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Chapter 1. Introduction

NVIDIA® GPUDirect® Storage (GDS) is the newest addition to the GPUDirect family. GDS
enables a direct data path for direct memory access (DMA) transfers between GPU memory
and storage, which avoids a bounce buffer through the CPU. This direct path increases system
bandwidth and decreases the latency and utilization load on the CPU.

The purpose of this guide is to help the user evaluate and test GDS functionality and
performance by using sample applications. These applications can be run after you set up
and install GDS and before you run the custom applications that have been modified to take
advantage of GDS.

Refer to the following guides for more information about GDS:

‣ GPUDirect Storage Design Guide

‣ GPUDirect Storage Overview Guide

‣ cuFile API Reference Guide

‣ GPUDirect Storage Release Notes

‣ GPUDirect Storage Best Practices Guide

‣ GPUDirect Storage Troubleshooting Guide

‣ GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following posts:

‣ GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

‣ The Magnum IO series.

https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/
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Chapter 2. About this Guide

Configuration and benchmarking are very tightly coupled activities. Benchmarking provides
the ability to determine the potential performance based on the current system configuration,
and the impact of configuration changes. Configuration changes are sometimes required
to achieve optimal benchmark results, which will potentially translate into increased
performance of production workloads.

This guide provides information and examples of the various system configuration attributes,
both hardware and software, and how they factor into the delivered performance of GPUDirect
Storage. Local drive configurations (Direct Attached Storage - DAS) and Network storage
(Network Attached Storage - NAS) are covered. The benchmarking tool included when GDS
is installed, gdsio, is covered and its use demonstrated, as well as gdsbench, a shell wrapper
around gdsio that facilitates ease of use and generating performance results very quickly.

Appendix A covers benchmarking and performance in general, along with considerations when
benchmarking storage systems.
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Chapter 3. Benchmarking GPUDirect
Storage

GDS enables high throughput and low latency data transfer between storage and GPU
memory, which allows you to program the DMA engine of a PCIe device with the correct
mappings to move data in and out of a target GPU’s memory. As such, it becomes clear the
path between the GPU and the network card or storage device/controller factors significantly
into delivered performance, both throughput and latency. The PCIe topology, PCIe root
complex, switches and the physical location of the GPU and network and storage devices need
to be examined and factored into the configuration details when benchmarking GDS.

Achieving optimal performance with GDS benchmarking requires working through the PCIe
topology and determining:

‣ which IO devices and GPUs are on the same PCIe switch or root complex

‣ which device communication paths require traversing multiple PCIe ports and possibly
crossing CPU socket boundaries

The diagram in the following section illustrates an example of PCIe topology, showing different
devices across multiple PCIe switches.

Determining PCIe device proximity is not necessarily an easy task, as it requires using
multiple Linux utilities to correlate device names and numbers to the hierarchical numbering
scheme used to identify PCIe devices, referred to as BDF notation (bus:device.func)
or extended BDF notation, which adds a PCIe domain identifier to the notation, as in
domain:bus:device.func.
$ lspci | grep -i nvidia
36:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)

$ lspci -D | grep -i nvidia
0000:36:00.0 3D controller: NVIDIA Corporation Device 20b0 (rev a1)

In the first example, note the standard PCIe BDF notation for the first NVIDIA GPU, 36:00.0.
In the second example, the -D flag was added to show the PCIe domain (extended BDF),
0000:36:00.0.

3.1.  Determining PCIe Device Affinity
The examples in this section were performed on an NVIDIA® DGX-2™ system. The figure
below shows a subset of the DGX-2 system architecture, illustrating the PCIe topology:
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Figure 1. PCIe Topology

A DGX-2 system has two CPU sockets, and each socket has two PCIe trees. Each of the four
PCIe trees (only one is shown above) has two levels of switches. Up to four NVMe drives hang
off of the first level of switches. Each second-level switch has a connection to the first level
switch, a PCIe slot that can be populated with a NIC or RAID card, and two GPUs.

The commands and methodology in the following sample output apply to any system that runs
Linux. The goal is to associate GPUs and NVMe drives in the PCIe hierarchy and determine
which device names to use for GPUs and NVMe drives that share the same upstream PCIe
switch. To resolve this issue, you must correlate Linux device names with PCIe BDF values.
For the locally attached NVMe disks, here is an example that uses Linux /dev/disk/by-path
directory entries:
dgx2> ls -l /dev/disk/by-path
total 0
lrwxrwxrwx 1 root root  9 Nov 19 12:08 pci-0000:00:14.0-usb-0:8.1:1.0-scsi-0:0:0:0 -
> ../../sr0
lrwxrwxrwx 1 root root  9 Nov 19 12:08 pci-0000:00:14.0-usb-0:8.2:1.0-scsi-0:0:0:0 -
> ../../sda
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:01:00.0-nvme-1 -> ../../nvme0n1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:01:00.0-nvme-1-part1 -> ../../
nvme0n1p1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:01:00.0-nvme-1-part2 -> ../../
nvme0n1p2
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:05:00.0-nvme-1 -> ../../nvme1n1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:05:00.0-nvme-1-part1 -> ../../
nvme1n1p1
lrwxrwxrwx 1 root root 15 Nov 19 12:08 pci-0000:05:00.0-nvme-1-part2 -> ../../
nvme1n1p2
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lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:2e:00.0-nvme-1 -> ../../nvme2n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:2f:00.0-nvme-1 -> ../../nvme3n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:51:00.0-nvme-1 -> ../../nvme4n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:52:00.0-nvme-1 -> ../../nvme5n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:b1:00.0-nvme-1 -> ../../nvme6n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:b2:00.0-nvme-1 -> ../../nvme7n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:da:00.0-nvme-1 -> ../../nvme8n1
lrwxrwxrwx 1 root root 13 Nov 19 12:08 pci-0000:db:00.0-nvme-1 -> ../../nvme9n1

Since the current system configuration has nvme0 and nvme1 devices configured into a RAID0
device (/dev/md0 not shown here), the focus is on the remaining available nvme devices,
nvme2 through nvme9. You can get the same PCIe-to-device information for the GPUs that use
the nvidia-smi utility and specify the GPU attributes to query:
dgx2> nvidia-smi --query-
gpu=index,name,pci.domain,pci.bus,pci.device,pci.device_id,pci.sub_device_id --
format=csv
index, name, pci.domain, pci.bus, pci.device, pci.device_id, pci.sub_device_id
0, Tesla V100-SXM3-32GB, 0x0000, 0x34, 0x00, 0x1DB810DE, 0x12AB10DE
1, Tesla V100-SXM3-32GB, 0x0000, 0x36, 0x00, 0x1DB810DE, 0x12AB10DE
2, Tesla V100-SXM3-32GB, 0x0000, 0x39, 0x00, 0x1DB810DE, 0x12AB10DE
3, Tesla V100-SXM3-32GB, 0x0000, 0x3B, 0x00, 0x1DB810DE, 0x12AB10DE
4, Tesla V100-SXM3-32GB, 0x0000, 0x57, 0x00, 0x1DB810DE, 0x12AB10DE
5, Tesla V100-SXM3-32GB, 0x0000, 0x59, 0x00, 0x1DB810DE, 0x12AB10DE
6, Tesla V100-SXM3-32GB, 0x0000, 0x5C, 0x00, 0x1DB810DE, 0x12AB10DE
7, Tesla V100-SXM3-32GB, 0x0000, 0x5E, 0x00, 0x1DB810DE, 0x12AB10DE
8, Tesla V100-SXM3-32GB, 0x0000, 0xB7, 0x00, 0x1DB810DE, 0x12AB10DE
9, Tesla V100-SXM3-32GB, 0x0000, 0xB9, 0x00, 0x1DB810DE, 0x12AB10DE
10, Tesla V100-SXM3-32GB, 0x0000, 0xBC, 0x00, 0x1DB810DE, 0x12AB10DE
11, Tesla V100-SXM3-32GB, 0x0000, 0xBE, 0x00, 0x1DB810DE, 0x12AB10DE
12, Tesla V100-SXM3-32GB, 0x0000, 0xE0, 0x00, 0x1DB810DE, 0x12AB10DE
13, Tesla V100-SXM3-32GB, 0x0000, 0xE2, 0x00, 0x1DB810DE, 0x12AB10DE
14, Tesla V100-SXM3-32GB, 0x0000, 0xE5, 0x00, 0x1DB810DE, 0x12AB10DE
15, Tesla V100-SXM3-32GB, 0x0000, 0xE7, 0x00, 0x1DB810DE, 0x12AB10DE

Use the Linux lspci command to tie it all together:
dgx2> lspci -tv | egrep -i "nvidia | micron"
-+-[0000:d7]-+-00.0-[d8-e7]----00.0-[d9-e7]--+-00.0-[da]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-01.0-[db]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-04.0-[de-e2]----00.0-[df-e2]--+-00.0-
[e0]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[e2]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               \-0c.0-[e3-e7]----00.0-[e4-e7]--+-00.0-
[e5]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                                                               \-10.0-
[e7]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 +-[0000:ae]-+-00.0-[af-c7]----00.0-[b0-c7]--+-00.0-[b1]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-01.0-[b2]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-04.0-[b5-b9]----00.0-[b6-b9]--+-00.0-
[b7]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[b9]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               +-0c.0-[ba-be]----00.0-[bb-be]--+-00.0-
[bc]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[be]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               \-10.0-[bf-c7]----00.0-[c0-c7]--+-02.0-
[c1]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-03.0-
[c2]----00.0  NVIDIA Corporation Device 1ac2
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 |           |                                                               +-04.0-
[c3]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-0a.0-
[c5]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-0b.0-
[c6]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               \-0c.0-
[c7]----00.0  NVIDIA Corporation Device 1ac2
 +-[0000:4e]-+-00.0-[4f-67]----00.0-[50-67]--+-00.0-[51]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-01.0-[52]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-04.0-[55-59]----00.0-[56-59]--+-00.0-
[57]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[59]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               +-0c.0-[5a-5e]----00.0-[5b-5e]--+-00.0-
[5c]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[5e]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               \-10.0-[5f-67]----00.0-[60-67]--+-02.0-
[61]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-03.0-
[62]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-04.0-
[63]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-0a.0-
[65]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               +-0b.0-
[66]----00.0  NVIDIA Corporation Device 1ac2
 |           |                                                               \-0c.0-
[67]----00.0  NVIDIA Corporation Device 1ac2
 +-[0000:2b]-+-00.0-[2c-3b]----00.0-[2d-3b]--+-00.0-[2e]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-01.0-[2f]----00.0  Micron Technology
 Inc 9200 PRO NVMe SSD
 |           |                               +-04.0-[32-36]----00.0-[33-36]--+-00.0-
[34]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               |                               \-10.0-
[36]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                               \-0c.0-[37-3b]----00.0-[38-3b]--+-00.0-
[39]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]
 |           |                                                               \-10.0-
[3b]----00.0  NVIDIA Corporation GV100GL [Tesla V100 SXM3 32GB]

In the above example, we explicitly searched for SSDs from the given vendor. To determine the
manufacturer of the NVMe SSD devices on your system, simply run lsblk -o NAME,MODEL.
Alternatively, use nvme as the string to match with nvidia.

A few things to note here. First, the NVME SSD devices are grouped in pairs on each of the
PCIe upstream switches, as shown in the displayed extended BDF format (left most column),
showing domain zero, and Bus IDs 0xd7 (0000:d7), 0xae, 0x4e and 0x2b. Also, two distinct
NVIDIA device IDs are revealed (right-most column) - 0x1db8 and 0x1ac2. The 0x1db8 devices
are the Tesla V100 SXM3 32GB GPUs, and the 0x1ac2 devices are NVSwitches. Our interest
here is in the GPU devices, and the topology shows that there will be an optimal performance
path between a pair of NVMe SSDs and four possible V100 GPUs. Given this information,
we can create a RAID0 device comprised of two NVMe SSDs on the same PCIe switch, and
determine which GPUs are on the same PCIe upstream switch.

