
DA-06762-001_v11.3 | May 2021

CUDA for Tegra

Application Note

CUDA for Tegra DA-06762-001_v11.3 | ii

Table of Contents

Chapter 1. Overview..1

CUDA for Tegra DA-06762-001_v11.3 | 1

Chapter 1. Overview

This document provides an overview of NVIDIA® Tegra® memory architecture and
considerations for porting code from a discrete GPU (dGPU) attached to an x86 system to the
Tegra® integrated GPU (iGPU). It also discusses EGL interoperability.

This guide is for developers who are already familiar with programming in CUDA, and C/C++,
and who want to develop applications for the Tegra® SoC.

Performance guidelines, best practices, terminology, and general information provided in
the CUDA C++ Programming Guide and the CUDA C++ Best Practices Guide are applicable to all
CUDA-capable GPU architectures, including Tegra® devices.

The CUDA C++ Programming Guide and the CUDA C Best Practices Guide are available at the
following web sites:

CUDA C++ Programming Guide:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA C++ Best Practices Guide:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA for Tegra DA-06762-001_v11.3 | 2

Chapter 2. Memory Management

In Tegra® devices, both the CPU (Host) and the iGPU share SoC DRAM memory. A dGPU with
separate DRAM memory can be connected to the Tegra® device over PCIe or NVLink. It is
currently supported only on the NVIDIA DRIVE platform.

An overview of a dGPU-connected Tegra® memory system is shown in Figure 1.

Figure 1. dGPU-connected Tegra Memory System

In Tegra®, device memory, host memory, and unified memory are allocated on the same
physical SoC DRAM. On a dGPU, device memory is allocated on the dGPU DRAM. The caching
behavior in a Tegra® system is different from that of an x86 system with a dGPU. The caching
and accessing behavior of different memory types in a Tegra® system is shown in Table 1.

Table 1. Characteristics of Different Memory Types in a Tegra System

Memory Type CPU iGPU Tegra®-connected dGPU

Device memory Not directly accessible Cached Cached

Pageable host
memory

Cached Not directly
accessible

Not directly accessible

Pinned host
memory

Uncached where
compute capability is
less than 7.2.

Uncached Uncached

Memory Management

CUDA for Tegra DA-06762-001_v11.3 | 3

Cached where
compute capability is
greater than or equal
to 7.2.

Unified memory Cached Cached Not supported

On Tegra®, because device memory, host memory, and unified memory are allocated on the
same physical SoC DRAM, duplicate memory allocations and data transfers can be avoided.

2.1. I/O Coherency
I/O coherency (also known as one-way coherency) is a feature with which an I/O device such as
a GPU can read the latest updates in CPU caches. It removes the need to perform CPU cache
management operations when the same physical memory is shared between CPU and GPU.
The GPU cache management operations still need to be performed because the coherency is
one way. Please note that the CUDA driver internally performs the GPU cache management
operations when managed memory or interop memory is used.

I/O coherency is supported on Tegra devices starting with Xavier SOC. Applications should
realize benefits from this HW feature without needing to make changes to the application’s
code (see point 2 below).

The following functionalities depend on I/O coherency support:

 1. cudaHostRegister()/cuMemHostRegister() is supported only on
platforms which are I/O coherent. The host register support can be
queried using the device attribute cudaDevAttrHostRegisterSupported /
CU_DEVICE_ATTRIBUTE_HOST_REGISTER_SUPPORTED.

 2. CPU cache for pinned memory allocated using
cudaMallocHost()/cuMemHostAlloc()/cuMemAllocHost() is enabled only on platforms
which are I/O coherent.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cd6ea4a004a336c3c95b6ff06ec6269e29

CUDA for Tegra DA-06762-001_v11.3 | 4

Chapter 3. Porting Considerations

CUDA applications originally developed for dGPUs attached to x86 systems may require
modifications to perform efficiently on Tegra® systems. This section describes the
considerations for porting such applications to a Tegra® system, such as selecting an
appropriate memory buffer type (pinned memory, unified memory, and others) and selecting
between iGPU and dGPU, to achieve efficient performance for the application.

3.1. Memory Selection
CUDA applications can use various kinds of memory buffers, such as device memory,
pageable host memory, pinned memory, and unified memory. Even though these memory
buffer types are allocated on the same physical device, each has different accessing and
caching behaviors, as shown in Table 1. It is important to select the most appropriate memory
buffer type for efficient application execution.

Device Memory

Use device memory for buffers whose accessibility is limited to the iGPU. For example, in an
application with multiple kernels, there may be buffers that are used only by the intermediate
kernels of the application as input or output. These buffers are accessed only by the iGPU.
Such buffers should be allocated with device memory.

Pageable Host Memory

Use pageable host memory for buffers whose accessibility is limited to the CPU.

Pinned Memory

Tegra® systems with different compute capabilities exhibit different behavior in terms of I/
O coherency. For example, Tegra® systems with compute capability greater than or equal to
7.2 are I/O coherent and others are not I/O coherent. On Tegra® systems with I/O coherency,
the CPU access time of pinned memory is as good as pageable host memory because it is
cached on the CPU. However, on Tegra® systems without I/O coherency, the CPU access time
of pinned memory is higher, because it is not cached on the CPU.

