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Chapter 1. Introduction

The purpose of the Best Practices guide is to provide guidance from experts who are
knowledgeable about NVIDIA® GPUDirect® Storage (GDS). This guide also provides
information about the lessons learned when building and massively scaling GPU accelerated I/
O storage infrastructures. The intended audience includes data center planning staff, system
builders, developers, and storage vendors.

GDS is the newest addition to the GPUDirect family. GDS enables a direct data path for direct
memory access (DMA) transfers between GPU memory and storage, which avoids a bounce
buffer through the CPU. This direct path increases system bandwidth and decreases the
latency and utilization load on the CPU.

GDS is enabled on the following filesystems:

‣ DDN EXAScaler: https://www.ddn.com/

‣ WekaFS filesystem: https://www.weka.io

‣ VAST Data’s NFSoRDMA implementation: https://www.vastdata.com

GDS documents and online resources provide additional context for the optimal use of, and
understanding of GDS. Refer to the following guides for more information about GDS:

‣ GPUDirect Storage Design Guide

‣ GPUDirect Storage Overview Guide

‣ cuFile API Reference Guide

‣ GPUDirect Storage Release Notes

‣ GPUDirect Storage Troubleshooting Guide

‣ GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following blogs:

‣ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

‣ The Magnum IO series.

https://www.ddn.com/
https://www.weka.io
https://www.vastdata.com
https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/
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Chapter 2. Software Settings

This section provides information about the settings required for GDS and the settings that are
specific to the filesystem that you are using.

For the best performance, multiple software settings are required across the entire system,
and some settings are specific to the filesystem that you are using.

For more information, refer to the GPUDirect Storage Installation and Troubleshooting Guide.

2.1.  System Settings
The following are system settings we recommend for the best performance.

‣ PCIe Access Control Services (ACS).

ACS forces peer-to-peer PCIe transactions to go up through the PCIe Root Complex, which
does not enable GDS to bypass the CPU on paths between a network adaptor or NVMe and
the GPU in systems that include a PCIe switch.

For the optimal GDS performance, disable ACS.

Note: To list all of the PCI switches that have ACS enabled, issue gdschecker -p.

‣ IOMMU

When the IOMMU setting is enabled, PCIe traffic has to be routed through the CPU root
ports. This routing limits the maximum achievable throughput for configurations where the
GPU and NIC are under the same PCIe switch. Before you install GDS, you must disable
IOMMU. Refer to Installing GPUDirect Storage for more information.

Note: To determine whether the IOMMU setting is enabled, check the cat /proc/cmdline
output.

‣ NIC affinity

In NVIDIA DGX™-based platforms, complete the following tasks:

‣ For the peer-to-peer DMA to function efficiently, provision at least one NIC in the same
PCIe switch as the GPU.

‣ Avoid configurations where the NICs are assigned across the PCIe switches that
require PCIe traffic to cross the CPU root ports or go across CPU sockets that use QPI.

https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html#install-gds
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‣ NIC versions

‣ When using Mellanox ConnectX-5 or ConnectX-6 the HCAs must be configured in
InfiniBand or RoCE v2 mode.

‣ For GDS support, MLNX_OFED 4.6 or later is required.

2.2.  cuFile Configuration Settings
This section provides information about the cuFile configuration changes in GDS. The cuFile
configuration settings in GDS are stored in the /etc/cufile.json file.

To display the configuration setting, run the following command:
$cat /etc/cufile.json

Here is a portion of the sample output:
"properties": {
            // max IO size issued by cuFile to nvidia-fs driver (in KB)
            "max_direct_io_size_kb" : 16384,
            ...
    }

For the requested IO size, GDS issues IO requests sequentially in chunks of reads/writes
based on the max_direct_io_size parameter. Larger values of max_direct_io_size will
result in a reduced number of calls to the IO stack and might result in higher throughput.

The max_direct_io_size_kb parameter can be set to a value that is a multiple
of 64K. This process defines the additional system memory that is used for each
buffer during cuFileBufRegister up to a maximum value that is defined by the
properties:max_direct_io_size_kb parameter. The maximum direct IO size that GDS
can handle is 16MB, and this value can be reduced to 1MB to reduce the amount of system
memory that is used per buffer.

