
DU-05347-001_v11.2    |    August 2022

NVIDIA CUDA Installation Guide for
Linux

Installation and Verification on Linux Systems



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   ii

Table of Contents

Chapter 1.  Introduction........................................................................................................ 1
1.1. System Requirements...............................................................................................................1

1.2. About This Document............................................................................................................... 3

Chapter 2. Pre-installation Actions..................................................................................... 4
2.1. Verify You Have a CUDA-Capable GPU....................................................................................4

2.2. Verify You Have a Supported Version of Linux........................................................................ 4

2.3. Verify the System Has gcc Installed........................................................................................ 5

2.4.  Verify the System has the Correct Kernel Headers and Development Packages
Installed........................................................................................................................................5

2.5. Choose an Installation Method................................................................................................ 6

2.6. Download the NVIDIA CUDA Toolkit........................................................................................ 7

2.7. Handle Conflicting Installation Methods................................................................................. 7

Chapter 3. Package Manager Installation........................................................................... 9
3.1. Overview.....................................................................................................................................9

3.2. RHEL7/CentOS7.......................................................................................................................10

3.3. RHEL8/CentOS8.......................................................................................................................11

3.4. Fedora...................................................................................................................................... 12

3.5. SLES.........................................................................................................................................13

3.6. OpenSUSE................................................................................................................................13

3.7. WSL.......................................................................................................................................... 14

3.8. Ubuntu......................................................................................................................................14

3.9. Debian...................................................................................................................................... 15

3.10. Additional Package Manager Capabilities........................................................................... 16

3.10.1. Available Packages.........................................................................................................16

3.10.2. Package Upgrades..........................................................................................................16

3.10.3. Meta Packages............................................................................................................... 17

Chapter 4. Driver Installation.............................................................................................18

Chapter 5. Precompiled Streams.......................................................................................19
5.1. Precompiled Streams Support Matrix................................................................................... 20

Chapter 6. Kickstart Installation........................................................................................ 21
6.1. RHEL8/CentOS8.......................................................................................................................21

Chapter 7. Runfile Installation........................................................................................... 22
7.1. Overview...................................................................................................................................22

7.2.  Installation............................................................................................................................... 22



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   iii

7.3. Disabling Nouveau.................................................................................................................. 24

7.3.1. Fedora............................................................................................................................... 24

7.3.2. RHEL/CentOS....................................................................................................................24

7.3.3. OpenSUSE......................................................................................................................... 24

7.3.4. SLES.................................................................................................................................. 25

7.3.5. WSL................................................................................................................................... 25

7.3.6. Ubuntu...............................................................................................................................25

7.3.7. Debian............................................................................................................................... 25

7.4. Device Node Verification.........................................................................................................25

7.5. Advanced Options....................................................................................................................26

7.6. Uninstallation.......................................................................................................................... 27

Chapter 8. CUDA Cross-Platform Environment................................................................ 28
8.1. CUDA Cross-Platform Installation.........................................................................................28

8.2. CUDA Cross-Platform Samples.............................................................................................29

TARGET_ARCH............................................................................................................................29

TARGET_OS................................................................................................................................. 29

TARGET_FS................................................................................................................................. 29

Cross Compiling to Embedded ARM architectures.............................................................. 30

Copying Libraries.................................................................................................................... 30

Chapter 9. Post-installation Actions.................................................................................. 31
9.1. Mandatory Actions...................................................................................................................31

9.1.1. Environment Setup........................................................................................................... 31

9.1.2. POWER9 Setup................................................................................................................. 31

9.2. Recommended Actions........................................................................................................... 32

9.2.1. Install Persistence Daemon............................................................................................ 32

9.2.2.  Install Writable Samples..................................................................................................33

9.2.3. Verify the Installation....................................................................................................... 33

9.2.3.1. Verify the Driver Version........................................................................................... 33

9.2.3.2. Compiling the Examples........................................................................................... 33

9.2.3.3. Running the Binaries.................................................................................................33

9.2.4. Install Nsight Eclipse Plugins......................................................................................... 35

9.3. Optional Actions...................................................................................................................... 35

9.3.1. Install Third-party Libraries............................................................................................ 35

9.3.2. Install the source code for cuda-gdb..............................................................................36

9.3.3. Select the Active Version of CUDA..................................................................................36

Chapter 10. Advanced Setup.............................................................................................. 37

Chapter 11. Frequently Asked Questions.......................................................................... 40



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   iv

How do I install the Toolkit in a different location?.....................................................................40

Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?.............40

Why do I see "error while loading shared libraries: <lib name>: cannot open shared object
file: No such file or directory" when I try to run a CUDA application that uses a CUDA
library?....................................................................................................................................... 41

Why do I see multiple "404 Not Found" errors when updating my repository meta-data on
Ubuntu?...................................................................................................................................... 41

How can I tell X to ignore a GPU for compute-only use?............................................................41

Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?.............................. 41

How do I get CUDA to work on a laptop with an iGPU and a dGPU running Ubuntu14.04?......42

What do I do if the display does not load, or CUDA does not work, after performing a system
update?.......................................................................................................................................42

How do I install a CUDA driver with a version less than 367 using a network repo?................. 42

How do I install an older CUDA version using a network repo?................................................. 43

Chapter 12. Additional Considerations.............................................................................. 44

Chapter 13. Removing CUDA Toolkit and Driver............................................................... 45



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   1

Chapter 1. Introduction

CUDA® is a parallel computing platform and programming model invented by NVIDIA®.
It enables dramatic increases in computing performance by harnessing the power of the
graphics processing unit (GPU).

CUDA was developed with several design goals in mind:

‣ Provide a small set of extensions to standard programming languages, like C, that enable
a straightforward implementation of parallel algorithms. With CUDA C/C++, programmers
can focus on the task of parallelization of the algorithms rather than spending time on
their implementation.

‣ Support heterogeneous computation where applications use both the CPU and GPU. Serial
portions of applications are run on the CPU, and parallel portions are offloaded to the GPU.
As such, CUDA can be incrementally applied to existing applications. The CPU and GPU
are treated as separate devices that have their own memory spaces. This configuration
also allows simultaneous computation on the CPU and GPU without contention for
memory resources.

CUDA-capable GPUs have hundreds of cores that can collectively run thousands of computing
threads. These cores have shared resources including a register file and a shared memory.
The on-chip shared memory allows parallel tasks running on these cores to share data
without sending it over the system memory bus.

This guide will show you how to install and check the correct operation of the CUDA
development tools.

1.1.  System Requirements
To use CUDA on your system, you will need the following installed:

‣ CUDA-capable GPU

‣ A supported version of Linux with a gcc compiler and toolchain

‣ NVIDIA CUDA Toolkit (available at https://developer.nvidia.com/cuda-downloads)

The CUDA development environment relies on tight integration with the host development
environment, including the host compiler and C runtime libraries, and is therefore only
supported on distribution versions that have been qualified for this CUDA Toolkit release.

https://developer.nvidia.com/cuda-downloads


Introduction

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   2

The following table lists the supported Linux distributions. Please review the footnotes
associated with the table.

Table 1. Native Linux Distribution Support in CUDA 11.2

Distribution Kernel1
Default
GCC GLIBC GCC2,3 ICC3 PGI3 XLC3 CLANG

Arm C/
C++

x86_64

RHEL 8.y (y <= 3) 4.18 8.3.1 2.28

CentOS 8.y (y <= 3) 4.18 8.3.1 2.28

RHEL 7.y (y <= 9) 3.10 4.8.5 2.17

CentOS 7.y (y <= 9) 3.10 4.8.5 2.17

OpenSUSE Leap 15.y
(y <= 2) 5.3.18 7.5.0 2.26

SUSE SLES 15.y (y
<= 2) 5.3.18 7.5.0 2.26

Ubuntu 20.04.1 5.10.0 9.3.0 2.31

Ubuntu 18.04.z (z <=
5) 5.4.0 7.5.0 2.27

Ubuntu 16.04.z (z <=
7) 4.15.0 5.4.0 2.23

Debian 10.y (y<=7) 4.19.0 8.3.0 2.28

Fedora 33 5.10.17 10.2.1 2.32

9.x 19.1 19.x,
20.x NO 11.0 NO

Arm644

RHEL 8.y (y <= 3) 4.18 8.3.1 2.28

SUSE SLES 15.y (y
<= 2) 5.3.18 7.5.0 2.26

Ubuntu 18.04.z (z <=
5) 5.4.0 7.5.0 2.27

9.x NO 19.x,
20.x NO 11.0 19.2

POWER 94

RHEL 8.y (y <= 3) 4.18 8.3.1 2.28 9.x NO 19.x,
20.x

13.1.x,
16.1.x 11.0 NO

(1) The following notes apply to the kernel versions supported by CUDA:

‣ For specific kernel versions supported on Red Hat Enterprise Linux (RHEL), visit https://
access.redhat.com/articles/3078.

‣ For a list of kernel versions including the release dates for SUSE Linux Enterprise Server 
(SLES) is available at https://www.suse.com/support/kb/doc/?id=000019587.

‣ For Ubuntu LTS on x86-64, both the HWE kernel (e.g. 5.x for 18.04) and the server LTS 
kernel (e.g. 4.15.x for 18.04) are supported in CUDA 11.2. Visit https://wiki.ubuntu.com/
Kernel/Support for more information.

(2) Note that starting with CUDA 11.0, the minimum recommended GCC compiler is
at least GCC 5 due to C++11 requirements in CUDA libraries e.g. cuFFT and CUB. On

https://access.redhat.com/articles/3078
https://access.redhat.com/articles/3078
https://www.suse.com/support/kb/doc/?id=000019587
https://wiki.ubuntu.com/Kernel/Support
https://wiki.ubuntu.com/Kernel/Support


Introduction

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   3

distributions such as RHEL 7 or CentOS 7 that may use an older GCC toolchain by default, it
is recommended to use a newer GCC toolchain with CUDA 11.0. Newer GCC toolchains are
available with the  Red Hat Developer Toolset.