Pinned memory is recommended for small buffers because the caching effect is negligible
for such buffers and also because pinned memory does not involve any additional overhead,

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 5

unlike Unified Memory. With no additional overhead, pinned memory is also preferable for
large buffers if the access pattern is not cache friendly on iGPU. For large buffers, when the
buffer is accessed only once on iGPU in a coalescing manner, performance on iGPU can be as
good as unified memory on iGPU.

Unified Memory

Unified memory is cached on the iGPU and the CPU. On Tegra®, using unified memory in
applications requires additional coherency and cache maintenance operations during the
kernel launch, synchronization and prefetching hint calls. This coherency maintenance
overhead is slightly higher on a Tegra® system with compute capability less than 7.2 as they
lack I/O coherency.

On Tegra® devices with I/O coherency (with a compute capability of 7.2 or greater) where
unified memory is cached on both CPU and iGPU, for large buffers which are frequently
accessed by the iGPU and the CPU and the accesses on iGPU are repetitive, unified memory
is preferable since repetitive accesses can offset the cache maintenance cost. On Tegra®

devices without I/O coherency (with a compute capability of less than 7.2), for large buffers
which are frequently accessed by the CPU and the iGPU and the accesses on iGPU are not
repetitive, unified memory is still preferable over pinned memory because pinned memory is
not cached on both CPU and iGPU. That way, the application can take advantage of unified
memory caching on the CPU.

Pinned memory or unified memory can be used to reduce the data transfer overhead between
CPU and iGPU as both memories are directly accessible from the CPU and the iGPU. In an
application, input and output buffers that must be accessible on both the host and the iGPU
can be allocated using either unified memory or pinned memory.

Note: The unified memory model requires the driver and system software to manage
coherence on the current Tegra SOC. Software managed coherence is by nature non-
deterministic and not recommended in a safe context. Zero-copy memory (pinned memory) is
preferable in these applications.

Evaluate the impact of unified memory overheads, pinned memory cache misses, and device
memory data transfers in applications to determine the correct memory selection.

3.2. Pinned Memory
This section provides guidelines for porting applications that use pinned memory allocations
in x86 systems with dGPUs to Tegra®. CUDA applications developed for a dGPU attached to
x86 system use pinned memory to reduce data transfer time and to overlap data transfers with
kernel execution time. For specific information on this topic, see “Data Transfer Between Host
and Device” and “Asynchronous and Overlapping Transfers with Computation” at the following
websites.

“Data Transfer Between Host and Device”:

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 6

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-
host-and-device

“Asynchronous and Overlapping Transfers with Computation”:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-
transfers-and-overlapping-transfers-with-computation

On Tegra® systems with no I/O coherency, repetitive access of pinned memory degrades
application performance, because pinned memory is not cached on the CPU in such systems.

A sample application is shown below in which a set of filters and operations (k1, k2, and k3)
are applied to an image. Pinned memory is allocated to reduce data transfer time on an x86
system with a dGPU, increasing the overall application speed. However, targeting a Tegra®

device with the same code causes a drastic increase in the execution time of the readImage()
function because it repeatedly accesses an uncached buffer. This increases the overall
application time. If the time taken by readImage() is significantly higher compared to kernels
execution time, it is recommended to use unified memory to reduce the readImage() time.
Otherwise, evaluate the application with pinned memory and unified memory by removing
unnecessary data transfer calls to decide best suited memory.

// Sample code for an x86 system with a discrete GPU
int main()
{
 int *h_a,*d_a,*d_b,*d_c,*d_d,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

 //Pinned memory allocated to reduce data transfer time
 cudaMallocHost(h_a, sizeOfImage);
 cudaMallocHost(h_d, sizeOfImage);

 //Allocate buffers on GPU
 cudaMalloc(&d_a, sizeOfImage);
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);
 cudaMalloc(&d_d, sizeOfImage);

 //CPU reads Image;
 readImage(h_a); // Intialize the h_a buffer

 // Transfer image to GPU
 cudaMemcpy(d_a, h_a, sizeOfImage, cudaMemcpyHostToDevice);

 // Data transfer is fast as we used pinned memory
 // ----- CUDA Application pipeline start ----
 k1<<<..>>>(d_a,d_b) // Apply filter 1
 k2<<<..>>>(d_b,d_c)// Apply filter 2
 k3<<<..>>>(d_c,d_d)// Some operation on image data
 // ----- CUDA Application pipeline end ----

 // Transfer processed image to CPU
 cudaMemcpy(h_d, d_d, sizeOfImage, cudaMemcpyDeviceToHost);
 // Data transfer is fast as we used pinned memory

 // Use processed Image i.e h_d in later computations on CPU.
 UseImageonCPU(h_d);
}

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 7

// Porting the code on Tegra
int main()
{
 int *h_a,*d_b,*d_c,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

 //Unified memory allocated for input and output
 //buffer of application pipeline
 cudaMallocManaged(h_a, sizeOfImage,cudaMemAttachHost);
 cudaMallocManaged(h_d, sizeOfImage);

 //Intermediate buffers not needed on CPU side.
 //So allocate them on device memory
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);

