
DG-05603-001_v11.3 | April 2021

CUDA on WSL User Guide

User Guide

CUDA on WSL User Guide DG-05603-001_v11.3 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Getting Started... 3
2.1. Installing Microsoft Windows Insider Program Builds... 3

2.2. Installing NVIDIA Drivers..3

2.3. Installing WSL 2.. 4

Chapter 3. Setting up CUDA Toolkit.. 8

Chapter 4. Running CUDA Applications...9

Chapter 5. Setting up to Run Containers...10
5.1. Install Docker.. 10

5.2. Install NVIDIA Container Toolkit.. 10

Chapter 6. Running CUDA Containers... 12
6.1. Simple CUDA Containers..12

6.2. Jupyter Notebooks.. 13

6.3. Deep Learning Framework Containers... 14

Chapter 7. Changelog... 17
7.1. New Features.. 18

7.2. Resolved Issues...18

7.3. Known Limitations.. 18

7.4. Known Issues.. 19

Chapter 8. Troubleshooting..20

CUDA on WSL User Guide DG-05603-001_v11.3 | 1

Chapter 1. Introduction

Windows Subsystem for Linux (WSL) is a Windows 10 feature that enables users to run
native Linux command-line tools directly on Windows. WSL is a containerized environment
within which users can run Linux native applications from the command line of the Windows
10 shell without requiring the complexity of a dual boot environment. Internally, WSL is
tightly integrated with the Microsoft Windows operating system, which allows it to run Linux
applications alongside traditional Windows desktop and modern store apps.

Introduction

CUDA on WSL User Guide DG-05603-001_v11.3 | 2

Figure 1. CUDA on WSL Overview

With WSL 2 and GPU paravirtualization technology, Microsoft enables developers to run GPU
accelerated applications on Windows.

The following document describes a workflow for getting started with running CUDA
applications or containers in a WSL 2 environment.

Note: CUDA on WSL 2 is enabled on GPUs starting with the Kepler architecture; however, we
recommend running CUDA on WSL 2 on Turing or newer architectures.

CUDA on WSL User Guide DG-05603-001_v11.3 | 3

Chapter 2. Getting Started

Getting started with running CUDA on WSL requires you to complete these steps in order:

 1. Installing the latest builds from the Microsoft Windows Insider Program
 2. Installing the NVIDIA preview driver for WSL 2
 3. Installing WSL 2

2.1. Installing Microsoft Windows Insider
Program Builds

Install the latest builds from the Microsoft Windows Insider Program

‣ Register for the Microsoft Windows Insider Program.

‣ Install the latest build from the Dev Channel.

Note:

Ensure that you install Build version 20145 or higher. We recommend being on WIP OS
21313+ with Linux Kernel 5.4.91+ for the best performance.

You can check your build version number by running winver via the Windows Run
command.

2.2. Installing NVIDIA Drivers
‣ Download the NVIDIA Driver from the download section on the CUDA on WSL page.

Choose the appropriate driver depending on the type of NVIDIA GPU in your system -
GeForce and Quadro.

‣ Install the driver using the executable. This is the only driver you need to install.

‣ The DirectX WSL driver is installed automatically along with other driver components so
no additional action is needed for installation. This driver enables graphics on WSL2.0
by supporting DX12 APIs. TensorFlow with DirectML support on WSL will get NV GPU
hardware acceleration for training and inference workloads. There are no present
capabilities in WSL, hence the driver is oriented towards compute/machine learning

https://insider.windows.com/en-us/getting-started/#register
https://blogs.windows.com/windows-insider/2020/06/15/introducing-windows-insider-channels/
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://docs.microsoft.com/en-us/windows/wsl/install-win10
https://developer.nvidia.com/cuda/wsl

Getting Started

CUDA on WSL User Guide DG-05603-001_v11.3 | 4

tasks. For some helpful examples, see https://docs.microsoft.com/en-us/windows/win32/
direct3d12/gpu-tensorflow-wsl.