Starting at the top of the lspci output, note two NVMe drives at PCIe bus 0xda and 0xdb. The
disk-by-path data indicates these are nvme8 and nvme9 devices. The four GPUs on the same
segment, 0xe0, 0xe2, 0xe5 and 0xe7, are GPUs 12, 13, 14 and 15 respectively, as determined
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from the nvidia-smi output. The following table shows the PCIe GPU-to-NVMe affinity for all
installed GPUs and corresponding NVMe SSD pairs.

Table 1. DGX-2 GPU / NVMe Affinity (example)

See nvidia-smi command output See /dev/disk/by-path entries

GPU # GPU PCIe NVMe # NVMe PCIe
0, 1, 2, 3 0x34, 0x36, 0x39, 0x3b nvme2, nvme3 0x2e, 0x2f

4, 5, 6, 7 0x57, 0x59, 0x5c, 0x5e nvme4, nvme5 0x51, 0x52

8, 9, 10, 11 0xb7, 0xb9, 0xbc, 0xbe nvme6, nvme7 0xb1, 0xb2

12, 13, 14, 15 0xe0, 0xe2, 0xe5, 0xe7 nvme8, nvme9 0xda, 0xdb

With this information, we can configure a target workload for optimal throughput and latency,
leveraging PCIe topology and device proximity of the GPUs and NVMe SSDs. This will be
demonstrated in the next couple sections. Note that it is not guaranteed the actual PCIe BDF
values will be the same for every NVIDIA DGX-2. This is because enumeration of the PCIe
topology is based on specific configuration details and determined at boot time.

The same logic applies to storage that is network attached (NAS). The network interface (NIC)
becomes the “storage controller”, in terms of the data flow between the GPUs and storage.
Fortunately, determining PCIe topology is a much easier task for GPUs and NICs, as the
nvidia-smi utility includes options for generating this information. Specifically, nvidia-smi
topo -mp generates a simple topology map in the form of a matrix showing the connection(s)
at the intersection of the installed GPUs and network interfaces.

For readability, the sample output below from a DGX-2 system shows the first eight columns,
and the first four Mellanox device rows, not the entire table generated when executing
nvidia-smi topo -mp.
dgx2> nvidia-smi topo -mp
        GPU0   GPU1   GPU2   GPU3   GPU4   GPU5   GPU6   GPU7
GPU0     X     PIX    PXB    PXB    NODE   NODE   NODE   NODE
GPU1    PIX     X     PXB    PXB    NODE   NODE   NODE   NODE
GPU2    PXB    PXB     X     PIX    NODE   NODE   NODE   NODE
GPU3    PXB    PXB    PIX     X     NODE   NODE   NODE   NODE
GPU4    NODE   NODE   NODE   NODE    X     PIX    PXB    PXB
GPU5    NODE   NODE   NODE   NODE   PIX     X     PXB    PXB
GPU6    NODE   NODE   NODE   NODE   PXB    PXB     X     PIX
GPU7    NODE   NODE   NODE   NODE   PXB    PXB    PIX     X
GPU8    SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU9    SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU10   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU11   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU12   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU13   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU14   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
GPU15   SYS    SYS    SYS    SYS    SYS    SYS    SYS    SYS
mlx5_0  PIX    PIX    PXB    PXB    NODE   NODE   NODE   NODE
mlx5_1  PXB    PXB    PIX    PIX    NODE   NODE   NODE   NODE
mlx5_2  NODE   NODE   NODE   NODE   PIX    PIX    PXB    PXB
mlx5_3  NODE   NODE   NODE   NODE   PXB    PXB    PIX    PIX

Legend:

  X    = Self



Benchmarking GPUDirect Storage

NVIDIA Magnum IO GPUDirect Storage DA-06762-001_v1.0.0   |   8

  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA
 nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
 Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
 CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe
 Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge

The optimal path between a GPU and NIC will be one PCIe switch path designated as PIX. The
least optimal path is designated as SYS, which indicates that the data path requires traversing
the CPU-to-CPU interconnect (NUMA nodes).

If you use this data when you configure and test GDS performance, the ideal setup would be,
for example, a data flow from mlx5_0 to/from GPUs 0 and 1, mlx5_1 to/from GPUs 1 and 2, and
so on.

3.2.  GPUDirect Storage Configuration
Parameters

There are various parameters and settings that will factor into delivered performance. In
addition to storage/filesystem-specific parameters, there are system settings and GDS-
specific parameters defined in /etc/cufile.json.

3.2.1.  System Parameters
On the system side, the following should be checked:

‣ PCIe Access Control Service (ACS)

PCIe ACS is a security feature for peer-to-peer transactions Each transaction is checked
to determine whether peer-to-peer communication is allowed between the source and
destination devices. Each such transaction must be routed through the root complex,
which induces latency and impacts sustainable throughput. The best GDS performance is
obtained when PCIe ACS is disabled.

‣ IOMMU

The PCIe Input/Output Memory Management Unit (IOMMU) is a facility for handling
address translations for IO devices, and requires routing though the PCIe root complex.
Optimal GDS performance is achieved when the IOMMU is disabled.

3.2.2.  GPUDirect Storage Parameters
This section describes the JSON configuration parameters used by GDS.

When GDS is installed, the /etc/cufile.json parameter file is installed with default values.
The implementation allows for generic GDS settings and parameters specific to a file system
or storage partner.

Note: Consider compat_mode for systems or mounts that are not yet set up with GDS support.
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Table 2. GPUDirect Storage cufile.json Variables

Parameter
Default
Value Description

logging:dir CWD Location of the GDS log file.

logging:level ERROR Verbosity of logging.

profile:nvtx false Boolean which if set to true,
generates NVTX traces for
profiling.

profile:cufile_stats 0 Enable cuFile IO stats. Level 0
means no cuFile statistics.

properties:max_direct_io_size_kb 16384 Maximum IO chunk size (4K
aligned) used by cuFile for
each IO request (in KB).

properties:max_device_cache_size_kb 131072 Maximum device memory
size (4K aligned) for reserving
bounce buffers for the entire
GPU (in KB).

properties:max_device_pinned_mem_size_kb 33554432 Maximum per-GPU memory
size in KB, including the
memory for the internal
bounce buffers, that can be
pinned.

properties:use_poll_mode false Boolean that indicates whether
the cuFile library uses polling
or synchronous wait for the
storage to complete IO. Polling
might be useful for small IO
transactions. Refer to Poll
Mode below.

properties:poll_mode_max_size_kb 4 Maximum IO request size (4K
aligned) in or equal to which
library will be polled (in KB).

properties:allow_compat_mode false If true, enables the
compatibility mode, which
allows cuFile to issue POSIX
read/write. To switch to GDS-
enabled I/O, set this to false.
Refer to Compatibility Mode
below.

properties:rdma_dev_addr_list empty Provides the list of IPv4
addresses for all the
interfaces that can be used for
RDMA.

properties:rdma_load_balancing_policy RoundRobin Specifies the load balancing
policy for RDMA memory
registration. By default, this
value is set to RoundRobin.
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Parameter
Default
Value Description

Here are the valid values that
can be used for this property:

FirstFit - Suitable for cases
where numGpus matches
numPeers and GPU PCIe lane
width is greater or equal to the
peer PCIe lane width.

MaxMinFit - This will try to
assign peers in a manner that
there is least sharing. Suitable
for cases, where all GPUs are
loaded uniformly.

RoundRobin - This parameter
uses only the NICs that are the
closest to the GPU for memory
registration in a round robin
fashion.

RoundRobinMaxMin - Similar
to RoundRobin but uses peers
with least sharing.
Randomized - This parameter
uses only the NICs that are the
closest to the GPU for memory
registration in a randomized
fashion.

properties:rdma_dynamic_routing false Boolean parameter applicable
only to Network Based File
Systems. This could be
enabled for platforms where
GPUs and NICs do not share a
common PCIe-root port.

properties:rdma_dynamic_routing_order The routing order applies only
if rdma_dynamic_routing is
enabled. Users can specify an
ordered list of routing policies
selected when routing an IO on
a first-fit basis.

fs:generic:posix_unaligned_writes false Setting to true forces the
use of a POSIX write instead
of cuFileWrite for unaligned
writes.

fs:lustre:posix_gds_min_kb 4KB Applicable only for the
EXAScaler filesystem. This
is applicable for reads and
writes. IO threshold for read/
write (4K aligned) that is equal
to or below the threshold that
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Parameter
Default
Value Description

cufile will use for a POSIX
read/write.

fs:lustre:rdma_dev_addr_list empty Provides the list of IPv4
addresses for all the
interfaces that can be used
by a single lustre mount. This
property is used by the cuFile
dynamic routing feature to
infer preferred RDMA devices.

fs:lustre:mount_table empty Specifies a dictionary of IPv4
mount addresses against
a Lustre mount point.This
property is used by the cuFile
dynamic routing feature. Refer
to the default cufile.json for
sample usage.

fs:nfs:rdma_dev_addr_list empty Provides the list of IPv4
addresses for all the
interfaces a single NFS mount
can use. This property is used
by the cuFile dynamic routing
feature to infer preferred
RDMA devices.

fs:nfs:mount_table empty Specifies a dictionary of IPv4
mount addresses against
a Lustre mount point. This
property is used by the cuFile
dynamic routing feature. Refer
to the default cufile.json for
sample usage.

fs:weka:rdma_write_support false If set to true, cuFileWrite will
use RDMA writes instead of
falling back to posix writes for
a WekaFs mount.

fs:weka:<rdma_dev_addr_list> empty Provides the list of IPv4
addresses for all the
interfaces a single WekaFS
mount can use. This property
is also used by the cuFile
dynamic routing feature to
infer preferred rdma devices.

fs:weka:mount_table empty Specifies a dictionary of IPv4
mount addresses against a
WekaFS mount point. This
property is used by the cuFile
dynamic routing feature. Refer
to the default cufile.json for
sample usage.
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Parameter
Default
Value Description

denylist:drivers Administrative setting that
disables supported storage
drivers on the node.

denylist:devices Administrative setting that
disables specific supported
block devices on the node.

Not applicable for DFS.

denylist:mounts Administrative setting that
disables specific mounts in
the supported GDS-enabled
filesystems on the node.

denylist:filesystems Administrative setting that
disables specific supported
GDS-ready filesystems on the
node.

Note: Workload/application-specific parameters can be set by using the
CUFILE_ENV_PATH_JSON environment variable that is set to point to an alternate cufile.json
file, for example, CUFILE_ENV_PATH_JSON=/home/gds_user/my_cufile.json.

There are two mode types that you can set in the cufile.json configuration file:

‣ Poll Mode

The cuFile API set includes an interface to put the driver in polling mode. Refer to
cuFileDriverSetPollMode() in the cuFile API Reference Guide for more information.
When the poll mode is set, a read or write issued that is less than or equal to
properties:poll_mode_max_size_kb (4KB by default) will result in the library polling
for IO completion, rather than blocking (sleep). For small IO size workloads, enabling poll
mode may reduce latency.

‣ Compatibility Mode

There are several possible scenarios where GDS might not be available or supported,
for example, when the GDS software is not installed, the target file system is not GDS
supported, O_DIRECT cannot be enabled on the target file, and so on. When you enable
compatibility mode, and GDS is not functional for the IO target, the code that uses the
cuFile APIs fall backs to the standard POSIX read/write path. To learn more about
compatibility mode, refer to cuFile Compatibility Mode.