 //CPU reads Image;
 readImage (h_a); // Intialize the h_a buffer
 // ----- CUDA Application pipeline start ----
 // Prefetch input image data to GPU
 cudaStreamAttachMemAsync(NULL, h_a, 0, cudaMemAttachGlobal);
 k1<<<..>>>(h_a,d_b)
 k2<<<..>>>(d_b,d_c)
 k3<<<..>>>(d_c,h_d)
 // Prefetch output image data to CPU
 cudaStreamAttachMemAsync(NULL, h_d, 0, cudaMemAttachHost);
 cudaStreamSynchronize(NULL);
 // ----- CUDA Application pipeline end ----

 // Use processed Image i.e h_d on CPU side.
 UseImageonCPU(h_d);
}

The cudaHostRegister() function

The cudaHostRegister() function is not supported on Tegra® devices with compute
capability less than 7.2, because those devices do not have I/O coherency. Use other
pinned memory allocation functions such as cudaMallocHost() and cudaHostAlloc() if
cudaHostRegister() is not supported on the device.

GNU Atomic operations on pinned memory

The GNU atomic operations on uncached memory is not supported on Tegra® CPU. As pinned
memory is not cached on Tegra® devices with compute capability less than 7.2, GNU atomic
operations is not supported on pinned memory.

3.3. Effective Usage of Unified Memory on
Tegra

Using unified memory in applications requires additional coherency and cache maintenance
operations at kernel launch, synchronization, and prefetching hint calls. These operations are
performed synchronously with other GPU work which can cause unpredictable latencies in the
application.

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 8

The performance of unified memory on Tegra® can be improved by providing data prefetching
hints. The driver can use these prefetching hints to optimize the coherence operations. To
prefetch the data, the cudaStreamAttachMemAsync() function can be used, in addition to the
techniques described in the “Coherency and Concurrency” section of the CUDA C Programming
Guide at the following link:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

to prefetch the data. The prefetching behavior of unified memory, as triggered by the changing
states of the attachment flag, is shown in Table 2.

Table 2. Unified Memory Prefetching Behavior per Changing Attachment
Flag States

Previous Flag Current Flag Prefetching Behavior

cudaMemAttachGlobal/
cudaMemAttachSingle

cudaMemAttachHost Causes prefetch to CPU

cudaMemAttachHost cudaMemAttachGlobal/

cudaMemAttachSingle

Causes prefetch to GPU

cudaMemAttachGlobal cudaMemAttachSingle No prefetch to GPU

cudaMemAttachSingle cudaMemAttachGlobal No prefetch to GPU

The following example shows usage of cudaStreamAttachMemAsync() to prefetch data.

Note:

However, not supported on Tegra® devices are the data prefetching techniques that use
cudaMemPrefetchAsync() as described in the “Performance Tuning” section of the CUDA C++
Programming Guide at the following web site:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Note: There are limitations in QNX system software which prevent implementation of all UVM
optimizations. Because of this, using cudaStreamAttachMemAsync() to prefetch hints on QNX
does not benefit performance.

__global__ void matrixMul(int *p, int *q, int*r, int hp, int hq, int wp, int wq)
{
// Matrix multiplication kernel code
}
void MatrixMul(int hp, int hq, int wp, int wq)
{
 int *p,*q,*r;
 int i;
 size_t sizeP = hp*wp*sizeof(int);
 size_t sizeQ = hq*wq*sizeof(int);
 size_t sizeR = hp*wq*sizeof(int);

 //Attach buffers ‘p’ and ‘q’ to CPU and buffer ‘r’ to GPU
 cudaMallocManaged(&p, sizeP, cudaMemAttachHost);
 cudaMallocManaged(&q, sizeQ, cudaMemAttachHost);
 cudaMallocManaged(&r, sizeR);

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 9

 //Intialize with random values
 randFill(p,q,hp,wp,hq,wq);

 // Prefetch p,q to GPU as they are needed in computation
 cudaStreamAttachMemAsync(NULL, p, 0, cudaMemAttachGlobal);
 cudaStreamAttachMemAsync(NULL, q, 0, cudaMemAttachGlobal);
 matrixMul<<<....>>>(p,q,r, hp,hq,wp,wq);

 // Prefetch 'r' to CPU as only 'r' is needed
 cudaStreamAttachMemAsync(NULL, r, 0, cudaMemAttachHost);
 cudaStreamSynchronize(NULL);

 // Print buffer ‘r’ values
 for(i = 0; i < hp*wq; i++)
 printf("%d ", r[i]);
}

Note:

An additional cudaStreamSynchronize(NULL) call can be added after the matrixMul kernel
code to avoid callback threads that cause unpredictability in a cudaStreamAttachMemAsync()
call.

3.4. GPU Selection
On a Tegra system with a dGPU, deciding whether a CUDA application runs on the iGPU or the
dGPU can have implications for the performance of the application. Some of the factors that
need to be considered while making such a decision are kernel execution time, data transfer
time, data locality, and latency. For example, to run an application on a dGPU, data must be
transferred between the SoC and the dGPU. This data transfer can be avoided if the application
runs on an iGPU.