(3) Minor versions of the following compilers listed: of GCC, ICC, PGI and XLC, as host 
compilers for nvcc are supported.

(4) Only Tesla V100 and T4 GPUs are supported for CUDA 11.2 on Arm64 (aarch64) POWER9 
(ppc64le).

1.2.  About This Document
This document is intended for readers familiar with the Linux environment and the compilation
of C programs from the command line. You do not need previous experience with CUDA or
experience with parallel computation. Note: This guide covers installation only on systems
with X Windows installed.

Note: Many commands in this document might require superuser privileges. On most
distributions of Linux, this will require you to log in as root. For systems that have enabled the
sudo package, use the sudo prefix for all necessary commands.

https://developers.redhat.com/products/developertoolset/overview


NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   4

Chapter 2. Pre-installation Actions

Some actions must be taken before the CUDA Toolkit and Driver can be installed on Linux:

‣ Verify the system has a CUDA-capable GPU.

‣ Verify the system is running a supported version of Linux.

‣ Verify the system has gcc installed.

‣ Verify the system has the correct kernel headers and development packages installed.

‣ Download the NVIDIA CUDA Toolkit.

‣ Handle conflicting installation methods.

Note: You can override the install-time prerequisite checks by running the installer with the -
override flag. Remember that the prerequisites will still be required to use the NVIDIA CUDA
Toolkit.

2.1.  Verify You Have a CUDA-Capable GPU
To verify that your GPU is CUDA-capable, go to your distribution's equivalent of System
Properties, or, from the command line, enter:
$ lspci | grep -i nvidia

If you do not see any settings, update the PCI hardware database that Linux maintains by
entering update-pciids (generally found in /sbin) at the command line and rerun the
previous lspci command.

If your graphics card is from NVIDIA and it is listed in https://developer.nvidia.com/cuda-gpus,
your GPU is CUDA-capable.

The Release Notes for the CUDA Toolkit also contain a list of supported products.

2.2.  Verify You Have a Supported Version
of Linux

The CUDA Development Tools are only supported on some specific distributions of Linux.
These are listed in the CUDA Toolkit release notes.

https://developer.nvidia.com/cuda-gpus


Pre-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   5

To determine which distribution and release number you're running, type the following at the
command line:
$ uname -m && cat /etc/*release

You should see output similar to the following, modified for your particular system:
x86_64
Red Hat Enterprise Linux Workstation release 6.0 (Santiago)

The x86_64 line indicates you are running on a 64-bit system. The remainder gives
information about your distribution.

2.3.  Verify the System Has gcc Installed
The gcc compiler is required for development using the CUDA Toolkit. It is not required for
running CUDA applications. It is generally installed as part of the Linux installation, and in
most cases the version of gcc installed with a supported version of Linux will work correctly.

To verify the version of gcc installed on your system, type the following on the command line:
$ gcc --version

If an error message displays, you need to install the development tools from your Linux
distribution or obtain a version of gcc and its accompanying toolchain from the Web.

2.4.  Verify the System has the Correct
Kernel Headers and Development
Packages Installed

The CUDA Driver requires that the kernel headers and development packages for the running
version of the kernel be installed at the time of the driver installation, as well whenever
the driver is rebuilt. For example, if your system is running kernel version 3.17.4-301, the
3.17.4-301 kernel headers and development packages must also be installed.

While the Runfile installation performs no package validation, the RPM and Deb installations
of the driver will make an attempt to install the kernel header and development packages if
no version of these packages is currently installed. However, it will install the latest version
of these packages, which may or may not match the version of the kernel your system is
using. Therefore, it is best to manually ensure the correct version of the kernel headers
and development packages are installed prior to installing the CUDA Drivers, as well as
whenever you change the kernel version.

The version of the kernel your system is running can be found by running the following
command:
$ uname -r
This is the version of the kernel headers and development packages that must be installed
prior to installing the CUDA Drivers. This command will be used multiple times below to
specify the version of the packages to install. Note that below are the common-case scenarios



Pre-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   6

for kernel usage. More advanced cases, such as custom kernel branches, should ensure that
their kernel headers and sources match the kernel build they are running.

Note: If you perform a system update which changes the version of the linux kernel being used,
make sure to rerun the commands below to ensure you have the correct kernel headers and
kernel development packages installed. Otherwise, the CUDA Driver will fail to work with the
new kernel.

RHEL7/CentOS7

The kernel headers and development packages for the currently running kernel can be
installed with:
$ sudo yum install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

Fedora/RHEL8/CentOS8

The kernel headers and development packages for the currently running kernel can be
installed with:
$ sudo dnf install kernel-devel-$(uname -r) kernel-headers-$(uname -r)

OpenSUSE/SLES

The kernel development packages for the currently running kernel can be installed with:

$ sudo zypper install -y kernel-<variant>-devel=<version>

To run the above command, you will need the variant and version of the currently running
kernel. Use the output of the uname command to determine the currently running kernel's
variant and version:
$ uname -r
3.16.6-2-default

In the above example, the variant is default and version is 3.16.6-2.

The kernel development packages for the default kernel variant can be installed with:
$ sudo zypper install -y kernel-default-devel=$(uname -r | sed 's/\-default//')

WSL

This section does not need to be performed for WSL.

Ubuntu

The kernel headers and development packages for the currently running kernel can be
installed with:
$ sudo apt-get install linux-headers-$(uname -r)

2.5.  Choose an Installation Method
The CUDA Toolkit can be installed using either of two different installation mechanisms:
distribution-specific packages (RPM and Deb packages), or a distribution-independent



Pre-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   7

package (runfile packages). The distribution-independent package has the advantage of
working across a wider set of Linux distributions, but does not update the distribution's
native package management system. The distribution-specific packages interface with the
distribution's native package management system. It is recommended to use the distribution-
specific packages, where possible.

Note: Standalone installers are not provided for architectures other than the x86_64 release.
For both native as well as cross development, the toolkit must be installed using the
distribution-specific installer. See the CUDA Cross-Platform Installation section for more
details.

2.6.  Download the NVIDIA CUDA Toolkit
The NVIDIA CUDA Toolkit is available at https://developer.nvidia.com/cuda-downloads.

Choose the platform you are using and download the NVIDIA CUDA Toolkit

The CUDA Toolkit contains the CUDA driver and tools needed to create, build and run a CUDA
application as well as libraries, header files, CUDA samples source code, and other resources.

Download Verification

The download can be verified by comparing the MD5 checksum posted at https://
developer.nvidia.com/cuda-downloads/checksums with that of the downloaded file. If either of
the checksums differ, the downloaded file is corrupt and needs to be downloaded again.

To calculate the MD5 checksum of the downloaded file, run the following:
$ md5sum <file>

2.7.  Handle Conflicting Installation
Methods

Before installing CUDA, any previously installations that could conflict should be uninstalled.
This will not affect systems which have not had CUDA installed previously, or systems where
the installation method has been preserved (RPM/Deb vs. Runfile). See the following charts for
specifics.

Table 2. CUDA Toolkit Installation Compatibility Matrix

Installed Toolkit Version == X.Y Installed Toolkit Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action No ActionInstalling
Toolkit

Version X.Y
run Uninstall

RPM/Deb
Uninstall Run No Action No Action

https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads/checksums
https://developer.nvidia.com/cuda-downloads/checksums


Pre-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   8

Table 3. NVIDIA Driver Installation Compatibility Matrix

Installed Driver Version == X.Y Installed Driver Version != X.Y

RPM/Deb run RPM/Deb run

RPM/Deb No Action Uninstall Run No Action Uninstall RunInstalling
Driver Version
X.Y

run Uninstall RPM/
Deb

No Action Uninstall RPM/
Deb

No Action

Use the following command to uninstall a Toolkit runfile installation:
$ sudo /usr/local/cuda-X.Y/bin/uninstall_cuda_X.Y.pl
Use the following command to uninstall a Driver runfile installation:
$ sudo /usr/bin/nvidia-uninstall
Use the following commands to uninstall a RPM/Deb installation:
$ sudo dnf remove <package_name>                      # RHEL8/CentOS8
$ sudo yum remove <package_name>                      # RHEL7/CentOS7
$ sudo dnf remove <package_name>                      # Fedora
$ sudo zypper remove <package_name>                   # OpenSUSE/SLES
$ sudo apt-get --purge remove <package_name>          # Ubuntu



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   9

Chapter 3. Package Manager
Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed
instructions.

3.1.  Overview
The Package Manager installation interfaces with your system's package management
system. When using RPM or Deb, the downloaded package is a repository package. Such a
package only informs the package manager where to find the actual installation packages, but
will not install them.

If those packages are available in an online repository, they will be automatically downloaded
in a later step. Otherwise, the repository package also installs a local repository containing
the installation packages on the system. Whether the repository is available online or installed
locally, the installation procedure is identical and made of several steps.

Distribution-specific instructions detail how to install CUDA:

‣ RHEL7/CentOS7

‣ RHEL8/CentOS8

‣ Fedora

‣ SLES

‣ OpenSUSE

‣ Ubuntu

‣ Debian

Finally, some helpful package manager capabilities are detailed.

These instructions are for native development only. For cross-platform development, see the
CUDA Cross-Platform Environment section.

Note: The package "cuda-core" has been deprecated in CUDA 9.1. Please use "cuda-compiler"
instead.

http://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux


Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   10

3.2.  RHEL7/CentOS7
 1. Perform the  pre-installation actions.
 2. Satisfy third-party package dependency

‣ Satisfy DKMS dependency: The NVIDIA driver RPM packages depend on other external
packages, such as DKMS and libvdpau. Those packages are only available on third-
party repositories, such as EPEL. Any such third-party repositories must be added to
the package manager repository database before installing the NVIDIA driver RPM
packages, or missing dependencies will prevent the installation from proceeding.