The total system memory that is used can be obtained from nvidia-fs stats.

In this example, each of 256 threads register a 1MB buffer for GDS.

 1. Run the following command:
$ cat /proc/driver/nvidia-fs/stats

 2. Review the output:
NVFS statistics(ver:1.0)
Active Shadow-Buffer (MB): 256...
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Chapter 3. API Usage

This section provides information about the best practices to remember when you use the GDS
APIs.

Note: The cuFile APIs are designed to be thread safe.

The fork system call should not be used after the library is initialized. The behavior of the APIs
after the fork system call is undefined in the child process.

Note: The APIs are not designed to work with the fork call.

The APIs with GPU buffers should be called in a valid CUDA context.

3.1.  cuFileDriverOpen
Here is some additional information about the cuFileDriverOpen API.

This API should be invoked only once per process and before you invoke any other GDS API.
The application should call this API to avoid the latency of the driver that will be otherwise
incurred in the first IO call.

3.2.  cuFileHandleRegister
The following is information about the cuFileHandleRegister API.

This API converts a file descriptor to a cuFileHandle and checks the ability of the named file,
at its mount point, to be supported via GDS on this platform.

Note: There should be one handle for each file descriptor.

The same handle can be shared by multiple threads. Refer to the sample programs for more
information about using the same handle by multiple threads.

Note: In the compatibility mode, an additional fd can be opened without requiring the
O_DIRECT mode. This mode can alos handle unaligned reads/writes, even when POSIX cannot.



API Usage

NVIDIA Magnum IO GPUDirect Storage DA-10088-001_v1.0.0   |   5

3.3.  cuFileBufRegister, cuFileRead, and
cuFileWrite

The following is information about the cuFileBufRegister, cuFileRead, and cuFileWrite
APIs.

GPU buffers need to be exposed to third-party devices to enable DMA by those devices. The set
of pages that span those buffers in the GPU virtual address space need to be mapped to the
Base Address Register (BAR) space, and this mapping is an overhead.

Note: The process to accomplish this mapping is called registration.

Explicit GPU buffer registration with the cuFileBufRegister API is optional. If the user buffer
is not registered, an intermediate pre-registered GPU buffer that is owned by the cuFile
implementation is used, and there is an extra copy from there to the user buffer. The following
table provides guidance on whether registration is profitable.

Note: IO Pattern 1 is a suboptimal baseline case and is not referenced in this table.

Use Case Description Recommendation
A 4KB-aligned GPU buffer is
reused as an intermediate
buffer to read or write data
by using optimal IO sizes for
storage systems in multiples of
4KB.

The GPU buffer is used as an
intermediate buffer to stream the
contents or to populate a different
data structure in GPU memory.

You can implement this use case
for IO libraries with DSG.

Register this reusable
intermediate buffer to avoid
the additional internal staging
of data by using GPU bounce
buffers in the cuFile library.

See IO Pattern 2 for the
recommended usage.

Filling a large GPU buffer for
one use.

The GPU buffer is the final
location of the data. Since the
buffer will not be reused, the
registration cost will not be
amortized. A usage example
is reading large preformatted
checkpoint binary data.

Registering a large buffer can
have a latency impact when the
buffer is registered.

This can also cause BAR
memory exhaustion because
running multiple threads or
applications will compete for
BAR memory.

Read or write the data without
buffer registration.

See IO Pattern 3 for the
recommended usage.

Partitioning a GPU buffer to
be accessed across multiple
threads.

The main thread allocates a large
chunk of memory and creates
multiple threads. Each thread
registers a portion of the memory
chunk independently and uses
that as in IO Pattern 2.

Allocate, register, and
deregister the buffers in each
thread independently for simple
IO workflows.

For cases where the GPU
memory is preallocated, each
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Use Case Description Recommendation
You can also register the entire
memory in the parent thread and
use this registered buffer with
the size and devPtr_offset
parameters set appropriately
with the buffer offsets for each
thread. A cudaContext must be
established in each thread before
registering the GPU buffers.

thread can set the appropriate
context and register the buffers
independently.

See IO Pattern 6 for the
recommended usage.