3.5. Synchronization Mechanism
Selection

The cudaSetDeviceFlags API is used to control the synchronization behaviour of CPU
thread. Until CUDA 10.1, by default, the synchronization mechanism on iGPU uses
cudaDeviceBlockingSync flag, which blocks the CPU thread on a synchronization primitive
when waiting for the device to finish work. The cudaDeviceBlockingSync flag is suited
for platforms with power constraints. But on platforms which requires low latency,
cudaDeviceScheduleSpin flag needs to set manually. Since CUDA 10.1, for each platform,
the default synchronization flag is determined based on what is optimized for that platform.
More information about the synchronization flags is given at cudaSetDeviceFlags API
documentation.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gf01347c3dafebf07e1a0b4321a030a63
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 10

3.6. CUDA Features Not Supported on
Tegra

All core features of CUDA are supported on Tegra platforms. The exceptions are listed below.

‣ The cudaHostRegister() function is not supported on QNX systems. This is due to the
limitations on QNX OS. It is supported in Linux systems with compute capability greater
than or equal to 7.2.

‣ System wide atomics are not supported on Tegra devices with compute capability less than
7.2.

‣ Unified memory is not supported on dGPU attached to Tegra.

‣ cudaMemPrefetchAsync() function is not supported since unified memory with
concurrent access is not yet supported on iGPU.

‣ NVIDIA management library (NVML) library is not supported on Tegra. However, as an
alternative to monitor the resource utilization, tegrastats can be used.

‣ CUDA IPC (CUDA Inter-process communication) is not supported on Tegra devices.
EGLStream or NvSci can be used to communicate between CUDA contexts in two
processes.

‣ Remote direct memory access (RDMA) is not supported on Tegra devices.

‣ JIT compilation might require a considerable amount of CPU and bandwidth resources,
potentially interfering with other workloads in the system. Thus, JIT compilations such as
PTX-JIT and NVRTC JIT are not recommended for deterministic automotive applications
and can be bypassed completely by compiling for specific GPU targets. JIT compilation is
not supported on Tegra devices in the safe context.

‣ Multi process service (MPS) is not supported on Tegra.

‣ Peer to peer (P2P) communication calls are not supported on Tegra.

‣ The cuSOLVER library is not supported on in Tegra® systems running QNX.

‣ The nvGRAPH library is not supported.

More information on some of these features can be found at the following web sites:

IPC:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-
communication

NVSCI:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-
softwarcommunication-interface-interoperability-nvsci

RDMA:

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

Porting Considerations

CUDA for Tegra DA-06762-001_v11.3 | 11

MPS:

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

P2P:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-
access

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access

CUDA for Tegra DA-06762-001_v11.3 | 12

Chapter 4. EGL Interoperability

An interop is an efficient mechanism to share resources between two APIs. To share data with
multiple APIs, an API must implement an individual interop for each.

EGL provides interop extensions that allow it to function as a hub connecting APIs, removing
the need for multiple interops, and encapsulating the shared resource. An API must
implement these extensions to interoperate with any other API via EGL. The CUDA supported
EGL interops are EGLStream, EGLImage, and EGLSync.

EGL interop extensions allow applications to switch between APIs without the need to rewrite
code. For example, an EGLStream-based application in which NvMedia is the producer and
CUDA is the consumer can be modified to use OpenGL as the consumer without modifying the
producer code.

Note: On the DRIVE OS platform, NVSCI is provided as an alternative to EGL interoperability for
safety critical applications. Please see NVSCI for more details.

4.1. EGLStream
EGLStream interoperability facilitates efficient transfer of a sequence of frames from one API
to another API, allowing use of multiple Tegra® engines such as CPU, GPU, ISP, and others.

Consider an application where a camera captures images continuously, shares them with
CUDA for processing, and then later renders those images using OpenGL. In this application,
the image frames are shared across NvMedia, CUDA and OpenGL. The absence of EGLStream
interoperability would require the application to include multiple interops and redundant data
transfers between APIs. EGLStream has one producer and one consumer.

EGLStream offers the following benefits:

‣ Efficient transfer of frames between a producer and a consumer.

‣ Implicit synchronization handling.

‣ Cross-process support.

‣ dGPU and iGPU support.

‣ Linux, QNX, and Android operating system support.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 13

4.1.1. EGLStream Flow
The EGLStream flow has the following steps:

 1. Initialize producer and consumer APIs
 2. Create an EGLStream and connect the consumer and the producer.

Note:

EGLStream is created using eglCreateStreamKHR() and destroyed using
eglDestroyStreamKHR().

The consumer should always connect to EGLStream before the producer.

For more information see the EGLStream specification at the following web site: https://
www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

 3. Allocate memory used for EGL frames.
 4. The producer populates an EGL frame and presents it to EGLStream.
 5. The consumer acquires the frame from EGLStream and releases it back to EGLStream

after processing.
 6. The producer collects the consumer-released frame from EGLStream.
 7. The producer presents the same frame, or a new frame to EGLStream.
 8. Steps 4-7 are repeated until completion of the task, with an old frame or a new frame.
 9. The consumer and the producer disconnect from EGLStream.
 10.Deallocate the memory used for EGL frames.
 11.De-initialize the producer and consumer APIs.

EGLStream application flow is shown in Figure 2.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 14

Figure 2. EGLStream Flow

CUDA producer and consumer functions are listed in Table 3.