To enable EPEL:
$ yum install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-7.noarch.rpm

‣ Enable optional repos:

On RHEL 7 Linux only, execute the following steps to enable optional repositories.

‣ On x86_64 workstation:
$ subscription-manager repos --enable=rhel-7-workstation-optional-rpms

‣ On POWER9 system:
$ subscription-manager repos --enable=rhel-7-for-power-9-optional-rpms

‣ On x86_64 server:
$ subscription-manager repos --enable=rhel-7-server-optional-rpms 

 3. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf. If
a custom-built xorg.conf file is present, this functionality will be disabled and the driver
may not work. You can try removing the existing xorg.conf file, or adding the contents of
/etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf file will
most likely need manual tweaking for systems with a non-trivial GPU configuration.

 4. Install repository meta-data

When installing using the local repo:
$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

When installing using the network repo:
$ sudo yum-config-manager --add-repo https://developer.download.nvidia.com/
compute/cuda/repos/rhel7/x86_64/cuda-rhel7.repo

 5. Clean Yum repository cache
$ sudo yum clean expire-cache

 6. Install CUDA
$ sudo yum install nvidia-driver-latest-dkms
$ sudo yum install cuda
$ sudo yum install cuda-drivers

 7. Add libcuda.so symbolic link, if necessary

http://fedoraproject.org/wiki/EPEL


Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   11

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the  post-installation actions.

3.3.  RHEL8/CentOS8
 1. Perform the  pre-installation actions.
 2. Satisfy third-party package dependency

‣ Satisfy DKMS dependency: The NVIDIA driver RPM packages depend on other external
packages, such as DKMS and libvdpau. Those packages are only available on third-
party repositories, such as EPEL. Any such third-party repositories must be added to
the package manager repository database before installing the NVIDIA driver RPM
packages, or missing dependencies will prevent the installation from proceeding.

To enable EPEL:
$ yum install https://dl.fedoraproject.org/pub/epel/epel-release-
latest-8.noarch.rpm

‣ Enable optional repos:

On RHEL 8 Linux only, execute the following steps to enable optional repositories.

‣ On x86_64 systems:
$ subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms
$ subscription-manager repos --enable=rhel-8-for-x86_64-baseos-rpms
$ subscription-manager repos --enable=codeready-builder-for-rhel-8-x86_64-
rpms 

‣ On POWER9 systems:
$ subscription-manager repos --enable=rhel-8-for-ppc64le-appstream-rpms
$ subscription-manager repos --enable=rhel-8-for-ppc64le-baseos-rpms
$ subscription-manager repos --enable=codeready-builder-for-rhel-8-
ppc64le-rpms 

 3. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf. If
a custom-built xorg.conf file is present, this functionality will be disabled and the driver
may not work. You can try removing the existing xorg.conf file, or adding the contents of
/etc/X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf file will
most likely need manual tweaking for systems with a non-trivial GPU configuration.

 4. Install repository meta-data

When installing using the local repo:
$ sudo rpm --install cuda-repo-<distro>-<version>.<architecture>.rpm

When installing using the network repo:
$ sudo dnf config-manager --add-repo https://developer.download.nvidia.com/
compute/cuda/repos/rhel8/<architecture>/cuda-rhel8.repo

 5. Clean Yum repository cache
$ sudo yum clean expire-cache

 6. Install CUDA

http://fedoraproject.org/wiki/EPEL


Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   12

$ sudo dnf clean expire-cache
$ sudo dnf module install nvidia-driver:latest-dkms
$ sudo dnf install cuda

 7. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 8. Perform the  post-installation actions.

3.4.  Fedora
 1. Perform the  pre-installation actions.
 2. Address custom xorg.conf, if applicable

The driver relies on an automatically generated xorg.conf file at /etc/X11/xorg.conf. If a
custom-built xorg.conf file is present, this functionality will be disabled and the driver may
not work. You can try removing the existing xorg.conf file, or adding the contents of /etc/
X11/xorg.conf.d/00-nvidia.conf to the xorg.conf file. The xorg.conf file will most likely
need manual tweaking for systems with a non-trivial GPU configuration.

 3. Install repository meta-data

When installing using the local repo:
$ sudo rpm --install cuda-repo-fedora33-<version>.x86_64.rpm

When installing using the network repo:
$ sudo dnf config-manager --add-repo https://developer.download.nvidia.com/
compute/cuda/repos/fedora33/x86_64/cuda-fedora33.repo

 4. Clean DNF repository cache
$ sudo dnf clean expire-cache

 5. Install CUDA
$ sudo dnf module install nvidia-driver:latest-dkms
$ sudo dnf install cuda
The CUDA driver installation may fail if the RPMFusion non-free repository is enabled.
In this case, CUDA installations should temporarily disable the RPMFusion non-free
repository:
$ sudo dnf --disablerepo="rpmfusion-nonfree*" install cuda
It may be necessary to rebuild the grub configuration files, particularly if you use a non-
default partition scheme. If so, then run this below command, and reboot the system:
$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg
Remember to reboot the system.

 6. Add libcuda.so symbolic link, if necessary

The libcuda.so library is installed in the /usr/lib{,64}/nvidia directory. For pre-
existing projects which use libcuda.so, it may be useful to add a symbolic link from
libcuda.so in the /usr/lib{,64} directory.

 7. Perform the  post-installation actions.



Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   13

3.5.  SLES
 1. Perform the  pre-installation actions.
 2. On SLES12 SP4, install the Mesa-libgl-devel Linux packages before proceeding. See Mesa-

libGL-devel.
 3. Install repository meta-data

When installing using the local repo:
$ sudo rpm --install cuda-repo-sles15-<version>.<architecture>.rpm

When installing using the network repo:
$ sudo zypper addrepo https://developer.download.nvidia.com/compute/cuda/repos/
sles15/<architecture>/cuda-sles15.repo

 4. Refresh Zypper repository cache
$ sudo SUSEConnect --product PackageHub/15/<architecture>
$ sudo zypper refresh

 5. Install CUDA
$ sudo zypper install cuda

 6. Add the user to the video group
$ sudo usermod -a -G video <username>

 7. Install CUDA Samples GL dependencies

The CUDA Samples package on SLES does not include dependencies on GL and X11
libraries as these are provided in the SLES SDK. These packages must be installed
separately, depending on which samples you want to use.

 8. Perform the  post-installation actions.

3.6.  OpenSUSE
 1. Perform the  pre-installation actions.
 2. Install repository meta-data

When installing using the local repo:
$ sudo rpm --install cuda-repo-opensuse15-<version>.x86_64.rpm

When installing using the network repo:
$ sudo zypper addrepo https://developer.download.nvidia.com/compute/cuda/repos/
opensuse15/x86_64/cuda-opensuse15.repo

 3. Refresh Zypper repository cache
$ sudo zypper refresh

 4. Install CUDA
$ sudo zypper install cuda

 5. Add the user to the video group
$ sudo usermod -a -G video <username>

https://pkgs.org/download/Mesa-libGL-devel
https://pkgs.org/download/Mesa-libGL-devel


Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   14

 6. Perform the  post-installation actions.

3.7.  WSL
These instructions must be used if you are installing in a WSL environment. Do not use the
Ubuntu instructions in this case.

 1. Perform the  pre-installation actions.
 2. Install repository meta-data

When installing using the local repo:
$ sudo dpkg -i cuda-repo-<distro>_<version>_x86_64.deb

When installing using the network repo:
$ sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/
cuda/repos/<distro>/x86_64/ /"

 3. Installing the CUDA public GPG key

When installing using the local repo:
$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub

When installing using the network repo:
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/
cuda/repos/<distro>/x86_64/7fa2af80.pub 

Pin file to prioritize CUDA repository:
$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/x86_64/
cuda-<distro>.pin
$ sudo mv cuda-<distro>.pin /etc/apt/preferences.d/cuda-repository-pin-600

 4. Update the Apt repository cache
$ sudo apt-get update

 5. Install CUDA
$ sudo apt-get install cuda

 6. Perform the  post-installation actions.

3.8.  Ubuntu
 1. Perform the  pre-installation actions.
 2. Install repository meta-data

$ sudo dpkg -i cuda-repo-<distro>_<version>_<architecture>.deb

 3. Installing the CUDA public GPG key

When installing using the local repo:
$ sudo apt-key add /var/cuda-repo-<distro>-<version>/7fa2af80.pub

When installing using network repo on Ubuntu 20.04/18.04:
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/
cuda/repos/<distro>/<architecture>/7fa2af80.pub



Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   15

When installing using network repo on Ubuntu 16.04:
$ sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/
cuda/repos/<distro>/<architecture>/7fa2af80.pub

Pin file to prioritize CUDA repository:
$ wget https://developer.download.nvidia.com/compute/cuda/repos/<distro>/
<architecture>/cuda-<distro>.pin
$ sudo mv cuda-<distro>.pin /etc/apt/preferences.d/cuda-repository-pin-600

 4. Update the Apt repository cache
$ sudo apt-get update

 5. Install CUDA
$ sudo apt-get install cuda

 6. Perform the  post-installation actions.

3.9.  Debian
 1. Perform the  pre-installation actions.
 2. Install repository meta-data

When installing using the local repo:
$ sudo dpkg -i cuda-repo-debian10_<version>_x86_64.deb

When installing using the network repo:
sudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/
repos/debian10/x86_64/ /"

 3. Installing the CUDA public GPG key

When installing using the local repo:
$ sudo apt-key add /var/cuda-repo-<version>/7fa2af80.pub

When installing using the network repo:
$ sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/
cuda/repos/debian10/x86_64/7fa2af80.pub

 4. Enable the contrib repository:
$ sudo add-apt-repository contrib

 5. Update the Apt repository cache
$ sudo apt-get update

 6. Install CUDA
$ sudo apt-get -y install cuda

 7. Perform the  post-installation actions.



Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   16

3.10.  Additional Package Manager
Capabilities

Below are some additional capabilities of the package manager that users can take advantage
of.

