NVIDIA.

NVIDIA Magnum |0 GPUDirect Storage

Installation and Troubleshooting Guide

TB-10112-001_v1.0.0 July 2021

Table of Contents

(0] a1 o1 (=T ol IR [oY {fo Yo 1V [ox 4o RSSO PPPPPPPPRPPPP 1
Chapter 2. Installing GPUDIrect Storage.o 2
2.1. Before You Install GDS......oi 2
2.2, INStAllING GDS. ... 3
Removal of Prior GDS Installation on Ubuntu Systems.........oooiiiiiii 3
Preparing the O e 3
GDS Package INStallation.... ..o 4
Verifying the Package INstallation. ... 5
2.2.1. Removal of Prior GDS Installation on Ubuntu Systems.........cccoociiiiiiiiiiiiii 6
2.2.2. Preparing the OS. . e 6
2.2.3. GDS Package INstallation.o 7
2.2.4. Verifying the Package Installation.........occoiiiii 8
2.2.5. Verifying a Successful GDS Installation. ..., 9

2.3. Installed GDS Libraries and To0lS. ..o 10
2.4, Uninstalling GPUDITECt STOMage.. . uiiiiiiiiiiii e 11
2.5. Environment Variables Used by GPUDirect Storage........cccoooiiiiiiiiiii (i
2.6. JSON Config Parameters Used by GPUDirect Storage.........coovoiiiiiiiiiiii 12
2.7. GDS Configuration File Changes to Support Dynamic RoUting.........coovviiiiiiiiiiiiic 12
2.8. Determining Which Version of GDS is Installed.........ccoooiiiiiiiii e, 13
2.9. Experimental Repos for Network Install of GDS Packages for DGX Systems..................... 13

(0] g T o] =] B A o B ot o =T EEPRR PSPPSR 14
3.1, CU_FILE_DRIVER_NOT_INITIALIZED ..ottt 14
3.2. CU_FILE_DEVICE_NOT_SUPPORTED ..ottt 14
3.3. CU_FILE_IO_NOT_SUPPORTED......ctiiiiiiiiii it 14
3.4. CU_FILE_CUDA_MEMORY_TYPE_INVALID.....ccooiiiiii i 15
Chapter 4. Basic Troubleshooting........ooo i 16
4.7. Log Files for the GDS LIDrary... ..o 16
4.2. Enabling a Different cufile.log File for Each Application.......ccccoooiiiiiiiiiiii 16
4.3. Enabling Tracing GDS Library APl Calls.......ccccooiiiiiiii e 17
4.4. cuFileHandleRegister Error. ... 17
4.5. Troubleshooting Applications that Return cuFile Errors.........ccccoooiiiiiiii 18
4.6. cuFile-* Errors with No Activity in GPUDirect Storage Statistics........oocoviiiiiiiiiii 18
4.7. CUDA Runtime and Driver Mismatch with Error Code 35..........oo, 18
4.8. CUDA API Errors when Running the cuFile-* APIs......ccoociiiiiiii 19
4.9. FINding GDS Driver StatiStiCS. . oouiiiiiiiii e 19

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | ii

4.10. Tracking 10 Activity that Goes Through the GDS Driver.......occoooiiiiiiiii 19

4.11. Read/Write Bandwidth and Latency Numbers in GDS Stats........ccccoocooiiiiiiiiiiii 19
4.12. Tracking Registration and Deregistration of GPU Buffers...........cccoooiiiiiii 20
4.13. Enabling RDMA-specific Logging for Userspace File Systems..........cccoooioiiiiiiiiiiin, 20
4.14. CUDA_ERROR_SYSTEM_NOT_READY After Installation........ccccooiiiiiiiiiiiiiiie 21
4.15. Adding udev Rules for RAID VOlUMES. ..ot 21
Chapter 5. Advanced Troubleshooting.......c.cuiiiiiiiiiiiiiiiiieeeeee 22
5.17. Resolving Hung cuFile* APIs with No ReSponse........coooiiiiiiiiii 22
5.2. Sending Relevant Data to Customer SUPPOIt.. ..ot 22
5.3. Resolving an 10 Failure with EIO and Stack Trace Warning........cccccoovoiiiiiiiiiiiiicc 24
5.4. Controlling GPU BAR Memory USage.......coiiiiiiiiiiece e 24
5.5. Determining the Amount of Cache to Set Aside.......cccooviiiiiiiiiii 25
5.6. Monitoring BAR Memory USQQe. .. couiiiiiiii i 25
5.7. Resolving an ENOMEM Error Code. . ..o 25
5.8. GDS and Compatibility MOde......ooiiiiii e 26
5.9. Enabling Compatibility Mode........ooiiiiii e 26
5.10. Tracking the 10 After Enabling Compatibility Mode..........coooiiiiiiiii 26
5.11. Bypassing GPUDITECE StOrage.....iouiiiiiiiiiiiii e 27
5.12. GDS Does Not Work for @ MouUNt. ..o, 27
5.13. Simultaneously Running the GPUDirect Storage 10 and POSIX 10 on the Same File...... 28
5.14. Running Data Verification Tests Using GPUDirect Storage........c.oocooeiiiiiiiiiiiiie, 28
Chapter 6. Troubleshooting Performance.........cccveee oo 29
6.1. Running Performance Benchmarks with GDS.........ccooiiiii 29
6.2. Tracking Whether GPUDirect Storage is Using an Internal Cache.........cccccooiiiiiiiiin, 29
6.3. Tracking when |0 Crosses the PCle Root Complex and Impacts Performance................. 30
6.4. Using GPUDirect Statistics to Monitor CPU ACHIVItY.....ocooiiiiiiiicc 30
6.5. Monitoring Performance and Tracing with cuFile-* APls..........coooiiiii 30
6.6. Example: Using Linux Tracing To0lS.....ooiiiiiiiiii e 30
6.7. Tracing the CUFILE=" APIS. .. e 32
6.8. Improving Performance using Dynamic ROULING........oooiiiiiiiiii 32
Chapter 7. Troubleshooting [0 ACtIVItY.....oure e 35
7.1. Managing Coherency with the Page Cache........ccociiiiiiiiii 35
Chapter 8. EXAScaler Filesystem LNet Troubleshooting........coooociiiiiiiiiiiniiiieeeeee 36
8.1. Determining the EXAScaler Filesystem Client Module Version.........cccoooeiiiiiiiiiiiiie, 36
8.2. Checking the LNet Network Setup on a Client........cccoiiiiiiii 37
8.3. Checking the Health of the Peers.......ccoiiii e 37
8.4. Checking for MuUlti-Rail SUPPOIT.. ..ot 37

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | iii

8.9. Checking GDS Peer AffINITY. ... i 38

8.6. Checking for LNet-Level Errors. e, 40
8.7. Resolving LNet NIDs Health Degradation from Timeouts.........ccoviiiiiiiiiiiiii 4t
8.8. Configuring LNet Networks with Multiple OSTs for Optimal Peer Selection....................... 44
Chapter 9. Understanding EXAScaler Filesystem Performance........ccccoooiiiiiiieiiiennnnnnee. 48
9.1. 0sc Tuning Performance Parameters. ..o 48
9.2. Miscellaneous Commands for osc, mdc, and Stripesize.......cccooiiiiiiiiiiiiii 49
9.3. Getting the Number of Configured Object-Based DiskS.........cccooiiiiiiiiiiiii 50
9.4. Getting Additional Statistics related to the EXAScaler Filesystem........ccccooiiiiiiiiiin, 50
9.5. Getting Metadata StatisStiCS. ..o 51
9.6. Checking for an EXiSting MouUNt......ociiii e 51
9.7. Unmounting an EXAScaler Filesystem Cluster.........cccooiiiiiiiii o1
9.8. Getting a Summary of EXAScaler Filesystem Statistics.......cooiiiiiiiiiii 51
9.9. Using GPUDirect Storage in Poll Mode. ..o 52
Chapter 10. Troubleshooting and FAQ for the WekalO Filesystem.........ccccoooiiiiiiiinniennn, 93
10.1. Downloading the WekalO Client Package..........coooiiiiiiiiiiii 53
10.2. Determining Whether the WekalO Version is Ready for GDS..........coooiiiiiii 53
10.3. Mounting a WekalO File System ClUSEEr. ...t 53
10.4. Resolving @ Failing MOUNT.......oiii e 54
10.5. Resolving 100% Usage for WekalO for TWo Cores........ocooviiiiiiiiiiiciieceee 54
10.6. Checking for an Existing Mount in the Weka File System.......c.coooiiiiiiiii 55
10.7. Checking for a Summary of the WekalO Filesystem Status.........ccccoooiiiiiiiiiii 55
10.8. Displaying the Summary of the WekalQO Filesystem Statistics......ccccoooeiiiiiiiiiii 56
10.9. Understanding Why WekalO Writes Go Through POSIX.....c.oooiiiiiiii 57
10.10. Checking for nvidia-fs.ko Support for Memory Peer Direct..........cccoooviiiiiiiiii. 57
10.11. Checking Memory Peer Direct Stats... ... 58
10.12. Checking for Relevant nvidia-fs Statistics for the WekalO Filesystem..........cccocoeiin, o8
10.13. Conducting a Basic WekalO Filesystem Test. ..o 59
10.14. Unmounting a WekalO File System Cluster........occooiiiiiiiiiice 59
10.15. Verify the Installed Libraries for the WekalO Filesystem..........ccoccoiiiiiiiiiiiiic 59
10.16. GDS Configuration File Changes to Support the WekalO Filesystem.........ccocooiiiinnn. 60
10.17. Check for Relevant User-Space Statistics for the WekalO Filesystem.......ccccooeiiinn 61
10.18. Check for WekaFS SUPPOTt. ..o i 61
Chapter 11. Enabling IBM Spectrum Scale Support with GDS............... . 62
11.1. IBM Spectrum Scale Limitations with GDS........oooiii 62
11.2. Checking nvidia-fs.ko Support for Mellanox PeerDirect..........ccoociiiiiiiiiiii 62
11.3. Verifying Installed Libraries for IBM Spectrum Scale.........cccooiiiiiiiiiiiii, 62
11.4. Checking PeerDirect Stats. ... 64

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | v

11.5. Checking for Relevant nvidia-fs Stats with IBM Spectrum Scale..........c.ccoccoiiiiiiiin, 64

11.6. GDS User Space Stats for IBM Spectrum Scale for Each Process........ccccoooiiii 65
11.7. GDS Configuration to Support IBM Spectrum Scale........ccooiiiiiiiiii 66
11.8. Scenarios for Falling Back to Compat Mode.........cooiiiiiiiiii 67
11.9. GDS Limitations with IBM Spectrum Scale. ... 67
Chapter 12. Setting Up and Troubleshooting VAST Data (NFSoRDMA+MultiPath]........... 68
12.1. Installing MLNX_OFED and VAST NFSoRDMA+Multipath Packages..........c.ccccoviiiiiennnn. 68
12.1.7. Client Software RequUIremMentS.ot 68
12.1.2. Install the VAST Multipath Package. ... 69
12.2. Set Up the NetWOTKING.....oi e 69
12.2.1. VAST Network Configuration.......co i 70
12.2.2. Client Network Configuration..... ..o 70
12.2.3. Verify Network ConneCtivity... ..o 72
12.3. MOUNT VAST NF S e 73
12.4. Debugging and MONITOMING. ...ii e 73
Chapter 13. Troubleshooting and FAQ for NVMe and NVMeOF Support........ccccoovvviinnnn. 75
13.1. MLNX_OFED Requirements and Installation.........cccooooiiiiiiiii e, 75
13.2. Determining Whether the NVMe device is Supported for GDS.......oocciiiiiii 76
13.3. Check for the RAID LeVel ..o 76
13.4. Mounting an EXT4 Filesystem for GDS. ... 76
13.5. Check for an EXiStINg MOUNT. ..o 76
13.6. Check for 10 Statistics with Block Device Mount........oocoiiiiiiii 77
13.7. RAID Group Configuration for GPU Affinity......oooiiiii e 77
13.8. Conduct a Basic EXT4 Filesystem TeSt. .o 77
13.9. Unmount @ EXTA FIleSYStemM i 77
13.10. Udev Device Naming for @ Block DeVICe......c.oiiiiiiiiiiii 78
Chapter 14. Displaying GDS NVIDIA FS Driver StatisticS.....ooovvviiiiiiiiiii 79
14.1. Understanding nvidia-fs StatistiCs......ooiiiiiiii 80
14.2. Analyze Statistics for each GPU... ... 83
14.3. Resetting the nvidia-fs StatiStiCS. ..o 84
14.4. Checking Peer Affinity Stats for a Kernel Filesystem and Storage Drivers........c..c.co....... 84
14.5. Checking the Peer Affinity Usage for a Kernel File System and Storage Drivers.............. 86
14.6. Display the GPU-to-Peer Distance Table. ... 88
T4.7. THE GDSIO TOOL ittt 89
T4.8. Tabulated FIeladS. . ..o 91
T4.9. GDSCHECK ..ot 92
14.10. NFS Support with GPUDIrect StOrage......oooviiiiiieiiiicee e 94
14.10.1. Install Linux NFS server with RDMA Support on MLNX_OFED 5.3 or Later.............. 94

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | v

14.10.2. Install GPUDirect Storage Support for the NFS Client.........coooiiiii 94

14.11. NFS GPUDirect Storage Statistics and Debugging.......oooooiiiiiiiiiiiii 95
14.12. GPUDirect Storage 10 BehaVvior. .. .ot 95
14.12.1. Read/Write Atomicity Consistency with GPUDirect Storage Direct 10....................... 95
14.12.2. Write with File a Opened in O_APPEND Mode (cuFileWrite)............cocoovooiiiii 96
14.12.3. GPU to NIC Peer AffINItY. ..o 96
14.12.4. Compatible Mode with Unregistered Buffers..........occoiiii 96
14.12.5. Unaligned writes with Non-Registered Buffers...........cccooiiiiiiiii 96
14.12.6. Process Hang With NFS. .. e 96
14.12.7. Tools Support Limitations for CUDA 9 and Earlier........ccooiiiiiiiiii 96
14.13. GDS Statistics for Dynamic ROUTING.....coiiiiiii e 97
14.13.1. Peer Affinity Dynamic ROULING.....oiiiiii e 98
14.13.2. cuFile Log Related to Dynamic ROULING.....cccooiiiiiiiiii 100
14.14. Installing and Uninstalling the Debian Package.........cccoooiiiiiiiiiiii 107
14.14.1. Install the Debian Package.o 107
14.14.2. Uninstall the Debian Package. ..o, 103
Chapter 15. GDS Library TraCing. ..o 104
15.1. Example: Display TraCepOintS.oi it 104
15.1.7. Example: Tracepoint ArgUmENTS. ..ot 104
15.2. Example: Track the |10 Activity of a Process that Issues cuFileRead/ cuFileWrite........... 109
15.3. Example: Display the 10 Pattern of all the 10s that Go Through GDS...........cccoooiiin. 109
15.4. Understand the 10 Pattern of @ Process........occooiiiiiiiiiii 110
15.5. Understand the 10 Pattern of a Process with the File Descriptor on Different GPUs.... 110
15.6. Determine the IOPS and Bandwidth for a Process ina GPU............cooo, (N
15.7. Display the Frequency of Reads by Processes that Issue cuFileRead............c.oocoi, 112
15.8. Display the Frequency of Reads when cuFileRead Takes More than 0.1 ms................... 112
15.9. Displaying the Latency of cuFileRead for Each Process.........cccooiiiiiiiiiiiiiii, 113
15.10. Example: Tracking the Processes that Issue cuFileBufRegister..........c.ccoccoii 14
15.11. Example: Tracking Whether the Process s Constant when Invoking
CUFILEBUTR QIS .. 115
15.12. Example: Monitoring 10s that are Going Through the Bounce Buffer...................oo.. 115
15.13. Example: Tracing cuFileRead and cuFileWrite Failures, Print, Error Codes, and Time
OF F LU e 116
15.14. Example: User-Space Statistics for Each GDS Process........ccccoooiiiiiiiiiiiiii 116
15.15. Example: Viewing GDS User-Level Statistics for a Process.........ccccooovviiiiiiiiiiiii, 117
15.16. Example: Displaying Sample User-Level Statistics for each GDS Process................... 118
Chapter 16. User-Space Counters in GPUDirect Storage.......ccoooooioiiiiiiiiiiiiiiee 119
16.1. Distribution of 10 Usage in Each GPU. ... 121

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | vi

16.2. User-space Statistics for Dynamic ROUTING.....cooiiiiiiiii e, 122

Chapter 17. User-Space RDMA Counters in GPUDirect Storage........ccooooviiiiiiiiiiiiiieennn 123
17.1. cuFile RDMA 10 Counters (PER_GPU RDMA STATS] ..o 124
17.2. cuFile RDMA Memory Registration Counters (RDMA MRSTATS).......ocooooiiiiiiiiiee 124

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | vii

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | viii

Chapter 1. Introduction

This guide describes how to debug and isolate the NVIDIA® Magnum 10 GPUDirect®
Storage (GDS]) related performance and functional problems and is intended for systems
administrators and developers.

GDS enables a direct data path for direct memory access (DMA] transfers between GPU
memory and storage, which avoids a bounce buffer through the CPU. This direct path
increases system bandwidth and decreases the latency and utilization load on the CPU.

Creating this direct path involves distributed filesystems such as NFSoRDMA, DDN
EXAScaler® parallel filesystem solutions (based on the Lustre filesystem) and WekaFS, so

the GDS environment is composed of multiple software and hardware components. This guide
addresses questions related to the GDS installation and helps you triage functionality and
performance issues. For non-GDS issues, contact the respective OEM or filesystems vendor to
understand and debug the issue.

The following GDS technical specifications and guides provide additional context for the
optimal use of and understanding of the solution:

» GPUDirect Storage Design Guide

» GPUDirect Storage Overview Guide

» cuFile APl Reference Guide

» GPUDirect Storage Release Notes

» GPUDirect Storage Benchmarking and Configuration Guide
» GPUDirect Storage Best Practices Guide
» GPUDirect Storage O_DIRECT Requirements Guide

To learn more about GDS, refer to the following blogs:

» GPUDirect Storage: A Direct Path Between Storage and GPU Memory.

» The Magnum |0 blog series.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 1

https://docs.nvidia.com/gpudirect-storage/design-guide/index.html
https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html
https://docs.nvidia.com/gpudirect-storage/api-reference-guide/index.html
https://docs.nvidia.com/gpudirect-storage/release-notes/index.html
https://docs.nvidia.com/gpudirect-storage/configuration-guide/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/o-direct-guide/index.html
https://devblogs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/tag/magnum-io/

Chapter 2. Installing GPUDirect
Storage

This section includes GDS installation, uninstallation, configuration information, and using
experimental repos.

2.1. Before You Install GDS

To install GDS on a non-DGX platform, complete the following steps:

1. Run the following command to check the current status of IOMMU.

S dmesg | grep -i iommu

al. If IOMMU is disabled, verify that IOMMU disabled is displayed, use the instructions in
MLNX_OFED Requirements and Installation to install MLNX_OFED.

b). If IOMMU is enabled, complete step 2 to disable it.

2. Disable IOMMU.

S Note: In our experience, iommu=of £ works the best in terms of functionality and
performance. On certain platforms such as DGX A100 and DGX-2, i ommu=pt is supported.
iommu=on is not guaranteed to work functionally or in a performant way.

al. Run the following command:
$ sudo vi /etc/default/grub
b). Add one of the following options to the GRUB_CMDLINE LINUX DEFAULT option.

» If you have an AMD CPU, add amd_iommu=off.

> If you have an Intel CPU, add intel_iommu=off.

If there are already other options, enter a space to separate the options, for example,
GRUB CMDLINE LINUX DEFAULT="console=tty0 amd iommu=off

c). Run the following commands:

$ sudo update-grub
$ sudo reboot

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 2

Installing GPUDirect Storage

d). After the system reboots, to verify that the change took effect, run the following
command:

$ cat /proc/cmdline

2.2. Installing GDS

Ensure the machine has access to the network for downloading additional packages using
Ubuntu APT/ Redhat RPM, YUM and DNF packaging software (advance packaging tool).

Make sure the NVIDIA driver is installed using the Ubuntu APT/Redhat RPM, YUM and DNF
package manager. NVIDIA drivers installed using the NVIDIA-Linux-x86 64.<version>.run
file are NOT supported with the nvidia-gds package.

Throughout this document, in cuda-<x>.<y>, x refers to the CUDA major version and y refers
to the minor version.

Removal of Prior GDS Installation on
Ubuntu Systems

If any older GDS release packages are installed, use the following steps before upgrading to
release 1.0.0.

If you have 0.8.0, use:

$ sudo dpkg --purge nvidia-fs
$ sudo dpkg --purge gds-tools
$ sudo dpkg --purge gds

If you have 0.9.0 or above, use:

$ sudo apt-get remove --purge "nvidia-gds*"
$ sudo apt-get autoremove

Preparing the 0S

DGX 0S:

GDS 1.0.0, NVSM, and MLNX_OFED packages can be installed via network using the preview
network repository. Currently, ONLY DGX 0S 5.0 (Ubuntu 20.04) is supported on the DGX
platform.

Note: If you have CUDA toolkit installed then note down the currently used toolkit version and
specify it in place of <x> in step 1. Start with step 2 onwards. If you do not have CUDA toolkit
installed, run:

$ nvidia-smi -q | grep CUDA | awk '{print $4}' | sed 's/\./-/'

Replace <x> in step 1 with output from the command line above. Steps:

1. $ sudo apt-get install cuda-toolkit-<x>

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 3

Installing GPUDirect Storage

2. $ sudo apt-key adv --fetch-keys https://repo.download.nvidia.com/baseos/
GPG-KEY-dgx—-cosmos-support

3. $ sudo add-apt-repository "deb https://repo.download.nvidia.com/baseos/
ubuntu/focal/x86 64/ focal-updates preview"
$ sudo apt update
$ sudo apt full-upgrade -y
Note down the Linux kernel version:
$ uname -a -r

7. $ sudo apt install mlnx-ofed-all mlnx-nvme-dkms

8. $ sudo update-initramfs -u -k ‘uname -r’

9. $ sudo reboot
Make sure the Linux kernel version noted in step 6 is the same version after step 9 is
completed. If the versions do not match, then GDS changes to kernel modules might have
been applied to the version noted in step 6.

