NVIDIA.

NVIDIA Magnum |0 GPUDirect Storage

O_DIRECT Requirements Guide

DU-10175-001_v1.0.0 June 2021

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
1.1 Related DOCUMIBNES ..o 2
Chapter 2. GPUDirect Storage RequiremMents. 3
2.7, Summary of Basic ReQUINEMENTS. . .o..iiiii e 3
2.2, ClUENT N0 SOV e 4
2.3. Cases Where O _DIRECT is Not @ Fito e 5
237 BUFFEred 0. e 6
2.3.2. INUNE FIlES oo 6
2.3.3. Block ALLOCation FOr WIITES. . .ii i 7
2.3.4. Examining or Transforming User Data.........cccoooiiiiiiii e, 7
2.3 D SUMIMIATY e 8

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | ii

Chapter 1. Introduction

This section provides an introduction to the O_DIRECT requirements for GDS.

NVIDIA® GPUDirect® Storage (GDS) is the newest addition to the GPUDirect family. GDS
enables a direct data path for direct memory access (DMA] transfers between GPU memory
and storage, which avoids a bounce buffer through the CPU. This direct path increases system
bandwidth and decreases the latency and utilization load on the CPU.

GDS can provide significant benefit when it can leverage the O_DIRECT (fcntl.h) file mode for a
direct data path between GPU memory and storage. There are many conditions that must be
met to achieve the performance benefits of the O_DIRECT mode, and these conditions are not
always met by all file systems. The conditions might depend on the transfer size, whether it's
a read or write, whether the write is to new data (past the end of the file or to a hole in the file),
and based on many other conditions such as whether checksums are required. This document
describes the conditions where O_DIRECT, on which GDS relies, can be used.

The target audience for this guide includes:
» End users and administrators who:

» Understand filesystems, so they can carefully consider the implications of features
they enable.

» Compare support from different filesystems to determine the appropriate models and
how to use them.

» Evaluate the weighted fraction of cases that do or don't use O_DIRECT effectively.

» Middleware developers who:

» Consider the design trade-offs that increase the likelihood that the vendor layer can
effectively use O_DIRECT.

» Filesystems vendors and implementers who:

» Accelerate their assessment of the various cases to be handled with O_DIRECT as they
enable GDS in new or customized filesystems.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 1

https://github.com/torvalds/linux/blob/master/include/uapi/asm-generic/fcntl.h

Introduction

1.1. Related Documents

Since the original creation of this guide, additional GDS documents and online resources
have been created which support and provide additional context for the optimal use of and
understanding of this specification.

Refer to the following guides for more information about GDS:

>

>

>

>

>

>

GPUDirect Storage Design Guide

GPUDirect Storage Overview Guide

cuFile AP| Reference Guide

GPUDirect Storage Release Notes

GPUDirect Storage Best Practices Guide

GPUDirect Storage Troubleshooting Guide

To learn more about GDS, refer to the following blogs:

>

GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

» The Magnum IO series.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 2

https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/troubleshooting-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

Chapter 2. GPUDirect Storage
Requirements

This section provides some basic background on where GDS can be most effectively used.

This information enables readers with varying degrees of technical accuity to get a general
sense of whether, and to what degree, GDS can benefit filesystems that make different design
choices.

2.1. Summary of Basic Requirements

Here is some information about the O_DIRECT requirements
The GDS architecture has the following key requirements:

» The kernel storage driver can perform a DMA of user data to or from GPU memory by
using addresses that were obtained from callbacks to the GDS kernel module, nvidia-fs.ko.

» The device near the storage has a DMA engine that can reach the GPU memory buffer via
PCle.

» For local storage, an NVMe device performs DMA.
» For remote storage, a NIC device performs RDMA.

» The filesystem stack that operates at the user-level, or the kernel-level, or both, and never
needs to access the data in CPU system memory.

Instead, data is transferred directly between storage and GPU memory, which is achieved
by filesystems that exclusively use the O_DIRECT mode for a given file.

Figure 1 illustratres a way to visualize conditions for O_DIRECT. It covers cases where there is,
oris not, an operator

(®
in the data path to storage, and whether that operator is in the CPU or GPU. If the operator is
in the CPU, you cannot use O_DIRECT.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 3

GPUDirect Storage Requirements

Figure 1. Summary of Basic Requirements

CPU

Storage Final GPU buffer

— 9
\@

O_DIRECT?

The data coming from (or going to) storage cannot use O_DIRECT if it must be processed in
the CPU, as symbolized by cross operator. It can use O_DIRECT if it only goes through the
GPU whether there's a transformational operator there as symbolized by a cross operator like
checksum on the GPU or there's no operation at all, as symbolized by a clean arrow.

Lack of support for RDMA in network filesystems, or network block devices, implies the need
to copy data to socket buffers in system memory. This need is incompatible with the basic
requirements listed above.