Note:

Do not install any Linux display driver in WSL. The Windows Display Driver will install both the
regular driver components for native Windows and for WSL support.

Note:

NVIDIA is aware of a specific installation issue reported on mobile platforms with the WIP
driver 465.12 posted on 11/16/2020. A known workaround will be to disable and reenable the
GPU adapter from device manager at system start. We are working on a fix for this issue and
will have an updated driver soon.

As an alternative, users may opt to roll back to an earlier driver from device manager driver
updates.

2.3. Installing WSL 2
This section includes details about installing WSL 2, including setting up a Linux distribution of
your choice from the Microsoft Store.

 1. Install WSL 2 by following the instructions in the Microsoft documentation available here.
 2. Ensure you have the latest kernel by clicking “Check for updates” in the “Windows Update”

section of the Settings app. If the right update with the kernel 4.19.121+ is installed, you
should be able to see it in the Windows Update history. Alternatively, you can check the
version number by running the following command in PowerShell:

wsl cat /proc/version

https://docs.microsoft.com/en-us/windows/win32/direct3d12/gpu-tensorflow-wsl
https://docs.microsoft.com/en-us/windows/win32/direct3d12/gpu-tensorflow-wsl
https://aka.ms/wslstore
https://docs.microsoft.com/windows/wsl/install-win10

Getting Started

CUDA on WSL User Guide DG-05603-001_v11.3 | 5

 3. If you don’t see this update, then in the Windows Update Advanced options, make sure to

enable recommended Microsoft updates and run the check again:

Getting Started

CUDA on WSL User Guide DG-05603-001_v11.3 | 6

 4. If you don’t have the last WSL kernel updated, you will see the following blocking warning

upon trying to launch a Linux distribution within WSL 2.

Getting Started

CUDA on WSL User Guide DG-05603-001_v11.3 | 7

 5. Launch the Linux distribution and make sure it runs in WSL 2 mode using the following

command:

wsl.exe --list -v command

CUDA on WSL User Guide DG-05603-001_v11.3 | 8

Chapter 3. Setting up CUDA Toolkit

It is recommended to use the Linux package manager to install the CUDA for the Linux
distributions supported under WSL 2. Follow these instructions to install the CUDA Toolkit.

First, set up the CUDA network repository. The instructions shown here are for Ubuntu 18.04.
See the CUDA Linux Installation Guide for more information on other distributions.

$ apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/
ubuntu1804/x86_64/7fa2af80.pub

$ sh -c 'echo "deb http://developer.download.nvidia.com/compute/cuda/repos/
ubuntu1804/x86_64 /" > /etc/apt/sources.list.d/cuda.list'

$ apt-get update

Now install CUDA. Note that for WSL 2, you should use the cuda-toolkit-<version> meta-
package to avoid installing the NVIDIA driver that is typically bundled with the toolkit. You can
also install other components of the toolkit by choosing the right meta-package.

Do not choose the cuda, cuda-11-0, or cuda-drivers meta-packages under WSL 2 since
these packages will result in an attempt to install the Linux NVIDIA driver under WSL 2.

$ apt-get install -y cuda-toolkit-11-0

https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas

CUDA on WSL User Guide DG-05603-001_v11.3 | 9

Chapter 4. Running CUDA Applications

Just run your CUDA app as you would run it under Linux! Once the driver is installed there is
nothing more to do to run existing CUDA applications that were built on Linux.

A snippet of running the BlackScholes Linux application from the CUDA samples is shown
below.

Build the CUDA samples available under /usr/local/cuda/samples from your installation of
the CUDA Toolkit in the previous section. The BlackScholes application is located under /usr/
local/cuda/samples/4_Finance/BlackScholes. Alternatively, you can transfer a binary
built on Linux to WSL 2!

C:\> wsl
To run a command as administrator (user “root”), use “sudo <command>”.
See “man sudo_root” for details.

$./BlackScholes

Initializing data...
...allocating CPU memory for options.
...allocating GPU memory for options.
...generating input data in CPU mem.
...copying input data to GPU mem.
Data init done.