From a benchmarking and performance perspective, the default settings work very
well across a variety of IO loads and use cases. We recommended that you use the
default values for max_direct_io_size_kb, max_device_cache_size_kb, and
max_device_pinned_mem_size_kb unless a storage provider has a specific recommendation,
or analysis and testing show better performance after you change one or more of the defaults.

The cufile.json file has been designed to be extensible such that parameters can be set
that are either generic and apply to all supported file systems (fs:generic), or file system
specific (fs:lustre). The fs:generic:posix_unaligned_writes parameter enables the

https://docs.nvidia.com/cuda/cufile-api/index.html
https://docs.nvidia.com/cuda/cufile-api/index.html#cufile-compatibility-mode
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use of the POSIX write path when unaligned writes are encountered. Unaligned writes are
generally sub-optimal, as they can require read-modify-write operations.

If the target workload generates unaligned writes, you might want to set
posix_unaligned_writes to true, as the POSIX path for handling unaligned writes might
be more performant, depending on the target filesystem and underlying storage. Also, in this
case, the POSIX path will write to the page cache (system memory).

When the IO size is less than or equal to posix_gds_min_kb, the
fs:lustre:posix_gds_min_kb setting invokes the POSIX read/write path rather than cuFile
path. When using Lustre, for small IO sizes, the POSIX path can have better (lower) latency.

The GDS parameters are among several elements that factor into delivered storage IO
performance. It is advisable to start with the defaults and only make changes based on
recommendations from a storage vendor or based on empirical data obtained during testing
and measurements of the target workload.

3.3.  GPUDirect Storage Benchmarking
Tools

There are several storage benchmarking tools and utilities for Linux systems, with varying
degrees of features and functionality. The fio utility is one of the more popular and powerful
tools that is used to generate storage IO loads and offers significant flexibility for tuning IO
generation based on the desired IO load characteristics. For those familiar with fio on Linux
systems, the use of gdsio will be very intuitive.

Since GDS is relatively new technology, with support dependencies and a specific set of
libraries and APIs that fall outside standard POSIX IO APIs, none of the existing storage IO
load generation utilities include GDS support. As a result, the installation of GDS includes the
gdsio load generator which provides several command line options that enable generating
various storage IO load characteristics via both the traditional CPU and the GDS data path.

3.3.1.  gdsio Utility
The gdsio utility is similar to other disk/storage IO load generating tools. It supports a series
of command line arguments to specify the target files, file sizes, IO sizes, number of IO
threads, and so on. Additionally, gdsio includes built-in support for using the traditional IO
path (CPU), as well as the GDS path - storage to/from GPU memory.

These options allow the utility to provide the flexibility that is necessary to construct IO tests
based on a specific set of requirements and/or to assess performance for several different
load types. Important to note that when using the -D flag to specify a target directory, gdsio
must first execute write loads (-I 1 or -I 3) to create the files. The number of files created
is based on the thread count (-w flag); 1 file is created for each thread. This is an alternative
to using the -fflag where file pathnames are specified. The -D and -f flags cannot be used
together.

The transfer types (-x flag) are defined in the following table:

https://linux.die.net/man/1/fio
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Table 3. gdsio Data Path Transfer Options

x Transfer Type
File Open
O_DIRECT?

Host Memory
Allocation Type

Device Memory
Allocation Type Copies

0 XFER_GPU_DIRECT Yes N/A cudaMalloc() Zero
copy

1 XFER_CPU_ONLY Yes Posix_mem_align
(4k)

N/A Zero
copy

2 XFER_CPU_GPU Yes cudaMallocHost() cudaMalloc()

(use of multiple
CUDA streams for
cuMemcpyAsync()

One
copy

3 XFER_CPU_ASYNC_GPU Yes cudaMallocManaged()cudaMallocManaged()

(use cuMemAdvise()
to set hints for
managed memory +
cuMemcpyPrefetchAsync())

One
copy
(streaming
buffer)

4 XFER_CPU_CACHED_GPU No (use
page cache)

cudaMallocHost() cudaMalloc()

(use of multiple
CUDA streams for
cuMemcpyAsync())

Two
copies

5 XFER_GPU_DIRECT_ASYNC Yes N/A cudaMalloc() Zero
copy

Similar to the Linux fio storage load generator, gdsio supports the use of config files that
contain the parameter values to use for a gdsio execution. This offers an alternative to
lengthy command line strings, and the ability to build a collection of config files that can easily
be reused for testing different configurations and workloads. The gdsio config file syntax
supports global parameters, as well as individual job parameters. There are sample gdsio
config files installed with GDS in /usr/local/cuda/gds/tools. The files with the .gdsio
extension are sample gdsio config files, and the README included in the same directory
provides additional information on the command line and config file syntax for gdsio.

With these options and the support of parameter config files, it is a relatively simple process to
run gdsio and assess performance using different data paths to/from GPU memory.

3.3.2.  gds-stats Tool
This tool is used to extract per-process statistics on the GDS IO. It can be used in conjunction
with other generic tools (Linux iostat), and GPU-specific tools (nvidia-smi, the Data Center
GPU Manager (DCGM) command line tool, dcgmi) to get a complete picture of data flow on the
target system.
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To use gds_stats, the profile:cufile_stats attribute in /etc/cufile.json must be set
to 1, 2 or 3.

Note: The default value of 0 disables statistics collection.

The different levels provide an increasing amount of statistical data. When
profile:cufile_stats is set to 3 (max level), the gds_stats utility provides a -l (level) CLI
flag. Even when GDS is collecting level 3 stats, only level 1 or level 2 stats can be displayed.

In the example below, a gdsio job is started in the background, and level 3 gds_stats are
extracted:
dgx2> gdsio -D /nvme23/gds_dir -d 2 -w 8 -s 1G -i 1M -x 0 -I 0 -T 300 &
[1] 850272
dgx2> gds_stats -p 850272 -l 3
cuFile STATS VERSION : 3
GLOBAL STATS:
Total Files: 8
Total Read Errors : 0
Total Read Size (MiB): 78193
Read BandWidth (GiB/s): 6.32129
Avg Read Latency (us): 1044
Total Write Errors : 0
Total Write Size (MiB): 0
Write BandWidth (GiB/s): 0
Avg Write Latency (us): 0
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0  0
4-8(KiB): 0  0
8-16(KiB): 0  0
16-32(KiB): 0  0
32-64(KiB): 0  0
64-128(KiB): 0  0
128-256(KiB): 0  0
256-512(KiB): 0  0
512-1024(KiB): 0  0
1024-2048(KiB): 78193  0
2048-4096(KiB): 0  0
4096-8192(KiB): 0  0
8192-16384(KiB): 0  0
16384-32768(KiB): 0  0
32768-65536(KiB): 0  0
65536-...(KiB): 0  0
PER_GPU STATS:
GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
GPU 1 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
GPU 2 Read: bw=6.32129 util(%)=797 n=78193 posix=0 unalign=0 r_sparse=0 r_inline=0
 err=0 MiB=78193 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0
 BufRegister: n=8 err=0 free=0 MiB=8
GPU 3 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
. . .
GPU 15 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
PER_GPU POOL BUFFER STATS:
PER_GPU POSIX POOL BUFFER STATS:
GPU 0 4(KiB) :0/0 1024(KiB) :0/0 16384(KiB) :0/0
GPU 1 4(KiB) :0/0 1024(KiB) :0/0 16384(KiB) :0/0
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GPU 2 4(KiB) :0/0 1024(KiB) :0/0 16384(KiB) :0/0
. . .
GPU 14 4(KiB) :0/0 1024(KiB) :0/0 16384(KiB) :0/0
GPU 15 4(KiB) :0/0 1024(KiB) :0/0 16384(KiB) :0/0

PER_GPU RDMA STATS:
GPU 0000:34:00.0 :
GPU 0000:36:00.0 :
. . .
GPU 0000:39:00.0 :
GPU 0000:e5:00.0 :
GPU 0000:e7:00.0 :

RDMA MRSTATS:
peer name   nr_mrs      mr_size(MiB)

Here are the levels of gds_stats that are captured and displayed:

‣ Level 3.

Shown above, includes (tarting at the top), a summary section, GLOBAL STATS, followed
by a READ-WRITE SIZE HISTOGRAM section, PER_GPU STATS, PER_GPU POOL BUFFER
STATS, PER_GPU POSIX POOL BUFFER STATS, PER_GPU RDMA STATS and RDMA
MRSTATS.

‣ Level 2

The GLOBAL STATS and READ-WRITE SIZE HISTOGRAM sections.

‣ Level 1

GLOBAL STATS.

These are described as:

‣ GLOBAL STATS - Summary data including read/write throughput and latency.

‣ READ-WRITE SIZE HISTOGRAM - Distribution of the size of read and write IOs.

‣ PER_GPU STATS - Various statistics for each GPU, including read and write throughput,
counters for sparse IOs, POSIX IOs, errors, unaligned IOs and data on registered buffers.

The next two stats provide information on the buffer pool used for bounce buffers for
both GDS IO and POSIX IO. These pools use fixed size 1MB buffers in a 128MB pool (See
"max_device_cache_size_kb" : 131072 in the /etc/cufile.json parameters). This pool is
used when buffers are not registered, unaligned buffer or file offsets, and when the storage
and GPU cross NUMA nodes (typically CPU sockets).

‣ PER_GPU POOL BUFFER STATS - Bounce buffer stats when GDS is in use.

‣ PER_GPU POSIX POOL BUFFER STATS - System memory bounce buffer stats when
compat mode (POSIX IO) is used.

These last two stats provide data related to RDMA traffic when GDS is configured with
Network Attached Storage (NAS).

‣ PER_GPU RDMA STATS - RDMA traffic.

‣ PER_GPU RDMA MRSTATS - RDMA memory registration data.

The gds_stats are very useful for understanding important aspects of the IO load. Not just
performance (BandWidth and Latency), but also the IO size distribution for understanding an
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important attribute of the workload, and PER_GPU STATS enable a view into which GPUs are
reading/writing data to/from the storage.

There are various methods that you can use to monitor gds_stats data at regular intervals,
such as shell wrappers that define intervals and extract the data of interest. Additionally, the
Linux watch command can be used to monitor gds_stats data at regular intervals:
Every 1.0s: gds_stats -p 951816 | grep 'BandWidth\|Latency'                    
psg-dgx2-g02: Fri Nov 20 13:16:36 2020

Read BandWidth (GiB/s): 6.38327
Avg Read Latency (us): 1261
Write BandWidth (GiB/s): 0
Avg Write Latency (us): 0

In the above example, gds_stats was started using the Linux watch command:
watch -n 1 "gds_stats -p 31470 | grep ‘BandWidth\|Latency’"

This command results in the bandwidth and latency stats being updated in your Command
Prompt window every second.
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Chapter 4. GPUDirect Storage
Benchmarking on Direct
Attached Storage

This section covers benchmarking GDS on storage directly attached to the server, typically in
the form of NVMe SSD devices on the PCIe bus. The specific examples on DGX-2 and DGX A100
can be used as guidelines for any server configuration. Note that in the following examples,
the output of various command line tools and utilities is included. In some cases, rows or
columns are deleted to improve readability and clarity.

4.1.  GPUDirect Storage Performance on
DGX-2 System

Currently, GDS supports NVMe devices as direct attached storage, where NVMe SSDs are
plugged directly into the PCIe bus. The DGX-2 system comes configured with up to 16 of these
devices that are typically configured as a large RAID metadevice. As per the previous section,
the DGX-2 system used to execute these examples was very specifically configured, such that
pairs of NVMe SSDs on the same PCIe switch are in a RAID0 group, and the gdsio command
line intentionally selects GPUs that share the same upstream PCIe switch.

A Simple Example: Writing to large files with a large IO size using the GDS path.