If the conditions for using GDS do not hold, for example, because the mount for the file is

not GDS enabled, or the nvidia-fs.ko driver is not available, compatibility mode, a cuFile
feature that falls back to copying through a CPU bounce buffer, can be used. You can enable
compatibility mode in the cufile.json file. Users can override the system’s version of the
cufile.json file by creating their own copy and pointing the appropriate environment variable to
that user’s copy. Outside of compatibility mode, the APIs will fail if O_DIRECT is not possible.

2.2. Client and Server

Here is some information about how the client and server work with O_DIRECT.

In a local file or block systems, a software stack performs all I0. In a distributed file or block
system, at least two agents are involved. the client makes a read or write request, and a server
services it. There are two types of filesystems:

» Block-based

» Network-attached

A block-based system can be serviced locally or remotely, while network-attached filesystems
are always remote.
Consider the following interaction between a client and server:

» The direct data path between the NIC and GPU memory happens on the client.

To enable this direct path, client-side drivers must first be enabled with GDS.

» RDMAis a protocol to access remote data over a network and uses the NIC to DMA directly
into client-side memory.

Without RDMA, there is no direct path, and GDS for distributed file and block systems
relies on GPUDirect RDMA for the direct path between the NIC and GPU memory.

» Using RDMA also relies on server-side support.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 4

GPUDirect Storage Requirements

Filesystem implementations that do not support RDMA on the server side will not support
GDS. For example, NFS only works with server-side NFS instead of RDMA support, which is
not yet available from all NFS vendors.

2.3. Cases Where O_DIRECT is Not a Fit

Here is some information about features that are used by specific filesystems, which might
inhibit the use of full GDS benefits.

In POSIX, the mode in which files are opened is controlled by a set of flags. One of these flags,
O_DIRECT, indicates a user’s intent to not buffer transfers in CPU system memory but to
rather make transfers be more direct. O_DIRECT, for example, generally disables the use of a
page cache. Although this flag is an expression of user intention, the implementation can still
make its own trade-offs.

For example, the implementation might decide to treat small transfers differently from larger
transfers that take a more direct path. In another example, a filesystem might offer an option
for the user to enable read ahead for the page cache. This option, however, might conflict with
the request from the user to use O_DIRECT for a file. In this case, how the implementation
treats the competing requests depends on the implementation policy. Therefore, O_DIRECT
can be considered a hint.

Several cases are listed below where a user’s request to use O_DIRECT is not currently
supported in filesystems, is not used in specific cases, or is fundamentally not feasible. The
cases are delineated according to the agent that makes choices or trade-offs which impact
that option.

Here is some additional information:
» Possibly relevant for users

» User-buffered I0: Transfers might be buffered in the user space before being
transferred to the kernel.

This case might be used when many small transactions have good spatial and
temporal locality.
» Possibly relevant for middleware
» Metadata management: There might be metadata with the data payload.
Metadata might take many forms, including checksums for the data payload, file sizes
that must be updated when lengthening files, and maps of file layout when filling holes.

» Hierarchical storage model: Some implementations used a tiered scheme where some
data resides in CPU system memory, and where shorter latency and high bandwidth is
possible.

There are outer tiers of progressively slower, but higher-capacity storage. An example
of this tiered scheme is flash and then spinning disks.

» Read ahead: An optimization that is sometimes used, especially for buffered |0 and
many small consecutive transfers, is to anticipate what will be used next and to buffer
it in CPU system memory.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 5

GPUDirect Storage Requirements

» Examining or transforming data: When the CPU examines or transforms data before
(or after) 10 transactions, this process interferes with direct transfers between the
storage and GPU memory.

» Filesystem only
» Kernel-buffered |O: If there is good temporal and spatial locality, and the bandwidth
and latency to copy from kernel memory is significantly better than copying from

storage, a mechanism such as fscache might be used to maintain a copy in system
memory.

» Inline data: Small files are stored and managed differently than larger files.

» Block allocation: Various policies are available to allocate space in files, and there
might be implications for client- and server-side activities.

There are cases where middleware performs some of the same functions as a filesystem.
Middleware might have more contextual information available to it than low-level calls to

the file system, and it might take steps to increase the likelihood that the filesystem can use
O_DIRECT. Consider the case of computing a checksum. A user might be able to control
whether checksums are even used. If checksums are enabled, middleware might intervene in
the following ways:

» It could invoke a GPU kernel to compute the checksum and juxtapose the checksum data
with the payload so that one cuFileWrite can be used to write back the data to storage.

» It could again invoke a GPU kernel to compute the checksum to a different buffer and use
two cuFileWrites to write each of the checksum and payload.

In these cases, the requests to the filesystem can use O_DIRECT.

2.3.1. Buffered IO

Here is some information about buffered |10 in GDS.

The Linux virtual file system (VFS] uses a buffered 10 when O_DIRECT is not specified, and
there are potentially multiple layers of caching. Examples of caching might include the
following:

» Page caching, which is backed by fscache.

» File-system-specific page pools, such as ZFS adaptive replay cache (ARC) and Spectrum
Storage (GPFS) page pools.

2.3.2. Inline Files

Here is some information about inline files in GDS.