Executing Black-Scholes GPU kernel (131072 iterations)...
Options count : 8000000
BlackScholesGPU() time : 1.314299 msec
Effective memory bandwidth: 60.868973 GB/s
Gigaoptions per second : 6.086897

...

https://github.com/NVIDIA/cuda-samples

CUDA on WSL User Guide DG-05603-001_v11.3 | 10

Chapter 5. Setting up to Run
Containers

This chapter describes the workflow for setting up the NVIDIA Container Toolkit in preparation
for running GPU accelerated containers.

5.1. Install Docker
Use the Docker installation script to install Docker for your choice of WSL 2 Linux distribution.
Note that NVIDIA Container Toolkit does not yet support Docker Desktop WSL 2 backend.

Note: For this release, install the standard Docker-CE for Linux distributions.

curl https://get.docker.com | sh

5.2. Install NVIDIA Container Toolkit
Now install the NVIDIA Container Toolkit (previously known as nvidia-docker2). WSL 2
support is available starting with nvidia-docker2 v2.3 and the underlying runtime library
(libnvidia-container >= 1.2.0-rc.1).

For brevity, the installation instructions provided here are for Ubuntu 18.04 LTS.

Setup the stable and experimental repositories and the GPG key. The changes to the
runtime to support WSL 2 are available in the experimental repository.

$ distribution=$(. /etc/os-release;echo IDVERSION_ID)

$ curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -

$ curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list
 | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

$ curl -s -L https://nvidia.github.io/libnvidia-container/experimental/
$distribution/libnvidia-container-experimental.list | sudo tee /etc/apt/
sources.list.d/libnvidia-container-experimental.list

https://docs.docker.com/docker-for-windows/wsl/

Setting up to Run Containers

CUDA on WSL User Guide DG-05603-001_v11.3 | 11

Install the NVIDIA runtime packages (and their dependencies) after updating the package
listing.

$ sudo apt-get update

$ sudo apt-get install -y nvidia-docker2

Open a separate WSL 2 window and start the Docker daemon again using the following
commands to complete the installation.

$ sudo service docker stop

$ sudo service docker start

CUDA on WSL User Guide DG-05603-001_v11.3 | 12

Chapter 6. Running CUDA Containers

In this section, we will walk through some examples of running GPU containers in a WSL 2
environment.

6.1. Simple CUDA Containers
In this example, let’s run an N-body simulation CUDA sample. This example has already been
containerized and available from NGC.

$ docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark

From the console, you should see an output as shown below.

$ docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -benchmark
Run "nbody -benchmark [-numbodies=<numBodies>]" to measure performance.
 -fullscreen (run n-body simulation in fullscreen mode)
 -fp64 (use double precision floating point values for
 simulation)
 -hostmem (stores simulation data in host memory)
 -benchmark (run benchmark to measure performance)
 -numbodies=<N> (number of bodies (>= 1) to run in simulation)
 -device=<d> (where d=0,1,2.... for the CUDA device to use)
 -numdevices=<i> (where i=(number of CUDA devices > 0) to use for
 simulation)
 -compare (compares simulation results running once on the default
 GPU and once on the CPU)
 -cpu (run n-body simulation on the CPU)
 -tipsy=<file.bin> (load a tipsy model file for simulation)

NOTE: The CUDA Samples are not meant for performance measurements. Results may vary
 when GPU Boost is enabled.

> Windowed mode
> Simulation data stored in video memory
> Single precision floating point simulation
> 1 Devices used for simulation
GPU Device 0: "GeForce GTX 1070" with compute capability 6.1

> Compute 6.1 CUDA device: [GeForce GTX 1070]
15360 bodies, total time for 10 iterations: 11.949 ms
= 197.446 billion interactions per second
= 3948.925 single-precision GFLOP/s at 20 flops per interaction

Running CUDA Containers

CUDA on WSL User Guide DG-05603-001_v11.3 | 13

6.2. Jupyter Notebooks
In this example, let’s run Jupyter notebook.

$ docker run -it --gpus all -p 8888:8888 tensorflow/tensorflow:latest-gpu-py3-
jupyter

After the container starts, you can see the following output on the console.