RHEL 8.3

Enable the EPEL repository:
$ sudo dnf install -y

https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Enable the CUDA repository:

$ sudo dnf config-manager --add-repo

https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86 64/cuda-

rhel8.repo

1.

GDS Package Installation

Download the GDS packages (Debian/RHEL] to the local client from https://
developer.nvidia.com/gpudirect-storage:

S| Note: Make sure to download the correct GDS package based on the OS distribution and
CUDA toolkit. You do not need to download GDS packages for DGX OS as it will be handled
as part of step 2.2.2.

On DGX 0S 5.0:

The GDS preview repo is enabled in the preparation step and does not require a local
installer package.

On Ubuntu 20.04:

$ sudo dpkg -i
gpudirect-storage-local-repo-ubuntu2004-1.0.0-cuda<x>.<y> 1.0-1 amd64.deb
$ sudo apt-key add /var/gpudirect-storage-local-repo-*/7fa2af80.pub

$ sudo apt-get update

On Ubuntu 18.04:

$ sudo dpkg -i
gpudirect-storage-local-repo-ubuntul804-1.0.0-cuda<x>.<y> 1.0-1 amd64.deb

$ sudo apt-key add /var/gpudirect-storage-local-repo-*/7fa2af80.pub

$ sudo apt-get update

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 4

https://developer.nvidia.com/gpudirect-storage
https://developer.nvidia.com/gpudirect-storage

Installing GPUDirect Storage

On RHEL 8.3:

Enable the local repository
$ sudo rpm -i
gpudirect-storage-local-repo-rhel8-1.0.0-cudall.1-1.0-1.x86 64.rpm

2. Install cuFile and related packages (GDS installation):
$ NVIDIA DRV_VERSION=$ (cat /proc/driver/nvidia/version | grep Module | awk
'{print $8}' |
cut -d '.' -f 1)

On DGX 0S 5.0:

DGX 0S 5.0 systems come with prebuilt NVIDIA kernel drivers. Use the following method to
install nvidia-gds with the correct dependencies.

In the command below, use the CUDA Toolkit version number in place of <ver>, for
example 11-0

$ sudo apt install nvidia-gds-<ver> nvidia-dkms-${NVIDIA DRV VERSION}-server
$ sudo modprobe nvidia fs

On Ubuntu 18.04/20.04:

For systems with the nvidia-dkms-${NVIDIA DRV VERSION} package installed:

$ sudo apt install nvidia-gds
$ sudo modprobe nvidia fs

On RHEL 8.3:

Install the NVIDIA driver (ensure a DKMS stream is installed, not precompiled):

$ sudo dnf module install nvidia-driver:${NVIDIA DRV _VERSION}-dkms

Install 1ibcufile-<X>-<Y>, libcufile-devel-<X>-<Y>, gds-tools-<xX>-<Y> and
nvidia-fs-dkms:

$ sudo dnf install nvidia-gds

Veritying the Package Installation

On DGX 0S and UbuntuQS:

$ dpkg -s nvidia-gds
Package: nvidia-gds
Status: install ok installed
Priority: optional
Section: multiverse/devel
Installed-Size: 7
Maintainer: cudatools <cudatools@nvidia.com>
Architecture: amdoc4
Version: 1.0.0-1
Provides: gds
Depends: nvidia-gds-11-2 (>= 1.0.0)
Description: GPU Direct Storage meta-package
Meta-package containing all the available packages required for libcufile and
nvidia-fs.

On RHEL:

$ rpm -qgi nvidia-gds
Name : nvidia-gds
Version : 1.0.0
Release : 1

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 5

Architecture:
Install Date:
: Unspecified

Group

Size
License
Signature
Source RPM
Build Date
Build Host
Relocations
URL

Summary

x86_64
Tue Jun 15 13:49:28 2021

0

: NVIDIA Proprietary
: RSA/SHA512,
: nvidia-gds-1.0.0-1.src.rpm
: Sun Jun 13 23:22:45 2021

Sun Jun 13 23:22:45 2021,

cia-jenkins-agent-06.nvidia.com
(not relocatable)

: http://nvidia.com
: GPU Direct Storage meta-package
Description :

Installing GPUDirect Storage

Key ID f60f4b3d7fa2af80

Meta-package for GPU Direct Storage containing all the available packages required
for libcufile and nvidia-fs.

2.2.1.

Removal of Prior GDS Installation on Ubuntu
Systems

If any older GDS release packages are installed, use the following steps before upgrading to

release 1.0.0.

If you have 0.8.0, use:

$ sudo dpkg --purge nvidia-fs
$ sudo dpkg --purge gds-tools
$ sudo dpkg --purge gds

If you have 0.9.0 or above, use:

$ sudo apt-get remove --purge "nvidia-gds*"
$ sudo apt-get autoremove

2.2.2.

DGX 0S:

Preparing the 0S

GDS 1.0.0, NVSM, and MLNX_OFED packages can be installed via network using the preview
network repository. Currently, ONLY DGX 0S 5.0 (Ubuntu 20.04) is supported on the DGX

platform.

Note: If you have CUDA toolkit installed then note down the currently used toolkit version and
specify it in place of <x> in step 1. Start with step 2 onwards. If you do not have CUDA toolkit

installed, run:

$ nvidia-smi -q |

grep CUDA | awk '{print $4}'

's/\./=/"

| sed

Replace <x> in step 1 with output from the command line above. Steps:

1. $ sudo apt-get install cuda-toolkit-<x>

2. $ sudo apt-key adv --fetch-keys https://repo.download.nvidia.com/baseos/
GPG-KEY-dgx—-cosmos—-support

3. $ sudo add-apt-repository "deb https://repo
ubuntu/focal/x86 64/ focal-updates preview"

o &~

$ sudo apt update
$ sudo apt full-upgrade -y

6. Note down the Linux kernel version:

NVIDIA Magnum 10 GPUDirect Storage

.download.nvidia.com/baseos/

TB-10112-001_v1.0.0 | 6

Installing GPUDirect Storage

$ uname -a -r
7. $ sudo apt install mlnx-ofed-all mlnx-nvme-dkms
8. $ sudo update-initramfs -u -k ‘uname -r’
9. $ sudo reboot

Make sure the Linux kernel version noted in step 6 is the same version after step 9 is
completed. If the versions do not match, then GDS changes to kernel modules might have
been applied to the version noted in step 6.

RHEL 8.3

Enable the EPEL repository:

$ sudo dnf install -y
https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Enable the CUDA repository:

$ sudo dnf config-manager --add-repo
https://developer.download.nvidia.com/compute/cuda/repos/rhel8/x86 64/cuda-
rhel8.repo

2.2.3. GDS Package Installation

1. Download the GDS packages (Debian/RHEL] to the local client from https://
developer.nvidia.com/gpudirect-storage:

S| Note: Make sure to download the correct GDS package based on the 0S distribution and
CUDA toolkit. You do not need to download GDS packages for DGX 0S as it will be handled
as part of step 2.2.2.

On DGX 0S 5.0:

The GDS preview repo is enabled in the preparation step and does not require a local
installer package.

On Ubuntu 20.04:

$ sudo dpkg -i
gpudirect-storage-local-repo-ubuntu2004-1.0.0-cuda<x>.<y> 1.0-1 amd64.deb
$ sudo apt-key add /var/gpudirect-storage-local-repo-*/7fa2af80.pub

$ sudo apt-get update

On Ubuntu 18.04:

$ sudo dpkg -i
gpudirect-storage-local-repo-ubuntul804-1.0.0-cuda<x>.<y> 1.0-1 amd64.deb

$ sudo apt-key add /var/gpudirect-storage-local-repo-*/7fa2af80.pub

$ sudo apt-get update

On RHEL 8.3:

Enable the local repository

$ sudo rpm -i
gpudirect-storage-local-repo-rhel8-1.0.0-cudall.1-1.0-1.x86 64.rpm

2. Install cuFile and related packages (GDS installation]:
$ NVIDIA DRV _VERSION=$ (cat /proc/driver/nvidia/version | grep Module | awk
'{print $8}' |
cut -d '.' -f 1)

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 7

https://developer.nvidia.com/gpudirect-storage
https://developer.nvidia.com/gpudirect-storage

Installing GPUDirect Storage

On DGX 0S 5.0:

DGX 0S 5.0 systems come with prebuilt NVIDIA kernel drivers. Use the following method to

install nvidia-gds with the correct dependencies.

In the command below, use the CUDA Toolkit version number in place of <ver>, for
example 11-0

$ sudo apt install nvidia-gds-<ver> nvidia-dkms-${NVIDIA DRV VERSION}-server
$ sudo modprobe nvidia fs

On Ubuntu 18.04/20.04:

For systems with the nvidia-dkms-${NVIDIA DRV VERSION} package installed:

$ sudo apt install nvidia-gds
$ sudo modprobe nvidia fs

On RHEL 8.3:

Install the NVIDIA driver (ensure a DKMS stream is installed, not precompiled):

$ sudo dnf module install nvidia-driver:${NVIDIA DRV _VERSION}-dkms

Install 1ibcufile-<X>-<Y>, libcufile-devel-<X>-<Y>, gds-tools-<X>-<Y> and
nvidia-fs-dkms:

$ sudo dnf install nvidia-gds

2.2.4. Verifying the Package Installation

On DGX 0S and UbuntuOS:

S dpkg -s nvidia-gds
Package: nvidia-gds
Status: install ok installed
Priority: optional
Section: multiverse/devel
Installed-Size: 7
Maintainer: cudatools <cudatools@nvidia.com>
Architecture: amdoc4
Version: 1.0.0-1
Provides: gds
Depends: nvidia-gds-11-2 (>= 1.0.0)
Description: GPU Direct Storage meta-package
Meta-package containing all the available packages required for libcufile and
nvidia-fs.

On RHEL:

$ rpm -gi nvidia-gds
Name : nvidia-gds
Version g8 1,0.0
Release g 1

Architecture: x86 64
Install Date: Tue Jun 15 13:49:28 2021

Group : Unspecified

Size 3 @©

License : NVIDIA Proprietary

Signature : RSA/SHA512, Sun Jun 13 23:22:45 2021, Key ID £f60f4b3d7fa2af80
Source RPM : nvidia-gds-1.0.0-1l.src.rpm
Build Date : Sun Jun 13 23:22:45 2021

Build Host : cia-jenkins-agent-06.nvidia.com
Relocations : (not relocatable)

URL : http://nvidia.com

Summary : GPU Direct Storage meta-package
Description

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0

8

Installing GPUDirect Storage

Meta-package for GPU Direct Storage containing all the available packages required
for libcufile and nvidia-fs.

2.2.9. Verifying a Successful GDS Installation

This section provides information about how you can verify whether your GDS installation was
successful.

S Note: The gdscheck command below expects python3 to be present on the system. If it fails
because of python3 not being available then you can invoke the command with the explicit path
to where python [i.e. python2) is installed. For example:

$ /usr/bin/python /usr/local/cuda-<x>.<y>/gds/tools/gdscheck.py -p
To verify that GDS installation was successful, run gdscheck:
$ /usr/local/cuda-<x>.<y>/gds/tools/gdscheck.py -p

The output of this command shows whether a supported filesystem or device installed on the
system supports GDS. The output also shows whether PCle ACS is enabled on any of the PCI
switches.

Note: For best GDS performance, disable PCle ACS.

Sample output:

GDS release version: 1.0.0.80

nvidia fs version: 2.7 libcufile version: 2.4
ENVIRONMENT :

DRIVER CONFIGURATION:

NVMe : Unsupported

NVMeOF : Unsupported

SCSI : Unsupported

ScaleFlux CSD : Unsupported

NVMesh : Unsupported

DDN EXAScaler : Unsupported

IBM Spectrum Scale : Unsupported

NES : Supported

WekaFsS : Unsupported

Userspace RDMA : Unsupported

--Mellanox PeerDirect : Enabled

--rdma library : Not Loaded (libcufile rdma.so)
--rdma devices : Not configured

--rdma device status : Up: 0 Down: O

CUFILE CONFIGURATION:

properties.use compat mode : false

properties.gds rdma write support : true
properties.use poll mode : false
properties.poll mode max size kb : 4
properties.max batch io timeout msecs : 5
properties.max direct io size kb : 16384
properties.max device cache size kb : 131072
properties.max device pinned mem size kb : 33554432

properties.posix pool slab size kb : 4 1024 16384
properties.posix pool slab count : 128 64 32
properties.rdma peer affinity policy : RoundRobin

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 9

Installing GPUDirect Storage

properties.rdma dynamic_ routing : O
fs.generic.posix unaligned writes : false
fs.lustre.posix gds min kb: 0
fs.weka.rdma write support: false
profile.nvtx : false

profile.cufile stats : 0
miscellaneous.api check aggressive : false

GPU index 0 A100-PCIE-40GB bar:1 bar size (MiB) :65536 supports GDS

PLATFORM INFO:

IOMMU: disabled
Platform verification succeeded

@ Note:

There are READMEs provided in /usr/local/cuda-<x>.<y>/gds/tools and /usr/local/
cuda-<x>.<y>/gds/samples to show usage.

2.3. Installed GDS Libraries and Tools

The following is some information about determining which GDS libraries and tools you
installed.

Note: GPUDirect Storage packages are installed at /usr/local/cuda-X.Y/gds, where X is the
major version of the CUDA toolkit, and Y is the minor version.

GPUDirect Storage userspace libraries are located in the /usr/local/cuda-<X>.<Y>/
targets/x86 64-linux/lib/ directory.

$ 1s -1 /usr/local/cuda-X.Y/targets/x86 64-linux/lib/*cufile*
cufile.h

libcufile.so

libcufile.so0.0

libcufile.so0.1.0.0

libcufile rdma.so

libcufile rdma.so.0

libcufile rdma.so.1.0.0

GPUDirect Storage tools and samples are located in the /usr/local/cuda-xX.Y/gds
directory.

$ 1s -l1lh /usr/local/cuda-X.Y/gds/

total 20K

-rw-r--r—-- 1 root root 8.4K Mar 15 13:01 README
drwxr-xr-x 2 root root 4.0K Mar 19 12:29 samples
drwxr-xr-x 2 root root 4.0K mar 19 10:28 tools

For this release, GPUDirect Storage is providing an additional 1ibcufile-dev package
(cuFile library developers package) . This is primarily intended for the developer's
environment. Essentially the lincufile-dev package contains a static version of cuFile library

(libcufile static.a, libcufile rdma_static.a) and cufile.h header file which may be
required by the applications that use cuFile library APIs.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 10

Installing GPUDirect Storage

2.4. Uninstalling GPUDirect Storage

To uninstall from Ubuntu and DGX 0OS:

$ sudo apt remove --purge "nvidia-gds*"
$ sudo apt-get autoremove

To uninstall from RHEL:

$ sudo dnf remove "nvidia-gds*"

2.9. Environment Variables Used by
GPUDirect Storage

GDS uses the following environment variables.

Table 1. GDS Environment Variables
CUFILE_ENV Variable Description
CUFILE ENV_EXPERIMENTAL FS=1 Controls whether cufile checks for supporting

filesystems. When set to 1, allows testing with
new filesystems that are not yet officially enabled
with cuFile.

CUFILE ENV_PATH JSON=/home/user/cufile.json Controls the path where the cuFile library reads
the configuration variables from. This can be
used for container environments and applications
that require different configuration settings
from system default configuration at /etc/

cufile.json.

CUFILE_LOGFILE_PATH=/etc/log/cufile_$$.log Controls the path for cuFile log information.

Specifies the default log path, which is the current
working directory of the application.

Useful for containers or logging.

CUFILE LOGGING LEVEL=TRACE Controls the tracing level and can override the
trace level for a specific application without
requiring a new configuration file.

CUFILE IB SL=[0-15] Sets QOS level for userspace RDMA targets for
wekaFS and GPFS.

CUFILE RDMA DC_KEY="O0XABABCDEF" Controls the DC_KEY for userspace RDMA DC
targets for wekaFS and GPFS.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | M1

Installing GPUDirect Storage

CUFILE_ENV Variable Description
CUFILE NVTX=true Enables NVTX tracing for use with Nsight
systems.

2.6. JSON Config Parameters Used by
GPUDirect Storage

Refer to GPUDirect Storage Parameters for details about the JSON Config parameters used by

GDS

Consider compat mode for systems or mounts that are not yet set up with GDS support. To
learn more about Compatibility Mode, refer to cuFile Compatibility Mode.

2.7. GDS Configuration File Changes to
Support Dynamic Routing

For dynamic routing to support multiple file systems and mount points, users can configure
the global per file system rdma dev_addr list property for a single mount or the
rdma dev_addr list property for a per file system mount table.
"fsll: {
"lustre": {
// if using a single lustre mount, provide the ip addresses

// here (use : sudo lnetctl net show)
//"rdma_dev_addr list" : []

// if using multiple lustre mounts, provide ip addresses
// used by respective mount here
//"mount table" : {
// "/lustre/ai200 01/client" : {
// "rdma dev_addr list"™ : ["172.172.1.40",
"172.172.1.42"]
/1Y

// "/lustre/ai200 02/client"™ : {
// "rdma dev addr list" : ["172.172.2.40",
T "172.172.2.42"]
//}
I o

"nfs": {
//"rdma_dev_addr list™ : []

//"mount_table" : {

// "/mnt/nfsrdma 01/" : {

// "rdma dev_addr list" : []
ar

// "/mnt/nfsrdma 02/" : {

// "rdma dev_addr list" : []
!/}

//}

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 |

12

Installing GPUDirect Storage

b

2.8. Determining Which Version of GDS is
Installed

To determine which version of GDS you have, run the following command:
$ gdscheck.py -v

Review the output, for example:

.78

GDS release version: 0
libcufile version: 2.4

1,0,
nvidia fs version: 2.7

2.9. Experimental Repos for Network
Install of GDS Packages for DGX
Systems

GDS 1.0.0 and MLNX_OFED packages can be installed by enabling the preview repository on
supported DGX platforms using the following steps.

For Ubuntu 18.04/20.04 distributions:

GDS 1.0.0, NVSM and MLNX_OFED packages can be installed via network using the preview
network repository.

For Ubuntu 20.04 distributions:

$ sudo apt-key adv --fetch-keys https://repo.download.nvidia.com/baseos/GPG-KEY-dgx—
cosmos—-support

$ sudo add-apt-repository "deb https://repo.download.nvidia.com/baseos/ubuntu/focal/
x86_ 64/ focal-updates preview"

$ sudo apt update

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 13

Chapter 3. APl Errors

This section provides information about the APl errors you might get when using GDS.

3.1. CU_FILE_DRIVER_NOT_INITIALIZED

CU FILE DRIVER NOT INITIALIZED APl error.

If the cuFileDriverOpen APl is not called, errors encountered in the implicit call to driver
initialization are reported as cuFile errors encountered when calling cuFileBufRegister or
cuFileHandleRegister.

3.2. CU_FILE_DEVICE_NOT_SUPPORTED

CU _FILE DEVICE NOT SUPPORTED error.

GDS is supported only on NVIDIA graphics processing units (GPU) Tesla® or Quadro® models
that support compute mode, and a compute major capability greater than or equal to 6.

B e p—

3.3. CU_FILE_IO_NOT_SUPPORTED

CU_FILE TO NOT SUPPORTED error.

See Before You Install GDS for a list of the supported filesystems. If the file descriptor is from
a local filesystem, or a mount that is not GDS ready, the APl returns this error.

Common reasons for this error include:

The file descriptor belongs to an unsupported filesystem.

>
» The specified £d is not a regular UNIX file.
» O DIRECT is not specified on the file.

>

Any combination of encryption, and compression, compliance settings on the £d are set.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 14

APl Errors

For example, FS_COMPR FL | FS_ENCRYPT FL | FS_APPEND FL | FS_ IMMUTABLE FL.

Note: These settings are allowed when compat mode is set to true.

» Any combination of unsupported file modes are specified in the open call for the £d. For

example,
O _APPEND | O NOCTTY | O NONBLOCK | O DIRECTORY | O NOFOLLOW | O TMPFILE

3.4. CU_FILE_CUDA_MEMORY_TYPE_INVALID

The following is information about the CU_FILE CUDA MEMORY TYPE INVALID error.

Physical memory for cudaMallocManaged memory is allocated dynamically at the first
use. Currently, it does not provide a mechanism to expose physical memory or Base
Address Register (BAR) memory to pin for use in GDS. However, GDS indirectly supports
cudaMallocManaged memory when the memory is used as an unregistered buffer with
cuFileWrite and cuFileRead.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 15

Chapter 4. Basic Troubleshooting

This section provides information about basic troubleshooting for GDS.

4.1. Log Files for the GDS Library

Here is some information about troubleshooting the GDS library log files.

A cufile.log file is created in the same location where the application binaries are located.
Currently the maximum log file size is 32MB. If the log file size increases to greater than
32MB, the log file is truncated and logging is resumed on the same file.

4.2. Enabling a Different cufile.log File for
Each Application

You can enable a different cufile. log file for each application.

There are several relevant cases:

» Ifthe logging:dir property in the default /etc/cufile.json file is not set, by default,
the cufile.log file is generated in the current working directory of the application.

» Ifthe logging:dir property is set in the default /etc/cufile.json file, the log file is
created in the specified directory path.

S Note: This is usually not recommended for scenarios where multiple applications use the
libcufile.so library.

