmF,
    int batchSize);

cusolverStatus_t 
cusolverDnZgesvdaStridedBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    int rank,
    int m,
    int n,
    const cuDoubleComplex *A,
    int lda,
    long long int strideA,
    double *S,
    long long int strideS,
    cuDoubleComplex *U,
    int ldu,
    long long int strideU,
    cuDoubleComplex *V,
    int ldv,
    long long int strideV,
    cuDoubleComplex *work,
    int lwork,
    int *info,
    double *h_R_nrmF,
    int batchSize);

This function gesvda (a stands for approximate) approximates the singular value
decomposition of a tall skinny m×n matrix A and corresponding the left and right
singular vectors. The economy form of SVD is written by
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where Σ is an n×n matrix. U is an m×n unitary matrix, and V is an n×n unitary matrix. The
diagonal elements of Σ are the singular values of A; they are real and non-negative, and
are returned in descending order. U and V are the left and right singular vectors of A.

gesvda computes eigenvalues of A**T*A to approximate singular values and singular
vectors. It generates matrices U and V and transforms the matrix A to the following form

where S is diagonal and E depends on rounding errors. To certain conditions, U, V and S
approximate singular values and singular vectors up to machine zero of single precision.
In general, V is unitary, S is more accurate than U. If singular value is far from zero, then
left singular vector U is accurate. In other words, the accuracy of singular values and left
singular vectors depend on the distance between singular value and zero.

The input parameter rank decides the number of singualr values and singular vectors
are computed in parameter S, U and V.

The output parameter h_RnrmF computes Frobenius norm of residual.

if the paramter rank is equal n. Otherwise, h_RnrmF reports

in Frobenius norm sense. That is, how far U is from unitary.

gesvdaStridedBatched performs gesvda on each matrix. It requires that all matrices
are of the same size m,n and are packed in contiguous way,

Each matrix is column-major with leading dimension lda, so the formula for
random access is  . Similarly, the formula for
random access of S is  , the formula for random access of
U is  and the formula for random access of V is

 .

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
gesvdaStridedBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] =
min(m,n)+1, gesvdaStridedBatched does not converge on i-th matrix under given
tolerance.

Appendix G.4 provides a simple example of gesvda.

Remark 1: the routine returns V, not  . This is different from gesvd.
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Remark 2: if the user is confident on the accuracy of singular values and singular
vectors, for example, certain conditions hold (required singular value is far from zero),
then the performance can be improved by passing null pointer to h_RnrmF, i.e. no
computation of residual norm.
API of gesvda

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either
compute singular value only or
singular vectors as well: jobz =
CUSOLVER_EIG_MODE_NOVECTOR :
Compute singular values only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
singular values and singular vectors.

rank host input number of singular values (from largest to
smallest).

m host input number of rows of matrix Aj.

n host input number of columns of matrix Aj.

A device input <type> array of dimension strideA *
batchSize with lda is not less than
max(1,m). Aj is of dimension m * n.

lda host input leading dimension of two-dimensional
array used to store matrix Aj.

strideA host input value of type long long int that gives the
address offset between A[i] and A[i+1].
strideA is not less than lda*n.

S device output a real array of dimension
strideS*batchSize. It stores the
singular values of Aj in descending order.
Sj is of dimension rank * 1

strideS host input value of type long long int that gives the
address offset between S[i] and S[i+1].
strideS is not less than rank.

U device output <type> array of dimension strideU *
batchSize. Uj contains the left singular
vectors of Aj. Uj is of dimension m *
rank.

ldu host input leading dimension of two-dimensional
array used to store matrix Uj. ldu is not
less than max(1,m).

strideU host input value of type long long int that gives the
address offset between U[i] and U[i+1].
strideU is not less than ldu*rank.

V device output <type> array of dimension strideV *
batchSize. Vj contains the right singular
vectors of Aj. Vj is of dimension n *
rank.
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ldv host input leading dimension of two-dimensional
array used to store matrix Vj. ldv is not
less than max(1,n).

strideV host input value of type long long int that gives the
address offset between V[i] and V[i+1].
strideV is not less than ldv*rank.

work device in/out <type> array of size lwork, working
space.

lwork host input size of work, returned by
gesvdaStridedBatched_bufferSize.

info device output an integer array of dimension batchSize.
If CUSOLVER_STATUS_INVALID_VALUE
is returned, info[0] = -i (less than
zero) indicates i-th parameter is wrong
(not counting handle). Otherwise,
if info[i] = 0, the operation is
successful. if info[i] = min(m,n)+1,
gesvdaStridedBatched dose not
converge on i-th matrix.

h_RnrmF host output <double> array of size batchSize.
h_RnrmF[i] is norm of residual of i-th
matrix.

batchSize host input number of matrices. batchSize is not
less than 1.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n<0
or lda<max(1,m) or ldu<max(1,m) or
ldv<max(1,n) or strideA<lda*n or
strideS<rank or strideU<ldu*rank or
strideV<ldv*rank or batchSize<1 or jobz
is not CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR ).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.10. cusolverDn<t>syevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSsyevd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *W,
    int *lwork);

cusolverStatus_t 
cusolverDnDsyevd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *W,
    int *lwork);

cusolverStatus_t 
cusolverDnCheevd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const float *W,
    int *lwork);

cusolverStatus_t 
cusolverDnZheevd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const double *W,
    int *lwork);



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 115

The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSsyevd(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *W,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDsyevd(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *W,
    double *work,
    int lwork,
    int *devInfo);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCheevd(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    float *W,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZheevd(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *W,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix A. The standard symmetric eigenvalue problem is
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where Λ is a real n×n diagonal matrix. V is an n×n unitary matrix. The diagonal elements
of Λ are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
syevd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle). If devInfo = i (greater than zero), i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors
of the matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Appendix F.1 provides a simple example of syevd.
API of syevd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending order
ie, sorted so that W(i) <= W(i+1).

work device in/out working space, <type> array of size
lwork.
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Lwork host input size of work, returned by
syevd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i (> 0), devInfo
indicates i off-diagonal elements of an
intermediate tridiagonal form did not
converge to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.11. cusolverDn<t>syevdx()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsyevdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    const float *A,
    int lda,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    const float *W,
    int *lwork);

cusolverStatus_t
cusolverDnDsyevdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    const double *A,
    int lda,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    const double *W,
    int *lwork);

cusolverStatus_t
cusolverDnCheevdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    const cuComplex *A,
    int lda,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    const float *W,
    int *lwork);

cusolverStatus_t
cusolverDnZheevdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    const cuDoubleComplex *A,
    int lda,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    const double *W,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevdx(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    float *A,
    int lda,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    float *W, 
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDsyevdx(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    double *A,
    int lda,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    double *W, 
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCheevdx(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    cuComplex *A,
    int lda,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    float *W, 
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZheevdx(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    cuDoubleComplex *A,
    int lda,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    double *W, 
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function computes all or selection of the eigenvalues and optionally eigenvectors of
a symmetric (Hermitian) n×n matrix A. The standard symmetric eigenvalue problem is

where Λ is a real n×h_meig diagonal matrix. V is an n×h_meig unitary matrix. h_meig is
the number of eigenvalues/eigenvectors computed by the routine, h_meig is equal to n
when the whole spectrum (e.g., range = CUSOLVER_EIG_RANGE_ALL) is requested. The
diagonal elements of Λ are the eigenvalues of A in ascending order.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
syevdx_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is wrong (not
counting handle). If devInfo = i (greater than zero), i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.
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if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors
of the matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Appendix F.1 provides a simple example of syevdx.
API of syevdx

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found; range
= CUSOLVER_EIG_RANGE_I : the il-th
through iu-th eigenvalues/eigenvectors
will be found;

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.lda is not
less than max(1,n).

vl,vu host input real values float or double for (C,
S) or (Z, D) precision respectively. If
range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
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interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user want to be
sure not to miss any eigenvalue within the
interval bound, we suggest that, the user
substract/add epsilon (machine precision)
to the interval bound such as (vl=vl-eps,
vu=vu+eps]. this suggestion is valid for
any selective routine from cuSolver or
LAPACK.

il,iu host input integer. If range =
CUSOLVER_EIG_RANGE_I, the indices
(in ascending order) of the smallest and
largest eigenvalues to be returned. 1
<= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending order
ie, sorted so that W(i) <= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
syevdx_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i (> 0), devInfo
indicates i off-diagonal elements of an
intermediate tridiagonal form did not
converge to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or range
is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.12. cusolverDn<t>sygvd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSsygvd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *B,
    int ldb,
    const float *W,
    int *lwork);

cusolverStatus_t
cusolverDnDsygvd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *B,
    int ldb,
    const double *W,
    int *lwork);

cusolverStatus_t 
cusolverDnChegvd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const cuComplex *B,
    int ldb,
    const float *W,
    int *lwork);

cusolverStatus_t 
cusolverDnZhegvd_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *B,
    int ldb,
    const double *W,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvd(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *B,
    int ldb,
    float *W,
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnDsygvd(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *B,
    int ldb,
    double *W,
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnChegvd(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    cuComplex *B,
    int ldb,
    float *W,
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t 
cusolverDnZhegvd(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    cuDoubleComplex *B,
    int ldb,
    double *W,
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix-pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal
elements of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal
matrix. The eigenvectors are normalized as follows:

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sygvd_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is
wrong (not counting handle). If devInfo = i (i > 0 and i<=n) and jobz =
CUSOLVER_EIG_MODE_NOVECTOR, i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero. If devInfo = N + i (i > 0), then the
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leading minor of order i of B is not positive definite. The factorization of B could not be
completed and no eigenvalues or eigenvectors were computed.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of
the matrix A. The eigenvectors are computed by divide and conquer algorithm.

Appendix F.2 provides a simple example of sygvd.
API of sygvd

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

itype host input Specifies the problem type to be
solved: itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A and B are stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A and B are stored.

n host input number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
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n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if devInfo is less than n, B
is overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output a real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out working space, <type> array of size
lwork.

Lwork host input size of work, returned by
sygvd_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i (> 0), devInfo
indicates either potrf or syevd is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0, or
lda<max(1,n), or ldb<max(1,n), or itype
is not 1, 2 or 3, or jobz is not 'N' or 'V', or
uplo is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.13. cusolverDn<t>sygvdx()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t
cusolverDnSsygvdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cusolverEigRange_t range,
    cublasFillMode_t uplo, 
    int n,
    const float *A, 
    int lda,
    const float *B, 
    int ldb,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    const float *W,
    int *lwork);

cusolverStatus_t
cusolverDnDsygvdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype, 
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    const double *A, 
    int lda,
    const double *B, 
    int ldb,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    const double *W,
    int *lwork);

cusolverStatus_t
cusolverDnChegvdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype, 
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    const cuComplex *A, 
    int lda,
    const cuComplex *B, 
    int ldb,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    const float *W,
    int *lwork);

cusolverStatus_t
cusolverDnZhegvdx_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,   
    cusolverEigMode_t jobz, 
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *B, 
    int ldb,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    const double *W,
    int *lwork);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsygvdx(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,   
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    float *A, 
    int lda,
    float *B, 
    int ldb,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    float *W, 
    float *work,
    int lwork,
    int *devInfo);

cusolverStatus_t
cusolverDnDsygvdx(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,  
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    double *A, 
    int lda,
    double *B, 
    int ldb,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    double *W, 
    double *work,
    int lwork,
    int *devInfo);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvdx(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,   
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    cuComplex *A,
    int lda,
    cuComplex *B, 
    int ldb,
    float vl,
    float vu,
    int il,
    int iu,
    int *h_meig,
    float *W, 
    cuComplex *work,
    int lwork,
    int *devInfo);

cusolverStatus_t
cusolverDnZhegvdx(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,   
    cusolverEigMode_t jobz,  
    cusolverEigRange_t range,
    cublasFillMode_t uplo,  
    int n,
    cuDoubleComplex *A, 
    int lda,
    cuDoubleComplex *B, 
    int ldb,
    double vl,
    double vu,
    int il,
    int iu,
    int *h_meig,
    double *W, 
    cuDoubleComplex *work,
    int lwork,
    int *devInfo);

This function computes all or selection of the eigenvalues and optionally eigenvectors
of a symmetric (Hermitian) n×n matrix-pair (A,B). The generalized symmetric-definite
eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×h_meig diagonal matrix. The
diagonal elements of Λ are the eigenvalues of (A, B) in ascending order. V is an
n×h_meig orthogonal matrix. h_meig is the number of eigenvalues/eigenvectors
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computed by the routine, h_meig is equal to n when the whole spectrum (e.g., range =
CUSOLVER_EIG_RANGE_ALL) is requested. The eigenvectors are normalized as follows:

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is size of the working space, and it is returned by
sygvdx_bufferSize().

If output parameter devInfo = -i (less than zero), the i-th parameter is
wrong (not counting handle). If devInfo = i (i > 0 and i<=n) and jobz =
CUSOLVER_EIG_MODE_NOVECTOR, i off-diagonal elements of an intermediate
tridiagonal form did not converge to zero. If devInfo = n + i (i > 0), then the
leading minor of order i of B is not positive definite. The factorization of B could not be
completed and no eigenvalues or eigenvectors were computed.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors of
the matrix A. The eigenvectors are computed by divide and conquer algorithm.

Appendix F.2 provides a simple example of sygvdx.
API of sygvdx

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

itype host input Specifies the problem type to be
solved: itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

range host input specifies options to which selection of
eigenvalues and optionally eigenvectors
that need to be computed: range
= CUSOLVER_EIG_RANGE_ALL : all
eigenvalues/eigenvectors will be
found, will becomes the classical
syevd/heevd routine; range =
CUSOLVER_EIG_RANGE_V : all
eigenvalues/eigenvectors in the half-
open interval (vl,vu] will be found; range
= CUSOLVER_EIG_RANGE_I : the il-th
through iu-th eigenvalues/eigenvectors
will be found;

uplo host input specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER:
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Lower triangle of A and B are stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A and B are stored.

n host input number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
devInfo = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if devInfo is less than n, B
is overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

vl,vu host input real values float or double for (C,
S) or (Z, D) precision respectively. If
range = CUSOLVER_EIG_RANGE_V,
the lower and upper bounds of the
interval to be searched for eigenvalues.
vl > vu. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range
= CUSOLVER_EIG_RANGE_I. Note that,
if eigenvalues are very close to each
other, it is well known that two different
eigenvalues routines might find slightly
different number of eigenvalues inside
the same interval. This is due to the fact
that different eigenvalue algorithms,
or even same algorithm but different
run might find eigenvalues within some
rounding error close to the machine
precision. Thus, if the user want to be
sure not to miss any eigenvalue within the
interval bound, we suggest that, the user



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 134

substract/add epsilon (machine precision)
to the interval bound such as (vl=vl-eps,
vu=vu+eps]. this suggestion is valid for
any selective routine from cuSolver or
LAPACK.

il,iu host input integer. If range =
CUSOLVER_EIG_RANGE_I, the indices
(in ascending order) of the smallest and
largest eigenvalues to be returned. 1
<= il <= iu <= n, if n > 0; il = 1 and iu
= 0 if n = 0. Not referenced if range =
CUSOLVER_EIG_RANGE_ALL or range =
CUSOLVER_EIG_RANGE_V.

h_meig host output integer. The total number of eigenvalues
found. 0 <= h_meig <= n. If range =
CUSOLVER_EIG_RANGE_ALL, h_meig = n,
and if range = CUSOLVER_EIG_RANGE_I,
h_meig = iu-il+1.

W device output a real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
sygvdx_bufferSize.

devInfo device output if devInfo = 0, the operation is
successful. if devInfo = -i, the i-th
parameter is wrong (not counting handle).
if devInfo = i (> 0), devInfo
indicates either potrf or syevd is wrong.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or ldb<max(1,n),
or itype is not CUSOLVER_EIG_TYPE_1
or CUSOLVER_EIG_TYPE_2 or
CUSOLVER_EIG_TYPE_3 or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR
or CUSOLVER_EIG_MODE_VECTORL, or
range is not CUSOLVER_EIG_RANGE_ALL
or CUSOLVER_EIG_RANGE_V or
CUSOLVER_EIG_RANGE_I, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.14. cusolverDn<t>syevj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSsyevj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnDsyevj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnCheevj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const float *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnZheevj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const double *W,
    int *lwork,
    syevjInfo_t params);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSsyevj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *W,
    float *work,
    int lwork,
    int *info,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnDsyevj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *W,
    double *work,
    int lwork,
    int *info,
    syevjInfo_t params);

The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnCheevj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    float *W,
    cuComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnZheevj(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *W,
    cuDoubleComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix A. The standard symmetric eigenvalue problem is
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where Λ is a real n×n diagonal matrix. Q is an n×n unitary matrix. The diagonal elements
of Λ are the eigenvalues of A in ascending order.

syevj has the same functionality as syevd. The difference is that syevd uses QR
algorithm and syevj uses Jacobi method. The parallelism of Jacobi method gives GPU
better performance on small and medium size matrices. Moreover the user can configure
syevj to perform approximation up to certain accuracy.

How does it work?

syevj iteratively generates a sequence of unitary matrices to transform matrix A to the
following form

where W is diagonal and E is symmetric without diagonal.

During the iterations, the Frobenius norm of E decreases monotonically. As E goes down
to zero, W is the set of eigenvalues. In practice, Jacobi method stops if

where eps is given tolerance.

syevj has two parameters to control the accuracy. First parameter is tolerance
(eps). The default value is machine accuracy but The user can use function
cusolverDnXsyevjSetTolerance to set a priori tolerance. The second parameter is
maximum number of sweeps which controls number of iterations of Jacobi method. The
default value is 100 but the user can use function cusolverDnXsyevjSetMaxSweeps to
set a proper bound. The experimentis show 15 sweeps are good enough to converge to
machine accuracy. syevj stops either tolerance is met or maximum number of sweeps is
met.

Jacobi method has quadratic convergence, so the accuracy is not proportional to number
of sweeps. To guarantee certain accuracy, the user should configure tolerance only.

After syevj, the user can query residual by function cusolverDnXsyevjGetResidual
and number of executed sweeps by function cusolverDnXsyevjGetSweeps. However
the user needs to be aware that residual is the Frobenius norm of E, not accuracy of
individual eigenvalue, i.e.

The same as syevd, the user has to provide working space pointed by input parameter
work. The input parameter lwork is the size of the working space, and it is returned by
syevj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). If info = n+1, syevj does not converge under given tolerance and
maximum sweeps.
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If the user sets an improper tolerance, syevj may not converge. For example, tolerance
should not be smaller than machine accuracy.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors V.

Appendix F.3 provides a simple example of syevj.
API of syevj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo =
CUBLAS_FILL_MODE_UPPER: Upper
triangle of A is stored.

n host input number of rows (or columns) of matrix A.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A.

W device output a real array of dimension n. The
eigenvalue values of A, in ascending order
ie, sorted so that W(i) <= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
syevj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info = n
+1, syevj dose not converge under given
tolerance and maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm and results of syevj.
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Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.15. cusolverDn<t>sygvj()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSsygvj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *B,
    int ldb,
    const float *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnDsygvj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *B,
    int ldb,
    const double *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnChegvj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const cuComplex *B,
    int ldb,
    const float *W,
    int *lwork,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnZhegvj_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const cuDoubleComplex *B,
    int ldb,
    const double *W,
    int *lwork,
    syevjInfo_t params);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverDnSsygvj(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *B,
    int ldb,
    float *W,
    float *work,
    int lwork,
    int *info,
    syevjInfo_t params);

cusolverStatus_t
cusolverDnDsygvj(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *B,
    int ldb,
    double *W,
    double *work,
    int lwork,
    int *info,
    syevjInfo_t params);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnChegvj(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    cuComplex *B,
    int ldb,
    float *W,
    cuComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params);

cusolverStatus_t 
cusolverDnZhegvj(
    cusolverDnHandle_t handle,
    cusolverEigType_t itype,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    cuDoubleComplex *B,
    int ldb,
    double *W,
    cuDoubleComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params);

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) n×n
matrix-pair (A,B). The generalized symmetric-definite eigenvalue problem is

where the matrix B is positive definite. Λ is a real n×n diagonal matrix. The diagonal
elements of Λ are the eigenvalues of (A, B) in ascending order. V is an n×n orthogonal
matrix. The eigenvectors are normalized as follows:

This function has the same functionality as sygvd except that syevd in sygvd is
replaced by syevj in sygvj. Therefore, sygvj inherits properties of syevj, the user
can use cusolverDnXsyevjSetTolerance and cusolverDnXsyevjSetMaxSweeps to
configure tolerance and maximum sweeps.
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However the meaning of residual is different from syevj. sygvj first computes
Cholesky factorization of matrix B,

transform the problem to standard eigenvalue problem, then calls syevj.

For example, the standard eigenvalue problem of type I is

where matrix M is symmtric

The residual is the result of syevj on matrix M, not A.

The user has to provide working space which is pointed by input parameter work.
The input parameter lwork is the size of the working space, and it is returned by
sygvj_bufferSize().

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). If info = i (i > 0 and i<=n), B is not positive definite, the factorization
of B could not be completed and no eigenvalues or eigenvectors were computed. If info
= n+1, syevj does not converge under given tolerance and maximum sweeps. In this
case, the eigenvalues and eigenvectors are still computed because non-convergence
comes from improper tolerance of maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthogonal eigenvectors V.

Appendix F.4 provides a simple example of sygvj.
API of sygvj

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

itype host input Specifies the problem type to be
solved: itype=CUSOLVER_EIG_TYPE_1:
A*x = (lambda)*B*x.
itype=CUSOLVER_EIG_TYPE_2:
A*B*x = (lambda)*x.
itype=CUSOLVER_EIG_TYPE_3: B*A*x =
(lambda)*x.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A and B are stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A and B are stored.
uplo = CUBLAS_FILL_MODE_UPPER:
Upper triangle of A and B are stored.
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n host input number of rows (or columns) of matrix A
and B.

A device in/out <type> array of dimension lda * n with
lda is not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the leading
n-by-n upper triangular part of A contains
the upper triangular part of the matrix
A. If uplo = CUBLAS_FILL_MODE_LOWER,
the leading n-by-n lower triangular
part of A contains the lower triangular
part of the matrix A. On exit, if jobz
= CUSOLVER_EIG_MODE_VECTOR, and
info = 0, A contains the orthonormal
eigenvectors of the matrix A. If jobz =
CUSOLVER_EIG_MODE_NOVECTOR, the
contents of A are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix A. lda is not
less than max(1,n).

B device in/out <type> array of dimension ldb * n.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading n-by-n upper triangular
part of B contains the upper triangular
part of the matrix B. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of B contains
the lower triangular part of the matrix
B. On exit, if info is less than n, B is
overwritten by triangular factor U or L
from the Cholesky factorization of B.

ldb host input leading dimension of two-dimensional
array used to store matrix B. ldb is not
less than max(1,n).

W device output a real array of dimension n. The
eigenvalue values of A, sorted so that
W(i) >= W(i+1).

work device in/out working space, <type> array of size
lwork.

lwork host input size of work, returned by
sygvj_bufferSize.

info device output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info
= i (> 0), info indicates either B is
not positive definite or syevj (called by
sygvj) does not converge.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0,
or lda<max(1,n), or ldb<max(1,n),
or itype is not 1, 2 or 3, or jobz is
not CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.4.3.16. cusolverDn<t>syevjBatched()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverDnSsyevjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const float *A,
    int lda,
    const float *W,
    int *lwork,
    syevjInfo_t params,
    int batchSize
    );

cusolverStatus_t 
cusolverDnDsyevjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const double *A,
    int lda,
    const double *W,
    int *lwork,
    syevjInfo_t params,
    int batchSize
    );

cusolverStatus_t
cusolverDnCheevjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuComplex *A,
    int lda,
    const float *W,
    int *lwork,
    syevjInfo_t params,
    int batchSize
    );

cusolverStatus_t
cusolverDnZheevjBatched_bufferSize(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    const cuDoubleComplex *A,
    int lda,
    const double *W,
    int *lwork,
    syevjInfo_t params,
    int batchSize
    );
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t
cusolverDnSsyevjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    float *A,
    int lda,
    float *W,
    float *work,
    int lwork,
    int *info,
    syevjInfo_t params,
    int batchSize
    );

cusolverStatus_t 
cusolverDnDsyevjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    double *A,
    int lda,
    double *W,
    double *work,
    int lwork,
    int *info,
    syevjInfo_t params,
    int batchSize
    );
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t
cusolverDnCheevjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuComplex *A,
    int lda,
    float *W,
    cuComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params,
    int batchSize
    );

cusolverStatus_t 
cusolverDnZheevjBatched(
    cusolverDnHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int n,
    cuDoubleComplex *A,
    int lda,
    double *W,
    cuDoubleComplex *work,
    int lwork,
    int *info,
    syevjInfo_t params,
    int batchSize
    );

This function computes eigenvalues and eigenvectors of a squence of symmetric
(Hermitian) n×n matrices

where  is a real n×n diagonal matrix.  is an n×n unitary matrix. The diagonal
elements of  are the eigenvalues of  in either ascending order or non-sorting order.

syevjBatched performs syevj on each matrix. It requires that all matrices are of the
same size n and are packed in contiguous way,

Each matrix is column-major with leading dimension lda, so the formula for random
access is  .

The parameter W also contains eigenvalues of each matrix in contiguous way,

The formula for random access of W is  .
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Except for tolerance and maximum sweeps, syevjBatched can either sort the
eigenvalues in ascending order (default) or chose as-is (without sorting) by the function
cusolverDnXsyevjSetSortEig. If the user packs several tiny matrices into diagonal
blocks of one matrix, non-sorting option can separate spectrum of those tiny matrices.

syevjBatched cannot report residual and executed sweeps by function
cusolverDnXsyevjGetResidual and cusolverDnXsyevjGetSweeps. Any call of the
above two returns CUSOLVER_STATUS_NOT_SUPPORTED. The user needs to compute
residual explicitly.

The user has to provide working space pointed by input parameter work. The
input parameter lwork is the size of the working space, and it is returned by
syevjBatched_bufferSize().

The output parameter info is an integer array of size batchSize. If the function returns
CUSOLVER_STATUS_INVALID_VALUE, the first element info[0] = -i (less than zero)
indicates i-th parameter is wrong (not counting handle). Otherwise, if info[i] =
n+1, syevjBatched does not converge on i-th matrix under given tolerance and
maximum sweeps.

if jobz = CUSOLVER_EIG_MODE_VECTOR,  contains the orthonormal eigenvectors
 .

Appendix F.5 provides a simple example of syevjBatched.
API of syevjBatched

parameter Memory In/out Meaning

handle host input handle to the cuSolverDN library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of Aj is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of Aj is stored. uplo
= CUBLAS_FILL_MODE_UPPER: Upper
triangle of Aj is stored.

n host input number of rows (or columns) of matrix
each Aj.

A device in/out <type> array of dimension lda
* n * batchSize with lda is
not less than max(1,n). If uplo =
CUBLAS_FILL_MODE_UPPER, the
leading n-by-n upper triangular part
of Aj contains the upper triangular
part of the matrix Aj. If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
n-by-n lower triangular part of Aj
contains the lower triangular part
of the matrix Aj. On exit, if jobz =
CUSOLVER_EIG_MODE_VECTOR, and
info[j] = 0, Aj contains the orthonormal
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eigenvectors of the matrix Aj. If jobz
= CUSOLVER_EIG_MODE_NOVECTOR, the
contents of Aj are destroyed.

lda host input leading dimension of two-dimensional
array used to store matrix Aj.

W device output a real array of dimension n*batchSize.
It stores the eigenvalues of Aj in
ascending order or non-sorting order.

work device in/out <type> array of size lwork, workspace.

lwork host input size of work, returned by
syevjBatched_bufferSize.

info device output an integer array of dimension batchSize.
If CUSOLVER_STATUS_INVALID_VALUE is
returned, info[0] = -i (less than zero)
indicates i-th parameter is wrong (not
counting handle). Otherwise, if info[i]
= 0, the operation is successful. if
info[i] = n+1, syevjBatched dose
not converge on i-th matrix under given
tolerance and maximum sweeps.

params host in/out structure filled with parameters of Jacobi
algorithm.

batchSize host input number of matrices.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n<0
or lda<max(1,n), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo
is not CUBLAS_FILL_MODE_LOWER or
CUBLAS_FILL_MODE_UPPER), or batchSize<0.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.5. cuSolverSP: sparse LAPACK Function
Reference
This chapter describes the API of cuSolverSP, which provides a subset of LAPACK
funtions for sparse matrices in CSR or CSC format.

2.5.1. Helper Function Reference
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2.5.1.1. cusolverSpCreate()

cusolverStatus_t
cusolverSpCreate(cusolverSpHandle_t *handle)

This function initializes the cuSolverSP library and creates a handle on the cuSolver
context. It must be called before any other cuSolverSP API function is invoked. It
allocates hardware resources necessary for accessing the GPU.
Output

handle the pointer to the handle to the cuSolverSP
context.

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the CUDA Runtime initialization failed.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

2.5.1.2. cusolverSpDestroy()
cusolverStatus_t
cusolverSpDestroy(cusolverSpHandle_t handle)

This function releases CPU-side resources used by the cuSolverSP library.
Input

handle the handle to the cuSolverSP context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.5.1.3. cusolverSpSetStream()

cusolverStatus_t
cusolverSpSetStream(cusolverSpHandle_t handle, cudaStream_t streamId)

This function sets the stream to be used by the cuSolverSP library to execute its routines.
Input

handle the handle to the cuSolverSP context.

streamId the stream to be used by the library.

Status Returned

CUSOLVER_STATUS_SUCCESS the stream was set successfully.
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CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.5.1.4. cusolverSpXcsrissym()

cusolverStatus_t 
cusolverSpXcsrissymHost(cusolverSpHandle_t handle,
              int m,
              int nnzA,
              const cusparseMatDescr_t descrA,
              const int *csrRowPtrA,
              const int *csrEndPtrA,
              const int *csrColIndA,
              int *issym);

This function checks if A has symmetric pattern or not. The output parameter issym
reports 1 if A is symmetric; otherwise, it reports 0.

The matrix A is an m×m sparse matrix that is defined in CSR storage format by the four
arrays csrValA, csrRowPtrA, csrEndPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.

The csrlsvlu and csrlsvqr do not accept non-general matrix. the user has to extend
the matrix into its missing upper/lower part, otherwise the result is not expected. The
user can use csrissym to check if the matrix has symmetric pattern or not.

Remark 1: only CPU path is provided.

Remark 2: the user has to check returned status to get valid information. The function
converts A to CSC format and compare CSR and CSC format. If the CSC failed because
of insufficient resources, issym is undefined, and this state can only be detected by the
return status code.
Input

parameter MemorySpace description

handle host handle to the cuSolverSP library context.

m host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of m elements that contains the start
of every row.

csrEndPtrA host integer array of m elements that contains the end
of the last row plus one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.
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Output

parameter MemorySpace description

issym host 1 if A is symmetric; 0 otherwise.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.2. High Level Function Reference
This section describes high level API of cuSolverSP, including linear solver, least-square
solver and eigenvalue solver. The high-level API is designed for ease-of-use, so it
allocates any required memory under the hood automatically. If the host or GPU system
memory is not enough, an error is returned.
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2.5.2.1. cusolverSp<t>csrlsvlu()

cusolverStatus_t 
cusolverSpScsrlsvlu[Host](cusolverSpHandle_t handle,
                 int n,
                 int nnzA,
                 const cusparseMatDescr_t descrA,
                 const float *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const float *b,
                 float tol,
                 int reorder,
                 float *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpDcsrlsvlu[Host](cusolverSpHandle_t handle,
                 int n,
                 int nnzA,
                 const cusparseMatDescr_t descrA,
                 const double *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const double *b,
                 double tol,
                 int reorder,
                 double *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpCcsrlsvlu[Host](cusolverSpHandle_t handle,
                 int n,
                 int nnzA,
                 const cusparseMatDescr_t descrA,
                 const cuComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const cuComplex *b,
                 float tol,
                 int reorder,
                 cuComplex *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpZcsrlsvlu[Host](cusolverSpHandle_t handle,
                 int n,
                 int nnzA,
                 const cusparseMatDescr_t descrA,
                 const cuDoubleComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const cuDoubleComplex *b,
                 double tol,
                 int reorder,
                 cuDoubleComplex *x,
                 int *singularity);
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This function solves the linear system

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size n, and x
is the solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse LU with partial pivoting,

cusolver library provides three reordering schemes, symrcm symamd, and csrmetisnd
to reduce zero fill-in which dramactically affects the performance of LU factorization.
The input parameter reorder can enable symrcm (symamd or csrmetisnd) if reorder
is 1 (2, or 3), otherwise, no reordering is performed.

If reorder is nonzero, csrlsvlu does

where  .

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of U is
zero, i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The index is base-0, independent of base index of A. For example, if
2nd column of A is the same as first column, then A is singular and singularity = 1
which means U(1,1)≈0.

Remark 1: csrlsvlu performs traditional LU with partial pivoting, the pivot of k-th
column is determined dynamically based on the k-th column of intermediate matrix.
csrlsvlu follows Gilbert and Peierls's algorithm [4] which uses depth-first-search and
topological ordering to solve triangular system (Davis also describes this algorithm
in detail in his book [1]). since cuda 10.1, csrlsvlu will incrementally reallocate
the memory to store L and U. This feature can avoid over-estimate size from QR
factorization. In some cases, zero fill-in of QR can be order of magnitude higher than LU.