After you install the
GDS package, see
cufile_sample_016.cc
and cufile_sample_017.cc
under /usr/local/CUDA-X.y/
samples/ for more details.

GPU offsets, file offsets, and IO
request sizes are unaligned.

The IO reads or writes are mostly
unaligned. An intermediate
aligned buffer might be needed to
handle alignment issues with GPU
offsets, file offsets, and IO sizes.

Do not register the buffer.

See IO Pattern 4 and IO Pattern
5.

Working on a GPU with a small
BAR space as compared to the
available GPU memory.

In some GPU SKUs, the BAR
memory is smaller than the total
device memory.

To avoid failures because of
BAR memory exhaustion, do
not register the buffer.

See IO Pattern 3.

3.3.1.  IO Pattern 1
Here is the code sample for IO Pattern 1.

#define MB(x) ((x)*1024*1024L)
  2 #define GB(x) ((x)*1024*1024L*1024L)
  3
  4
  5void thread_func(CUfileHandle_t cuHandle)
  6 {
  7         void *devPtr_base;
  8         int readSize = MB(100);
  9         int devPtr_offset = 0;
 10         int file_offset = 0;
 11         int ret = 0;
 12         
 13
 14         cudaSetDevice(0);
 15         cudaMalloc(&devPtr_base, GB(1));
 16
 17         for (int i = 0; i < 10; i++) {
 18
 19              cuFileBufRegister((char *)devPtr_base + devPtr_offset, readSize,
 0);
 20
 21              ret = cuFileRead(cuHandle, (char *)devPtr_base + devPtr_offset,
                                  readSize,  file_offset, 0);
 22                 
 23
          <... launch cuda kernel using contents at devPtr_base + devPtr_offset … >

 24              file_offset += readSize;
 25              devPtr_offset += readSize;
 26
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 27              cuFileBufDeregister((char *)devPtr_base + devPtr_offset);
 28         }
 29 }

 1. Allocate 1 GB of GPU memory by using cudaMalloc.

 2. Fill the 1 GB by reading 100 MB at a time from file as seen in the following loop:

 a). At line 19, the GPU buffer of 100 MB is registered.

 b). Submit the read for 100MB (readsize is 100 MB).

 c). At line 27, the GPU buffer of 100 MB is deregistered.

Although semantically correct, this loop might not provide the best performance because
cuFileBufRegister and cuFileBufDeregister are continuously issued in the loop. For
example, this problem can be addressed as shown in IO-Pattern - 2.

3.3.2.  IO Pattern 2
Here is the code sample for IO Pattern 2.

1 #define MB(x) ((x)*1024*1024L)
  2 #define GB(x) ((x)*1024*1024L*1024L)
  3
  4
  5void thread_func(CUfileHandle_t cuHandle)
  6 {
  7         void *devPtr_base;
  8         int readSize = MB(100);
  9         int devPtr_offset = 0;
 10         int file_offset = 0;
 11         int ret = 0;
 12         
 13
 14         cudaSetDevice(0);
 15         cudaMalloc(&devPtr_base, GB(1));
 16         cuFileBufRegister(devPtr_base, GB(1), 0);
 17
 18         for (int i = 0; i < 10; i++) {
 19
 20                 ret = cuFileRead(cuHandle, devPtr_base,
                                     readSize, file_offset, devPtr_offset);
 21                 

 22             <... launch cuda kernel using contents at devPtr_base +
 devPtr_offset … >
 23
 24                 file_offset += readSize;
 25                 devPtr_offset += readSize;
 27                 
 28         }
 29        cuFileBufDeregister(devPtr_base);
 30 }
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3.3.3.  IO Pattern 3
Here is the code sample for IO Pattern 3.

