
DA-08649-001_v11.1 | September 2020

Volta Compatibility Guide for CUDA
Applications

Application Note

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | ii

Table of Contents

Chapter 1. Volta Compatibility... 1
1.1. About this Document.. 1

1.2. Application Compatibility on Volta... 1

1.3. Verifying Volta Compatibility for Existing Applications... 2

1.3.1. Applications Using CUDA Toolkit 8.0 or Earlier... 2

1.3.2. Applications Using CUDA Toolkit 9.0.. 2

1.4. Building Applications with Volta Support.. 2

1.4.1. Applications Using CUDA Toolkit 8.0 or Earlier... 3

1.4.2. Applications Using CUDA Toolkit 9.0.. 4

1.4.3. Independent Thread Scheduling Compatibility... 5

Appendix A. Revision History... 6

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 1

Chapter 1. Volta Compatibility

1.1. About this Document
This application note, Volta Compatibility Guide for CUDA Applications, is intended to help
developers ensure that their NVIDIA® CUDA® applications will run on GPUs based on
the NVIDIA® Volta Architecture. This document provides guidance to developers who are
already familiar with programming in CUDA C++ and want to make sure that their software
applications are compatible with Volta.

1.2. Application Compatibility on Volta
The NVIDIA CUDA C++ compiler, nvcc, can be used to generate both architecture-specific
cubin files and forward-compatible PTX versions of each kernel. Each cubin file targets a
specific compute-capability version and is forward-compatible only with GPU architectures of
the same major version number. For example, cubin files that target compute capability 3.0 are
supported on all compute-capability 3.x (Kepler) devices but are not supported on compute-
capability 5.x (Maxwell) or 6.x (Pascal) devices. For this reason, to ensure forward compatibility
with GPU architectures introduced after the application has been released, it is recommended
that all applications include PTX versions of their kernels.

Note: CUDA Runtime applications containing both cubin and PTX code for a given architecture
will automatically use the cubin by default, keeping the PTX path strictly for forward-
compatibility purposes.

Applications that already include PTX versions of their kernels should work as-is on Volta-
based GPUs. Applications that only support specific GPU architectures via cubin files, however,
will need to be updated to provide Volta-compatible PTX or cubins.

Volta Compatibility

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 2

1.3. Verifying Volta Compatibility for
Existing Applications

The first step is to check that Volta-compatible device code (at least PTX) is compiled into the
application. The following sections show how to accomplish this for applications built with
different CUDA Toolkit versions.

1.3.1. Applications Using CUDA Toolkit 8.0 or
Earlier

CUDA applications built using CUDA Toolkit versions 2.1 through 8.0 are compatible with
Volta as long as they are built to include PTX versions of their kernels. To test that PTX JIT is
working for your application, you can do the following:

‣ Download and install the latest driver from http://www.nvidia.com/drivers.

‣ Set the environment variable CUDA_FORCE_PTX_JIT=1.

‣ Launch your application.

When starting a CUDA application for the first time with the above environment flag, the CUDA
driver will JIT-compile the PTX for each CUDA kernel that is used into native cubin code.

If you set the environment variable above and then launch your program and it works properly,
then you have successfully verified Volta compatibility.

Note: Be sure to unset the CUDA_FORCE_PTX_JIT environment variable when you are done
testing.

1.3.2. Applications Using CUDA Toolkit 9.0
CUDA applications built using CUDA Toolkit 9.0 are compatible with Volta as long as they are
built to include kernels in either Volta-native cubin format (see Building Applications with Volta
Support) or PTX format (see Applications Using CUDA Toolkit 8.0 or Earlier) or both.

1.4. Building Applications with Volta
Support

When a CUDA application launches a kernel, the CUDA Runtime determines the compute
capability of each GPU in the system and uses this information to automatically find the best
matching cubin or PTX version of the kernel that is available. If a cubin file supporting the
architecture of the target GPU is available, it is used; otherwise, the CUDA Runtime will load
the PTX and JIT-compile that PTX to the GPU's native cubin format before launching it. If
neither is available, then the kernel launch will fail.

http://www.nvidia.com/drivers

Volta Compatibility

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 3

The method used to build your application with either native cubin or at least PTX support for
Volta depend on the version of the CUDA Toolkit used.

The main advantages of providing native cubins are as follows:

‣ It saves the end user the time it takes to JIT-compile kernels that are available only as
PTX. All kernels compiled into the application must have native binaries at load time or
else they will be built just-in-time from PTX, including kernels from all libraries linked
to the application, even if those kernels are never launched by the application. Especially
when using large libraries, this JIT compilation can take a significant amount of time. The
CUDA driver will cache the cubins generated as a result of the PTX JIT, so this is mostly a
one-time cost for a given user, but it is time best avoided whenever possible.