For example:

"logging": {
// log directory, if not enabled
// will create log file under current working
// directory
"dir": "/opt/gdslogs/",
}

The cufile.log will be created as a /opt/gdslogs/cufile.log file.

If the application needs to enable a different cufile.log for different applications, the
application can override the default JSON path by doing the following steps:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 16

Basic Troubleshooting

1. Export CUFILE ENV PATH JSON="/opt/myapp/cufile.json".

2. Editthe /opt/myapp/cufile.json file.

"logging": {
// log directory, if not enabled
// will create log file under current working
// directory
"dir": "/opt/myapp",
}

3. Run the application.

4. To check for logs, run:
$ 1s -1 /opt/myapp/cufile.log

4.3. Enabling Tracing GDS Library API
Calls

There are different logging levels, which can be enabled in the /etc/cufile.json file.

By default, logging level is set to ERROR. Logging will have performance impact as we increase
the verbosity levels like INFO, DEBUG, and TRACE, and should be enabled only to debug field
Issues.

Configure tracing and run the following:

"logging": {

// log directory, if not enabled

// will create log file under local directory
//"dir": "/home/<xxxx>",

// ERROR|WARN |INFO|DEBUG|TRACE (in decreasing order of priority)
"level”": "ERROR"
b

4.4. cuFileHandleRegister Error

Here is some information about the cuFileHandleRegister error.

If you see this error on the cufile.log file when an 0 is issued:
“cuFileHandleRegister error: GPUDirect Storage not supported on current file.”

Here are some reasons why this error might occur:
» The filesystem is not supported by GDS.

See CU_FILE_DEVICE_NOT_SUPPORTED for more information.
» DIRECT_ IO functionality is not supported for the mount on which the file resides.

For more information, enable tracing in the /etc/cufile.json file.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 17

Basic Troubleshooting

4.5. Troubleshooting Applications that
Return cuFile Errors

This sections describes how to troubleshoot cuFile errors.

To debug these errors:

1. See the cufile.h file for more information about errors that are returned by the API.

2. If the 10 was submitted to the GDS driver, check whether there are any errors in GDS stats.
If the |10 fails, the error stats should provide information about the type of error.

See Finding the GDS Driver Statistics for more information.

3. Enable GDS library tracing and monitor the cufile. log file.

4. Enable GDS Driver debugging:
$ echo 1 >/sys/module/nvidia fs/parameters/dbg enabled

After the driver debug logs are enabled, you might get more information about the error.

4.6. cuFile-* Errors with No Activity in
GPUDirect Storage Statistics

This section provides information about a scenario where there are cuFile errors in the GDS
statistics.

This issue means that the API failed in the GDS library. You can enable tracing by setting the
appropriate logging level in the /etc/cufile.json file to get more information about the
failure in cufile.log.

4.7. CUDA Runtime and Driver Mismatch
with Error Code 35

The following is information about how to resolve CUDA error 35.

Error code 35 from the CUDA documentation points to cudaErrorInsufficientDriver,
which indicates that the installed NVIDIA CUDA driver is older than the CUDA runtime library.
This is not a supported configuration. For the application to run, you must update the NVIDIA
display driver.

S| Note: cuFile tools depend on CUDA runtime 10.1 and later. You must ensure that the installed
CUDA runtime is compatible with the installed CUDA driver and is at the recommended
version.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 18

Basic Troubleshooting

4.8. CUDA API Errors when Running the
cuFile-* APls

THe following is information about CUDA APl errors.

The GDS library uses the CUDA driver APIs. If you observe CUDA APl errors, you will observe
an error code. Refer to the error codes in the CUDA Libraries documentation for more
information.

4.9. Finding GDS Driver Statistics

This section describes how you can find the driver statistics.

To find the GDS Driver Statistics, run the following command:

$ cat /proc/driver/nvidia-fs/stats

GDS Driver kernel statistics for READ/WRITE are available only for the EXAScaler filesystem.
Refer to Troubleshooting and FAQ for the WekalO Filesystem for more information about
READ/WRITE.

4.10. Tracking 10 Activity that Goes
Through the GDS Driver

The following is information about tracking 10 activity.

In GDS Driver statistics, the ops row shows the active 10 operation. The Read and Wirite
fields show the current active operation in flight. This information should provide an idea of
how many total 10s are in flight across all applications in the kernel. If there is a bottleneck
in the userspace, the number of active 10s will be less than the number of threads that are
submitting the 10. Additionally, to get more details about the Read and Write bandwidth
numbers, look out for counters in the Read/Write rows.

4.11. Read/Write Bandwidth and Latency
Numbers in GDS Stats

The following is information about Read/write bandwidth and latency numbers in GDS.

Measured latencies begin when the |0 is submitted and end when the 10 completion is
received by the GDS kernel driver. Userspace latencies are not reported. This should provide

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 19

https://docs.nvidia.com/cuda-libraries/index.html

Basic Troubleshooting

an idea whether the user space is bottlenecked or whether the |0 is bottlenecked on the
backend disks/fabric.

Note: The WekalO filesystem reads do not go through the nvidia-fs driver, so Read/write
bandwidth stats are not available for WekalO filesystem by using this interface.

Refer to the Troubleshooting and FAQ for the WekalO Filesystem for more information.

4.12. Tracking Registration and
Deregistration of GPU Buffers

This section provides information about registering and deregistering GPU buffers.

In GDS Driver stats, look for the active field in BART-map stats row. The pinning and unpinning
of GPU memory through cuFileBufRegister and cuFileBufDeregister iS an expensive
operation. If you notice a large number of registrations (n) and deregistration (free)

in the nvidia-fs stats, it can hurt performance. Refer to the GPUDirect Storage Best Practices
Guide for more information about using the cuFileBufRegister AP

4.13. Enabling RDMA-specific Logging for
Userspace File Systems

In order to troubleshoot RDMA related issues for userspace file systems, ensure that the
CUFILE LOGGING LEVEL environment variable is set to a value between 0-2 prior to running
the application. However, for this to work, cufile. json logging level also should be set to
TRACE/DEBUG/INFO level.

For example:

$ export CUFILE_LOGGING LEVEL=1
$ cat /etc/cufile.json

"logging": {
// log directory, if not enabled will create log file
// under current working directory

//"dir": "/home/<xxxx>",
// ERROR|WARN | INFO|DEBUG|TRACE (in decreasing order of priority)
"level”: "DEBUG"

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 20

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Basic Troubleshooting

4.14. CUDA_ERROR_SYSTEM_NOT_READY

After Installation

On systems with NVSwitch, if you notice the CUDA_ERROR_SYSTEM_NOT_READY error being
reported, then make sure that you install the same version of Fabric Manager as the CUDA
driver.

For example, if you use:

$ sudo apt install nvidia-driver-460-server -y
then use:

$ apt-get install nvidia-fabricmanager-460

Make sure to restart the Fabric Manager service using:

$ sudo service nvidia-fabricmanager start

4.15. Adding udev Rules for RAID Volumes

To add udev rules for RAID volumes:

As a sudo user, change the following line in /1ib/udev/rules.d/63-md-raid-
arrays.rules:
IMPORT {program}="/usr/sbin/mdadm --detail --export $devnode"

Reboot the node or restart the mdadm.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 21

Chapter 5. Advanced Troubleshooting

This section provides information about troubleshooting some advanced issues.

5.1. Resolving Hung cuFile* APIls with No
Response

This section describes how to resolve hung cuFile APls.

1. Check whether there are any kernel panics/warnings in dmesg:

$ dmesg > warnings.txt. less warnings.txt
2. Check whether the application process is in the *D’ (uninterruptible] state).
3. If the processis in the ‘D’ state:

a). Get the PID of the process by running the following command:
$ ps axf | grep ' D’
b). As a root user, get the backtrace of the ‘b’ state process:

$ su root
$ cat /proc/<pid>/stack

4. Verify whether the threads are stuck in the kernel or in user space.
For more information, review the backtrace of the ‘b’ state threads.
5. Check whether any threads are showing heavy CPU usage.
a). The htop and mpstat tools should show CPU usage per core.
b). Get the call graph of where the CPUs are being used.

The following code snippet should narrow down whether the threads are hung in user
space or in the kernel:
S perf top -g

5.2. Sending Relevant Data to Customer
Support

This section describes how to resolve a kernel panic with stack traces using NVSM or the GDS
Log Collection tool.

DGX 0S:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 22

Advanced Troubleshooting

For DGX Base0S with the preview network repo enabled and NVSM installed:

$ sudo apt-get install nvsm
$ sudo nvsm dump health

For more details on running NVSM commands, refer to NVIDIA System Management User
Guide.

Non DGX:

The GDS Log Collection tool, gds log collection.py, may be run by GDS users to collect
relevant debugging information from the system when issues with GDS 10 are seen.

Some of the important information that this tool captures is highlighted below:

» dmesg Output and relevant kernel log files.

» System map files and vmlinux image

» modinfo output for relevant modules

> /proc/cmdline output

» |IB devices info like ibdev2net and ibstatus

» 0OS distribution information

» Cpuinfo, meminfo

» nvidia-fs stats

» Per process information like cufile.log, cufile.json, gds_stats, stack pointers

» Any user specified files

To use the log collection tool:
$ sudo /usr/local/cuda/gds//tools/gdstools/gds log collection.py -h

This tool is used to collect logs from the system that are relevant for debugging.

It collects logs such as 0S and kernel info, nvidia-fs stats, dmesg logs, syslogs, system map
files and per process logs such as cufile.json, cufile.log, gdsstats, process stack, and so
on.

Usage:

./gds_log collection.py [options]

options:

-h help

-f filel,file2, .. Note: there should be no spaces between ')

These files could be any relevant files apart from the one's being collected (such as crash
files).

Usage examples:
sudo ./gds_log colection.py - Collects all the relevant logs.

sudo ./gds_log colection.py -f filel,file2 - Collects all the relevant files as well as
user specified files.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 23

https://docs.nvidia.com/datacenter/nvsm/nvsm-user-guide/index.html#topic_3_4_3
https://docs.nvidia.com/datacenter/nvsm/nvsm-user-guide/index.html#topic_3_4_3

Advanced Troubleshooting

5.3. Resolving an |0 Failure with EIO and
Stack Trace Warning

Here is some information about how to resolve an |0 failure with EIO and a warning with a
stack trace with an nvfs mgroup check and set function in the trace.

This might mean that the EXAScaler filesystem did not honor 0_DIRECT and fell back to page
cache mode. GDS tracks this information in the driver and returns EIO.

Note: The WARNING stack trace is observed only once during the lifetime of the kernel
module. You will get an Exrror: Input/Output (EIO), butthe trace message will be printed
only once. If you consistently experience this issue, contact support.

5.4. Controlling GPU BAR Memory Usage

Here is some information about how to manage and control your GPU BAR memory usage.

1. To show how much BAR Memory is available per GPU, run the following command:
$ /usr/local/cuda-x.y/gds/tools/gdscheck

2. Review the output, for example:

GPU INFO:
GPU Index: O bar:1 bar size (MB) :32768
GPU Index: 1 bar:1 bar size (MB) :32768
GDS uses BAR memory in the following cases:
» When the process invokes cuFileBufRegister.

» When GDS uses the cache internally to allocate bounce buffers per GPU.

Note: There is no per-GPU configuration for cache and BAR memory usage.

Each process can control the usage of BAR memory via the configurable property in the /
etc/cufile.json file:

"properties": {

// device memory size for reserving bounce buffers for the entire GPU (in KB)
"max device cache size" : 131072,

// limit on maximum memory that can be pinned for a given process (in KB)

"max device pinned mem size" : 33554432

}

Note: This configuration is per process, and the configuration is set across all GPUs.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 24

Advanced Troubleshooting

5.5. Determining the Amount of Cache to
Set Aside

Here is some information about how to determine how much cache to set aside.

By default, 128 MB of cache is set in the configurable max device cache size property.
However, this does not mean that GDS pre-allocates 128 MB of memory per GPU up front.
Memory allocation is done on the fly and is based on need. After the allocation is complete,
there is no purging of the cache.

By default, since 128 MB is set, the cache can grow up to 128 MB. Setting the cache is
application specific and depends on workload. Refer to the GPUDirect Storage Best Practices
Guide to understand the need of cache and how to set the limit based on guidance in the guide.

5.6. Monitoring BAR Memory Usage

Here is some information about monitoring BAR memory usage.

There is no way to monitor the BAR memory usage per process. However, GDS Stats tracks

the global BAR usage across all processes. For more information, see the following stat

output from /proc/driver/nvidia fs/stats for the GPU with B:D:F 0000:34:00.0:

GPU 0000:34:00.0 wuuid:12a86a5e-3002-108f-ee49-4b51266cdc07 : Registered MB=32
Cache MB=10

Registered MB tracks how much BAR memory is used when applications are explicitly using

thecuFileBufRegister AP

Cache MB tracks GDS usage of BAR memory for internal cache.

5.7. Resolving an ENOMEM Error Code

The following is information about the -12 ENOMEM error code.

Each GPU has some BAR memory reserved. The cuFileBufRegister function makes

the pages that underlie a range of GPU virtual memory accessible to a third-party device.
This process is completed by pinning the GPU device memory in BAR space by using the
nvidia p2p get pages API. If the application tries to pin memory beyond the available BAR
space, the nvidia p2p get pages APl returns a -12 (ENOMEM] error code.

To avoid running out of BAR memory, developers should use this output to manage how much
memory is pinned by application. Administrators can use this output to investigate how to limit
the pinned memory for different applications.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 25

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html
https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Advanced Troubleshooting

5.8. GDS and Compatibility Mode

This section describes hoe to determine GDS compatibility mode.
To determine the compatibility mode, complete the following tasks:

1. Inthe /etc/cufile.json file, verify that allow compat mode is set to true.
2. gdscheck -p displays whether the allow compat mode property is set to true.
3. Check the cufile.log file for the cufile I0 mode: POSIX message.

This message is in the hot 10 path, where logging each instance significantly impacts
performance, so the message is only logged when logging:level is explicitly set to the
TRACE mode in the /etc/cufile.json file.

5.9. Enabling Compatibility Mode

This section describes how to enable the compatibility mode.
Compatibility mode can be used by application developers to test the applications with cuFile-
enabled libraries under the following conditions:

» When there is no support for GDS for a specific filesystem.

» Thenvidia-fs.ko driver is not enabled in the system by the administrator.

To enable compatibility mode:

1. Remove the nvidia-fs kernel driver:

$ rmmod nvidia-fs

2. Inthe /etc/cufile.json file, set compat-mode to true .

The 10 through cuFileRead/cuFilenrite will now fall back to the CPU path.

5.10. Tracking the |0 After Enabling
Compatibility Mode
Here is some information about tracking the 10 after you enable the compatibility mode.

When GDS is used in compatibility mode, and cufile stats is enabled in the /etc/
cufile.json file, you can use gds_stats or another standard Linux tools, such as strace,
lostat, iotop, SAR, ftrace, and perf. You can also use the BPF compiler collection tools to track
and monitor the |0.

When compatibility mode is enabled, internally, cuFileRead and cuFilewWrite use POSIX
pread and pwrite system calls, respectively.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 26

Advanced Troubleshooting

5.11. Bypassing GPUDirect Storage

There are some scenarios in which you can bypass GDS.

There are some tunables where GDS 10 and POSIX 10 can go through simultaneously.

The following are cases where GDS can be bypassed without having to remove the GDS driver:

>

On supported filesystems and block devices.

Inthe /etc/cufile.jsonfile, if the posix unaligned writes config property is set to
true, the unaligned writes will fall back to the compatibility mode and will not go through
GDS. Refer to Before You Install GDS for a list of supported file systems.

On an EXAScaler filesystem

Inthe /etc/cufile.jsonfile, if the posix gds min kb config property is setto a
certain value (in KBJ, the 10 for which the size is less than or equal to the set value, will fall
back to POSIX mode. For example, if posix gds min kb is set to 8KB, |0s with a size that
is less than or equal to 8KB, will fall back to the POSIX mode.

On a WekalO filesystem:

Note: Currently, cuFilewrite will always fallback to the POSIX mode.

In the /etc/cufile.json file, if the allow-compat-mode config property is set to true:

» If RDMA connections and/or memory registrations cannot be established, cuFileread
will fall back to the POSIX mode.

» cuFileRead fails to allocate an internal bounce buffer for non-4K aligned GPU VA
addresses.

Refer to the GPUDirect Storage Best Practices Guide for more information.

H5.12. GDS Does Not Work for a Mount

The following information can help you understand why GDS is not working for a mount.

GDS will not be used for a mount in the following cases:

>

>

>

When the necessary GDS drivers are not loaded on the system.
The filesystem associated with that mount is not supported by GDS.

The mount point is denylisted in the /etc/cufile.json file.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 27

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Advanced Troubleshooting

5.13. Simultaneously Running the
GPUDirect Storage |10 and POSIX |0
on the Same File

Since a file is opened in 0_DIRECT mode for GDS, applications should avoid mixing O DIRECT
and normal I/0 to the same file, and especially to overlapping byte regions in the same file.

Even when the filesystem correctly handles the coherency issues in this situation, overall I/

O throughput might be slower than using either mode alone. Similarly, applications should
avoid mixing mmap (2) of files with direct I/0 to the same files. Refer to the filesystem-specific
documentation for information about additional 0 DIRECT limitations.

5.14. Running Data Verification Tests Using
GPUDirect Storage

This section describes how you can run data verification tests by using GDS.

GDS has an internal data verification utility, gdsio verify, which is used to test data integrity
of reads and writes. Run gdsio verify -h for detailed usage information.

For example:

$ /usr/local/cuda-11.2/gds/tools/gds verify -f /mnt/ai200/fio-seg-writes-1 -d 0 -o 0
-s 16 -n 1 -m 1

Here is the sample output:

gpu index :0,file :/mnt/ai200/fio-seqg-writes-1, RING buffer size :0,
gpu buffer alignment :0, gpu buffer offset :0, file offset :0,

io requested :1073741824, bufregister :true, sync :1, nr ios :1,
fsync :0,

address = 0x560d32c17000

Data Verification Success

Note: This test completes data verification of reads and writes through GDS.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 28

Chapter 6. Troubleshooting
Performance

This section covers issues related to performance.

6.1. Running Performance Benchmarks
with GDS

You can run performance benchmarks with GDS and compare the results with CPU numbers.

GDS has a homegrown benchmarking utility, /usr/local/cuda-x.y/gds/tools/gdsio,
which helps you compare GDS 10 throughput numbers with CPU |0 throughput. Run gdsio -
hfor detailed usage information.

Here are some examples:

GDS: Storage --> GPU Memory

$ /usr/local/cuda-x.y/tools/gdsio -f /mnt/ai200/fio-seq-writes-1 -d 0 -w 4 -s 10G -1
IM -T 0 -x O

Storage --> CPU Memory

$ /usr/local/cuda-x.y/tools/gdsio -f /mnt/ai200/fio-segq-writes-1 -d 0 -w 4 -s 10G -1
IM -T 0 -x 1

Storage --> CPU Memory --> GPU Memory

$ /usr/local/cuda-x.y/tool/gdsio -f /mnt/ai200/fio-seg-writes-1 -d 0 -w 4 -s 10G -i
IM -IT 0 -x 2

6.2. Tracking Whether GPUDirect Storage
Is Using an Internal Cache

You can determine whether GDS is using an internal cache.
Prerequisite: Before you start, read the GPUDirect Storage Best Practices Guide.

GDS Stats has per-GPU stats, and each piece of the GPU bus device function (BDF)
information is displayed. If the cache MB field is active on a GPU, GDS is using the cache
internally to complete the |0.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 29

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Troubleshooting Performance

GDS might use the internal cache when one of the following conditions are true:

» The file offset thatwas issued in cuFileRead/cuFileWrite is not 4K aligned.
» The size in cuFileRead/cuFilelrite calls are not 4K aligned.

» The devPtr base that was issued in cuFileRead/cuFileWrite is not 4K aligned.

» The devPtr base+devPtr offset thatwas issued in cuFileRead/cuFileWrite is not 4K
aligned.

6.3. Tracking when |0 Crosses the
PCle Root Complex and Impacts
Performance

You can track when the |10 crosses the PCle root complex and affects performance.

Refer to Review Peer Affinity Stats for a Kernel Filesystem and Storage Devices for more
information.

6.4. Using GPUDirect Statistics to Monitor
CPU Activity

Although you cannot use GDS statistics to monitor CPU activity, you can use the following
Linux tools to complete this task:

> htop
> perf

> mpstat

6.9. Monitoring Performance and Tracing
with cuFile-* APls

You can monitor performance and tracing with the cuFile-* APls.

You can use the FTrace, the Perf, or the BCC-BPF tools to monitor performance and tracing.
Ensure that you have the symbols that you can use to track and monitor the performance with
a standard Linux |0 tool.

6.6. Example: Using Linux Tracing Tools

The cuFileBufRegister function makes the pages that underlie a range of GPU virtual
memory accessible to a third-party device. This process is completed by pinning the GPU

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 30

Troubleshooting Performance

device memory in the BAR space, which is an expensive operation and can take up to a few
milliseconds.

You can using the BCC/BPF tool to trace the cuFileBufRegister API, understand what is
happening in the Linux kernel, and understand why this process is expensive.

Scenario

1.

You are running a workload with 8 threads where each thread is issuing
cuFileBufRegister to pintothe GPU memory.

$./gdsio -f /mnt/ai200/seg-writes-1 -d 0 -w 8 -s 10G -1 1M -I 0 -x O
When |0 is in progress, use a tracing tool to understand what is going on with
cuFileBufRegister:

$ /usr/share/bcc/tools# ./funccount -Ti 1 nvfs mgroup pin shadow pages

Review the sample output:

15:04:56
FUNC COUNT
nvfs mgroup pin shadow pages 8

As you can see, the nvfs mgroup pin shadow pages function has been invoked 8 times
In one per thread.