This example uses a RAID0 device configured with nvme2 and nvme3 with an ext4 file system
(mounted as /nvme23, with a gds_dir subdirectory to hold the generated files).
dgx2> gdsio -D /nvme23/gds_dir -d 2 -w 8 -s 500M -i 1M -x 0 -I 0 -T 120
IoType: READ XferType: GPUD Threads: 8 DataSetSize: 818796544/4096000(KiB) IOSize:
 1024(KiB) Throughput: 6.524658 GiB/sec, Avg_Latency: 1197.370995 usecs ops: 799606
 total_time 119.679102 secs

Here is some additional information about the options in the example:

‣ -D /nvme23/gds_dir, the target directory.

‣ -d 2, selects GPU # 2 for data target/destination.

‣ -w 8, 8 workers (8 IO threads)

‣ -s 500M, the target file size.
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‣ -i 1M, IO size (important for assessing throughput).

‣ -x 0, the IO data path, in this case GDS.

See Table 2 in gdsio Utility for more information.

‣ -I 0, writes the IO load (0 is for reads, 1 is for writes)

‣ -T 120, runs for 120 seconds.

The results generated by gdsio show expected performance, given that the storage IO target
is a RAID 0 configuration of the two NVMe SSDs, where each SSD is configured with around
3.4GB/sec large read performance. The average sustained throughput was 6.5GB/sec, with a
1.2ms average latency. We can look at system data during the gdsio execution for additional
data points on data rates and movement. This is often useful for validating results reported
by load generators, as well as ensuring the data path is as expected. Using the Linux iostat
utility (iostat -cxzk 1):
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.03    0.00    0.42    7.87    0.00   91.68

Device            r/s     rkB/s   r_await rareq-sz  w/s   wkB/s . . .  %util
md127         54360.00 6958080.00  0.00   128.00    0.00  0.00  . . .   0.00
nvme2n1       27173.00 3478144.00  1.03   128.00    0.00  0.00  . . .   100.00
nvme3n1       27179.00 3478912.00  0.95   128.00    0.00  0.00  . . .   100.00

Also, data from the nvidia-smi dmon command:
dgx2> nvidia-smi dmon -i 2 -s putcm
# gpu   pwr gtemp mtemp    sm   mem   enc   dec rxpci txpci  mclk  pclk    fb  bar1
# Idx     W     C     C     %     %     %     %  MB/s  MB/s   MHz   MHz    MB    MB
    2    63    37    37     0     4     0     0  8923     0   958   345   326    15
    2    63    37    37     0     4     0     0  8922     0   958   345   326    15
    2    63    37    37     0     4     0     0  8930     0   958   345   326    15
    2    63    37    37     0     4     0     0  8764     0   958   345   326    15

This data is consistent with the results reported by gdsio. The iostat data shows just over
3.4GB/sec from each of the two NVMe drives, and close to 1ms latency per device. Note
each drive sustained about 27k writes-per-second (IOPS). The second data set from the
dmon subcommand of nvidia-smi, note the rxpci column. Recall our gdsio command line
initiated GPUDirect Storage reads, so reads from the storage to the GPU. We see the selected
GPU, 2, receiving over 8GB/sec over PCIe. This is GPUDirect Storage in action - the GPU
reading (PCIe receive) directly from the NVMe drives over PCIe.

While the preceding information is important to enable an optimal configuration, the GDS
software will always attempt to maintain an optimal data path, in some cases via another GPU
that has better affinity to the storage targets. By monitoring PCIe traffic with either nvidia-
smi or dcgmi (the command line component of DCGM), we can observe data rates in and out of
the GPUs.

Using a previous example, running on the same RAID0 metadevice comprised of two NVMe
drives on the same PCIe switch, but specifying GPU 12 this time, and capturing GPU PCIe
traffic with dcgmi, we’ll observe sub-optimal performance as GPU 12 is not on the same
downstream PCIe switch as our two NVMe drives.
dgx2> gdsio -D /nvme23/gds_dir -d 12 -w 8 -s 500M -i 1M -x 0 -I 0 -T 120
IoType: READ XferType: GPUD Threads: 8 DataSetSize: 491438080/4096000(KiB) IOSize:
 1024(KiB) Throughput: 3.893747 GiB/sec, Avg_Latency: 2003.091575 usecs ops: 479920
 total_time 120.365276 secs

Note throughput dropped from 6.5GB/sec to 3.9GB/sec, and latency almost doubled to 2ms.
The PCIe traffic data tells an interesting story:
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dgx2> dcgmi dmon -e 1009,1010 -d 1000
# Entity                 PCITX                 PCIRX
      Id
    GPU 0            4712070210            5237742827
    GPU 1                435418                637272
. . .
    GPU 11                476420                739272
    GPU 12             528378278            4721644934
    GPU 13                481604                741403
    GPU 14                474700                736417
    GPU 15                382261                611617

Note we observe PCIe traffic on GPU 12, but also traffic on GPU 0. This is GDS in action once
again. The cuFile library will select a GPU for the data buffers (GPU memory) that is on the
same PCIe switch as the storage. In this case, GPU 0 was selected by the library, as it is the
first of four GPUs on the same PCIe switch as the NVMe devices. The data is then moved to the
target GPU (12).

The net effect of a sub-optimal device selection is an overall decrease in throughput, and
increase in latency. With GPU 2, the average throughput was 6.5GB/sec, average latency 1ms.
With GPU 12, the average throughput was 3.9GB/sec, average latency 2ms. Thus we observe a
40% decrease in throughput and a 2X increase in latency when a non-optimal configuration is
used.

Not all workloads are about throughput. Smaller IO sizes and random IO patterns are an
attribute of many production workloads, and assessing IOPS (IO Operations Per Second)
performance is a necessary component to the storage benchmarking process.

A critical component to determining what peak performance levels can be achieved is
ensuring there is sufficient load. Specifically, for storage benchmarking, the number of
processes/threads generating IO is critical to determining maximum performance.

The gdsio tool provides for specifying random reads or random writes (-I flag). In the
examples below, once again we’re showing an optimal combination of GPU (0) and NVMe
devices, generating a small (4k) random read low with an increasing number of threads (-w).
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 4 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 4 DataSetSize: 11736528/4194304(KiB)
 IOSize: 4(KiB) Throughput: 0.093338 GiB/sec, Avg_Latency: 163.478958 usecs ops:
 2934132 total_time 119.917332 secs
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 8 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 8 DataSetSize: 23454880/8388608(KiB)
 IOSize: 4(KiB) Throughput: 0.187890 GiB/sec, Avg_Latency: 162.422553 usecs ops:
 5863720 total_time 119.049917 secs
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 16 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 16 DataSetSize: 48209436/16777216(KiB)
 IOSize: 4(KiB) Throughput: 0.385008 GiB/sec, Avg_Latency: 158.918796 usecs ops:
 12052359 total_time 119.415992 secs
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 32 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 114100280/33554432(KiB)
 IOSize: 4(KiB) Throughput: 0.908862 GiB/sec, Avg_Latency: 139.107219 usecs ops:
 28525070 total_time 119.726070 secs
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 64 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 231576720/67108864(KiB)
 IOSize: 4(KiB) Throughput: 1.848647 GiB/sec, Avg_Latency: 134.554997 usecs ops:
 57894180 total_time 119.465109 secs
dgx2> gdsio -D /nvme23/gds_dir -d 0 -w 128 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 128 DataSetSize: 406924776/134217728(KiB)
 IOSize: 4(KiB) Throughput: 3.243165 GiB/sec, Avg_Latency: 151.508258 usecs ops:
 101731194 total_time 119.658960 secs



GPUDirect Storage Benchmarking on Direct Attached Storage

NVIDIA Magnum IO GPUDirect Storage DA-06762-001_v1.0.0   |   21

We can compute the IOPS by dividing the ops value by the total time. Note in all cases the
total time was just over 119 seconds (120 seconds was specified as the run duration on the
command line).

Thread Count (-w) IOPS (ops / total_time)
4 24,468

8 49,255

16 100,928

32 238,245

64 484,612

128 850,240

It is interesting to observe the average latency on each run (Avg_Latency) actually gets better
as the number of threads and IOPS increases, with 134.5us average latency at 484,612 IOPS
running 64 threads. Increasing the thread count to 128, we observe a slight uptick in latency to
151.51us while sustaining 850,240 random reads per second. Tracking latency with throughput
(or, in this case, IOPS) is important in characterizing delivered performance. In this example,
the specification for the NVMe drives that make up the RAID0 device indicates a random read
capability of about 800k IOPS per drive. Thus, even with 128 threads generating load, the
latency is excellent as the load is well within drive specifications, as each of the two drives in
the RAID0 device sustained about 425,000 IOPS. This was observed with the iostat utility:
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          16.03    0.00    6.52   76.97    0.00    0.48

Device            r/s     rkB/s   rrqm/s  %rrqm r_await rareq-sz     . . .  %util
md127         856792.00 3427172.00     0.00   0.00    0.00     4.00  . . .   0.00
nvme2n1       425054.00 1700216.00     0.00   0.00    0.13     4.00  . . .   100.80
nvme3n1       431769.00 1727080.00     0.00   0.00    0.13     4.00  . . .   100.00
  

We observe the row showing the RAID0 metadevice, md127, displaying total reads per second
(r/s) reflects the sum of the two underlying NVMe drives.

Extending this example to demonstrate delivered performance when a GPU target is specified
that is not part of the same PCIe segment:
dgx2> gdsio -D /nvme23/gds_dir -d 10 -w 64 -s 1G -i 4K -x 0 -I 2 -k 0308 -T 120
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 13268776/67108864(KiB)
 IOSize: 4(KiB) Throughput: 0.105713 GiB/sec, Avg_Latency: 2301.201214 usecs ops:
 3317194 total_time 119.702494 secs

In this example we specified GPU 10 as the data read target. Note the dramatic difference in
performance. With 64 threads generating random reads, latency went from 151.51us to 2.3ms,
and IOPS dropped from 850k IOPS to about 28k IOPS. This is due to the overhead of GDS using
a GPU on the same PCIe segment for the primary read buffer, then moving that data to the
specified GPU. Again, this can be observed when monitoring GPU PCIe traffic:
dgx2> dcgmi dmon -e 1009,1010 -d 1000
# Entity                 PCITX                 PCIRX
      Id
    GPU 0             108216883             122481373
    GPU 1                185690                 61385
    . . .
    GPU 9                183268                 60918
    GPU 10              22110153             124205217
    . . .
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We observe PCIe traffic on both GPU 10, which was specified in the gdsio command line, and
GPU 0, which was selected by GDS as the primary read buffer due to its proximity to the NVMe
devices. Using gds_stats, we can see the buffer allocation on GPU 0:
dgx2> gds_stats -p 1545037 -l 3
cuFile STATS VERSION : 3
GLOBAL STATS:
Total Files: 64
Total Read Errors : 0
Total Read Size (MiB): 4996
Read BandWidth (GiB/s): 0.126041
Avg Read Latency (us): 2036
Total Write Errors : 0
Total Write Size (MiB): 0
Write BandWidth (GiB/s): 0
Avg Write Latency (us): 0
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0  0
4-8(KiB): 1279109  0
8-16(KiB): 0  0
. . .
65536-...(KiB): 0  0
PER_GPU STATS:
GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
. . .
GPU 9 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
GPU 10 Read: bw=0.124332 util(%)=6387 n=1279109 posix=0 unalign=0 r_sparse=0
 r_inline=0 err=0 MiB=4996 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0
 BufRegister: n=64 err=0 free=0 MiB=0
GPU 11 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r_sparse=0 r_inline=0 err=0 MiB=0
 Write: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 MiB=0 BufRegister: n=0 err=0
 free=0 MiB=0
. . .
PER_GPU POOL BUFFER STATS:
GPU : 0 pool_size_MiB : 64 usage : 63/64 used_MiB : 63

The output from gds_stats shows Read activity on GPU 10 (specified on the gdsio command
line), and POOL BUFFER activity on GPU 0, with 63 of 64 1MB buffers in use. Recall GDS
selected GPU 0 because it’s the first GPU on the same PCIe segment as the NVMe drives. This
illustrates one of the uses of the GPU POOL BUFFER (see section on gds_stats).