3.10.1.  Available Packages
The recommended installation package is the cuda package. This package will install the
full set of other CUDA packages required for native development and should cover most
scenarios.

The cuda package installs all the available packages for native developments. That includes
the compiler, the debugger, the profiler, the math libraries, and so on. For x86_64 patforms,
this also include Nsight Eclipse Edition and the visual profilers. It also includes the NVIDIA
driver package.

On supported platforms, the cuda-cross-aarch64 and cuda-cross-ppc64el packages
install all the packages required for cross-platform development to ARMv8 and POWER8,
respectively. The libraries and header files of the target architecture's display driver package
are also installed to enable the cross compilation of driver applications. The cuda-cross-
<arch> packages do not install the native display driver.

The packages installed by the packages above can also be installed individually by specifying
their names explicitly. The list of available packages be can obtained with:
$ yum --disablerepo="*" --enablerepo="cuda*" list available    # RedHat
$ dnf --disablerepo="*" --enablerepo="cuda*" list available    # Fedora
$ zypper packages -r cuda                                      # OpenSUSE & SLES
$ cat /var/lib/apt/lists/*cuda*Packages | grep "Package:"      # Ubuntu

3.10.2.  Package Upgrades
The cuda package points to the latest stable release of the CUDA Toolkit. When a new version
is available, use the following commands to upgrade the toolkit and driver:
$ sudo yum install cuda                                        # RHEL7
$ sudo dnf upgrade cuda                                        # Fedora/RHEL8
$ sudo zypper install cuda                                     # OpenSUSE & SLES
$ sudo apt-get install cuda                                    # Ubuntu

The cuda-cross-<arch> packages can also be upgraded in the same manner.

The cuda-drivers package points to the latest driver release available in the CUDA repository.
When a new version is available, use the following commands to upgrade the driver:
$ sudo yum install nvidia-driver-latest-dkms                   # RHEL7
$ sudo yum install cuda-drivers                                # RHEL7

$ sudo dnf module update nvidia-driver:latest-dkms            # RHEL8/Fedora

$ sudo zypper install cuda-drivers \
                      nvidia-gfxG04-kmp-default                # OpenSUSE & SLES

$ sudo apt-get install cuda-drivers                            # Ubuntu



Package Manager Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   17

Some desktop environments, such as GNOME or KDE, will display an notification alert when
new packages are available.

To avoid any automatic upgrade, and lock down the toolkit installation to the X.Y release,
install the cuda-X-Y or cuda-cross-<arch>-X-Y package.

Side-by-side installations are supported. For instance, to install both the X.Y CUDA Toolkit and
the X.Y+1 CUDA Toolkit, install the cuda-X.Y and cuda-X.Y+1 packages.

3.10.3.  Meta Packages
Meta packages are RPM/Deb packages which contain no (or few) files but have multiple
dependencies. They are used to install many CUDA packages when you may not know the
details of the packages you want. Below is the list of meta packages.

Table 4. Meta Packages Available for CUDA 11.2

Meta Package Purpose
cuda Installs all CUDA Toolkit and Driver packages.

Handles upgrading to the next version of the cuda
package when it's released.

cuda-11-2 Installs all CUDA Toolkit and Driver packages.
Remains at version 11.2 until an additional version
of CUDA is installed.

cuda-toolkit-11-2 Installs all CUDA Toolkit packages required to
develop CUDA applications. Does not include the
driver.

cuda-tools-11-2 Installs all CUDA command line and visual tools.

cuda-runtime-11-2 Installs all CUDA Toolkit packages required to
run CUDA applications, as well as the Driver
packages.

cuda-compiler-11-2 Installs all CUDA compiler packages.

cuda-libraries-11-2 Installs all runtime CUDA Library packages.

cuda-libraries-dev-11-2 Installs all development CUDA Library packages.

cuda-drivers Installs all Driver packages. Handles upgrading
to the next version of the Driver packages when
they're released.



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   18

Chapter 4. Driver Installation

This section is for users who want to install a specific driver version.

For Debian and Ubuntu:
$ sudo apt-get install cuda-drivers-<branch>

For example:
$ sudo apt-get install cuda-drivers-418
For OpenSUSE and SLES:
$ sudo zypper install cuda-drivers-<branch>
For example:
$ sudo zypper install cuda-drivers-450

This allows you to get the highest version in the specified branch.

For Fedora and RHEL8:
$ sudo dnf module install nvidia-driver:<stream>/<profile>
where profile by default is "default" and does not need to be specified.

‣ Example dkms streams: 450-dkms or latest-dkms

‣ Example precompiled streams: 450 or latest

Note: Precompiled streams are only supported on RHEL8 x86_64.

To uninstall or change streams on Fedora and RHEL8:
$ sudo dnf remove nvidia-driver
$ sudo dnf module reset nvidia-driver



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   19

Chapter 5. Precompiled Streams

Precompiled streams offer an optional method of streamlining the installation process.

The advantages of precompiled sreams:

‣ Precompiled: faster boot up after driver and/or kernel updates

‣ Pre-tested: kernel and driver combination has been validated

‣ Removes gcc dependency: no compiler installation required

‣ Removes dkms dependency: enabling EPEL repository not required

‣ Removes kernel-devel and kernel-headers dependencies: no black screen if matching
packages are missing

When using precompiled drivers, a plugin for the dnf package manager is enabled that cleans
up stale .ko files. To prevent system breakages, the NVIDIA dnf plugin also prevents upgrading
to a kernel for which no precompiled driver yet exists. This can delay the application of security
fixes but ensures that a tested kernel and driver combination is always used. A warning is
displayed by dnf during that upgrade situation:
NOTE:  Skipping kernel installation since no NVIDIA driver kernel module package
 kmod-nvidia-${driver}-${kernel} ... could be found

Packaging templates and instructions are provided on GitHub to allow you to maintain
your own precompiled kernel module packages for custom kernels and derivative Linux
distros:NVIDIA/yum-packaging-precompiled-kmod

To use the new driver packages on RHEL 8:

 1. First, ensure that the Red Hat repositories are enabled:
$ subscription-manager repos --enable=rhel-8-for-x86_64-appstream-rpms
$ subscription-manager repos --enable=rhel-8-for-x86_64-baseos-rpms

 2. Choose one of the four options below depending on the desired driver:

‣ latest always updates to the highest versioned driver (precompiled):
$ sudo dnf module install nvidia-driver:latest

‣ <id> locks the driver updates to the specified driver branch (precompiled):
$ sudo dnf module install nvidia-driver:<id> 

Note: Replace <id> with the appropriate driver branch streams, for example 455, 450,
440, or 418.

‣ latest-dkms always updates to the highest versioned driver (non-precompiled):

https://github.com/NVIDIA/yum-packaging-precompiled-kmod


Precompiled Streams

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   20

$ sudo dnf module install nvidia-driver:latest-dkms

Note: This is the default stream.

‣ <id>-dkms locks the driver updates to the specified driver branch (non-precompiled):
$ sudo dnf module install nvidia-driver:<id>-dkms 

Note: Valid streams include 455-dkms, 450-dkms, 440-dkms, and 418-dkms.

5.1.  Precompiled Streams Support Matrix
This table show the supported precompiled and legacy DKMS streams for each driver.

NVIDIA Driver Precompiled Stream Legacy DKMS Stream
Highest version latest latest-dkms

Locked at 455.x 455 455-dkms

Locked at 450.x 450 450-dkms

Locked at 440.x 440 440-dkms

Locked at 418.x 418 418-dkms



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   21

Chapter 6. Kickstart Installation

6.1.  RHEL8/CentOS8
 1. Enable the EPEL repository:

repo --name=epel --baseurl=http://download.fedoraproject.org/pub/epel/8/
Everything/x86_64/

 2. Enable the CUDA repository:
repo --name=cuda-rhel8 --baseurl=https://developer.download.nvidia.com/compute/
cuda/repos/rhel8/x86_64/

 3. In the packages section of the ks.cfg file, make sure you are using the /ks profile and
:latest-dkms stream:
@nvidia-driver:latest-dkms/ks

 4. Perform the  post-installation actions.



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   22

Chapter 7. Runfile Installation

Basic instructions can be found in the Quick Start Guide. Read on for more detailed
instructions.

This section describes the installation and configuration of CUDA when using the standalone
installer. The standalone installer is a ".run" file and is completely self-contained.

7.1.  Overview
The Runfile installation installs the NVIDIA Driver, CUDA Toolkit, and CUDA Samples via an
interactive ncurses-based interface.

The installation steps are listed below. Distribution-specific instructions on disabling the
Nouveau drivers as well as steps for verifying device node creation are also provided.

Finally, advanced options for the installer and uninstallation steps are detailed below.

The Runfile installation does not include support for cross-platform development. For cross-
platform development, see the CUDA Cross-Platform Environment section.

7.2.  Installation
 1. Perform the pre-installation actions.
 2. Disable the Nouveau drivers.
 3. Reboot into text mode (runlevel 3).

This can usually be accomplished by adding the number "3" to the end of the system's
kernel boot parameters.

Since the NVIDIA drivers are not yet installed, the text terminals may not display correctly.
Temporarily adding "nomodeset" to the system's kernel boot parameters may fix this
issue.

Consult your system's bootloader documentation for information on how to make the
above boot parameter changes.

The reboot is required to completely unload the Nouveau drivers and prevent the graphical
interface from loading. The CUDA driver cannot be installed while the Nouveau drivers are
loaded or while the graphical interface is active.

http://docs.nvidia.com/cuda/cuda-quick-start-guide/index.html#linux


Runfile Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   23

 4. Verify that the Nouveau drivers are not loaded. If the Nouveau drivers are still loaded,
consult your distribution's documentation to see if further steps are needed to disable
Nouveau.