1 #define MB(x) ((x)*1024*1024L)
  2 #define GB(x) ((x)*1024*1024L*1024L)
  3
  4
  5 void thread_func(CUfileHandle_t cuHandle)
  6{
  7         void *devPtr_base;
  8         int readSize = MB(100);
  9         int devPtr_offset = 0;
 10         int file_offset = 0;
 11         int ret = 0;
 12
 13         cudaSetDevice(0);
 14         cudaMalloc(&devPtr_base, GB(1));
 15
 16         for (int i = 0; i < 10; i++) {
 17
 18              ret = cuFileRead(cuHandle, (char *)devPtr_base,
                                          readSize, file_offset, devPtr_offset);
 19                 
 20          <... launch cuda kernel using contents at devPtr_base + devPtr_offset …
 >
 21
 22              file_offset += readSize;
 23              devPtr_offset += readSize;              
 24         }
 25 }

This example demonstrates the usage of cuFileRead/cuFileWrite APIs without using the
cuFileBufRegister and cuFileBufDeRegister APIs. The IO-Pattern - 3 code snippet is the
same as the IO-Pattern-1 and IO-Pattern-2 code snippets but the cuFileBufRegister API is
not used.

 1. Allocate 1 GB of GPU memory.

 2. Fill the entire GPU memory of 1 GB by reading 100 MB at a time from file as seen in the
loop.

Note: Although semantically correct, this loop might not be optimal.

Internally, GDS uses GPU bounce buffers to perform IOs. Bounce buffers are GPU memory
allocations that are internal to GDS, and these buffers are registered and managed by the GDS
library. The number of bounce buffers and size of each bounce buffer is capped based on the
max_device_cache_size setting in the /etc/cufile.json file.

The number of GPU bounce buffers can be tuned using configurable property in the /etc/
cufile.json file. The max_device_cache_size setting states the maximum cache size in KB
set per GPU. By default, it is set to 128 MB.
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3.3.4.  IO Pattern 4
Here is the code sample for IO Pattern 4. This is an unaligned IO on an EXAScaler®

Filesystem.

1 #define MB(x) ((x)*1024*1024L)
  2 #define GB(x) ((x)*1024*1024L*1024L)
  3
  4
  5 void thread_func(CUfileHandle_t cuHandle)
  6 {
  7         void *devPtr_base;
  8         int readSize = MB(100);
  9         int devPtr_offset = 0;
 10         int file_offset = 3; // Start from odd offset
 11         int ret = 0;
 12         
 13
 14        cudaSetDevice(0);
 15         cudaMalloc(&devPtr_base, GB(1));
 16         cuFileBufRegister(devPtr_base, GB(1), 0);
 17
 18         for (int i = 0; i < 10; i++) {
 19                 // IO issued at offsets which are not 4K aligned
 20                 ret = cuFileRead(cuHandle, devPtr_base,
                                          readSize, file_offset, devPtr_offset);
 21                 assert(ret >= 0);
             <... launch cuda kernel using contents at devPtr_base + devPtr_offset …
 >
 23
 24                 file_offset += readSize; 
 25                 devPtr_offset += readSize;
 27                 
 28         }
        cuFileBufDeRegister(devPtr_base);
 29 }

This example demonstrates the usage of cuFileRead/cuFileWrite when IO is unaligned.

An IO is unaligned if one of the following conditions is true:

‣ The file_offset that was issued in cuFileRead/cuFileWrite is not 4K aligned.

‣ The size that was issued in cuFileRead/cuFileWrite is not 4K aligned.

‣ The devPtr_base that was issued in cuFileRead/cuFileWrite is not 4K aligned.

‣ he devPtr_offset that was issued in cuFileRead/cuFileWrite is not 4K aligned.

Note: In the above example, the initialization of file_offset is on line 10.

 1. After allocating 1 GB of GPU memory, cuFileBufRegister is immediately invoked for the
entire range of 1 GB as seen on line 16.

 2. Fill the entire 1 GB GPU memory by reading 100 MB at a time from file as seen in the
following loop:

 a). The initial file_offset is at 3, and reads are submitted with a readSize value of 100MB
at an offset of 3 for each iteration.
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For example, file_offset during each read is not 4K aligned.

 b). Since file_offset is not 4K aligned, the GDS library can internally use GPU bounce
buffers to complete the IO.

The GPU bounce buffer mechanism is identical to IO-Pattern-3.

 3. Unaligned IOs might not be optimal and should be avoided by reading the size value that is
specified in multiples of 4KB and the file_offsets value that is specified in multiples of
4KB.