________ _______________
___ __/__________________________________ ____/__ /________ __
__ / _ _ _ __ _ ___/ __ _ ___/_ /_ __ /_ __ _ | /| / /
_ / / __/ / / /(__)/ /_/ / / _ __/ _ / / /_/ /_ |/ |/ /
/_/ ___//_/ /_//____/ ____//_/ /_/ /_/ ____/____/|__/

WARNING: You are running this container as root, which can cause new files in
mounted volumes to be created as the root user on your host machine.

To avoid this, run the container by specifying your user's userid:

$ docker run -u $(id -u):$(id -g) args...

[I 04:00:11.167 NotebookApp] Writing notebook server cookie secret to /root/.local/
share/jupyter/runtime/notebook_cookie_secret
jupyter_http_over_ws extension initialized. Listening on /http_over_websocket
[I 04:00:11.447 NotebookApp] Serving notebooks from local directory: /tf
[I 04:00:11.447 NotebookApp] The Jupyter Notebook is running at:
[I 04:00:11.447 NotebookApp] http://72b6a6dfac02:8888/?
token=6f8af846634535243512de1c0b5721e6350d7dbdbd5e4a1b
[I 04:00:11.447 NotebookApp] or http://127.0.0.1:8888/?
token=6f8af846634535243512de1c0b5721e6350d7dbdbd5e4a1b
[I 04:00:11.447 NotebookApp] Use Control-C to stop this server and shut down all
 kernels (twice to skip confirmation).
[C 04:00:11.451 NotebookApp]

 To access the notebook, open this file in a browser:
 file:///root/.local/share/jupyter/runtime/nbserver-1-open.html
 Or copy and paste one of these URLs:
 http://72b6a6dfac02:8888/?
token=6f8af846634535243512de1c0b5721e6350d7dbdbd5e4a1b
 or http://127.0.0.1:8888/?
token=6f8af846634535243512de1c0b5721e6350d7dbdbd5e4a1b

After the URL is available from the console output, input the URL into your browser to start
developing with the Jupyter notebook. Ensure that you replace 127.0.0.1 with localhost in
the URL when connecting to the Jupyter notebook from the browser.

If you navigate to the Cell menu and select the Run All item, then check the log within the
Jupyter notebook WSL 2 container to see the work accelerated by the GPU of your Windows
PC.

...

Running CUDA Containers

CUDA on WSL User Guide DG-05603-001_v11.3 | 14

[I 04:56:16.535 NotebookApp] 302 GET /?
token=102d547c256eee3661b25d957de93331e02107f8b8ef5f2e (172.17.0.1) 0.46ms
[I 04:56:24.409 NotebookApp] Writing notebook-signing key to /root/.local/share/
jupyter/notebook_secret
[W 04:56:24.410 NotebookApp] Notebook tensorflow-tutorials/classification.ipynb is
 not trusted
[I 04:56:25.223 NotebookApp] Kernel started: 6b4f715b-4d0d-4b3b-936c-0aa74a4e14a0
2020-06-14 04:57:14.728110: I tensorflow/stream_executor/platform/default/
dso_loader.cc:44] Successfully opened dynamic library libnvinfer.so.6
...
2020-06-14 04:57:28.524537: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1324]
 Could not identify NUMA node of platform GPU id 0, defaulting to 0. Your kernel
 may not have been built with NUMA support.
2020-06-14 04:57:28.524837: E tensorflow/stream_executor/cuda/
cuda_gpu_executor.cc:967] could not open file to read NUMA node: /sys/bus/pci/
devices/0000:01:00.0/numa_node
Your kernel may have been built without NUMA support.
2020-06-14 04:57:28.525120: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1241]
 Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with
 6750 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id:
 0000:01:00.0, compute capability: 6.1)
2020-06-14 04:57:30.755782: I tensorflow/stream_executor/platform/default/
dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
[I 04:58:26.083 NotebookApp] Saving file at /tensorflow-tutorials/
classification.ipynb
[I 05:00:26.093 NotebookApp] Saving file at /tensorflow-tutorials/
classification.ipynb

6.3. Deep Learning Framework
Containers

In this example, let’s run a TensorFlow container to do a ResNet-50 training run using GPUs
using the 20.03 container from NGC. This is done by launching the container and then running
the training script from the nvidia-examples directory.