To see the latency for that function, run:

$ /usr/share/bcc/tools# ./funclatency -i 1 nvfs mgroup pin shadow pages

Review the output:

Tracing 1 functions for "nvfs mgroup pin shadow pages"... Hit Ctrl-C to end.

nsecs count distribution

0 ->1 0 | |

2 -> 3 0 | |

4 —> 7 0 | |

8 -> 15 0 | |

16 -> 31 0 | |

32 -> 63 0 | |

64 -> 127 0 | |

128 -> 255 0 | |

256 -> 511 0 | |

512 -> 1023 0 | |

1024 -> 2047 0 | |

2048 -> 4095 0 | |

4096 -> 8191 0 | I

8192 -> 16383 1 | wesese |

16384 -> 32767 7 |**|

Seven calls of the nvfs mgroup pin shadow pages function took about 16-32
microseconds. This is probably coming from the Linux kernel get _user pages fast that
Is used to pin shadow pages.

cuFileBufRegister invokes nvidia p2p get pages NVIDIA driver function to pin GPU
device memory in the BAR space. This information is obtained by running $ perf top -g
and getting the call graph of cuFileBufRegister.

The following example the overhead of the nvidia p2p get pages:
$ /usr/share/bcc/tools# ./funclatency -Ti 1 nvidia p2p get pages

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 31

Troubleshooting Performance

15:45:19
nsecs : count distribution
0 -—>1 S
2 -> 3
4 -> 7
8 -> 15
16 —> 31
32 -> 63
64 -> 127
128 -> 255
256 -> 511
512 -> 1023
1024 -> 2047 0 | |
2048 -> 4095 : 0 | |
4096 -> 8191 : 0 | |
8192 -> 16383 : 0 | |
16384 -> 32767 s © | |
32768 -> 65535 : 0 | |
65536 -> 131071 : 0 | |
131072 -> 262143 : 0 | |
262144 -> 524287 3 2 | TR EWSwENwE |
|

524288 -> 1048575 . 6 |**

cNololoNolololNoNoNe]

6.7. Tracing the cuFile-* APls

You can use nvprof/NVIDIA Nsight to trace the cuFile-* APIs.

cuFile-* APIs are not integrated into existing CUDA visibility tools and will not show up on
nvprof or NVIDIA Nsight tools.

NVTX static tracepoints are available for public interface in the 1ibcufile.so library. After
these static tracepoints are enabled, you can view these traces in NVIDIA Nsight just like any
other CUDA® symbols.

You can enable the NVTX tracing using the JSON configuration at /etc/cufile.json:
"profile": {

// nvtx profiling on(true)/off (false)

"nvtx": true,

by

6.8. Improving Performance using
Dynamic Routing

On platforms where the 10 transfers between GPU(s) and the storage NICs involve PCle traffic
across PCle-host bridge, GPUDirect Storage 10 may not see a great throughput especially for
writes. Also, certain chipsets may support only P2P read traffic for host bridge traffic. In such
cases, the dynamic routing feature can be enabled to debug and identify what routing policy
is deemed best for such platforms. This can be illustrated with a single GPU write test with
the gdsio tool, where there is one Storage NIC and 10 GPUs with NVLINKs access enabled
between the GPUS. With dynamic routing enabled, even though the GPU and NIC might be on
different sockets, GDS can still achieve the maximum possible write throughput.

$ cat /etc/cufile.json | grep rdma dev
"rdma_dev_addr list": ["192.168.0.19" 1,

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 32

Troubleshooting Performance

Dynamic Routing OFF:

$ cat /etc/cufile.json | grep routing
"rdma dynamic routing": false
$ for 1 in 012 34546 789 10;
do
./gdsio -f /mnt/nfs/filel -d $1 -n 0 -w 4 -s 1G -1 1M -x 0 -I 1 -p -T 15 ;
done
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 45792256/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.873560 GiB/sec, Avg Latency: 1359.280174 usecs ops: 44719
total time 15.197491 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 45603840/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.867613 GiB/sec, Avg Latency: 1363.891220 usecs ops: 44535
total time 15.166344 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 42013696/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.848411 GiB/sec, Avg Latency: 1373.154082 usecs ops: 41029
total time 14.066573 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 43517952/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.880763 GiB/sec, Avg Latency: 1358.207427 usecs ops: 42498
total time 14.406582 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 34889728/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.341907 GiB/sec, Avg Latency: 1669.108902 usecs ops: 34072
total time 14.207836 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 36955136/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.325239 GiB/sec, Avg Latency: 1680.001220 usecs ops: 36089
total time 15.156790 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 37075968/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.351491 GiB/sec, Avg Latency: 1661.198487 usecs ops: 36207
total time 15.036584 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 35066880/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 2.235654 GiB/sec, Avg Latency: 1748.638950 usecs ops: 34245
total time 14.958656 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 134095872/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.940253 GiB/sec, Avg Latency: 436.982682 usecs ops: 130953
total time 14.304269 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 135974912/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.932070 GiB/sec, Avg Latency: 437.334849 usecs ops: 132788
total time 14.517998 secs
url index :0, urlname :192.168.0.2 urlport :18515
IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 174486528/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 11.238476 GiB/sec, Avg Latency: 347.603610 usecs ops: 170397
total time 14.806573 secs

Dynamic Routing ON [nvlinks enabled):

$ cat /etc/cufile.json | grep routing
"rdma dynamic routing": true
"rdma dynamic routing order": ["GPU MEM NVLINKS"]

$ for i in 012 3 456 789 10;

do

./gdsio -f /mnt/nfs/filel -d $i -n 0 -w 4 -s 1G -1 IM -x 0 -I 1 -p -T 15 ;

done

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 134479872/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.885214 GiB/sec, Avg Latency: 437.942083 usecs ops: 131328
total time 14.434092 secs

url index :0, urlname :192.168.0.2 urlport :18515

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 33

Troubleshooting Performance

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 138331136/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.891407 GiB/sec, Avg Latency: 437.668104 usecs ops: 135089
total time 14.837118 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 133800960/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.897250 GiB/sec, Avg Latency: 437.305565 usecs ops: 130665
total time 14.341795 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 133990400/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.888714 GiB/sec, Avg Latency: 437.751327 usecs ops: 130850
total time 14.375893 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 141934592/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.905190 GiB/sec, Avg Latency: 437.032919 usecs ops: 138608
total time 15.200055 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 133379072/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.892493 GiB/sec, Avg Latency: 437.488259 usecs ops: 130253
total time 14.304222 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 142271488/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.892426 GiB/sec, Avg Latency: 437.660016 usecs ops: 138937
total time 15.258004 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 134951936/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.890496 GiB/sec, Avg Latency: 437.661177 usecs ops: 131789
total time 14.476154 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 132667392/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.930203 GiB/sec, Avg Latency: 437.420830 usecs ops: 129558
total time 14.167817 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 137982976/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 8.936189 GiB/sec, Avg Latency: 437.123356 usecs ops: 134749
total time 14.725608 secs

url index :0, urlname :192.168.0.2 urlport :18515

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 170469376/4194304 (KiB) IOSize:
1024 (KiB) Throughput: 11.231479 GiB/sec, Avg Latency: 347.818052 usecs ops: 166474
total time 14.474698 secs

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 34

Chapter 7. Troubleshooting 10 Activity

This section covers issues that are related to 10 activity and the interactions with the rest of
Linux.

7.1. Managing Coherency with the Page
Cache

Here is some information about how filesystems maintain the coherency of data in the page
cache and the data on disk.

When using GDS, files are opened with the 0 DIRECT mode. When |0 is complete, in the
context of DIRECT |0, it bypasses the page cache.

» On EXAScaler filesystem:

» Forreads, |0 bypasses the page cache and fetches the data directly from backend
storage.

» When writes are issued, the nvidia-fs drivers will try to flush the data in the page
cache for the range of offset-length before issuing writes to the VFS subsystem.

» The stats that track this information are:
» pg cache
» pg cache fail
> pg cache eio
» On WekalO filesystem:

» Forreads, |0 bypasses the page cache and fetches the data directly from backend
storage.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 35

Chapter 8. EXAScaler Filesystem LNet
Troubleshooting

This section describes how to troubleshoot issues with the EXAScaler Filesystem.

8.1. Determining the EXAScaler
Filesystem Client Module Version

You can determine the version of the EXAScalerFilesystem Client module.

To check the EXAScaler filesystem Client version, check dmesg after you install the EXAScaler
filesystem.

Note: The EXAScaler server version should be EXA-5.2.

This table provides a list of the client kernel module versions that have been tested with DDN
Al200 and DDN Al400 systems:

Table 2. Tested Kernel Module Versions

DDN Client Version Kernel Version MLNX_OFED version
2.12.3_ddn28 4.15.0 MLNX_OFED 4.7
2.12.3_ddn29 4.15.0 MLNX_OFED 4.7
2.12.3_ddn39 4.15.0 MLNX_OFED 5.1
2.12.5_ddn4 5.4.0 MLNX_OFED 5.1
2.12.6_ddn19 5.4.0 MLNX_OFED 5.3

To verify the client version, run the following command:
$ sudo lctl get param version

Sample output:
Lustre version: 2.12.3 ddn39

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 36

EXAScaler Filesystem LNet Troubleshooting

8.2. Checking the LNet Network Setup on
a Client

You can check the LNet network setup on the client.

1. Run the following command.
$ sudo lnetctl net show:

2. Review the output, for example:

net:
- net type: lo

8.3. Checking the Health of the Peers

The following describes how to check the health of your interface.

An Lnet health value of 1000 is the best possible value that can be reported for a network
interface. Anything less than 1000 indicates that the interface is running in a degraded mode
and has encountered some errors.

1. Run the following command ;
$ sudo lnetctl net show -v 3 | grep health

2. Review the output, for example:

health stats:

health stats:

health wvalue: 1000
health stats:

health value: 1000
health stats:

health wvalue: 1000
health stats:

health value: 1000
health stats:

health wvalue: 1000
health stats:

health value: 1000
health stats:

health wvalue: 1000
health stats:

health value: 1000

8.4. Checking for Multi-Rail Support

You can verify whether multi-rail is supported.

1. Run the following command:

$ sudo lnetctl peer show | grep —-i Multi-Rail:
2. Review the output, for example:

Multi-Rail: True

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 37

EXAScaler Filesystem LNet Troubleshooting

8.9. Checking GDS Peer Affinity

For peer affinity, you need to check whether the expected interfaces are being used for the
associated GPUs.

The code snippet below is a description of a test that runs load on a specific GPU. The test
validates whether the interface that is performing the send and receive is the interface that
Is the closest, and is correctly mapped, to the GPU. See Resetting the nvidia-fs Statistics
and Reviewing Peer Affinity Stats for a Kernel File System and Storage Drivers for more
information about the metrics that are used to check peer affinity.

You can run a gdsio test for the tools section and monitor the LNET stats. See the readme
file for more information. In the gdsio test, a write test has been completed on GPU 0. The
expected NIC interface for GPU 0 is ib0 on the NVIDIA DGX-2" platform. The 1netctl net
show statistics were previously captured, and after the gdsio test, you can see that the RPC
send and receive have happened over the IBO.

1. Runthe gdsio test.
2. Review the output, for example:

$ sudo lustre_rmmod
S sudo mount -t lustre 192.168.1.61Q02ib,192.168.1.62@02ib:/ai200 /mnt/ai200/
S sudo lnetctl net show -v 3 | grep health
health stats:
health value: 0
health stats:
health value: 1000
health stats:
health wvalue: 1000
health stats:
health value: 1000
health stats:
health wvalue: 1000
health stats:
health value: 1000
health stats:
health wvalue: 1000
health stats:
health value: 1000

S sudo lnetctl net show -v 3 | grep -B 2 -i 'send_count\lrecv_count'
status: up
statistics:
send count: 0
recv_count: 0

0: ibO0
statistics:

send count: 3

recv_count: 3

0: ib2
statistics:

send count:

recv_count:

w w

0: ib3
statistics:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 38

EXAScaler Filesystem LNet Troubleshooting

send count: 2
recv_count: 2

0: ib4
statistics:

send count: 13

recv_count: 13

0: ib5
statistics:

send count: 12

recv_count: 12

0: ib6
statistics:

send count: 12

recv_count: 12

0: ib7
statistics:

send count: 11

recv_count: 11

$ echo 1 > /sys/module/nvidia_fs/parameters/peer_ stats_enabled

$ /usr/local/cuda-x.y/tools/gdsio -f /mnt/ai200/test -d 0 -n 0 -w 1 -s 1G -i 4K -

x0-I1

IoType: WRITE XferType: GPUD Threads: 1 DataSetSize: 1073741824/1073741824
I0Size: 4 (KB),Throughput: 0.004727 GB/sec, Avg Latency: 807.026154 usecs ops:
262144 total time 211562847.000000 usecs

S sudo lnetctl net show -v 3 | grep -B 2 -i 'send_count\lrecv_count'

status: up
statistics:
send count: 0
recv_count: 0

0: ibO0

statistics:
send count: 262149
recv_count: 524293

0: ib2
statistics:

send count: 6

recv_count: 6

0: ib3
statistics:

send count: 6

recv_count: 6

0: ib4
statistics:

send count: 33

recv_count: 33

0: ib5
statistics:

send count: 32

recv_count: 32

0: ib6
statistics:

send count: 32

recv_count: 32

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 39

$ cat /proc/driver/nvidia-fs/peer affinity

0:

ib7
statistics:
send count:
recv_count:

32
32

GPU P2P DMA distribution based on pci-distance

(last column indicates

GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00

: 0000

:0000

:0000
:0000

: 0000

: 0000

:0000

8.6.

The errors impact the health of individual NICs and affect how the EXAScaler filesystem
selects the best peer, which impacts GDS performance.

:0000:

:0000:

:0000:

:0000:

:0000:

:0000:

:0000:

:0000:

:0000:
00O
:5e:

:be:

:3b:

3197 3

29

3lo@ 3

:5¢

e7:

e5:

el:

57:

39:

36:

e2:

59:

34:

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

:00.

0

0

0

:0

:0

:0

0

0

0

0

0

0

0

0

root complex)
000O0O0O0CO

000O0O0OOCO

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

EXAScaler Filesystem LNet Troubleshooting

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

00000000ODOOO0OO0OOOOOOOOOOOOOOOOO

23872512 0 0 0 0O0O0O00O0O0O00O00000O0OO0OO0OOOOGOO

00000000O0OOO0OO0OOOOOOOOOOOOOOOOOO

00000000O0O0O0OOO0O0COOOOOOOOOOOOOCOOO

Checking for LNet-Level Errors

This section describes how you can determine whether there are LNET-level errors.

Note: To run these commands, you must have sudo priveleges.

1. Run the following command:

$ cat /proc/driver/nvidia-fs/peer affinity

2. Review the ouput, for example:

GPU P2P DMA distribution based on pci-distance
(last column indicates p2p via root complex)

GPU
0 0 GPU

NVIDIA Magnum 10 GPUDirect Storage

:0000:be:00.0

:0000:3b:00.0

:0000000O0CO0CO0ODOOO0OOOOOOOOOOOOOOOG® OGO

:00000000O0O0CO0COOOO0COOOOOOOOOOOOODO

TB-10112-001_v1.0.0

40

cooooo
cooooo
cooooo
cooooo
cooo®
cocoocod

(Note if
health of
GPU :0000:39:
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00
GPU
00

:0000:36:
:0000:e2:
:0000:59:
:0000:b7:
:0000:b9:
:0000:bc:
00O
:0000:34:
00O
:0000:5e:

:0000:5c:

:0000:e7:00.0

GPU

0 0 GPU
000 O GPU

:0000:e5:00.0

:0 0

00
:0 0

:0000:e0:00.0

0000 O0 1276417

00.

00.

00.

00.

00.

00.

00.

00.

00.

00.

S sudo lnetctl stats

statistics:

msgs_alloc:

msgs_max:

12

rst alloc: 2

errors: 0

send count:
resend count: 1

response_ timeout count:

peer traffic goes
nearest NIC might be

local interrupt count:
local dropped count: 2
local aborted count: 0
local no route count:

local timeout count: 1730
local error count:
remote dropped count: 0

remote error count:

0 :00000O0O
0 :000000O0O
0 :000000O0O
0 :000000O0O
0 :00000O0O
0 :000000O0O
0 :0 0 7056141 O
0 :0 0 8356175 0
0 :000000O0O
0 :000000O0O
show
1
6
5
243901
1935
0
08
0

0

0

remote timeout count:
network timeout count:
recv_count: 564436
route count:
drop count:
send length:
recv_length:
route length:
drop length:
Inetctl net show -v 4

net:

- net type:
local NI(s):

- nid:

0

02ib

status:

0:

0

0

0

send count:
recv_count:

NVIDIA Magnum 10 GPUDirect Storage

0
0

336176013248
95073248

192.168.1.71Q02ib
up
interfaces:
ib0
statistics:

171621
459717

00
00
:0 0

:0000:57:00.0

loNoNoNe]

affected)
000O0O0O

000O0O

0

0

0

0

0

O O O O

over Root-Port,

0

loNoNoNe]

loNoNoNe]

one

00

loNoNoNe]

EXAScaler Filesystem LNet Troubleshooting

of the

loNoNoNe]

loNoNoNe]

O O O O

O O O O

loNoNoNe]

O O O O

loNoNoNe]

reasons

O O O O

O O O O

O O O O

O O O O

might be

0000O0O0O0OOOOO

0

0

0

0

0

0

0

0

0

0

loNoNoNe]

O O O O
O O O O

that

TB-10112-001_v1.0.0

O O O O

O O O O

41

EXAScaler Filesystem LNet Troubleshooting

drop_count: 0
sent stats:
put: 119492
get: 52129
reply: O
ack: 0
hello: O
received stats:
put: 119492
get: O
reply: 340225
ack: 0
hello: 0
dropped stats:
put: 0O
get: O
reply: O
ack: 0
hello: O
health stats:
health value: 1000
interrupts: 0
dropped: 0
aborted: 0
no route: 0
timeouts: 0
error: 0
tunables:
peer timeout: 180
peer credits: 32
peer buffer credits: 0
credits: 256
peercredits hiw: 16
map_on demand: 1
concurrent sends: 64
fmr pool size: 512
fmr flush trigger: 384
fmr cache: 1
ntx: 512
conns_per peer: 1
Ind tunables:
dev cpt: O
tcp bonding: 0
cer: "[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]"
- nid: 192.168.2.71@02ib
status: up
interfaces:
0: ibl
statistics:
send count: 79
recv_count: 79
drop count: 0
sent stats:

put: 78
get: 1
reply: 0
ack: 0
hello: O
received stats:
put: 78
get: O
reply: 1
ack: O
hello: 0
dropped stats:
put: O
get: O

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 42

EXAScaler Filesystem LNet Troubleshooting

reply: 0O
ack: 0
hello: O

health stats:
health value: 979
interrupts: 0
dropped: 0
aborted: 0
no route: 0
timeouts: 1
error: 0

tunables:
peer timeout: 180
peer credits: 32
peer buffer credits: 0
credits: 256
peercredits hiw: 16
map on demand: 1
concurrent sends: 64
fmr pool size: 512
fmr flush trigger: 384
fmr cache: 1
ntx: 512
conns_per peer: 1

Ind tunables:

dev cpt: O

tcp bonding: 0

cer: "[(0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23]"

- nid: 192.168.2.72@02ib

status: up

interfaces:
0: ib3

statistics:
send count: 52154
recv_count: 52154
drop count: 0

sent stats:

put: 25
get: 52129
reply: 0
ack: 0
hello: O
received stats:
put: 25
get: 52129
reply: O
ack: O
hello: O
dropped stats:
put: O
get: O
reply: 0
ack: 0
hello: O

health stats:
health value: 66
interrupts: 0
dropped: 208
aborted: 0
no route: 0
timeouts: 1735
error: O
tunables:
peer timeout: 180
peer credits: 32
peer buffer credits: 0
credits: 256

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 43

EXAScaler Filesystem LNet Troubleshooting

peercredits _hiw: 16
map_on demand: 1
concurrent sends: 64
fmr pool size: 512
fmr flush trigger: 384
fmr cache: 1
ntx: 512
conns_per peer: 1
Ind tunables:
dev cpt: O
tcp bonding: 0
cer: "[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,18,20,21,22,23]"

If you see incrementing error stats, capture the net logging and provide this information for
debugging:
$ lctl set param debug=+net

reproducg the problem
$ lctl dk > logfile.dk

8.7. Resolving LNet NIDs Health
Degradation from Timeouts

With large machines, such as DGX™ that have multiple interfaces, if Linux routing is not
correctly set up, there might be connection failures and other unexpected behavior.

Here is the typical network setting that is used to resolve local connection timeouts:

sysctl -w net.ipvé4.conf.all.accept local=l

There are also generic pointers for resolving LNet Network issues. Refer to MR Cluster Setup
for more information.

8.8. Configuring LNet Networks with
Multiple OSTs for Optimal Peer
Selection

This section describes how to configure LNET networks that have multiple Object Storage
Target (0STs).

When there are multiple OSTs, and each OST is dual interface, to need to have one interface
on each of the LNets for which the client is configured.

For example, you have the following two LNet Subnets on the client side:
» 02ib

> o02ibl

The server has only one Lnet subnet, 02ib. In this situation, the routing is not optimal,
because you are restricting the ib selection logic to a set of devices, which may not be closest
to the GPU. There is no way to reach OST2 except over the LNet to which it is connected.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 44

https://wiki.whamcloud.com/display/LNet/MR+Cluster+Setup

The traffic that goes to this OST will never be optimal, and this configuration might affect
overall throughput and latency. If, however, you configure the server to use two networks,
02ib0 and o2ibl, then OST1 and OST2 can be reached over both networks. When the

selection algorithm runs, it will determine that the best path is, for example, 0ST2 over 02ib1.