There are two key points to consider based on these results. First, for small, random IO
loads, a large number of threads generating load are necessary to assess peak performance
capability. Second, for small, random IO loads, the performance penalty of a sub-optimal
configuration is much more severe than was observed with large throughput-oriented IO
loads.

4.2.  GPUDirect Storage Performance on a
DGX A100 System

GDS is also supported on DGX A100 system, the world's first 5 peta FLOPS AI system built with
a new generation of GPUs, NVMe drives and network interfaces. Please refer to the DGX A100
product page for details. In this section, we will use the same test methodology we used on the
DGX-2 example to benchmark GDS performance on a DGX A100 system.

https://www.nvidia.com/en-us/data-center/dgx-a100/
https://www.nvidia.com/en-us/data-center/dgx-a100/
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First, we map out the GPU and NMVe drive affinity:

‣ Checking the NVMe drive name and PICe BFD values.
dgxuser@dgxa100:~$ ls -l /dev/disk/by-path/
total 0
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:08:00.0-nvme-1 -> ../../nvme0n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:09:00.0-nvme-1 -> ../../nvme1n1
lrwxrwxrwx 1 root root 13 Oct 26 10:51 pci-0000:22:00.0-nvme-1 -> ../../nvme2n1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:22:00.0-nvme-1-part1 -> ../../
nvme2n1p1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:22:00.0-nvme-1-part2 -> ../../
nvme2n1p2
lrwxrwxrwx 1 root root 13 Oct 26 10:51 pci-0000:23:00.0-nvme-1 -> ../../nvme3n1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:23:00.0-nvme-1-part1 -> ../../
nvme3n1p1
lrwxrwxrwx 1 root root 15 Oct 26 10:51 pci-0000:23:00.0-nvme-1-part2 -> ../../
nvme3n1p2
lrwxrwxrwx 1 root root  9 Oct 26 10:51 pci-0000:25:00.3-usb-0:1.1:1.0-
scsi-0:0:0:0 -> ../../sr0
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:52:00.0-nvme-1 -> ../../nvme4n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:53:00.0-nvme-1 -> ../../nvme5n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:89:00.0-nvme-1 -> ../../nvme6n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:8a:00.0-nvme-1 -> ../../nvme7n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:c8:00.0-nvme-1 -> ../../nvme8n1
lrwxrwxrwx 1 root root 13 Oct 26 10:52 pci-0000:c9:00.0-nvme-1 -> ../../nvme9n1
dgxuser@dgxa100:~$

‣ Checking the GPU index numbering correlated to the PCIe BFD:
dgxuser@gpu01:~$ nvidia-smi --query-gpu=index,name,pci.domain,pci.bus, --
format=csv
index, name, pci.domain, pci.bus
0, A100-SXM4-40GB, 0x0000, 0x07
1, A100-SXM4-40GB, 0x0000, 0x0F
2, A100-SXM4-40GB, 0x0000, 0x47
3, A100-SXM4-40GB, 0x0000, 0x4E
4, A100-SXM4-40GB, 0x0000, 0x87
5, A100-SXM4-40GB, 0x0000, 0x90
6, A100-SXM4-40GB, 0x0000, 0xB7
7, A100-SXM4-40GB, 0x0000, 0xBD
dgxuser@gpu01:~$ 

‣ Checking the NVMe drive and GPU PCIe slot relationship.
dgxuser@dgxa100:~$ lspci -tv | egrep -i "nvidia|NVMe"
 |           +-01.1-[b1-cb]----00.0-[b2-cb]--+-00.0-[b3-b7]----00.0-[b4-
b7]----00.0-[b5-b7]----00.0-[b6-b7]----00.0-[b7]----00.0  NVIDIA Corporation
 Device 20b0
 |           |                               |                              
 \-10.0-[bb-bd]----00.0-[bc-bd]----00.0-[bd]----00.0  NVIDIA Corporation Device
 20b0
 |           |                               +-08.0-[be-ca]----00.0-[bf-ca]--
+-00.0-[c0-c7]----00.0-[c1-c7]--+-00.0-[c2]----00.0  NVIDIA Corporation Device
 1af1
 |           |                               |                               |   
                            +-01.0-[c3]----00.0  NVIDIA Corporation Device 1af1
 |           |                               |                               |   
                            +-02.0-[c4]----00.0  NVIDIA Corporation Device 1af1
 |           |                               |                               |   
                            +-03.0-[c5]----00.0  NVIDIA Corporation Device 1af1
 |           |                               |                               |   
                            +-04.0-[c6]----00.0  NVIDIA Corporation Device 1af1
 |           |                               |                               |   
                            \-05.0-[c7]----00.0  NVIDIA Corporation Device 1af1
 |           |                               |                              
 +-04.0-[c8]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
 |           |                               |                              
 +-08.0-[c9]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
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 |           +-01.1-[81-95]----00.0-[82-95]--+-00.0-[83-8a]----00.0-[84-8a]--
+-00.0-[85-88]----00.0-[86-88]--+-00.0-[87]----00.0  NVIDIA Corporation Device
 20b0
 |           |                               |                              
 +-10.0-[89]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
 |           |                               |                              
 \-14.0-[8a]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
 |           |                               |                              
 \-10.0-[8e-91]----00.0-[8f-91]--+-00.0-[90]----00.0  NVIDIA Corporation Device
 20b0
 |           +-01.1-[41-55]----00.0-[42-55]--+-00.0-[43-48]----00.0-
[44-48]----00.0-[45-48]----00.0-[46-48]--+-00.0-[47]----00.0  NVIDIA Corporation
 Device 20b0
 |           |                               |                              
 \-10.0-[4c-4f]----00.0-[4d-4f]--+-00.0-[4e]----00.0  NVIDIA Corporation Device
 20b0
 |           |                               +-08.0-[50-54]----00.0-[51-54]--
+-00.0-[52]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
 |           |                               |                              
 +-04.0-[53]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
 |           +-03.2-[22]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller
 SM981/PM981/PM983
 |           +-03.3-[23]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller
 SM981/PM981/PM983
             +-01.1-[01-13]----00.0-[02-13]--+-00.0-[03-09]----00.0-[04-09]--
+-00.0-[05-07]----00.0-[06-07]----00.0-[07]----00.0  NVIDIA Corporation Device
 20b0
             |                               |                              
 +-10.0-[08]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
             |                               |                              
 \-14.0-[09]----00.0  Samsung Electronics Co Ltd NVMe SSD Controller PM173X
             |                               |                              
 \-10.0-[0d-0f]----00.0-[0e-0f]----00.0-[0f]----00.0  NVIDIA Corporation Device
 20b0
dgxuser@dgxa100:~$

Then mapping the NVMe and GPU affinities:

Table 4. Mapping the NVMe and GPU Affinity

GPU # GPU PCIe Bus # NVMe # NVMe PCIe Bus #
0, 1 0x07, 0x0F nvme0, nvme1 0x08, 0x09

2, 3 0x47, 0x4e nvme4, nvme5 0x52, 0x53

4, 5 0x87, 0x90 nvme6, nvme7 0x89, 0x8a

6, 7 0xb7, 0xbd nvme8, nvme9 0xc8, 0xc9

By default, all NVMe drives in DGX systems are configured as a RAID0 storage array  /dev/
md1, but they are connected with different PCIe switches, as shown below.
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Figure 2. "DGX-A100 Block Diagram"

This configuration might lead to suboptimal performance when data is moved across PCIe
switches to reach the devices configured in /dev/md1. We can reconfigure the raid array and
re-group the two NVMe drives attached to the same PCIe switches in a single RAID0 device,
and create a testing workload between this RAID0 device and affiliated GPUs attached to the
same PCIe switch. The following table provides information about the new mapping of raid
array and GPU affinity:

Table 5. New Mapping of the RAID Array and GPU Affinity

Raid Array GPU # GPU PCIe NVMe # NVMe PCIe
/raid1 (/dev/md1) 0, 1 0x07, 0x0F nvme0, nvme1 0x08, 0x09

/raid2 (/dev/md2) 2, 3 0x47, 0x4e nvme4, nvme5 0x52, 0x53

/raid3 (/dev/md3) 4, 5 0x87, 0x90 nvme6, nvme7 0x89, 0x8a

/raid4 (/dev/md4) 6, 7 0xb7, 0xbd nvme8, nvme9 0xc8, 0xc9

Now we can design our tests based on the above mapping. The GPU and raid array with NVMe
drives in the same row has the affinity and will produce the optimized results.
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Example write operation, NVMe raid 0 device and GPUs are affiliated with the same PCIe
switch:
dgxuser@dgxa100:~$ /usr/local/gds/tools/gdsio -D /raid4/gds-io -d 7 -w 8 -s 500M -i
 1M -x 0 -I 1 -T 120
IoType: WRITE XferType: GPUD Threads: 8 DataSetSize: 901008384/4096000(KiB) IOSize:
 1024(KiB) Throughput: 7.181430 GiB/sec, Avg_Latency: 1087.870030 usecs ops: 879891
 total_time 119.651462 secs

Observe the throughput of GDS write operation is 7.18GB/s on /raid4, which is close to the
performance limits of 2 NVMe SSDs configured in that /raid4 device. This can be verified with
other commands which check GPUs’ and NVMes’ I/O statistics:

Checking GPU PCIe TX/RX IO from DCGM: this shows data is coming out of GPU7 at 7.6GB/s
dgxuser@dgxa100:~$ dcgmi dmon -e 1009,1010 -d 1000
# Entity                 PCITX         PCIRX
  Id
    GPU 0                282398                672747
    GPU 1                286415                701223
    GPU 2                362656                778953
    GPU 3                388259                817762
    GPU 4                 305924                787709
    GPU 5                318632                826865
    GPU 6                332509                831274
    GPU 7                  8168730609         472336198
    GPU 0                148856              65476
    GPU 1                149444              66021
    GPU 2                149408              65493
    GPU 3                148862              65479
    GPU 4                147445              65019
    GPU 5                145363             62444
    GPU 6                148393              65497
    GPU 7                  8368730609         492336198

Checking the GPU PCIe TX/RX IO from nvidia-smi utility, this shows average 7.67GB/s from
all the columns captured here. These are almost identical results from the nvidia-smi and
dcgmi dmon commands.
dgxuser@dgxa100:~$ nvidia-smi dmon -i 7 -s putcm
# gpu   pwr gtemp mtemp    sm   mem   enc   dec rxpci txpci  mclk  pclk    fb  bar1
# Idx     W     C     C     %     %     %     %  MB/s  MB/s   MHz   MHz    MB    MB
    7    66    37    36     0     0     0     0   255  8235  1215  1095   430    14
    7    66    37    36     0     0     0     0   298  7079  1215  1095   430    14
    7    66    37    35     0     0     0     0   323  8444  1215  1095   430    14
    7    66    37    36     0     0     0     0   325  8760  1215  1095   430    14
    7    66    37    36     0     0     0     0   308  7482  1215  1095   430    14
    7    66    37    36     0     0     0     0   274  7774  1215  1095   430    14
    7    66    37    36     0     0     0     0   326  8721  1215  1095   430    14
    7    66    37    36     0     0     0     0   332  8802  1215  1095   430    14
    7    66    37    35     0     0     0     0   290  4681  1215  1095   430    14
    7    66    37    35     0     0     0     0   336  8610  1215  1095   430    14