$ docker run --gpus all -it --shm-size=1g --ulimit memlock=-1 --ulimit
 stack=67108864 nvcr.io/nvidia/tensorflow:20.03-tf2-py3

================
== TensorFlow ==
================

NVIDIA Release 20.03-tf2 (build 11026100)
TensorFlow Version 2.1.0

Container image Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
Copyright 2017-2019 The TensorFlow Authors. All rights reserved.

Various files include modifications (c) NVIDIA CORPORATION. All rights reserved.
NVIDIA modifications are covered by the license terms that apply to the underlying
 project or file.

NOTE: MOFED driver for multi-node communication was not detected.
 Multi-node communication performance may be reduced.

root@c64bb1f70737:/workspace# cd nvidia-examples/
root@c64bb1f70737:/workspace/nvidia-examples# ls
big_lstm build_imagenet_data cnn tensorrt
root@c64bb1f70737:/workspace/nvidia-examples# python cnn/resnet.py

Running CUDA Containers

CUDA on WSL User Guide DG-05603-001_v11.3 | 15

...
WARNING:tensorflow:Expected a shuffled dataset but input dataset `x` is not
 shuffled. Please invoke `shuffle()` on input dataset.
2020-06-15 00:01:49.476393: I tensorflow/stream_executor/platform/default/
dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-06-15 00:01:49.701149: I tensorflow/stream_executor/platform/default/
dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
global_step: 10 images_per_sec: 93.2
global_step: 20 images_per_sec: 276.8
global_step: 30 images_per_sec: 276.4

Let's look at another example from Lesson 15 of the Learning TensorFlow tutorial. In this
example, the code creates a random matrix with a given size as input and then does a element
wise operation on the input tensor.

The example also allows you to observe the speedup when the code is run on the GPU. The
source code is shown below.

import sys
import numpy as np
import tensorflow as tf
from datetime import datetime

device_name = sys.argv[1] # Choose device from cmd line. Options: gpu or cpu
shape = (int(sys.argv[2]), int(sys.argv[2]))
if device_name == "gpu":
 device_name = "/gpu:0"
else:
 device_name = "/cpu:0"

tf.compat.v1.disable_eager_execution()
with tf.device(device_name):
 random_matrix = tf.random.uniform(shape=shape, minval=0, maxval=1)
 dot_operation = tf.matmul(random_matrix, tf.transpose(random_matrix))
 sum_operation = tf.reduce_sum(dot_operation)

startTime = datetime.now()
with
 tf.compat.v1.Session(config=tf.compat.v1.ConfigProto(log_device_placement=True)) as
 session:
 result = session.run(sum_operation)
 print(result)

Print the results
print("Shape:", shape, "Device:", device_name)
print("Time taken:", datetime.now() - startTime)

Save the code as matmul.py on the host's C drive, which is mapped as /mnt/c in WSL 2. Run
the code using the same 20.03 TensorFlow container in the previous example. The results of
running this script, launched from the mounted drive C, on a GPU and a CPU are shown below.
For simplicity the output is reduced.

$ docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -v
 "${PWD}:/mnt/c" nvcr.io/nvidia/tensorflow:20.03-tf2-py3 python /mnt/c/matmul.py gpu
 20000

...

https://learningtensorflow.com/using-gpu/

Running CUDA Containers

CUDA on WSL User Guide DG-05603-001_v11.3 | 16

/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1070,
 pci bus id: 0000:01:00.0, compute capability: 6.1
2020-06-16 02:47:23.142774: I tensorflow/core/common_runtime/direct_session.cc:359]
 Device mapping:
/job:localhost/replica:0/task:0/device:XLA_CPU:0 -> device: XLA_CPU device
/job:localhost/replica:0/task:0/device:XLA_GPU:0 -> device: XLA_GPU device
/job:localhost/replica:0/task:0/device:GPU:0 -> device: 0, name: GeForce GTX 1070,
 pci bus id: 0000:01:00.0, compute capability: 6.1

random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/
device:GPU:0
...