1. To configure the client-side LNET, run the following command:

S sudo lnetctl net show

2. Review the output, for example:

net:

- net

type: 1lo

local NI(s):

- net

nid: 0Qlo
status: up
type: 02ib

local NI(s):

- net

nid: 192.168.
status: up
interfaces:
0: ibO0
nid: 192.168.
status: up
interfaces:
0: ib2
nid: 192.168.
status: up
interfaces:
0: ib4
nid: 192.168.
status: up
interfaces:
0: ib6
type: 02ibl

local NI(s):

nid: 192.168.
status: up
interfaces:
0: ibl
nid: 192.168.
status: up
interfaces:
0: ib3
nid: 192.168.
status: up
interfaces:
0: ib5
nid: 192.168.
status: up
interfaces:
0: ib7

1

1

1

1

20

20

20

20

.71Qo2ib

.72Qo021ib

.73Qo021ib

.74Q021ib

71Q@o02ibl

72Q@021ibl

73Q@02ibl

74Q@021ibl

For an optimal configuration, the LNet peer should show two LNet subnets.

In this case, the primary nid is only one o2ib:

$ sudo lnetctl peer show

Sample output:

peer:

- primary nid: 192.168.1.62@02ib

Multi-Rail:
peer ni:

True

- nid: 192.168

state:

NA

- nid: 192.168

.1.62@02ib

.2.62@02ibl

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

EXAScaler Filesystem LNet Troubleshooting

45

EXAScaler Filesystem LNet Troubleshooting

state: NA
- primary nid: 192.168.1.61Q02ib
Multi-Rail: True
peer ni:
- nid: 192.168.1.61Q@02ib
state: NA
- nid: 192.168.2.610@02ibl
state: NA

From the server side, here is an example of sub-optimal LNet configuration:

[root@ai200-090a-vm0l ~]# lnetctl net show
net:
- net type: lo
local NI(s):
- nid: 0Qlo
status: up
- net type: 02ib (02ibl is not present)
local NI(s):
- nid: 192.168.1.62@021ib
status: up
interfaces:
0: 1ibO
- nid: 192.168.2.62@021ib
status: up
interfaces:
0: ibl

Here is an example of an IB configuration for a non-optimal case, where a file is stripped over

two OSTs, and there are sequential reads:
$ ibdev2netdev -v
0000:b8:00.1 mlx5 13 (MT4123 - MCX653106A-ECAT) ConnectX-6 VPI adapter card, 100Gb/s
(HDR100, EDR IB and 100GbE), dual-port QSFP56
fw 20.26.4012 port 1
(ACTIVE) ==> ib4 (Up) (02ib)
ib4: flags=4163<UP, BROADCAST, RUNNING,MULTICAST> mtu 2044
inet 192.168.1.73 netmask 255.255.255.0 Dbroadcast 192.168.1.255
0000:bd:00.1 mlx5 15 (MT4123 - MCX653106A-ECAT) ConnectX-6 VPI adapter card, 100Gb/s
(HDR100, EDR IB and 100GbE), dual-port QSFP56
fw 20.26.4012 port 1
(ACTIVE) ==> ib5 (Up) (02ibl)
ib5: flags=4163<UP, BROADCAST, RUNNING, MULTICAST> mtu 2044

inet 192.168.2.73 netmask 255.255.255.0 broadcast 192.168.2.255

$ cat /proc/driver/nvidia-fs/peer distance | grep 0000:be:00.0 | grep network
0000:be:00.0 0000:58:00.1 138 0 network

0000:be:00.0 0000:58:00.0 138 0 network

0000:be:00.0 0000:86:00.1 134 0 network

0000:be:00.0 0000:35:00.0 138 0 network

0000:be:00.0 0000:5d:00.0 138 0 network

0000:be:00.0 0000:bd:00.0 3 0 network

0000:be:00.0 0000:b8:00.1 7 30210269 network (ib4) (chosen peer)
0000:be:00.0 0000:06:00.0 134 0 network

0000:be:00.0 0000:0c:00.1 134 0 network

0000:be:00.0 0000:e6:00.0 138 0 network

0000:be:00.0 0000:3a:00.1 138 0 network

0000:be:00.0 0000:e1:00.0 138 0 network

0000:be:00.0 0000:bd:00.1 3 4082933 network (ib5) (best peer)

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 46

0000
0000
0000
0000
0000
0000
0000
0000

Here is an example of an optimal LNet configuration:
[root@ai200-090a-vm00 ~]# lnetctl net show

net:

NVIDIA Magnum 10 GPUDirect Storage

:be:
:be:
:be:
:be:
:be:
:be:
:be:
:be:

oNoloNololoNeNe)

net type:
local NI(s):

- nid:

0000:
0000:
0000:
0000:
0000:
0000
0000:
0000:

lo

0@lo

status: up
net type:
local NI(s):

- nid:

02ib

192.168.1.610@02ib

status: up
interfaces:

0:

net type:
local NI(s):
192.168.2.61Q@02ibl

- nid:
statu
inter

0:

ib0
02ibl

s: up
faces:
ibl

eb6:
86:
35:
el:
Oc:
:b8:
5d:
3a:

oOrookr ko

138
134
138
138
134
5

138
138

cNoloNololoNoNe)

EXAScaler Filesystem LNet Troubleshooting

network
network
network
network
network
network
network
network

TB-10112-001_v1.0.0

47

Chapter 9. Understanding EXAScaler
Filesystem Performance

Depending on the type of host channel adapter (HCA), commonly known as a NIC, there
are mod parameters that can be tuned for LNet. The NICs that you select should be up and
healthy.

To verify the health by mounting and running some basic tests, use 1netctl health statistics,
and run the following command:
$ cat /etc/modprobe.d/lustre.conf

Review the output, for example:

options libcfs cpu npartitions=24 cpu pattern=""
options lnet networks="o02ib0 (ibl,ib2,ib3,ib4,1ib6,1ib7,1ib8,1ib9)"

options ko2iblnd peer credits=32 concurrent sends=64 peer credits hiw=16
map on demand=0

9.1. osc Tuning Performance Parameters

The following is information about tuning filesystem parameters.

S Note: To maximize the throughput, you can tune the following EXAScaler® filesystem client
parameters, based on the network.

1. Run the following command:
$ lctl get param osc.*.max* osc.*.checksums
2. Review the output, for example:

$ lctl get param osc.*.max* osc.*.checksums
0sc.ai400-0ST0024-0sc-f£££916£6533a000.max pages per rpc=4096
05c.aid400-0ST0024-0sc-f£f££916£6533a000.max dirty mb=512
05c.aid400-08T0024-0sc-f££f£f916f6533a000.max_rpcs_in flight=32
0s5c.ai400-0ST0024-0sc-£f£££916£6533a000.checksums=0

To check llite parameters, run $ lctl get param llite.*.*.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 48

9.2.

1.

Understanding EXAScaler Filesystem Performance

mdc, and stripesize

If the tuning parameters are set correctly, you can use these parameters to observe.

To get an overall EXAScaler filesystem client side statistics, run the following command:

$ lctl get param osc.*.import

Note: The command includes rpc information.

Review the output, for example:

$ watch -d 'lctl get param osc.*.import | grep -B 1 inflight'

rpcs:

inflight:

rpcs:

inflight:

33

Miscellaneous Commands for osc,

To get the maximum number of pages that can be transferred per rpc in a EXAScaler

filesystem client, run the following command:

$ lctl get param osc.*.maxX pages_per rpc

To get the overall rpc statistics from a EXAScaler filesystem client, run the following

command:

$ lctl set param osc.*.rpc stats=clear (to reset osc stats)
$ lctl get param osc.*.rpc_stats

Review the output, for example:

05c.ai200-0ST0000-osc-f£££8e0b47c73800.rpc_stats=
1589919461.185215594

snapshot time:

read RPCs in flight:
write RPCs in flight:
pending write pages:
pending read pages:

pages per rpc
1g

rpcs in flight

o Ul WP O

[oNoNoNe]

read

rpcs
14222350
0

~J

NOOOOOOO I

0
0
0
0
0
0
5

413036

N

read

rpcs
0

3236263 1
117001
168119
153295
91598
42476
17578

O O O OO O JOo e

NVIDIA Magnum 10 GPUDirect Storage

(secs.nsecs)

=
[a}
-
o
D

=
o
Q
(%)

[eNeoNoNoNoloNoNeNe]

OO OO OO OO O e

B
]
-
p
D

[n]
o
Q
0]

[cNoNoNololoNeoNe)

O OO OO OO O e

[cNeoNoNoNoNoNoNoNaoi=1

cNoNoNoNoNoNoNol=1

o©

o©

TB-10112-001_v1.0.0

49

Understanding EXAScaler Filesystem Performance

8: 9454 0 20 | 0 0 0
OF 7611 0 20 | 0 0 0
10: 7772 0 20 | 0 0 0
11: 8914 0 21 | 0 0 0
12: 9350 0 21 | 0 0 0
13: 8559 0 21 | 0 0 0
14: 8734 0 21 | 0 0 0
15: 10784 0 21 | 0 0 0
16: 11386 0 21 | 0 0 0
17: 13148 0 21 | 0 0 0
18: 15473 0 21 | 0 0 0
19: 17619 0 21 | 0 0 0
20: 18851 0 21 | 0 0 0
21: 21853 0 21 | 0 0 0
22: 21236 0 21 | 0 0 0
23: 21588 0 22 | 0 0 0
24: 23859 0 22 | 0 0 0
253 24049 0 22 | 0 0 0
26: 26232 0 22 | 0 0 0
27: 29853 0 22 | 0 0 0
28: 31992 0 22 | 0 0 0
293 43626 0 22 | 0 0 0
30: 116116 0 23 | 0 0 0
S)§: 14018326 76 100 | 0 0 0

To get statistics that are related to client metadata operations, run the following command:

Note: MetaDataClient (MDC] is the client side counterpart of MetaData Server (MDS).

$ lctl get param mdc.*.md stats

To get the stripe layout of the file on the EXAScaler filesystem, run the following command:
$ 1fs getstripe /mnt/ai200

9.3. Getting the Number of Configured
Object-Based Disks

This section describes how you can get the number of configured object-bsaed disks.

1. Run the following command:
$ lctl get param lov.*.target obd

2. Review the output, for example:

0: ai200-0ST0000_ UUID ACTIVE
1: ai200-0ST0001 UUID ACTIVE

9.4. Getting Additional Statistics related
to the EXAScaler Filesystem

You can get additional statistics that are related to the EXAScaler Filesystem.

Refer to the Lustre Monitoring and Statistics Guide for more information.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 50

http://wiki.lustre.org/Lustre_Monitoring_and_Statistics_Guide

Understanding EXAScaler Filesystem Performance

9.5. Getting Metadata Statistics

Here is some information about how you can get metadata statistics.

1. Run the following command:
$ lctl get param lmv.*.md stats

2. Review the output, for example:

snapshot time 1571271931.653827773 secs.nsecs
close 8 samples [regs]
create 1 samples [regs]
getattr 1 samples [regs]
intent lock 81l samples[regs]
read page 3 samples [regs]
revalidate lock 1 samples [regs]

9.6. Checking for an Existing Mount
This section describes how you can check for an existing mount in the EXAScaler Filesystem.

1. Run the following command:

$ mount | grep lustre

2. Review the output, for example:

192.168.1.61@02ib,192.168.1.62Q02ibl:/ai200 on /mnt/ai200 type lustre
(rw, flock, lazystatfs)

9.7. Unmounting an EXAScaler
Filesystem Cluster

This section describes how to unmount an EXAScaler filesystem cluster.

Run the following command.
$ sudo umount /mnt/ai200

9.8. Getting a Summary of EXAScaler
Filesystem Statistics

You can get a summary of statistics for the EXAScaler filesystem.

Refer to the Lustre Monitoring and Statistics Guide for more information about EXAScaler
filesystem statistics.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 51

http://wiki.lustre.org/Lustre_Monitoring_and_Statistics_Guide

Understanding EXAScaler Filesystem Performance

9.9. Using GPUDirect Storage in Poll
Mode

This section describes how to use GDS in Poll Mode with EXAScaler filesystem files that have a
Stripe Count greater than 1.

Currently, if poll mode is enabled, cuFileReads or cuFilelirites might return bytes

that are less than the bytes that were requested. This behavior is POSIX compliant and

Is observed with files that have a stripe count that is greater than the count in their

layout. If behavior occurs, we recommend that the application checks for returned bytes

and continues until all of the data is consumed. You can also set the corresponding
properties.poll mode max size kb, (say 1024 (KB)) value to the lowest possible stripe
size in the directory. This ensures that 10 sizes that exceed this limit are not polled.

1. To check EXAScaler filesystem file layout, run the following command.
$ 1lfs getstripe <file-path>
2. Review the output, for example:

1fs getstripe /mnt/ai200/single stripe/mdl.0.0
/mnt/ai200/single stripe/mdl.0.0

lmm_ stripe count: 1
Imm_stripe size: 1048576
lmm pattern: raid0
Imm layout gen: 0
Ilmm_stripe offset: 0
obdidx objid objid group
0 6146 0x1802 0

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 52

Chapter 10. Troubleshooting and FAQ
for the WekalO Filesystem

This section provides troubleshooting and FAQ information about the WekalO file system.

10.1. Downloading the WekalO Client
Package

Here is some information about how to download the WekalO client package.

Run the following command:
$ curl http://<IP of one of the WekaIO hosts' IB interface>:14000/dist/v1/install

| sh
For example, $ curl http://172.16.8.1:14000/dist/v1/install | sh.

10.2. Determining Whether the WekalO
Version i1s Ready for GDS

This section describes how to determine whether the WekalO version is ready for GDS.
Currently, the only WekalO FS version that supports GDS is * 3.6.2.5-rdma-beta:

1. Run the following command:

$ weka version

2. Review the output, for example:
* 3.6.2.5-rdma-beta

10.3. Mounting a WekalO File System
Cluster

Here is some information about how to mount a WekalO file system cluster.
The WekalO filesystem can take a parameter to reserve a fixed number of cores for the user

space process.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 53

1.

10.4.

Troubleshooting and FAQ for the WekalO Filesystem

To mount a server ip 172.16.8.1 with two dedicated cores, run the following
command:

$ mkdir -p /mnt/weka

$ sudo mount -t wekafs -o num cores=2 -o

net=1ib0, net=ibl,net=ib2,net=1ib3, net=ib4,net=1b5, net=1ib6, net=ib7
172.16.8.1/£fs01 /mnt/weka

Review the output, for example:

Mounting 172.16.8.1/£fs01 on /mnt/weka
Creating weka container

Starting container

Waiting for container to join cluster
Container "client" is ready (pid = 47740)
Calling the mount command

Mount completed successfully

Resolving a Failing Mount

This section describes how you can resolve a failing mount.

1.

Before you use the IB interfaces in the mount options, verify that the interfaces are set up
for net=<interface>:

$ sudo mount -t wekafs -o num cores=2 -o

net=ib0, net=ibl, net=ib2, net=1b3, net=ib4, net=1ib5, net=1ib6, net=ib7

172.16.8.1/£fs01 /mnt/weka

Review the output, for example:

Mounting 172.16.8.1/fs01 on /mnt/weka

Creating weka container

Starting container

Waiting for container to join cluster

error: Container "client" has run into an error: Resources
assignment failed: IB/MLNX network devices should have
pre-configured IPs and ib4 has none

Remove interfaces that do not have network connectivity from the mount options.
S ibdev2netdev

mlx5 0 port 1 ==> ib0 (Up)
mlx5 1 port 1 ==> ibl (Up)
mlx5 2 port 1 ==> ib2 (Up)
mlx5 3 port 1 ==> ib3 (Up)
mlx5 4 port 1 ==> ib4 (Down)
mlx5 5 port 1 ==> ib5 (Down)
mlx5 6 port 1 ==> ib6 (Up)
mlx5 7 port 1 ==> ib7 (Up)
mlx5 8 port 1 ==> ib8 (Up)
mlx5 9 port 1 ==> ib9 (Up)

10.5.

Resolving 100% Usage for WekalO for
Two Cores

If you have two cores, and you are experiencing 100% CPU usage, here is some information
about how to resolve this situation.

1. Run the following command.

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 54

10.6.

Troubleshooting and FAQ for the WekalO Filesystem

$ top
Review the output, for example:

PID USER PR NI VIRT RES SHR S $CPU $SMEM TIME+ COMMAND
54816 root 20 0 11.639g 1.452g 392440 R 94.4 0.1 781:06.06 wekanode
54825 root 20 0 11.639g 1.452g 392440 R 94.4 0.1 782:00.32 wekanode

When the num cores=2 parameter is specified, two cores are used for the user mode poll

driver for WekalO FE networking. This process improves the latency and performance.
Refer to the WekalO documentation for more information.

Weka File System

This section describes how to check for an existing mount in the WekalO file system.

1.

Run the following command:
$ mount | grep wekafs
Review the output, for example:

172.16.8.1/£fs01 on /mnt/weka type wekafs (
rw,relatime,writecache, inode bits=auto,dentry max age positive=1000,
dentry max age negative=0)

10.7. Checking for a Summary of the

WekalO Filesystem Status

Here is some information about how you can check for a summary of the WekalO file system
status.

1.

Run the following command:

$ weka status

2. Review the output, for example:

WekaIO v3.6.2.5-rdma-beta (CLI build 3.6.2.5-rdma-beta)

cluster: Nvidia (e4a4e227-41d0-47e5-aa70-b50688b31£40)

status: OK (12 backends UP, 72 drives UP)
protection: 8+2
hot spare: 2 failure domains (62.84 TiB)
drive storage: 62.84 TiB total, 819.19 MiB unprovisioned

cloud: connected

license: Unlicensed

io status: STARTED 1 day ago (1584 buckets UP, 228 io-nodes UP)
link layer: InfiniBand
clients: 1 connected
reads: 61.54 GiB/s (63019 IO/s)
writes: 0 B/s (0 IO/s)
operations: 63019 ops/s
alerts: 3 active alerts, use "Wekaalerts' to list them

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 |

Checking for an Existing Mount in the

55

https://docs.weka.io/

Troubleshooting and FAQ for the WekalO Filesystem

10.8. Displaying the Summary of the
WekalO Filesystem Statistics

You can display a summary of the status of the WekalO filesystem.

1. Run the following command.
$ cat /proc/wekafs/stat

2. Review the output, for example:

IO type: UM Average UM Longest KM Average KM Longest
IO count
total: 812 us 563448 us 9398 ns 10125660 ns
718319292 (63260 IOPS, 0 MB/sec)
lookup: 117 us 3105 us 6485 ns 436709 ns
4079 (12041)
readdir: 0 us 0 us 0 ns 0 ns
0
mknod: 231 us 453 us 3970 ns 6337 ns
96
open: 0 us 0 us 0 ns 0 ns
0 (3232)
release: 0 us 0 us 0 ns 0 ns
0 (2720)
read: 0 us 0 us 0 ns 0 ns
0
write: 18957 us 563448 us 495291 ns 920127 ns
983137 (983041)
getattr: 10 us 10 us 6771 ns 6771 ns
1 (9271)
setattr: 245 us 424 us 4991 ns 48222 ns
96
rmdir: 0 us 0 us 0 ns 0 ns
0
unlink: 0 us 0 us 0 ns 0 ns
0
rename: 0 us 0 us 0 ns 0 ns
0
symlink: 0 us 0 us 0 ns 0 ns
0
readlink: 0 us 0 us 0 ns 0 ns
0
hardlink: 0 us 0 us 0 ns 0 ns
0
statfs: 4664 us 5072 us 38947 ns 59618 ns
7
SG_release: 0 us 0 us 0 ns 0 ns
0
SG allocate: 1042 us 7118 us 2161 ns 110282 ns
983072
falloc: 349 us 472 us 4184 ns 10239 ns
96
atomic open: 0 us 0 us 0 ns 0 ns
0
flock: 0 us 0 us 0 ns 0 ns
0
backcomm: 0 us 0 us 0 ns 0 ns
0
getroot: 19701 us 19701 us 57853 ns 57853 ns
1

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 56

Troubleshooting and FAQ for the WekalO Filesystem

trace: 0 us 0 us 0 ns 0 ns
0

jumbo alloc: 0 us 0 us 0 ns 0 ns
0

jumbo release: 0 us 0 us 0 ns 0 ns
0

jumbo write: 0 us 0 us 0 ns 0 ns
0

Jjumbo read: 0 us 0 us 0 ns 0 ns
0

keepalive: 46 us 1639968 us 1462 ns 38996 ns
184255

ioctl: 787 us 50631 us 8732 ns 10125660 ns
717328710

setxattr: 0 us 0 us 0 ns 0 ns
0

getxattr: 0 us 0 us 0 ns 0 ns
0

listxattr: 0 us 0 us 0 ns 0 ns
0

removexattr: 0 us 0 us 0 ns 0 ns
0

setfileaccess: 130 us 3437 us 6440 ns 71036 ns
3072

unmount : 0 us 0 us 0 ns 0 ns
0

10.9. Understanding Why WekalO Writes
Go Through POSIX

Here is some information to help you understand why, for GDS, WekalO writes are going
through POSIX.

For the WekalO filesystem, GDS supports RDMA based reads and writes. You can use

the fs:weka:rdma write support JSON property to enable writes on supported Weka
filesystems. This option is disabled by default. If this option is set to false, writes will be
internally staged through system memory, and the cuFile library will use pwrite POSIX calls
internally for writes.

10.10. Checking for nvidia-fs.ko Support for
Memory Peer Direct

Here is some information about how you can check for nvidia-£s. ko support for memory
peer direct.