Also check the NVMe IO statistics to verify /md4 raid array (includes nvme8n1 and nvme9n1)
with the iostat -cxzm 1 command. This command computes the NVMe IO statistics every
second so the number may fluctuate somewhat, but the 7.46GB/s reading here matches GDS
and GPU readings approximately.
dgxuser@dgxa100:~$ iostat -cxzm 1
Linux 5.4.0-52-generic (dgxa100)        10/25/20        _x86_64_        (256 CPU)
 
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.12    0.00    0.32    0.04    0.00   99.51
 
Device            r/s     w/s     rMB/s     wMB/s   rrqm/s   wrqm/s  %rrqm  %wrqm
 r_await w_await aqu-sz rareq-sz wareq-sz  svctm  %util
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loop0            0.00    0.00      0.00      0.00     0.00     0.00   0.00   0.00   
 0.00    0.00   0.00     1.00     0.00    1.00   0.00
nvme0n1          0.18    0.45      0.02      0.02     0.00     0.00   0.32   0.14   
 1.04    0.17   0.00   104.33    56.09   0.07   0.00
nvme2n1          3.86    3.03      0.03      0.13     0.01    29.58   0.25  90.70   
 0.14    0.30   0.00     7.53    42.80   0.16   0.11
nvme1n1          0.18    0.45      0.02      0.02     0.00     0.00   0.18   0.01   
 1.04    0.17   0.00   105.06    56.28   0.07   0.00
nvme3n1          0.02    3.00      0.00      0.13     0.01    29.60  27.90  90.78   
 0.15    0.30   0.00    55.85    43.21   0.33   0.10
nvme5n1          0.00    0.00      0.00      0.00     0.00     0.00   0.00   0.00   
 0.09    0.00   0.00     6.34      0.00   0.16   0.00
nvme7n1          0.00    0.00      0.00      0.00     0.00     0.00   0.00   0.00   
 0.09    0.00   0.00     6.34      0.00   0.14   0.00
nvme6n1          0.00    0.00      0.00      0.00    0.00     0.00   0.00   0.00   
 0.10    0.00   0.00     6.26      4.00   0.14   0.00
nvme4n1          0.00    0.00      0.00      0.00     0.00     0.00   0.00  16.67   
 0.15    0.00   0.00     6.26      4.80   0.16   0.00
nvme8n1        442.13     668.76     47.16           82.00         0.00     0.00  
 0.00   0.00    0.35    0.64   0.01   109.22     125.56   0.03   3.53
nvme9n1        442.11     668.76     47.16           82.00         0.00     0.00  
 0.00   0.00    0.34    0.66   0.01   109.23     125.56   0.03   3.53
md1              0.36    0.90      0.04      0.05     0.00     0.00   0.00   0.00   
 0.00    0.00   0.00   112.84      57.43   0.00   0.00
md2              0.01    0.00      0.00      0.00     0.00     0.00   0.00   0.00   
 0.00    0.00   0.00     6.51       4.00   0.00   0.00
md4            884.23    1337.52     94.32           164.01     0.00     0.00   0.00
   0.00    0.00    0.00   0.00   109.22     125.56   0.00   0.00
md3              0.01    0.00      0.00      0.00     0.00     0.00   0.00   0.00   
 0.00    0.00   0.00     6.51      4.00   0.00   0.00
md0              0.09   32.11      0.00      0.13     0.00     0.00   0.00   0.00   
 0.00    0.00   0.00    51.70      4.00   0.00   0.00
 
avg-cpu:  %user   %nice %system %iowait  %steal   %idle
           0.11    0.00    0.41    1.90    0.00   97.59
 
Device        r/s     w/s     rMB/s     wMB/s   rrqm/s   wrqm/s  %rrqm  %wrqm 
 r_await  w_await aqu-sz  rareq-sz  wareq-sz  svctm  %util
nvme8n1          0.00    30171.00      0.00   3771.14      0.00      1.00   0.00  
 0.00    0.00     0.72    0.08      0.00    127.99   0.03 100.00
nvme9n1          0.00    30160.00      0.00   3770.00      0.00      0.00   0.00  
 0.00    0.00     0.77    0.05      0.00    128.00   0.03 100.00
md4              0.00    60325.00      0.00   7540.01      0.00      0.00   0.00  
 0.00    0.00     0.00    0.00      0.00    127.99   0.00   0.00

Test result shows 7.116GB/s throughput, which is lower than the previous 7.181GB/s with
NVMe and GPU affinity. The average latency 1096.57 us is also higher than the previous case.
The reason is GDS in this case will use the closest GPU (GPU 6 in this example), to the target
as an intermediate device to move the data, thus introducing some performance penalty. This
behavior can be observed.

Checking GPU PCIe TX/RX IO from “nvidia-smi”: this shows data is moving from GPU 0 -> GPU
6 -> target NVMe drives:
dgxuser@dgxa100:~/gds$ nvidia-smi dmon -i 0 -s putcm
# gpu   pwr gtemp  mtemp    sm   mem   enc   dec rxpci txpci  mclk  pclk    fb  bar1
# Idx     W     C        C      %     %        %     %  MB/s  MB/s   MHz   MHz    MB
    MB
    0    65   32     32     39     0    0      0     3  7950  1215  1095   430    14
    0    65   32     31    34     0    0      0     3  9213  1215  1095   430    14
    0    65   32     32    32     0    0      0     2  9174  1215  1095   430    14
    0    65   32     31    39     0    0      0     2  4481  1215  1095   430    14
    0    65   32     31    37     0    0      0     3  8295  1215  1095   430    14
    0    65   32     31    35     0    0      0     2  8967  1215  1095   430    14
    0    65   32     32    39     0    0      0     4  8987  1215  1095   430    14
    0    66   32      32    36     0    0      0     3  8756  1215  1095   430    14
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    0    65   32     31    38     0    0      0     2  9159  1215  1095   430    14
    0    66   32     32    22     0    0      0     2  9418  1215  1095   430     
 14
    0    66   32     32    34     0    0      0     3  9133  1215  1095   430    14
    0    65   32     32    35     0    0      0     3  8228  1215  1095   430    14
dgxuser@dgxa100:~/gds$ nvidia-smi dmon -i 6 -s putcm
# gpu   pwr gtemp mtemp    sm   mem   enc   dec rxpci txpci  mclk  pclk    fb  bar1
# Idx     W     C       C     %     %        %     %  MB/s  MB/s   MHz   MHz    MB  
  MB
    6    82   37    37    37     0    0     0  9247  9623  1215  1410   426      14
    6    81   37    37    40     0    0     0 10152  9594  1215  1410   426      14
    6    82   37    37    41     0    0     0  9343  9625  1215  1410   426      14
    6    82   37    37    40     0    0     0  7448  8348  1215  1410   426      14
    6    82   37    37    39     0    0     0  9012  8595  1215  1410   426      14
    6    81   37    37    38     0    0     0  8017  9110  1215  1410   426      14
    6    82   37    37    42     0    0     0  8021  8922  1215  1410   426      14
    6    82   37    37    36     0    0     0  8408  7697  1215  1410   426      14
    6    80   37    37    24     0    0     0  9455  9541  1215  1410   426      14
    6    82   37    37    41     0    0     0  8089  5032  1215  1410   426      14
    6    82   37    37    41     0    0     0  8515  8208  1215  1410   426      14
    6    82   37      37    38     0    0     0  9056  9449  1215  1410   426     
 14
 
dgxuser@dgxa100:~/gds$ iostat -cxzm 1

The iostat command also shows IO performance on /md4 (includes nvme8n1 and nvme9n1)
is 7302.01MB/s, or 7.13GB/s, very close to 7.11GB/s reported by gdsio.
dgxuser@dgxa100:~/gds$ iostat -cxzm 1
Linux 5.4.0-52-generic (dgxa100)        10/25/20        _x86_64_        (256 CPU)
Avg-cpu:  %user   %nice %system %iowait  %steal   %idle
          0.69     0.00    0.42    1.49    0.00   97.41

Device        r/s      w/s      rMB/s    wMB/s     rrqm/s   wrqm/s  %rrqm  %wrqm 
 r_await w_await aqu-sz rareq-sz  wareq-sz  svctm   %util
nvme2n1          0.00     6.00      0.00         0.07     0.00    14.00   0.00 
 70.00    0.00    0.00   0.00     0.00     12.75    1.33    0.80
nvme3n1          0.00     6.00      0.00         0.07     0.00    14.00   0.00 
 70.00    0.00    0.00   0.00     0.00     12.75    1.33    0.80
nvme8n1          0.00 29210.00      0.00   3651.01     0.00     1.00   0.00   0.00  
  0.00    0.82   0.04     0.00    127.99    0.03  100.00
nvme9n1          0.00 29232.00      0.00   3654.00     0.00     0.00   0.00   0.00  
  0.00    0.28   0.00     0.00    128.00    0.03  100.00
md4              0.00 58419.00      0.00   7302.01     0.00     0.00   0.00   0.00  
  0.00    0.00   0.00     0.00    127.99    0.00    0.00
md0              0.00    16.00      0.00         0.06     0.00     0.00   0.00  
 0.00    0.00    0.00   0.00     0.00      4.00    0.00    0.00

It is expected that the examples, from NVIDIA DGX-2 and DGX A100 systems, provide sufficient
detail such that the commands and methodology used to achieve maximum performance can
be applied to any server system with NVMe devices and NVIDIA GPUs that support GDS.
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Chapter 5. GPUDirect Storage
Benchmarking on Network
Attached Storage

NAS configurations bring the network element into the storage equation, which of course
must be factored in when assessing performance. Throughput, IOPS, and latency are all
dependent on the network configuration, such as the number of configured interfaces,
interface speed, as well as the backend storage configuration. For example, if the storage
backend is NVMe SSDs, 4 such devices dong streaming reads will saturate a single 100Gb
network. The entire configuration end-to-end needs to be examined and sized appropriately to
ensure any potential hardware bottlenecks are identified and resolved.

5.1.  GPUDirect Storage Benchmarking on
NFS

The Network File System, NFS, was invented by Sun Microsystems in the early 1980s,
and became one of the earliest network storage solutions broadly deployed in production
environments. An NFS server with direct attached storage can export that storage over the
network, making exported file systems available to any number of NFS clients. NFS offers
ease of use and administration, a mature code base (it’s been around for decades) which
makes it relatively robust. Early implementations relied on UDP or TCP as the protocol for
transferring data over the network with NFS. With Remote Direct Memory Access (RDMA)
capability, network overhead is significantly reduced, enabling higher throughput and lower
latency read/write operations between NFS clients and the server.

With GPUDirect Storage configured for NFS, the transport protocol is RDMA, leveraging the
high-speed, low-latency data flow between the client(s) and server. The RDMA operations
move data over the network via the IB interfaces, then data is moved to/from the IB cards to
the GPUs via DMA operations, bypassing the CPU and system memory.