Remark 2: only CPU (Host) path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

n host host number of rows and columns of matrix A.
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nnzA host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnzA  csrRowPtrA(n)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of n  elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnzA  csrRowPtrA(n)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size n.

tol host host tolerance to decide if singular or not.

reorder host host no ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size n, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index
j such that U(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.2.2. cusolverSp<t>csrlsvqr()

cusolverStatus_t 
cusolverSpScsrlsvqr[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const float *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const float *b,
                 float tol,
                 int reorder,
                 float *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpDcsrlsvqr[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const double *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const double *b,
                 double tol,
                 int reorder,
                 double *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpCcsrlsvqr[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const cuComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const cuComplex *b,
                 float tol,
                 int reorder,
                 cuComplex *x,
                 int *singularity);

cusolverStatus_t 
cusolverSpZcsrlsvqr[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const cuDoubleComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 const cuDoubleComplex *b,
                 double tol,
                 int reorder,
                 cuDoubleComplex *x,
                 int *singularity);
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This function solves the linear system

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If matrix A is
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has
to extend the matrix into its missing upper/lower part, otherwise the result would be
wrong.

The linear system is solved by sparse QR factorization,

If A is singular under given tolerance (max(tol,0)), then some diagonal elements of R is
zero, i.e.

The output parameter singularity is the smallest index of such j. If A is non-singular,
singularity is -1. The singularity is base-0, independent of base index of A.
For example, if 2nd column of A is the same as first column, then A is singular and
singularity = 1 which means R(1,1)≈0.

cusolver library provides three reordering schemes, symrcm symamd, and csrmetisnd
to reduce zero fill-in which dramactically affects the performance of QR factorization.
The input parameter reorder can enable symrcm (symamd or csrmetisnd) if reorder
is 1 (2, or 3), otherwise, no reordering is performed.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of m  elements that
contains the start of every row and the
end of the last row plus one.
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csrColIndA device host integer array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide if singular or not.

reorder host host no ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is invertible. Otherwise, first index
j such that R(j,j)≈0

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.2.3. cusolverSp<t>csrlsvchol()

cusolverStatus_t 
cusolverSpScsrlsvchol[Host](cusolverSpHandle_t handle,
                     int m,
                     int nnz,
                     const cusparseMatDescr_t descrA,
                     const float *csrVal,
                     const int *csrRowPtr,
                     const int *csrColInd,
                     const float *b,
                     float tol,
                     int reorder,
                     float *x,
                     int *singularity);

cusolverStatus_t 
cusolverSpDcsrlsvchol[Host](cusolverSpHandle_t handle,
                     int m,
                     int nnz,
                     const cusparseMatDescr_t descrA,
                     const double *csrVal,
                     const int *csrRowPtr,
                     const int *csrColInd,
                     const double *b,
                     double tol,
                     int reorder,
                     double *x,
                     int *singularity);

cusolverStatus_t 
cusolverSpCcsrlsvchol[Host](cusolverSpHandle_t handle,
                     int m,
                     int nnz,
                     const cusparseMatDescr_t descrA,
                     const cuComplex *csrVal,
                     const int *csrRowPtr,
                     const int *csrColInd,
                     const cuComplex *b,
                     float tol,
                     int reorder,
                     cuComplex *x,
                     int *singularity);

cusolverStatus_t 
cusolverSpZcsrlsvchol[Host](cusolverSpHandle_t handle,
                     int m,
                     int nnz,
                     const cusparseMatDescr_t descrA,
                     const cuDoubleComplex *csrVal,
                     const int *csrRowPtr,
                     const int *csrColInd,
                     const cuDoubleComplex *b,
                     double tol,
                     int reorder,
                     cuDoubleComplex *x,
                     int *singularity);
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This function solves the linear system

A is an m×m symmetric postive definite sparse matrix that is defined in CSR storage
format by the three arrays csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-
side vector of size m, and x is the solution vector of size m.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL and upper triangular
part of A is ignored (if parameter reorder is zero). In other words, suppose input matrix
A is decomposed as  , where L is lower triangular, D is diagonal and U is
upper triangular. The function would ignore U and regard A as a symmetric matrix with
the formula  . If parameter reorder is nonzero, the user has to extend A to
a full matrix, otherwise the solution would be wrong.

The linear system is solved by sparse Cholesky factorization,

where G is the Cholesky factor, a lower triangular matrix.

The output parameter singularity has two meanings:

‣ If A is not postive definite, there exists some integer k such that A(0:k, 0:k) is not
positive definite. singularity is the minimum of such k.

‣ If A is postive definite but near singular under tolerance (max(tol,0)), i.e. there
exists some integer k such that  . singularity is the minimum of
such k.

singularity is base-0. If A is positive definite and not near singular under tolerance,
singularity is -1. If the user wants to know if A is postive definite or not, tol=0 is
enough.

cusolver library provides three reordering schemes, symrcm symamd, and
csrmetisnd to reduce zero fill-in which dramactically affects the performance of
Cholesky factorization. The input parameter reorder can enable symrcm (symamd or
csrmetisnd) if reorder is 1 (2, or 3), otherwise, no reordering is performed.

Remark 1: the function works for in-place (x and b point to the same memory block) and
out-of-place.

Remark 2: the function only works on 32-bit index, if matrix G has large zero fill-in such
that number of nonzeros is bigger than  , then CUSOLVER_STATUS_ALLOC_FAILED is
returned.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.
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descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of m  elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide singularity.

reorder host host no ordering if reorder=0. Otherwise,
symrcm, symamd, or csrmetisnd is used
to reduce zero fill-in.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

x device host solution vector of size m, x = inv(A)*b.

singularity host host -1 if A is symmetric postive definite.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0, base
index is not 0 or 1, reorder is not 0,1,2,3)

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.2.4. cusolverSp<t>csrlsqvqr()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpScsrlsqvqr[Host](cusolverSpHandle_t handle,
                  int m,
                  int n,
                  int nnz,
                  const cusparseMatDescr_t descrA,
                  const float *csrValA,
                  const int *csrRowPtrA,
                  const int *csrColIndA,
                  const float *b,
                  float tol,
                  int *rankA,
                  float *x,
                  int *p,
                  float *min_norm);

cusolverStatus_t 
cusolverSpDcsrlsqvqr[Host](cusolverSpHandle_t handle,
                  int m,
                  int n,
                  int nnz,
                  const cusparseMatDescr_t descrA,
                  const double *csrValA,
                  const int *csrRowPtrA,
                  const int *csrColIndA,
                  const double *b,
                  double tol,
                  int *rankA,
                  double *x,
                  int *p,
                  double *min_norm);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpCcsrlsqvqr[Host](cusolverSpHandle_t handle,
                  int m,
                  int n,
                  int nnz,
                  const cusparseMatDescr_t descrA,
                  const cuComplex *csrValA,
                  const int *csrRowPtrA,
                  const int *csrColIndA,
                  const cuComplex *b,
                  float tol,
                  int *rankA,
                  cuComplex *x,
                  int *p,
                  float *min_norm);

cusolverStatus_t 
cusolverSpZcsrlsqvqr[Host](cusolverSpHandle_t handle,
                  int m,
                  int n,
                  int nnz,
                  const cusparseMatDescr_t descrA,
                  const cuDoubleComplex *csrValA,
                  const int *csrRowPtrA,
                  const int *csrColIndA,
                  const cuDoubleComplex *b,
                  double tol,
                  int *rankA,
                  cuDoubleComplex *x,
                  int *p,
                  double *min_norm);

This function solves the following least-square problem

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. b is the right-hand-side vector of size m, and x
is the least-square solution vector of size n.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is square,
symmetric/Hermitian and only lower/upper part is used or meaningful, the user has to
extend the matrix into its missing upper/lower part, otherwise the result is wrong.

This function only works if m is greater or equal to n, in other words, A is a tall matrix.

The least-square problem is solved by sparse QR factorization with column pivoting,

If A is of full rank (i.e. all columns of A are linear independent), then matrix P is an
identity. Suppose rank of A is k, less than n, the permutation matrix P reorders columns
of A in the following sense:



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 165

where  and A have the same rank, but  is almost zero, i.e. every column of  is
linear combination of  .

The input parameter tol decides numerical rank. The absolute value of every entry in
 is less than or equal to tolerance=max(tol,0).

The output parameter rankA denotes numerical rank of A.

Suppose  and  , the least square problem can be reformed by

or in matrix form

The output parameter min_norm is  , which is minimum value of least-square
problem.

If A is not of full rank, above equation does not have a unique solution. The least-square
problem is equivalent to

Or equivalently another least-square problem

The output parameter x is  , the solution of least-square problem.

The output parameter p is a vector of size n. It corresponds to a permutation matrix P.
p(i)=j means (P*x)(i) = x(j). If A is of full rank, p=0:n-1.

Remark 1: p is always base 0, independent of base index of A.

Remark 2: only CPU (Host) path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolver library context.

m host host number of rows of matrix A.

n host host number of columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
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CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of m  elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

b device host right hand side vector of size m.

tol host host tolerance to decide rank of A.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

rankA host host numerical rank of A.

x device host solution vector of size n, x=pinv(A)*b.

p device host a vector of size n, which represents
the permuation matrix P satisfying
A*P^T=Q*R.

min_norm host host ||A*x-b||, x=pinv(A)*b.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnz<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.2.5. cusolverSp<t>csreigvsi()
The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpScsreigvsi[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const float *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 float mu0,
                 const float *x0,
                 int maxite,
                 float tol,
                 float *mu,
                 float *x);

cusolverStatus_t
cusolverSpDcsreigvsi[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const double *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 double mu0,
                 const double *x0,
                 int maxite,
                 double tol,
                 double *mu,
                 double *x);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpCcsreigvsi[Host](cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const cuComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 cuComplex mu0,
                 const cuComplex *x0,
                 int maxite,
                 float tol,
                 cuComplex *mu,
                 cuComplex *x);

cusolverStatus_t 
cusolverSpZcsreigvsi(cusolverSpHandle_t handle,
                 int m,
                 int nnz,
                 const cusparseMatDescr_t descrA,
                 const cuDoubleComplex *csrValA,
                 const int *csrRowPtrA,
                 const int *csrColIndA,
                 cuDoubleComplex mu0,
                 const cuDoubleComplex *x0,
                 int maxite,
                 double tol,
                 cuDoubleComplex *mu,
                 cuDoubleComplex *x);

This function solves the simple eigenvalue problem  by shift-inverse method.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA. The output paramter x is the approximated
eigenvector of size m,

The following shift-inverse method corrects eigenpair step-by-step until convergence.

It accepts several parameters:

mu0 is an initial guess of eigenvalue. The shift-inverse method will converge to the
eigenvalue mu nearest mu0 if mu is a singleton. Otherwise, the shift-inverse method may
not converge.

x0 is an initial eigenvector. If the user has no preference, just chose x0 randomly. x0
must be nonzero. It can be non-unit length.

tol is the tolerance to decide convergence. If tol is less than zero, it would be treated as
zero.

maxite is maximum number of iterations. It is useful when shift-inverse method
does not converge because the tolerance is too small or the desired eigenvalue is not a
singleton.
Shift-Inverse Method



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 169

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric/
Hermitian and only lower/upper part is used or meaningful, the user has to extend the
matrix into its missing upper/lower part, otherwise the result is wrong.

Remark 1: [cu|h]solver[S|D]csreigvsi only allows mu0 as a real number. This
works if A is symmetric. Otherwise, the non-real eigenvalue has a conjugate counterpart
on the complex plan, and shift-inverse method would not converge to such eigevalue
even the eigenvalue is a singleton. The user has to extend A to complex numbre and call
[cu|h]solver[C|Z]csreigvsi with mu0 not on real axis.

Remark 2: the tolerance tol should not be smaller than |mu0|*eps, where eps is
machine zero. Otherwise, shift-inverse may not converge because of small tolerance.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolver library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of m  elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

mu0 host host initial guess of eigenvalue.

x0 device host initial guess of eigenvector, a vecotr of
size m.

maxite host host maximum iterations in shift-inverse
method.
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tol host host tolerance for convergence.

Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

mu device host approximated eigenvalue nearest mu0
under tolerance.

x device host approximated eigenvector of size m.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.2.6. cusolverSp<t>csreigs()

cusolverStatus_t 
solverspScsreigs[Host](cusolverSpHandle_t handle,
                int m,
                int nnz,
                const cusparseMatDescr_t descrA,
                const float *csrValA,
                const int *csrRowPtrA,
                const int *csrColIndA,
                cuComplex left_bottom_corner,
                cuComplex right_upper_corner,
                int *num_eigs);

cusolverStatus_t 
cusolverSpDcsreigs[Host](cusolverSpHandle_t handle,
                int m,
                int nnz,
                const cusparseMatDescr_t descrA,
                const double *csrValA,
                const int *csrRowPtrA,
                const int *csrColIndA,
                cuDoubleComplex left_bottom_corner,
                cuDoubleComplex right_upper_corner,
                int *num_eigs);

cusolverStatus_t 
cusolverSpCcsreigs[Host](cusolverSpHandle_t handle,
                int m,
                int nnz,
                const cusparseMatDescr_t descrA,
                const cuComplex *csrValA,
                const int *csrRowPtrA,
                const int *csrColIndA,
                cuComplex left_bottom_corner,
                cuComplex right_upper_corner,
                int *num_eigs);

cusolverStatus_t 
cusolverSpZcsreigs[Host](cusolverSpHandle_t handle,
                int m,
                int nnz,
                const cusparseMatDescr_t descrA,
                const cuDoubleComplex *csrValA,
                const int *csrRowPtrA,
                const int *csrColIndA,
                cuDoubleComplex left_bottom_corner,
                cuDoubleComplex right_upper_corner,
                int *num_eigs);

This function computes number of algebraic eigenvalues in a given box B by contour
integral
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where closed line C is boundary of the box B which is a rectangle specified by two
points, one is left bottom corner (input parameter left_botoom_corner) and the other
is right upper corner (input parameter right_upper_corner). P(z)=det(A - z*I) is
the characteristic polynomial of A.

A is an m×m sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The output parameter num_eigs is number of algebraic eigenvalues in the box B. This
number may not be accurate due to several reasons:

1. the contour C is close to some eigenvalues or even passes through some eigenvalues.

2. the numerical integration is not accurate due to coarse grid size. The default resolution
is 1200 grids along contour C uniformly.

Even though csreigs may not be accurate, it still can give the user some idea how
many eigenvalues in a region where the resolution of disk theorem is bad. For example,
standard 3-point stencil of finite difference of Laplacian operator is a tridiagonal matrix,
and disk theorem would show "all eigenvalues are in the interval [0, 4*N^2]" where N is
number of grids. In this case, csreigs is useful for any interval inside [0, 4*N^2].

Remark 1: if A is symmetric in real or hermitian in complex, all eigenvalues are real.
The user still needs to specify a box, not an interval. The height of the box can be much
smaller than the width.

Remark 2: only CPU (Host) path is provided.
Input

parameter cusolverSp
MemSpace

*Host
MemSpace

description

handle host host handle to the cuSolverSP library context.

m host host number of rows and columns of matrix A.

nnz host host number of nonzeros of matrix A.

descrA host host the descriptor of matrix A.
The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device host <type> array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  nonzero elements of

matrix A.

csrRowPtrA device host integer array of m  elements that
contains the start of every row and the
end of the last row plus one.

csrColIndA device host integer array of nnz  csrRowPtrA(m)
 csrRowPtrA(0)  column indices of the

nonzero elements of matrix A.

left_bottom_corner host host left bottom corner of the box.

right_upper_corner host host right upper corner of the box.
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Output

parameter cusolverSp
MemSpace

*Host
MemSpace

description

num_eigs host host number of algebraic eigenvalues in a box.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,nnz<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.3. Low Level Function Reference
This section describes low level API of cuSolverSP, including symrcm and batched QR.

2.5.3.1. cusolverSpXcsrsymrcm()

cusolverStatus_t 
cusolverSpXcsrsymrcmHost(cusolverSpHandle_t handle,
             int n,
             int nnzA,
             const cusparseMatDescr_t descrA,
             const int *csrRowPtrA,
             const int *csrColIndA,
             int *p);

This function implements Symmetric Reverse Cuthill-McKee permutation. It returns a
permutation vector p such that A(p,p) would concentrate nonzeros to diagonal. This is
equivalent to symrcm in MATLAB, however the result may not be the same because of
different heuristics in the pseudoperipheral finder. The cuSolverSP library implements
symrcm based on the following two papers:

E. Chuthill and J. McKee, reducing the bandwidth of sparse symmetric matrices, ACM
'69 Proceedings of the 1969 24th national conference, Pages 157-172

Alan George, Joseph W. H. Liu, An Implementation of a Pseudoperipheral Node Finder,
ACM Transactions on Mathematical Software (TOMS) Volume 5 Issue 3, Sept. 1979,
Pages 284-295

The output parameter p is an integer array of n elements. It represents a permutation
array and it indexed using the base-0 convention. The permutation array p corresponds
to a permutation matrix P, and satisfies the following relation:
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A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally rcm works
on  , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.3.2. cusolverSpXcsrsymmdq()

cusolverStatus_t 
cusolverSpXcsrsymmdqHost(cusolverSpHandle_t handle,
             int n,
             int nnzA,
             const cusparseMatDescr_t descrA,
             const int *csrRowPtrA,
             const int *csrColIndA,
             int *p);

This function implements Symmetric Minimum Degree Algorithm based on Quotient
Graph. It returns a permutation vector p such that A(p,p) would have less zero fill-in
during Cholesky factorization. The cuSolverSP library implements symmdq based on
the following two papers:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

Alan George, Joseph W. Liu, A Fast Implementation of the Minimum Degree Algorithm
Using Quotient Graphs, ACM Transactions on Mathematical Software, Vol 6, No. 3,
September 1980, page 337-358.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally mdq works
on  , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 176

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.3.3. cusolverSpXcsrsymamd()

cusolverStatus_t 
cusolverSpXcsrsymamdHost(cusolverSpHandle_t handle,
             int n,
             int nnzA,
             const cusparseMatDescr_t descrA,
             const int *csrRowPtrA,
             const int *csrColIndA,
             int *p);

This function implements Symmetric Approximate Minimum Degree Algorithm based
on Quotient Graph. It returns a permutation vector p such that A(p,p) would have less
zero fill-in during Cholesky factorization. The cuSolverSP library implements symamd
based on the following paper:

Patrick R. Amestoy, Timothy A. Davis, Iain S. Duff, An Approximate Minimum Degree
Ordering Algorithm, SIAM J. Matrix Analysis Applic. Vol 17, no 4, pp. 886-905, Dec.
1996.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:
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A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally amd works
on  , the user does not need to extend the matrix if the matrix is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter hsolver description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.3.4. cusolverSpXcsrmetisnd()

cusolverStatus_t 
cusolverSpXcsrmetisndHost(
    cusolverSpHandle_t handle,
    int n,
    int nnzA,
    const cusparseMatDescr_t descrA,
    const int *csrRowPtrA,
    const int *csrColIndA,
    const int64_t *options,
    int *p);

This function is a wrapper of METIS_NodeND. It returns a permutation vector p such that
A(p,p) would have less zero fill-in during nested dissection. The cuSolverSP library
links libmetis_static.a which is 64-bit metis-5.1.0 .

The parameter options is the configuration of metis. For those who do not have
experiences of metis, set options = NULL for default setting.

The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

A is an n×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA, and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. Internally
csrmetisnd works on  , the user does not need to extend the matrix if the matrix
is not symmetric.

Remark 1: only CPU (Host) path is provided.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.
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csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

options host integer array to configure metis.

Output

parameter *Host MemSpace description

p host permutation vector of size n.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.
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2.5.3.5. cusolverSpXcsrzfd()

cusolverStatus_t 
cusolverSpScsrzfdHost(
    cusolverSpHandle_t handle,
    int n,
    int nnzA,
    const cusparseMatDescr_t descrA,
    const float *csrValA,
    const int *csrRowPtrA,
    const int *csrColIndA,
    int *P,
    int *numnz)

cusolverStatus_t 
cusolverSpDcsrzfdHost(
    cusolverSpHandle_t handle,
    int n,
    int nnzA,
    const cusparseMatDescr_t descrA,
    const double *csrValA,
    const int *csrRowPtrA,
    const int *csrColIndA,
    int *P,
    int *numnz)

cusolverStatus_t 
cusolverSpCcsrzfdHost(
    cusolverSpHandle_t handle,
    int n,
    int nnzA,
    const cusparseMatDescr_t descrA,
    const cuComplex *csrValA,
    const int *csrRowPtrA,
    const int *csrColIndA,
    int *P,
    int *numnz)

cusolverStatus_t 
cusolverSpZcsrzfdHost(
    cusolverSpHandle_t handle,
    int n,
    int nnzA,
    const cusparseMatDescr_t descrA,
    const cuDoubleComplex *csrValA,
    const int *csrRowPtrA,
    const int *csrColIndA,
    int *P,
    int *numnz)

This function implements MC21, zero-free diagonal algorithm. It returns a permutation
vector p such that A(p,:) has no zero diagonal.

A is an n×n sparse matrix that is defined in CSR storage format by the three
arrays csrValA, csrRowPtrA, and csrColIndA. The supported matrix type is
CUSPARSE_MATRIX_TYPE_GENERAL.
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The output parameter p is an integer array of n elements. It represents a permutation
array with base-0 index. The permutation array p corresponds to a permutation matrix
P, and satisfies the following relation:

The output parameter numnz describes number of nonzero diagonal in permutated
matrix A(p,:). If numnz is less than n, matrix A has structural singularity.

Remark 1: only CPU (Host) path is provided.

Remark 2: this routine does not maximize diagonal value of permuted matrix. The user
cannot expect this routine can make "LU without pivoting" stable.
Input

parameter *Host MemSpace description

handle host handle to the cuSolverSP library context.

n host number of rows and columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA host <type> array of nnzA  csrRowPtrA(m) 
csrRowPtrA(0)  nonzero elements of matrix A.

csrRowPtrA host integer array of n+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

Output

parameter *Host MemSpace description

p host permutation vector of size n.

numnz host number of nonzeros on diagonal of permuted
matrix.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (n,nnzA<=0), base
index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.
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CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.3.6. cusolverSpXcsrperm()

cusolverStatus_t 
cusolverSpXcsrperm_bufferSizeHost(cusolverSpHandle_t handle,
                          int m,
                          int n,
                          int nnzA,
                          const cusparseMatDescr_t descrA,
                          int *csrRowPtrA,
                          int *csrColIndA,
                          const int *p,
                          const int *q,
                          size_t *bufferSizeInBytes);

cusolverStatus_t 
cusolverSpXcsrpermHost(cusolverSpHandle_t handle,
                int m,
                int n,
                int nnzA,
                const cusparseMatDescr_t descrA,
                int *csrRowPtrA,
                int *csrColIndA,
                const int *p,
                const int *q,
                int *map,
                void *pBuffer);

Given a left permutation vector p which corresponds to permutation matrix P and a
right permutation vector q which corresponds to permutation matrix Q, this function
computes permutation of matrix A by

A is an m×n sparse matrix that is defined in CSR storage format by the three arrays
csrValA, csrRowPtrA and csrColIndA.

The operation is in-place, i.e. the matrix A is overwritten by B.

The permutation vector p and q are base 0. p performs row permutation while q
performs column permutation. One can also use MATLAB command  to
permutate matrix A.

This function only computes sparsity pattern of B. The user can use parameter map to
get csrValB as well. The parameter map is an input/output. If the user sets map=0:1:
(nnzA-1) before calling csrperm, csrValB=csrValA(map).

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and
only lower/upper part is provided, the user has to pass  into this function.
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This function requires a buffer size returned by csrperm_bufferSize().
The address of pBuffer must be a multiple of 128 bytes. If it is not,
CUSOLVER_STATUS_INVALID_VALUE is returned.

For example, if matrix A is

and left permutation vector p=(0,2,1), right permutation vector q=(2,1,0), then
 is

Remark 1: only CPU (Host) path is provided.

Remark 2: the user can combine csrsymrcm and csrperm to get  which has less
zero fill-in during QR factorization.
Input

parameter cusolverSp
MemSpace

description

handle host handle to the cuSolver library context.

m host number of rows of matrix A.

n host number of columns of matrix A.

nnzA host number of nonzeros of matrix A. It is the size of
csrValA and csrColIndA.

descrA host the descriptor of matrix A. The supported matrix
type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrRowPtrA host integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix A.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix A.

p host left permutation vector of size m.

q host right permutation vector of size n.

map host integer array of nnzA indices. If the user wants to
get relationship between A and B, map must be set
0:1:(nnzA-1).

pBuffer host buffer allocated by the user, the size is returned
by csrperm_bufferSize().

Output
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parameter hsolver description

csrRowPtrA host integer array of m+1 elements that contains the
start of every row and end of last row plus one of
matrix B.

csrColIndA host integer array of nnzAcolumn indices of the
nonzero elements of matrix B.

map host integer array of nnzA indices that maps matrix A
to matrix B.

pBufferSizeInBytes host number of bytes of the buffer.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.

CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.5.3.7. cusolverSpXcsrqrBatched()
The create and destroy methods start and end the lifetime of a csrqrInfo object.

cusolverStatus_t 
cusolverSpCreateCsrqrInfo(csrqrInfo_t *info);

cusolverStatus_t 
cusolverSpDestroyCsrqrInfo(csrqrInfo_t info);
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Analysis is the same for all data types, but each data type has a unique buffer size.

cusolverStatus_t 
cusolverSpXcsrqrAnalysisBatched(cusolverSpHandle_t handle,
                           int m,
                           int n,
                           int nnzA,
                           const cusparseMatDescr_t descrA,
                           const int *csrRowPtrA,
                           const int *csrColIndA,
                           csrqrInfo_t info);

cusolverStatus_t 
cusolverSpScsrqrBufferInfoBatched(cusolverSpHandle_t handle,
                           int m,
                           int n,
                           int nnzA,
                           const cusparseMatDescr_t descrA,
                           const float *csrValA,
                           const int *csrRowPtrA,
                           const int *csrColIndA,
                           int batchSize,
                           csrqrInfo_t info,
                           size_t *internalDataInBytes,
                           size_t *workspaceInBytes);

cusolverStatus_t 
cusolverSpDcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
                           int m,
                           int n,
                           int nnzA,
                           const cusparseMatDescr_t descrA,
                           const double *csrValA,
                           const int *csrRowPtrA,
                           const int *csrColIndA,
                           int batchSize,
                           csrqrInfo_t info,
                           size_t *internalDataInBytes,
                           size_t *workspaceInBytes);
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Calculate buffer sizes for complex valued data types.

cusolverStatus_t 
cusolverSpCcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
                           int m,
                           int n,
                           int nnzA,
                           const cusparseMatDescr_t descrA,
                           const cuComplex *csrValA,
                           const int *csrRowPtrA,
                           const int *csrColIndA,
                           int batchSize,
                           csrqrInfo_t info,
                           size_t *internalDataInBytes,
                           size_t *workspaceInBytes);

cusolverStatus_t 
cusolverSpZcsrqrBufferInfoBatched(cusolverSpHandle_t handle,
                           int m,
                           int n,
                           int nnzA,
                           const cusparseMatDescr_t descrA,
                           const cuDoubleComplex *csrValA,
                           const int *csrRowPtrA,
                           const int *csrColIndA,
                           int batchSize,
                           csrqrInfo_t info,
                           size_t *internalDataInBytes,
                           size_t *workspaceInBytes);
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The S and D data types are real valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpScsrqrsvBatched(cusolverSpHandle_t handle,
                        int m,
                        int n,
                        int nnzA,
                        const cusparseMatDescr_t descrA,
                        const float *csrValA,
                        const int *csrRowPtrA,
                        const int *csrColIndA,
                        const float *b,
                        float *x,
                        int batchSize,
                        csrqrInfo_t info,
                        void *pBuffer);

cusolverStatus_t 
cusolverSpDcsrqrsvBatched(cusolverSpHandle_t handle,
                        int m,
                        int n,
                        int nnz,
                        const cusparseMatDescr_t descrA,
                        const double *csrValA,
                        const int *csrRowPtrA,
                        const int *csrColIndA,
                        const double *b,
                        double *x,
                        int batchSize,
                        csrqrInfo_t info,
                        void *pBuffer);
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The C and Z data types are complex valued single and double precision, respectively.

cusolverStatus_t 
cusolverSpCcsrqrsvBatched(cusolverSpHandle_t handle,
                        int m,
                        int n,
                        int nnzA,
                        const cusparseMatDescr_t descrA,
                        const cuComplex *csrValA,
                        const int *csrRowPtrA,
                        const int *csrColIndA,
                        const cuComplex *b,
                        cuComplex *x,
                        int batchSize,
                        csrqrInfo_t info,
                        void *pBuffer);

cusolverStatus_t 
cusolverSpZcsrqrsvBatched(cusolverSpHandle_t handle,
                        int m,
                        int n,
                        int nnzA,
                        const cusparseMatDescr_t descrA,
                        const cuDoubleComplex *csrValA,
                        const int *csrRowPtrA,
                        const int *csrColIndA,
                        const cuDoubleComplex *b,
                        cuDoubleComplex *x,
                        int batchSize,
                        csrqrInfo_t info,
                        void *pBuffer);

The batched sparse QR factorization is used to solve either a set of least-squares
problems

or a set of linear systems

where each  is a m×n sparse matrix that is defined in CSR storage format by the four
arrays csrValA, csrRowPtrA and csrColIndA.

The supported matrix type is CUSPARSE_MATRIX_TYPE_GENERAL. If A is symmetric and
only lower/upper part is prvided, the user has to pass  into this function.

The prerequisite to use batched sparse QR has two-folds. First all matrices  must have
the same sparsity pattern. Second, no column pivoting is used in least-square problem,
so the solution is valid only if  is of full rank for all j = 1,2,..., batchSize
. All matrices have the same sparity pattern, so only one copy of csrRowPtrA and
csrColIndA is used. But the array csrValA stores coefficients of  one after another. In
other words, csrValA[k*nnzA : (k+1)*nnzA] is the value of  .

The batched QR uses opaque data structure csrqrInfo to keep intermediate data, for
example, matrix Q and matrix R of QR factorization. The user needs to create csrqrInfo
first by cusolverSpCreateCsrqrInfo before any function in batched QR operation.
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The csrqrInfo would not release internal data until cusolverSpDestroyCsrqrInfo
is called.

There are three routines in batched sparse QR, cusolverSpXcsrqrAnalysisBatched,
cusolverSp[S|D|C|Z]csrqrBufferInfoBatched and cusolverSp[S|D|C|
Z]csrqrsvBatched.

First, cusolverSpXcsrqrAnalysisBatched is the analysis phase, used to analyze
sparsity pattern of matrix Q and matrix R of QR factorization. Also parallelism is
extracted during analysis phase. Once analysis phase is done, the size of working space
to perform QR is known. However cusolverSpXcsrqrAnalysisBatched uses CPU
to analyze the structure of matrix A, and this may consume a lot of memory. If host
memory is not sufficient to finish the analysis, CUSOLVER_STATUS_ALLOC_FAILED
is returned. The required memory for analysis is proportional to zero fill-in in QR
factorization. The user may need to perform some kind of reordering to minimize zero
fill-in, for example, colamd or symrcm in MATLAB. cuSolverSP library provides
symrcm (cusolverSpXcsrsymrcm).

Second, the user needs to choose proper batchSize and to prepare working space
for sparse QR. There are two memory blocks used in batched sparse QR. One is
internal memory block used to store matrix Q and matrix R. The other is working space
used to perform numerical factorization. The size of the former is proportional to
batchSize, and the size is specified by returned parameter internalDataInBytes
of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. while the size of the latter is
almost independent of batchSize, and the size is specified by returned parameter
workspaceInBytes of cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. The
internal memory block is allocated implicitly during first call of cusolverSp[S|D|C|
Z]csrqrsvBatched. The user only needs to allocate working space for cusolverSp[S|
D|C|Z]csrqrsvBatched.

Instead of trying all batched matrices, the user can find maximum batchSize
by querying cusolverSp[S|D|C|Z]csrqrBufferInfoBatched. For example,
the user can increase batchSize till summation of internalDataInBytes and
workspaceInBytes is greater than size of available device memory.

Suppose that the user needs to perform 253 linear solvers and available device memory
is 2GB. if cusolverSp[S|D|C|Z]csrqrsvBatched can only afford batchSize 100,
the user has to call cusolverSp[S|D|C|Z]csrqrsvBatched three times to finish all.
The user calls cusolverSp[S|D|C|Z]csrqrBufferInfoBatched with batchSize
100. The opaque info would remember this batchSize and any subsequent call of
cusolverSp[S|D|C|Z]csrqrsvBatched cannot exceed this value. In this example, the
first two calls of cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 100, and
last call of cusolverSp[S|D|C|Z]csrqrsvBatched will use batchSize 53.
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Example: suppose that A0, A1, .., A9 have the same sparsity pattern, the following code
solves 10 linear systems  by batched sparse QR.

// Suppose that A0, A1, .., A9 are m x m sparse matrix represented by CSR
 format, 
// Each matrix Aj has nonzero nnzA, and shares the same csrRowPtrA and
 csrColIndA.
// csrValA is aggregation of A0, A1, ..., A9.
int m ; // number of rows and columns of each Aj 
int nnzA ; // number of nonzeros of each Aj
int *csrRowPtrA ; // each Aj has the same csrRowPtrA 
int *csrColIndA ; // each Aj has the same csrColIndA
double *csrValA ; // aggregation of A0,A1,...,A9
cont int batchSize = 10; // 10 linear systems 

cusolverSpHandle_t handle; // handle to cusolver library
csrqrInfo_t info = NULL;
cusparseMatDescr_t descrA = NULL;
void *pBuffer = NULL; // working space for numerical factorization
 
// step 1: create a descriptor
cusparseCreateMatDescr(&descrA);
cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // A is base-1
cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL); // A is a general
 matrix

// step 2: create empty info structure
cusolverSpCreateCsrqrInfo(&info);

// step 3: symbolic analysis
cusolverSpXcsrqrAnalysisBatched(
    handle, m, m, nnzA,
    descrA, csrRowPtrA, csrColIndA, info);

// step 4: allocate working space for Aj*xj=bj
cusolverSpDcsrqrBufferInfoBatched(
    handle, m, m, nnzA,
    descrA,
    csrValA, csrRowPtrA, csrColIndA,
    batchSize, 
    info,
    &internalDataInBytes,
    &workspaceInBytes);

cudaMalloc(&pBuffer, workspaceInBytes);

// step 5: solve Aj*xj = bj
cusolverSpDcsrqrsvBatched(
    handle, m, m, nnzA,
    descrA, csrValA, csrRowPtrA, csrColIndA,
    b,
    x,
    batchSize,
    info,
    pBuffer);
 
// step 7: destroy info
cusolverSpDestroyCsrqrInfo(info);

Please refer to Appendix B for detailed examples.