1. Run the following command:

$ lsmod | grep nvidia fs | grep ib core && echo “Ready for Memory Peer Direct”

2. Review the output, for example:

ib core 319488 16

rdma cm,ib ipoib,mlx4 ib,ib srp,iw cm,nvidia fs,ib iser,ib umad,
rdma ucm, ib uverbs,mlx5 ib,ib cm,ib ucm

“Ready for Memory Peer Direct”

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 57

Troubleshooting and FAQ for the WekalO Filesystem

10.11. Checking Memory Peer Direct Stats
Here is some information about how to check memory peer statistics.

1. Run the following script, which shows the counter for memroy peer direct statistics:
list="1ls /sys/kernel/mm/memory peers/nvidia-fs/ . for stat in $list

do echo "$stat value: " $(cat /sys/kernel/mm/memory peers/nvidia-fs/$stat). done
2. Review the output.

num alloc mrs value: 1288

num dealloc mrs value: 1288

num dereg bytes value: 1350565888
num_dereg pages value: 329728

num free callbacks value: O

num reg bytes value: 1350565888
num reg pages value: 329728
version value: 1.0

10.12. Checking for Relevant nvidia-fs
Statistics for the WekalO Filesystem

This section describes how you can check for relevant nvida-£s statistics for the WekalO file
system.

Note: Reads, Writes, Ops, and Error counters are not available through this interface for the
WekalO filesystem, so the value will be zero. See Displaying the Summary of the WekalO
Filesystem Statistics about using the Weka status for reads and writes.

1. Run the following command:

$ cat /proc/driver/nvidia-fs/stats | egrep -v 'Reads|Writes|Ops|Error'
2. Review the output, for example:

GDS Version: 1.0.0.80
NVFS statistics(ver: 4.0)
NVFS Driver (version: 2.7.49)

Active Shadow-Buffer (MB): 256

Active Process: 1

Mmap : n=2088 0k=2088 err=0 munmap=1832

Barl-map : n=2088 0k=2088 err=0 free=1826 callbacks=6 active=256

GPU 0000:34:00.0 wuuid:12a86a5e-3002-108f-ee49-4b51266cdc07 : Registered MB=32
Cache MB=0 max pinned MB=1977

GPU 0000:€5:00.0 wuid:4c2c6blc-27ac-8bed-8e88-9%9e59a5e348b5 : Registered MB=32
Cache MB=0 max pinned MB=32

GPU 0000:b7:00.0 wuuid:b224bab5e-96d2-£793-3dfd-9caf6d4c31d8 : Registered MB=32
Cache MB=0 max pinned MB=32

GPU 0000:39:00.0 wuuid:e8fac7£5-d85d-7353-8d76-330628508052 : Registered MB=32
Cache MB=0 max pinned MB=32

GPU 0000:5c:00.0 wuuid:2bl3ed25-f0ab-aedb-1£f5c-326745b85176 : Registered MB=32
Cache MB=0 max pinned MB=32

GPU 0000:20:00.0 wuid:df46743a-9b22-30ce-6eal-62562efafla2 : Registered MB=32
Cache MB=0 max pinned MB=32

GPU 0000:bc:00.0 wuuid:c4136168-2al1d-1£3£f-534c-7dd725fedbff : Registered MB=32
Cache MB=0 max pinned MB=32

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 58

Troubleshooting and FAQ for the WekalO Filesystem

GPU 0000:57:00.0 wuuid:54ed472f2-edee-18dc-f2a1-3595fa8£f3d33 : Registered MB=32
Cache MB=0 max pinned MB=32

10.13. Conducting a Basic WekalO
Filesystem Test

This section describes how to conduct a basic WekalO file system test.

1. Run the following command:

$ /usr/local/cuda-x.y/tools/gdsio verify -f /mnt/weka/gdstest/tests/reglG
-n 1l -mO0 -s 1024 -o 0 -d0 -t 0 -S -g 4K

2. Review the output, for example:

gpu index :0,file :/mnt/weka/gdstest/tests/reglG, RING buffer size :0,
gpu buffer alignment :4096, gpu buffer offset :0, file offset :0,

io requested :1024, bufregister :false, sync :0, nr ios :1,fsync :0,
address = 0x564ffc5e76c0

Data Verification Success

10.174. Unmounting a WekalO File System
Cluster

This section describes how to unmount a WekalO file system cluster.

1. Run the following command.

$ sudo umount /mnt/weka

2. Review the output, for example:

Unmounting /mnt/weka

Calling the umount command

umount successful, stopping and deleting client container
Umount completed successfully

10.15. Verify the Installed Libraries for the
WekalO Filesystem

Here is some information about verifying the installled libraries for the WekalO filesystems.

Table 3. Verifying the Installed Libraries for WekalO Filesystems
Task Output
Check the WekalO version. $ weka status

WekaIO v3.6.2.5-rdma-beta (CLI build
3.6.2.5-rdma-beta)

Check whether GDS support for WekaFS is $ gdscheck -p
present. L-..]
WekaFS: Supported

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 59

Task

Check for MLNX_OFED information.

Check for the nvidia-fs.ko driver.

Check for 1ibibverbs.so

Troubleshooting and FAQ for the WekalO Filesystem

Output

Userspace RDMA:
[...]

Supported

Check for ofed info -s
Currently supported with:
MLNX_OFED_LINUX-5.1-0.6.6.0

$ ofed info -s
MLNX OFED LINUX-5.1-0.6.6.0:

$ lsmod | grep nvidia fs | grep ib core
&& echo “Ready for Memory Peer Direct”

$ dpkg -s libibverbs-dev
Package: libibverbs-dev
Status: install ok installed
Priority: optional

Section: libdevel
Installed-Size: 1151

Maintainer: Linux RDMA Mailing List
<linux-rdma@vger.kernel.org>

Architecture: amdé64

Multi-Arch: same

Source: rdma-core

Version: 47mlnx1-1.47329

10.16. GDS Configuration File Changes to
Support the WekalO Filesystem

Here is some information about the GDS configuration file changes that are required to
support the WekalO filesystem.

1. By default, the configuration for Weka RDMA-based writes is disabled.

wfg":

}

{

"weka": {

// enable/disable WekaFs rdma write

"rdma write support" false

}

2. Change the configuration to add a new property, rdma dev_addr list.

"properties": {

// allow compat mode,

// this will enable use of cufile posix read/writes

//"allow compat mode": true,

"rdma dev addr list": [
"172.16.8.88" , "172.16.8.89",
"172.16.8.90" , "172.16.8.91",
"172.16.8.92" , "172.16.8.93",
"172.16.8.94", "172.16.8.95"

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

60

Troubleshooting and FAQ for the WekalO Filesystem

10.17. Check for Relevant User-Space
Statistics for the WekalO Filesystem

This section describes how you can check for relevant user-space statistics for the WekalO

filesystem.

Issue the following command:
$./gds_stats -p <pid> -1 3 | grep GPU

Refer to GDS User-Space RDMA Counters for more information about statistics.

10.18. Check for WekaF$S Support

Here is some information about how to check for WekaFS support.

If WekaFS support does not exist, the following issues are possible:

Table 4.

Weka Filesystem Support Issues

Issue

Action

MLNX_OFED peer direct is not enabled.

Check whether MLNX_OFED is installed

[ofed_info -s).

This issue can occur if the nvidia-fs Debian
package was installed before MLNX_OFED was
installed. When this issue occurs, uninstall and
reinstall the nvidia-fs package.

RDMA devices are not populated in the /etc/
cufile.jsonfile

Add IP addresses to
properties.rdma dev addr list.Currently
only IPv4 addresses are supported.

None of the configured RDMA devices are UP.

Check IB connectivity for the interfaces.

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 61

Chapter 11. Enabling IBM Spectrum
Scale Support with GDS

GDS is supported as a technology preview in IBM Spectrum Scale 5.1.1.

After reviewing the NVIDIA GDS documentation, refer to the following link to enable GDS for
IBM Spectrum Scale: www.ibm.com/support/pages/node/6444075

11.1. IBM Spectrum Scale Limitations with
GDS

Refer to the following documentation for IBM Spectrum Scale Limitations with GDS:

http://www.ibm.com/support/pages/node/6444075

11.2. Checking nvidia-fs.ko Support for
Mellanox PeerDirect

Use the following command to check support for memory peer direct.
$ cat /proc/driver/nvidia-fs/stats | grep -i "Mellanox PeerDirect Supported"
Mellanox PeerDirect Supported: True

In the above example, False means that MLNX_OFED was not installed with GPUDirect
Storage support prior to installing nvidia-fs.

11.3. Verifying Installed Libraries for IBM
Spectrum Scale

The following tasks, shown with sample output, can be peformed to verify installed libraries
for IBM Spectrum Scale:

» Check whether GDS support for IBM Spectrum Scale is present:
$ /usr/local/cuda-<x>.<y>/gdscheck.py -p

NVMe : Supported

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 62

http://www.ibm.com/support/pages/node/6444075
http://www.ibm.com/support/pages/node/6444075

Enabling IBM Spectrum Scale Support with GDS

NVMeOF Supported
SCSI Unsupported
ScaleFlux CSD Unsupported
NVMesh Unsupported
DDN EXAScaler Unsupported
IBM Spectrum Scale Unsupported
NF'S Unsupported
WekaFsS Supported
UserSpace RDMA Supported
--Mellanox PeerDirect Enabled
--rdma library Loaded (libcufile rdma.so)
--rdma devices Configured

--rdma device status : Up: 1 Down: 0

» Check for MLNX_OFED information:

$ ofed_info -s
MLNX_OFED_LINUX—5.2.1.0.4.0

» Check for nvidia-fs.ko driver:
$ cat /proc/driver/nvidia-fs/stats

GDS Version: 1.0.0.43
NVFS statistics(ver: 4.0)
NVFS Driver (version: 2:7:46)

Mellanox PeerDirect Supported: True

IO stats: Disabled, peer IO stats: Disabled

Logging level: info

Active Shadow-Buffer (MiB): 0

Active Process: 0

Reads err=0 io state err=0

Sparse Reads
Writes

n=0 i10=0 holes=0 pages=0
err=0 io state err=0 pg-cache=0 pg-cache-fail=0

pg-cache-eio=0

Mmap

Barl-map
active=0

Error

Ops

GPU 0000:43:00.0

n=638 0k=638 err=0 munmap=638
n=638 0k=638 err=0 free=638 callbacks=0

cpu-gpu-pages=0 sg-ext=0 dma-map=0 dma-ref=0
Read=0 Write=0

uuid:3848a5e7- 41d8 7965-3c44-beebfbf0ff7d Registered MiB=0

Cache MiB=0 max pinned MiB=138

Check for 1ibibverbs. so:
$ dpkg -s libibverbs-dev

Package: libibverbs-dev
Status: install ok installed
Priority: optional

Section: libdevel

Installed-Size:
Linux RDMA Mailing List <linux-rdma@vger.kernel.org>

Maintainer:

Architecture:

same

rdma-core
52mlnx1-1.52104

Multi-Arch:
Source:
Version:

1194

amd64

$ rpm -qi 11b1bverbs

Name
Version
Release

Architecture:
Install Date:

Group

Size
License
Signature
Source RPM
Build Date

NVIDIA Magnum 10 GPUDirect Storage

libibverbs

52mlnx1

1.53101

x86 64

Mon Apr 19 13:08:24 2021
System Environment/Libraries

502145
GPLv2 or BSD
DSA/SHAl, Thu Apr 8 02:03:04 2021, Key ID c5ed83e26224c050

rdma-core-52mlnx1-1.53101.src.rpm
Thu Apr 8 00:44:38 2021

TB-10112-001_v1.0.0 | 63

Enabling IBM Spectrum Scale Support with GDS

Build Host : ¢-135-161-1-004.mtl.labs.mlnx

Relocations : (not relocatable)

URL : https://github.com/linux-rdma/rdma-core

Summary : A library and drivers for direct userspace use of RDMA (InfiniBand/

iWARP/RoCE) hardware

Description

libibverbs is a library that allows userspace processes to use RDMA
"verbs" as described in the InfiniBand Architecture Specification and
the RDMA Protocol Verbs Specification. This includes direct hardware
access from userspace to InfiniBand/iWARP adapters (kernel bypass) for
fast path operations.

Device-specific plug-in ibverbs userspace drivers are included:

- libmlx5: Mellanox ConnectX-4+ InfiniBand HCA

11.4. Checking PeerDirect Stats

You can check memory peer statistics by running the following script:

list="1s /sys/kernel/mm/memory peers/nvidia-fs/ ; for stat in $list;do echo
value: " $(cat /sys/kernel/mm/memory peers/nvidia-fs/$stat); done

Sample output:

num_alloc mrs value: 1288

num dealloc mrs value: 1288

num dereg bytes value: 1350565888
num_dereg pages value: 329728

num_ free callbacks value: O

num reg bytes value: 1350565888
num reg pages value: 32972
version value: 1.0

"Sstat

11.5. Checking for Relevant nvidia-fs Stats

with IBM Spectrum Scale

Use the following steps to check for relevant nvidia-£fs statistics for the IBM Spectrum Scale

file system.

1. Enable nvidia-fs statistics:
echo 1 > /sys/module/nvidia fs/parameters/rw stats enabled

2. $ cat /proc/driver/nvidia-fs/stats

Review the output:

root@el55j-hp325-c7-u4dl: /home/rladmin$ cat /proc/driver/nvidia-fs/stats
GDS Version: 1.0.0.43

NVFS statistics(ver: 4.0)

NVFS Driver (version: 2:7:46)

Mellanox PeerDirect Supported: True

IO stats: Enabled, peer IO stats: Enabled

Logging level: info

Active Shadow-Buffer (MiB): 0

Active Process: 1

Reads : n=1469960 0k=1469960 err=0 readMiB=5742
io_state err=0

Reads : Bandwidth (MiB/s)=58 Avg-Latency (usec)=122

Sparse Reads : n=0 10=0 holes=0 pages=0

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 |

64

Writes

Enabling IBM Spectrum Scale Support with GDS

n=0 ok=0 err=0 writeMiB=0 io_ state err=0 pg-

cache=0 pg-cache-fail=0 pg- cache eio=0

Writes
Mmap
Barl-map
Error
Ops

Bandwidth (MiB/s) =0 Avg-Latency (usec)=0

n=31 ok=31 err=0 munmap=29

n=31 ok=31 err=0 free=23 callbacks=6 active=2
cpu-gpu-pages=0 sg-ext=0 dma-map=0 dma-ref=0
Read=0 Write=0

GPU 0000:43:00.0 wuuid:5d%9a801d- 8312 bdca-dod3- b47c6bd34a9f : Registered MiB=0
Cache MiB=0 max pinned MiB=1 cross root port (%)=

11.6. GDS User Space Stats for IBM
Spectrum Scale for Each Process

To check GDS user space level stats, make sure the "cufile stats” propertyin
cufile.json is set to 3. Run the following command to check the user space stats for a

specific process:

$ /usr/local/cuda-<x>.<y>/gds/tools/gds_stats -p <pid> -1 3

cuFile STATS VERSION : 4
GLOBAL STATS:

Total Files: 1

Total Read Errors : 0

Total Read Size (MiB): 7302
Read BandWidth (GiB/s): 0.691406
Avg Read Latency (us): 6486
Total Write Errors : O

Total Write Size (MiB): O
Write BandWidth (GiB/s): 0

Avg Write Latency (us): O
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0 O

4-8(KiB): 0 0

8-16(KiB): 0 O

16-32(KiB): 0 O

32-64 (KiB): 0 O

64-128 (KiB): 0 0

128-256(KiB): 0 O
256-512(KiB): 0 O
512-1024(KiB): 0 O

1024-2048 (KiB): 0 O

2048-4096 (KiB) : 3651 0
4096-8192 (KiB): 0 O

8192-16384 (KiB): 0 O
16384-32768 (KiB): 0 O
32768-65536(KiB): 0 O
65536-...(KiB): 0 O

PER GPU STATS:

GPU 0 Read: bw=0.690716 util (%)

r inline=0 err=0 MiB=7302 Write:

=199 n=3651 posix=0 unalign=0 dr=0 r sparse=0
bw=0 util (%)=0 n=0 posix=0 unalign=0 dr=0 err=0

MiB=0 BufRegister: n=2 err=0 free=0 MiB=4

PER GPU POOL BUFFER STATS:
PER GPU POSIX POOL BUFFER STATS:

PER GPU RDMA STATS:

GPU 0000:43:00.0 mlx5 0(130:64) :Reads: 3594 Writes: 0 mlx5 1(130:64) :Reads:

3708 Writes: O
RDMA MRSTATS:

peer name nr_mrs mr_size (MiB)
mlx5 0 1 2
mlx5 1 1 2

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 65

Enabling IBM Spectrum Scale Support with GDS

In the example above, 3954 MiB of IBM Spectrum Scale Read went through m1x5 0 and 3708
MiB MiB of IBM Spectrum Scale Read went through m1x5 1. The RDMA MRSTATS value shows
the number of RDMA memory registrations and size of those registrations.

11.7. GDS Configuration to Support IBM

1.

Spectrum Scale

Configure the DC key.

The DC key for the IBM Spectrum Scale client can be configured in the following ways:

» Setthe environment variable CUFILE RDMA DC KEY. This should be set to a 32-bit hex
value. This can be set as shown in the following example.

export CUFILE RDMA DC KEY = 0x11223344
» Setthe property rdma dc key incufile.json. This propertyisa 32-bitvalue and it
can be set as shown in the following example.

"rdma dc_key": "Oxffeeddcc",

In case both the environment variable and the cufile.json have the property set, the
environment variable CUFILE RDMA DC KEY will take precedence over the rdma dc_ key
property setin cufile.json.

In case none of the above is set, the default DC Key configured would be 0xffeeddcc.
Configure the IP addresses in cufile.json.

The >rdma_dev_addr list property should be setin cufile.json with the |IP address of
the RDMA devices to be used for |0.

"properties": {

"rdma dev _addr list": [

"172.16.8.88" , "172.16.8.89",
"172.16.8.90" , "172.16.8.91",
"172.16.8.92" , "172.16.8.93",

"172.16.8.94", "172.16.8.95"]

Configure the max direct io size kb propertyin cufile.json.

Due to a IBM Spectrum Scale limitation the max direct io size kb property should
be set to a value recommended by IBM Spectrum Scale. Please refer to the following
documentation for the optimal configuration for this property.

http://www.ibm.com/support/pages/node/6444075

"properties": {

"max direct io size kb" : 1024

4. Configure the rdma_access mask propertyin cufile.json.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 66

http://www.ibm.com/support/pages/node/6444075

Enabling IBM Spectrum Scale Support with GDS

This property is a performance tunable. Refer to IBM Spectrum Scale documentation for
optimal configuration of this property.

http://www.ibm.com/support/pages/node/6444075

"properties": {

"rdma access mask": "Ox1f",

Here is an explanation of what each bit of this flag denotes:

» Bit0 - If set enables Local RDMA WRITE on the Memory Region

» Bit1-Ifset enables Remote RDMA WRITE on the Memory Region

» Bit2 - If set enables Remote RDMA READ on the Memory Region

» Bit3 - If set enables REMOTE RDMA Atomics on the Memory Region

» Bit4 - If set enables Relaxed ordering on the Memory Region

All the remaining bits are reserved for future use.

11.8. Scenarios for Falling Back to Compat
Mode

The following scenarios will cause the IBM Spectrum Scale 10s to go through compat mode,
irrespective of the allow compat mode property’svaluein cufile.json. Refer to http://
www.ibm.com/support/pages/node/6444075 for details.

In the following scenarios, IBM Spectrum Scale 10 would go through compat mode if the
allow compat mode property is setto truein cufile.json.

» If nvidia-fs is not loaded.

» If IB NICs IP addresses are not set up in cufile.json.

11.9. GDS Limitations with IBM Spectrum
Scale

GDS has a limit on the maximum number of allowed RDMA memory registration for a GPU
buffer. The limit today is 16. Hence, the maximum size of memory that can be registered with
RDMA per GPU bufferis 16 * max direct to size kb (setin cufile.json). Any GDS IO
with IBM Spectrum Scale beyond this offset will go through bounce buffers and might have a
performance impact.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 67

http://www.ibm.com/support/pages/node/6444075
http://www.ibm.com/support/pages/node/6444075
http://www.ibm.com/support/pages/node/6444075

Chapter 12. Setting Up and
Troubleshooting VAST Data
INFSoRDMA+MultiPath)

This section provides information about how to set up and troubleshoot VAST data (NFSoRDMA
+MultiPath).

12.1. Installing MLNX_OFED and VAST
NFSoRDMA+Multipath Packages

This section provides information about system requirements and how to install MLNX_OFED
and VAST NFSoRDMA+Multipath packages.

12.1.1. Client Software Requirements

Here is the information for the minimum client software requirements.

Table 5. Minimum Client Requirements
NFS Connection Type Linux Kernel MLNX_OFED
NFSoRDMA + Multipath The following kernel versions The following MLNX_OFED
are supported: versions are supported:
> 415 > 46
> 4.18 > 47
» 5.4 » 50
» 5.1
» 53

For the most up to date supportability matrix and client configuration steps and package
downloads, refer to: https://support.vastdata.com/hc/en-us/articles/360016813140-
NFSoRDMA-with-Multipath.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 68

https://support.vastdata.com/hc/en-us/articles/360016813140-NFSoRDMA-with-Multipath
https://support.vastdata.com/hc/en-us/articles/360016813140-NFSoRDMA-with-Multipath

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

MLNX_OFED must be installed for the VAST NFSoRDMA+Multipath package to function
optimally. It is also important to download the correct VAST software packages to match your
kernel+MLNX_OFED version combination. Refer to Troubleshooting and FAQ for NVMe and
NVMeQOF support for information about how to install MLNX_OFED with GDS support.

» To verify the current version of MLNX_OFED, issue the following command:

$ ofed _info -s
MLNX_OFED_LINUX-5.3-0.6.6.01:

» To verify the currently installed Linux kernel version, issue the following command:

$ uname -r -v

After you verify that your system has the correct combination of kernel and MLNX_OFED, you
can install the VAST Multipath package.