As discussed previously, the PCIe topology factors in to determining the optimal configuration
on the NFS client. Ideally, the NICs issuing reads/writes to the NFS server should be on the
same PCIe switch as the issuing GPU. On NVIDIA DGX systems, the nvidia-smi utility helps to
determine the optimal NIC/GPU pairings:
nfs_client> nvidia-smi topo -mp
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        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    . . . mlx5_0
    mlx5_1  mlx5_2  mlx5_3
GPU0     X      PIX     PXB     PXB     NODE    NODE    NODE    NODE    . . . PIX   
    PXB     NODE    NODE
GPU1    PIX      X      PXB     PXB     NODE    NODE    NODE    NODE    . . . PIX   
    PXB     NODE    NODE
GPU2    PXB     PXB      X      PIX     NODE    NODE    NODE    NODE    . . . PXB   
    PIX     NODE    NODE
GPU3    PXB     PXB     PIX      X      NODE    NODE    NODE    NODE    . . . PXB   
    PIX     NODE    NODE
GPU4    NODE    NODE    NODE    NODE     X      PIX     PXB     PXB     . . . NODE  
    NODE    PIX     PXB
GPU5    NODE    NODE    NODE    NODE    PIX      X      PXB     PXB     . . . NODE  
    NODE    PIX     PXB
GPU6    NODE    NODE    NODE    NODE    PXB     PXB      X      PIX     . . . NODE  
    NODE    PXB     PIX
GPU7    NODE    NODE    NODE    NODE    PXB     PXB     PIX      X      . . . NODE  
    NODE    PXB     PIX
mlx5_0  PIX     PIX     PXB     PXB     NODE    NODE    NODE    NODE    . . .  X    
    PXB     NODE    NODE
mlx5_1  PXB     PXB     PIX     PIX     NODE    NODE    NODE    NODE    . . . PXB   
     X      NODE    NODE
mlx5_2  NODE    NODE    NODE    NODE    PIX     PIX     PXB     PXB     . . . NODE  
    NODE     X      PXB
mlx5_3  NODE    NODE    NODE    NODE    PXB     PXB     PIX     PIX     . . . NODE  
    NODE    PXB      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA
 nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host
 Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the
 CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe
 Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge

The above example is generated on a DGX-2 system. For brevity, 8 of the 16 GPUs and 4 of the
8 NICs are shown. From the Legend provided with the topology map, we see the optimal path
is represented as PIX (Connection traversing at most a single PCIe bridge). Thus,
for GPU 0 and 1, the mlx5_0 is the closest NIC, for GPU 2 and 3, it’s mlx5_1, etc. The network
device names in Linux use the prefix ib, so we need to see which interface names map to
which device names. This is done with the ibdev2netdev utility:
nfs_client> ibdev2netdev
mlx5_0 port 1 ==> ib0 (Up)
mlx5_1 port 1 ==> ib1 (Up)
mlx5_2 port 1 ==> ib2 (Up)
mlx5_3 port 1 ==> ib3 (Up)
mlx5_4 port 1 ==> ib4 (Down)
mlx5_5 port 1 ==> ib5 (Down)
mlx5_6 port 1 ==> ib6 (Up)
mlx5_7 port 1 ==> ib7 (Up)
mlx5_8 port 1 ==> ib8 (Up)
mlx5_9 port 1 ==> ib9 (Up)

The network configuration between the NFS server and client will obviously factor significantly
into the delivered performance. It is beyond the scope of this document to detail the steps
involved in configuring networks, subnets, routing tables. An overview covers the basics prior
to getting into examples of running gdsio on NFS.
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On the server side, there is a single RAID0 device consisting of 8 locally attached NVMe SSDs.
The device is configured with an ext4 file system, and made accessible via two mount points.
There are two 100GB network interfaces configured on the server for NFS traffic, and each
NIC is assigned multiple IP addresses to different subnets to balance network traffic from the
client.

On the client side, there are 8 100GB networks configured. The network configuration
(subnets, routing tables) determines which interface on the client side will route to which of
the two interfaces on the server side when the client issues an NFS mount. The client-side
mount paths have been intentionally named to reflect the network path between the client and
the server. Specifically, the mount points on the client are decomposed as:

/mnt/nfs/[client-side network interface]/data/[server-side network interface]

where the client network interface name is the actual device (ib9, ib8, etc.) and the server is
either 0 or 1, indicating which one of the two server networks will handle the connection.
nfs_client> mount | grep nfs
192.168.0.10:/mnt/nfs_10/10 on /mnt/nfs/ib9/data/0 type nfs
 (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049,
timeo=600,retrans=2,sec=sys,mountaddr=192.168.0.10,mountvers=3,mountproto=tcp,
local_lock=none,addr=192.168.0.10)
192.168.0.11:/mnt/nfs_11/11 on /mnt/nfs/ib9/data/1 type nfs
 (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049,
timeo=600,retrans=2,sec=sys,mountaddr=192.168.0.11,mountvers=3,mountproto=tcp,
local_lock=none,addr=192.168.0.11)
192.168.1.10:/mnt/nfs_10/10 on /mnt/nfs/ib8/data/0 type nfs
 (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049,
timeo=600,retrans=2,sec=sys,mountaddr=192.168.1.10,mountvers=3,mountproto=tcp,
local_lock=none,addr=192.168.1.10)
192.168.1.11:/mnt/nfs_11/11 on /mnt/nfs/ib8/data/1 type nfs
 (rw,relatime,vers=3,rsize=1048576,wsize=1048576,namlen=255,hard,proto=rdma,port=20049,
timeo=600,retrans=2,sec=sys,mountaddr=192.168.1.11,mountvers=3,mountproto=tcp,
local_lock=none,addr=192.168.1.11)
. . .

In the mount output on the client (partial, shown above), /mnt/nfs/ib9/data/0 will route
through the ib9 interface on the client to the interface assigned 192.168.0.10 on the server
(reflected as ‘0’ in the path string), and /mnt/nfs/ib9/data/1 will also route through
ib9 on the client, to the second interface on the server, 192.168.0.11 (reflected as ‘1’ in the
path string). This convention is used for all the client-side mounts, so IO pathnames can be
selected to effectively balance the load across all interfaces.

From a performance/benchmarking perspective, the key aspects of the configuration under
test, in addition to the balanced network setup just discussed, are the underlying storage
config on the server (8 x NVMe SSD) and number and speed of network interfaces on the
server (2 x 100Gb). In terms of throughput, two 100Gb networks can sustain about 12GB/sec
each under ideal conditions. The storage servers can support (2 x 12GB/sec) 24GB/sec or
so, but keep in mind there are many things that factor into delivered performance - protocol
overhead, network MTU size, NFS attributes, software stack, load characteristics, etc.

In this first example, gdsio is used to generate a random write load of small IOs (4k) to one of
the NFS mount points, that will traverse ib0 on the client side. The ib0 interface is on the same
PCIe segment as GPU 0 and 1.
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 0 -w 32 -s 500M -i 4K -x 0 -I 3
 -T 120
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IoType: RANDWRITE XferType: GPUD Threads: 32 DataSetSize: 81017740/16384000(KiB)
 IOSize: 4(KiB) Throughput: 0.645307 GiB/sec, Avg_Latency: 189.166333 usecs ops:
 20254435 total_time 119.732906 secs

nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 12 -w 32 -s 500M -i 4K -x 0 -I 3
 -T 120
IoType: RANDWRITE XferType: GPUD Threads: 32 DataSetSize: 71871140/16384000(KiB)
 IOSize: 4(KiB) Throughput: 0.572407 GiB/sec, Avg_Latency: 213.322597 usecs ops:
 17967785 total_time 119.742801 secs

The first invocation specifies GPU 0, the second GPU 12. Note the difference in ops and
latency. In the optimal GPU/IB case, we observed just over 169k IOPS, 189.2us average latency.
In the non-optimal case (GPU 12 to the same mount point), we see an increase in latency to
213.3 usec at about 150k IOPS. The performance difference is not huge (12% in latency, 19% in
IOPS), but worth noting nonetheless.

For random reads, the difference between the optimal and sub-optimal case is larger:
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 0 -w 32 -s 500M -i 4K -x 0 -I 2
 -T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 111181604/16384000(KiB)
 IOSize: 4(KiB) Throughput: 0.890333 GiB/sec, Avg_Latency: 137.105980 usecs ops:
 27795401 total_time 119.091425 secs
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 10 -w 32 -s 500M -i 4K -x 0 -I 2
 -T 120
IoType: RANDREAD XferType: GPUD Threads: 32 DataSetSize: 78621148/16384000(KiB)
 IOSize: 4(KiB) Throughput: 0.629393 GiB/sec, Avg_Latency: 193.975032 usecs ops:
 19655287 total_time 119.129013 secs

With GPU 0 and ib0, we see about 234k IOPS, 194us average latency. With GPU 10 and ib0, we
see about 165k IOPS, 194us latency.

Small, random IOs are all about IOPS and latency. For determining throughput, we use larger
files sizes and much larger IO sizes.
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 0 -w 32 -s 1G -i 1M -x 0 -I 1 -T
 120
IoType: WRITE XferType: GPUD Threads: 64 DataSetSize: 876086272/67108864(KiB)
 IOSize: 1024(KiB) Throughput: 6.962237 GiB/sec, Avg_Latency: 8976.802942 usecs ops:
 855553 total_time 120.004668 secs
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 0 -w 32 -s 1G -i 1M -x 0 -I 0 -T
 120
IoType: READ XferType: GPUD Threads: 32 DataSetSize: 1196929024/33554432(KiB)
 IOSize: 1024(KiB) Throughput: 9.482088 GiB/sec, Avg_Latency: 3295.183817 usecs ops:
 1168876 total_time 120.382817 secs

Above a large sequential write, then read, was generated. In both cases, 32 threads were
spawned (-w 32) doing 1M IOs. In the write case, we sustained 6.9GB/sec, and in the read case
9.5GB/sec throughput. Both invocations used ib0 and GPU 0. Changing the GPU from 0 to 8:
nfs_client> gdsio -D /mnt/nfs/ib0/data/0/gds_dir -d 8 -w 32 -s 1G -i 1M -x 0 -I 0 -T
 120
IoType: READ XferType: GPUD Threads: 32 DataSetSize: 1053419520/33554432(KiB)
 IOSize: 2048(KiB) Throughput: 8.352013 GiB/sec, Avg_Latency: 7480.408305 usecs ops:
 514365 total_time 120.284676 secs

We note again a decrease in throughput (8.3GB/sec from 9.5GB/sec) and increase in latency
(3.4ms to 7.5ms).

Using the supported gdsio config files facilitates an easily reusable “tool box” of IO loads and
configurations. Also, with multiple jobs running, gdsio will aggregate the results, making it
easier to see the complete performance picture.
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Here’s a sample configuration file to generate 4k random reads to multiple NFS mount points
for 4 different GPUs. Note various parameters defined in the global section, then job-specific
parameters (GPU, target mount point, number of threads) in each job section.
[global]
name=nfs_random_read
#0,1,2,3,4,5
xfer_type=0
#IO type, rw=read, rw=write, rw=randread, rw=randwrite
rw=randread
#block size, for variable block size can specify range e.g. bs=1M:4M:1M, (1M : start
 block size, 4M : end block size, 1M :steps in which size is varied)
bs=4k
#file-size
size=500M
#secs
runtime=120

[job1]
#numa node
numa_node=0
#gpu device index (check nvidia-smi)
gpu_dev_id=0
num_threads=16
directory=/mnt/nfs/ib0/data/0/gds_dir

[job2]
numa_node=0
gpu_dev_id=2
num_threads=16
directory=/mnt/nfs/ib1/data/0/gds_dir

[job3]
numa_node=0
gpu_dev_id=4
num_threads=16
directory=/mnt/nfs/ib2/data/0/gds_dir

[job4]
numa_node=0
gpu_dev_id=6
num_threads=16
directory=/mnt/nfs/ib3/data/0/gds_dir

Executing gdsio using the above config file, simply pass the file name as the only argument:
nfs_client> gdsio nfs_rr.gdsio
IoType: RANDREAD XferType: GPUD Threads: 64 DataSetSize: 277467756/32768000(KiB)
 IOSize: 4(KiB) Throughput: 2.213928 GiB/sec, Avg_Latency: 110.279539 usecs ops:
 69366939 total_time 119.522363 secs

The sustained random read rate was about 580k IOPS (69366939 / 119.52).

For throughput testing, the load attributes need to be changed so gdsio issues reads and
writes, not random reads and random writes (see rw= in the global section). Also, the IO size
(bs= in the global section) must be increased to maximize throughput.