Remark 1: only GPU (device) path is provided.
Input
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parameter cusolverSp
MemSpace

description

handle host handle to the cuSolverSP library context.

m host number of rows of each matrix Aj.

n host number of columns of each matrix Aj.

nnzA host number of nonzeros of each matrix Aj. It is the
size csrColIndA.

descrA host the descriptor of each matrix Aj. The supported
matrix type is CUSPARSE_MATRIX_TYPE_GENERAL.
Also, the supported index bases are
CUSPARSE_INDEX_BASE_ZERO and
CUSPARSE_INDEX_BASE_ONE.

csrValA device <type> array of nnzA*batchSize nonzero
elements of matrices A0, A1, .... All matrices
are aggregated one after another.

csrRowPtrA device integer array of m+1 elements that contains the
start of every row and the end of the last row plus
one.

csrColIndA device integer array of nnzAcolumn indices of the
nonzero elements of each matrix Aj.

b device <type> array of m*batchSize of right-hand-side
vectors b0, b1, .... All vectors are aggregated
one after another.

batchSize host number of systems to be solved.

info host opaque structure for QR factorization.

pBuffer device buffer allocated by the user, the size is returned
by cusolverSpXcsrqrBufferInfoBatched().

Output

parameter cusolverSp
MemSpace

description

x device <type> array of m*batchSize of solution vectors
x0, x1, .... All vectors are aggregated one
after another.

internalDataInBytes host number of bytes of the internal data.

workspaceInBytes host number of bytes of the buffer in numerical
factorization.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (m,n,nnzA<=0),
base index is not 0 or 1.
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CUSOLVER_STATUS_ARCH_MISMATCH the device only supports compute capability 2.0
and above.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

CUSOLVER_STATUS_MATRIX_TYPE_NOT_SUPPORTED the matrix type is not supported.

2.6. cuSolverRF: Refactorization Reference
This chapter describes API of cuSolverRF, a library for fast refactorization.

2.6.1. cusolverRfAccessBundledFactors()

cusolverStatus_t 
cusolverRfAccessBundledFactors(/* Input */
                                  cusolverRfHandle_t handle,
                                  /* Output (in the host memory) */
                                  int* nnzM,
                                  /* Output (in the device memory) */
                                  int** Mp,
                                  int** Mi,
                                  double** Mx);

This routine allows direct access to the lower L and upper U triangular factors stored in
the cuSolverRF library handle. The factors are compressed into a single matrix M=(L-
I)+U, where the unitary diagonal of L is not stored. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

nnzM host output the number of non-zero elements of
matrix M.

Mp device output the array of offsets corresponding to the
start of each row in the arrays Mi and Mx.
This array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix $M$. The array
size is n+1.

Mi device output the array of column indices corresponding
to the non-zero elements in the matrix M.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzM.

Mx device output the array of values corresponding to the
non-zero elements in the matrix M. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzM.

Status Returned
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CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

2.6.2. cusolverRfAnalyze()

cusolverStatus_t 
cusolverRfAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the LU re-
factorization depending upon the algorithm chosen by the user.

It is assumed that a prior call to the cusolverRfSetup[Host|Device]() was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.6.3. cusolverRfSetupDevice()

cusolverStatus_t 
cusolverRfSetupDevice(/* Input (in the device memory) */
                    int n,
                    int nnzA,
                    int* csrRowPtrA,
                    int* csrColIndA,
                    double* csrValA,
                    int nnzL,
                    int* csrRowPtrL,
                    int* csrColIndL,
                    double* csrValL,
                    int nnzU,
                    int* csrRowPtrU,
                    int* csrColIndU,
                    double* csrValU,
                    int* P,
                    int* Q,
                    /* Output */
                    cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the device) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
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is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA device input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input the number of non-zero elements of
matrix L.

csrRowPtrL device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndL and csrValL. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix L. The array size is n+1.

csrColIndL device input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

csrValL device input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

csrRowPtrU device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndU and csrValU. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix U. The array size is n+1.

csrColIndU device input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

csrValU device input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the GLU library.

Status Returned
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CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.6.4. cusolverRfSetupHost()

cusolverStatus_t 
cusolverRfSetupHost(/* Input (in the host memory) */
                  int n,
                  int nnzA,
                  int* h_csrRowPtrA,
                  int* h_csrColIndA,
                  double* h_csrValA,
                  int nnzL,
                  int* h_csrRowPtrL,
                  int* h_csrColIndL,
                  double* h_csrValL,
                  int nnzU,
                  int* h_csrRowPtrU,
                  int* h_csrColIndU,
                  double* h_csrValU,
                  int* h_P,
                  int* h_Q,
                  /* Output */
                  cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library. It is often
the first routine to be called after the call to the cusolverRfCreate() routine.

This routine accepts as input (on the host) the original matrix A, the lower (L) and
upper (U) triangular factors, as well as the left (P) and the right (Q) permutations
resulting from the full LU factorization of the first (i=1) linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

n host input the number of rows (and columns) of
matrix A.
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nnzA host input the number of non-zero elements of
matrix A.

h_csrRowPtrA host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA host input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrValA host input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

nnzL host input the number of non-zero elements of
matrix L.

h_csrRowPtrL host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix L. The array size is
n+1.

h_csrColIndL host input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrValL host input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

h_csrRowPtrU host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndU and h_csrValU. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix U. The array size is
n+1.

h_csrColIndU host input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.
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h_csrValU host input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input the left permutation (often associated
with pivoting). The array size in n.

h_Q host input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.6.5. cusolverRfCreate()

cusolverStatus_t cusolverRfCreate(cusolverRfHandle_t *handle);

This routine initializes the cuSolverRF library. It allocates required resources and must
be called prior to any other cuSolverRF library routine.

parameter MemSpace In/out Meaning

handle host output the pointer to the cuSolverRF library
handle.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.6.6. cusolverRfExtractBundledFactorsHost()

cusolverStatus_t 
cusolverRfExtractBundledFactorsHost(/* Input */
                                 cusolverRfHandle_t handle,
                                 /* Output (in the host memory) */
                                 int* h_nnzM,
                                 int** h_Mp,
                                 int** h_Mi,
                                 double** h_Mx);

This routine extracts lower (L) and upper (U) triangular factors from the cuSolverRF
library handle into the host memory. The factors are compressed into a single matrix
M=(L-I)+U, where the unitary diagonal of (L) is not stored. It is assumed that a prior
call to the cusolverRfRefactor() was done in order to generate these triangular
factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

h_nnzM host output the number of non-zero elements of
matrix M.

h_Mp host output the array of offsets corresponding to the
start of each row in the arrays h_Mi and
h_Mx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix M. The array
size is n+1.

h_Mi host output the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

h_Mx host output the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzM.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.
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2.6.7. cusolverRfExtractSplitFactorsHost()

cusolverStatus_t 
cusolverRfExtractSplitFactorsHost(/* Input */
                               cusolverRfHandle_t handle,
                               /* Output (in the host memory) */
                               int* h_nnzL,
                               int** h_Lp,
                               int** h_Li,
                               double** h_Lx,
                               int* h_nnzU,
                               int** h_Up,
                               int** h_Ui,
                               double** h_Ux);

This routine extracts lower (L) and upper (U) triangular factors from the
cuSolverRF library handle into the host memory. It is assumed that a prior call to the
cusolverRfRefactor() was done in order to generate these triangular factors.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

h_nnzL host output the number of non-zero elements of
matrix L.

h_Lp host output the array of offsets corresponding to the
start of each row in the arrays h_Li and
h_Lx. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix L. The array
size is n+1.

h_Li host output the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is h_nnzL.

h_Lx host output the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzL.

h_nnzU host output the number of non-zero elements of
matrix U.

h_Up host output the array of offsets corresponding to the
start of each row in the arrays h_Ui and
h_Ux. This array has also an extra entry
at the end that stores the number of non-
zero elements in the matrix U. The array
size is n+1.

h_Ui host output the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
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row and by column within each row. The
array size is h_nnzU.

h_Ux host output the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is h_nnzU.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

2.6.8. cusolverRfDestroy()

cusolverStatus_t cusolverRfDestroy(cusolverRfHandle_t handle);

This routine shuts down the cuSolverRF library. It releases acquired resources and must
be called after all the cuSolverRF library routines.

parameter MemSpace In/out Meaning

handle host input the cuSolverRF library handle.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.9. cusolverRfGetMatrixFormat()

cusolverStatus_t 
cusolverRfGetMatrixFormat(cusolverRfHandle_t handle,
                      cusolverRfMatrixFormat_t *format,
                      cusolverRfUnitDiagonal_t *diag);

This routine gets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

format host output the enumerated matrix format type.

diag host output the enumerated unit diagonal type.
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Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.10. cusolverRfGetNumericProperties()

cusolverStatus_t 
cusolverRfGetNumericProperties(cusolverRfHandle_t handle,
                           double *zero,
                           double *boost);

This routine gets the numeric values used for checking for ''zero'' pivot and for boosting
it in the cusolverRfRefactor() and cusolverRfSolve() routines. The numeric
boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host output the value below which zero pivot is
flagged.

boost host output the value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.11. cusolverRfGetNumericBoostReport()

cusolverStatus_t 
cusolverRfGetNumericBoostReport(cusolverRfHandle_t handle,
                             cusolverRfNumericBoostReport_t *report);

This routine gets the report whether numeric boosting was used in the
cusolverRfRefactor() and cusolverRfSolve() routines.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

report host output the enumerated boosting report type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 203

2.6.12. cusolverRfGetResetValuesFastMode()

cusolverStatus_t 
cusolverRfGetResetValuesFastMode(cusolverRfHandle_t handle,
                               rfResetValuesFastMode_t *fastMode);

This routine gets the mode used in the cusolverRfResetValues routine.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

fastMode host output the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.13. cusolverRfGet_Algs()

cusolverStatus_t 
cusolverRfGet_Algs(cusolverRfHandle_t handle, 
             cusolverRfFactorization_t* fact_alg,
             cusolverRfTriangularSolve_t* solve_alg);

This routine gets the algorithm used for the refactorization in cusolverRfRefactor()
and the triangular solve in cusolverRfSolve().

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

alg host output the enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.14. cusolverRfRefactor()

cusolverStatus_t cusolverRfRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization

exploring the available parallelism on the GPU. It is assumed that a prior call to the
glu_analyze() was done in order to find the available paralellism.
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This routine may be called multiple times, once for each of the linear systems

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.

2.6.15. cusolverRfResetValues()

cusolverStatus_t 
cusolverRfResetValues(/* Input (in the device memory) */
                 int n,
                 int nnzA,
                 int* csrRowPtrA,
                 int* csrColIndA,
                 double* csrValA,
                 int* P,
                 int* Q,
                 /* Output */
                 cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not
changed since the last call to the cusolverRfSetup[Host|Device] routine. This
assumption reflects the fact that the sparsity pattern of coefficient matrices as well as
reordering to minimize fill-in and pivoting remain the same in the set of linear systems

This routine may be called multiple times, once for each of the linear systems

parameter MemSpace In/out Meaning

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 205

the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

csrValA device input the array of values corresponding to the
non-zero elements in the matrix. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

2.6.16. cusolverRfSetMatrixFormat()

cusolverStatus_t 
cusolverRfSetMatrixFormat(cusolverRfHandle_t handle,
                      gluMatrixFormat_t format,
                      gluUnitDiagonal_t diag);

This routine sets the matrix format used in the cusolverRfSetupDevice(),
cusolverRfSetupHost(), cusolverRfResetValues(),
cusolverRfExtractBundledFactorsHost() and
cusolverRfExtractSplitFactorsHost() routines. It may be called once prior to
cusolverRfSetupDevice() and cusolverRfSetupHost() routines.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

format host input the enumerated matrix format type.

diag host input the enumerated unit diagonal type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.
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CUSOLVER_STATUS_INVALID_VALUE an enumerated mode parameter is wrong.

2.6.17. cusolverRfSetNumericProperties()

cusolverStatus_t 
cusolverRfSetNumericProperties(cusolverRfHandle_t handle,
                           double zero,
                           double boost);

This routine sets the numeric values used for checking for ''zero'' pivot and for boosting
it in the cusolverRfRefactor() and cusolverRfSolve() routines. It may be called
multiple times prior to cusolverRfRefactor() and cusolverRfSolve() routines.
The numeric boosting will be used only if boost > 0.0.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

zero host input the value below which zero pivot is
flagged.

boost host input the value which is substituted for zero
pivot (if the later is flagged).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.18. cusolverRfSetResetValuesFastMode()

cusolverStatus_t 
cusolverRfSetResetValuesFastMode(cusolverRfHandle_t handle,
                               gluResetValuesFastMode_t fastMode);

This routine sets the mode used in the cusolverRfResetValues routine. The
fast mode requires extra memory and is recommended only if very fast calls
to cusolverRfResetValues() are needed. It may be called once prior to
cusolverRfAnalyze() routine.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

fastMode host input the enumerated mode type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an enumerated mode parameter is wrong.
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2.6.19. cusolverRfSetAlgs()

cusolverStatus_t 
cusolverRfSetAlgs(cusolverRfHandle_t handle, 
             gluFactorization_t fact_alg,
             gluTriangularSolve_t alg);

This routine sets the algorithm used for the refactorization in cusolverRfRefactor()
and the triangular solve in cusolverRfSolve(). It may be called once prior to
cusolverRfAnalyze() routine.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

alg host input the enumerated algorithm type.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

2.6.20. cusolverRfSolve()

cusolverStatus_t 
cusolverRfSolve(/* Input (in the device memory) */
          cusolverRfHandle_t handle,
          int *P,
          int *Q,
          int nrhs,
          double *Temp,
          int ldt,
          /* Input/Output (in the device memory) */
          double *XF,
          /* Input */
          int ldxf);

This routine performs the forward and backward solve with the lower  and
upper  triangular factors resulting from the LU re-factorization

which is assumed to have been computed by a prior call to the cusolverRfRefactor()
routine.

The routine can solve linear systems with multiple right-hand-sides (rhs),

even though currently only a single rhs is supported.

This routine may be called multiple times, once for each of the linear systems
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parameter MemSpace In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary
workspace (of size ldt*nrhs).

ldt host input the leading dimension of dense matrix
Temp (ldt >= n).

XF host in/out the dense matrix that contains the right-
hand-sides F and solutions X (of size
ldxf*nrhs).

ldxf host input the leading dimension of dense matrix XF
(ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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2.6.21. cusolverRfBatchSetupHost()

cusolverStatus_t 
cusolverRfBatchSetupHost(/* Input (in the host memory) */
                       int batchSize,
                       int n,
                       int nnzA,
                       int* h_csrRowPtrA,
                       int* h_csrColIndA,
                       double *h_csrValA_array[],
                       int nnzL,
                       int* h_csrRowPtrL,
                       int* h_csrColIndL,
                       double *h_csrValL,
                       int nnzU,
                       int* h_csrRowPtrU,
                       int* h_csrColIndU,
                       double *h_csrValU,
                       int* h_P,
                       int* h_Q,
                       /* Output */
                       cusolverRfHandle_t handle);

This routine assembles the internal data structures of the cuSolverRF library for batched
operation. It is called after the call to the cusolverRfCreate() routine, and before any
other batched routines.

The batched operation assumes that the user has the following linear systems

where each matrix in the set  has the same sparsity pattern, and quite similar such
that factorization can be done by the same permutation P and Q. In other words, 
is a small perturbation of  .

This routine accepts as input (on the host) the original matrix A (sparsity pattern and
batched values), the lower (L) and upper (U) triangular factors, as well as the left (P)
and the right (Q) permutations resulting from the full LU factorization of the first (i=1)
linear system

The permutations P and Q represent the final composition of all the left and right
reorderings applied to the original matrix A, respectively. However, these permutations
are often associated with partial pivoting and reordering to minimize fill-in, respectively.

Remark 1: the matrices A, L and U must be CSR format and base-0.

Remark 2: to get best performance, batchSize should be multiple of 32 and greater or
equal to 32. The algorithm is memory-bound, once bandwidth limit is reached, there is
no room to improve performance by large batchSize. In practice, batchSize of 32 -
128 is often enough to obtain good performance, but in some cases larger batchSize
might be beneficial.
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This routine needs to be called only once for a single linear system

parameter MemSpace In/out Meaning

batchSize host input the number of matrices in the batched
mode.

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

h_csrRowPtrA host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndA and h_csrValA. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix. The array size is n
+1.

h_csrColIndA host input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
and by column within each row. The array
size is nnzA.

h_csrValA_array host input array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

nnzL host input the number of non-zero elements of
matrix L.

h_csrRowPtrL host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndL and h_csrValL. This
array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix L. The array size is
n+1.

h_csrColIndL host input the array of column indices corresponding
to the non-zero elements in the matrix L.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzL.

h_csrValL host input the array of values corresponding to the
non-zero elements in the matrix L. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzL.

nnzU host input the number of non-zero elements of
matrix U.

h_csrRowPtrU host input the array of offsets corresponding to
the start of each row in the arrays
h_csrColIndU and h_csrValU. This
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array has also an extra entry at the
end that stores the number of non-zero
elements in the matrix U. The array size is
n+1.

h_csrColIndU host input the array of column indices corresponding
to the non-zero elements in the matrix U.
It is assumed that this array is sorted by
row and by column within each row. The
array size is nnzU.

h_csrValU host input the array of values corresponding to the
non-zero elements in the matrix U. It is
assumed that this array is sorted by row
and by column within each row. The array
size is nnzU.

h_P host input the left permutation (often associated
with pivoting). The array size in n.

h_Q host input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.6.22. cusolverRfBatchAnalyze()

cusolverStatus_t cusolverRfBatchAnalyze(cusolverRfHandle_t handle);

This routine performs the appropriate analysis of parallelism available in the batched
LU re-factorization.

It is assumed that a prior call to the cusolverRfBatchSetup[Host]() was done in
order to create internal data structures needed for the analysis.

This routine needs to be called only once for a single linear system

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned
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CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_ALLOC_FAILED an allocation of memory failed.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.6.23. cusolverRfBatchResetValues()

cusolverStatus_t 
cusolverRfBatchResetValues(/* Input (in the device memory) */
                      int batchSize,
                      int n,
                      int nnzA,
                      int* csrRowPtrA,
                      int* csrColIndA,
                      double* csrValA_array[],
                      int *P,
                      int *Q,
                      /* Output */
                      cusolverRfHandle_t handle);

This routine updates internal data structures with the values of the new coefficient
matrix. It is assumed that the arrays csrRowPtrA, csrColIndA, P and Q have not
changed since the last call to the cusolverRfbatch_setup_host routine.

This assumption reflects the fact that the sparsity pattern of coefficient matrices as
well as reordering to minimize fill-in and pivoting remain the same in the set of linear
systems

The input parameter csrValA_array is an array of pointers on device memory.
csrValA_array(j) points to matrix  which is also on device memory.

parameter MemSpace In/out Meaning

batchSize host input the number of matrices in batched mode.

n host input the number of rows (and columns) of
matrix A.

nnzA host input the number of non-zero elements of
matrix A.

csrRowPtrA device input the array of offsets corresponding to
the start of each row in the arrays
csrColIndA and csrValA. This array has
also an extra entry at the end that stores
the number of non-zero elements in the
matrix. The array size is n+1.

csrColIndA device input the array of column indices corresponding
to the non-zero elements in the matrix. It
is assumed that this array is sorted by row
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and by column within each row. The array
size is nnzA.

csrValA_array device input array of pointers of size batchSize,
each pointer points to the array of values
corresponding to the non-zero elements in
the matrix.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

handle host output the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

2.6.24. cusolverRfBatchRefactor()

cusolverStatus_t cusolverRfBatchRefactor(cusolverRfHandle_t handle);

This routine performs the LU re-factorization

exploring the available parallelism on the GPU. It is assumed that a prior call to the
cusolverRfBatchAnalyze() was done in order to find the available paralellism.

Remark: cusolverRfBatchRefactor() would not report any failure of LU
refactorization. The user has to call cusolverRfBatchZeroPivot() to know which
matrix failed the LU refactorization.

parameter Memory In/out Meaning

handle host in/out the handle to the cuSolverRF library.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.
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2.6.25. cusolverRfBatchSolve()

cusolverStatus_t 
cusolverRfBatchSolve(/* Input (in the device memory) */
               cusolverRfHandle_t handle,
               int *P,
               int *Q,
               int nrhs,
               double *Temp,
               int ldt,
               /* Input/Output (in the device memory) */
               double *XF_array[],
               /* Input */
               int ldxf);

To solve  , first we reform the equation by 
where  . Then do refactorization  by
cusolverRfBatch_Refactor(). Further cusolverRfBatch_Solve() takes over the
remaining steps, including:

The input parameter XF_array is an array of pointers on device memory. XF_array(j)
points to matrix  which is also on device memory.

Remark 1: only a single rhs is supported.

Remark 2: no singularity is reported during backward solve. If some matrix  failed
the refactorization and  has some zero diagonal, backward solve would compute
NAN. The user has to call cusolverRfBatch_Zero_Pivot to check if refactorization is
successful or not.

parameter Memory In/out Meaning

handle host output the handle to the cuSolverRF library.

P device input the left permutation (often associated
with pivoting). The array size in n.

Q device input the right permutation (often associated
with reordering). The array size in n.

nrhs host input the number right-hand-sides to be solved.

Temp host input the dense matrix that contains temporary
workspace (of size ldt*nrhs).

ldt host input the leading dimension of dense matrix
Temp (ldt >= n).

XF_array device in/out array of pointers of size batchSize,
each pointer points to the dense matrix
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that contains the right-hand-sides F and
solutions X (of size ldxf*nrhs).

ldxf host input the leading dimension of dense matrix XF
(ldxf >= n).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.

CUSOLVER_STATUS_INVALID_VALUE an unsupported value or parameter was passed.

CUSOLVER_STATUS_EXECUTION_FAILED a kernel failed to launch on the GPU.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

2.6.26. cusolverRfBatchZeroPivot()

cusolverStatus_t 
cusolverRfBatchZeroPivot(/* Input */
                    cusolverRfHandle_t handle
                    /* Output (in the host memory) */
                    int *position);

Although  is close to each other, it does not mean  exists
for every j. The user can query which matrix failed LU refactorization by checking
corresponding value in position array. The input parameter position is an integer
array of size batchSize.

The j-th component denotes the refactorization result of matrix  . If position(j) is
-1, the LU refactorization of matrix  is successful. If position(j) is k >= 0, matrix

 is not LU factorizable and its matrix  is zero.

The return value of cusolverRfBatch_Zero_Pivot is
CUSOLVER_STATUS_ZERO_PIVOT if there exists one  which failed LU refactorization.
The user can redo LU factorization to get new permutation P and Q if error code
CUSOLVER_STATUS_ZERO_PIVOT is returned.

parameter MemSpace In/out Meaning

handle host input the handle to the cuSolverRF library.

position host output integer array of size batchSize. The
value of position(j) reports singularity
of matrix Aj, -1 if no structural/
numerical zero, k >= 0 if Aj(k,k) is
either structural zero or numerical zero.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_NOT_INITIALIZED the library was not initialized.



Using the CUSOLVER API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 216

CUSOLVER_STATUS_ZERO_PIVOT a zero pivot was encountered during the
computation.
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Chapter 3.
USING THE CUSOLVERMG API

3.1. General description
This chapter describes how to use the cuSolverMG library API. It is not a reference for
the cuSolverMG API data types and functions; that is provided in subsequent chapters.

3.1.1. Thread Safety
The library is thread-safe only if one cuSolverMG context per thread.

3.1.2. Determinism
Currently all cuSolverMG API routines from a given toolkit version, generate the same
bit-wise results when the following conditions are respected :

‣ all GPUs particating to the computation have the same compute-capabilities and the
same number of SMs.

‣ the tiles size is kept the same between run.

‣ number of logical GPUs is kept the same. The order of GPUs are not important
because all have the same compute-capabilities.

3.1.3. tile strategy
The tiling strategy of cuSolverMG is compatible with ScaLAPACK. The current release
only supports 1-D column block cyclic, column-major PACKED format.

Figure 1.a shows a partition of the matrix A of dimension M_A by N_A. Each column tile
has T_A columns. There are seven columns tiles, labeled as 0,1,2,3,4,5,6, distributed into
three GPUs in a cyclic way, i.e. each GPU takes one column tile in turn. For example,
GPU 0 has column tile 0, 3, 6 (yellow tiles) and GPU 1 takes column tiles next to GPU
0 (blue tiles). Not all GPUs have the same number of tiles, in this example, GPU 0 has
three tiles, others have only two tiles.
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Figure 1.b shows two possilbe formats to store those column tils locally in each GPU.
Left side is called PACKED format and right side is UNPACKED format. PACKED
format aggregates three column tiles in a contiguous memory block while UNPACKED
format distributes these three column tiles into different memory blocks. The only
difference between them is that PACKED format can have a big GEMM call instead of
three GEMM calls in UNPACKED format. So theoretically speaking, PACKED format
can deliver better performance than UNPACKED format. cusolveMG only supports
PACKED format in the API. In order to achieve maximal performance, the user just
needs to choose proper tile size T_A to partition the matrix, not too small, for example
256 or above is enough.

There is another parameter, called LLD_A, to control the leading dimension of the local
matrix in each GPU. LLD_A must be greater or equal to M_A. The purpose of LLD_A
is for better performance of GEMM. For small problem, GEMM is faster if LLD_A is
power of 2. However for big problem, LLD_A does not show significant improvement.
cuSolverMG only supports LLD_A=M_A.

Figure 1 Example of cusolveMG tiling for 3 Gpus

The processing grid in cuSolverMG is a list of GPU IDs, similar to the process ID in
ScaLAPACK. cuSolverMG only supports 1D column block cyclic, so only 1D grid is
supported as well. Suppose deviceId is a list of GPU IDs, both deviceId=1,1,1 and
deviceId=2,1,0 are valid. The former describes three logical devices are selected to
run cuSolverMG routines, and all have the same physical ID, 0. The latter still uses
three logical devices, but each has different physical ID. The current design only accepts
32 logical devices, that is, the lenght of deviceId is less or equal to 32. Figure 1 uses
deviceId=0,1,2.

In practice, the matrix A is distributed into GPUs listed in deviceId. If the user chooses
deviceId=1,1,1, all columns tile are located in GPU 1, this will limit the size of the
problem because of memory capacity of one GPU. Besides, multiGPU routine adds extra
overhead on data communication through off-chip bus, which has big performance
impact if NVLINK is not supported or used. It would be faster to run on single GPU
instead of runing multGPU version with devices of the same GPU ID.
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3.1.4. Global matrix versus local matrix
To operate a submatrix of the matrix A is simple in dense linear algebra, just shift the
pointer to the starting point of the submatrix relative to A. For example, gesvd(10,10,
A) is SVD of A(0:9,0:9). gesvd(10,10, A + 5 + 2*lda ) is SVD of 10-by-10
submatrix starting at A(5,2).

However it is not simple to operate on a submatrix of a distributed matrix because
different starting point of the submatrix changes the distribution of the layout of that
submatrix. ScaLAPACK introduces two parameters, IA and JA, to locate the submatrix.
Figure 2 shows (global) matrix A of dimension M_A by N_A. The sub(A) is a M by N
submatrix of A, starting at IA and JA. Please be aware that IA and JA are base-1.

Given a distributed matrix A, the user can compute eigenvalues of the submatrix sub(A)
by either calling syevd(A, IA, JA) or gathering sub(A) to another distributed matrix
B and calling syevd(B, IB=1, JB=1).

Figure 2 global matrix and local matrix

3.1.5. usage of _bufferSize
There is no cudaMalloc inside cuSolverMG library, the user must allocate the device
workspace explicitly. The routine xyz_bufferSize is to query the size of workspace of
the routine xyz, for example xyz = syevd. To make the API simple, xyz_bufferSize
follows almost the same signature of xyz even it only depends on some parameters,
for example, device pointer is not used to decide the size of workspace. In most cases,
xyz_bufferSize is called in the beginning before actual device data (pointing by a
device pointer) is prepared or before the device pointer is allocated. In such case, the
user can pass null pointer to xyz_bufferSize without breaking the functionality.

xyz_bufferSize returns bufferSize for each device. The size is number of elements, not
number of bytes.
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3.1.6. synchronization
All routines are in synchronous (blocking call) manner. The data is ready after the
routine. However the user has to prepare the distributed data before calling the
routine. For example, if the user has multiple streams to setup the matrix, stream
synchronization or device synchronization is necessary to guarantee distributed matrix
is ready.

3.1.7. context switch
The user does not need to restore the device by cudaSetDevice() after each
cuSolverMG call. All routines set the device back to what the caller has.

3.1.8. NVLINK
The peer-to-peer communication via NVLINK can dramatically reduce the overhead of
data exchange among GPUs. cuSolverMG does not enable NVLINK implicitly, instead,
it gives this option back to the user, not to interfere other libraries. The example code H.1
shows how to enable peer-to-peer communication.

3.2. cuSolverMG Types Reference

3.2.1. cuSolverMG Types
The float, double, cuComplex, and cuDoubleComplex data types are supported. The
first two are standard C data types, while the last two are exported from cuComplex.h.
In addition, cuSolverMG uses some familiar types from cuBlas.

3.2.2. cusolverMgHandle_t
This is a pointer type to an opaque cuSolverMG context, in which the user must
initialize by calling cusolverMgCreate() prior to calling any other library function.
An un-initialized handle object will lead to unexpected behavior, including crashes
of cuSolverMG. The handle created and returned by cusolverMgCreate() must be
passed to every cuSolverMG function.

3.2.3. cusolverMgGridMapping_t
The type indicates layout of grids.

Value Meaning

CUDALIBMG_GRID_MAPPING_ROW_MAJOR row-major ordering.

CUDALIBMG_GRID_MAPPING_COL_MAJOR column-major ordering.



Using the CUSOLVERMG API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 221

3.2.4. cudaLibMgGrid_t
opaque structure of the distributed grid.

3.2.5. cudaLibMgMatrixDesc_t
opaque structure of the distributed matrix descriptor.

3.3. Helper Function Reference

3.3.1. cusolverMgCreate()

cusolverStatus_t 
cusolverMgCreate(cusolverMgHandle_t *handle)

This function initializes the cuSolverMG library and creates a handle on the cuSolverMG
context. It must be called before any other cuSolverMG API function is invoked. It
allocates hardware resources necessary for accessing the GPU.
Output

handle the pointer to the handle to the cuSolverMG
context.

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

3.3.2. cusolverMgDestroy()

cusolverStatus_t 
cusolverMgDestroy( cusolverMgHandle_t handle)

This function releases CPU-side resources used by the cuSolverMG library.
Input

handle the handle to the cuSolverMG context.

Status Returned

CUSOLVER_STATUS_SUCCESS the shutdown succeeded.



Using the CUSOLVERMG API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 222

3.3.3. cusolverMgDeviceSelect()

cusolverStatus_t
cusolverMgDeviceSelect(
    cusolverMgHandle_t handle,
    int nbDevices, 
    int deviceId[] )

This function registers a subset of devices (GPUs) to cuSolverMG handle. Such subset
of devices is used in subsequent API calls. The array deviceId contains a list of
logical device ID. The term logical means repeated device ID are permitted. For
example, suppose the user has only one GPU in the system, say device 0, if he sets
deviceId=0,0,0, then cuSolverMG treats them as three independent GPUs, one
stream each, so concurrent kernel launches still hold. The current design only supports
up to 32 logical devices.
Input

handle the pointer to the handle to the cuSolverMG
context.

nbDevices the number of logical devices

deviceId an integer array of size nbDevices

Status Returned

CUSOLVER_STATUS_SUCCESS the initialization succeeded.

CUSOLVER_STATUS_INVALID_VALUE nbDevices must be greater than zero, and less or
equal to 32.

CUSOLVER_STATUS_ALLOC_FAILED the resources could not be allocated.

CUSOLVER_STATUS_INTERNAL_ERROR internal error occurs when setting internal streams
and events.

3.3.4. cusolverMgCreateDeviceGrid()

cusolverStatus_t 
cusolverMgCreateDeviceGrid(
    cusolverMgGrid_t* grid,
    int32_t numRowDevices,
    int32_t numColDevices,
    const int32_t deviceId[],
    cusolverMgGridMapping_t mapping)

This function setups grid of devices.

Only 1-D column block cyclic is supported, so numRowDevices must be equal to 1.

WARNING: cusolverMgCreateDeviceGrid() must be consistent with
cusolverMgDeviceSelect(), i.e. numColDevices must be equal to nbDevices in
cusolverMgDeviceSelect().

parameter Memory In/out Meaning
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grid host output the pointer to the opaque structure.

numRowDevices host input number of devices in the row.

numColDevices host input number of devices in the column.

deviceId host input integer array of size numColDevices,
containing device IDs.

mapping host input row-major or column-major ordering.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE numColDevices is not greater than 0.
numRowDevices is not 1.

3.3.5. cusolverMgDestroyGrid()

cusolverStatus_t 
cusolverMgDestroyGrid(
    cusolverMgGrid_t grid)

This function releases resources of a grid.

parameter Memory In/out Meaning

grid host input/output the pointer to the opaque structure.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

3.3.6. cusolverMgCreateMatDescr()

cusolverStatus_t 
cusolverMgCreateMatrixDesc(
    cusolverMgMatrixDesc_t * desc,
    int64_t numRows,
    int64_t numCols,
    int64_t rowBlockSize,
    int64_t colBlockSize,
    cudaDataType_t dataType,
    const cusolverMgGrid_t grid)

This function setups the matrix descriptor desc.