‣ PTX JIT-compiled kernels often cannot take advantage of architectural features of newer
GPUs, meaning that native-compiled code may be faster or of greater accuracy.

1.4.1. Applications Using CUDA Toolkit 8.0 or
Earlier

The compilers included in CUDA Toolkit 8.0 or earlier generate cubin files native to earlier
NVIDIA architectures such as Maxwell and Pascal, but they cannot generate cubin files native
to the Volta architecture. To allow support for Volta and future architectures when using
version 8.0 or earlier of the CUDA Toolkit, the compiler must generate a PTX version of each
kernel.

Below are compiler settings that could be used to build mykernel.cu to run on Maxwell or
Pascal devices natively and on Volta devices via PTX JIT.

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the back-
end compilation target and can either be cubin or PTX or both. Only the back-end target
version(s) specified by the code= clause will be retained in the resulting binary; at least one
must be PTX to provide Volta compatibility.

Windows
nvcc.exe -ccbin "C:\vs2010\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_61,code=compute_61
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux
/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52

Volta Compatibility

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 4

 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_61,code=compute_61
 -O2 -o mykernel.o -c mykernel.cu

Alternatively, you may be familiar with the simplified nvcc command-line option -arch=sm_XX,
which is a shorthand equivalent to the following more explicit -gencode= command-line
options used above. -arch=sm_XX expands to the following:
-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a PTX back-
end target by default, it can only specify a single target cubin architecture at a time, and it is
not possible to use multiple -arch= options on the same nvcc command line, which is why the
examples above use -gencode= explicitly.

1.4.2. Applications Using CUDA Toolkit 9.0
With version 9.0 of the CUDA Toolkit, nvcc can generate cubin files native to the Volta
architecture (compute capability 7.0). When using CUDA Toolkit 9.0, to ensure that nvcc will
generate cubin files for all recent GPU architectures as well as a PTX version for forward
compatibility with future GPU architectures, specify the appropriate -gencode= parameters on
the nvcc command line as shown in the examples below.

Windows
nvcc.exe -ccbin "C:\vs2010\VC\bin"
 -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_70,code=sm_70
 -gencode=arch=compute_70,code=compute_70
 --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux
/usr/local/cuda/bin/nvcc
 -gencode=arch=compute_50,code=sm_50
 -gencode=arch=compute_52,code=sm_52
 -gencode=arch=compute_60,code=sm_60
 -gencode=arch=compute_61,code=sm_61
 -gencode=arch=compute_70,code=sm_70
 -gencode=arch=compute_70,code=compute_70
 -O2 -o mykernel.o -c mykernel.cu

Note that compute_XX refers to a PTX version and sm_XX refers to a cubin version. The
arch= clause of the -gencode= command-line option to nvcc specifies the front-end
compilation target and must always be a PTX version. The code= clause specifies the back-
end compilation target and can either be cubin or PTX or both. Only the back-end target
version(s) specified by the code= clause will be retained in the resulting binary; at least one
should be PTX to provide compatibility with future architectures.

Volta Compatibility

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 5

Also, note that CUDA 9.0 removes support for compute capability 2.x (Fermi) devices. Any
compute_2x and sm_2x flags need to be removed from your compiler commands.

1.4.3. Independent Thread Scheduling Compatibility
The Volta architecture introduces Independent Thread Scheduling among threads in a warp.
If the developer made assumptions about warp-synchronicity, 1 this feature can alter the set
of threads participating in the executed code compared to previous architectures. Please see
Compute Capability 7.0 in the CUDA C++ Programming Guide for details and corrective actions.
To aid migration Volta developers can opt-in to the Pascal scheduling model with the following
combination of compiler options.
nvcc -arch=compute_60 -code=sm_70 ...

1 Warp-synchronous refers to an assumption that threads in the same warp are synchronized at every instruction and can, for
example, communicate values without explicit synchronization.

Volta Compatibility Guide for CUDA Applications DA-08649-001_v11.1 | 6

Appendix A. Revision History

Version 1.0

‣ Initial public release.

Version 1.1

‣ Use CUDA C++ instead of CUDA C/C++

‣ Updated references to the CUDA C++ Programming Guide and CUDA C++ Best Practices
Guide.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© -2020 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Volta Compatibility
	1.1. About this Document
	1.2. Application Compatibility on Volta
	1.3. Verifying Volta Compatibility for Existing Applications
	1.3.1. Applications Using CUDA Toolkit 8.0 or Earlier
	1.3.2. Applications Using CUDA Toolkit 9.0

	1.4. Building Applications with Volta Support
	1.4.1. Applications Using CUDA Toolkit 8.0 or Earlier
	1.4.2. Applications Using CUDA Toolkit 9.0
	1.4.3. Independent Thread Scheduling Compatibility

	Revision History