Using an edited gdsio config file reflecting those changes, we can generate a throughput-
oriented workload with multiple GPUs. The configuration file:
[global]
name=nfs_large_read
xfer_type=0
rw=read
bs=1M
size=1G
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runtime=120
do_verify=0

[job1]
numa_node=0
gpu_dev_id=0
num_threads=8
directory=/mnt/nfs/ib0/data/0/gds_dir

[job3]
numa_node=0
gpu_dev_id=2
num_threads=8
directory=/mnt/nfs/ib1/data/1/gds_dir

[job5]
numa_node=0
gpu_dev_id=4
num_threads=8
directory=/mnt/nfs/ib2/data/0/gds_dir

[job7]
numa_node=0
gpu_dev_id=6
num_threads=8
directory=/mnt/nfs/ib3/data/1/gds_dir

[job9]
numa_node=1
gpu_dev_id=8
num_threads=8
directory=/mnt/nfs/ib6/data/0/gds_dir

[job11]
numa_node=1
gpu_dev_id=10
num_threads=8
directory=/mnt/nfs/ib7/data/1/gds_dir

[job13]
numa_node=1
gpu_dev_id=12
num_threads=8
directory=/mnt/nfs/ib8/data/0/gds_dir

[job15]
numa_node=1
gpu_dev_id=14
num_threads=8
directory=/mnt/nfs/ib9/data/1/gds_dir

Running the large read load:
nfs_client> gdsio nfs_sr.gdsio
IoType: READ XferType: GPUD Threads: 64 DataSetSize: 1608664064/67108864(KiB)
 IOSize: 1024(KiB) Throughput: 12.763141 GiB/sec, Avg_Latency: 4896.861494 usecs
 ops: 1570961 total_time 120.200944 secs

We see 12.76GB/sec sustained throughput with the configuration used.

The examples shown are intended to serve as a starting point. NAS storage environments,
NFS or partner solutions, can be complex to configure given the number of variables that
come into play once a network is introduced in the storage IO path. Various configuration
options can be changed, both in terms of the load generated (the gdsio command line or
config file), as well as the system setup (network, NFS, etc) in order to determine the optimal
configuration for the target workload.
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In order to observe the data rates while under load, there are a few options. Certainly, on the
server side, Linux utilities like iostat should be used to monitor traffic and capture statistics
on the backend storage, as well as nfsstat on both the client and server side for NFS specific
statistics. For byte and packet rates over the networks, there is a dependency on the actual
network devices and software stack, and whether or not any per-interface statistics are
maintained. In our configuration, NVIDIA/Mellanox cards are used:
nfs_client> lspci -v | grep -i mellanox
35:00.0 Infiniband controller: Mellanox Technologies MT27800 Family [ConnectX-5]
    Subsystem: Mellanox Technologies MT27800 Family [ConnectX-5]
. . .

In this environment, various counters are maintained that can be examined and, with a
relatively simple script, per-second data and packet rates can be monitored. These counters
can be found in /sys/class/infiniband/[INTERFACE]/ports/[PORT NUMBER]/counters,
e.g. /sys/class/infiniband/mlx5_19/ports/1/counters. The counters of interest are:

‣ port_rcv_data - receive bytes

‣ port_xmit_data - transmit bytes

‣ port_rcv_packets - receive packets

‣ port_xmit_packets - transmit packets

Note the ibdev2netdev utility should be used to determine the correct interface name that
corresponds to the configured device name. And of course these same counters will be
available on the client, assuming of course the same network hardware and software.

On the client side, GDS maintains a stats file with useful counters specific to GDS:
nfs_client> cat /proc/driver/nvidia-fs/stats
GDS Version: 0.9.0.743
NVFS statistics(ver: 2.0)
NVFS Driver(version: 2:3:1)

Active Shadow-Buffer (MiB): 128
Active Process: 1
Reads                : n=424436862 ok=424436734 err=0 readMiB=21518771
 io_state_err=0
Reads                : Bandwidth(MiB/s)=13081 Avg-Latency(usec)=9773
Sparse Reads                : n=19783000 io=0 holes=0 pages=0
Writes                : n=309770912 ok=309770912 err=0 writeMiB=9748727
 io_state_err=0 pg-cache=0 pg-cache-fail=0 pg-cache-eio=0
Writes                : Bandwidth(MiB/s)=6958 Avg-Latency(usec)=18386
Mmap                : n=3584 ok=3584 err=0 munmap=3456
Bar1-map            : n=3584 ok=3584 err=0 free=3456 callbacks=0 active=128
Error                : cpu-gpu-pages=0 sg-ext=0 dma-map=0
Ops                : Read=128 Write=0
GPU 0000:be:00.0  uuid:87e5c586-88ed-583b-df45-fcee0f1e7917 : Registered_MiB=0
 Cache_MiB=0 max_pinned_MiB=8 cross_root_port(%)=0
GPU 0000:e7:00.0  uuid:029faa3b-cb0d-2718-259c-6dc650c636eb : Registered_MiB=0
 Cache_MiB=0 max_pinned_MiB=8 cross_root_port(%)=0
. .

The GDS stats provide read and write operations counts (for example, Reads :
n=[read_count] and Writes : n=[write_count]), as well Bandwidth in MB/sec. Also error
counters are maintained that should be monitored periodically.
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Chapter 6. Summary

Configuring and benchmarking storage can be a complex task. Fortunately the technology
and tools have reached a state of maturity in the industry, reducing complexity and
enabling reduced time to set up, measure and deploy a configuration that meets production
performance requirements.

With the addition of GPUDirect Storage to the GPUDirect family, we now have the technology
and the tools to feed data-hungry GPUs at extremely high throughput and very low latency.
This translates into faster execution of computationally intensive workloads leveraging the
immense compute power of NVIDIA GPUs.
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Appendix A. Benchmarking and
Performance

Benchmarking is the process of running software specifically designed to generate data for
the purpose of assessing performance. The scope of what is being utilized/measured will vary.
Many benchmarks are designed to simulate production workloads (MLperf, TPC, SPEC, and
so on), utilize the entire system, and require an audit process before a vendor can make the
benchmark results publicly available. Some benchmarks target measuring the performance
of a specific subsystem; CPUs, GPUs, storage, etc. Such benchmarks are sometimes referred
to as microbenchmarks, and are often publicly available software intended to generate
load and report performance results specific to the components under test, e.g. iperf for
network performance and fio for disk/storage performance. These subsystem-specific
benchmarks and tools are extremely useful as they enable a “building-block” approach to
overall system capability and performance. They also are good tools for verifying various
compute subsystems before moving to a full system workload.

A.1.  The Language of Performance
System performance is typically described either in application-specific terms (for example,
images-per-second, transactions-per-second, Deep Learning (DL) training time-per-epoch,
Inference throughput, and so on) or more generic terms:
Bandwidth - how much

Bandwidth is the theoretical maximum attainable data rate, expressed as bytes-per-
second, sometimes bits-per-second.

Throughput - how fast
Throughput can reflect a data rate, e.g. 12GB/sec over a network link, 3.4GB/sec sequential
reads from an NVMe SSD. We also express some workload-specific metrics in terms of
throughput, for example, words-per-second, images-per-second, and so on.

IOPS - how many
Input/Output operations per second, typically used in the context of disk IO (reads-per-
second, writes-per-second) and network IO (packets-per-second, messages-per-second).

Latency - how long
The time required to complete an operation, e.g. 5 milliseconds (ms) to do a disk read on
an HDD, 40 microseconds (us) to write to an SSD, 70 nanoseconds (ns) for a CPU read data
from system memory.

https://mlperf.org/
http://www.tpc.org
http://www.spec.org/
https://iperf.fr/
https://linux.die.net/man/1/fio
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Specific aspects of GPU and CPU performance may also be expressed in one or more of the
above terms, for example, throughput as the number of floating point or integer operations per
second, memory bandwidth and latency, interconnect (UPI/QPI, NVswitch, etc.) bandwidth and
latency, and so on.

Monitoring performance and capturing metrics that fall into one or more of the above
categories is typically done using base operating system utilities. There are a great many tools
and utilities available for Linux intended to provide observability into system utilization and
performance. A discussion of these tools is beyond the scope of this paper, but we will refer
to specific examples as applicable. Also, various benchmark tools generate these detailed
metrics, for example, the gdsio utility, which gets installed as part of GDS, generates detailed
data points of throughput, latency, and IOPS.

A.2.  Benchmarking Storage Performance
Determining expected storage performance (and also network performance) has the
advantage of doing the math based on the specifications of the underlying hardware being
measured. For example, if the target storage is Direct Attached Storage (DAS) in the form of
NVMe SSDs on the system’s PCIe bus, the device specifications provide throughput, IOPS and
latency values, and that information, coupled with known PCIe bandwidth (Gen3, Gen4) and
number of PCIe lanes (typically 16 lanes) configured for the devices, the maximum theoretical
performance can be calculated. This is discussed further in the Storage Performance Basics
for Deep Learning blog post.

For example, NVIDIA® DGX-2® systems include NVMe SSDs for local storage. For such
devices configured as a RAID0 volume, the expectation for large reads and writes will be four
times the specified performance for a single device. The same logic applies to workloads that
are more IOPS intensive (small reads and writes). Putting some numbers on this example, the
device specification for large reads indicates 3.5GB/sec, so (4 x 3.5GB/sec) 14GB/sec expected
throughput on large reads from the RAID0 volume. As these are PCIe devices, depending on
PCIe topology, achieving 14GB/sec pushes the theoretical limit of PCI3 Gen3 16 lanes. The
key point here is a solid understanding of the configuration details is necessary to establish
performance expectations.

The same logic and methodology applies to Network Attached Storage (NAS), for example,
four NVMe SSDs doing large reads or writes will potentially saturate a 100Gb NIC, so it
is important to understand the entire storage data path to correctly assess the delivered
performance.

An important consideration when benchmarking storage is the presence of a file system.
There are two components to file systems that will impact performance:

‣ The operating system’s page cache

The page cache, which is implemented transparently and used by default when reading
and writing data to/from a file system, caches data and metadata in the system’s main
memory. The performance benefit of the page cache can be substantial, as a typical two
CPU socket system can read/write system memory at significantly higher throughput and
lower latency than storage.

‣ The file system-specific settings and tuneable parameters

https://developer.nvidia.com/blog/storage-performance-basics-for-deep-learning/
https://developer.nvidia.com/blog/storage-performance-basics-for-deep-learning/
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File system-specific settings/parameters can happen at both creation time (mkfs) and at
mount time in the form of mount options. Some mount options are file system independent
(for example, atime, async, and so on), while other options are specific to the file system.
Any performance evaluation of the storage technology requires bypassing the page cache
to ensure that actual storage performance is being measured, and not the page cache
read/write performance.

GDS currently supports the ext4 file system on Linux, and requires the use of the O_DIRECT
flag on files that are targeted for read/write by the GDS IO APIs. With O_DIRECT set, you can
bypass the system’s page cache.

Another factor in assessing storage performance results are the IO characteristics, which are
historically categorized as:

‣ Random IO (small IO size)

‣ Sequential IO (large IO size)

The terms random and sequential refer to the on-disk block layout of the target files and
are relevant when assessing storage that uses hard disk drives (HDDs). HDD technology
implements spinning disks with read/write heads that perform seek operations to locate the
target blocks where the data is to be read or written. This seek time induces IO latency due to
electro-mechanical delays, (moving the read/write heads around the platters). With Solid State
Disks (SSDs), no such electro-mechanical exist, so sequential versus random IO on SSDs is
not a consideration in terms of seek times and latency.

However, in terms of setting expectations for the results, it is still important to factor in IO
sizes. For IO loads that tend to be small (< 500kB), the performance metric of relevance is IO
operations per second (IOPS) and latency, versus throughput, because loads with smaller IO
sizes will not necessarily maximize available throughput. If assessing maximum throughput is
the goal, larger IO sizes should be used when benchmarking.
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