12.1.2. Install the VAST Multipath Package

Here is the procedure to install the VAST Multipath package.

Although the VAST Multipath with NFSoRDMA package has been submitted upstream for
inclusion in a future kernel release, it is currently only available as a download from: https://
support.vastdata.com/hc/en-us/articles/360016813140-NFSoRDMA-with-Multipath.

Be sure to download the correct .deb file that is based on your kernel and MLNX_OFED.
version.

1. Install the VAST NFSoRDMA+Multipath package.
$ sudo apt-get install mlnx-nfsrdma-*.deb
2. Generate a new initramfs image.
$ sudo update-initramfs -u -k ‘uname -r’
3. Verify that the package is installed, and the version is the number that you expected.

$ dpkg -1 | grep mlnx-nfsrdma
ii mlnx-nfsrdma-dkms 5.3-OFED.5.1.0.6.6.0 all DKMS support for NFS RDMA
kernel module

4. Reboot the host and run the following commands to verify that the correct version is
loaded.

Note: The versions shown by each command should match.

$ cat /sys/module/sunrpc/srcversion
4CC8389C7889F82F5A59269

$ modinfo sunrpc | grep srcversion
srcversion: 4CC8389C7889F82F5A59269

12.2. Set Up the Networking

This section provides information about how to set up client networking for VAST for GDS.

To ensure optimal GPU-to-storage performance while leveraging GDS, you need to configure
VAST and client networking in a balanced manner.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 69

https://support.vastdata.com/hc/en-us/articles/360016813140-NFSoRDMA-with-Multipath
https://support.vastdata.com/hc/en-us/articles/360016813140-NFSoRDMA-with-Multipath

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

12.2.1. VAST Network Configuration

Here is some information about the VAST network configuration.

VAST is a multi-node architecture. Each node has multiple high-speed (IB-HDR100 or 100GbE])
interfaces, which can host-client-facing Virtual IPs. Refer to VAST-Managing Virtual IP (VIP)
Pools for more information.

Here is the typical workflow:

1. Multiply the number of VAST-Nodes * 2 (one per Interface).
2. Create a VIP Pool with the resulting IP count.
3. Place the VAST-VIP Pool on the same IP-subnet as the client.

12.2.2. Client Network Configuration

The following is information about client network configuration.

Typically, GPU optimized clients (such as the NVIDIA DGX-2 and DGX-A100) are configured
with multiple high speed network interface cards [NICs]. In the following example, the system
contains 8 separate NICs that were selected for optimal balance for NIC -->GPU and NIC --
>CPU bandwidth.

$ sudo ibdev2netdev

mlx5 0 port 1 ==> ibpl2s0 (Up)

mlx5 1 port 1 ==> ibpl8s0 (Up)

mlx5 10 port 1 ==> ibp225s0f0 (Down)
mlx5 11 port 1 ==> ibp225s0fl (Down)
mlx5 2 port ==> 1ibp75s0 (Up)

mlx5 3 port ==> ibp84s0 (Up)

mlx5 4 port ==> 1bp97s0£f0 (Down)
mlx5 5 port ==> ibp97s0fl (Down)
mlx5 6 port ==> ibpl41s0 (Up)

mlx5 7 port ==> ibpl48s0 (Up)

mlx5 8 port ==> 1bpl86s0 (Up)

mlx5 9 port ==> ibp202s0 (Up)

1
1
1
1
1
1
1
1

Not all interfaces are connected, and this is to ensure optimal bandwidth.

When using the aforementioned VAST NFSoRDAM+Multipath package, it is recommended to
assign static IP’s to each interface on the same subnet, which should also match the subnet
configured on the VAST VIP Pool. If using GDS with NVIDIA DGX-A100's, a simplistic netplan is
all that is required, for example:
ibpl2s0:

addresses: [172.16.0.17/24]

dhcp4: no
ibpl41s0:

addresses: [172.16.0.18/24]

dhcp4: no
ibp148s0:

addresses: [172.16.0.19/24]

dhcp4: no

However, if you are using other systems, or non-GDS code, you need to apply the following
code to ensure that the proper interfaces are used to traverse from Client-->VAST.

Note: See the routes section for each interface in the following sample.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 70

https://support.vastdata.com/hc/en-us/articles/360016231794-Managing-Virtual-IP-VIP-Pools
https://support.vastdata.com/hc/en-us/articles/360016231794-Managing-Virtual-IP-VIP-Pools

Scat /etc/netplan/0Ol-netcfg.yaml
network:
version: 2
renderer: networkd
ethernets:
enp226s0:
dhcp4d: yes
ibpl2s0:
addresses: [172.16.0.25/24]
dhcp6: no
routes:
- to: 172.16.0.0/24
via: 172.16.0.25
table: 101
routing-policy:
- from: 172.16.0.25

table: 101
1bpl8s0:
addresses: [172.16.0.26/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.26
table: 102

routing-policy:
- from: 172.16.0.26

table: 102
ibp75s0:
addresses: [172.16.0.27/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.27
table: 103

routing-policy:
- from: 172.16.0.27

table: 103
1bp84s0:
addresses: [172.16.0.28/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.28
table: 104

routing-policy:
- from: 172.16.0.28

table: 104
ibpl41s0:
addresses: [172.16.0.29/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.29
table: 105

routing-policy:
- from: 172.16.0.29

table: 105
1bpl148s0:
addresses: [172.16.0.30/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.30
table: 106

routing-policy:
- from: 172.16.0.30

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

71

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

table: 106
ibpl86s0:
addresses: [172.16.0.31/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.31
table: 107

routing-policy:
- from: 172.16.0.31

table: 107
ibp202s0:
addresses: [172.16.0.32/24]
dhcp4: no
routes:

- to: 172.16.0.0/24
via: 172.16.0.32
table: 108

routing-policy:
- from: 172.16.0.32
table: 108

After making changes to the netplan, before issuing the following command, ensure that you
have a IPMI/console connection to the client:
$ sudo netplan apply

Here is some information about how you can verify network connectivity.

Once the proper netplan is applied, verify connectivity between all client interfaces and all
VAST-VIPs with a ping loop:

Replace with appropriate interface names

$ export IFACES="ibpl2s0 ibpl8s0 ibp75s0 ibp84s0 ibpl41s0 ibpl48s0 ibpl86s0 ibp202s0"
replace with appropriate VAST-VIPs

$ export VIPS=$(echo 172.16.0.{101..116})
$ echo "starting pingtest" > pingtest.log

$ for i in $IFACES;do for v in $VIPS; do echo $i >> pingtest.log; ping -¢ 1 $v -W 0.2 -I $i|
grep loss >> pingtest.log;done;done;

Verify no failures:
$ grep '100%' pingtest.log

You should also verify that one of the following conditions are met:
All client interfaces are directly cabled to the same IB switches as VAST.

There are sufficient InterSwitch Links (ISLs) between client-switches, and switches to
which VAST is connected.

To verify the current IB switch topology, issue the following command:

$ sudo ibnetdiscover
<output trimmed>

[37] "H-b8599f0300c3f4cb"[1] (b8599£0300c3f4cb) # "vastraplab-cnl HCA-2" 1id 55 2xHDR # <--
example of Vast-Node

[43] "S-b8599£0300e361£2"[43] # "MFO;RL-QM87-C20-U33:MQM8700/U1" 1id 1 4xHDR # <--
example of ISL

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 72

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

[67] "H-1c34da030073c27e"[1] (1c34da030073c27e) # "rl-dgxa-c2l-ul9 mlx5 9" 1lid 23 4xHDR # <--
example of client

12.3. Mount VAST NFS

This section describes how to mount VAST NFS.

To fully utilize available VAST VIPs, you must mount the filesystem by issuing the following
command:
$ sudo mount -o proto=rdma,port=20049,vers=3 \
-0 noidlexprt,nconnect=40 \
-o localports=172.16.0.25-172.16.0.32 \
-o remoteports=172.16.0.101-172.16.0.140 \
172.16.0.101:/ /mnt/vast
The options are:
proto
RDMA must be specified.
port=20049
Must be specified, this is RDMA control port.
noidlexprt
Do not disconnect idle connections. This is to detect and recover failing connections when
there are no pending 1/Q’s.
nconnect
Number of concurrent connections. Should be divisible evenly by the number of
remoteports specified below for best balance.
localports
A list of IPv4 addresses for the local ports to bind.
Remoteports
A list of NFS server IPv4 ports to bind.

For both localports and remoteports you can specify an inclusive range with the -delimiter,
for example, FIRST-LAST. Multiple ranges or individual IP addresses can be separated by ~ (a
tilde)

12.4. Debugging and Monitoring

Here is some information about debugging and monitoring.

Typically, mountstats under /proc shows xprt statistics. However, instead of modifying
it in a non-compatible way with the nfsstat utility, the VAST Multipath package extends
mountstats with extra state reporting, to be exclusively accessed from /sys/kernel/debug.

The stats node was added for each RPC client, and the RPC client 0 shows the mount that is
completed:

$ sudo cat /sys/kernel/debug/sunrpc/rpc_clnt/0/stats

The added information is multipath IP address information per xprt and xprt state in string
format.

For example:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 73

xprt:
xprt:
xprt:
xprt:
xprt:
xprt:
xprt:

xprt:

rdma 0

172 .25,

rdma 0

172.25.

rdma 0

172 .25,

rdma 0

172.25.

rdma 0

172 .25,

rdma 0

172.25.

rdma 0

172 .25,

rdma 0

172.25.

PORPRORFRPRORFRPRORPROROR OR O

24 3 3

-> 172.25.1.1,
24110100
-> 172.25.1.2,
23110100
-> 172.25.1.3,
22110100
-> 172.25.1.4,
000000O00O

-> 172.25.1.5,
00000O0O

-> 172.25.1.6,
000000O00O

-> 172.25.1.7,
00000O0O

-> 172.25.1.8

NVIDIA Magnum 10 GPUDirect Storage

Setting Up and Troubleshooting VAST Data [NFSoRDMA+MultiPath)

0300000000O0CO0OO0OOOT11L 00O
CONNECTED BOUND
000O0O0OO0OO0O11 000
CONNECTED BOUND
0000O0O0O0OO11 00O
CONNECTED BOUND
000O0O0OO0OO0O11 000
BOUND

~

state:
00O
state:
00O
state:
00O
state:
00O
state:
00O
state:
00O
state:
0000
state:

(@]

(@]

(@]

CONNECTED

00O0O0O

BOUND
000
BOUND
000
BOUND
000
BOUND

0

0

0

0

0

0

0

0

0

0

0

0

00O0O0O
000O0O

00O0O0O

TB-10112-001_v1.0.0

74

Chapter 13. Troubleshooting and FAQ
for NVMe and NVMeOF
Support

This section provides troubleshooting information for NVME and NVMeOF support.

13.1. MLNX_OFED Requirements and
Installation

The following is information about the requirements to install MLNX_OFED.

» Toenable GDS support for NVMe and NVMeOF, you need to install at least MLNX_OFED
5.3 or later.

» You must install MLNX_OFED with support for GDS.

After installation is complete, for the changes to take effect, update -initramfs and reboot.
The Linux kernel version that was tested with MLNX_OFED 5.3-1.0.5.01 is 4.15.0-x and 5.4.0-x.
Issue the following command:

$ sudo ./mlnxofedinstall --with-nvmf --with-nfsrdma --enable-gds --add-kernel-
support

Note: With MLNX_OFED 5.3 onwards, the --enable-gds flag is no longer necessary.
$ sudo update-initramfs -u -k ‘uname -r°
$ reboot

Here is the output:
$ /usr/local/cuda-x.y/gds/tools/gdscheck

GDS release version : 1.0

nvidia fs version: 2.7 libcufile version: 2.4
cuFile CONFIGURATION:

NVMe : Supported

NVMeOF : Supported

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 75

Troubleshooting and FAQ for NVMe and NVMeOF Support

13.2. Determining Whether the NVMe
device 1s Supported for GDS

This section describes how to determine whether an NVMe device is supported for GDS.

NVMe devices must be compatible with GDS, the device cannot have the block device integrity
capability. For device integrity, the Linux block layer completes the metadata processing based
on the payload in the host memory. This is a deviation from the standard GDS |0 path and, as a
result, cannot accommodate these devices. The cuFile file registration will fail when this type
of underlying device is detected with appropriate error log in the cufile. log file.

$ cat /sys/block/devices/<nvme>/device/integrity check

13.3. Check for the RAID Level

Here is some information about RAID support in GDS.

Currently GDS only supports RAID 0.

13.4. Mounting an EXT4 Filesystem for GDS

This section describes how to mount an EXT4 filesystem for GDS.

Currently EXT4 is the only block device based filesystem that GDS supports. Because of Direct
|0 semantics, the filesystem must be mounted with the journaling mode set to data=ordered.
This has to be explicitly part of the mount options so that the library can recognize it:

$ sudo mount -o data=ordered /dev/nvmeOnl /mnt

If the EXT4 journaling mode is not in the expected mode, the cuFileHandleRegister will fail,
and an appropriate error message will be logged in the log file. For instance, in the following
case, /mnt1l is mounted with writeback, and GDS returns an error:

$ mount | grep /mntl
/dev/nvmeOnlp2 on /mntl type ext4 (rw,relatime,data=writeback)

$./cufile_sample 001 /mntl/foo 0
opening file /mntl/foo
file register error:GPUDirect Storage not supported on current file

13.9. Check for an Existing Mount

This section describes how to check for an existing mount.

$ mount | grep ext4d

/dev/sda2 on / type ext4 (rw,relatime,errors=remount-ro,data=ordered)
/dev/nvmelnl on /mnt type ext4 (rw,relatime,data=ordered)
/dev/nvmeOnlp2 on /mntl type extd4 (rw,relatime,data=writeback)

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 76

Troubleshooting and FAQ for NVMe and NVMeOF Support

13.6. Check for 10 Statistics with Block
Device Mount

The following is a partial log that shows you how to obtain the I/0 statistics:

$ sudo iotop

Actual DISK READ: 0.00 B/s | Actual DISK WRITE: 193.98 K/s
TID PRIO USER DISK READ DISK WRITE SWAPIN I0> COMMAND
881 be/3 root 0.00 B/s 15.52 K/s 0.00 % 0.01 % [jbd2/sda2-8]
1 be/4 root 0.00 B/s 0.00 B/s 0.00 & 0.00 % init splash

13.7. RAID Group Configuration for GPU
Affinity

The following is information about RAID group configuration for GPU affinity.

Creating one RAID group from the available NVMe devices might not be optimal for GDS
performance. You might need to create RAID groups that consist of devices that have a pci-
affinity with the specified GPU. This is required to prevent and cross-node P2P traffic between
the GPU and the NVMe devices.

If affinity is not enforced, GDS will use an internal mechanism of device bounce buffers to copy
data from the NVMe devices to an intermediate device that is closest to the drives and copy the
data back to the actual GPU. If NVLink is enabled, this will speed up these transfers.

13.8. Conduct a Basic EXT4 Filesystem
Test

The following is information about how you can conduct a basic EXT4 filesystem test.

Issue the following command:

$ /usr/local/cuda-x.y/gds/tools/gdsio_verify -f /mnt/nvme/gdstest/tests/reglG -n 1 -m 0 -s
1024 -0 0 -d 0 -t 0 -S -g 4K

Here is the output:

gpu index :0,file :/mnt/weka/gdstest/tests/reglG, RING buffer size :0, gpu buffer
alignment :4096, gpu buffer offset :0, file offset :0, io requested :1024,
bufregister :false, sync :0, nr ios :1,fsync :0,

address = 0x564ffc5e76c0

Data Verification Success

13.9. Unmount a EXT4 Filesystem

This section describes how to unmount an EXT4 filesystem.

Issue the following command:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 77

Troubleshooting and FAQ for NVMe and NVMeOF Support

$ sudo umount /mnt/

13.10. Udev Device Naming for a Block
Device

This section describes the Udev device naming for a block device.

The library has a limitation when identifying the NVMe-based block devices in that it expects
device names to have the nvme prefix as part of the naming convention.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 78

Chapter 14. Displaying GDS NVIDIA FS
Driver Statistics

GDS exposes the 10 statistics information on the procfs filesystem.

1.

Run the following command.

$ cat /proc/driver/nvidia-fs/stat

Review the output, for example:

GDS Version: 1.0.0.71

NVFS statistics(ver: 4.0)

NVFS Driver (version: 2:7:47)

Mellanox PeerDirect Supported: True

IO stats: Enabled, peer IO stats: Enabled
Logging level: info

Shadow-Buffer
Process: 0

Active (MiB): O

Active

Reads
Reads
Sparse Reads
Writes

n=0 ok=0 err=0 readMiB=0 io state err=0
Bandwidth (MiB/s)=0 Avg-Latency (usec)=0

n=6 10=0 holes=0 pages=0

n=0 ok=0 err=0 writeMiB=0 io state err=0

pg-cache=0 pg-cache-fail=0 pg-cache-eio=0

Writes
Mmap
Barl-map

Bandwidth (MiB/s)=0 Avg-Latency (usec)=0

n=183 0k=183 err=0 munmap=183

n=183 0k=183 err=0 free=165 callbacks=18

active=0
Error
Ops : Read=0 Write=0
GPU 0000:be:00.0
Cache MiB=0

max pinned MiB=1 cross_root port (%
uuid:029faa3b-cb0d-2718-

GPU 0000:e7:00.0
Cache MiB=0

max pinned MiB=1 cross root port (%
uuid:39%eeb04b-1c52-81lcc-

GPU 0000:5e:00.0
Cache MiB=0

max pinned MiB=1 cross_root port (%
uuid:a99%9a7a93-7801-5711-

GPU 0000:57:00.0
Cache MiB=0

max_ pinned MiB=1 cross_root port (%
uuid:d22b0Obc4-cdbl-65ac—

GPU 0000:39:00.0
Cache MiB=0

max pinned MiB=1 cross_root port (%
uuid:ellb33d9-60£f7-a721-

GPU 0000:34:00.0
Cache MiB=0

cpu-gpu-

uuid:87e5c586-88ed-583b-

pages=0 sg-ext=0 dma-map=0 dma-ref=0

df45-fcee0fle7917 Registered MiB=0
) =0
259c-6dc650c636eb Registered MiB=0
) =0
d76e-53d03eb6ed32 Registered MiB=0
)=0
258b-c6acadfe6d85 Registered MiB=0
)=0
7495-3570e5860fda Registered MiB=0
) =0

220a-dl4eb5blb5ab52c Registered MiB=0

max pinned MiB=128 cross root port (%)=0

GPU 0000:b7:00.0
Cache MiB=0

uuid:e8630cd2-5cb7-cab7-

ef2e-66c25507¢c119 Registered MiB=0

max pinned MiB=1 cross_root port (%)=0

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

79

Displaying GDS NVIDIA FS Driver Statistics

GPU 0000:e5:00.0 wuuid:b3d46477-d54f-c23f-dcl2-4eb5eal72af6 : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

GPU 0000:e0:00.0 wuuid:7al0c7bd-07e0-971b-al9%c-61e7cl85a82c : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

GPU 0000:bc:00.0 uuid:bb96783c-5a46-233a-cbce-071aeb308083 : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross_root port (%)=0

GPU 0000:e2:00.0 uuid:b6565ee8-2100-7009-bcc6-a3809905620d : Registered MiB=0

Cache MiB=0
max pinned MiB=2 cross root port (%)=0

GPU 0000:5c:00.0 wuuid:5527d7fb-a560-ab42-d027-20aeb5512197 : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

GPU 0000:59:00.0 uuid:bb734f6b-24ad-2£83-86c3-6abl79bcel3l : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

GPU 0000:3b:00.0 uuid:0efOb9ee-bb8f-cdae-4535-c0d790b2c663 : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross_root port (%)=0

GPU 0000:b9:00.0 uuid:ad59f685-5836-c2ea-2c79-3c95bea23f0d : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

GPU 0000:36:00.0 uuid:fda65234-707b-960a-d577-18c519301848 : Registered MiB=0

Cache MiB=0
max pinned MiB=1 cross root port (%)=0

14.1. Understanding nvidia-fs Statistics

This section describes nvidia-fs statistics.

Table 6. NVIDIA-FS Statistics
Type Statistics
Reads n

ok
err
Readmb (mb)

io state err

Reads Bandwidth (MB/s)

NVIDIA Magnum 10 GPUDirect Storage

Description
Total number of read requests.

Total number of successful read
requests.

Total number of read errors.

Total data read into the GPUs.

Read errors that were seen.

Some pages might have been in
the page cache.

Active Read Bandwidth when
|0 is in flight. This is the period
from when |10 was submitted to
the GDS kernel driver until the
|0 completion was received by
the GDS kernel driver.

TB-10112-001_v1.0.0 | 80

Type Statistics

Avg-Latency (usec)

Sparse Reads n

holes

pages

Writes n

ok

err

Writemb (mb)

io state err

pg-cache

pg-cache-fail

pg-cache-eio

NVIDIA Magnum 10 GPUDirect Storage

Displaying GDS NVIDIA FS Driver Statistics

Description
There was no userspace
involved.

Active Read latency when 10 is
in flight. This is from the period
from when 10 was submitted to
the GDS kernel driver until the
|0 completion is received by the
GDS kernel driver.

There was no userspace
involved.

Total number of sparse read
requests.

Total number of holes that were
observed during reads.

Total number of pages that span
the holes.

Total number of write requests.

Total number of successful write
requests.

Total number of write errors.

Total data that was written from
the GPUs to the disk.

Write errors that were seen.

Some pages might have been in
the page cache.

Total number of write requests
that were found in the page
cache.

Total number of write requests
that were found in the page
cache but could not be flushed.

Total number of write requests
that were found in the page-
cache, but could not be flushed
after multiple retries, and 10
failed with EIO.