Only 1-D column block cyclic is supported, so numRows must be equal to
rowBlockSize.

parameter Memory In/out Meaning

desc host output the matrix descriptor.

numRows host input the number of rows of global A.

numCols host input the number of columns of global A.
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rowBlockSize host input the number of rows per tile.

colBlockSize host input the number of columns per tile.

dataType host input data type of the matrix.

grid host input the pointer to structure of grid.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE numRows, numCols, or rowBlockSize or
colBlockSize is less than 0. numRows is not
equal to rowBlockSize.

3.3.7. cusolverMgDestroyMatrixDesc()

cusolverStatus_t 
cusolverMgDestroyMatrixDesc(
    cusolverMgMatrixDesc_t desc)

This function releases the matrix descriptor desc.

parameter Memory In/out Meaning

desc host input/output the matrix descriptor.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

3.4. Dense Linear Solver Reference
This chapter describes linear solver API of cuSolverMG, including LU with partial
pivoting.
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3.4.1. cusolverMgGetrf()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverMgGetrf_bufferSize(
    cusolverMgHandle_t handle,
    int M,
    int N,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    int *array_d_IPIV[],
    cudaDataType_t computeType,
    int64_t *lwork);

cusolverStatus_t 
cusolverMgGetrf(
    cusolverMgHandle_t handle,
    int M,
    int N,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    int *array_d_IPIV[],
    cudaDataType_t computeType,
    void *array_d_work[],
    int64_t lwork,
    int *info );

This function computes the LU factorization of a M×N matrix

where A is a M×N matrix, P is a permutation matrix, L is a lower triangular matrix with
unit diagonal, and U is an upper triangular matrix.

The user has to provide device working space in array_d_work. array_d_work is a
host pointer array of dimension G, where G is number of devices. array_d_work[j]
is a device pointer pointing to a device memory in j-th device. The data type of
array_d_work[j] is computeType. The size of array_d_work[j] is lwork which is
number of elements per device, returned by cusolverMgGetrf_bufferSize().

If LU factorization failed, i.e. matrix A (U) is singular, The output parameter info=i
indicates U(i,i) = 0.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle).

If array_d_IPIV is null, no pivoting is performed. The factorization is A=L*U, which is
not numerically stable.

array_d_IPIV must be consistent with array_d_A, i.e. JA is the first column of
sub(A), also the first column of sub(IPIV).
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No matter LU factorization failed or not, the output parameter array_d_IPIV contains
pivoting sequence, row i is interchanged with row array_d_IPIV(i).

The generic API has three different types, dataTypeA is data type of the matrix
A, computeType is compute type of the operation and data type of the workspace
(array_d_work) descrA conatins dataTypeA, so there is no explicit parameter of
dataTypeA. cusolverMgGetrf only supports the following four combinations.

Appendix I provides an example of cusolverMgGetrf.
valid combination of data type and compute type

DataTypeA ComputeType Meaning

CUDA_R_32F CUDA_R_32F SGETRF

CUDA_R_64F CUDA_R_64F DGETRF

CUDA_C_32F CUDA_C_32F CGETRF

CUDA_C_64F CUDA_C_64F ZGETRF

Remark 1: tile size TA must be less or equal to 512.
API of getrf

parameter Memory In/out Meaning

handle host input handle to the cuSolverMg library context.

M host input number of rows of matrix sub(A).

N host input number of columns of matrix sub(A).

array_d_A host in/out a host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M * N.
On exit, sub(A) contains the factors L
and U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input matrix descriptor for the distributed
matrix A.

array_d_IPIV host output a host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of size min(M,N).
sub(IPIV) contains pivot indices.

computeType host input Data type used for computation.

array_d_work host in/out a host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input size of array_d_work[j], returned by
cusolverMgGetrf_bufferSize. lwork
denotes number of elements, not number
of bytes.
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info host output if info = 0, the LU factorization is
successful. if info = -i, the i-th
parameter is wrong (not counting handle).
if info = i, the U(i,i) = 0.

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (M,N<0).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

3.4.2. cusolverMgGetrs()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverMgGetrs_bufferSize(
    cusolverMgHandle_t handle,
    cublasOperation_t TRANS,
    int N,
    int NRHS,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    int *array_d_IPIV[],
    void *array_d_B[],
    int IB,
    int JB,
    cudaLibMgMatrixDesc_t descrB,
    cudaDataType_t computeType,
    int64_t *lwork);

cusolverStatus_t 
cusolverMgGetrs(
    cusolverMgHandle_t handle,
    cublasOperation_t TRANS,
    int N,
    int NRHS,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    int *array_d_IPIV[],
    void *array_d_B[],
    int IB,
    int JB,
    cudaLibMgMatrixDesc_t descrB,
    cudaDataType_t computeType,
    void *array_d_work[],
    int64_t lwork,
    int *info );

This function solves a linear system of multiple right-hand sides
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where A is a N×N matrix, and was LU-factored by getrf, that is, lower trianular part of
A is L, and upper triangular part (including diagonal elements) of A is U. B is a N×NRHS
right-hand side matrix. The solution matirx X overwrites the right-hand-side matrix B.

The input parameter TRANS is defined by

The user has to provide device working space in array_d_work. array_d_work is a
host pointer array of dimension G, where G is number of devices. array_d_work[j]
is a device pointer pointing to a device memory in j-th device. The data type of
array_d_work[j] is computeType. The size of array_d_work[j] is lwork which is
number of elements per device, returned by cusolverMgGetrs_bufferSize().

If array_d_IPIV is null, no pivoting is performed. Otherwise, array_d_IPIV is an
output of getrf. It contains pivot indices, which are used to permutate right-hand sides.

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle).

The generic API has three different types, dataTypeA is data type of the matrix
A, dataTypeB is data type of the matrix B, and computeType is compute type of
the operation and data type of the workspace (array_d_work) descrA conatins
dataTypeA, so there is no explicit parameter of dataTypeA. descrB conatins
dataTypeB, so there is no explicit parameter of dataTypeB. cusolverMgGetrs only
supports the following four combinations.
valid combination of data type and compute type

DataTypeA DataTypeB ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SGETRS

CUDA_R_64F CUDA_R_64F CUDA_R_64F DGETRS

CUDA_C_32F CUDA_C_32F CUDA_C_32F CGETRS

CUDA_C_64F CUDA_C_64F CUDA_C_64F ZGETRS

Remark 1: tile size TA must be less or equal to 512.

Remark 2: only support TRANS=CUBLAS_OP_N.

Appendix I provides an example of cusolverMgGetrs.
API of getrs

parameter Memory In/out Meaning

handle host input handle to the cuSolverMG library context.

TRANS host input operation op(A) that is non- or (conj.)
transpose.

N host input number of rows and columns of matrix
sub(A).

NRHS host input number of columns of matrix sub(B).
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array_d_A host input a host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension M * N.
sub(A) contains the factors L and U.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input matrix descriptor for the distributed
matrix A.

array_d_IPIV host input a host pointer array of dimension G.
it contains a distributed integer array
containing sub(IPIV) of dimension
min(M,N). sub(IPIV) contains pivot
indices.

array_d_B host in/out a host pointer array of dimension G.
It contains a distributed <type> array
containing sub(B) of dimension N *
NRHS.

IB host input The row index in the global array B
indicating the first row of sub(B).

JB host input The column index in the global array B
indicating the first column of sub(B).

descrB host input matrix descriptor for the distributed
matrix B.

computeType host input Data type used for computation.

array_d_work host in/out a host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input size of array_d_work[j], returned by
cusolverMgGetrs_bufferSize. lwork
denotes number of elements, not number
of bytes.

info host output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle).

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (N<0 or NRHS<0).

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.

3.5. Dense Eigenvalue Solver Reference
This chapter describes eigenvalue solver API of cuSolverMG.
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3.5.1. cusolverMgSyevd()
The helper functions below can calculate the sizes needed for pre-allocated buffer.

cusolverStatus_t 
cusolverMgSyevd_bufferSize(
    cusolverMgHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int N,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    void *W,
    cudaDataType_t dataTypeW,
    cudaDataType_t computeType,
    int64_t *lwork
    );

cusolverStatus_t 
cusolverMgSyevd(
    cusolverMgHandle_t handle,
    cusolverEigMode_t jobz,
    cublasFillMode_t uplo,
    int N,
    void *array_d_A[],
    int IA,
    int JA,
    cudaLibMgMatrixDesc_t descrA,
    void *W,
    cudaDataType_t dataTypeW,
    cudaDataType_t computeType,
    void *array_d_work[],
    int64_t lwork,
    int *info );

This function computes eigenvalues and eigenvectors of a symmetric (Hermitian) N×N
matrix A. The standard symmetric eigenvalue problem is

where Λ is a real N×N diagonal matrix. V is an N×N unitary matrix. The diagonal elements
of Λ are the eigenvalues of A in ascending order.

cusolverMgSyevd returns the eigenvalues in W and overwrites the eigenvectors in A. W
is a host 1×N vector.

The generic API has three different types, dataTypeA is data type of the matrix
A, dataTypeW is data type of the vector W, and computeType is compute type of
the operation and data type of the workspace (array_d_work) descrA conatins
dataTypeA, so there is no explicit parameter of dataTypeA. cusolverMgSyevd only
supports the following four combinations.
valid combination of data type and compute type

DataTypeA DataTypeW ComputeType Meaning

CUDA_R_32F CUDA_R_32F CUDA_R_32F SSYEVD

CUDA_R_64F CUDA_R_64F CUDA_R_64F DSYEVD



Using the CUSOLVERMG API

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 231

CUDA_C_32F CUDA_R_32F CUDA_C_32F CHEEVD

CUDA_C_64F CUDA_R_64F CUDA_C_64F ZHEEVD

The user has to provide device working space in array_d_work. array_d_work is a
host pointer array of dimension G, where G is number of devices. array_d_work[j]
is a device pointer pointing to a device memory in j-th device. The data type of
array_d_work[j] is computeType. The size of array_d_work[j] is lwork which is
number of elements per device, returned by cusolverMgSyevd_bufferSize().

array_d_A is also a host pointer array of dimension G. array_d_A[j] is a device
pointer pointing to a device memory in j-th device. The data type of array_d_A[j] is
dataTypeA. The size of array_d_A[j] is about N*TA*(blocks per device). The
user has to prepare array_d_A manually (please check the samples in Appendix H).

If output parameter info = -i (less than zero), the i-th parameter is wrong (not
counting handle). If info = i (greater than zero), i off-diagonal elements of an
intermediate tridiagonal form did not converge to zero.

if jobz = CUSOLVER_EIG_MODE_VECTOR, A contains the orthonormal eigenvectors
of the matrix A. The eigenvectors are computed by a divide and conquer algorithm.

Remark 1: only CUBLAS_FILL_MODE_LOWER is supported, so the user has to prepare
lower triangle of A.

Remark 2: only IA=1 and JA=1 are supported.

Remark 3: tile size TA must be less or equal to 1024. To achieve best performance, TA
should be 256 or 512.

Appendix H provides three examples of cusolverMgSyevd.
API of syevd

parameter Memory In/out Meaning

handle host input handle to the cuSolverMG library context.

jobz host input specifies options to either compute
eigenvalue only or compute eigen-pair:
jobz = CUSOLVER_EIG_MODE_NOVECTOR
: Compute eigenvalues only; jobz =
CUSOLVER_EIG_MODE_VECTOR : Compute
eigenvalues and eigenvectors.

uplo host input specifies which part of A is stored.
uplo = CUBLAS_FILL_MODE_LOWER:
Lower triangle of A is stored. uplo
= CUBLAS_FILL_MODE_UPPER:
Upper triangle of A is stored. Only
CUBLAS_FILL_MODE_LOWER is supported.

N host input number of rows (or columns) of matrix
sub(A).

array_d_A host in/out a host pointer array of dimension G.
It contains a distributed <type> array
containing sub(A) of dimension N * N.
If uplo = CUBLAS_FILL_MODE_UPPER,
the leading N-by-N upper triangular part
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of sub(A) contains the upper triangular
part of the matrix sub(A). If uplo =
CUBLAS_FILL_MODE_LOWER, the leading
N-by-N lower triangular part of sub(A)
contains the lower triangular part of
the matrix sub(A). On exit, if jobz =
CUSOLVER_EIG_MODE_VECTOR, and info
= 0, sub(A) contains the orthonormal
eigenvectors of the matrix sub(A). If
jobz = CUSOLVER_EIG_MODE_NOVECTOR,
the contents of A are destroyed.

IA host input The row index in the global array A
indicating the first row of sub(A).

JA host input The column index in the global array A
indicating the first column of sub(A).

descrA host input matrix descriptor for the distributed
matrix A.

W host output a real array of dimension N. The
eigenvalue values of sub(A), in ascending
order ie, sorted so that W(i) <= W(i+1).

dataTypeW host input Data type of the vector W.

computeType host input Data type used for computation.

array_d_work host in/out a host pointer array of dimension G.
array_d_work[j] points to a device
working space in j-th device, <type>
array of size lwork.

lwork host input size of array_d_work[j], returned by
cusolverMgSyevd_bufferSize. lwork
denotes number of elements, not number
of bytes.

info host output if info = 0, the operation is successful.
if info = -i, the i-th parameter is
wrong (not counting handle). if info =
i (> 0), info indicates i off-diagonal
elements of an intermediate tridiagonal
form did not converge to zero;

Status Returned

CUSOLVER_STATUS_SUCCESS the operation completed successfully.

CUSOLVER_STATUS_INVALID_VALUE invalid parameters were passed (N<0,
or lda<max(1,N), or jobz is not
CUSOLVER_EIG_MODE_NOVECTOR or
CUSOLVER_EIG_MODE_VECTOR, or uplo is not
CUBLAS_FILL_MODE_LOWER, or IA and JA are not
1, or N is bigger than dimension of global A, or the
combination of dataType and computeType is not
valid.

CUSOLVER_STATUS_INTERNAL_ERROR an internal operation failed.
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Appendix A.
CUSOLVERRF EXAMPLES

A.1. cuSolverRF In-memory Example
This is an example in the C programming language of how to use the standard routines
in the cuSolverRF library. We focus on solving the set of linear systems
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but we change the indexing from one- to zero-based to follow the C programming
language. The example begins with the usual includes and main()

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include "cusolverRf.h"

#define TEST_PASSED  0
#define TEST_FAILED  1

int main (void){
    /* matrix A */
    int n;
    int nnzA;
    int *Ap=NULL;
    int *Ai=NULL;
    double *Ax=NULL;
    int *d_Ap=NULL;
    int *d_Ai=NULL;
    double *d_rAx=NULL;
    /* matrices L and U */
    int nnzL, nnzU;
    int *Lp=NULL;
    int *Li=NULL;
    double* Lx=NULL;
    int *Up=NULL;
    int *Ui=NULL;
    double* Ux=NULL;
    /* reordering matrices */
    int *P=NULL;
    int *Q=NULL;
    int * d_P=NULL;
    int * d_Q=NULL;
    /* solution and rhs */
    int nrhs; //# of rhs for each system (currently only =1 is supported) 
    double *d_X=NULL;
    double *d_T=NULL;
    /* cuda */
    cudaError_t cudaStatus;
    /* cuolverRf */
    cusolverRfHandle_t gH=NULL;
    cusolverStatus_t status;
    /* host sparse direct solver */
    /* ... */
    /* other variables */
    int tnnzL, tnnzU;
    int *tLp=NULL;
    int *tLi=NULL;
    double *tLx=NULL;
    int *tUp=NULL;
    int *tUi=NULL;
    double *tUx=NULL;
    double t1, t2; 
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Then we initialize the library.

    /* ASSUMPTION: recall that we are solving a set of linear systems 
       A_{i} x_{i} = f_{i}  for i=0,...,k-1 
       where the sparsity pattern of the coefficient matrices A_{i} 
       as well as the reordering to minimize fill-in and the pivoting 
       used during the LU factorization remain the same. */
 

    /* Step 1: solve the first linear system (i=0) on the host,
               using host sparse direct solver, which involves
               full LU factorization and solve. */
    /* ... */

    /* Step 2: interface to the library by extracting the following 
               information from the first solve:
               a) triangular factors L and U
               b) pivoting and reordering permutations P and Q
               c) also, allocate all the necessary memory */
    /* ... */ 

    /* Step 3: use the library to solve subsequent (i=1,...,k-1) linear systems
    a) the  library setup (called only once) */
    //create handle
    status = cusolverRfCreate(&gH);
    if (status != CUSOLVER_STATUS_SUCCESS){
        printf ("[cusolverRf status \%d]\n",status);
        return TEST_FAILED;
    }

    //set fast mode 
    status = cusolverRfSetResetValuesFastMode(gH,GLU_RESET_VALUES_FAST_MODE_ON);
    if (status != CUSOLVER_STATUS_SUCCESS){
        printf ("[cusolverRf status \%d]\n",status);
        return TEST_FAILED;
    }
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Call refactorization and solve.

    //assemble internal data structures (you should use the coeffcient matrix A 
    //corresponding to the second (i=1) linear system in this call) 
    t1 = cusolver_test_seconds();
    status = cusolverRfSetupHost(n, nnzA, Ap, Ai, Ax, 
                               nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q, gH);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status \%d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfSetupHost time = \%f (s)\n", t2-t1);

    //analyze available parallelism
    t1 = cusolver_test_seconds();
    status = cusolverRfAnalyze(gH);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status \%d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfAnalyze time = \%f (s)\n", t2-t1);

    /* b) The  library subsequent (i=1,...,k-1) LU re-factorization 
          and solve (called multiple times). */
    for (i=1; i<k; i++){ 
        //LU re-factorization
        t1 = cusolver_test_seconds();
        status = cusolverRfRefactor(gH);
        cudaStatus = cudaDeviceSynchronize();
        t2 = cusolver_test_seconds();
        if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
            printf ("[cusolverRF status \%d]\n",status);
            return TEST_FAILED;
        }
        printf("cuSolverReRefactor time = \%f (s)\n", t2-t1);   

        //forward and backward solve
        t1 = cusolver_test_seconds();
        status = cusolverRfSolve(gH, d_P, d_Q, nrhs, d_T, n, d_X, n);
        cudaStatus = cudaDeviceSynchronize();
        t2 = cusolver_test_seconds();
        if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
            printf ("[cusolverRf status \%d]\n",status);
            return TEST_FAILED;
        }
        printf("cusolverRfSolve time = \%f (s)\n", t2-t1);   
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Extract the results and return.

        // extract the factors (if needed)
        status = cusolverRfExtractSplitFactorsHost(gH, &tnnzL, &tLp, &tLi,
 &tLx, 
                                                &tnnzU, &tUp, &tUi, &tUx);
        if(status != CUSOLVER_STATUS_SUCCESS){
            printf ("[cusolverRf status \%d]\n",status);
            return TEST_FAILED;
        }  
        /*
        //print
        int row, j;
        printf("printing L\n");
        for (row=0; row<n; row++){
            for (j=tLp[row]; j<tLp[row+1]; j++){
                printf("\%d,\%d,\%f\n",row,tLi[j],tLx[j]); 
            } 
        }
        printf("printing U\n");
        for (row=0; row<n; row++){
            for (j=tUp[row]; j<tUp[row+1]; j++){
                printf("\%d,\%d,\%f\n",row,tUi[j],tUx[j]); 
            } 
        }
        */

        /* perform any other operations based on the solution */
        /* ... */

        /* check if done */
        /* ... */

        /* proceed to solve the next linear system */
        // update the coefficient matrix using reset values
        // (assuming that the new linear system, in other words,
        //  new values are already on the GPU in the array d_rAx)
        t1 = cusolver_test_seconds();
        status = cusolverRfResetValues(n,nnzA,d_Ap,d_Ai,d_rAx,d_P,d_Q,gH);
        cudaStatus = cudaDeviceSynchronize();
        t2 = cusolver_test_seconds();
        if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess))
 {
            printf ("[cusolverRf status \%d]\n",status);
            return TEST_FAILED;
        }
        printf("cusolverRfResetValues time = \%f (s)\n", t2-t1);
    }

    /* free memory and exit */
    /* ... */
    return TEST_PASSED;
}

A.2. cuSolverRF-batch Example
This chapter provides an example in the C programming language of how to use the
batched routines in the cuSolverRF library. We focus on solving the set of linear systems
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but we change the indexing from one- to zero-based to follow the C programming
language. The first part is the usual includes and main definition

#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include "cusolverRf.h"

#define TEST_PASSED  0
#define TEST_FAILED  1

int main (void){
    /* matrix A */
    int batchSize;
    int n;
    int nnzA;
    int *Ap=NULL;
    int *Ai=NULL;
    //array of pointers to the values of each matrix in the batch (of size
    //batchSize) on the host
    double **Ax_array=NULL;
    //For example, if Ax_batch is the array (of size batchSize*nnzA) containing 
    //the values of each matrix in the batch written contiguosly one matrix  
    //after another on the host, then Ax_array[j] = &Ax_batch[nnzA*j];
    //for j=0,...,batchSize-1.
    double *Ax_batch=NULL; 
    int *d_Ap=NULL;
    int *d_Ai=NULL;
    //array of pointers to the values of each matrix in the batch (of size
    //batchSize) on the device
    double **d_Ax_array=NULL;
    //For example, if d_Ax_batch is the array (of size batchSize*nnzA)
 containing 
    //the values of each matrix in the batch written contiguosly one matrix  
    //after another on the device, then d_Ax_array[j] = &d_Ax_batch[nnzA*j];
    //for j=0,...,batchSize-1.
    double *d_Ax_batch=NULL; 
    /* matrices L and U */
    int nnzL, nnzU;
    int *Lp=NULL;
    int *Li=NULL;
    double* Lx=NULL;
    int *Up=NULL;
    int *Ui=NULL;
    double* Ux=NULL;
    /* reordering matrices */
    int *P=NULL;
    int *Q=NULL;
    int *d_P=NULL;
    int *d_Q=NULL;
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Next we initialize the data needed and the create library handles

    /* solution and rhs */
    int nrhs; //# of rhs for each system (currently only =1 is supported) 
    //temporary storage (of size 2*batchSize*n*nrhs)
    double *d_T=NULL;
    //array (of size batchSize*n*nrhs) containing the values of each rhs in 
    //the batch written contiguously one rhs after another on the device
    double **d_X_array=NULL;
    //array (of size batchSize*n*nrhs) containing the values of each rhs in 
    //the batch written contiguously one rhs after another on the host
    double **X_array=NULL;
    /* cuda */
    cudaError_t cudaStatus;
    /* cusolverRf */
    cusolverRfHandle_t gH=NULL;
    cusolverStatus_t status;
    /* host sparse direct solver */
    ...
    /* other variables */
    double t1, t2; 

    /* ASSUMPTION: 
       recall that we are solving a batch of linear systems 
       A_{j} x_{j} = f_{j}  for j=0,...,batchSize-1 
       where the sparsity pattern of the coefficient matrices A_{j} 
       as well as the reordering to minimize fill-in and the pivoting 
       used during the LU factorization remain the same. */
 

    /* Step 1: solve the first linear system (j=0) on the host,
               using host sparse direct solver, which involves
               full LU factorization and solve. */
    /* ... */

    /* Step 2: interface to the library by extracting the following 
               information from the first solve:
               a) triangular factors L and U
               b) pivoting and reordering permutations P and Q
               c) also, allocate all the necessary memory */
    /* ... */           

    /* Step 3: use the library to solve the remaining (j=1,...,batchSize-1) 
               linear systems.
    a) the library setup (called only once) */
    //create handle
    status = cusolverRfcreate(&gH);
    if (status != CUSOLVER_STATUS_SUCCESS){
        printf ("[cusolverRf status %d]\n",status);
        return TEST_FAILED;
    }
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We call the batch solve method and return.

    //assemble internal data structures 
    t1 = cusolver_test_seconds();
    status = cusolverRfBatchSetupHost(batchSize, n, nnzA, Ap, Ai, Ax_array, 
                                    nnzL, Lp, Li, Lx, nnzU, Up, Ui, Ux, P, Q,
 gH);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status %d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfBatchSetupHost time = %f (s)\n", t2-t1);

    //analyze available parallelism
    t1 = cusolver_test_seconds();
    status = cusolverRfBatchAnalyze(gH);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status %d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfBatchAnalyze time = %f (s)\n", t2-t1);

    /* b) The library subsequent (j=1,...,batchSize-1) LU re-factorization 
          and solve (may be called multiple times). For the subsequent batches
          the values can be reset using cusolverRfBatch_reset_values_routine. */
    //LU re-factorization
    t1 = cusolver_test_seconds();
    status = cusolverRfBatchRefactor(gH);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status %d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfBatchRefactor time = %f (s)\n", t2-t1);   

    //forward and backward solve
    t1 = cusolver_test_seconds();
    status = cusolverRfBatchSolve(gH, d_P, d_Q, nrhs, d_T, n, d_X_array, n);
    cudaStatus = cudaDeviceSynchronize();
    t2 = cusolver_test_seconds();
    if ((status != CUSOLVER_STATUS_SUCCESS) || (cudaStatus != cudaSuccess)) {
        printf ("[cusolverRf status %d]\n",status);
        return TEST_FAILED;
    }
    printf("cusolverRfBatchSolve time = %f (s)\n", t2-t1);   
    
    /* free memory and exit */
    /* ... */
    return TEST_PASSED;
}
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Appendix B.
CSR QR BATCH EXAMPLES

B.1. Batched Sparse QR example 1
This chapter provides a simple example in the C programming language of how to use
batched sparse QR to solver a set of linear systems

All matrices  are small perturbations of

All right-hand side vectors  are small perturbation of the Matlab vector 'ones(4,1)'.

We assume device memory is big enough to compute all matrices in one pass.
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The usual includes and main definition

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cusolverSp.h>
#include <cuda_runtime_api.h>

int main(int argc, char*argv[])
{
    cusolverSpHandle_t cusolverH = NULL;
// GPU does batch QR
    csrqrInfo_t info = NULL;
    cusparseMatDescr_t descrA = NULL;

    cusparseStatus_t cusparse_status = CUSPARSE_STATUS_SUCCESS;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;

// GPU does batch QR
// d_A is CSR format, d_csrValA is of size nnzA*batchSize
// d_x is a matrix of size batchSize * m
// d_b is a matrix of size batchSize * m
    int *d_csrRowPtrA = NULL;
    int *d_csrColIndA = NULL;
    double *d_csrValA = NULL;
    double *d_b = NULL; // batchSize * m
    double *d_x = NULL; // batchSize * m

    size_t size_qr = 0;
    size_t size_internal = 0;
    void *buffer_qr = NULL; // working space for numerical factorization

/*      | 1                |
 *  A = |       2          |
 *      |            3     |
 *      | 0.1  0.1  0.1  4 |
 *  CSR of A is based-1
 *
 *  b = [1 1 1 1]
 */ 
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Set up the library handle and data

    const int m = 4 ;
    const int nnzA = 7;
    const int csrRowPtrA[m+1]  = { 1, 2, 3, 4, 8};
    const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};
    const double csrValA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
    const double b[m] = {1.0, 1.0, 1.0, 1.0};
    const int batchSize = 17;

    double *csrValABatch = (double*)malloc(sizeof(double)*nnzA*batchSize);
    double *bBatch       = (double*)malloc(sizeof(double)*m*batchSize);
    double *xBatch       = (double*)malloc(sizeof(double)*m*batchSize);
    assert( NULL != csrValABatch );
    assert( NULL != bBatch );
    assert( NULL != xBatch );

// step 1: prepare Aj and bj on host
//  Aj is a small perturbation of A
//  bj is a small perturbation of b
//  csrValABatch = [A0, A1, A2, ...]
//  bBatch = [b0, b1, b2, ...]
    for(int colidx = 0 ; colidx < nnzA ; colidx++){
        double Areg = csrValA[colidx];
        for (int batchId = 0 ; batchId < batchSize ; batchId++){
            double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
            csrValABatch[batchId*nnzA + colidx] = Areg + eps;
        }  
    }

    for(int j = 0 ; j < m ; j++){
        double breg = b[j];
        for (int batchId = 0 ; batchId < batchSize ; batchId++){
            double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
            bBatch[batchId*m + j] = breg + eps;
        }  
    }

// step 2: create cusolver handle, qr info and matrix descriptor
    cusolver_status = cusolverSpCreate(&cusolverH);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

    cusparse_status = cusparseCreateMatDescr(&descrA); 
    assert(cusparse_status == CUSPARSE_STATUS_SUCCESS);

    cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // base-1

    cusolver_status = cusolverSpCreateCsrqrInfo(&info);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);



CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 244

Call the solver

// step 3: copy Aj and bj to device
    cudaStat1 = cudaMalloc ((void**)&d_csrValA   , sizeof(double) * nnzA *
 batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_csrColIndA, sizeof(int) * nnzA);
    cudaStat3 = cudaMalloc ((void**)&d_csrRowPtrA, sizeof(int) * (m+1));
    cudaStat4 = cudaMalloc ((void**)&d_b         , sizeof(double) * m *
 batchSize);
    cudaStat5 = cudaMalloc ((void**)&d_x         , sizeof(double) * m *
 batchSize);
    assert(cudaStat1 == cudaSuccess);
    assert(cudaStat2 == cudaSuccess);
    assert(cudaStat3 == cudaSuccess);
    assert(cudaStat4 == cudaSuccess);
    assert(cudaStat5 == cudaSuccess);

    cudaStat1 = cudaMemcpy(d_csrValA   , csrValABatch, sizeof(double) * nnzA *
 batchSize, cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_csrColIndA, csrColIndA, sizeof(int) * nnzA,
 cudaMemcpyHostToDevice);
    cudaStat3 = cudaMemcpy(d_csrRowPtrA, csrRowPtrA, sizeof(int) * (m+1),
 cudaMemcpyHostToDevice);
    cudaStat4 = cudaMemcpy(d_b, bBatch, sizeof(double) * m * batchSize,
 cudaMemcpyHostToDevice);
    assert(cudaStat1 == cudaSuccess);
    assert(cudaStat2 == cudaSuccess);
    assert(cudaStat3 == cudaSuccess);
    assert(cudaStat4 == cudaSuccess);

// step 4: symbolic analysis
    cusolver_status = cusolverSpXcsrqrAnalysisBatched(
        cusolverH, m, m, nnzA,
        descrA, d_csrRowPtrA, d_csrColIndA,
        info);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 5: prepare working space
    cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
         cusolverH, m, m, nnzA,
         descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
         batchSize,
         info,
         &size_internal,
         &size_qr);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

    printf("numerical factorization needs internal data %lld bytes\n",
 (long long)size_internal);      
    printf("numerical factorization needs working space %lld bytes\n",
 (long long)size_qr);      

    cudaStat1 = cudaMalloc((void**)&buffer_qr, size_qr);
    assert(cudaStat1 == cudaSuccess);



CSR QR Batch Examples

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 245

Get results back

// step 6: numerical factorization
// assume device memory is big enough to compute all matrices.
    cusolver_status = cusolverSpDcsrqrsvBatched(
        cusolverH, m, m, nnzA,
        descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
        d_b, d_x,
        batchSize,
        info,
        buffer_qr);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 7: check residual 
// xBatch = [x0, x1, x2, ...]
    cudaStat1 = cudaMemcpy(xBatch, d_x, sizeof(double)*m*batchSize,
 cudaMemcpyDeviceToHost);
    assert(cudaStat1 == cudaSuccess);

    const int baseA = (CUSPARSE_INDEX_BASE_ONE ==
 cusparseGetMatIndexBase(descrA))? 1:0 ;

    for(int batchId = 0 ; batchId < batchSize; batchId++){
        // measure |bj - Aj*xj|
        double *csrValAj = csrValABatch + batchId * nnzA;
        double *xj = xBatch + batchId * m;
        double *bj = bBatch + batchId * m;
        // sup| bj - Aj*xj|
        double sup_res = 0;
        for(int row = 0 ; row < m ; row++){
            const int start = csrRowPtrA[row ] - baseA;
            const int end   = csrRowPtrA[row+1] - baseA;
            double Ax = 0.0; // Aj(row,:)*xj
            for(int colidx = start ; colidx < end ; colidx++){
                const int col = csrColIndA[colidx] - baseA;
                const double Areg = csrValAj[colidx];
                const double xreg = xj[col];
                Ax = Ax + Areg * xreg;
            }
            double r = bj[row] - Ax;
            sup_res = (sup_res > fabs(r))? sup_res : fabs(r);
        }
        printf("batchId %d: sup|bj - Aj*xj| = %E \n", batchId, sup_res);
    }

    for(int batchId = 0 ; batchId < batchSize; batchId++){
        double *xj = xBatch + batchId * m;
        for(int row = 0 ; row < m ; row++){
            printf("x%d[%d] = %E\n", batchId, row, xj[row]);
        } 
        printf("\n");
    }

    return 0;
}

B.2. Batched Sparse QR example 2
This is the same as example 1 in appendix C except that we assume device memory is
not enough, so we need to cut 17 matrices into several chunks and compute each chunk
by batched sparse QR.
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The usual includes and main definitions

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cusolverSp.h>
#include <cuda_runtime_api.h>

#define imin( x, y ) ((x)<(y))? (x) : (y) 

int main(int argc, char*argv[])
{
    cusolverSpHandle_t cusolverH = NULL;
// GPU does batch QR
    csrqrInfo_t info = NULL;
    cusparseMatDescr_t descrA = NULL;

    cusparseStatus_t cusparse_status = CUSPARSE_STATUS_SUCCESS;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;

// GPU does batch QR
// d_A is CSR format, d_csrValA is of size nnzA*batchSize
// d_x is a matrix of size batchSize * m
// d_b is a matrix of size batchSize * m
    int *d_csrRowPtrA = NULL;
    int *d_csrColIndA = NULL;
    double *d_csrValA = NULL;
    double *d_b = NULL; // batchSize * m
    double *d_x = NULL; // batchSize * m

    size_t size_qr = 0;
    size_t size_internal = 0;
    void *buffer_qr = NULL; // working space for numerical factorization