Table 3. CUDA Producer and Consumer Functions

Role Functionality API

To connect a producer to
EGLStream

cuEGLStreamProducerConnect()

cudaEGLStreamProducerConnect()

To present frame to
EGLStream

cuEGLStreamProducerPresentFrame()

cudaEGLStreamProducerPresentFrame()

Obtain released frames cuEGLStreamProducerReturnFrame()

cudaEGLStreamProducerReturnFrame()

Producer

To disconnect from
EGLStream

cuEGLStreamProducerDisconnect()

cudaEGLStreamProducerDisconnect()

To connect a consumer to
EGLStream

cuEGLStreamConsumerConnect()

cuEGLStreamConsumeConnectWithFlags()

cudaEGLStreamConsumerConnect()

cudaEGLStreamConsumerConnectWithFlags()

Consumer

To acquire frame from
EGLStream

cuEGLStreamConsumerAcquireFrame()

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g7993b0e3802420547e3f403549be65a1

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 15

cudaEGLStreamConsumerAcquireFrame()

To release the consumed
frame

cuEGLStreamConsumerReleaseFrame()

cudaEGLStreamConsumerReleaseFrame()

To disconnect from
EGLStream

cuEGLStreamConsumerDisconnect()

cudaEGLStreamConsumerDisconnect()

4.1.2. CUDA as Producer
When CUDA is the producer, the supported consumers are CUDA, NvMedia and OpenGL. API
functions to be used when CUDA is the producer are listed in Table 3. Except for connecting
and disconnecting from EGLStream, all API calls are non-blocking.

The following producer side steps are shown in the example code that follows:

 1. Prepare a frame (lines 3-19).
 2. Connect the producer to EGLStream (line 21).
 3. Populate the frame and present to EGLStream (lines 23-25).
 4. Get the released frame back from EGLStream (Line 27).
 5. Disconnect the consumer after completion of the task. (Line 31).

void ProducerThread(EGLStreamKHR eglStream) {
 //Prepares frame
 cudaEglFrame* cudaEgl = (cudaEglFrame *)malloc(sizeof(cudaEglFrame));
 cudaEgl->planeDesc[0].width = WIDTH;
 cudaEgl->planeDesc[0].depth = 0;
 cudaEgl->planeDesc[0].height = HEIGHT;
 cudaEgl->planeDesc[0].numChannels = 4;
 cudaEgl->planeDesc[0].pitch = WIDTH * cudaEgl->planeDesc[0].numChannels;
 cudaEgl->frameType = cudaEglFrameTypePitch;
 cudaEgl->planeCount = 1;
 cudaEgl->eglColorFormat = cudaEglColorFormatARGB;
 cudaEgl->planeDesc[0].channelDesc.f=cudaChannelFormatKindUnsigned
 cudaEgl->planeDesc[0].channelDesc.w = 8;
 cudaEgl->planeDesc[0].channelDesc.x = 8;
 cudaEgl->planeDesc[0].channelDesc.y = 8;
 cudaEgl->planeDesc[0].channelDesc.z = 8;
 size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
 // Buffer allocated by producer
 cudaMalloc(&(cudaEgl->pPitch[0].ptr), numElem);
 //CUDA producer connects to EGLStream
 cudaEGLStreamProducerConnect(&conn, eglStream, WIDTH, HEIGHT))
 // Sets all elements in the buffer to 1
 K1<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem);
 // Present frame to EGLStream
 cudaEGLStreamProducerPresentFrame(&conn, *cudaEgl, NULL);

 cudaEGLStreamProducerReturnFrame(&conn, cudaEgl, eglStream);
 .
 .
 //clean up
 cudaEGLStreamProducerDisconnect(&conn);

 .
}

A frame is represented as a cudaEglFramestructure. The frameType parameter in
cudaEglFrame indicates the memory layout of the frame. The supported memory layouts are

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1gb2ef252e72ad2419506f3cf305753c6a

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 16

CUDA Array and device pointer. Any mismatch in the width and height values of frame with the
values specified in cudaEGLStreamProducerConnect() leads to undefined behavior. In the
sample, the CUDA producer is sending a single frame, but it can send multiple frames over a
loop. CUDA cannot present more than 64 active frames to EGLStream.

The cudaEGLStreamProducerReturnFrame() call waits until it receives the released
frame from the consumer. Once the CUDA producer presents the first frame to EGLstream,
at least one frame is always available for consumer acquisition until the producer
disconnects. This prevents the removal of the last frame from EGLStream, which would block
cudaEGLStreamProducerReturnFrame().

Use the EGL_NV_stream_reset extension to set EGLStream attribute
EGL_SUPPORT_REUSE_NV to false to allow the last frame to be removed from EGLStream. This
allows removing or returning the last frame from EGLStream.

4.1.3. CUDA as Consumer
When CUDA is the consumer, the supported producers are CUDA, OpenGL, NvMedia, Argus,
and Camera. API functions to be used when CUDA is the consumer are listed in Table 3.
Except for connecting and disconnecting from EGLStream, all API calls are non-blocking.