In the above example, an entire 1GB of GPU memory was registered using
cuFileBufRegister. However, because the IO was unaligned, GDS library cannot perform
IO directly to these registered buffers. To handle unaligned IOs, the library might use
GPU bounce buffers to perform the IO and copy the data from the bounce buffers to the
application buffers. If the application typically performs unaligned IO, as a best practice,
the application buffers do not need to be registered with the GDS library.

The example in IO Pattern 4 demonstrates what happens when file_offset is unaligned;
the previously mentioned points are accurate if either of the unaligned conditions is true.

If the applications cannot issue 4K aligned IO, instead of using the cuFileBufRegister API,
use the cuFileRead/cuFileWrite APIs as described in IO-Pattern-2.

Remember the following information:

‣ When the write workload is unaligned, GDS uses Read-Modify-Write internally.

Note: Read-Modify-Write is not atomic. For more information, see the
cufile_sample_018.cc sample program in the /usr/local/CUDA-X.y/samples
directory.

‣ Applications must ensure that no other thread is reading/writing in this given range.

If required, range locks (using flock) must be used before submitting IO.

3.3.5.  IO Pattern 5
Here is the code sample for IO Pattern 5. This IO is an unaligned IO on an WekaFS filesystem.

1 #define MB(x) ((x)*1024*1024L)
  2 #define GB(x) ((x)*1024*1024L*1024L)
  3
  4
  5 void thread_func(CUfileHandle_t cuHandle)
  6 {
  7         void *devPtr_base;
  8         int readSize = MB(100);
  9         int devPtr_offset = 3; // Start from odd offset
 10         int file_offset = 0; 
 11         int ret = 0;
 12         
 13
 14         cudaSetDevice(0);
 15         cudaMalloc(&devPtr_base, GB(1));
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 16         cuFileBufRegister(devPtr_base, GB(1), 0);
 17
 18         for (int i = 0; i < 10; i++) {
 19                 // IO issued at gpu buffer offsets which are not 4K aligned
 20                 ret = cuFileRead(cuHandle, devPtr_base,
                                     readSize, file_offset, devPtr_offset);
 21                 assert (ret >= 0);
                    <... launch cuda kernel using contents at devPtr_base +
 devPtr_offset … >
 23
 24                 file_offset += readSize; 
 25                 devPtr_offset += readSize;
 27                 
 28         }
        cuFileBufDeRegister(devPtr_base);
 29 }

This example demonstrates using cuFileRead/cuFileWrite when IO is unaligned. The
devPtr_base + devPtr_offset that are issued incuFileRead/cuFileWrite are not 4K
aligned.

If the IO is unaligned, the cuFile library will issue IO through the internal GPU bounce buffer
cache. Also, if the allocation of internal cache fails, the IO fails. To avoid IO failure in this case,
you can set allow_compat_mode to true in the /etc/cufile.json file. With this setting, IO
will fallback to the POSIX APIs.

3.3.6.  IO Pattern 6
Here is the code sample for IO Pattern 6.
typedef struct thread_data
{
   void *devPtr;
    loff_t offset;
    loff_t devPtr_offset;
    CUfileHandle_t cfr_handle;
}thread_data_t;

static void *thread_fn(void *data)
{
    int ret;
    thread_data_t *t = (thread_data_t *)data;

    /*
     *  Threads do not inherit cuda context from the parent. Before submitting reads
 to
     *  cuFileRead/cuFileWrite, threads should have cuda context associated with it.
     *  The context should be set based on the context where devPtr was allocated.
     */

    cudaSetDevice(0);
    cudaCheckError();