/*      | 1                |
 *  A = |       2          |
 *      |            3     |
 *      | 0.1  0.1  0.1  4 |
 *  CSR of A is based-1
 *
 *  b = [1 1 1 1]
 */ 
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Create the library handle

    const int m = 4 ;
    const int nnzA = 7;
    const int csrRowPtrA[m+1]  = { 1, 2, 3, 4, 8};
    const int csrColIndA[nnzA] = { 1, 2, 3, 1, 2, 3, 4};
    const double csrValA[nnzA] = { 1.0, 2.0, 3.0, 0.1, 0.1, 0.1, 4.0};
    const double b[m] = {1.0, 1.0, 1.0, 1.0};
    const int batchSize = 17;

    double *csrValABatch = (double*)malloc(sizeof(double)*nnzA*batchSize);
    double *bBatch       = (double*)malloc(sizeof(double)*m*batchSize);
    double *xBatch       = (double*)malloc(sizeof(double)*m*batchSize);
    assert( NULL != csrValABatch );
    assert( NULL != bBatch );
    assert( NULL != xBatch );

// step 1: prepare Aj and bj on host
//  Aj is a small perturbation of A
//  bj is a small perturbation of b
//  csrValABatch = [A0, A1, A2, ...]
//  bBatch = [b0, b1, b2, ...]
    for(int colidx = 0 ; colidx < nnzA ; colidx++){
        double Areg = csrValA[colidx];
        for (int batchId = 0 ; batchId < batchSize ; batchId++){
            double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
            csrValABatch[batchId*nnzA + colidx] = Areg + eps;
        }  
    }

    for(int j = 0 ; j < m ; j++){
        double breg = b[j];
        for (int batchId = 0 ; batchId < batchSize ; batchId++){
            double eps = ((double)((rand() % 100) + 1)) * 1.e-4;
            bBatch[batchId*m + j] = breg + eps;
        }  
    }

// step 2: create cusolver handle, qr info and matrix descriptor
    cusolver_status = cusolverSpCreate(&cusolverH);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

    cusparse_status = cusparseCreateMatDescr(&descrA); 
    assert(cusparse_status == CUSPARSE_STATUS_SUCCESS);

    cusparseSetMatType(descrA, CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descrA, CUSPARSE_INDEX_BASE_ONE); // base-1

    cusolver_status = cusolverSpCreateCsrqrInfo(&info);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);
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Set up the data

// step 3: copy Aj and bj to device
    cudaStat1 = cudaMalloc ((void**)&d_csrValA   , sizeof(double) * nnzA *
 batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_csrColIndA, sizeof(int) * nnzA);
    cudaStat3 = cudaMalloc ((void**)&d_csrRowPtrA, sizeof(int) * (m+1));
    cudaStat4 = cudaMalloc ((void**)&d_b         , sizeof(double) * m *
 batchSize);
    cudaStat5 = cudaMalloc ((void**)&d_x         , sizeof(double) * m *
 batchSize);
    assert(cudaStat1 == cudaSuccess);
    assert(cudaStat2 == cudaSuccess);
    assert(cudaStat3 == cudaSuccess);
    assert(cudaStat4 == cudaSuccess);
    assert(cudaStat5 == cudaSuccess);

// don't copy csrValABatch and bBatch because device memory may be big enough
    cudaStat1 = cudaMemcpy(d_csrColIndA, csrColIndA, sizeof(int) * nnzA,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_csrRowPtrA, csrRowPtrA, sizeof(int) * (m+1),
 cudaMemcpyHostToDevice);
    assert(cudaStat1 == cudaSuccess);
    assert(cudaStat2 == cudaSuccess);

// step 4: symbolic analysis
    cusolver_status = cusolverSpXcsrqrAnalysisBatched(
        cusolverH, m, m, nnzA,
        descrA, d_csrRowPtrA, d_csrColIndA,
        info);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

// step 5: find "proper" batchSize
    // get available device memory
    size_t free_mem = 0;
    size_t total_mem = 0;
    cudaStat1 = cudaMemGetInfo( &free_mem, &total_mem );
    assert( cudaSuccess == cudaStat1 );

    int batchSizeMax = 2;
    while(batchSizeMax < batchSize){
        printf("batchSizeMax = %d\n", batchSizeMax);
        cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
            cusolverH, m, m, nnzA,
            // d_csrValA is don't care 
            descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
            batchSizeMax, // WARNING: use batchSizeMax
            info,
            &size_internal,
            &size_qr);
        assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

        if ( (size_internal + size_qr) > free_mem ){ 
            // current batchSizeMax exceeds hardware limit, so cut it by half. 
            batchSizeMax /= 2; break; 
        } 
        batchSizeMax *= 2; // double batchSizMax and try it again. 
    }
    // correct batchSizeMax such that it is not greater than batchSize. 
    batchSizeMax = imin(batchSizeMax, batchSize);
    printf("batchSizeMax = %d\n", batchSizeMax);

// Assume device memory is not big enough, and batchSizeMax = 2
    batchSizeMax = 2;
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Perform analysis and call solve

// step 6: prepare working space
// [necessary]
// Need to call cusolverDcsrqrBufferInfoBatched again with batchSizeMax
// to fix batchSize used in numerical factorization.
    cusolver_status = cusolverSpDcsrqrBufferInfoBatched(
         cusolverH, m, m, nnzA,
         // d_csrValA is don't care 
         descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
         batchSizeMax, // WARNING: use batchSizeMax
         info,
         &size_internal,
         &size_qr);
    assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);

    printf("numerical factorization needs internal data %lld bytes\n",
 (long long)size_internal);      
    printf("numerical factorization needs working space %lld bytes\n",
 (long long)size_qr);      

    cudaStat1 = cudaMalloc((void**)&buffer_qr, size_qr);
    assert(cudaStat1 == cudaSuccess);

// step 7: solve Aj*xj = bj
    for(int idx = 0 ; idx < batchSize; idx += batchSizeMax){
        // current batchSize 'cur_batchSize' is the batchSize used in numerical
 factorization
        const int cur_batchSize = imin(batchSizeMax, batchSize - idx);
        printf("current batchSize = %d\n", cur_batchSize);
        // copy part of Aj and bj to device
        cudaStat1 = cudaMemcpy(d_csrValA, csrValABatch + idx*nnzA, 
            sizeof(double) * nnzA * cur_batchSize, cudaMemcpyHostToDevice);
        cudaStat2 = cudaMemcpy(d_b, bBatch + idx*m, 
            sizeof(double) * m * cur_batchSize, cudaMemcpyHostToDevice);
        assert(cudaStat1 == cudaSuccess);
        assert(cudaStat2 == cudaSuccess);
        // solve part of Aj*xj = bj 
        cusolver_status = cusolverSpDcsrqrsvBatched(
            cusolverH, m, m, nnzA,
            descrA, d_csrValA, d_csrRowPtrA, d_csrColIndA,
            d_b, d_x,
            cur_batchSize, // WARNING: use current batchSize
            info,
            buffer_qr);
        assert(cusolver_status == CUSOLVER_STATUS_SUCCESS);
        // copy part of xj back to host
        cudaStat1 = cudaMemcpy(xBatch + idx*m, d_x, 
            sizeof(double) * m * cur_batchSize, cudaMemcpyDeviceToHost);
        assert(cudaStat1 == cudaSuccess);
    }
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Check results

// step 7: check residual 
// xBatch = [x0, x1, x2, ...]
    const int baseA = (CUSPARSE_INDEX_BASE_ONE ==
 cusparseGetMatIndexBase(descrA))? 1:0 ;

    for(int batchId = 0 ; batchId < batchSize; batchId++){
        // measure |bj - Aj*xj|
        double *csrValAj = csrValABatch + batchId * nnzA;
        double *xj = xBatch + batchId * m;
        double *bj = bBatch + batchId * m;
        // sup| bj - Aj*xj|
        double sup_res = 0;
        for(int row = 0 ; row < m ; row++){
            const int start = csrRowPtrA[row ] - baseA;
            const int end   = csrRowPtrA[row+1] - baseA;
            double Ax = 0.0; // Aj(row,:)*xj
            for(int colidx = start ; colidx < end ; colidx++){
                const int col = csrColIndA[colidx] - baseA;
                const double Areg = csrValAj[colidx];
                const double xreg = xj[col];
                Ax = Ax + Areg * xreg;
            }
            double r = bj[row] - Ax;
            sup_res = (sup_res > fabs(r))? sup_res : fabs(r);
        }
        printf("batchId %d: sup|bj - Aj*xj| = %E \n", batchId, sup_res);
    }

    for(int batchId = 0 ; batchId < batchSize; batchId++){
        double *xj = xBatch + batchId * m;
        for(int row = 0 ; row < m ; row++){
            printf("x%d[%d] = %E\n", batchId, row, xj[row]);
        } 
        printf("\n");
    }

    return 0;
}
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Appendix C.
QR EXAMPLES

C.1. QR Factorization Dense Linear Solver
This chapter provides a simple example in the C programming language of how to use a
dense QR factorization to solve a linear system

A is a 3x3 dense matrix, nonsingular.

The following code uses three steps:

Step 1: A = Q*R by geqrf.

Step 2: B := Q^T*B by ormqr.

Step 3: solve R*X = B by trsm.
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The usual includes and main definition
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include ormqr_example.cpp 
 *   nvcc -o -fopenmp a.out ormqr_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>

#include <cuda_runtime.h>

#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cublasHandle_t cublasH = NULL;
    cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;    
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int lda = m;
    const int ldb = m;
    const int nrhs = 1; // number of right hand side vectors
/*       | 1 2 3 |
 *   A = | 4 5 6 |
 *       | 2 1 1 |
 *
 *   x = (1 1 1)'
 *   b = (6 15 4)'
 */
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Create the library handle and load the data
 

    double A[lda*m] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0, 3.0, 6.0, 1.0}; 
//    double X[ldb*nrhs] = { 1.0, 1.0, 1.0}; // exact solution
    double B[ldb*nrhs] = { 6.0, 15.0, 4.0}; 
    double XC[ldb*nrhs]; // solution matrix from GPU

    double *d_A = NULL; // linear memory of GPU  
    double *d_tau = NULL; // linear memory of GPU 
    double *d_B  = NULL; 
    int *devInfo = NULL; // info in gpu (device copy)
    double *d_work = NULL;
    int  lwork = 0; 

    int info_gpu = 0;

    const double one = 1;

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");
    printf("B = (matlab base-1)\n");
    printMatrix(m, nrhs, B, ldb, "B");
    printf("=====\n");

// step 1: create cusolver/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

    cublas_status = cublasCreate(&cublasH);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);
    
// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A  , sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_tau, sizeof(double) * m);
    cudaStat3 = cudaMalloc ((void**)&d_B  , sizeof(double) * ldb * nrhs);
    cudaStat4 = cudaMalloc ((void**)&devInfo, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m   ,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * ldb * nrhs,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
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Call the solver
 
// step 3: query working space of geqrf and ormqr
    cusolver_status = cusolverDnDgeqrf_bufferSize(
        cusolverH, 
        m, 
        m, 
        d_A, 
        lda, 
        &lwork);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
 
    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute QR factorization
    cusolver_status = cusolverDnDgeqrf(
        cusolverH, 
        m, 
        m, 
        d_A, 
        lda, 
        d_tau, 
        d_work, 
        lwork, 
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);

    // check if QR is good or not
    cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("after geqrf: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

// step 5: compute Q^T*B
    cusolver_status= cusolverDnDormqr(
        cusolverH, 
        CUBLAS_SIDE_LEFT, 
        CUBLAS_OP_T,
        m, 
        nrhs, 
        m, 
        d_A, 
        lda,
        d_tau,
        d_B,
        ldb,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);
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Check the results
 
    // check if QR is good or not
    cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("after ormqr: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

// step 6: compute x = R \ Q^T*B

    cublas_status = cublasDtrsm(
         cublasH,
         CUBLAS_SIDE_LEFT,
         CUBLAS_FILL_MODE_UPPER,
         CUBLAS_OP_N, 
         CUBLAS_DIAG_NON_UNIT,
         m,
         nrhs,
         &one,
         d_A,
         lda,
         d_B,
         ldb);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(XC, d_B, sizeof(double)*ldb*nrhs,
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("X = (matlab base-1)\n");
    printMatrix(m, nrhs, XC, ldb, "X");

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_tau  ) cudaFree(d_tau);
    if (d_B    ) cudaFree(d_B);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);

    if (cublasH ) cublasDestroy(cublasH);   
    if (cusolverH) cusolverDnDestroy(cusolverH);   

    cudaDeviceReset();

    return 0;
}

C.2. orthogonalization
This chapter provides a simple example in the C programming language of how to do
orthgonalization by QR factorization.

A is a 3x2 dense matrix,
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The following code uses three steps:

Step 1: A = Q*R by geqrf.

Step 2: form Q by orgqr.

Step 3: check if Q is unitary or not.

The usual includes and main definition
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include orgqr_example.cpp 
 *   g++ -fopenmp -o a.out orgqr_example.o -L/usr/local/cuda/lib64 -lcudart -
lcublas -lcusolver
 *  
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>

#include <cuda_runtime.h>

#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cublasHandle_t cublasH = NULL;
    cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int n = 2;
    const int lda = m;
/*       | 1 2  |
 *   A = | 4 5  |
 *       | 2 1  |
 */
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Create the library handle and load the data
 

    double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
    double Q[lda*n]; // orthonormal columns
    double R[n*n]; // R = I - Q**T*Q 

    double *d_A = NULL;
    double *d_tau = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;

    double *d_R = NULL;

    int lwork_geqrf = 0;
    int lwork_orgqr = 0;
    int lwork = 0;

    int info_gpu = 0;

    const double h_one = 1;
    const double h_minus_one = -1;

    printf("A = (matlab base-1)\n");
    printMatrix(m, n, A, lda, "A");
    printf("=====\n");

// step 1: create cusolverDn/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

    cublas_status = cublasCreate(&cublasH);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A  , sizeof(double)*lda*n);
    cudaStat2 = cudaMalloc ((void**)&d_tau, sizeof(double)*n);
    cudaStat3 = cudaMalloc ((void**)&devInfo, sizeof(int));
    cudaStat4 = cudaMalloc ((void**)&d_R  , sizeof(double)*n*n);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
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Call the solver
 
// step 3: query working space of geqrf and orgqr
    cusolver_status = cusolverDnDgeqrf_bufferSize(
        cusolverH,
        m,
        n,
        d_A,
        lda,
        &lwork_geqrf);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
    cusolver_status = cusolverDnDorgqr_bufferSize(
        cusolverH,
        m,
        n,
        n,
        d_A,
        lda,
        &lwork_orgqr);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
// lwork = max(lwork_geqrf, lwork_orgqr)
    lwork = (lwork_geqrf > lwork_orgqr)? lwork_geqrf : lwork_orgqr;

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute QR factorization
    cusolver_status = cusolverDnDgeqrf(
        cusolverH,
        m,
        n,
        d_A,
        lda,
        d_tau,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);

    // check if QR is successful or not
    cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("after geqrf: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

// step 5: compute Q
    cusolver_status= cusolverDnDorgqr(
        cusolverH,
        m,
        n,
        n,
        d_A,
        lda,
        d_tau,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);
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Check the results
 
    // check if QR is good or not
    cudaStat1 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("after orgqr: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

    cudaStat1 = cudaMemcpy(Q, d_A, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("Q = (matlab base-1)\n");
    printMatrix(m, n, Q, lda, "Q");

// step 6: measure R = I - Q**T*Q
    memset(R, 0, sizeof(double)*n*n);
    for(int j = 0 ; j < n ; j++){
        R[j + n*j] = 1.0; // R(j,j)=1
    }

    cudaStat1 = cudaMemcpy(d_R, R, sizeof(double)*n*n, cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);

    // R = -Q**T*Q + I
    cublas_status = cublasDgemm_v2(
        cublasH,
        CUBLAS_OP_T, // Q**T
        CUBLAS_OP_N, // Q
        n, // number of rows of R
        n, // number of columns of R
        m, // number of columns of Q**T 
        &h_minus_one, /* host pointer */
        d_A, // Q**T
        lda,
        d_A, // Q
        lda,
        &h_one, /* hostpointer */
        d_R,
        n);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

    double dR_nrm2 = 0.0;
    cublas_status = cublasDnrm2_v2(
        cublasH, n*n, d_R, 1, &dR_nrm2);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

    printf("|I - Q**T*Q| = %E\n", dR_nrm2);
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free resources

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_tau  ) cudaFree(d_tau);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);
    if (d_R    ) cudaFree(d_R);

    if (cublasH ) cublasDestroy(cublasH);
    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}
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Appendix D.
LU EXAMPLES

D.1. LU Factorization
This chapter provides a simple example in the C programming language of how to use a
dense LU factorization to solve a linear system

A is a 3x3 dense matrix, nonsingular.

The code uses getrf to do LU factorization and getrs to do backward and forward solve.
The parameter pivot_on decides whether partial pivoting is performed or not.
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...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include getrf_example.cpp 
 *   g++ -fopenmp -o a.out getrf_example.o -L/usr/local/cuda/lib64 -lcusolver -
lcudart
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int lda = m;
    const int ldb = m;
/*       | 1 2 3  |
 *   A = | 4 5 6  |
 *       | 7 8 10 |
 *
 * without pivoting: A = L*U
 *       | 1 0 0 |      | 1  2  3 |
 *   L = | 4 1 0 |, U = | 0 -3 -6 |
 *       | 7 2 1 |      | 0  0  1 |
 *  
 * with pivoting: P*A = L*U
 *       | 0 0 1 |
 *   P = | 1 0 0 |
 *       | 0 1 0 |
 *
 *       | 1       0     0 |      | 7  8       10     |
 *   L = | 0.1429  1     0 |, U = | 0  0.8571  1.5714 |
 *       | 0.5714  0.5   1 |      | 0  0       -0.5   |
 */
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...
 
    double A[lda*m] = { 1.0, 4.0, 7.0, 2.0, 5.0, 8.0, 3.0, 6.0, 10.0};
    double B[m] = { 1.0, 2.0, 3.0 };
    double X[m]; /* X = A\B */
    double LU[lda*m]; /* L and U */
    int Ipiv[m];      /* host copy of pivoting sequence */
    int info = 0;     /* host copy of error info */

    double *d_A = NULL; /* device copy of A */
    double *d_B = NULL; /* device copy of B */
    int *d_Ipiv = NULL; /* pivoting sequence */
    int *d_info = NULL; /* error info */
    int  lwork = 0;     /* size of workspace */
    double *d_work = NULL; /* device workspace for getrf */

    const int pivot_on = 0;

    printf("example of getrf \n");

    if (pivot_on){
        printf("pivot is on : compute P*A = L*U \n");
    }else{
        printf("pivot is off: compute A = L*U (not numerically stable)\n");
    }

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");

    printf("B = (matlab base-1)\n");
    printMatrix(m, 1, B, ldb, "B");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: copy A to device */
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * m);
    cudaStat2 = cudaMalloc ((void**)&d_Ipiv, sizeof(int) * m);
    cudaStat4 = cudaMalloc ((void**)&d_info, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_B, B, sizeof(double)*m, cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
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...
 
/* step 3: query working space of getrf */
    status = cusolverDnDgetrf_bufferSize(
        cusolverH,
        m,
        m,
        d_A,
        lda,
        &lwork);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 4: LU factorization */
    if (pivot_on){
        status = cusolverDnDgetrf(
            cusolverH,
            m,
            m,
            d_A,
            lda,
            d_work,
            d_Ipiv,
            d_info);
    }else{
        status = cusolverDnDgetrf(
            cusolverH,
            m,
            m,
            d_A,
            lda,
            d_work,
            NULL,
            d_info);
    }
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    if (pivot_on){
    cudaStat1 = cudaMemcpy(Ipiv , d_Ipiv, sizeof(int)*m,
 cudaMemcpyDeviceToHost);
    }
    cudaStat2 = cudaMemcpy(LU   , d_A   , sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    if ( 0 > info ){
        printf("%d-th parameter is wrong \n", -info);
        exit(1);
    }
    if (pivot_on){
        printf("pivoting sequence, matlab base-1\n");
        for(int j = 0 ; j < m ; j++){
            printf("Ipiv(%d) = %d\n", j+1, Ipiv[j]);
        }
    }
    printf("L and U = (matlab base-1)\n");
    printMatrix(m, m, LU, lda, "LU");
    printf("=====\n");
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/*
 * step 5: solve A*X = B 
 *       | 1 |       | -0.3333 |
 *   B = | 2 |,  X = |  0.6667 |
 *       | 3 |       |  0      |
 *
 */
    if (pivot_on){
        status = cusolverDnDgetrs(
            cusolverH,
            CUBLAS_OP_N,
            m,
            1, /* nrhs */
            d_A,
            lda,
            d_Ipiv,
            d_B,
            ldb,
            d_info);
    }else{
        status = cusolverDnDgetrs(
            cusolverH,
            CUBLAS_OP_N,
            m,
            1, /* nrhs */
            d_A,
            lda,
            NULL,
            d_B,
            ldb,
            d_info);
    }
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(X , d_B, sizeof(double)*m, cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);

    printf("X = (matlab base-1)\n");
    printMatrix(m, 1, X, ldb, "X");
    printf("=====\n");

/* free resources */
    if (d_A    ) cudaFree(d_A);
    if (d_B    ) cudaFree(d_B);
    if (d_Ipiv ) cudaFree(d_Ipiv);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH   ) cusolverDnDestroy(cusolverH);
    if (stream      ) cudaStreamDestroy(stream);

    cudaDeviceReset();

    return 0;
}
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Appendix E.
CHOLESKY EXAMPLES

E.1. batched Cholesky Factorization
This chapter provides a simple example in the C programming language of how to use a
batched dense Cholesky factorization to solve a sequence of linear systems

each A[i] is a 3x3 dense Hermitian matrix. In this example, there are two matrices, A0
and A1. A0 is positive definite and A1 is not.

The code uses potrfBatched to do Cholesky factorization and potrsBatched to do
backward and forward solve. potrfBatched would report singularity on A1.
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/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include batchchol_example.cpp 
 *   g++ -o a.out batchchol_example.o -L/usr/local/cuda/lib64 -lcusolver -
lcudart
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t handle = NULL;
    cudaStream_t stream = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;

    const cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
    const int batchSize = 2;
    const int nrhs = 1;
    const int m = 3;
    const int lda = m;
    const int ldb = m;
/*       
 *      | 1     2     3 |
 * A0 = | 2     5     5 | = L0 * L0**T
 *      | 3     5    12 |
 *
 *            | 1.0000         0         0 |
 * where L0 = | 2.0000    1.0000         0 |
 *            | 3.0000   -1.0000    1.4142 |
 *
 *      | 1     2     3 |
 * A1 = | 2     4     5 | is not s.p.d., failed at row 2
 *      | 3     5    12 |
 *
 */
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    double A0[lda*m] = { 1.0, 2.0, 3.0, 2.0, 5.0, 5.0, 3.0, 5.0, 12.0 };
    double A1[lda*m] = { 1.0, 2.0, 3.0, 2.0, 4.0, 5.0, 3.0, 5.0, 12.0 };
    double B0[m] = { 1.0, 1.0, 1.0 };
    double X0[m]; /* X0 = A0\B0 */
    int infoArray[batchSize]; /* host copy of error info */

    double L0[lda*m]; /* cholesky factor of A0 */

    double *Aarray[batchSize];
    double *Barray[batchSize];

    double **d_Aarray = NULL;
    double **d_Barray = NULL;
    int *d_infoArray = NULL;

    printf("example of batched Cholesky \n");

    printf("A0 = (matlab base-1)\n");
    printMatrix(m, m, A0, lda, "A0");
    printf("=====\n");

    printf("A1 = (matlab base-1)\n");
    printMatrix(m, m, A1, lda, "A1");
    printf("=====\n");

    printf("B0 = (matlab base-1)\n");
    printMatrix(m, 1, B0, ldb, "B0");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
    status = cusolverDnCreate(&handle);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(handle, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: copy A to device */
    for(int j = 0 ; j < batchSize ; j++){
        cudaStat1 = cudaMalloc ((void**)&Aarray[j], sizeof(double) * lda * m);
        assert(cudaSuccess == cudaStat1);
        cudaStat2 = cudaMalloc ((void**)&Barray[j], sizeof(double) * ldb *
 nrhs);
        assert(cudaSuccess == cudaStat2);
    }
    cudaStat1 = cudaMalloc ((void**)&d_infoArray, sizeof(int)*batchSize);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMalloc ((void**)&d_Aarray, sizeof(double*) * batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_Barray, sizeof(double*) * batchSize);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

    cudaStat1 = cudaMemcpy(Aarray[0], A0, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(Aarray[1], A1, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
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    cudaStat1 = cudaMemcpy(Barray[0], B0, sizeof(double) * m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(Barray[1], B0, sizeof(double) * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

    cudaStat1 = cudaMemcpy(d_Aarray, Aarray, sizeof(double*)*batchSize,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_Barray, Barray, sizeof(double*)*batchSize,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    cudaDeviceSynchronize();

/* step 3: Cholesky factorization */
    status = cusolverDnDpotrfBatched(
        handle,
        uplo,
        m,
        d_Aarray,
        lda,
        d_infoArray,
        batchSize);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(infoArray, d_infoArray, sizeof(int)*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(L0, Aarray[0], sizeof(double) * lda * m,
 cudaMemcpyDeviceToHost);
    cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

    for(int j = 0 ; j < batchSize ; j++){
        printf("info[%d] = %d\n", j, infoArray[j]);
    }

    assert( 0 == infoArray[0] );
/* A1 is singular */
    assert( 2 == infoArray[1] );

    printf("L = (matlab base-1), upper triangle is don't care \n");
    printMatrix(m, m, L0, lda, "L0");
    printf("=====\n");

/*
 * step 4: solve A0*X0 = B0 
 *        | 1 |        | 10.5 |
 *   B0 = | 1 |,  X0 = | -2.5 |
 *        | 1 |        | -1.5 |
 */
    status = cusolverDnDpotrsBatched(
        handle,
        uplo,
        m,
        nrhs, /* only support rhs = 1*/
        d_Aarray,
        lda,
        d_Barray,
        ldb,
        d_infoArray,
        batchSize);
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    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(infoArray, d_infoArray, sizeof(int),
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(X0 , Barray[0], sizeof(double)*m,
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    cudaDeviceSynchronize();

    printf("info = %d\n", infoArray[0]);
    assert( 0 == infoArray[0] );

    printf("X0 = (matlab base-1)\n");
    printMatrix(m, 1, X0, ldb, "X0");
    printf("=====\n");

/* free resources */
    if (d_Aarray    ) cudaFree(d_Aarray);
    if (d_Barray    ) cudaFree(d_Barray);
    if (d_infoArray ) cudaFree(d_infoArray);

    if (handle      ) cusolverDnDestroy(handle);
    if (stream      ) cudaStreamDestroy(stream);

    cudaDeviceReset();

    return 0;
}
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Appendix F.
EXAMPLES OF DENSE EIGENVALUE SOLVER

F.1. Standard Symmetric Dense Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
syevd to compute the spectrum of a dense symmetric system by

where A is a 3x3 dense symmetric matrix
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The following code uses syevd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {2,3,4}.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include syevd_example.cpp 
 *   g++ -o a.out syevd_example.o -L/usr/local/cuda/lib64 -lcudart -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double lambda[m] = { 2.0, 3.0, 4.0};

    double V[lda*m]; // eigenvectors
    double W[m]; // eigenvalues

    double *d_A = NULL;
    double *d_W = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;
    int  lwork = 0;

    int info_gpu = 0;

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");
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call eigenvalue solver
 
// step 1: create cusolver/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat3 = cudaMalloc ((void**)&devInfo, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);

// step 3: query working space of syevd
    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
    cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
    cusolver_status = cusolverDnDsyevd_bufferSize(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        &lwork);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum
    cusolver_status = cusolverDnDsyevd(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
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check the result
 
    printf("after syevd: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

    printf("eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");

// step 4: check eigenvalues
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_W    ) cudaFree(d_W);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}

F.2. Standard Symmetric Dense Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
syevd to compute the spectrum of a dense symmetric system by

where A is a 3x3 dense symmetric matrix



Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 275

The following code uses syevd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {2,3,4}.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include syevd_example.cpp 
 *   g++ -o a.out syevd_example.o -L/usr/local/cuda/lib64 -lcudart -lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double lambda[m] = { 2.0, 3.0, 4.0};

    double V[lda*m]; // eigenvectors
    double W[m]; // eigenvalues

    double *d_A = NULL;
    double *d_W = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;
    int  lwork = 0;

    int info_gpu = 0;

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");
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call eigenvalue solver
 
// step 1: create cusolver/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat3 = cudaMalloc ((void**)&devInfo, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);

// step 3: query working space of syevd
    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
    cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
    cusolver_status = cusolverDnDsyevd_bufferSize(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        &lwork);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum
    cusolver_status = cusolverDnDsyevd(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
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check the result
 
    printf("after syevd: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

    printf("eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");

// step 4: check eigenvalues
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_W    ) cudaFree(d_W);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}

F.3. Generalized Symmetric-Definite Dense
Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
sygvd to compute spectrum of a pair of dense symmetric matrices (A,B) by

where A is a 3x3 dense symmetric matrix

and B is a 3x3 positive definite matrix



Examples of Dense Eigenvalue Solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 278

The following code uses sygvd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {0.158660256604, 0.370751508101882, 0.6}.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include sygvd_example.cpp 
 *   g++ -o a.out sygvd_example.o -L/usr/local/cuda/lib64 -lcusolver
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*
 *       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 *       | 10  2   3 |
 *   B = | 2  10   5 |
 *       | 3   5  10 |
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double B[lda*m] = { 10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
    double lambda[m] = { 0.158660256604, 0.370751508101882, 0.6};

    double V[lda*m]; // eigenvectors
    double W[m]; // eigenvalues

    double *d_A = NULL;
    double *d_B = NULL;
    double *d_W = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;
    int  lwork = 0;
    int info_gpu = 0;

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");

    printf("B = (matlab base-1)\n");
    printMatrix(m, m, B, lda, "B");
    printf("=====\n");
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call eigenvalue solver
 
// step 1: create cusolver/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * lda * m);
    cudaStat3 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat4 = cudaMalloc ((void**)&devInfo, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

// step 3: query working space of sygvd
    cusolverEigType_t itype = CUSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
    cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
    cusolver_status = cusolverDnDsygvd_bufferSize(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda,
        d_W,
        &lwork);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum of (A,B)
    cusolver_status = cusolverDnDsygvd(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda,
        d_W,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);
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check the result
 
    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    printf("after sygvd: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

    printf("eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");

// step 4: check eigenvalues
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_B    ) cudaFree(d_B);
    if (d_W    ) cudaFree(d_W);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}

F.4. Generalized Symmetric-Definite Dense
Eigenvalue Solver
This chapter provides a simple example in the C programming language of how to use
sygvd to compute spectrum of a pair of dense symmetric matrices (A,B) by

where A is a 3x3 dense symmetric matrix
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and B is a 3x3 positive definite matrix
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The following code uses sygvd to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {0.158660256604, 0.370751508101882, 0.6}.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include sygvd_example.cpp 
 *   g++ -o a.out sygvd_example.o -L/usr/local/cuda/lib64 -lcusolver
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*
 *       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 *       | 10  2   3 |
 *   B = | 2  10   5 |
 *       | 3   5  10 |
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double B[lda*m] = { 10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
    double lambda[m] = { 0.158660256604, 0.370751508101882, 0.6};

    double V[lda*m]; // eigenvectors
    double W[m]; // eigenvalues

    double *d_A = NULL;
    double *d_B = NULL;
    double *d_W = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;
    int  lwork = 0;
    int info_gpu = 0;

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");

    printf("B = (matlab base-1)\n");
    printMatrix(m, m, B, lda, "B");
    printf("=====\n");
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call eigenvalue solver
 
// step 1: create cusolver/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * lda * m);
    cudaStat3 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat4 = cudaMalloc ((void**)&devInfo, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

// step 3: query working space of sygvd
    cusolverEigType_t itype = CUSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute eigenvalues
 and eigenvectors.
    cublasFillMode_t uplo = CUBLAS_FILL_MODE_LOWER;
    cusolver_status = cusolverDnDsygvd_bufferSize(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda,
        d_W,
        &lwork);
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);
    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute spectrum of (A,B)
    cusolver_status = cusolverDnDsygvd(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda,
        d_W,
        d_work,
        lwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);
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check the result
 
    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    printf("after sygvd: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);

    printf("eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");

// step 4: check eigenvalues
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_B    ) cudaFree(d_B);
    if (d_W    ) cudaFree(d_W);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}

F.5. Standard Symmetric Dense Eigenvalue Solver
(via Jacobi method)
This chapter provides a simple example in the C programming language of how to use
syevj to compute the spectrum of a dense symmetric system by

where A is a 3x3 dense symmetric matrix
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The following code uses syevj to compute eigenvalues and eigenvectors, then compare
to exact eigenvalues {2,3,4}.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include syevj_example.cpp 
 *   g++ -o syevj_example syevj_example.o -L/usr/local/cuda/lib64 -lcusolver -
lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;
    syevjInfo_t syevj_params = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double lambda[m] = { 2.0, 3.0, 4.0};

    double V[lda*m]; /* eigenvectors */
    double W[m];     /* eigenvalues  */

    double *d_A = NULL; /* device copy of A */
    double *d_W = NULL; /* eigenvalues */
    int *d_info = NULL; /* error info */
    int  lwork = 0;     /* size of workspace */
    double *d_work = NULL; /* device workspace for syevj */
    int info = 0;       /* host copy of error info */