The following consumer side steps are shown in the sample code that follows:

 1. Connect consumer to EGLStream (line 5).
 2. Acquire frame from EGLStream (lines 8-10).
 3. Process the frame on consumer (line 16).
 4. Release frame back to EGLStream (line 19).
 5. Disconnect the consumer after completion of the task (line 22).

void ConsumerThread(EGLStreamKHR eglStream) {
.
.
//Connect consumer to EGLStream
cudaEGLStreamConsumerConnect(&conn, eglStream);
// consumer acquires a frame
unsigned int timeout = 16000;
cudaEGLStreamConsumerAcquireFrame(& conn, &cudaResource, eglStream, timeout);
//consumer gets a cuda object pointer
cudaGraphicsResourceGetMappedEglFrame(&cudaEgl, cudaResource, 0, 0);
size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
.
.
int checkIfOne = 1;
// Checks if each value in the buffer is 1, if any value is not 1, it sets
 checkIfOne = 0.
K2<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem, checkIfOne);
.
.
cudaEGLStreamConsumerReleaseFrame(&conn, cudaResource, &eglStream);
.
.
cudaEGLStreamConsumerDisconnect(&conn);
.
}

In the sample code, the CUDA consumer receives a single frame, but it can also receive
multiple frames over a loop. If a CUDA consumer fails to receive a new frame in the specified

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 17

time limit using cudaEGLStreamConsumerAcquireFrame(), it reacquires the previous frame
from EGLStream. The time limit is indicated by the timeout parameter.

The application can use eglQueryStreamKHR() to query for the availability of new frames
using. If the consumer uses already released frames, it results in undefined behavior. The
consumer behavior is defined only for read operations. Behavior is undefined when the
consumer writes to a frame.

If the CUDA context is destroyed while connected to EGLStream, the stream is placed in the
EGL_STREAM_STATE_DISCONNECTED_KHR state and the connection handle is invalidated.

4.1.4. Implicit Synchronization
EGLStream provides implicit synchronization in an application. For example, in the previous
code samples, both the producer and consumer threads are running in parallel and the
K1 and K2 kernel processes access the same frame, but K2 execution in the consumer
thread is guaranteed to occur only after kernel K1 in the producer thread finishes. The
cudaEGLStreamConsumerAcquireFrame() function waits on the GPU side until K1 finishes
and ensures synchronization between producer and consumer. The variable checkIfOne is
never set to 0 inside the K2 kernel in the consumer thread.

Similarly, cudaEGLStreamProducerReturnFrame() in the producer thread is guaranteed to
get the frame only after K2 finishes and the consumer releases the frame. These non-blocking
calls allow the CPU to do other computation in between, as synchronization is taken care of on
the GPU side.

The EGLStreams_CUDA_Interop CUDA sample code shows the usage of EGLStream in detail.

4.1.5. Data Transfer Between Producer and
Consumer

Data transfer between producer and consumer is avoided when they are present on the same
device. In a Tegra® platform that includes a dGPU however, such as is in NVIDIA DRIVE™ PX
2, the producer and consumer can be present on different devices. In that case, an additional
memory copy is required internally to move the frame between Tegra® SoC DRAM and
dGPU DRAM. EGLStream allows producer and consumer to run on any GPU without code
modification.

Note: On systems where a Tegra® device is connected to a dGPU, if a producer frame uses
CUDA array, both producer and consumer should be on the same GPU. But if a producer frame
uses CUDA device pointers, the consumer can be present on any GPU.

4.1.6. EGLStream Pipeline
An application can use multiple EGL streams in a pipeline to pass the frames from one API to
another. For an application where NvMedia sends a frame to CUDA for computation, CUDA
sends the same frame to OpenGL for rendering after the computation.

The EGLStream pipeline is illustrated in Figure 3.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 18

Figure 3. EGLStream Pipeline

NvMedia and CUDA connect as producer and consumer respectively to one EGLStream. CUDA
and OpenGL connect as producer and consumer respectively to another EGLStream.

Using multiple EGLStreams in pipeline fashion gives the flexibility to send frames across
multiple APIs without allocating additional memory or requiring explicit data transfers.
Sending a frame across the above EGLStream pipeline involves the following steps.

 1. NvMedia sends a frame to CUDA for processing.
 2. CUDA uses the frame for computation and sends to OpenGL for rendering.
 3. OpenGL consumes the frame and releases it back to CUDA.
 4. CUDA releases the frame back to NvMedia.

The above steps can be performed in a loop to facilitate the transfer of multiple frames in the
EGLStream pipeline.

4.2. EGLImage
An EGLImage interop allows an EGL client API to share image data with other EGL client APIs.
For example, an application can use an EGLImage interop to share an OpenGL texture with
CUDA without allocating any additional memory. A single EGLImage object can be shared
across multiple client APIs for modification.

An EGLImage interop does not provide implicit synchronization. Applications must maintain
synchronization to avoid race conditions.

Note: An EGLImage is created using eglCreateImageKHR() and destroyed using
eglDestroyImageKHR().

For more information see the EGLImage specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

4.2.1. CUDA interop with EGLImage
CUDA supports interoperation with EGLImage, allowing CUDA to read or modify the data of an
EGLImage. An EGLImage can be a single or multi-planar resource. In CUDA, a single-planar
EGLImage object is represented as a CUDA array or device pointer. Similarly, a multi-planar
EGLImage object is represented as an array of device pointers or CUDA arrays. EGLImage is
supported on Tegra® devices running the Linux, QNX, or Android operating systems.