Filesystems that are based on Linux are implemented by using the common VFS interface to
open, close, read, and write files. User data is organized in files, which are represented in the
following ways:

» Inodes, whose primary purpose is to store metadata.
» Fixed blocks, which are generally referred to as pages that hold user content.

A typical block size is 4096 bytes.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 6

GPUDirect Storage Requirements

Inline files have data that is smaller than a page size and small enough to fit in the inode.
Generally, filesystems provide flags to detect whether the inode is inline. Inodes are normally
read into system memory, so inline user data is copied into system memory with the
metadata.

In RDMA-based network-attached filesystems, files that are smaller than the specified size
threshold are sent inline in the remote procedure calls (RPCs). This process involves buffering
in system memory, which requires an additional copy of user data rather than a direct data
transfer. For some filesystems, such as ext4 and Lustre, the inline files modes can be disabled
at the filesystem level or on a per-inode basis.

2.3.3. Block Allocation For Writes

Here is some information about block allocation for writes in GDS.

Before data can be written to a file, a data block must be allocated. See Inline Files for more
information. For filesystems to support the O_DIRECT mode for writing files, free data blocks
In storage must be available and ready to be used by the filesystem. Otherwise, as in the
following cases, user data can be buffered into the system page cache, which makes direct
data transfers impossible. Here is a list of cases where some filesystems need to fall back to
buffered mode because of block allocations:

S| Note: These limitations do not apply to distributed filesystems if the features are implemented
on the storage server, and the client does not perform buffering.

» Extending writes: writes that are happening to increase the file size.
» Allocating writes: writes to a block that has not yet been allocated.

» Writes to preallocated blocks: the block was already allocated in storage, but the metadata
needs to be updated before the data is written.

» Hole filling: writes to a hole in the middle of the file, which was a sparse block.

» Copy on write [COW] filesystems: copy operations that are triggered when a write to a data
buffer involves caching in the CPU system memory.

» Delayed allocation or allocate on flush: allocation is reactive (not proactive] to reduce disk
fragmentation on slow random writes or to large sequential writes for spinning disks.

For network-attached storage or distributed filesystems, the filesystem architecture
determines whether the allocation decision is made locally, on each client, or on the remote
server. If the block allocation handling is done on the server side, there is no CPU buffering
impediment to direct transfers. If block allocation was handled on the client side, there might
be some impediments.

2.3.4. Examining or Transforming User Data
Here is some information about how to examine or transform user data.

Here is a list of some cases where the user data needs to be copied into system memory, so
that it can be examined or transformed by the filesystems as part of a read or write transfer:

» Datajournaling is used to track changes that are not yet committed to persistent storage.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 7

GPUDirect Storage Requirements

Data journaling typically disables O_DIRECT. In general, the journaling of data is not
required with the O_DIRECT use case, unless there is a high-speed journaling media.
Metadata journaling does not require access to user data.

» Checksums can be computed during writes and checked upon reads.

For network filesystems with checksum support, the checksums are typically performed
on the client to detect network corruptions, in addition to checksum computation on the
server.

» Client-side compression and deduplication can be provided on network clients to achieve
bandwidth improvements in addition to compression on the server side for data storage.

Inline deduplication requires looking at user content to determine the fingerprint by
using MD5 or SHAT algorithms. Similarly, client-side encryption can provide more secure
communication from the client to server.

» Erasure encoding can be performed by the filesystem or the block device.

In such cases, the data is copied to CPU system memory before performing the DMA to the
disk pool or network servers. For distributed block devices, the erasure coding decision is
performed on the client side.

Synchronous replication involves a data copy into system memory before the DMA
operation to a remote block device or server, depending on the recovery time objective.

2.3.9. Summary

This section contains some final information to consider about O_DIRECT.

There are many cases in which the O_DIRECT mode, in which CPU system memory is

entirely unused, is not a fit. The relevance of these cases depends on the local or distributed
filesystem implementation, and in some cases, on the set of features that were selected by the
user. Vendors can provide their own assessments of the relevance of these issues.

NVIDIA Magnum 10 GPUDirect Storage DU-10175-001_v1.0.0 | 8

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or
warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this

document. No contractual obligations are formed either directly or indirectly by this document

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can
reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore

such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s
sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary
testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i] the use
of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products
or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and reqgulations, and
accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING
PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative
liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 (

http://www.nvidia.com

No license, either expressed orimplied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products
or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and
accompanied by all associated conditions, limitations, and notices

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING
PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative
liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 (

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the United States
and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2021 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @

http://www.nvidia.com

	Table of Contents
	Introduction
	1.1. Related Documents

	GPUDirect Storage Requirements
	2.1. Summary of Basic Requirements
	2.2. Client and Server
	2.3. Cases Where O_DIRECT is Not a Fit
	2.3.1. Buffered IO
	2.3.2. Inline Files
	2.3.3. Block Allocation For Writes
	2.3.4. Examining or Transforming User Data
	2.3.5. Summary