 5. Run the installer and follow the on-screen prompts:
$ sudo sh cuda_<version>_linux.run

The installer will prompt for the following:

‣ EULA Acceptance

‣ CUDA Driver installation

‣ CUDA Toolkit installation, location, and /usr/local/cuda symbolic link

‣ CUDA Samples installation and location

The default installation locations for the toolkit and samples are:

Component Default Installation Directory
CUDA Toolkit /usr/local/cuda-11.2

CUDA Samples $(HOME)/NVIDIA_CUDA-11.2_Samples

The /usr/local/cuda symbolic link points to the location where the CUDA Toolkit was
installed. This link allows projects to use the latest CUDA Toolkit without any configuration
file update.

The installer must be executed with sufficient privileges to perform some actions. When
the current privileges are insufficient to perform an action, the installer will ask for the
user's password to attempt to install with root privileges. Actions that cause the installer
to attempt to install with root privileges are:

‣ installing the CUDA Driver

‣ installing the CUDA Toolkit to a location the user does not have permission to write to

‣ installing the CUDA Samples to a location the user does not have permission to write
to

‣ creating the /usr/local/cuda symbolic link

Running the installer with sudo, as shown above, will give permission to install to
directories that require root permissions. Directories and files created while running the
installer with sudo will have root ownership.

If installing the driver, the installer will also ask if the openGL libraries should be installed.
If the GPU used for display is not an NVIDIA GPU, the NVIDIA openGL libraries should not
be installed. Otherwise, the openGL libraries used by the graphics driver of the non-NVIDIA
GPU will be overwritten and the GUI will not work. If performing a silent installation, the --
no-opengl-libs option should be used to prevent the openGL libraries from being installed.
See the Advanced Options section for more details.

If the GPU used for display is an NVIDIA GPU, the X server configuration file, /etc/X11/
xorg.conf, may need to be modified. In some cases, nvidia-xconfig can be used to
automatically generate a xorg.conf file that works for the system. For non-standard



Runfile Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   24

systems, such as those with more than one GPU, it is recommended to manually edit the
xorg.conf file. Consult the xorg.conf documentation for more information.

Note: Installing Mesa may overwrite the /usr/lib/libGL.so that was previously installed
by the NVIDIA driver, so a reinstallation of the NVIDIA driver might be required after
installing these libraries.

 6. Reboot the system to reload the graphical interface.
 7. Verify the device nodes are created properly.
 8. Perform the post-installation actions.

7.3.  Disabling Nouveau
To install the Display Driver, the Nouveau drivers must first be disabled. Each distribution of
Linux has a different method for disabling Nouveau.

The Nouveau drivers are loaded if the following command prints anything:
$ lsmod | grep nouveau

7.3.1.  Fedora
 1. Create a file at /usr/lib/modprobe.d/blacklist-nouveau.conf with the following

contents:
blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:
$ sudo dracut --force

 3. Run the below command:
$ sudo grub2-mkconfig -o /boot/grub2/grub.cfg

 4. Reboot the system.

7.3.2.  RHEL/CentOS
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:
$ sudo dracut --force

7.3.3.  OpenSUSE
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initrd:
$ sudo /sbin/mkinitrd



Runfile Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   25

7.3.4.  SLES
No actions to disable Nouveau are required as Nouveau is not installed on SLES.

7.3.5.  WSL
No actions to disable Nouveau are required as Nouveau is not installed on WSL.

7.3.6.  Ubuntu
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:
$ sudo update-initramfs -u

7.3.7.  Debian
 1. Create a file at /etc/modprobe.d/blacklist-nouveau.conf with the following contents:

blacklist nouveau
options nouveau modeset=0

 2. Regenerate the kernel initramfs:
$ sudo update-initramfs -u

7.4.  Device Node Verification
Check that the device files/dev/nvidia* exist and have the correct (0666) file permissions.
These files are used by the CUDA Driver to communicate with the kernel-mode portion of
the NVIDIA Driver. Applications that use the NVIDIA driver, such as a CUDA application or the
X server (if any), will normally automatically create these files if they are missing using the
setuid nvidia-modprobe tool that is bundled with the NVIDIA Driver. However, some systems
disallow setuid binaries, so if these files do not exist, you can create them manually by using a
startup script such as the one below:
#!/bin/bash

/sbin/modprobe nvidia

if [ "$?" -eq 0 ]; then
  # Count the number of NVIDIA controllers found.
  NVDEVS=`lspci | grep -i NVIDIA`
  N3D=`echo "$NVDEVS" | grep "3D controller" | wc -l`
  NVGA=`echo "$NVDEVS" | grep "VGA compatible controller" | wc -l`

  N=`expr $N3D + $NVGA - 1`
  for i in `seq 0 $N`; do
    mknod -m 666 /dev/nvidia$i c 195 $i
  done

  mknod -m 666 /dev/nvidiactl c 195 255

else



Runfile Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   26

  exit 1
fi

/sbin/modprobe nvidia-uvm

if [ "$?" -eq 0 ]; then
  # Find out the major device number used by the nvidia-uvm driver
  D=`grep nvidia-uvm /proc/devices | awk '{print $1}'`

  mknod -m 666 /dev/nvidia-uvm c $D 0
else
  exit 1
fi

7.5.  Advanced Options
Action Options Used Explanation

--silent Required for any silent installation. Performs an
installation with no further user-input and minimal
command-line output based on the options provided
below. Silent installations are useful for scripting
the installation of CUDA. Using this option implies
acceptance of the EULA. The following flags can
be used to customize the actions taken during
installation. At least one of --driver, --uninstall, --
toolkit, and --samples must be passed if running with
non-root permissions.

--driver Install the CUDA Driver.

--toolkit Install the CUDA Toolkit.

--toolkitpath=<path> Install the CUDA Toolkit to the <path> directory. If not
provided, the default path of /usr/local/cuda-11.2
is used.

--samples Install the CUDA Samples.

--samplespath=<path> Install the CUDA Samples to the <path> directory.
If not provided, the default path of $(HOME)/
NVIDIA_CUDA-11.2_Samples is used.

Silent
Installation

--defaultroot=<path> Install libraries to the <path> directory. If the <path> is
not provided, then the default path of your distribution
is used. This only applies to the libraries installed outside
of the CUDA Toolkit path.

Extraction --extract=<path> Extracts to the <path> the following: the driver runfile,
the raw files of the toolkit and samples to <path>.

This is especially useful when one wants to install the
driver using one or more of the command-line options
provided by the driver installer which are not exposed
in this installer.

Overriding
Installation
Checks

--override Ignores compiler, third-party library, and toolkit
detection checks which would prevent the CUDA
Toolkit and CUDA Samples from installing.



Runfile Installation

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   27

Action Options Used Explanation
No OpenGL
Libraries

--no-opengl-libs Prevents the driver installation from installing
NVIDIA's GL libraries. Useful for systems where
the display is driven by a non-NVIDIA GPU. In such
systems, NVIDIA's GL libraries could prevent X from
loading properly.

No man pages --no-man-page Do not install the man pages under /usr/share/man.

Overriding
Kernel Source

--kernel-source-
path=<path>

Tells the driver installation to use <path> as the kernel
source directory when building the NVIDIA kernel
module. Required for systems where the kernel
source is installed to a non-standard location.

Running nvidia-
xconfig

--run-nvidia-xconfig Tells the driver installation to run nvidia-xconfig
to update the system X configuration file so that
the NVIDIA X driver is used. The pre-existing X
configuration file will be backed up.

No nvidia-drm
kernel module

--no-drm Do not install the nvidia-drm kernel module. This
option should only be used to work around failures
to build or install the nvidia-drm kernel module on
systems that do not need the provided features.

Custom
Temporary
Directory
Selection

--tmpdir=<path> Performs any temporary actions within <path> instead
of /tmp. Useful in cases where /tmp cannot be used
(doesn't exist, is full, is mounted with 'noexec', etc.).

Show Installer
Options

--help Prints the list of command-line options to stdout.

7.6.  Uninstallation
To uninstall the CUDA Toolkit, run the uninstallation script provided in the bin directory of the
toolkit. By default, it is located in /usr/local/cuda-11.2/bin:
$ sudo /usr/local/cuda-11.2/bin/cuda-uninstaller

To uninstall the NVIDIA Driver, run nvidia-uninstall:
$ sudo /usr/bin/nvidia-uninstall
To enable the Nouveau drivers, remove the blacklist file created in the Disabling Nouveau
section, and regenerate the kernel initramfs/initrd again as described in that section.



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   28

Chapter 8. CUDA Cross-Platform
Environment

Cross-platform development is only supported on Ubuntu systems, and is only provided via the
Package Manager installation process.

We recommend selecting Ubuntu 18.04 as your cross-platform development environment.
This selection helps prevent host/target incompatibilities, such as GCC or GLIBC version
mismatches.

8.1.  CUDA Cross-Platform Installation
Some of the following steps may have already been performed as part of the native Ubuntu
installation. Such steps can safely be skipped.

These steps should be performed on the x86_64 host system, rather than the target system.
To install the native CUDA Toolkit on the target system, refer to the native Ubuntu installation
section.

 1. Perform the  pre-installation actions.
 2. Install repository meta-data package with:

$ sudo dpkg -i cuda-repo-cross-<identifier>_all.deb 

where <identifier> indicates the operating system, architecture, and/or the version of
the package.

 3. Update the Apt repository cache:
$ sudo apt-get update

 4. Install the appropriate cross-platform CUDA Toolkit:

 a). For aarch64:
$ sudo apt-get install cuda-cross-aarch64

 b). For QNX:
$ sudo apt-get install cuda-cross-qnx

 5. Perform the  post-installation actions.



CUDA Cross-Platform Environment

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   29

8.2.  CUDA Cross-Platform Samples
This section describes the options used to build cross-platform samples.
TARGET_ARCH=<arch> and TARGET_OS=<os> should be chosen based on the supported targets
shown below. TARGET_FS=<path> can be used to point nvcc to libraries and headers used by
the sample.