Shape: (20000, 20000) Device: /gpu:0
Time taken: 0:00:06.160917

The same example is now run on the CPU.

$ docker run --gpus all --shm-size=1g --ulimit memlock=-1 --ulimit stack=67108864 -v
 "${PWD}:/mnt/c" nvcr.io/nvidia/tensorflow:20.03-tf2-py3 python /mnt/c/matmul.py cpu
 20000

...
random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/
device:CPU:0
2020-06-16 02:35:37.554425: I tensorflow/core/common_runtime/placer.cc:114]
 random_uniform/RandomUniform: (RandomUniform): /job:localhost/replica:0/task:0/
device:CPU:0
transpose: (Transpose): /job:localhost/replica:0/task:0/device:CPU:0
...

Shape: (20000, 20000) Device: /cpu:0
Time taken: 0:00:28.294706

Get started quickly with AI training using pre-trained models available from NVIDIA and the
NGC catalog. Follow the instructions in this post for more details.

https://ngc.nvidia.com/
https://devblogs.nvidia.com/jump-start-ai-training-with-ngc-pretrained-models-on-premises-and-in-the-cloud/

CUDA on WSL User Guide DG-05603-001_v11.3 | 17

Chapter 7. Changelog

‣ 3/5/2021: Resolved issues with nvidia-smi crashing on some systems.

‣ NVIDIA Driver for Windows 10: 470.05

‣ WIP OS 21313+ and Linux kernel 5.4.91+

‣ Do not use WIP OS 21327

‣ 1/28/2021: CUDA Toolkit 11.2 support, nvidia-smi, NVML support and critical performance
improvements.

The following software versions are supported with this preview release for WSL 2:

‣ NVIDIA Driver for Windows 10: 465.42

‣ Recommended WIP build: 21292

‣ 12/16/2020: Support for 3060Ti. Fix for installation problems observed in notebooks.

The following software versions are supported with this preview release for WSL 2:

‣ NVIDIA Driver for Windows 10: 465.21

‣ 11/16/2020: The following software versions are supported with this preview release for
WSL 2:

‣ NVIDIA Driver for Windows 10: 465.12

‣ 9/23/2020: The following software versions are supported with this preview release for
WSL 2:

‣ NVIDIA Driver for Windows 10: 460.20

‣ 9/2/2020:

The following software versions are supported with this preview release for WSL 2:

‣ NVIDIA Driver for Windows 10: 460.15

‣ 6/19/2020: Updated driver release to address cache coherency issues on some CPU
systems, including AMD Ryzen.

The following software versions are supported with this preview release for WSL 2:

‣ NVIDIA Driver for Windows 10: 455.41

‣ 6/17/2020: Initial Version.

The following software versions are supported with this preview release for WSL 2:

Changelog

CUDA on WSL User Guide DG-05603-001_v11.3 | 18

‣ NVIDIA Driver for Windows 10: 455.38

‣ NVIDIA Container Toolkit: nvidia-docker2 (2.3) and libnvidia-container (>= 1.2.0-rc.1)

7.1. New Features
The following new features are included in this release:

‣ CUDA Toolkit 11.2 support

‣ Critical performance improvements

‣ nvidia-smi packaged

‣ Full NVML support

‣ IPC support

7.2. Resolved Issues
The following issues are resolved in this release:

‣ Fixed nvidia-smi issues on some systems.

7.3. Known Limitations
The following features are not supported in this release:

 1. Note that NVIDIA Container Toolkit does not yet support Docker Desktop WSL 2 backend.
Use Docker-CE for Linux instead inside your WSL 2 Linux distribution.