/* configuration of syevj  */
    const double tol = 1.e-7;
    const int max_sweeps = 15;
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
    const cublasFillMode_t  uplo = CUBLAS_FILL_MODE_LOWER;
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configure parameters of syevj
 
/* numerical results of syevj  */
    double residual = 0;
    int executed_sweeps = 0;

    printf("example of syevj \n");
    printf("tol = %E, default value is machine zero \n", tol);
    printf("max. sweeps = %d, default value is 100\n", max_sweeps);

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream  */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
    status = cusolverDnCreateSyevjInfo(&syevj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
    status = cusolverDnXsyevjSetTolerance(
        syevj_params,
        tol);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
    status = cusolverDnXsyevjSetMaxSweeps(
        syevj_params,
        max_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat3 = cudaMalloc ((void**)&d_info, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
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call eigenvalue solver
 
/* step 4: query working space of syevj */
    status = cusolverDnDsyevj_bufferSize(
        cusolverH,
        jobz,
        uplo, 
        m,
        d_A,
        lda,
        d_W, 
        &lwork,
        syevj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);
 
    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 5: compute eigen-pair   */
    status = cusolverDnDsyevj(
        cusolverH,
        jobz,
        uplo, 
        m,
        d_A,
        lda,
        d_W, 
        d_work,
        lwork,
        d_info,
        syevj_params);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    if ( 0 == info ){
        printf("syevj converges \n");
    }else if ( 0 > info ){
        printf("%d-th parameter is wrong \n", -info);
        exit(1);
    }else{
        printf("WARNING: info = %d : syevj does not converge \n", info );
    }

    printf("Eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");
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check the result

/* step 6: check eigenvalues */
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

    status = cusolverDnXsyevjGetSweeps(
        cusolverH,
        syevj_params,
        &executed_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    status = cusolverDnXsyevjGetResidual(
        cusolverH,
        syevj_params,
        &residual);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("residual |A - V*W*V**H|_F = %E \n", residual );
    printf("number of executed sweeps = %d \n", executed_sweeps );

/* free resources */
    if (d_A    ) cudaFree(d_A);
    if (d_W    ) cudaFree(d_W);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH   ) cusolverDnDestroy(cusolverH);   
    if (stream      ) cudaStreamDestroy(stream);
    if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

    cudaDeviceReset();

    return 0;
}

F.6. Generalized Symmetric-Definite Dense
Eigenvalue Solver (via Jacobi method)
This chapter provides a simple example in the C programming language of how to use
sygvj to compute spectrum of a pair of dense symmetric matrices (A,B) by

where A is a 3x3 dense symmetric matrix

and B is a 3x3 positive definite matrix
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The following code uses sygvj to compute eigenvalues and eigenvectors.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include sygvj_example.cpp 
 *   g++ -o sygvj_example sygvj_example.o -L/usr/local/cuda/lib64 -lcusolver -
lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;
    syevjInfo_t syevj_params = NULL;
    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3;
    const int lda = m;
/*
 *       | 3.5 0.5 0 |
 *   A = | 0.5 3.5 0 |
 *       | 0   0   2 |
 *
 *       | 10  2   3 |
 *   B = | 2  10   5 |
 *       | 3   5  10 |
 */
    double A[lda*m] = { 3.5, 0.5, 0, 0.5, 3.5, 0, 0, 0, 2.0};
    double B[lda*m] = { 10.0, 2.0, 3.0, 2.0, 10.0, 5.0, 3.0, 5.0, 10.0};
    double lambda[m] = { 0.158660256604, 0.370751508101882, 0.6};

    double V[lda*m]; /* eigenvectors */
    double W[m];     /* eigenvalues  */

    double *d_A = NULL; /* device copy of A */
    double *d_B = NULL; /* device copy of B */
    double *d_W = NULL; /* numerical eigenvalue */
    int *d_info = NULL; /* error info */
    int  lwork = 0;  /* size of workspace */
    double *d_work = NULL; /* device workspace for sygvj */
    int info = 0; /* host copy of error info */
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configure parameters of Jacobi method
 
/* configuration of sygvj  */
    const double tol = 1.e-7;
    const int max_sweeps = 15;
    const cusolverEigType_t itype = CUSOLVER_EIG_TYPE_1; // A*x = (lambda)*B*x
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
    const cublasFillMode_t  uplo = CUBLAS_FILL_MODE_LOWER;

/* numerical results of syevj  */
    double residual = 0;
    int executed_sweeps = 0;

    printf("example of sygvj \n");
    printf("tol = %E, default value is machine zero \n", tol);
    printf("max. sweeps = %d, default value is 100\n", max_sweeps);

    printf("A = (matlab base-1)\n");
    printMatrix(m, m, A, lda, "A");
    printf("=====\n");

    printf("B = (matlab base-1)\n");
    printMatrix(m, m, B, lda, "B");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream  */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
    status = cusolverDnCreateSyevjInfo(&syevj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
    status = cusolverDnXsyevjSetTolerance(
        syevj_params,
        tol);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
    status = cusolverDnXsyevjSetMaxSweeps(
        syevj_params,
        max_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);
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call eigenvalue solver
 
/* step 3: copy A and B to device */
    cudaStat1 = cudaMalloc ((void**)&d_A, sizeof(double) * lda * m);
    cudaStat2 = cudaMalloc ((void**)&d_B, sizeof(double) * lda * m);
    cudaStat3 = cudaMalloc ((void**)&d_W, sizeof(double) * m);
    cudaStat4 = cudaMalloc ((void**)&d_info, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaMemcpy(d_B, B, sizeof(double) * lda * m,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

/* step 4: query working space of sygvj */
    status = cusolverDnDsygvj_bufferSize(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda, /* ldb */
        d_W,
        &lwork,
        syevj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 5: compute spectrum of (A,B) */
    status = cusolverDnDsygvj(
        cusolverH,
        itype,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_B,
        lda, /* ldb */
        d_W,
        d_work,
        lwork,
        d_info,
        syevj_params);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(W, d_W, sizeof(double)*m, cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_A, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
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check the result

    if ( 0 == info ){
        printf("sygvj converges \n");
    }else if ( 0 > info ){
        printf("Error: %d-th parameter is wrong \n", -info);
        exit(1);
    }else if ( m >= info ){
        printf("Error: leading minor of order %d of B is not positive definite
\n", -info);
        exit(1);
    }else { /* info = m+1 */
        printf("WARNING: info = %d : sygvj does not converge \n", info );
    }

    printf("Eigenvalue = (matlab base-1), ascending order\n");
    for(int i = 0 ; i < m ; i++){
        printf("W[%d] = %E\n", i+1, W[i]);
    }

    printf("V = (matlab base-1)\n");
    printMatrix(m, m, V, lda, "V");
    printf("=====\n");

/* step 6: check eigenvalues */
    double lambda_sup = 0;
    for(int i = 0 ; i < m ; i++){
        double error = fabs( lambda[i] - W[i]);
        lambda_sup = (lambda_sup > error)? lambda_sup : error;
    }
    printf("|lambda - W| = %E\n", lambda_sup);

    status = cusolverDnXsyevjGetSweeps(
        cusolverH,
        syevj_params,
        &executed_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    status = cusolverDnXsyevjGetResidual(
        cusolverH,
        syevj_params,
        &residual);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("residual |M - V*W*V**H|_F = %E \n", residual );
    printf("number of executed sweeps = %d \n", executed_sweeps );

/* free resources */
    if (d_A    ) cudaFree(d_A);
    if (d_B    ) cudaFree(d_B);
    if (d_W    ) cudaFree(d_W);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);
    if (cusolverH) cusolverDnDestroy(cusolverH);
    if (stream      ) cudaStreamDestroy(stream);
    if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

    cudaDeviceReset();
    return 0;
}
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F.7. batch eigenvalue solver for dense symmetric
matrix
This chapter provides a simple example in the C programming language of how to use
syevjBatched to compute the spectrum of a sequence of dense symmetric matrices by

where A0 and A1 are 3x3 dense symmetric matrices

The following code uses syevjBatched to compute eigenvalues and eigenvectors
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The user can disable/enable sorting by the function cusolverDnXsyevjSetSortEig.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include batchsyevj_example.cpp 
 *   g++ -o batchsyevj_example batchsyevj_example.o -L/usr/local/cuda/lib64 -
lcusolver -lcudart
 *
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;
    syevjInfo_t syevj_params = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    const int m = 3; // 1<= m <= 32
    const int lda = m;
    const int batchSize = 2;
/*  
 *        |  1  -1   0 |
 *   A0 = | -1   2   0 |
 *        |  0   0   0 |
 *
 *   A0 = V0 * W0 * V0**T
 *
 *   W0 = diag(0, 0.3820, 2.6180) 
 *
 *        |  3   4  0 |
 *   A1 = |  4   7  0 |
 *        |  0   0  0 |
 *
 *   A1 = V1 * W1 * V1**T
 *
 *   W1 = diag(0, 0.5279, 9.4721) 
 * 
 */
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setup matrices A0 and A1
 
    double A[lda*m*batchSize]; /* A = [A0 ; A1] */
    double V[lda*m*batchSize]; /* V = [V0 ; V1] */
    double W[m*batchSize];     /* W = [W0 ; W1] */
    int info[batchSize];       /* info = [info0 ; info1] */

    double *d_A  = NULL; /* lda-by-m-by-batchSize */
    double *d_W  = NULL; /* m-by-batchSizee */
    int* d_info  = NULL; /* batchSize */
    int lwork = 0;  /* size of workspace */
    double *d_work = NULL; /* device workspace for syevjBatched */

    const double tol = 1.e-7;
    const int max_sweeps = 15;
    const int sort_eig  = 0;   /* don't sort eigenvalues */
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute
 eigenvectors */
    const cublasFillMode_t  uplo = CUBLAS_FILL_MODE_LOWER;

/* residual and executed_sweeps are not supported on syevjBatched */
    double residual = 0;
    int executed_sweeps = 0;

    double *A0 = A;
    double *A1 = A + lda*m;
/*
 *        |  1  -1   0 |
 *   A0 = | -1   2   0 |
 *        |  0   0   0 |
 *   A0 is column-major
 */
    A0[0 + 0*lda] =  1.0;
    A0[1 + 0*lda] = -1.0;
    A0[2 + 0*lda] =  0.0;

    A0[0 + 1*lda] = -1.0;
    A0[1 + 1*lda] =  2.0;
    A0[2 + 1*lda] =  0.0;

    A0[0 + 2*lda] =  0.0;
    A0[1 + 2*lda] =  0.0;
    A0[2 + 2*lda] =  0.0;
/*
 *        |  3   4  0 |
 *   A1 = |  4   7  0 |
 *        |  0   0  0 |
 *   A1 is column-major
 */
    A1[0 + 0*lda] = 3.0;
    A1[1 + 0*lda] = 4.0;
    A1[2 + 0*lda] = 0.0;

    A1[0 + 1*lda] = 4.0;
    A1[1 + 1*lda] = 7.0;
    A1[2 + 1*lda] = 0.0;

    A1[0 + 2*lda] = 0.0;
    A1[1 + 2*lda] = 0.0;
    A1[2 + 2*lda] = 0.0;
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configure parameters of syevj
 
/* step 1: create cusolver handle, bind a stream  */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of syevj */
    status = cusolverDnCreateSyevjInfo(&syevj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
    status = cusolverDnXsyevjSetTolerance(
        syevj_params,
        tol);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
    status = cusolverDnXsyevjSetMaxSweeps(
        syevj_params,
        max_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* disable sorting */
    status = cusolverDnXsyevjSetSortEig(
        syevj_params,
        sort_eig);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
    cudaStat1 = cudaMalloc ((void**)&d_A   , sizeof(double) * lda * m *
 batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_W   , sizeof(double) * m * batchSize);
    cudaStat3 = cudaMalloc ((void**)&d_info, sizeof(int   ) * batchSize);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double) * lda * m * batchSize,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);

/* step 4: query working space of syevjBatched */
    status = cusolverDnDsyevjBatched_bufferSize(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        &lwork,
        syevj_params,
        batchSize
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);
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call eigenvalue solver

/* step 5: compute spectrum of A0 and A1 */
    status = cusolverDnDsyevjBatched(
        cusolverH,
        jobz,
        uplo,
        m,
        d_A,
        lda,
        d_W,
        d_work,
        lwork,
        d_info,
        syevj_params,
        batchSize
    );
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(V    , d_A   , sizeof(double) * lda * m * batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(W    , d_W   , sizeof(double) * m * batchSize      ,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(&info, d_info, sizeof(int) * batchSize             ,
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);

    for(int i = 0 ; i < batchSize ; i++){
        if ( 0 == info[i] ){
            printf("matrix %d: syevj converges \n", i);
        }else if ( 0 > info[i] ){
/* only info[0] shows if some input parameter is wrong.
 * If so, the error is CUSOLVER_STATUS_INVALID_VALUE.
 */
            printf("Error: %d-th parameter is wrong \n", -info[i] );
            exit(1);
        }else { /* info = m+1 */
/* if info[i] is not zero, Jacobi method does not converge at i-th matrix. */
            printf("WARNING: matrix %d, info = %d : sygvj does not converge \n",
 i, info[i] );
        }
    }

/* Step 6: show eigenvalues and eigenvectors */
    double *W0 = W;
    double *W1 = W + m;
    printf("==== \n");
    for(int i = 0 ; i < m ; i++){
        printf("W0[%d] = %f\n", i, W0[i]);
    }
    printf("==== \n");
    for(int i = 0 ; i < m ; i++){
        printf("W1[%d] = %f\n", i, W1[i]);
    }
    printf("==== \n");

    double *V0 = V;
    double *V1 = V + lda*m;
    printf("V0 = (matlab base-1)\n");
    printMatrix(m, m, V0, lda, "V0");
    printf("V1 = (matlab base-1)\n");
    printMatrix(m, m, V1, lda, "V1");
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cannot query residual and executed sweeps.

/*
 * The folowing two functions do not support batched version.
 * The error CUSOLVER_STATUS_NOT_SUPPORTED is returned. 
 */
    status = cusolverDnXsyevjGetSweeps(
        cusolverH,
        syevj_params,
        &executed_sweeps);
    assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

    status = cusolverDnXsyevjGetResidual(
        cusolverH,
        syevj_params,
        &residual);
    assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

/* free resources */
    if (d_A    ) cudaFree(d_A);
    if (d_W    ) cudaFree(d_W);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);
    if (stream      ) cudaStreamDestroy(stream);
    if (syevj_params) cusolverDnDestroySyevjInfo(syevj_params);

    cudaDeviceReset();

    return 0;
}
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Appendix G.
EXAMPLES OF SINGULAR VALUE
DECOMPOSITION

G.1. SVD with singular vectors
This chapter provides a simple example in the C programming language of how to
perform singular value decomposition.

A is a 3x2 dense matrix,

The following code uses three steps:

Step 1: compute A = U*S*VT

Step 2: check accuracy of singular value

Step 3: measure residual A-U*S*VT
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...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include svd_example.cpp 
 *   g++ -o a.out svd_example.o -L/usr/local/cuda/lib64 -lcudart -lcublas -
lcusolver
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cublas_v2.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %f\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cublasHandle_t cublasH = NULL;
    cublasStatus_t cublas_status = CUBLAS_STATUS_SUCCESS;
    cusolverStatus_t cusolver_status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;
    cudaError_t cudaStat6 = cudaSuccess;
    const int m = 3;
    const int n = 2;
    const int lda = m;
/*       | 1 2  |
 *   A = | 4 5  |
 *       | 2 1  |
 */
    double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
    double U[lda*m]; // m-by-m unitary matrix 
    double VT[lda*n];  // n-by-n unitary matrix
    double S[n]; // singular value
    double S_exact[n] = {7.065283497082729, 1.040081297712078};

    double *d_A = NULL;
    double *d_S = NULL;
    double *d_U = NULL;
    double *d_VT = NULL;
    int *devInfo = NULL;
    double *d_work = NULL;
    double *d_rwork = NULL;
    double *d_W = NULL;  // W = S*VT

    int lwork = 0;
    int info_gpu = 0;
    const double h_one = 1;
    const double h_minus_one = -1;
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...
 
    printf("A = (matlab base-1)\n");
    printMatrix(m, n, A, lda, "A");
    printf("=====\n");

// step 1: create cusolverDn/cublas handle
    cusolver_status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);

    cublas_status = cublasCreate(&cublasH);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

// step 2: copy A and B to device
    cudaStat1 = cudaMalloc ((void**)&d_A  , sizeof(double)*lda*n);
    cudaStat2 = cudaMalloc ((void**)&d_S  , sizeof(double)*n);
    cudaStat3 = cudaMalloc ((void**)&d_U  , sizeof(double)*lda*m);
    cudaStat4 = cudaMalloc ((void**)&d_VT , sizeof(double)*lda*n);
    cudaStat5 = cudaMalloc ((void**)&devInfo, sizeof(int));
    cudaStat6 = cudaMalloc ((void**)&d_W  , sizeof(double)*lda*n);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);
    assert(cudaSuccess == cudaStat6);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);

// step 3: query working space of SVD
    cusolver_status = cusolverDnDgesvd_bufferSize(
        cusolverH,
        m,
        n,
        &lwork );
    assert (cusolver_status == CUSOLVER_STATUS_SUCCESS);

    cudaStat1 = cudaMalloc((void**)&d_work , sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

// step 4: compute SVD
    signed char jobu = 'A'; // all m columns of U
    signed char jobvt = 'A'; // all n columns of VT
    cusolver_status = cusolverDnDgesvd (
        cusolverH,
        jobu,
        jobvt,
        m,
        n,
        d_A,
        lda,
        d_S,
        d_U,
        lda,  // ldu
        d_VT,
        lda, // ldvt,
        d_work,
        lwork,
        d_rwork,
        devInfo);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == cusolver_status);
    assert(cudaSuccess == cudaStat1);
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...
 
    cudaStat1 = cudaMemcpy(U , d_U , sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(VT, d_VT, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(S , d_S , sizeof(double)*n    ,
 cudaMemcpyDeviceToHost);
    cudaStat4 = cudaMemcpy(&info_gpu, devInfo, sizeof(int),
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);

    printf("after gesvd: info_gpu = %d\n", info_gpu);
    assert(0 == info_gpu);
    printf("=====\n");

    printf("S = (matlab base-1)\n");
    printMatrix(n, 1, S, lda, "S");
    printf("=====\n");

    printf("U = (matlab base-1)\n");
    printMatrix(m, m, U, lda, "U");
    printf("=====\n");

    printf("VT = (matlab base-1)\n");
    printMatrix(n, n, VT, lda, "VT");
    printf("=====\n");

// step 5: measure error of singular value
    double ds_sup = 0;
    for(int j = 0; j < n; j++){
        double err = fabs( S[j] - S_exact[j] );
        ds_sup = (ds_sup > err)? ds_sup : err;
    }
    printf("|S - S_exact| = %E \n", ds_sup);

// step 6: |A - U*S*VT|
    // W = S*VT
    cublas_status = cublasDdgmm(
        cublasH,
        CUBLAS_SIDE_LEFT,
        n,
        n,
        d_VT,
        lda,
        d_S,
         1,
        d_W,
        lda);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);
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...
 
    // A := -U*W + A
    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    cublas_status = cublasDgemm_v2(
        cublasH,
        CUBLAS_OP_N, // U
        CUBLAS_OP_N, // W
        m, // number of rows of A
        n, // number of columns of A
        n, // number of columns of U 
        &h_minus_one, /* host pointer */
        d_U, // U
        lda,
        d_W, // W
        lda,
        &h_one, /* hostpointer */
        d_A,
        lda);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

    double dR_fro = 0.0;
    cublas_status = cublasDnrm2_v2(
        cublasH, lda*n, d_A, 1, &dR_fro);
    assert(CUBLAS_STATUS_SUCCESS == cublas_status);

    printf("|A - U*S*VT| = %E \n", dR_fro);

// free resources
    if (d_A    ) cudaFree(d_A);
    if (d_S    ) cudaFree(d_S);
    if (d_U    ) cudaFree(d_U);
    if (d_VT   ) cudaFree(d_VT);
    if (devInfo) cudaFree(devInfo);
    if (d_work ) cudaFree(d_work);
    if (d_rwork) cudaFree(d_rwork);
    if (d_W    ) cudaFree(d_W);

    if (cublasH ) cublasDestroy(cublasH);
    if (cusolverH) cusolverDnDestroy(cusolverH);

    cudaDeviceReset();

    return 0;
}

G.2. SVD with singular vectors (via Jacobi
method)
This chapter provides a simple example in the C programming language of how to
perform singular value decomposition by gesvdj.

A is a 3x2 dense matrix,
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...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include gesvdj_example.cpp 
 *   g++ -o gesvdj_example gesvdj_example.o -L/usr/local/cuda/lib64 -lcudart -
lcusolver
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %20.16E\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;
    gesvdjInfo_t gesvdj_params = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;
    const int m = 3;
    const int n = 2;
    const int lda = m;
/*       | 1 2  |
 *   A = | 4 5  |
 *       | 2 1  |
 */
    double A[lda*n] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0};
    double U[lda*m]; /* m-by-m unitary matrix, left singular vectors  */
    double V[lda*n]; /* n-by-n unitary matrix, right singular vectors */
    double S[n];     /* numerical singular value */
/* exact singular values */
    double S_exact[n] = {7.065283497082729, 1.040081297712078};
    double *d_A = NULL;  /* device copy of A */
    double *d_S = NULL;  /* singular values */
    double *d_U = NULL;  /* left singular vectors */
    double *d_V = NULL;  /* right singular vectors */
    int *d_info = NULL;  /* error info */
    int lwork = 0;       /* size of workspace */
    double *d_work = NULL; /* devie workspace for gesvdj */
    int info = 0;        /* host copy of error info */
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/* configuration of gesvdj  */
    const double tol = 1.e-7;
    const int max_sweeps = 15;
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
    const int econ = 0 ; /* econ = 1 for economy size */

/* numerical results of gesvdj  */
    double residual = 0;
    int executed_sweeps = 0;

    printf("example of gesvdj \n");
    printf("tol = %E, default value is machine zero \n", tol);
    printf("max. sweeps = %d, default value is 100\n", max_sweeps);
    printf("econ = %d \n", econ);

    printf("A = (matlab base-1)\n");
    printMatrix(m, n, A, lda, "A");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of gesvdj */
    status = cusolverDnCreateGesvdjInfo(&gesvdj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
    status = cusolverDnXgesvdjSetTolerance(
        gesvdj_params,
        tol);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
    status = cusolverDnXgesvdjSetMaxSweeps(
        gesvdj_params,
        max_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A and B to device */
    cudaStat1 = cudaMalloc ((void**)&d_A   , sizeof(double)*lda*n);
    cudaStat2 = cudaMalloc ((void**)&d_S   , sizeof(double)*n);
    cudaStat3 = cudaMalloc ((void**)&d_U   , sizeof(double)*lda*m);
    cudaStat4 = cudaMalloc ((void**)&d_V   , sizeof(double)*lda*n);
    cudaStat5 = cudaMalloc ((void**)&d_info, sizeof(int));
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
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/* step 4: query workspace of SVD */
    status = cusolverDnDgesvdj_bufferSize(
        cusolverH,
        jobz, /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
              /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
        econ, /* econ = 1 for economy size */
        m,    /* nubmer of rows of A, 0 <= m */
        n,    /* number of columns of A, 0 <= n  */
        d_A,  /* m-by-n */
        lda,  /* leading dimension of A */
        d_S,  /* min(m,n) */
              /* the singular values in descending order */
        d_U,  /* m-by-m if econ = 0 */
              /* m-by-min(m,n) if econ = 1 */
        lda,  /* leading dimension of U, ldu >= max(1,m) */
        d_V,  /* n-by-n if econ = 0  */
              /* n-by-min(m,n) if econ = 1  */
        lda,  /* leading dimension of V, ldv >= max(1,n) */
        &lwork,
        gesvdj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaMalloc((void**)&d_work , sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 5: compute SVD */
    status = cusolverDnDgesvdj(
        cusolverH,
        jobz,  /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
               /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
        econ,  /* econ = 1 for economy size */
        m,     /* nubmer of rows of A, 0 <= m */
        n,     /* number of columns of A, 0 <= n  */
        d_A,   /* m-by-n */
        lda,   /* leading dimension of A */
        d_S,   /* min(m,n)  */
               /* the singular values in descending order */
        d_U,   /* m-by-m if econ = 0 */
               /* m-by-min(m,n) if econ = 1 */
        lda,   /* leading dimension of U, ldu >= max(1,m) */
        d_V,   /* n-by-n if econ = 0  */
               /* n-by-min(m,n) if econ = 1  */
        lda,   /* leading dimension of V, ldv >= max(1,n) */
        d_work,
        lwork,
        d_info,
        gesvdj_params);
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(U, d_U, sizeof(double)*lda*m,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_V, sizeof(double)*lda*n,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(S, d_S, sizeof(double)*n    ,
 cudaMemcpyDeviceToHost);
    cudaStat4 = cudaMemcpy(&info, d_info, sizeof(int), cudaMemcpyDeviceToHost);
    cudaStat5 = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);
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    if ( 0 == info ){
        printf("gesvdj converges \n");
    }else if ( 0 > info ){
        printf("%d-th parameter is wrong \n", -info);
        exit(1);
    }else{
        printf("WARNING: info = %d : gesvdj does not converge \n", info );
    }

    printf("S = singular values (matlab base-1)\n");
    printMatrix(n, 1, S, lda, "S");
    printf("=====\n");

    printf("U = left singular vectors (matlab base-1)\n");
    printMatrix(m, m, U, lda, "U");
    printf("=====\n");

    printf("V = right singular vectors (matlab base-1)\n");
    printMatrix(n, n, V, lda, "V");
    printf("=====\n");

/* step 6: measure error of singular value */
    double ds_sup = 0;
    for(int j = 0; j < n; j++){
        double err = fabs( S[j] - S_exact[j] );
        ds_sup = (ds_sup > err)? ds_sup : err;
    }
    printf("|S - S_exact|_sup = %E \n", ds_sup);

    status = cusolverDnXgesvdjGetSweeps(
        cusolverH,
        gesvdj_params,
        &executed_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    status = cusolverDnXgesvdjGetResidual(
        cusolverH,
        gesvdj_params,
        &residual);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("residual |A - U*S*V**H|_F = %E \n", residual );
    printf("number of executed sweeps = %d \n", executed_sweeps );

/*  free resources  */
    if (d_A    ) cudaFree(d_A);
    if (d_S    ) cudaFree(d_S);
    if (d_U    ) cudaFree(d_U);
    if (d_V    ) cudaFree(d_V);
    if (d_info) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);
    if (stream      ) cudaStreamDestroy(stream);
    if (gesvdj_params) cusolverDnDestroyGesvdjInfo(gesvdj_params);

    cudaDeviceReset();
    return 0;
}
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G.3. batch dense SVD solver
This chapter provides a simple example in the C programming language of how to use
gesvdjBatched to compute the SVD of a sequence of dense matrices

where A0 and A1 are 3x2 dense matrices

The following code uses gesvdjBatched to compute singular values and singular
vectors.
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The user can disable/enable sorting by the function cusolverDnXgesvdjSetSortEig.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include gesvdjbatch_example.cpp 
 *   g++ -o gesvdjbatch_example gesvdjbatch_example.o -L/usr/local/cuda/lib64 -
lcusolver -lcudart
 */
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const double*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            double Areg = A[row + col*lda];
            printf("%s(%d,%d) = %20.16E\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;
    gesvdjInfo_t gesvdj_params = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;
    const int m = 3; /* 1 <= m <= 32 */
    const int n = 2; /* 1 <= n <= 32 */
    const int lda = m; /* lda >= m */
    const int ldu = m; /* ldu >= m */
    const int ldv = n; /* ldv >= n */
    const int batchSize = 2;
    const int minmn = (m < n)? m : n; /* min(m,n) */
/*  
 *        |  1  -1  |
 *   A0 = | -1   2  |
 *        |  0   0  |
 *
 *   A0 = U0 * S0 * V0**T
 *   S0 = diag(2.6180, 0.382) 
 *
 *        |  3   4  |
 *   A1 = |  4   7  |
 *        |  0   0  |
 *
 *   A1 = U1 * S1 * V1**T
 *   S1 = diag(9.4721, 0.5279) 
 */
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setup matrices A0 and A1
 
    double A[lda*n*batchSize]; /* A = [A0 ; A1] */
    double U[ldu*m*batchSize]; /* U = [U0 ; U1] */
    double V[ldv*n*batchSize]; /* V = [V0 ; V1] */
    double S[minmn*batchSize]; /* S = [S0 ; S1] */
    int info[batchSize];       /* info = [info0 ; info1] */

    double *d_A  = NULL; /* lda-by-n-by-batchSize */
    double *d_U  = NULL; /* ldu-by-m-by-batchSize */
    double *d_V  = NULL; /* ldv-by-n-by-batchSize */
    double *d_S  = NULL; /* minmn-by-batchSizee */
    int* d_info  = NULL; /* batchSize */
    int lwork = 0;       /* size of workspace */
    double *d_work = NULL; /* device workspace for gesvdjBatched */

    const double tol = 1.e-7;
    const int max_sweeps = 15;
    const int sort_svd  = 0;   /* don't sort singular values */
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; /* compute singular
 vectors */

/* residual and executed_sweeps are not supported on gesvdjBatched */
    double residual = 0;
    int executed_sweeps = 0;

    double *A0 = A;
    double *A1 = A + lda*n; /* Aj is m-by-n */
/*
 *        |  1  -1  |
 *   A0 = | -1   2  |
 *        |  0   0  |
 *   A0 is column-major
 */
    A0[0 + 0*lda] =  1.0;
    A0[1 + 0*lda] = -1.0;
    A0[2 + 0*lda] =  0.0;

    A0[0 + 1*lda] = -1.0;
    A0[1 + 1*lda] =  2.0;
    A0[2 + 1*lda] =  0.0;

/*
 *        |  3   4  |
 *   A1 = |  4   7  |
 *        |  0   0  |
 *   A1 is column-major
 */
    A1[0 + 0*lda] = 3.0;
    A1[1 + 0*lda] = 4.0;
    A1[2 + 0*lda] = 0.0;

    A1[0 + 1*lda] = 4.0;
    A1[1 + 1*lda] = 7.0;
    A1[2 + 1*lda] = 0.0;

    printf("example of gesvdjBatched \n");
    printf("m = %d, n = %d \n", m, n);
    printf("tol = %E, default value is machine zero \n", tol);
    printf("max. sweeps = %d, default value is 100\n", max_sweeps);

    printf("A0 = (matlab base-1)\n");
    printMatrix(m, n, A0, lda, "A0");
    printf("A1 = (matlab base-1)\n");
    printMatrix(m, n, A1, lda, "A1");
    printf("=====\n");
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configure parameters of gesvdj
 
/* step 1: create cusolver handle, bind a stream  */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);

    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: configuration of gesvdj */
    status = cusolverDnCreateGesvdjInfo(&gesvdj_params);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of tolerance is machine zero */
    status = cusolverDnXgesvdjSetTolerance(
        gesvdj_params,
        tol);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* default value of max. sweeps is 100 */
    status = cusolverDnXgesvdjSetMaxSweeps(
        gesvdj_params,
        max_sweeps);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* disable sorting */
    status = cusolverDnXgesvdjSetSortEig(
        gesvdj_params,
        sort_svd);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 3: copy A to device */
    cudaStat1 = cudaMalloc ((void**)&d_A   , sizeof(double)*lda*n*batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_U   , sizeof(double)*ldu*m*batchSize);
    cudaStat3 = cudaMalloc ((void**)&d_V   , sizeof(double)*ldv*n*batchSize);
    cudaStat4 = cudaMalloc ((void**)&d_S   , sizeof(double)*minmn*batchSize);
    cudaStat5 = cudaMalloc ((void**)&d_info, sizeof(int   )*batchSize);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(double)*lda*n*batchSize,
 cudaMemcpyHostToDevice);
    cudaStat2 = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
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call batched singular value solver

/* step 4: query working space of gesvdjBatched */
    status = cusolverDnDgesvdjBatched_bufferSize(
        cusolverH,
        jobz,
        m,
        n,
        d_A,
        lda,
        d_S,
        d_U,
        ldu,
        d_V,
        ldv,
        &lwork,
        gesvdj_params,
        batchSize
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat1 = cudaMalloc((void**)&d_work, sizeof(double)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 5: compute singular values of A0 and A1 */
    status = cusolverDnDgesvdjBatched(
        cusolverH,
        jobz,
        m,
        n,
        d_A,
        lda,
        d_S,
        d_U,
        ldu,
        d_V,
        ldv,
        d_work,
        lwork,
        d_info,
        gesvdj_params,
        batchSize
    );
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(U    , d_U   , sizeof(double)*ldu*m*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V    , d_V   , sizeof(double)*ldv*n*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(S    , d_S   , sizeof(double)*minmn*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat4 = cudaMemcpy(&info, d_info, sizeof(int) * batchSize       ,
 cudaMemcpyDeviceToHost);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
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check the result

    for(int i = 0 ; i < batchSize ; i++){
        if ( 0 == info[i] ){
            printf("matrix %d: gesvdj converges \n", i);
        }else if ( 0 > info[i] ){
/* only info[0] shows if some input parameter is wrong.
 * If so, the error is CUSOLVER_STATUS_INVALID_VALUE.
 */
            printf("Error: %d-th parameter is wrong \n", -info[i] );
            exit(1);
        }else { /* info = m+1 */
/* if info[i] is not zero, Jacobi method does not converge at i-th matrix. */
            printf("WARNING: matrix %d, info = %d : gesvdj does not converge
 \n", i, info[i] );
        }
    }

/* Step 6: show singular values and singular vectors */
    double *S0 = S;
    double *S1 = S + minmn;
    printf("==== \n");
    for(int i = 0 ; i < minmn ; i++){
        printf("S0(%d) = %20.16E\n", i+1, S0[i]);
    }
    printf("==== \n");
    for(int i = 0 ; i < minmn ; i++){
        printf("S1(%d) = %20.16E\n", i+1, S1[i]);
    }
    printf("==== \n");

    double *U0 = U;
    double *U1 = U + ldu*m; /* Uj is m-by-m */
    printf("U0 = (matlab base-1)\n");
    printMatrix(m, m, U0, ldu, "U0");
    printf("U1 = (matlab base-1)\n");
    printMatrix(m, m, U1, ldu, "U1");

    double *V0 = V;
    double *V1 = V + ldv*n; /* Vj is n-by-n */
    printf("V0 = (matlab base-1)\n");
    printMatrix(n, n, V0, ldv, "V0");
    printf("V1 = (matlab base-1)\n");
    printMatrix(n, n, V1, ldv, "V1");
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cannot query residual and executed sweeps

/*
 * The folowing two functions do not support batched version.
 * The error CUSOLVER_STATUS_NOT_SUPPORTED is returned. 
 */
    status = cusolverDnXgesvdjGetSweeps(
        cusolverH,
        gesvdj_params,
        &executed_sweeps);
    assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

    status = cusolverDnXgesvdjGetResidual(
        cusolverH,
        gesvdj_params,
        &residual);
    assert(CUSOLVER_STATUS_NOT_SUPPORTED == status);

/* free resources */
    if (d_A    ) cudaFree(d_A);
    if (d_U    ) cudaFree(d_U);
    if (d_V    ) cudaFree(d_V);
    if (d_S    ) cudaFree(d_S);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);
    if (stream      ) cudaStreamDestroy(stream);
    if (gesvdj_params) cusolverDnDestroyGesvdjInfo(gesvdj_params);

    cudaDeviceReset();

    return 0;
}

G.4. SVD approximation
This chapter provides a simple example in the C programming language of how to
approximate singular value decomposition by gesvdaStridedBatched.