Use the cudaGraphicsEGLRegisterImage() API to register an EGLImage object with CUDA.
Registering an EGLImage with CUDA creates a graphics resource object. An application
can use cudaGraphicsResourceGetMappedEglFrame() to get a frame from the graphics

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 19

resource object. In CUDA, a frame is represented as a cudaEglFrame structure. The
frameType parameter in cudaEglFrame indicates if the frame is a CUDA device pointer
or a CUDA array. For a single planar graphics resource, an application can directly obtain
a device pointer or CUDA array using cudaGraphicsResourceGetMappedPointer() or
cudaGraphicsSubResourceGetMappedArray() respectively. A CUDA array can be bound to a
texture or surface reference to access inside a kernel. Also, a multi-dimensional CUDA array
can be read and written via cudaMemcpy3D().

Note: An EGLImage cannot be created from a CUDA object. The
cudaGraphicsEGLRegisterImage() function is only supported on Tegra® devices. Also,
cudaGraphicsEGLRegisterImage() expects only the ‘0’ flag as other API flags are for future
use.

The following sample code shows EGLImage interoperability. In the code, an EGLImage object
eglImage is created using OpenGL texture. The eglImage object is mapped as a CUDA array
pArray in CUDA. The pArray array is bound to a surface object to allow modification of the
OpenGL texture in the changeTexture. The function checkBuf() checks if the texture is
updated with new values.
int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 CUarray pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Initialize the buffer
 for(int y = 0; y < HEIGHT; y++)
 {
 for(int x = 0; x < WIDTH; x++)
 {
 pSurf[(y*WIDTH + x) * 4] = 0; pSurf[(y*WIDTH + x) * 4 + 1] = 0;
 pSurf[(y*WIDTH + x) * 4 + 2] = 0; pSurf[(y*WIDTH + x) * 4 + 3] = 0;
 }
 }

 // NOP call to error-check the above glut calls
 GL_SAFE_CALL({});

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));

 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);
 glFinish();
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf);
 glFinish();

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 20

 // Register buffer with CUDA
cuGraphicsEGLRegisterImage(&pResource, eglImage,0);

 //Get CUDA array from graphics resource object
 cuGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);

 cuCtxSynchronize();

 //Create a CUDA surface object from pArray
 CUresult status = CUDA_SUCCESS;
 CUDA_RESOURCE_DESC wdsc;
 memset(&wdsc, 0, sizeof(wdsc));
 wdsc.resType = CU_RESOURCE_TYPE_ARRAY; wdsc.res.array.hArray = pArray;
 CUsurfObject writeSurface;
 cuSurfObjectCreate(&writeSurface, &wdsc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the OpenGL texture using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(writeSurface, width, height);
 cuCtxSynchronize();

 CUDA_MEMCPY3D cpdesc;
 memset(&cpdesc, 0, sizeof(cpdesc));
 cpdesc.srcXInBytes = cpdesc.srcY = cpdesc.srcZ = cpdesc.srcLOD = 0;
 cpdesc.dstXInBytes = cpdesc.dstY = cpdesc.dstZ = cpdesc.dstLOD = 0;
 cpdesc.srcMemoryType = CU_MEMORYTYPE_ARRAY; cpdesc.dstMemoryType =
 CU_MEMORYTYPE_HOST;
 cpdesc.srcArray = pArray; cpdesc.dstHost = (void *)hostSurf;
 cpdesc.WidthInBytes = WIDTH * 4; cpdesc.Height = HEIGHT; cpdesc.Depth = 1;

 //Copy CUDA surface object values to hostSurf
 cuMemcpy3D(&cpdesc);

 cuCtxSynchronize();

 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values as
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 glFinish();
 // Check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cuGraphicsUnregisterResource(pResource);
 cuSurfObjectDestroy(writeSurface);
 .
 .
}
__global__ void changeTexture(cudaSurfaceObject_t arr, unsigned int
 width, unsigned int height){
 unsigned int x = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int y = threadIdx.y + blockIdx.y * blockDim.y;
 uchar4 data = make_uchar4(1, 2, 3, 4);
 surf2Dwrite(data, arr, x * 4, y);
}
void checkbuf(unsigned char *ref, unsigned char *hostSurf) {
 for(int y = 0; y < height*width*4; y++){
 if (ref[y] != hostSurf[y])
 printf("mis match at %d\n",y);
 }
}

Because EGLImage does not provide implicit synchronization, the above sample application
uses glFinish() and cudaThreadSynchronize() calls to achieve synchronization. Both

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 21

calls block the CPU thread. To avoid blocking the CPU thread, use EGLSync to provide
synchronization. An example using EGLImage and EGLSync is shown in the following section.

4.3. EGLSync
EGLSync is a cross-API synchronization primitive. It allows an EGL client API to share its
synchronization object with other EGL client APIs. For example, applications can use an
EGLSync interop to share the OpenGL synchronization object with CUDA.

Note: An EGLSync object is created using eglCreateSyncKHR() and destroyed using
eglDestroySyncKHR().

For more information see the EGLSync specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

4.3.1. CUDA Interop with EGLSync
In an imaging application, where two clients run on a GPU and share a resource, the absence
of a cross-API GPU synchronization object forces the clients to use CPU-side synchronization
to avoid race conditions. The CUDA interop with EGLSync allows the application to exchange
synchronization objects between CUDA and other client APIs directly. This avoids the need
for CPU-side synchronization and allows CPU to complete other tasks. In CUDA, an EGLSync
object is mapped as a CUDA event.

Note: Currently CUDA interop with EGLSync is supported only on Tegra® devices.