 2. nvidia-smi is now supported but in order to use it, please copy it to /usr/bin and set
appropriate permissions with the below commands:
cp /usr/lib/wsl/lib/nvidia-smi /usr/bin/nvidia-smi
chmod ogu+x /usr/bin/nvidia-smi
We will soon provide a better user experience when there is OS support.

 3. CUDA debugging or profiling tools are not supported in WSL 2. This capability will be added
in a future release.

 4. cumemmap IPC with fd is now supported. Other Legacy IPC APIs are not yet supported.
 5. Unified Memory is limited to the same feature set as on native Windows systems.
 6. With the NVIDIA Container Toolkit for Docker 19.03, only --gpus all is supported. This

means that on multi-GPU systems it is not possible to filter for specific GPU devices by
using specific index numbers to enumerate GPUs.

 7. When installing CUDA using the package manager, do not use the cuda, cuda-11-0,
or cuda-drivers meta-packages under WSL 2. These packages have dependencies
on the NVIDIA driver and the package manager will attempt to install the NVIDIA Linux
driver which may result in issues. The NVIDIA Windows 10 driver should be the only driver
present in the system.

https://docs.docker.com/docker-for-windows/wsl/

Changelog

CUDA on WSL User Guide DG-05603-001_v11.3 | 19

 8. When running the NGC Deep Learning (DL) Framework GPU containers in WSL 2, you may
encounter a message:

The NVIDIA Driver was not detected. GPU functionality will not be available.

Note that this message is an incorrect warning for WSL 2 and will be fixed in future
releases of the DL Framework containers to correctly detect the NVIDIA GPUs. The DL
Framework containers will still continue to be accelerated using CUDA on WSL 2.

7.4. Known Issues
The following are known issues in this release:

‣ CUDA on WSL2 is not to be used with the latest Microsoft Windows 10 Insider Preview
Build 20226 due to known issues. Please use newer builds >= 20236 or revert to the older
build 20221 to use CUDA on WSL2.

‣ Warning: Please do not update to WIP OS 21327 if you would like to use WSL with GPU
support.

CUDA on WSL User Guide DG-05603-001_v11.3 | 20

Chapter 8. Troubleshooting

Here is a collection of potential errors that you may encounter when using CUDA on WSL 2:

Container Runtime Initialization Errors

‣ In some cases, when running a Docker container, you may encounter nvidia-container-
cli : initialization error:

$ sudo docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody nbody -gpu -
benchmark
docker: Error response from daemon: OCI runtime create failed:
 container_linux.go:349: starting container process caused "process_linux.go:449:
 container init caused \"process_linux.go:432: running prestart hook 0 caused
 \\\"error running hook: exit status 1, stdout: , stderr: nvidia-container-cli:
 initialization error: driver error: failed to process request\\\\n\\\"\"":
 unknown.
ERRO[0000] error waiting for container: context canceled

‣ This usually indicates that the right Microsoft Windows Insider Preview Builds, WSL 2,
NVIDIA drivers and NVIDIA Container Toolkit may not be installed correctly. Use the
dxdiag tools from the Run dialog and provide the diagnostic logs to NVIDIA. You can also
use the CUDA on WSL 2 Forums to get in touch with NVIDIA product and engineering
teams for help.

https://forums.developer.nvidia.com/c/accelerated-computing/cuda/cuda-on-windows-subsystem-for-linux/303

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Getting Started
	2.1. Installing Microsoft Windows Insider Program Builds
	2.2. Installing NVIDIA Drivers
	2.3. Installing WSL 2

	Setting up CUDA Toolkit
	Running CUDA Applications
	Setting up to Run Containers
	5.1. Install Docker
	5.2. Install NVIDIA Container Toolkit

	Running CUDA Containers
	6.1. Simple CUDA Containers
	6.2. Jupyter Notebooks
	6.3. Deep Learning Framework Containers

	Changelog
	7.1. New Features
	7.2. Resolved Issues
	7.3. Known Limitations
	7.4. Known Issues

	Troubleshooting