A0 and A1 are a 3x2 dense matrices,
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...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *   nvcc -c -I/usr/local/cuda/include gesvda_example.cpp 
 *   g++ -o gesvda_example gesvda_example.o -L/usr/local/cuda/lib64 -lcudart -
lcusolver
 */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include <cusolverDn.h>

void printMatrix(int m, int n, const float*A, int lda, const char* name)
{
    for(int row = 0 ; row < m ; row++){
        for(int col = 0 ; col < n ; col++){
            float Areg = A[row + col*lda];
            printf("%s(%d,%d) = %20.16E\n", name, row+1, col+1, Areg);
        }
    }
}

int main(int argc, char*argv[])
{
    cusolverDnHandle_t cusolverH = NULL;
    cudaStream_t stream = NULL;

    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat1 = cudaSuccess;
    cudaError_t cudaStat2 = cudaSuccess;
    cudaError_t cudaStat3 = cudaSuccess;
    cudaError_t cudaStat4 = cudaSuccess;
    cudaError_t cudaStat5 = cudaSuccess;
    const int batchSize = 2;
    const int m = 3;
    const int n = 2;
    const int lda = m;
    const int ldu = m;
    const int ldv = n;
    const int rank = n;
    const long long int strideA = (long long int)lda*n;
    const long long int strideS = n;
    const long long int strideU = (long long int)ldu*n;
    const long long int strideV = (long long int)ldv*n;
/*        | 1 2  |       | 10 9 |
 *   A0 = | 4 5  |, A1 = |  8 7 |
 *        | 2 1  |       |  6 5 |
 */
    float A[strideA*batchSize] = { 1.0, 4.0, 2.0, 2.0, 5.0, 1.0, 10.0, 8.0, 6.0,
 9.0, 7.0, 5.0};
    float U[strideU*batchSize]; /* left singular vectors  */
    float V[strideV*batchSize]; /* right singular vectors */
    float S[strideS*batchSize]; /* numerical singular value */

/* exact singular values */
    float S_exact[strideS*batchSize] = {7.065283497082729, 1.040081297712078,
 18.839649186929730, 0.260035600289472};
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...
 
    float *d_A = NULL;  /* device copy of A */
    float *d_S = NULL;  /* singular values */
    float *d_U = NULL;  /* left singular vectors */
    float *d_V = NULL;  /* right singular vectors */
    int *d_info = NULL;  /* error info */
    int lwork = 0;       /* size of workspace */
    float *d_work = NULL; /* devie workspace for gesvda */
    const cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR; // compute
 eigenvectors.
    double RnrmF[batchSize]; /* residual norm */
    int info[batchSize];  /* host copy of error info */

    printf("example of gesvdaStridedBatched \n");
    printf("A = (matlab base-1)\n");
    printMatrix(m, n, A, lda, "A0");
    printf("=====\n");
    printMatrix(m, n, A + strideA, lda, "A1");
    printf("=====\n");

/* step 1: create cusolver handle, bind a stream */
    status = cusolverDnCreate(&cusolverH);
    assert(CUSOLVER_STATUS_SUCCESS == status);
    cudaStat1 = cudaStreamCreateWithFlags(&stream, cudaStreamNonBlocking);
    assert(cudaSuccess == cudaStat1);
    status = cusolverDnSetStream(cusolverH, stream);
    assert(CUSOLVER_STATUS_SUCCESS == status);

/* step 2: copy A to device */
    cudaStat1 = cudaMalloc ((void**)&d_A   , sizeof(float)*strideA*batchSize);
    cudaStat2 = cudaMalloc ((void**)&d_S   , sizeof(float)*strideS*batchSize);
    cudaStat3 = cudaMalloc ((void**)&d_U   , sizeof(float)*strideU*batchSize);
    cudaStat4 = cudaMalloc ((void**)&d_V   , sizeof(float)*strideV*batchSize);
    cudaStat5 = cudaMalloc ((void**)&d_info, sizeof(int)*batchSize);
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);

    cudaStat1 = cudaMemcpy(d_A, A, sizeof(float)*strideA*batchSize,
 cudaMemcpyHostToDevice);
    assert(cudaSuccess == cudaStat1);
    cudaDeviceSynchronize(); /* sync with null stream */

/* step 3: query workspace of SVD */
    status = cusolverDnSgesvdaStridedBatched_bufferSize(
        cusolverH,
        jobz, /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
              /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
        rank, /* number of singular values */
        m,    /* nubmer of rows of Aj, 0 <= m */
        n,    /* number of columns of Aj, 0 <= n  */
        d_A,     /* Aj is m-by-n */
        lda,     /* leading dimension of Aj */
        strideA, /* >= lda*n */
        d_S,     /* Sj is rank-by-1, singular values in descending order */
        strideS, /* >= rank */
        d_U,     /* Uj is m-by-rank */
        ldu,     /* leading dimension of Uj, ldu >= max(1,m) */
        strideU, /* >= ldu*rank */
        d_V,     /* Vj is n-by-rank */
        ldv,     /* leading dimension of Vj, ldv >= max(1,n) */
        strideV, /* >= ldv*rank */
        &lwork,
        batchSize /* number of matrices */
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);
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    cudaStat1 = cudaMalloc((void**)&d_work , sizeof(float)*lwork);
    assert(cudaSuccess == cudaStat1);

/* step 4: compute SVD */
    status = cusolverDnSgesvdaStridedBatched(
        cusolverH,
        jobz, /* CUSOLVER_EIG_MODE_NOVECTOR: compute singular values only */
              /* CUSOLVER_EIG_MODE_VECTOR: compute singular value and singular
 vectors */
        rank, /* number of singular values */
        m,    /* nubmer of rows of Aj, 0 <= m */
        n,    /* number of columns of Aj, 0 <= n  */
        d_A,     /* Aj is m-by-n */
        lda,     /* leading dimension of Aj */
        strideA, /* >= lda*n */
        d_S,     /* Sj is rank-by-1 */
                 /* the singular values in descending order */
        strideS, /* >= rank */
        d_U,     /* Uj is m-by-rank */
        ldu,     /* leading dimension of Uj, ldu >= max(1,m) */
        strideU, /* >= ldu*rank */
        d_V,     /* Vj is n-by-rank */
        ldv,     /* leading dimension of Vj, ldv >= max(1,n) */
        strideV, /* >= ldv*rank */
        d_work,
        lwork,
        d_info,
        RnrmF,
        batchSize /* number of matrices */
    );
    cudaStat1 = cudaDeviceSynchronize();
    assert(CUSOLVER_STATUS_SUCCESS == status);
    assert(cudaSuccess == cudaStat1);

    cudaStat1 = cudaMemcpy(U, d_U, sizeof(float)*strideU*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat2 = cudaMemcpy(V, d_V, sizeof(float)*strideV*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat3 = cudaMemcpy(S, d_S, sizeof(float)*strideS*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat4 = cudaMemcpy(info, d_info, sizeof(int)*batchSize,
 cudaMemcpyDeviceToHost);
    cudaStat5 = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat1);
    assert(cudaSuccess == cudaStat2);
    assert(cudaSuccess == cudaStat3);
    assert(cudaSuccess == cudaStat4);
    assert(cudaSuccess == cudaStat5);

    if ( 0 > info[0] ){
        printf("%d-th parameter is wrong \n", -info[0]);
        exit(1);
    }
    for(int idx = 0 ; idx < batchSize; idx++){
        if ( 0 == info[idx] ){
            printf("%d-th matrix, gesvda converges \n", idx );
        }else{
           printf("WARNING: info[%d] = %d : gesvda does not converge \n", idx,
 info[idx] );
        }
    }

    printf("S = singular values (matlab base-1)\n");
    printf("U = left singular vectors (matlab base-1)\n");
    printf("V = right singular vectors (matlab base-1)\n\n");
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    printMatrix(rank, 1, S, n, "S0");
    printf("=====\n");

    printMatrix(m, rank, U, ldu, "U0");
    printf("=====\n");

    printMatrix(n, rank, V, ldv, "V0");
    printf("=====\n");

    float ds_sup = 0;
    for(int j = 0; j < n; j++){
        float err = fabs( S[j] - S_exact[j] );
        ds_sup = (ds_sup > err)? ds_sup : err;
    }
    printf("|S0 - S0_exact|_sup = %E \n", ds_sup);

    printf("residual |A0 - U0*S0*V0**H|_F = %E \n", RnrmF[0] );

    printMatrix(rank, 1, S + strideS, n, "S1");
    printf("=====\n");

    printMatrix(m, rank, U + strideU, ldu, "U1");
    printf("=====\n");

    printMatrix(n, rank, V + strideV, ldv, "V1");
    printf("=====\n");

    ds_sup = 0;
    for(int j = 0; j < n; j++){
        float err = fabs( S[strideS + j] - S_exact[strideS + j] );
        ds_sup = (ds_sup > err)? ds_sup : err;
    }
    printf("|S1 - S1_exact|_sup = %E \n", ds_sup);

    printf("residual |A1 - U1*S1*V1**H|_F = %E \n", RnrmF[1] );

/*  free resources  */
    if (d_A    ) cudaFree(d_A);
    if (d_S    ) cudaFree(d_S);
    if (d_U    ) cudaFree(d_U);
    if (d_V    ) cudaFree(d_V);
    if (d_info ) cudaFree(d_info);
    if (d_work ) cudaFree(d_work);

    if (cusolverH) cusolverDnDestroy(cusolverH);
    if (stream   ) cudaStreamDestroy(stream);

    cudaDeviceReset();

    return 0;
}
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Appendix H.
EXAMPLES OF MULTIGPU EIGENVALUE
SOLVER

This chapter provides three examples to perform multiGPU symmetric eigenvalue
solver. The difference among them is how to generate the testing matrix. The testing
matrix is a tridiagonal matrix, from standard 3-point stencil of Laplacian operator with
Dirichlet boundary condition, so each row has (-1, 2, -1) signature.

The spectrum has analytic formula, we can check the accuracy of eigenvalues easily. The
user can change the dimension of the matrix to measure the performance of eigenvalue
solver.

The example code enables peer-to-peer access to take advantage of NVLINK. The user
can check the performance by on/off peer-to-peer access.

The procedures of these three examples are 1) to prepare a tridiagonal matrix in
distributed sense, 2) to query size of the workspace and to allocate the workspace for
each device, 3) to compute eigenvalues and eigenvectors, and 4) to check accuracy of
eigenvalues.

The example 1 allocates distributed matrix by calling createMat. It generates the matrix
on host memory and copies it to distributed device memory via memcpyH2D.

The example 2 allocates distributed matrix maunally, generates the matrix on host
memory and copies it to distributed device memory manually. This example is for the
users who are familiar with data layout of ScaLAPACK.

The example 3 allocates distributed matrix by calling createMat and generates the
matrix element-by-element on distributed matrix via memcpyH2D. The user needs not to
know the data layout of ScaLAPACK. It is useful when the matrix is sparse.
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H.1. SYEVD of 1D Laplacian operator (example 1)
...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *       nvcc -ccbin gcc -I/usr/local/cuda/include  -c main.cpp -o main.o
 *       nvcc -cudart static main.o -lcusolverMg
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include "cusolverMg.h"
#include "util.hxx"

//#define SHOW_FORMAT

#ifndef IDX2F
#define IDX2F(i,j,lda) ((((j)-1)*((size_t)lda))+((i)-1))
#endif /* IDX2F */

#ifndef IDX1F
#define IDX1F(i) ((i)-1)
#endif /* IDX1F */

static void print_matrix(
    int m,
    int n,
    const double *A,
    int lda,
    const char* name)
{
    printf("%s = matlab base-1, %d-by-%d matrix\n", name, m, n);
    for(int row = 1 ; row <= m ; row++){
        for(int col = 1 ; col <= n ; col++){
            double Aij = A[IDX2F(row, col, lda)];
            printf("%s(%d,%d) = %20.16E\n", name, row, col, Aij );
        }
    }
}

static void gen_1d_laplacian(
    int N,
    double *A,
    int lda)
{
    memset(A, 0, sizeof(double)*lda*N);
    for(int J = 1 ; J <= N; J++ ){
        /* A(J,J) = 2 */
        A[ IDX2F( J, J, lda ) ] = 2.0;
        if ( (J-1) >= 1 ){
            /* A(J, J-1) = -1*/
            A[ IDX2F( J, J-1, lda ) ] = -1.0;
        }
        if ( (J+1) <= N ){
            /* A(J, J+1) = -1*/
            A[ IDX2F( J, J+1, lda ) ] = -1.0;
        }
    }
}
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int main( int argc, char* argv[])
{
    cusolverMgHandle_t handle = NULL;
    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat = cudaSuccess;

/* maximum number of GPUs */
    const int MAX_NUM_DEVICES = 16;

    int nbGpus = 0;
    int deviceList[MAX_NUM_DEVICES];

    const int N   = 2111;
    const int IA  = 1;
    const int JA  = 1;
    const int T_A = 256; /* tile size */
    const int lda = N;

    double *A = NULL; /* A is N-by-N */
    double *D = NULL; /* D is 1-by-N */
    int  info = 0;

    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;

    cudaLibMgMatrixDesc_t descrA;
    cudaLibMgGrid_t gridA;
    cusolverMgGridMapping_t mapping = CUDALIBMG_GRID_MAPPING_COL_MAJOR;

    double **array_d_A = NULL;

    int64_t lwork = 0 ; /* workspace: number of elements per device */
    double **array_d_work = NULL;

    printf("test 1D Laplacian of order %d\n", N);

    printf("step 1: create Mg handle and select devices \n");
    status = cusolverMgCreate(&handle);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat = cudaGetDeviceCount( &nbGpus );
    assert( cudaSuccess == cudaStat );

    nbGpus = (nbGpus < MAX_NUM_DEVICES)? nbGpus : MAX_NUM_DEVICES;
    printf("\tthere are %d GPUs \n", nbGpus);
    for(int j = 0 ; j < nbGpus ; j++){
        deviceList[j] = j;
        cudaDeviceProp prop;
        cudaGetDeviceProperties(&prop, j);
        printf("\tdevice %d, %s, cc %d.%d \n",j, prop.name, prop.major,
 prop.minor);
    }

    status = cusolverMgDeviceSelect(
        handle,
        nbGpus,
        deviceList);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 2: Enable peer access.\n");
    assert( 0 == enablePeerAccess( nbGpus, deviceList ) );
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...
 
    printf("step 3: allocate host memory A \n");
    A = (double *)malloc (sizeof(double)*lda*N);
    D = (double *)malloc (sizeof(double)*N);
    assert( NULL != A );
    assert( NULL != D );

    printf("step 4: prepare 1D Laplacian \n");
    gen_1d_laplacian(
        N,
        &A[ IDX2F( IA, JA, lda ) ],
        lda
    );

#ifdef SHOW_FORMAT
    print_matrix( N, N, A, lda, "A");
#endif

    printf("step 5: create matrix descriptors for A and D \n");

    status = cusolverMgCreateDeviceGrid(&gridA, 1, nbGpus, deviceList,
 mapping );
    assert(CUSOLVER_STATUS_SUCCESS == status);
/* (global) A is N-by-N */
    status = cusolverMgCreateMatrixDesc(
        &descrA,
        N,   /* nubmer of rows of (global) A */
        N,   /* number of columns of (global) A */
        N,   /* number or rows in a tile */
        T_A, /* number of columns in a tile */
        CUDA_R_64F,
        gridA );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 6: allocate distributed matrices A and D \n");

    array_d_A = (double**)malloc(sizeof(double*)*nbGpus);
    assert(NULL != array_d_A);
/* A := 0 */
    createMat<double>(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A
    );

    printf("step 7: prepare data on devices \n");
    memcpyH2D<double>(
        nbGpus,
        deviceList,
        N,
        N,
/* input */
        A,
        lda,
/* output */
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A,   /* host pointer array of dimension nbGpus */
        IA,
        JA
    );
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    printf("step 8: allocate workspace space \n");
    status = cusolverMgSyevd_bufferSize(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,
        IA, /* base-1 */
        JA, /* base-1 */
        descrA,
        (void*)D,
        CUDA_R_64F,
        CUDA_R_64F,
        &lwork);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("\tallocate device workspace, lwork = %lld \n", (long long)lwork);
    array_d_work = (double**)malloc(sizeof(double*)*nbGpus);
    assert( NULL != array_d_work);
/* array_d_work[j] points to device workspace of device j */
    workspaceAlloc(
        nbGpus,
        deviceList,
        sizeof(double)*lwork, /* number of bytes per device */
        (void**)array_d_work
    );

/* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

    printf("step 9: compute eigenvalues and eigenvectors \n");
    status = cusolverMgSyevd(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,  /* exit: eigenvectors */
        IA,
        JA,
        descrA,
        (void**)D,  /* exit: eigenvalues */
        CUDA_R_64F,
        CUDA_R_64F,
        (void**)array_d_work,
        lwork,
        &info  /* host */
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    /* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

/* check if SYEVD converges */
    assert(0 == info);
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    printf("step 10: copy eigenvectors to A and eigenvalues to D\n");

    memcpyD2H<double>(
        nbGpus,
        deviceList,
        N,
        N,
/* input */
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A,
        IA,
        JA,
/* output */
        A,   /* N-y-N eigenvectors */
        lda
    );

#ifdef SHOW_FORMAT
    printf("eigenvalue D = \n");
    /* D is 1-by-N */
    print_matrix(1, N, D, 1, "D");
#endif

    printf("step 11: verify eigenvales \n");
    printf("     lambda(k) = 4 * sin(pi/2 *k/(N+1))^2 for k = 1:N \n");
    double max_err_D = 0;
    for(int k = 1; k <= N ; k++){
        const double pi = 4*atan(1.0);
        const double h  = 1.0/((double)N+1);
        const double factor = sin(pi/2.0 * ((double)k)*h);
        const double lambda = 4.0*factor*factor;
        const double err = fabs(D[IDX1F(k)] - lambda);
        max_err_D = (max_err_D > err)? max_err_D : err;
//        printf("k = %d, D = %E, lambda = %E, err = %E\n", k, D[IDX1F(k)],
 lambda, err);
    }
    printf("\n|D - lambda|_inf = %E\n\n", max_err_D);

    printf("step 12: free resources \n");
    destroyMat(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        (void**)array_d_A );

    workspaceFree( nbGpus, deviceList, (void**)array_d_work );

    if (NULL != A) free(A);
    if (NULL != D) free(D);

    if (NULL != array_d_A   ) free(array_d_A);
    if (NULL != array_d_work) free(array_d_work);

    return 0;
}
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/* util.hxx */

/*
 * nbGpus : (int) number of gpus in deviceList array.
 * deviceList : (*int) list of device ids.
 *
 * The function restores the input device before leaving.
 */
static int enablePeerAccess (const int nbGpus, const int *deviceList )
{
    int currentDevice = 0;
    cudaGetDevice( &currentDevice );

    /* Remark: access granted by this cudaDeviceEnablePeerAccess is
 unidirectional */
    /* Rows and columns represents a connectivity matrix between GPUs in the
 system */
    for(int row=0; row < nbGpus; row++) {
        cudaSetDevice(row);
        for(int col=0; col < nbGpus; col++) {
            if( row != col ){
                cudaError_t cudaStat1 = cudaSuccess;
                cudaError_t cudaStat2 = cudaSuccess;
                int canAccessPeer = 0;
                cudaStat1 = cudaDeviceCanAccessPeer( &canAccessPeer, row, col );
                if ( canAccessPeer ){
                    printf("\t Enable peer access from gpu %d to gpu %d\n", row,
 col );
                    cudaStat2 = cudaDeviceEnablePeerAccess( col, 0 );
                }
                assert(cudaStat1 == cudaSuccess);
                assert(cudaStat2 == cudaSuccess);
            }
        }
    }
    cudaSetDevice( currentDevice );
    return 0;
}

static int workspaceFree(
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    void **array_d_work  /* <t> num_devices, host array */
                         /* array_d_work[j] points to device workspace of device
 j */
    )
{
    int currentDev = 0; /* record current device ID */
    cudaGetDevice( &currentDev );

    for(int idx = 0 ; idx < num_devices ; idx++){
        int deviceId = deviceIdA[idx];
/* WARNING: we need to set device before any runtime API */
        cudaSetDevice( deviceId );

        if (NULL != array_d_work[idx]){
            cudaFree(array_d_work[idx]);
        }
    }
    cudaSetDevice(currentDev);
    return 0;
}
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static int workspaceAlloc(
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    size_t sizeInBytes,  /* number of bytes per device */
    void **array_d_work  /* <t> num_devices, host array */
                         /* array_d_work[j] points to device workspace of device
 j */
    )
{
    cudaError_t cudaStat1 = cudaSuccess;

    int currentDev = 0; /* record current device ID */
    cudaGetDevice( &currentDev );

    memset(array_d_work, 0, sizeof(void*)*num_devices);
    for(int idx = 0 ; idx < num_devices ; idx++){
        int deviceId = deviceIdA[idx];
/* WARNING: we need to set device before any runtime API */
        cudaSetDevice( deviceId );

        void *d_workspace = NULL;

        cudaStat1 = cudaMalloc(&d_workspace, sizeInBytes);
        assert( cudaSuccess == cudaStat1 );
        array_d_work[idx] = d_workspace;
    }
    cudaSetDevice(currentDev);
    return 0;
}

/* create a empty matrix A with A := 0 */
template <typename T_ELEM>
int createMat(
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    int N_A,   /* number of columns of global A */
    int T_A,   /* number of columns per column tile */
    int LLD_A, /* leading dimension of local A */
    T_ELEM **array_d_A  /* host pointer array of dimension num_devices */
    )
{
    cudaError_t cudaStat1 = cudaSuccess;
    int currentDev = 0; /* record current device id */
    cudaGetDevice( &currentDev );
    cudaDeviceSynchronize();
    const int A_num_blks = ( N_A + T_A - 1) / T_A;
    const int max_A_num_blks_per_device = (A_num_blks + num_devices-1)/
num_devices;
/* Allocate base pointers */
    memset(array_d_A, 0, sizeof(T_ELEM*) * num_devices);
    for( int p = 0 ; p < num_devices ; p++){
        cudaStat1 = cudaSetDevice(deviceIdA[p]);
        assert(cudaSuccess == cudaStat1);
/* Allocate max_A_num_blks_per_device blocks per device */
        cudaStat1 =
 cudaMalloc( &(array_d_A[p]), sizeof(T_ELEM)*LLD_A*T_A*max_A_num_blks_per_device );
        assert(cudaSuccess == cudaStat1);
/* A := 0 */
        cudaStat1 = cudaMemset( array_d_A[p],
 0, sizeof(T_ELEM)*LLD_A*T_A*max_A_num_blks_per_device );
        assert(cudaSuccess == cudaStat1);
    }
    cudaDeviceSynchronize();
    cudaSetDevice(currentDev);
    return 0;
}
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static int destroyMat (
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    int N_A,  /* number of columns of global A */
    int T_A,  /* number of columns per column tile */
    void **array_d_A)  /* host pointer array of dimension num_devices */
{
    cudaError_t cudaStat = cudaSuccess;

    int currentDev  = 0; /* record current device id */
    cudaGetDevice( &currentDev );

    const int num_blocks  = (N_A + T_A - 1) / T_A;
    for( int p = 0 ; p < num_devices ; p++){
        cudaStat = cudaSetDevice(deviceIdA[p]);
        assert(cudaSuccess == cudaStat);

        if ( NULL != array_d_A[p] ){
            cudaFree( array_d_A[p] );
        }
    }
    memset(array_d_A, 0, sizeof(void*)*num_devices);
    cudaSetDevice(currentDev);
    return 0;
}

template <typename T_ELEM>
static int mat_pack2unpack(
    int num_devices,
    int N_A,   /* number of columns of global A */
    int T_A,   /* number of columns per column tile */
    int LLD_A, /* leading dimension of local A */
    T_ELEM **array_d_A_packed,  /* host pointer array of dimension num_devices
 */
/* output */
    T_ELEM **array_d_A_unpacked /* host pointer array of dimension num_blks */
   )
{
    const int num_blks = ( N_A + T_A - 1) / T_A;

    for(int p_a = 0 ; p_a < num_devices ; p_a++){
        T_ELEM *d_A = array_d_A_packed[p_a];
        int nz_blks = 0;
        for(int JA_blk_id = p_a ; JA_blk_id < num_blks ; JA_blk_id+=num_devices)
{
            array_d_A_unpacked[JA_blk_id] = d_A + (size_t)LLD_A * T_A *
 nz_blks ;
            nz_blks++;
        }
    }
    return 0;
}
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/*
 *  A(IA:IA+M-1, JA:JA+N-1) := B(1:M, 1:N)
 */
template <typename T_ELEM>
static int memcpyH2D(
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    int M,  /* number of rows in local A, B */
    int N,  /* number of columns in local A, B */
/* input */
    const T_ELEM *h_B,  /* host array, h_B is M-by-N with leading dimension ldb
  */
    int ldb,
 /* output */
    int N_A,   /* number of columns of global A */
    int T_A,  /* number of columns per column tile */
    int LLD_A, /* leading dimension of local A */
    T_ELEM **array_d_A_packed, /* host pointer array of dimension num_devices */
    int IA,  /* base-1 */
    int JA   /* base-1 */
    )
{
    cudaError_t cudaStat1 = cudaSuccess;

    int currentDev = 0; /* record current device id */

/*  Quick return if possible */
    if ( (0 >= M) || (0 >= N) ){
        return 0;
    }

/* consistent checking */
    if ( ldb < M ){
        return 1;
    }

    cudaGetDevice( &currentDev );
    cudaDeviceSynchronize();

    const int num_blks = ( N_A + T_A - 1) / T_A;

    T_ELEM **array_d_A_unpacked = (T_ELEM**)malloc(sizeof(T_ELEM*)*num_blks);
    assert(NULL != array_d_A_unpacked);

    mat_pack2unpack<T_ELEM>(
        num_devices,
        N_A,   /* number of columns of global A */
        T_A,   /* number of columns per column tile */
        LLD_A, /* leading dimension of local A */
        array_d_A_packed,  /* host pointer array of size num_devices */
/* output */
        array_d_A_unpacked /* host pointer arrya of size num_blks */
   );

/* region of interest is A(IA:IA+N-1, JA:JA+N-1) */
    const int N_hat = (JA-1) + N; /* JA is base-1 */

    const int JA_start_blk_id = (JA-1)/T_A;
    const int JA_end_blk_id   = (N_hat-1)/T_A;
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    for(int p_a = 0 ; p_a < num_devices ; p_a++){
/* region of interest: JA_start_blk_id:1:JA_end_blk_id */
        for(int JA_blk_id = p_a; JA_blk_id <= JA_end_blk_id ; JA_blk_id
+=num_devices){
            if ( JA_blk_id < JA_start_blk_id ) { continue; }
/*
 * process column block of A
 *       A(A_start_row:M_A, A_start_col : (A_start_col + IT_A-1) )
 */
            const int IBX_A = (1 + JA_blk_id*T_A); /* base-1 */
            const int A_start_col = imax( JA, IBX_A );   /* base-1 */
            const int A_start_row = IA;  /* base-1 */

            const int bdd  = imin( N_hat, (IBX_A + T_A -1) );
            const int IT_A = imin( T_A, (bdd - A_start_col + 1) );

            const int loc_A_start_row = A_start_row;   /* base-1 */
            const int loc_A_start_col = (A_start_col-IBX_A)+1;  /* base-1 */

            T_ELEM *d_A = array_d_A_unpacked[JA_blk_id] +
 IDX2F( loc_A_start_row, loc_A_start_col, LLD_A );
            const T_ELEM *h_A = h_B + IDX2F( A_start_row - IA + 1, A_start_col -
 JA + 1, ldb );

            cudaStat1 = cudaMemcpy2D(
                d_A,  /* dst */
                (size_t)LLD_A * sizeof(T_ELEM),
                h_A,  /* src */
                (size_t)ldb * sizeof(T_ELEM),
                (size_t)M * sizeof(T_ELEM),
                (size_t)IT_A,
                cudaMemcpyHostToDevice
            );
            assert( cudaSuccess == cudaStat1 );
        }/* for each tile per device */
    }/* for each device */
    cudaDeviceSynchronize();
    cudaSetDevice(currentDev);

    if ( NULL != array_d_A_unpacked ) { free(array_d_A_unpacked); }
    return 0;
}

/*
 *  B(1:M, 1:N) := A(IA:IA+M-1, JA:JA+N-1)
 */
template <typename T_ELEM>
static int memcpyD2H(
    int num_devices,
    const int *deviceIdA, /* <int> dimension num_devices */
    int M,  /* number of rows in local A, B */
    int N,  /* number of columns in local A, B */
 /* input */
    int N_A,  /* number of columns of global A */
    int T_A,  /* number of columns per column tile */
    int LLD_A, /* leading dimension of local A */
    T_ELEM **array_d_A_packed, /* host pointer array of dimension num_devices */
    int IA,  /* base-1 */
    int JA,   /* base-1 */
/* output */
    T_ELEM *h_B,  /* host array, h_B is M-by-N with leading dimension ldb  */
    int ldb
    )
{
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    cudaError_t cudaStat1 = cudaSuccess;
    int currentDev = 0; /* record current device id */

/*  Quick return if possible */
    if ( (0 >= M) || (0 >= N) ){
        return 0;
    }
/* consistent checking */
    if ( ldb < M ){
        return 1;
    }
    cudaGetDevice( &currentDev );
    cudaDeviceSynchronize();

    const int num_blks = ( N_A + T_A - 1) / T_A;
    T_ELEM **array_d_A_unpacked = (T_ELEM**)malloc(sizeof(T_ELEM*)*num_blks);
    assert(NULL != array_d_A_unpacked);

    mat_pack2unpack<T_ELEM>(
        num_devices,
        N_A,   /* number of columns of global A */
        T_A,   /* number of columns per column tile */
        LLD_A, /* leading dimension of local A */
        array_d_A_packed,  /* host pointer array of size num_devices */
        array_d_A_unpacked /* host pointer arrya of size num_blks */
   );
/* region of interest is A(IA:IA+N-1, JA:JA+N-1) */
    const int N_hat = (JA-1) + N; /* JA is base-1 */
    const int JA_start_blk_id = (JA-1)/T_A;
    const int JA_end_blk_id   = (N_hat-1)/T_A;
    for(int p_a = 0 ; p_a < num_devices ; p_a++){
/* region of interest: JA_start_blk_id:1:JA_end_blk_id */
        for(int JA_blk_id = p_a; JA_blk_id <= JA_end_blk_id ; JA_blk_id
+=num_devices){
            if ( JA_blk_id < JA_start_blk_id ) { continue; }
/* process column block, A(A_start_row:M_A, A_start_col : (A_start_col +
 IT_A-1) ) */
            const int IBX_A = (1 + JA_blk_id*T_A); /* base-1 */
            const int A_start_col = imax( JA, IBX_A );   /* base-1 */
            const int A_start_row = IA;  /* base-1 */
            const int bdd  = imin( N_hat, (IBX_A + T_A -1) );
            const int IT_A = imin( T_A, (bdd - A_start_col + 1) );
            const int loc_A_start_row = A_start_row;   /* base-1 */
            const int loc_A_start_col = (A_start_col-IBX_A)+1;  /* base-1 */
            const T_ELEM *d_A = array_d_A_unpacked[JA_blk_id] +
 IDX2F( loc_A_start_row, loc_A_start_col, LLD_A );
            T_ELEM *h_A = h_B + IDX2F( A_start_row - IA + 1, A_start_col - JA +
 1, ldb );
            cudaStat1 = cudaMemcpy2D(
                h_A,  /* dst */
                (size_t)ldb * sizeof(T_ELEM),
                d_A,  /* src */
                (size_t)LLD_A * sizeof(T_ELEM),
                (size_t)M * sizeof(T_ELEM),
                (size_t)IT_A,
                cudaMemcpyDeviceToHost
            );
            assert( cudaSuccess == cudaStat1 );
        }/* for each tile per device */
    }/* for each device */
    cudaDeviceSynchronize();
    cudaSetDevice(currentDev);
    if ( NULL != array_d_A_unpacked ) { free(array_d_A_unpacked); }
    return 0;
}
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H.2. SYEVD of 1D Laplacian operator (example 2)
...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *       nvcc -ccbin gcc -I/usr/local/cuda/include  -c main.cpp -o main.o
 *       nvcc -cudart static main.o -lcusolverMg
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include "cusolverMg.h"
#include "util.hxx"