Table 5. Supported Target Arch/OS Combinations

TARGET OS

linux android qnx

x86_64 YES NO NO

aarch64 YES YES YESTARGET ARCH

sbsa YES NO NO

TARGET_ARCH
The target architecture must be specified when cross-compiling applications. If not specified,
it defaults to the host architecture. Allowed architectures are:

‣ x86_64 - 64-bit x86 CPU architecture

‣ aarch64 - 64-bit ARM CPU architecture, like that found on Jetson TX1 onwards

‣ sbsa - 64-bit ARM Server CPU architecture

TARGET_OS
The target OS must be specified when cross-compiling applications. If not specified, it defaults
to the host OS. Allowed OSes are:

‣ linux - for any Linux distributions

‣ android - for any supported device running Android

‣ qnx - for any supported device running QNX

TARGET_FS
The most reliable method to cross-compile the CUDA Samples is to use the TARGET_FS
variable. To do so, mount the target's filesystem on the host, say at /mnt/target. This is
typically done using exportfs. In cases where exportfs is unavailable, it is sufficient to copy
the target's filesystem to /mnt/target. To cross-compile a sample, execute:
$ make TARGET_ARCH=<arch> TARGET_OS=<os> TARGET_FS=/mnt/target



CUDA Cross-Platform Environment

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   30

Cross Compiling to Embedded ARM architectures
While cross compiling the samples from x86_64 installation to embedded ARM architectures,
that is, aarch64 or armv7l, if you intend to run the executable on tegra GPU then SMS variable
need to override SM architectures to the tegra GPU through SMS=<TEGRA_GPU_SM_ARCH>,
where <TEGRA_GPU_SM_ARCH> is the SM architecture of tegra GPU on which you want the
generated binary to run on. For instance it can be SMS="53 62 72". Note you can also add SM
arch of discrete GPU to this list <TEGRA_GPU_SM_ARCH> if you intend to run on embedded
board having discrete GPU as well. To cross compile a sample, execute:
$ make TARGET_ARCH=<arch> TARGET_OS=<os> SMS=<TEGRA_GPU_SM_ARCHS> TARGET_FS=/mnt/
target

Copying Libraries
If the TARGET_FS option is not available, the libraries used should be copied from the target
system to the host system, say at /opt/target/libs. If the sample uses GL, the GL headers
must also be copied, say at /opt/target/include. The linker must then be told where the
libraries are with the -rpath-link and/or -L options. To ignore unresolved symbols from
some libraries, use the --unresolved-symbols option as shown below. SAMPLE_ENABLED
should be used to force the sample to build. For example, to cross-compile a sample which
uses such libraries, execute:
$ make TARGET_ARCH=<arch> TARGET_OS=<os> \
           EXTRA_LDFLAGS="-rpath-link=/opt/target/libs -L/opt/target/libs --
unresolved-symbols=ignore-in-shared-libs" \
           EXTRA_CCFLAGS="-I /opt/target/include" \
           SAMPLE_ENABLED=1



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   31

Chapter 9. Post-installation Actions

The post-installation actions must be manually performed. These actions are split into
mandatory, recommended, and optional sections.

9.1.  Mandatory Actions
Some actions must be taken after the installation before the CUDA Toolkit and Driver can be
used.

9.1.1.  Environment Setup
The PATH variable needs to include $ export PATH=/usr/local/cuda-11.2/bin${PATH:
+:${PATH}}. Nsight Compute has moved to /opt/nvidia/nsight-compute/ only in rpm/
deb installation method. When using .run installer it is still located under /usr/local/
cuda-11.2/.

To add this path to the PATH variable:
$ export PATH=/usr/local/cuda-11.2/bin${PATH:+:${PATH}}

In addition, when using the runfile installation method, the LD_LIBRARY_PATH variable needs
to contain /usr/local/cuda-11.2/lib64 on a 64-bit system, or /usr/local/cuda-11.2/
lib on a 32-bit system

‣ To change the environment variables for 64-bit operating systems:
$ export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

‣ To change the environment variables for 32-bit operating systems:
$ export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Note that the above paths change when using a custom install path with the runfile installation
method.

9.1.2.  POWER9 Setup
Because of the addition of new features specific to the NVIDIA POWER9 CUDA driver, there
are some additional setup requirements in order for the driver to function properly. These
additional steps are not handled by the installation of CUDA packages, and failure to ensure
these extra requirements are met will result in a non-functional CUDA driver installation.



Post-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   32

There are two changes that need to be made manually after installing the NVIDIA CUDA driver
to ensure proper operation:

 1. The NVIDIA Persistence Daemon should be automatically started for POWER9
installations. Check that it is running with the following command:
$ systemctl status nvidia-persistenced
If it is not active, run the following command:
$ sudo systemctl enable nvidia-persistenced

 2. Disable a udev rule installed by default in some Linux distributions that cause hot-
pluggable memory to be automatically onlined when it is physically probed. This behavior
prevents NVIDIA software from bringing NVIDIA device memory online with non-default
settings. This udev rule must be disabled in order for the NVIDIA CUDA driver to function
properly on POWER9 systems.

On RedHat Enterprise Linux 8.1, this rule can be found in:
/lib/udev/rules.d/40-redhat.rules

On Ubuntu 18.04, this rule can be found in:
/lib/udev/rules.d/40-vm-hotadd.rules

The rule generally takes a form where it detects the addition of a memory block and
changes the 'state' attribute to online. For example, in RHEL8, the rule looks like this:
SUBSYSTEM=="memory", ACTION=="add", PROGRAM="/bin/uname -p", RESULT!="s390*",
 ATTR{state}=="offline", ATTR{state}="online"
This rule must be disabled by copying the file to /etc/udev/rules.d and commenting
out, removing, or changing the hot-pluggable memory rule in the /etc copy so that it does
not apply to POWER9 NVIDIA systems. For example, on RHEL 7.5 and earlier:
$ sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d
$ sudo sed -i '/SUBSYSTEM=="memory", ACTION=="add"/d' /etc/udev/rules.d/40-
redhat.rules
On RHEL 7.6 and later versions:
$ sudo cp /lib/udev/rules.d/40-redhat.rules /etc/udev/rules.d 
$ sudo sed -i 's/SUBSYSTEM!="memory",.*GOTO="memory_hotplug_end"/SUBSYSTEM=="*",
 GOTO="memory_hotplug_end"/' /etc/udev/rules.d/40-redhat.rules

You will need to reboot the system to initialize the above changes.

Note: For NUMA best practices on IBM Newell POWER9, see NUMA Best Practices.

9.2.  Recommended Actions
Other actions are recommended to verify the integrity of the installation.

9.2.1.  Install Persistence Daemon
NVIDIA is providing a user-space daemon on Linux to support persistence of driver state
across CUDA job runs. The daemon approach provides a more elegant and robust solution to
this problem than persistence mode. For more details on the NVIDIA Persistence Daemon, see
the documentation here.

The NVIDIA Persistence Daemon can be started as the root user by running:

../cuda-c-best-practices-guide/index.html#numa-best-practices
http://docs.nvidia.com/deploy/driver-persistence/index.html#persistence-daemon


Post-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   33

$ /usr/bin/nvidia-persistenced --verbose
This command should be run on boot. Consult your Linux distribution's init documentation for
details on how to automate this.

9.2.2.  Install Writable Samples
In order to modify, compile, and run the samples, the samples must be installed with write
permissions. A convenience installation script is provided:
$ cuda-install-samples-11.2.sh <dir>
This script is installed with the cuda-samples-11-2 package. The cuda-samples-11-2 package
installs only a read-only copy in /usr/local/cuda-11.2/samples.

9.2.3.  Verify the Installation
Before continuing, it is important to verify that the CUDA toolkit can find and communicate
correctly with the CUDA-capable hardware. To do this, you need to compile and run some of
the included sample programs.

Note: Ensure the PATH and, if using the runfile installation method, LD_LIBRARY_PATH
variables are set correctly.

9.2.3.1.  Verify the Driver Version
If you installed the driver, verify that the correct version of it is loaded. If you did not install the
driver, or are using an operating system where the driver is not loaded via a kernel module,
such as L4T, skip this step.

When the driver is loaded, the driver version can be found by executing the command
$ cat /proc/driver/nvidia/version
Note that this command will not work on an iGPU/dGPU system.

9.2.3.2.  Compiling the Examples
The version of the CUDA Toolkit can be checked by running nvcc -V in a terminal window.
The nvcc command runs the compiler driver that compiles CUDA programs. It calls the gcc
compiler for C code and the NVIDIA PTX compiler for the CUDA code.

The NVIDIA CUDA Toolkit includes sample programs in source form. You should compile them
by changing to ~/NVIDIA_CUDA-11.2_Samples and typing make. The resulting binaries will be
placed under ~/NVIDIA_CUDA-11.2_Samples/bin.

9.2.3.3.  Running the Binaries
After compilation, find and run deviceQuery under ~/NVIDIA_CUDA-11.2_Samples. If the
CUDA software is installed and configured correctly, the output for deviceQuery should look
similar to that shown in Figure 1.



Post-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   34

Figure 1. Valid Results from deviceQuery CUDA Sample

The exact appearance and the output lines might be different on your system. The important
outcomes are that a device was found (the first highlighted line), that the device matches
the one on your system (the second highlighted line), and that the test passed (the final
highlighted line).

If a CUDA-capable device and the CUDA Driver are installed but deviceQuery reports that no
CUDA-capable devices are present, this likely means that the /dev/nvidia* files are missing
or have the wrong permissions.

On systems where SELinux is enabled, you might need to temporarily disable this security
feature to run deviceQuery. To do this, type:
$ setenforce 0
from the command line as the superuser.

Running the bandwidthTest program ensures that the system and the CUDA-capable device
are able to communicate correctly. Its output is shown in Figure 2.



Post-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   35

Figure 2. Valid Results from bandwidthTest CUDA Sample

Note that the measurements for your CUDA-capable device description will vary from system
to system. The important point is that you obtain measurements, and that the second-to-last
line (in Figure 2) confirms that all necessary tests passed.