    /*
     * Note the usage of devPtr_offset. Every thread has same devPtr handle
     * which was registered using cuFileBufRegister; however all threads are
     * working at different devPtr offsets. This is optimal as GPU memory is
     * registered once in the main thread.
     */
     ret = cuFileRead(t->cfr_handle, t->devPtr, MB(100), t->offset, t-
>devPtr_offset);
     if (ret < 0) {
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        fprintf(stderr, "cuFileRead failed with ret=%d\n", ret);
     }
     <... launch cuda kernel using contents at devPtr + devPtr_offset … >
    return NULL;
}
int main(int argc, char **argv) {
    void *devPtr;
    size_t offset = 0;
    int fd;
    CUfileError_t status;
    CUfileDescr_t cfr_descr;
    CUfileHandle_t cfr_handle;
    thread_data t[10];
    pthread_t thread[10];
 
    if (argc < 2) {
        fprintf(stderr, "Invalid input.\n");
        help();
        exit(1);
    }
    fd  = open(argv[1], O_RDWR | O_DIRECT);
    assert(fd > 0);

    memset((void *)&cfr_descr, 0, sizeof(CUfileDescr_t));
    cfr_descr.handle.fd = fd;
    cfr_descr.type = CU_FILE_HANDLE_TYPE_OPAQUE_FD;
    status = cuFileHandleRegister(&cfr_handle, &cfr_descr);
    if (status.err != CU_FILE_SUCCESS) {
        printf("file register error: %s\n", CUFILE_ERRSTR(status.err));
        close(fd);
        exit(1);
    }

    cudaSetDevice(0);
    cudaCheckError();

    cudaMalloc(&devPtr, GB(1));
    cudaCheckError();
 
    /*
     * Entire Memory is registered
     */
    status = cuFileBufRegister(devPtr, GB(1), 0);
    if (status.err != CU_FILE_SUCCESS) {
        printf("Buffer register failed :%s\n", CUFILE_ERRSTR(status.err));
        cuFileHandleDeregister(cfr_handle);
        close(fd);
        exit(1);
    }

    for (int i = 0; i < 10; i++) {
        /*
         * Every thread will get same devPtr address; additionally, every thread
         * will share the same cuFileHandle.
         */
        t[i].devPtr = devPtr;
        t[i].cfr_handle = cfr_handle;

        /*
         * Every thread will work on different devPtr offset
         */
        t[i].offset = offset;
        t[i].devPtr_offset = offset;
        offset += MB(100);
    }

    for (int i = 0; i < 10; i++) {
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        pthread_create(&thread[i], NULL, &thread_fn, &t[i]);
    }

    for (int i = 0; i < 10; i++) {
        pthread_join(thread[i], NULL);
    }

    // Deregister once all threads terminate
    status = cuFileBufDeregister(devPtr);
    if (status.err != CU_FILE_SUCCESS) {
        fprintf(stderr, "cuFileBufDeregister failed :%s\n",
 CUFILE_ERRSTR(status.err));
    }

    cuFileHandleDeregister(cfr_handle);
    close(fd);
    cudaFree(devPtr);
    return 0;
}

This example demonstrates using cuFileBufRegister once in the main thread and how child
threads can access the registered buffer at a different GPU buffer offset.

The main thread completes the following tasks:

‣ Allocates GPU Memory of size 1GB.

‣ Registers the entire memory by using cuFileBufRegister.

‣ Creates a cuFileHandle for the opened file descriptor.

‣ Spawns, where each thread completes the following tasks:

‣ Works on the same cuFileHandle.

‣ Sets the CUDA context that is relevant to the devPtr context.

‣ Submits reads to cuFileRead at different devPtr_offset.

This process ensures that the buffer is registered once in the main thread, and individual
threads can focus on IO.

3.4.  cuFileHandleDeregister
The following is additional information about the cuFileHandleDeregister API.

Prerequisite: Before calling this API, the application must ensure that the IO on that handle
has completed and is no longer being used. The file descriptor should be in an open state.

To reclaim resources before ending the process, always invoke this API.
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3.5.  cuFileBufDeregister
The following is information about the cuFileBufDeregister API.

Prerequisite: Before calling this API, the application must ensure that all the cuFile IO
operations that are using this buffer have completed.

For every buffer registered by using cuFileBufRegister, use this API to deregister by
using the same device pointer that was used for registration. This process ensures that all
resources are reclaimed before ending the process.

3.5.1.  cuFileDriverClose
Here is some information about the cuFileDriverClose API.

Prerequisites: Before calling this API, the application must ensure that all the cuFile IO
operations, buffers and handles are deregistered, and IO is completed.

This API should always be invoked at the end of the application, or when the application no
longer needs to complete IO using GDS.
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