//#define SHOW_FORMAT

#ifndef IDX2F
#define IDX2F(i,j,lda) ((((j)-1)*((size_t)lda))+((i)-1))
#endif /* IDX2F */

#ifndef IDX1F
#define IDX1F(i) ((i)-1)
#endif /* IDX1F */

#define imin(x,y)  (((x) < (y)) ? (x) : (y))

static void print_matrix(
    int m,
    int n,
    const double *A,
    int lda,
    const char* name)
{
    printf("%s = matlab base-1, %d-by-%d matrix\n", name, m, n);
    for(int row = 1 ; row <= m ; row++){
        for(int col = 1 ; col <= n ; col++){
            double Aij = A[IDX2F(row, col, lda)];
            printf("%s(%d,%d) = %20.16E\n", name, row, col, Aij );
        }
    }
}

static void gen_1d_laplacian(
    int N,
    double *A,
    int lda)
{
    memset(A, 0, sizeof(double)*lda*N);
    for(int J = 1 ; J <= N; J++ ){
        /* A(J,J) = 2 */
        A[ IDX2F( J, J, lda ) ] = 2.0;
        if ( (J-1) >= 1 ){
            /* A(J, J-1) = -1*/
            A[ IDX2F( J, J-1, lda ) ] = -1.0;
        }
        if ( (J+1) <= N ){
            /* A(J, J+1) = -1*/
            A[ IDX2F( J, J+1, lda ) ] = -1.0;
        }
    }
}
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...
 
int main( int argc, char* argv[])
{
    cusolverMgHandle_t handle = NULL;
    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat = cudaSuccess;
/* maximum number of GPUs */
    const int MAX_NUM_DEVICES = 16;

    int nbGpus = 0;
    int deviceList[MAX_NUM_DEVICES];

    const int N   = 2111;
    const int IA  = 1;
    const int JA  = 1;
    const int T_A = 256; /* tile size */
    const int lda = N;

    double *A = NULL; /* A is N-by-N */
    double *D = NULL; /* D is 1-by-N */
    int  info = 0;

    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;

    cudaLibMgMatrixDesc_t descrA;
    cudaLibMgGrid_t gridA;
    cusolverMgGridMapping_t mapping = CUDALIBMG_GRID_MAPPING_COL_MAJOR;

    double **array_d_A = NULL;

    int64_t lwork = 0 ; /* workspace: number of elements per device */
    double **array_d_work = NULL;

    printf("test 1D Laplacian of order %d\n", N);

    printf("step 1: create Mg handle and select devices \n");
    status = cusolverMgCreate(&handle);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat = cudaGetDeviceCount( &nbGpus );
    assert( cudaSuccess == cudaStat );

    nbGpus = (nbGpus < MAX_NUM_DEVICES)? nbGpus : MAX_NUM_DEVICES;
    printf("\tthere are %d GPUs \n", nbGpus);
    for(int j = 0 ; j < nbGpus ; j++){
        deviceList[j] = j;
        cudaDeviceProp prop;
        cudaGetDeviceProperties(&prop, j);
        printf("\tdevice %d, %s, cc %d.%d \n",j, prop.name, prop.major,
 prop.minor);
    }

    status = cusolverMgDeviceSelect(
        handle,
        nbGpus,
        deviceList);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 2: Enable peer access \n");
    assert( 0 == enablePeerAccess( nbGpus, deviceList ) );
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...
 
    printf("step 3: allocate host memory A \n");
    A = (double *)malloc (sizeof(double)*lda*N);
    D = (double *)malloc (sizeof(double)*N);
    assert( NULL != A );
    assert( NULL != D );

    printf("step 4: prepare 1D Laplacian \n");
    gen_1d_laplacian(
        N,
        &A[ IDX2F( IA, JA, lda ) ],
        lda
    );

#ifdef SHOW_FORMAT
    print_matrix( N, N, A, lda, "A");
#endif

    printf("step 5: create matrix descriptors for A and D \n");

    status = cusolverMgCreateDeviceGrid(&gridA, 1, nbGpus, deviceList,
 mapping );
    assert(CUSOLVER_STATUS_SUCCESS == status);
/* (global) A is N-by-N */
    status = cusolverMgCreateMatrixDesc(
        &descrA,
        N,   /* nubmer of rows of (global) A */
        N,   /* number of columns of (global) A */
        N,   /* number or rows in a tile */
        T_A, /* number of columns in a tile */
        CUDA_R_64F,
        gridA );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 6: allocate distributed matrices A and D \n");

    array_d_A = (double**) malloc (sizeof(double*) * nbGpus );
    assert( NULL != array_d_A );

    const int A_num_blks = ( N + T_A - 1) / T_A;
    const int blks_per_device = (A_num_blks + nbGpus-1)/nbGpus;

    for( int p = 0 ; p < nbGpus ; p++){
        cudaSetDevice(deviceList[p]);
        cudaStat =
 cudaMalloc( &(array_d_A[p]), sizeof(double)*lda*T_A*blks_per_device );
        assert(cudaSuccess == cudaStat);
    }

    printf("step 7: prepare data on devices \n");
/* The following setting only works for IA = JA = 1 */
    for( int k = 0 ; k < A_num_blks ; k++){
/* k = ibx * nbGpus + p */
        const int p   = (k % nbGpus);
        const int ibx = (k / nbGpus);
        double *h_Ak = A + (size_t)lda*T_A*k;
        double *d_Ak = array_d_A[p] + (size_t)lda*T_A*ibx;
        const int width = imin( T_A, (N - T_A*k) );
        cudaStat = cudaMemcpy(d_Ak, h_Ak, sizeof(double)*lda*width,
 cudaMemcpyHostToDevice);
        assert(cudaSuccess == cudaStat);
    }
    /* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);
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    printf("step 8: allocate workspace space \n");
    status = cusolverMgSyevd_bufferSize(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,
        IA, /* base-1 */
        JA, /* base-1 */
        descrA,
        (void*)D,
        CUDA_R_64F,
        CUDA_R_64F,
        &lwork);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("\tallocate device workspace, lwork = %lld \n", (long long)lwork);
    array_d_work = (double**)malloc(sizeof(double*)*nbGpus);
    assert( NULL != array_d_work);
/* array_d_work[j] points to device workspace of device j */
    workspaceAlloc(
        nbGpus,
        deviceList,
        sizeof(double)*lwork, /* number of bytes per device */
        (void**)array_d_work
    );

/* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

    printf("step 9: compute eigenvalues and eigenvectors \n");
    status = cusolverMgSyevd(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,  /* exit: eigenvectors */
        IA,
        JA,
        descrA,
        (void*)D,  /* exit: eigenvalues */
        CUDA_R_64F,
        CUDA_R_64F,
        (void**)array_d_work,
        lwork,
        &info  /* host */
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    /* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

/* check if SYEVD converges */
    assert(0 == info);
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    printf("step 10: copy eigenvectors to A and eigenvalues to D\n");

    memcpyD2H<double>(
        nbGpus,
        deviceList,
        N,
        N,
/* input */
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A,
        IA,
        JA,
/* output */
        A,   /* N-y-N eigenvectors */
        lda
    );

#ifdef SHOW_FORMAT
    printf("eigenvalue D = \n");
    /* D is 1-by-N */
    print_matrix(1, N, D, 1, "D");
#endif

    printf("step 11: verify eigenvales \n");
    printf("     lambda(k) = 4 * sin(pi/2 *k/(N+1))^2 for k = 1:N \n");
    double max_err_D = 0;
    for(int k = 1; k <= N ; k++){
        const double pi = 4*atan(1.0);
        const double h  = 1.0/((double)N+1);
        const double factor = sin(pi/2.0 * ((double)k)*h);
        const double lambda = 4.0*factor*factor;
        const double err = fabs(D[IDX1F(k)] - lambda);
        max_err_D = (max_err_D > err)? max_err_D : err;
//        printf("k = %d, D = %E, lambda = %E, err = %E\n", k, D[IDX1F(k)],
 lambda, err);
    }
    printf("\n|D - lambda|_inf = %E\n\n", max_err_D);

    printf("step 12: free resources \n");
    destroyMat(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        (void**)array_d_A );

    workspaceFree( nbGpus, deviceList, (void**)array_d_work );

    if (NULL != A) free(A);
    if (NULL != D) free(D);

    if (NULL != array_d_A   ) free(array_d_A);
    if (NULL != array_d_work) free(array_d_work);

    return 0;
}
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H.3. SYEVD of 1D Laplacian operator (example 3)
...
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *       nvcc -ccbin gcc -I/usr/local/cuda/include  -c main.cpp -o main.o
 *       nvcc -cudart static main.o -lcusolverMg
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include "cusolverMg.h"
#include "util.hxx"

//#define SHOW_FORMAT

#ifndef IDX2F
#define IDX2F(i,j,lda) ((((j)-1)*((size_t)lda))+((i)-1))
#endif /* IDX2F */
#ifndef IDX1F
#define IDX1F(i) ((i)-1)
#endif /* IDX1F */

static void print_matrix(
    int m,
    int n,
    const double *A,
    int lda,
    const char* name)
{
    printf("%s = matlab base-1, %d-by-%d matrix\n", name, m, n);
    for(int row = 1 ; row <= m ; row++){
        for(int col = 1 ; col <= n ; col++){
            double Aij = A[IDX2F(row, col, lda)];
            printf("%s(%d,%d) = %20.16E\n", name, row, col, Aij );
        }
    }
}
/* the caller must set A = 0 */
static void gen_1d_laplacian(
    cusolverMgHandle_t handle,
    int nbGpus,
    const int *deviceList,
    int N,     /* number of columns of global A */
    int T_A,   /* number of columns per column tile */
    int LLD_A, /* leading dimension of local A */
    double **array_d_A /* host pointer array of dimension nbGpus */
    )
{
    double two = 2.0;
    double minus_one = -1.0;
    for(int J = 1 ; J <= N; J++ ){
        /* A(J,J) = 2 */
        memcpyH2D<double>(nbGpus, deviceList, 1, 1, &two, 1, N, T_A, LLD_A,
 array_d_A, J, J);
        if ( (J-1) >= 1 ){
            /* A(J, J-1) = -1*/
            memcpyH2D<double>(nbGpus, deviceList, 1, 1, &minus_one, 1, N, T_A,
 LLD_A, array_d_A, J, J-1);
        }
        if ( (J+1) <= N ){
            /* A(J, J+1) = -1*/
            memcpyH2D<double>(nbGpus, deviceList, 1, 1, &minus_one, 1, N, T_A,
 LLD_A, array_d_A, J, J+1);
        }
    }
}
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...
 
int main( int argc, char* argv[])
{
    cusolverMgHandle_t handle = NULL;
    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat = cudaSuccess;

/* maximum number of GPUs */
    const int MAX_NUM_DEVICES = 16;

    int nbGpus = 0;
    int deviceList[MAX_NUM_DEVICES];

    const int N   = 2111;
    const int IA  = 1;
    const int JA  = 1;
    const int T_A = 256; /* tile size */
    const int lda = N;

    double *A = NULL; /* A is N-by-N */
    double *D = NULL; /* D is 1-by-N */
    int  info = 0;

    cusolverEigMode_t jobz = CUSOLVER_EIG_MODE_VECTOR;

    cudaLibMgMatrixDesc_t descrA;
    cudaLibMgGrid_t gridA;
    cusolverMgGridMapping_t mapping = CUDALIBMG_GRID_MAPPING_COL_MAJOR;

    double **array_d_A = NULL;

    int64_t lwork = 0 ; /* workspace: number of elements per device */
    double **array_d_work = NULL;

    printf("test 1D Laplacian of order %d\n", N);

    printf("step 1: create Mg handle and select devices \n");
    status = cusolverMgCreate(&handle);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat = cudaGetDeviceCount( &nbGpus );
    assert( cudaSuccess == cudaStat );

    nbGpus = (nbGpus < MAX_NUM_DEVICES)? nbGpus : MAX_NUM_DEVICES;
    printf("\tthere are %d GPUs \n", nbGpus);
    for(int j = 0 ; j < nbGpus ; j++){
        deviceList[j] = j;
        cudaDeviceProp prop;
        cudaGetDeviceProperties(&prop, j);
        printf("\tdevice %d, %s, cc %d.%d \n",j, prop.name, prop.major,
 prop.minor);
    }

    status = cusolverMgDeviceSelect(
        handle,
        nbGpus,
        deviceList);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 2: Enable peer access.\n");
    assert( 0 == enablePeerAccess( nbGpus, deviceList ) );
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...
 
    printf("step 3: allocate host memory A \n");
    A = (double *)malloc (sizeof(double)*lda*N);
    D = (double *)malloc (sizeof(double)*N);
    assert( NULL != A );
    assert( NULL != D );

    printf("step 4: create matrix descriptors for A and D \n");
    status = cusolverMgCreateDeviceGrid(&gridA, 1, nbGpus, deviceList,
 mapping );
    assert(CUSOLVER_STATUS_SUCCESS == status);
/* (global) A is N-by-N */
    status = cusolverMgCreateMatrixDesc(
        &descrA,
        N,   /* nubmer of rows of (global) A */
        N,   /* number of columns of (global) A */
        N,   /* number or rows in a tile */
        T_A, /* number of columns in a tile */
        CUDA_R_64F,
        gridA );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 5: allocate distributed matrices A and D, A = 0 and D = 0 \n");

    array_d_A = (double**)malloc(sizeof(double*)*nbGpus);
    assert(NULL != array_d_A);

/* A := 0 */
    createMat<double>(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A );

    printf("step 6: prepare 1D Laplacian on devices \n");
    gen_1d_laplacian(
        handle,
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A);

    printf("step 7: allocate workspace space \n");
    status = cusolverMgSyevd_bufferSize(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,
        IA, /* base-1 */
        JA, /* base-1 */
        descrA,
        (void*)D,
        CUDA_R_64F,
        CUDA_R_64F,
        &lwork);
    assert(CUSOLVER_STATUS_SUCCESS == status);
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    printf("\tallocate device workspace, lwork = %lld \n", (long long)lwork);
    array_d_work = (double**)malloc(sizeof(double*)*nbGpus);
    assert( NULL != array_d_work);
/* array_d_work[j] points to device workspace of device j */
    workspaceAlloc(
        nbGpus,
        deviceList,
        sizeof(double)*lwork, /* number of bytes per device */
        (void**)array_d_work
    );

/* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

    printf("step 8: compute eigenvalues and eigenvectors \n");
    status = cusolverMgSyevd(
        handle,
        (cusolverEigMode_t)jobz,
        CUBLAS_FILL_MODE_LOWER, /* only support lower mode */
        N,
        (void**)array_d_A,  /* exit: eigenvectors */
        IA,
        JA,
        descrA,
        (void*)D,  /* exit: eigenvalues */
        CUDA_R_64F,
        CUDA_R_64F,
        (void**)array_d_work,
        lwork,
        &info  /* host */
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    /* sync all devices */
    cudaStat = cudaDeviceSynchronize();
    assert(cudaSuccess == cudaStat);

/* check if SYEVD converges */
    assert(0 == info);

    printf("step 9: copy eigenvectors to A and eigenvalues to D\n");
    memcpyD2H<double>(
        nbGpus,
        deviceList,
        N,
        N,
/* input */
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A,
        IA,
        JA,
/* output */
        A,   /* N-y-N eigenvectors */
        lda
    );
#ifdef SHOW_FORMAT
    printf("eigenvalue D = \n");
    /* D is 1-by-N */
    print_matrix(1, N, D, 1, "D");
#endif
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    printf("step 10: verify eigenvales \n");
    printf("     lambda(k) = 4 * sin(pi/2 *k/(N+1))^2 for k = 1:N \n");
    double max_err_D = 0;
    for(int k = 1; k <= N ; k++){
        const double pi = 4*atan(1.0);
        const double h  = 1.0/((double)N+1);
        const double factor = sin(pi/2.0 * ((double)k)*h);
        const double lambda = 4.0*factor*factor;
        const double err = fabs(D[IDX1F(k)] - lambda);
        max_err_D = (max_err_D > err)? max_err_D : err;
//        printf("k = %d, D = %E, lambda = %E, err = %E\n", k, D[IDX1F(k)],
 lambda, err);
    }
    printf("\n|D - lambda|_inf = %E\n\n", max_err_D);

    printf("step 11: free resources \n");
    destroyMat(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        (void**)array_d_A );

    workspaceFree( nbGpus, deviceList, (void**)array_d_work );

    if (NULL != A) free(A);
    if (NULL != D) free(D);

    if (NULL != array_d_A   ) free(array_d_A);
    if (NULL != array_d_work) free(array_d_work);

    return 0;
}
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Appendix I.
EXAMPLES OF MULTIGPU LINEAR SOLVER

This chapter provides examples to perform multiGPU linear solver.

The example code enables peer-to-peer access to take advantage of NVLINK. The user
can check the performance by on/off peer-to-peer access.

The example 1 solves linear system by LU with partial pivoting (getrf and getrs). It
allocates distributed matrix by calling createMat. Then generates the matrix on host
memory and copies it to distributed device memory via memcpyH2D.
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I.1. GETRF and GETRS of 1D Laplacian operator
(example 1)
Please refer H.1 for util.hxx.
 
/*
 * How to compile (assume cuda is installed at /usr/local/cuda/)
 *       nvcc -ccbin gcc -I/usr/local/cuda/include  -c main.cpp -o main.o
 *       nvcc -cudart static main.o -lcusolverMg
 */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <assert.h>
#include <cuda_runtime.h>
#include "cusolverMg.h"
#include "util.hxx"

//#define SHOW_FORMAT

#ifndef IDX2F
#define IDX2F(i,j,lda) ((((j)-1)*((size_t)lda))+((i)-1))
#endif /* IDX2F */

#ifndef IDX1F
#define IDX1F(i) ((i)-1)
#endif /* IDX1F */

static void print_matrix(
    int m,
    int n,
    const double *A,
    int lda,
    const char* name)
{
    printf("%s = matlab base-1, %d-by-%d matrix\n", name, m, n);
    for(int row = 1 ; row <= m ; row++){
        for(int col = 1 ; col <= n ; col++){
            double Aij = A[IDX2F(row, col, lda)];
            printf("%s(%d,%d) = %20.16E\n", name, row, col, Aij );
        }
    }
}

/* compute |x|_inf */
static double vec_nrm_inf(
    int n,
    const double *x)
{
    double max_nrm = 0;
    for(int row = 1; row <= n ; row++){
        double xi = x[ IDX1F(row) ];
        max_nrm = ( max_nrm > fabs(xi) )? max_nrm : fabs(xi);
    }
    return max_nrm;
}
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/* A is 1D laplacian, return A(N:-1:1, :) */
static void gen_1d_laplacian_perm(
    int N,
    double *A,
    int lda)
{
    memset(A, 0, sizeof(double)*lda*N);
    for(int J = 1 ; J <= N; J++ ){
        A[ IDX2F( N-J+1, J, lda ) ] = 2.0;
        if ( (J-1) >= 1 ){
            A[ IDX2F( N-J+1, J-1, lda ) ] = -1.0;
        }
        if ( (J+1) <= N ){
            A[ IDX2F( N-J+1, J+1, lda ) ] = -1.0;
        }
    }
}

int main( int argc, char* argv[])
{
    cusolverMgHandle_t handle = NULL;
    cusolverStatus_t status = CUSOLVER_STATUS_SUCCESS;
    cudaError_t cudaStat = cudaSuccess;
/* maximum number of GPUs */
    const int MAX_NUM_DEVICES = 16;

    int nbGpus = 0;
    int deviceList[MAX_NUM_DEVICES];

    const int N   = 611;
    const int IA  = 1;
    const int JA  = 1;
    const int T_A = 256; /* tile size of A */
    const int lda = N;
    
    const int IB  = 1;
    const int JB  = 1; 
    const int T_B = 100; /* tile size of B */
    const int ldb = N;
    
    double *A = NULL; /* A is N-by-N */
    double *B = NULL; /* B is N-by-1, right-hand-side vector */
    double *X = NULL; /* X is N-by-1, solution vector */
    int *IPIV = NULL; /* IPIV is 1-by-N, pivoting sequence */
    int  info = 0;

    cudaLibMgMatrixDesc_t descrA;
    cudaLibMgMatrixDesc_t descrB;
    cudaLibMgGrid_t gridA;
    cudaLibMgGrid_t gridB;
    cusolverMgGridMapping_t mapping = CUDALIBMG_GRID_MAPPING_COL_MAJOR;

    double **array_d_A = NULL;
    double **array_d_B = NULL;
    int **array_d_IPIV = NULL;

    int64_t lwork_getrf = 0 ;
    int64_t lwork_getrs = 0 ;
    int64_t lwork = 0 ; /* workspace: number of elements per device */
    double **array_d_work = NULL;

    printf("test permuted 1D Laplacian of order %d\n", N);
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    printf("step 1: create Mg handle and select devices \n");
    status = cusolverMgCreate(&handle);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    cudaStat = cudaGetDeviceCount( &nbGpus );
    assert( cudaSuccess == cudaStat );

    nbGpus = (nbGpus < MAX_NUM_DEVICES)? nbGpus : MAX_NUM_DEVICES;
    printf("\tthere are %d GPUs \n", nbGpus);
    for(int j = 0 ; j < nbGpus ; j++){
        deviceList[j] = j;
        cudaDeviceProp prop;
        cudaGetDeviceProperties(&prop, j);
        printf("\tdevice %d, %s, cc %d.%d \n",j, prop.name, prop.major,
 prop.minor);
    }

    status = cusolverMgDeviceSelect(
        handle,
        nbGpus,
        deviceList);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 2: Enable peer access.\n");
    assert( 0 == enablePeerAccess( nbGpus, deviceList ) );

    printf("step 3: allocate host memory A \n");
    A = (double *)malloc (sizeof(double)*lda*N);
    B = (double *)malloc (sizeof(double)*ldb*1);
    X = (double *)malloc (sizeof(double)*ldb*1);
    IPIV = (int *)malloc (sizeof(int)*N);
    assert( NULL != A );
    assert( NULL != B );
    assert( NULL != X );
    assert( NULL != IPIV );

/* permute 1D Laplacian to enable pivoting */
    printf("step 4: prepare permuted 1D Laplacian for A and B = ones(N,1) \n");
    gen_1d_laplacian_perm(
        N,
        &A[ IDX2F( IA, JA, lda ) ],
        lda
    );
#ifdef SHOW_FORMAT
    print_matrix( N, N, A, lda, "A");
#endif
/* B = ones(N,1) */
    for(int row = 1 ; row <= N ; row++){
        B[IDX1F(row)] = 1.0;
    }
    printf("step 5: create matrix descriptors for A and B \n");
    status = cusolverMgCreateDeviceGrid(&gridA, 1, nbGpus, deviceList,
 mapping );
    assert(CUSOLVER_STATUS_SUCCESS == status);
    status = cusolverMgCreateDeviceGrid(&gridB, 1, nbGpus, deviceList,
 mapping );
    assert(CUSOLVER_STATUS_SUCCESS == status);
/* (global) A is N-by-N */
    status = cusolverMgCreateMatrixDesc(
        &descrA,
        N,   /* nubmer of rows of (global) A */
        N,   /* number of columns of (global) A */
        N,   /* number or rows in a tile */
        T_A, /* number of columns in a tile */
        CUDA_R_64F,
        gridA );
    assert(CUSOLVER_STATUS_SUCCESS == status);
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/* (global) B is N-by-1 */
    status = cusolverMgCreateMatrixDesc(
        &descrB,
        N,   /* nubmer of rows of (global) B */
        1,   /* number of columns of (global) B */
        N,   /* number or rows in a tile */
        T_B, /* number of columns in a tile */
        CUDA_R_64F,
        gridB );
    assert(CUSOLVER_STATUS_SUCCESS == status);

    printf("step 6: allocate distributed matrices A, B and IPIV \n");
    array_d_A = (double**)malloc(sizeof(double*)*nbGpus);
    assert(NULL != array_d_A);
    array_d_B = (double**)malloc(sizeof(double*)*nbGpus);
    assert(NULL != array_d_B);
    array_d_IPIV = (int**)malloc(sizeof(int*)*nbGpus);
    assert(NULL != array_d_IPIV);

/* A := 0 */
    createMat<double>(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A
    );
/* B := 0 */
    createMat<double>(
        nbGpus,
        deviceList,
        1,   /* number of columns of global B */
        T_B, /* number of columns per column tile */
        ldb, /* leading dimension of local B */
        array_d_B
    );
/* IPIV := 0, IPIV is consistent with A */
    createMat<int>(
        nbGpus,
        deviceList,
        N,   /* number of columns of global IPIV */
        T_A, /* number of columns per column tile */
        1,   /* leading dimension of local IPIV */
        array_d_IPIV
    );
    printf("step 7: prepare data on devices \n");
/* distribute A to array_d_A */
    memcpyH2D<double>(
        nbGpus,
        deviceList,
        N,
        N,
/* input */
        A,
        lda,
/* output */
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        lda, /* leading dimension of local A */
        array_d_A,   /* host pointer array of dimension nbGpus */
        IA,
        JA
    );



Examples of multiGPU linear solver

www.nvidia.com
cuSOLVER Library DU-06709-001_v10.2 | 347

...

/* distribute B to array_d_B */
    memcpyH2D<double>(
        nbGpus,
        deviceList,
        N,
        1,
/* input */
        B,
        ldb,
/* output */
        1,   /* number of columns of global B */
        T_B, /* number of columns per column tile */
        ldb, /* leading dimension of local B */
        array_d_B,   /* host pointer array of dimension nbGpus */
        IB,
        JB
    );

    printf("step 8: allocate workspace space \n");
    status = cusolverMgGetrf_bufferSize(
        handle,
        N,
        N,
        (void**)array_d_A,
        IA, /* base-1 */
        JA, /* base-1 */
        descrA,
        array_d_IPIV,
        CUDA_R_64F,
        &lwork_getrf);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    status = cusolverMgGetrs_bufferSize(
        handle,
        CUBLAS_OP_N,
        N,
        1, /* NRHS */
        (void**)array_d_A,
        IA,
        JA,
        descrA,
        array_d_IPIV,
        (void**)array_d_B,
        IB,
        JB,
        descrB,
        CUDA_R_64F,
        &lwork_getrs);
    assert(CUSOLVER_STATUS_SUCCESS == status);

    lwork = (lwork_getrf > lwork_getrs)? lwork_getrf : lwork_getrs;
    printf("\tallocate device workspace, lwork = %lld \n", (long long)lwork);
    array_d_work = (double**)malloc(sizeof(double*)*nbGpus);
    assert( NULL != array_d_work);

/* array_d_work[j] points to device workspace of device j */
    workspaceAlloc(
        nbGpus,
        deviceList,
        sizeof(double)*lwork, /* number of bytes per device */
        (void**)array_d_work
    );
    cudaStat = cudaDeviceSynchronize(); /* sync all devices */
    assert(cudaSuccess == cudaStat);
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    printf("step 9: solve A*X = B by GETRF and GETRS \n");
    status = cusolverMgGetrf(
        handle,
        N,
        N,
        (void**)array_d_A,
        IA,
        JA,
        descrA,
        array_d_IPIV,
        CUDA_R_64F,
        (void**)array_d_work,
        lwork,
        &info  /* host */
    );
    assert(CUSOLVER_STATUS_SUCCESS == status);
    cudaStat = cudaDeviceSynchronize(); /* sync all devices */
    assert(cudaSuccess == cudaStat);
    assert(0 == info); /* check if A is singular  */

    status = cusolverMgGetrs(
        handle,
        CUBLAS_OP_N,
        N,
        1, /* NRHS */
        (void**)array_d_A,
        IA,
        JA,
        descrA,
        array_d_IPIV,
        (void**)array_d_B,
        IB,
        JB,
        descrB,
        CUDA_R_64F,
        (void**)array_d_work,
        lwork,
        &info  /* host */
    );

    assert(CUSOLVER_STATUS_SUCCESS == status);
    cudaStat = cudaDeviceSynchronize(); /* sync all devices */
    assert(cudaSuccess == cudaStat);
    assert(0 == info); /* check if parameters are valid */

    printf("step 10: retrieve IPIV and solution vector X \n");
    memcpyD2H<double>(
        nbGpus,
        deviceList,
        N,
        1,
/* input */
        1,   /* number of columns of global B */
        T_B, /* number of columns per column tile */
        ldb, /* leading dimension of local B */
        array_d_B,
        IB,
        JB,
/* output */
        X,   /* N-by-1 */
        ldb
    );
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/* IPIV is consistent with A, use JA and T_A */
    memcpyD2H<int>(
        nbGpus,
        deviceList,
        1,
        N,
/* input */
        N,   /* number of columns of global IPIV */
        T_A, /* number of columns per column tile */
        1, /* leading dimension of local IPIV */
        array_d_IPIV,
        1,
        JA,
/* output */
        IPIV,   /* 1-by-N */
        1
    );

#ifdef SHOW_FORMAT
    /* X is N-by-1 */
    print_matrix(N, 1, X, ldb, "X");
#endif

#ifdef SHOW_FORMAT
    /* IPIV is 1-by-N */
    printf("IPIV = matlab base-1, 1-by-%d matrix\n", N);
    for(int row = 1; row <= N ; row++){
        printf("IPIV(%d) = %d \n", row, IPIV[ IDX1F(row) ]);
    }
#endif

    printf("step 11: measure residual error |b - A*x| \n");
    double max_err = 0;
    for(int row = 1; row <= N ; row++){
        double sum = 0.0;
        for(int col = 1; col <= N ; col++){
            double Aij = A[ IDX2F( row, col, lda ) ];
            double  xj = X[ IDX1F(col) ];
            sum += Aij*xj;
        }
        double bi = B[ IDX1F(row) ];
        double err = fabs( bi - sum );

        max_err = ( max_err > err )? max_err : err;
    }
    double x_nrm_inf = vec_nrm_inf(N, X);
    double b_nrm_inf = vec_nrm_inf(N, B);;
    double A_nrm_inf = 4.0;
    double rel_err = max_err/(A_nrm_inf * x_nrm_inf + b_nrm_inf);
    printf("\n|b - A*x|_inf = %E\n", max_err);
    printf("|x|_inf = %E\n", x_nrm_inf);
    printf("|b|_inf = %E\n", b_nrm_inf);
    printf("|A|_inf = %E\n", A_nrm_inf);
/* relative error is around machine zero  */
/* the user can use |b - A*x|/(N*|A|*|x|+|b|) as well */
    printf("|b - A*x|/(|A|*|x|+|b|) = %E\n\n", rel_err);
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    printf("step 12: free resources \n");
    destroyMat(
        nbGpus,
        deviceList,
        N,   /* number of columns of global A */
        T_A, /* number of columns per column tile */
        (void**)array_d_A );
    destroyMat(
        nbGpus,
        deviceList,
        1,   /* number of columns of global B */
        T_B, /* number of columns per column tile */
        (void**)array_d_B );
    destroyMat(
        nbGpus,
        deviceList,
        N,   /* number of columns of global IPIV */
        T_A, /* number of columns per column tile */
        (void**)array_d_IPIV );

    workspaceFree( nbGpus, deviceList, (void**)array_d_work );

    if (NULL != A) free(A);
    if (NULL != B) free(B);
    if (NULL != X) free(X);
    if (NULL != IPIV) free(IPIV);

    if (NULL != array_d_A   ) free(array_d_A);
    if (NULL != array_d_B   ) free(array_d_B);
    if (NULL != array_d_IPIV) free(array_d_IPIV);
    if (NULL != array_d_work) free(array_d_work);

    return 0;
}
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Appendix J.
ACKNOWLEDGEMENTS

NVIDIA would like to thank the following individuals and institutions for their
contributions:

‣ CPU LAPACK routines from netlib, CLAPACK-3.2.1 (http://www.netlib.org/
clapack/)

The following is license of CLAPACK-3.2.1.

Copyright (c) 1992-2008 The University of Tennessee. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

- Redistributions of source code must retain the above copyright notice, this list of
conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright notice, this list of
conditions and the following disclaimer listed in this license in the documentation and/
or other materials provided with the distribution.

- Neither the name of the copyright holders nor the names of its contributors may be
used to endorse or promote products derived from this software without specific prior
written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

‣ METIS-5.1.0 (http://glaros.dtc.umn.edu/gkhome/metis/metis/overview)
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The following is license of METIS (Apache 2.0 license).

Copyright 1995-2013, Regents of the University of Minnesota

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file
except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed
under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
CONDITIONS OF ANY KIND, either express or implied. See the License for the specific
language governing permissions and limitations under the License.

‣ QD (A C++/fortran-90 double-double and quad-double package) (http://crd-
legacy.lbl.gov/~dhbailey/mpdist/)

The following is license of QD (modified BSD license).

Copyright (c) 2003-2009, The Regents of the University of California, through Lawrence
Berkeley National Laboratory (subject to receipt of any required approvals from U.S.
Dept. of Energy) All rights reserved.

1. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the copyright notice, this list of conditions
and the following disclaimer.

(2) Redistributions in binary form must reproduce the copyright notice, this list of
conditions and the following disclaimer in the documentation and/or other materials
provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley National
Laboratory, U.S. Dept. of Energy nor the names of its contributors may be used to
endorse or promote products derived from this software without specific prior written
permission.

2. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA,
OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

3. You are under no obligation whatsoever to provide any bug fixes, patches,
or upgrades to the features, functionality or performance of the source code
("Enhancements") to anyone; however, if you choose to make your Enhancements
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available either publicly, or directly to Lawrence Berkeley National Laboratory, without
imposing a separate written license agreement for such Enhancements, then you hereby
grant the following license: a non-exclusive, royalty-free perpetual license to install, use,
modify, prepare derivative works, incorporate into other computer software, distribute,
and sublicense such enhancements or derivative works thereof, in binary and source
code form.
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