Should the tests not pass, make sure you have a CUDA-capable NVIDIA GPU on your system
and make sure it is properly installed.

If you run into difficulties with the link step (such as libraries not being found), consult the
Linux Release Notes found in the doc folder in the CUDA Samples directory.

9.2.4.  Install Nsight Eclipse Plugins
To install Nsight Eclipse plugins, an installation script is provided:
$ /usr/local/cuda-11.2/bin/nsight_ee_plugins_manage.sh install <eclipse-dir>
Refer to Nsight Eclipse Plugins Installation Guide for more details.

9.3.  Optional Actions
Other options are not necessary to use the CUDA Toolkit, but are available to provide
additional features.

9.3.1.  Install Third-party Libraries
Some CUDA samples use third-party libraries which may not be installed by default on your
system. These samples attempt to detect any required libraries when building. If a library is

http://docs.nvidia.com/cuda/nsightee-plugins-install-guide/index.html


Post-installation Actions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   36

not detected, it waives itself and warns you which library is missing. To build and run these
samples, you must install the missing libraries. These dependencies may be installed if the
RPM or Deb cuda-samples-11-2 package is used. In cases where these dependencies are
not installed, follow the instructions below.

RHEL/CentOS
$ sudo yum install freeglut-devel libX11-devel libXi-devel libXmu-devel \
    make mesa-libGLU-devel

Fedora
$ sudo dnf install freeglut-devel libX11-devel libXi-devel libXmu-devel \
    make mesa-libGLU-devel

SLES
$ sudo zypper install libglut3 libX11 libXi6 libXmu6 libGLU1 make

OpenSUSE
$ sudo zypper install freeglut-devel libX11-devel libXi-devel libXmu-devel \
    make Mesa-libGL-devel

Ubuntu
$ sudo apt-get install g++ freeglut3-dev build-essential libx11-dev \
    libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev

9.3.2.  Install the source code for cuda-gdb
The cuda-gdb source must be explicitly selected for installation with the runfile installation
method. During the installation, in the component selection page, expand the component
"CUDA Tools 11.0" and select the cuda-gdb-src for installation. It is unchecked by default.

To obtain a copy of the source code for cuda-gdb using the RPM and Debian installation
methods, the cuda-gdb-src package must be installed.

The source code is installed as a tarball in the /usr/local/cuda-11.2/extras directory.

9.3.3.  Select the Active Version of CUDA
For applications that rely on the symlinks /usr/local/cuda and /usr/local/cuda-
MAJOR, you may wish to change to a different installed version of CUDA using the provided
alternatives.

To show the active version of CUDA and all available versions:
$ update-alternatives --display cuda

To show the active minor version of a given major CUDA release:
$ update-alternatives --display cuda-11

To update the active version of CUDA:
$ sudo update-alternatives --config cuda



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   37

Chapter 10. Advanced Setup

Below is information on some advanced setup scenarios which are not covered in the basic
instructions above.

Table 6. Advanced Setup Scenarios when Installing CUDA

Scenario Instructions
Install CUDA using
the Package Manager
installation method
without installing the
NVIDIA GL libraries.

Fedora

Install CUDA using the following command:
$ sudo dnf install cuda-toolkit-11-2 \
    nvidia-driver-cuda akmod-nvidia

Follow the instructions here to ensure that Nouveau is disabled.

If performing an upgrade over a previous installation, the NVIDIA kernel
module may need to be rebuilt by following the instructions here.
OpenSUSE/SLES

On some system configurations the NVIDIA GL libraries may need to be
locked before installation using:
$ sudo zypper addlock nvidia-glG04

Install CUDA using the following command:
$ sudo zypper install --no-recommends cuda-toolkit-11-2 \
    nvidia-computeG04 \
    nvidia-gfxG04-kmp-default

Follow the instructions here to ensure that Nouveau is disabled.
Ubuntu

This functionality isn't supported on Ubuntu. Instead, the driver packages
integrate with the Bumblebee framework to provide a solution for users
who wish to control what applications the NVIDIA drivers are used for. See
Ubuntu's Bumblebee wiki for more information.

Upgrade from a RPM/
Deb driver installation
which includes the
diagnostic driver
packages to a driver
installation which
does not include the

RHEL/CentOS

Remove diagnostic packages using the following command:
$ sudo yum remove cuda-drivers-diagnostic \
    xorg-x11-drv-nvidia-diagnostic

Follow the instructions here to continue installation as normal.
Fedora

https://wiki.ubuntu.com/Bumblebee


Advanced Setup

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   38

Scenario Instructions
diagnostic driver
packages.

Remove diagnostic packages using the following command:
$ sudo dnf remove cuda-drivers-diagnostic \
    xorg-x11-drv-nvidia-diagnostic

Follow the instructions here to continue installation as normal.
OpenSUSE/SLES

Remove diagnostic packages using the following command:
$ sudo zypper remove cuda-drivers-diagnostic \
    nvidia-diagnosticG04

Follow the instructions here to continue installation as normal.
Ubuntu

Remove diagnostic packages using the following command:
$ sudo apt-get purge cuda-drivers-diagnostic \
    nvidia-384-diagnostic

Follow the instructions here to continue installation as normal.

Use a specific GPU for
rendering the display.

Add or replace a Device entry in your xorg.conf file, located at /etc/X11/
xorg.conf. The Device entry should resemble the following:
Section "Device"
    Identifier    "Device0"
    Driver        "driver_name"
    VendorName    "vendor_name"
    BusID         "bus_id"
EndSection
The details will you will need to add differ on a case-by-case basis. For
example, if you have two NVIDIA GPUs and you want the first GPU to be used
for display, you would replace "driver_name" with "nvidia", "vendor_name"
with "NVIDIA Corporation" and "bus_id" with the Bus ID of the GPU.

The Bus ID will resemble "PCI:00:02.0" and can be found by running lspci.

Install CUDA to a
specific directory using
the Package Manager
installation method.

RPM

The RPM packages don't support custom install locations through the
package managers (Yum and Zypper), but it is possible to install the RPM
packages to a custom location using rpm's --relocate parameter:
$ sudo rpm --install --relocate /usr/local/cuda-11.2=/new/
toolkit package.rpm

You will need to install the packages in the correct dependency order; this
task is normally taken care of by the package managers. For example,
if package "foo" has a dependency on package "bar", you should install
package "bar" first, and package "foo" second. You can check the
dependencies of a RPM package as follows:
$ rpm -qRp package.rpm

Note that the driver packages cannot be relocated.
Deb

The Deb packages do not support custom install locations. It is however
possible to extract the contents of the Deb packages and move the files
to the desired install location. See the next scenario for more details one
xtracting Deb packages.



Advanced Setup

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   39

Scenario Instructions
Extract the contents of
the installers.

Runfile

The Runfile can be extracted into the standalone Toolkit, Samples and
Driver Runfiles by using the --extract parameter. The Toolkit and Samples
standalone Runfiles can be further extracted by running:
$ ./runfile.run --tar mxvf

The Driver Runfile can be extracted by running:
$ ./runfile.run -x
RPM

The RPM packages can be extracted by running:
$ rpm2cpio package.rpm | cpio -idmv
Deb

The Deb packages can be extracted by running:
$ dpkg-deb -x package.deb output_dir

Modify Ubuntu's apt
package manager
to query specific
architectures for
specific repositories.

This is useful when a
foreign architecture has
been added, causing
"404 Not Found" errors
to appear when the
repository meta-data is
updated.

Each repository you wish to restrict to specific architectures must have its
sources.list entry modified. This is done by modifying the /etc/apt/
sources.list file and any files containing repositories you wish to restrict
under the /etc/apt/sources.list.d/ directory. Normally, it is sufficient
to modify only the entries in /etc/apt/sources.list

An architecture-restricted repository entry looks like:
deb [arch=<arch1>,<arch2>] <url>
For example, if you wanted to restrict a repository to only the amd64 and
i386 architectures, it would look like:
deb [arch=amd64,i386] <url>
It is not necessary to restrict the deb-src repositories, as these repositories
don't provide architecture-specific packages.

For more details, see the sources.list manpage.

The nvidia.ko kernel
module fails to load,
saying some symbols
are unknown.

For example:
nvidia: Unknown
 symbol drm_open
 (err 0)

Check to see if there are any optionally installable modules that might
provide these symbols which are not currently installed.

For the example of the drm_open symbol, check to see if there are any
packages which provide drm_open and are not already installed. For
instance, on Ubuntu 14.04, the linux-image-extra package provides the
DRM kernel module (which provides drm_open). This package is optional
even though the kernel headers reflect the availability of DRM regardless of
whether this package is installed or not.

The runfile installer
fails to extract due to
limited space in the
TMP directory.

This can occur on systems with limited storage in the TMP directory
(usually /tmp), or on systems which use a tmpfs in memory to handle
temporary storage. In this case, the --tmpdir command-line option should
be used to instruct the runfile to use a directory with sufficient space to
extract into. More information on this option can be found here.

Re-enable Wayland
after installing the RPM
driver on Fedora.

Wayland is disabled during installation of the Fedora driver RPM due to
compatability issues. To re-enable wayland, comment out this line in /etc/
gdm/custom.conf:
WaylandEnable=false



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   40

Chapter 11. Frequently Asked Questions

How do I install the Toolkit in a
different location?

The Runfile installation asks where you wish to install the Toolkit and the Samples during an
interactive install. If installing using a non-interactive install, you can use the --toolkitpath and
--samplespath parameters to change the install location:
$ ./runfile.run --silent \
                --toolkit --toolkitpath=/my/new/toolkit \
                --samples --samplespath=/my/new/samples

The RPM and Deb packages cannot be installed to a custom install location directly using the
package managers. See the "Install CUDA to a specific directory using the Package Manager
installation method" scenario in the Advanced Setup section for more information.

Why do I see "nvcc: No such file or
directory" when I try to build a CUDA
application?