4.3.2. Creating EGLSync from a CUDA Event
Creating an EGLSync object from a CUDA event is shown in the following sample code. Note
that EGLSync object creation from a CUDA event should happen immediately after the CUDA
event is recorded.
EGLDisplay dpy = eglGetCurrentDisplay();
// Create CUDA event
cudaEvent_t event;
cudaStream_t *stream;
cudaEventCreate(&event);
cudaStreamCreate(&stream);
// Record the event with cuda event
cudaEventRecord(event, stream);
const EGLAttrib attribs[] = {
 EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib)event,
 EGL_NONE
};
//Create EGLSync from the cuda event
eglsync = eglCreateSync(dpy, EGL_NV_CUDA_EVENT_NV, attribs);
//Wait on the sync

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 22

eglWaitSyncKHR(...);

Note: Initialize a CUDA event before creating an EGLSync object from it to avoid undefined
behavior.

4.3.3. Creating a CUDA Event from EGLSync
Creating a CUDA event from an EGLSync object is shown in the following sample code.
EGLSync eglsync;
EGLDisplay dpy = eglGetCurrentDisplay();
// Create an eglSync object from openGL fense sync object
eglsync = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
cudaEvent_t event;
cudaStream_t* stream;
cudaStreamCreate(&stream);
// Create CUDA event from eglSync
cudaEventCreateFromEGLSync(&event, eglSync, cudaEventDefault);
// Wait on the cuda event. It waits on GPU till OpenGL finishes its
// task
cudaStreamWaitEvent(stream, event, 0);

Note: The cudaEventRecord() and cudaEventElapsedTime() functions are not supported for
events created from an EGLSync object.

The same example given in the EGLImage section is re-written below to illustrate the usage
of an EGLSync interop. In the sample code, the CPU blocking calls such as glFinish() and
cudaThreadSynchronize() are replaced with EGLSync interop calls.
int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 cudaArray_t pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Intialize the buffer
 for(int y = 0; y < bufferSize; y++)
 pSurf[y] = 0;

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));
 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 cudaEvent_t cuda_event;
 cudaEventCreateWithFlags(cuda_event, cudaEventDisableTiming);
 EGLAttribKHR eglattrib[] = { EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib) cuda_event,
 EGL_NONE};
 cudaStream_t* stream;
 cudaStreamCreateWithFlags(&stream,cudaStreamDefault);

 EGLSyncKHR eglsync1, eglsync2;
 cudaEvent_t egl_event;

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.3 | 23

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);

 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf);
 //Creates an EGLSync object from GL Sync object to track
 //finishing of copy.
 eglsync1 = eglCreateSyncKHR(eglDisplayHandle, EGL_SYNC_FENCE_KHR, NULL);

 //Create CUDA event object from EGLSync obejct
 cuEventCreateFromEGLSync(&egl_event, eglsync1, cudaEventDefault);

 //Waiting on GPU to finish GL copy
 cuStreamWaitEvent(stream, egl_event, 0);

 // Register buffer with CUDA
 cudaGraphicsEGLRegisterImage(&pResource, eglImage, cudaGraphicsRegisterFlagsNone);
 //Get CUDA array from graphics resource object
 cudaGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);
 .
 .
 //Create a CUDA surface object from pArray
 struct cudaResourceDesc resDesc;
 memset(&resDesc, 0, sizeof(resDesc));
 resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = pArray;
 cudaSurfaceObject_t inputSurfObj = 0;
 cudaCreateSurfaceObject(&inputSurfObj, &resDesc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the CUDA array using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(inputSurfObj, width, height);
 cuEventRecord(cuda_event, stream);
 //Create EGLsync object from CUDA event cuda_event
 eglsync2 = eglCreateSync64KHR(dpy, EGL_SYNC_CUDA_EVENT_NV, eglattrib);
 //waits till kernel to finish
 eglWaitSyncKHR(eglDisplayHandle, eglsync2, 0);
 .
 //Copy modified pArray values to hostSurf
 .
 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 .
 .
 // This function check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cudaGraphicsUnregisterResource(pResource);
 cudaDestroySurfaceObject(inputSurfObj);
 eglDestroySyncKHR(eglDisplayHandle, eglsync1);
 eglDestroySyncKHR(eglDisplayHandle, eglsync2);
 cudaEventDestroy(egl_event);
 cudaEventDestroy(cuda_event);
 .
 .
}

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2018-2021 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Memory Management
	2.1. I/O Coherency

	Porting Considerations
	3.1. Memory Selection
	3.2. Pinned Memory
	3.3. Effective Usage of Unified Memory on Tegra
	3.4. GPU Selection
	3.5. Synchronization Mechanism Selection
	3.6. CUDA Features Not Supported on Tegra

	EGL Interoperability
	4.1. EGLStream
	4.1.1. EGLStream Flow
	4.1.2. CUDA as Producer
	4.1.3. CUDA as Consumer
	4.1.4. Implicit Synchronization
	4.1.5. Data Transfer Between Producer and Consumer
	4.1.6. EGLStream Pipeline

	4.2. EGLImage
	4.2.1. CUDA interop with EGLImage

	4.3. EGLSync
	4.3.1. CUDA Interop with EGLSync
	4.3.2. Creating EGLSync from a CUDA Event
	4.3.3. Creating a CUDA Event from EGLSync