Your PATH environment variable is not set up correctly. Ensure that your PATH includes the
bin directory where you installed the Toolkit, usually /usr/local/cuda-11.2/bin.
$ export PATH=/usr/local/cuda-11.2/bin${PATH:+:${PATH}}



Frequently Asked Questions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   41

Why do I see "error while loading
shared libraries: <lib name>: cannot
open shared object file: No such file
or directory" when I try to run a CUDA
application that uses a CUDA library?

Your LD_LIBRARY_PATH environment variable is not set up correctly. Ensure that your
LD_LIBRARY_PATH includes the lib and/or lib64 directory where you installed the Toolkit,
usually /usr/local/cuda-11.2/lib{,64}:
$ export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib\
                         ${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

Why do I see multiple "404 Not
Found" errors when updating my
repository meta-data on Ubuntu?

These errors occur after adding a foreign architecture because apt is attempting to query for
each architecture within each repository listed in the system's sources.list file. Repositories
that do not host packages for the newly added architecture will present this error. While noisy,
the error itself does no harm. Please see the Advanced Setup section for details on how to
modify your sources.list file to prevent these errors.

How can I tell X to ignore a GPU for
compute-only use?

To make sure X doesn't use a certain GPU for display, you need to specify which other GPU to
use for display. For more information, please refer to the "Use a specific GPU for rendering
the display" scenario in the Advanced Setup section.

Why doesn't the cuda-repo package
install the CUDA Toolkit and Drivers?

When using RPM or Deb, the downloaded package is a repository package. Such a package
only informs the package manager where to find the actual installation packages, but will not
install them.



Frequently Asked Questions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   42

See the Package Manager Installation section for more details.

How do I get CUDA to work on a
laptop with an iGPU and a dGPU
running Ubuntu14.04?

After installing CUDA, set the driver value for the intel device in /etc/X11/xorg.conf to
'modesetting' as shown below:
Section "Device"
    Identifier "intel"
    Driver "modesetting"
    ...
EndSection
To prevent Ubuntu from reverting the change in xorg.conf, edit /etc/default/grub to add
"nogpumanager" to GRUB_CMDLINE_LINUX_DEFAULT.

Run the following command to update grub before rebooting:
$ sudo update-grub

What do I do if the display does not
load, or CUDA does not work, after
performing a system update?

System updates may include an updated Linux kernel. In many cases, a new Linux kernel will
be installed without properly updating the required Linux kernel headers and development
packages. To ensure the CUDA driver continues to work when performing a system update,
rerun the commands in the Kernel Headers and Development Packages section.

Additionally, on Fedora, the Akmods framework will sometimes fail to correctly rebuild the
NVIDIA kernel module packages when a new Linux kernel is installed. When this happens, it
is usually sufficient to invoke Akmods manually and regenerate the module mapping files by
running the following commands in a virtual console, and then rebooting:
$ sudo akmods --force
$ sudo depmod
You can reach a virtual console by hitting ctrl+alt+f2 at the same time.

How do I install a CUDA driver with a
version less than 367 using a network
repo?

To install a CUDA driver at a version earlier than 367 using a network repo, the required
packages will need to be explicitly installed at the desired version. For example, to install



Frequently Asked Questions

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   43

352.99, instead of installing the cuda-drivers metapackage at version 352.99, you will need to
install all required packages of cuda-drivers at version 352.99.

How do I install an older CUDA
version using a network repo?

Depending on your system configuration, you may not be able to install old versions of CUDA
using the cuda metapackage. In order to install a specific version of CUDA, you may need to
specify all of the packages that would normally be installed by the cuda metapackage at the
version you want to install.

If you are using yum to install certain packages at an older version, the dependencies may not
resolve as expected. In this case you may need to pass "--setopt=obsoletes=0" to yum to allow
an install of packages which are obsoleted at a later version than you are trying to install.



NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   44

Chapter 12. Additional Considerations

Now that you have CUDA-capable hardware and the NVIDIA CUDA Toolkit installed, you can
examine and enjoy the numerous included programs. To begin using CUDA to accelerate the
performance of your own applications, consult the CUDA C++ Programming Guide, located in /
usr/local/cuda-11.2/doc.

A number of helpful development tools are included in the CUDA Toolkit to assist you as you
develop your CUDA programs, such as NVIDIA® Nsight™ Eclipse Edition, NVIDIA Visual Profiler,
cuda-gdb, and cuda-memcheck.

For technical support on programming questions, consult and participate in the developer
forums at https://developer.nvidia.com/cuda/.

https://developer.nvidia.com/cuda/


NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   45

Chapter 13. Removing CUDA Toolkit and
Driver

Follow the below steps to properly uninstall the CUDA Toolkit and NVIDIA Drivers from your
system. These steps will ensure that the uninstallation will be clean.

RHEL8/CentOS8

To remove CUDA Toolkit:
$ sudo dnf remove "cuda*" "*cublas*" "*cufft*" "*curand*" \
 "*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "nsight*"

To remove NVIDIA Drivers:
$ sudo dnf remove nvidia-driver 

To reset the module stream:
$ sudo dnf module reset nvidia-driver

RHEL7/CentOS7

To remove CUDA Toolkit:
$ sudo yum remove "cuda*" "*cublas*" "*cufft*" "*curand*" \
 "*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "nsight*"

To remove NVIDIA Drivers:
$ sudo yum remove "*nvidia*" 

Fedora

To remove CUDA Toolkit:
$ sudo dnf remove "cuda*" "*cublas*" "*cufft*" "*curand*" \
 "*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "nsight*"

To remove 3rd party NVIDIA Drivers:
$ sudo dnf remove "*nvidia*" 

To remove NVIDIA Drivers:
$ sudo dnf remove nvidia-driver

To reset the module stream:
$ sudo dnf module reset nvidia-driver

OpenSUSE/SLES

To remove CUDA Toolkit:
$ sudo zypper remove "cuda*" "*cublas*" "*cufft*" "*curand*" \



Removing CUDA Toolkit and Driver

NVIDIA CUDA Installation Guide for Linux DU-05347-001_v11.2   |   46

 "*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "nsight*"

To remove NVIDIA Drivers:
$ sudo zypper remove "*nvidia*" 

Ubuntu and Debian

To remove CUDA Toolkit:
$ sudo apt-get --purge remove "*cublas*" "*cufft*" "*curand*" \
 "*cusolver*" "*cusparse*" "*npp*" "*nvjpeg*" "cuda*" "nsight*" 

To remove NVIDIA Drivers:
$ sudo apt-get --purge remove "*nvidia*"

To clean up the uninstall:
$ sudo apt-get autoremove



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2009-2021 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. System Requirements
	1.2. About This Document

	Pre-installation Actions
	2.1. Verify You Have a CUDA-Capable GPU
	2.2. Verify You Have a Supported Version of Linux
	2.3. Verify the System Has gcc Installed
	2.4. Verify the System has the Correct Kernel Headers and Development Packages Installed
	2.5. Choose an Installation Method
	2.6. Download the NVIDIA CUDA Toolkit
	2.7. Handle Conflicting Installation Methods

	Package Manager Installation
	3.1. Overview
	3.2. RHEL7/CentOS7
	3.3. RHEL8/CentOS8
	3.4. Fedora
	3.5. SLES
	3.6. OpenSUSE
	3.7. WSL
	3.8. Ubuntu
	3.9. Debian
	3.10. Additional Package Manager Capabilities
	3.10.1. Available Packages
	3.10.2. Package Upgrades
	3.10.3. Meta Packages


	Driver Installation
	Precompiled Streams
	5.1. Precompiled Streams Support Matrix

	Kickstart Installation
	6.1. RHEL8/CentOS8

	Runfile Installation
	7.1. Overview
	7.2. Installation
	7.3. Disabling Nouveau
	7.3.1. Fedora
	7.3.2. RHEL/CentOS
	7.3.3. OpenSUSE
	7.3.4. SLES
	7.3.5. WSL
	7.3.6. Ubuntu
	7.3.7. Debian

	7.4. Device Node Verification
	7.5. Advanced Options
	7.6. Uninstallation

	CUDA Cross-Platform Environment
	8.1. CUDA Cross-Platform Installation
	8.2. CUDA Cross-Platform Samples
	TARGET_ARCH
	TARGET_OS
	TARGET_FS
	Cross Compiling to Embedded ARM architectures
	Copying Libraries



	Post-installation Actions
	9.1. Mandatory Actions
	9.1.1. Environment Setup
	9.1.2. POWER9 Setup

	9.2. Recommended Actions
	9.2.1. Install Persistence Daemon
	9.2.2. Install Writable Samples
	9.2.3. Verify the Installation
	9.2.3.1. Verify the Driver Version
	9.2.3.2. Compiling the Examples
	9.2.3.3. Running the Binaries

	9.2.4. Install Nsight Eclipse Plugins

	9.3. Optional Actions
	9.3.1. Install Third-party Libraries
	9.3.2. Install the source code for cuda-gdb
	9.3.3. Select the Active Version of CUDA


	Advanced Setup
	Frequently Asked Questions
	How do I install the Toolkit in a different location?
	Why do I see "nvcc: No such file or directory" when I try to build a CUDA application?
	Why do I see "error while loading shared libraries: <lib name>: cannot open shared object file: No such file or directory" when I try to run a CUDA application that uses a CUDA library?
	Why do I see multiple "404 Not Found" errors when updating my repository meta-data on Ubuntu?
	How can I tell X to ignore a GPU for compute-only use?
	Why doesn't the cuda-repo package install the CUDA Toolkit and Drivers?
	How do I get CUDA to work on a laptop with an iGPU and a dGPU running Ubuntu14.04?
	What do I do if the display does not load, or CUDA does not work, after performing a system update?
	How do I install a CUDA driver with a version less than 367 using a network repo?
	How do I install an older CUDA version using a network repo?

	Additional Considerations
	Removing CUDA Toolkit and Driver