TB-10112-001_v1.0.0 | 81

Type
Writes

Mmap

Bar-map

NVIDIA Magnum 10 GPUDirect Storage

Statistics
Bandwidth (MB/s)

Avg-Latency (usec]

ok

err

munmap

ok

err

free

callbacks

Displaying GDS NVIDIA FS Driver Statistics

Description

Active Write Bandwidth when

10 is in flight. This is the period
from when |0 is submitted to
the GDS kernel driver until the
IO completion is received by the
GDS kernel driver.

There was no userspace
involved.

Active Write latency when 10

is in flight. This is the period
from when 10 is submitted to
the GDS kernel driver until the
|0 completion is received by the
GDS kernel driver.

There was no userspace
involved.

Total number of mmap system
calls that were issued.

Total number of successful
mmap system calls.

Errors that were observed
through the mmap system call.

Total number of munmap that
were issued.

Total number of times the GPU
BAR memory was pinned.

Total number of times the
successful GPU BAR memory
was pinned.

Total errors that were observed
during the BAR1 pinning.
Total number of times the BAR1

memory was unpinned.

Total number of times the
NVIDIA kernel driver invoked
callback to the GDS driver.

TB-10112-001_v1.0.0 | 82

Type Statistics

active

Error cpu-gpu-pages

sg-ext

dma-map

ops Read

Write

Displaying GDS NVIDIA FS Driver Statistics

Description
This is invoked on the following
instances:

» When the process crashes
or was abruptly killed.

» When cudaFree is
invoked on memory,
which is pinned through
cuFileBufRegister, but
cuFileBufDeregister is

not invoked.

Active number of BAR1T memory
that was pinned.

(This value is the total number
and not the total memory.)

Number of |0 requests that had
a mix of CPU-GPU pages when
nvfs dma map sg_attrsis

invoked.

Scatterlist that could not be
expanded because the number
of GPU pages is greater than
blk ng nr phys segments
A DMA map error.

Total number of Active Read 10
in flight.

Total number of Active Write i0
in flight.

14.2. Analyze Statistics for each GPU

You can analyze the statistics for each GPU to better understand what is happening in that

GPU.

Consider the following example output:

GPU 0000:5€:00:0 wuuid:dc87£fe99-4d68-247b-b5d2-63f96d2adabl : pinned MB=0 cache MB=0

max pinned MB=79

GPU 0000:07:00:0 wuid:b3a6al95-d08c-09d1-bf8f-a5423c277c04 : pinned MB=0 cache MB=0

max pinned MB=76

GPU 0000:e7:00:0 uuid:7c432aed-a612-5b18-76e7-402bb48f21db : pinned MB=0 cache MB=0

max pinned MB=80

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 83

Displaying GDS NVIDIA FS Driver Statistics

GPU 0000:57:00:0 wuid:aa871613-ee53-9a0c-a546-851dlafe4140 : pinned MB=0 cache MB=0
maxXx_ pinned MB=80

In this sample output, 0000:5e:00:0, is the PClI BDF of the GPU with the
Dc87fe99-4d68-247b-b5d2-63f96d2adabl UUID. This is the same UUID that can be used to
observe nvidia-smi statistics for this GPU.

Here is some additional information about the statistics:

» pinned-MB shows the active GPU memory that is pinned by using nvidia p2p get pages
from the GDS driver in MB across all active processes.

» cache MB shows the active GPU memory that is pinned by using nvidia p2p get pages,
but this memory is used as the internal cache by GDS across all active processes.

» max_pinned MB shows the max GPU memory that is pinned by GDS at any point in time on
this GPU across multiple processes.

This value indicates that the max BAR size and administrator can be used for system sizing
purposes.

14.3. Resetting the nvidia-fs Statistics

You can reset the nvidia-fs statistics.

Run the following command:

$ sudo bash
$ echo 1 >/proc/driver/nvidia-fs/stats

14.4. Checking Peer Affinity Stats for
a Kernel Filesystem and Storage
Drivers

This section describes how to review nvidia-fs PCl peer affinity statistics for a kernel file
system and storage drivers.

The following proc files contain information about peer affinity DMA statistics via nvidia-fs
callbacks:

» nvidia-fs/stats
> nvidia—fs/peer_affinity

> nvidia—fs/peer_distance

To enable the statistics, run the following command:

$ sudo bash
$ echo 1 > /sys/module/nvidia fs/parameters/peer stats enabled

To view consolidated statistics as a regular user, run the following command:
$ cat /proc/driver/nvidia-fs/stats

Here is the sample output:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 84

GDS Version: 1.0.

NVFS statistics (ver:

NVFS Driver (versi

Displaying GDS NVIDIA FS Driver Statistics

0.71
4.0)
on: 2:7:47)

Mellanox PeerDirect Supported: True

IO stats:
Logging level:

Active Shadow-Buffer

Active Process: 0
Reads

Reads

Sparse Reads

Writes

cache=0 pg-cache-

Writes

Mmap

Barl-map

Error

Ops

GPU 0000:be:00.0
Cache MiB=0 max

GPU 0000:e7:00.0

Cache MiB=0 max
GPU 0000:5e:00.0
Cache MiB=0 max

GPU 0000:57:00.0

Cache MiB=0 max
GPU 0000:39:00.0
Cache MiB=0 max

GPU 0000:34:00.0

Cache MiB=0 max
GPU 0000:b7:00.0
Cache MiB=0 max

GPU 0000:€5:00.0

Cache MiB=0 max
GPU 0000:e0:00.0
Cache MiB=0 max

GPU 0000:bc:00.0

Cache MiB=0 max
GPU 0000:e2:00.0
Cache MiB=0 max

GPU 0000:5c:00.0

Cache MiB=0 max
GPU 0000:59:00.0
Cache MiB=0 max

GPU 0000:3b:00.0

Cache MiB=0 max
GPU 0000:09:00.0
Cache MiB=0 max

GPU 0000:36:00.0

Cache MiB=0 max

The cross _root port

HCA.

Enabled, peer IO stats:
info

_pinned MiB=1 cross_root port(

Enabled

(MiB) : O

n=0 ok=0 err=0 readMiB=0 io state err=0

Bandwidth (MiB/s)
n=6 10=0 holes=0 pages=0

=0 Avg-Latency (usec)=0

n=0 ok=0 err=0 writeMiB=0 io state err=0 pg-

fail=0 pg- cache eio=0
: Bandwidth (MiB/s) =

0 Avg-Latency (usec)=0

n=183 0k=183 err=0 munmap=183

n=183 0k=183 err=0 free=165 callbacks=18 active=0

cpu-gpu-pages=0 sg-ext=0 dma-map=0 dma-ref=0

Read=0 Write=0
uuid:87e5c586- 88ed 583b-df45-fcee0fle7917
pinned MiB=1 cross_root port (%)=0
uuid:029faa3b-cb0d-2718-259¢c-6dc650c636eb
_pinned MiB=1 cross_root port (%)=0
uuid:39eeb04b-1c52-81lcc-d76e-53d03eb6ed3?2
pinned MiB=1 cross_root port (%)=0
uuid:a99a7a93-7801-5711-258b-cbacadfe6d85
_pinned MiB=1 cross_root port (%)=0
uuid:d22b0bcd-cdbl-65ac-7495-3570e5860fda
pinned MiB=1 cross_root port (%)=0
uuid:el1b33d9-60f7-a721-220a-d14e5bl5a52c
_pinned MiB=128 cross_root port (%)=0
uuid:e8630cd2-5cb7-cab7-ef2e-66c25507¢c119
pinned MiB=1 cross_root port (%)=0
uuid:b3d46477-d54f-c23f-dcl2-4eb5eal’2af6
_pinned MiB=1 cross_root port (%)=0
uuid:7al0c7bd-07e0-971b-al9c-6le7cl85a82¢c
pinned MiB=1 cross_root port (%)=0
uuid:bb96783c-5a46-233a-cbce-071aeb308083

_pinned MiB=1 cross_root port (%)=0

uuid:b6565ee8-2100-7009-bcc6-a3809905620d
pinned MiB=2 cross_root port (%)=

uuid:5527d7fb-a560-ab42-d027-20aeb5512197
%) =0

uuid:bb734f6b-24ad-2f83-86c3-6abl79bcel3l
pinned MiB=1 cross_root port (%)=

uuid:0ef0b9%ee-bb8f-cdae-4535-c0d790b2c663
_pinned MiB=1 cross_root port (%)=0

uuid:ad59£685-5836-c2ea-2c79-3c95bea23£0d
pinned MiB=1 cross_root port (%)=0

uuid: £da65234-707b-960a-d577-18c519301848

_pinned MiB=1 cross_root port (%)=0

Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0
Registered MiB=0

Registered MiB=0

%) portis the percentage of total DMA traffic through nvidia-fs
callbacks, and this value spans across PCle root ports between GPU and its peers such as

» This can be a major reason for low throughput on certain platforms.

» This does not consider the DMA traffic that is initiated via cudaMemcpyDeviceToDevice Or

cuMemcpyPeer

with the specified GPU.

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

85

Displaying GDS NVIDIA FS Driver Statistics

14.5.

Drivers

Checking the Peer Affinity Usage for
a Kernel File System and Storage

Here is some information about how you can check peer affinity usage for a kernel file system

and storage drivers.

1. To get the peer affinity usage, run the following command:

$ cat /proc/driver/nvidia-fs/peer affinity
2. Review the sample output, for example:

GPU P2P DMA distribution based on pci-distance

(last column indicates p2p via root complex)

GPU :0000:bc:00.0 :0 000 0O0O0O000O0OO0O0O0OOOOOOOOOOOOOOOOOO

00

GPU :0000:e0:00.0 :0 0 00 000OO0000O000O0COO0OOOOOOOOOOOOOOO

00

GPU :0000:e5:00.0 :0 0 00 0O0O0O000O0OO0O0O0OOOOOOOOOOOOOOOOOO

00

GPU :0000:57:00.0 :0 O 524288 0 0 0 00O OO O0O0O0O0O0O0O0O0O00O0COO0OOOOOOO

000O

GPU :0000:59:00.0 :0 0 524288 0 0 0 0 00 0O0OO0OO0O0O0O0O0O0OO0O0OOOOOOOOG®OO

000O

GPU :0000:be:00.0 :0 0 0 00 00O0O0O0O0O0O0OOOO

00

GPU :0000:34:00.0 :0 0 12744895 0 0 0 0 0 0 0 0 0 0 O

00000

GPU :0000:e7:00.0 :0 0 000 00O0OO0O0O0O0O0OOOO

00

GPU :0000:b7:00.0 :0 0 0 0 0O0OO0O0O0O0O0OO0OO0OO0OOOGO

00

0

0

0

0

0

0

0

0

0

0

0

0

00

00

00

00

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

GPU :0000:36:00.0 :0 O 524288 0 0 0 00O 0O0OO0O0O0O0O0O0O0O0O00O0COO0OOOOOOO

000O

GPU :0000:3b:00.0 :0 0 524288 0 0 0 0 00 0O0OO0OO0O0O0O0O0OO0O0OOOOOOOOG®OO

000O

GPU :0000:39:00.0 :0 O 524288 0 0 0 00O OO O0O00O0O0O0O0O0O00O0COO0OOOOOOO

000O

GPU :0000:b9:00.0 :0 0 00 0O0O0O0O00O0OO0O0O0O0OO0OO0OO0OO0OO0OOOOOOOOOOOO

00

GPU :0000:5c:00.0 :0 O 524288 0 0 0 00O 0O0OO0O0O0O0O0O0O0O0O00O0COO0OOOOOOO

000O

GPU :0000:€2:00.0 :0 0 39434 0 0 00O OO0OO0O000O0O00000OO0OO0OO0O0OOOOO

00O0O

GPU :0000:5€:00.0 :0 0 513889 0 0 0 00O OO O0O0O0O0O0O0O0O0O00O0CO0OO0OOOOOOO

000O

Each row represents a GPU entry, and the columns indicate the peer ranks in ascending
order. The lower the rank, the better the affinity. Each column entry is the total number of
DMA transactions that occurred between the specified GPU and the peers that belong to the

same rank.

For example, the row with GPU 0000:34:00.0 has 2621440 10 operations through the peer

with rank 3. Non-zero values in the last column indicate that the |0 is routed through the root

complex.

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

86

Displaying GDS NVIDIA FS Driver Statistics

Here are some examples:

Run the following command:

$ /usr/local/cuda-x.y/gds/samples /mnt/lustre/test 0
$ cat /proc/driver/nvidia-fs/stats

Here is the output:

GDS Version: 1.0.0.71

NVFS statistics(ver: 4.0)

NVFS Driver (version: 2:7:47)

Mellanox PeerDirect Supported: True

IO stats: Enabled, peer IO stats: Enabled
Logging level: info

Active Shadow-Buffer (MB): O
Active Process: 0

Reads : n=0 ok=0 err=0 readmb=0 io state err=0

Reads : Bandwidth (MB/s)=0 Avg-Latency (usec) =0

Sparse Reads : n=0 10=0 holes=0 pages=0

Writes : n=1 ok=1 err=0 writemb=0 io state err=0 pg-cache=0

pg-cache-fail=0
pg-cache-eio=0

Writes : Bandwidth (MB/s)=0 Avg-Latency (usec)=0
Mmap : n=1 ok=1 err=0 munmap=1

Barl-map : n=1 ok=1 err=0 free=1 callbacks=0 active=0
Error : cpu-gpu-pages=0 sg-ext=0 dma-map=0

Ops : Read=0 Write=0

GPU 0000:34:00:0 wuuid:98bb4b5c-4576-b996-3d84-4a5d778fa%970 : pinned MB=0 cache MB=0
max_pinned MB=0 cross_root port (%)=100

Run the following command:

$ cat /proc/driver/nvidia-fs/peer affinity

Here is the output:
GPU P2P DMA distribution based on pci-distance

(last column indicates p2p via root complex)

GPU :0000:b7:00:0 :0 0 0 0 0O 0O 0 0O0O0O0O
GPU :0000:09:00:0 :0 0 0 0 0O 0 00 O0O0OO
GPU :0000:bc:00:0 :0 0 0 0 00 0O0O0O0O0O
GPU :0000:be:00:0 :0 0 0 0 00 000O0O0O
GPU :0000:e0:00:0 :0 0 0 0 00O 0O0O0O0OO
GPU :0000:e2:00:0 :0 0 0 0 00 00O0O0O0O
GPU :0000:e5:00:0 :0 0 0 0 00 0O0O0O0O0O
GPU :0000:e7:00:0 :0 0 0 0 0000 0O0O0O
GPU :0000:34:00:0 :0 0 0 0 000 0O0O0O0 2
GPU :0000:36:00:0 :0 0 0 0 0O 0O 0O0O0O0OO
GPU :0000:39:00:0 :0 0 0 00O 0O 0O0O0O0OOO
GPU :0000:3b:00:0 :0 0 0 0 000 00O0O0O
GPU :0000:57:00:0 :0 0 0 0 0O 0O 0O 0O0O0OOO
GPU :0000:59:00:0 :0 0 0 0 0O 0O 00O0O0OO
GPU :0000:5¢c:00:0 :0 0 0 00O 0O 0O0O0O0O0O
GPU :0000:5€:00:0 :0 0 0 000 000O0O0O

In the above example, there are DMA transactions between the GPU (34:00.0) and one of its
peers. The peer device has the highest possible rank which indicates it is farthest away from
the respective GPU pci-distance wise.

To check the percentage of traffic, check the cross _root port %in /proc/driver/
nvidia-fs/stats. In the third example above, this value is 100%, which means that the peer-
to peer-traffic is happening over QPI links.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 87

Displaying GDS NVIDIA FS Driver Statistics

14.6. Display the GPU-to-Peer Distance
Table

The peer distance table displays the device-wise |0 distribution for each peer with its rank
for the specified GPU, and it complements the rank-based stats.

The peer_distance table displays the device-wise |0 distribution for each peer with its rank for
the specified GPU. It complements the rank-based stats.

The ranking is done in the following order:

1. Primary priority given to p2p distance (upper 2 bytes).
2. Secondary priority is given to the device bandwidth (lower 2 bytes)

For peer paths that cross the root port, a fixed cost for p2p distance (127 is added. This is
done to induce a preference for paths under one CPU root port relative to paths that cross the
CPU root ports.

Issue the following command:

$ cat /proc/driver/nvidia-fs/peer_distance

Sample output:

gpu peer peerrank p2pdist np2p link gen
class

0000:af:00.0 0000:86:00.0 0x820088 0x82 0 0x38 0x3
network

0000:af:00.0 0000:18:00.0 0x820088 0x82 0 0x8 0x3
nvme

0000:af:00.0 0000:86:00.1 0x820088 0x82 0 0x38 0x3
network

0000:af:00.0 0000:19:00.1 0x820088 0x82 0 0x8 0x3
network

0000:af:00.0 0000:87:00.0 0x820088 0x82 0 0x38 0x3
nvme

0000:af:00.0 0000:19:00.0 0x820088 0x82 0 0x8 0x3
network

0000:3b:00.0 0000:86:00.0 0x820088 0x82 0 0x38 0x3
network

0000:3b:00.0 0000:18:00.0 0x820088 0x82 0 0x8 0x3
nvme

0000:3b:00.0 0000:86:00.1 0x820088 0x82 0 0x38 0x3
network

0000:3b:00.0 0000:19:00.1 0x820088 0x82 0 0x8 0x3
network

0000:3b:00.0 0000:87:00.0 0x820088 0x82 0 0x38 0x3
nvme

0000:3b:00.0 0000:19:00.0 0x820088 0x82 0 0x8 0x3
network

0000:5e:00.0 0000:86:00.0 0x820088 0x82 0 0x38 0x3
network

0000:5e:00.0 0000:18:00.0 0x820088 0x82 0 0x8 0x3
nvme

0000:5e:00.0 0000:86:00.1 0x820088 0x82 0 0x38 0x3
network

0000:5e:00.0 0000:19:00.1 0x820088 0x82 0 0x8 0x3
network

0000:5e:00.0 0000:87:00.0 0x820088 0x82 0 0x38 0x3
nvme

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 88

Displaying GDS NVIDIA FS Driver Statistics

0000:5e:00.0 0000:19:00.0 0x820088 0x82 0 0x8 0x3
network

0000:d8:00.0 0000:86:00.0 0x820088 0x82 0 0x8 0x3
network

0000:d8:00.0 0000:18:00.0 0x820088 0x82 0 0x8 0x3
nvme

0000:d8:00.0 0000:86:00.1 0x820088 0x82 0 0x8 0x3
network

0000:d8:00.0 0000:19:00.1 0x820088 0x82 0 0x8 0x3
network

0000:d8:00.0 0000:87:00.0 0x820088 0x82 0 0x8 0x3
nvme

0000:d8:00.0 0000:19:00.0 0x820088 0x82 0 0x8 0x3
network

14.7. The GDSIO Tool

Here is some information about the GDSIO tool.

GDSIO is a synthetic 10 benchmarking tool that uses cufile APIs for |0. The tool can be found
in the /usr/local/cuda-x.y/tools directory. For more information about how to use this
tool, run $ /usr/local/cuda-x.y/tools/gdsio -h or review the gdsio section in the/usr/
local/cuda-x.y/tools/README file. In the examples below, the files are created on an ext4
file system.

Issue the following command:
./gdsio -f /root/sg/test -d 0 -w 4 -s 1M -x 0 -i 4K:32K:1K -I 1

Here is the output:

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 671/1024 (KiB)
I0Size: 4-32-1(KiB) Throughput: 0.044269 GiB/sec, Avg Latency:
996.094925 usecs ops: 60 total time 0.014455 secs

This command does a write 10 (-1 1) on a file named test of size TMiB (-s 1M] with an 10 size
that varies between 4KiB to 32 KiB in steps of 1KiB (-i 4K:32K:1K]. The transfer is performed
using GDS (-x 0] using 4 threads (-w 4) on GPU 0 (-d 0).

Here are some of additional features of the tool:
» Support for read/write at random offsets in a file.
The gdsio tool provides options to perform a read and write to a file at random offsets.

» Using -1 2 and -1 3 options does a file read and write operation at random offset
respectively but the random offsets are always 4KiB aligned.

./gdsio -f /root/sg/test -d 0 -w 4 -s 1M -x 0 -i 4K:32K:1K -I 3

IoType: RANDWRITE XferType: GPUD Threads: 4 DataSetSize: 706/1024 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.079718 GiB/sec, Avg Latency: 590.853274 usecs ops:
44 total time 0.008446 secs

» To perform a random read and write at unaligned 4KiB offsets, the -U option can be
used with -1 0 or -1 1 for read and write, respectively.

./gdsio -f /root/sg/test -d 0 -w 4 -s 1M -x 0 -i 4K:32K:1K -I 1 -U

IoType: RANDWRITE XferType: GPUD Threads: 4 DataSetSize: 825/1024 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.055666 GiB/sec, Avg Latency: 919.112500 usecs ops:
49 total time 0.014134 secs

» Random buffer fill for dedupe and compression.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 89

Displaying GDS NVIDIA FS Driver Statistics

Using the "-R’ option fills the io size buffer (-i) with random data. This random data is
then written to the file onto different file offsets.

./gdsio -f /root/sg/test -d 0 -w 4 -s 1M -x 0 -i 4K:32K:1K -I 1 -R

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 841/1024 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.059126 GiB/sec, Avg Latency: 788.884580 usecs ops:
69 total time 0.013565 secs

» Using the -F option will fill the entire file with random data.

./gdsio -f /root/sg/test -d 0 -w 4 -s 1M -x 0 -i 4K:32K:1K -I 1 -F

IoType: WRITE XferType: GPUD Threads: 4 DataSetSize: 922/1024 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.024376 GiB/sec, Avg Latency: 1321.104532 usecs ops:
73 total time 0.036072 secs

This is useful for file systems that use dedupe and compression algorithms to
minimize disk access. Using random data increases the probability that these file
systems will hit the backend disk more often.

» Variable block size.

To perform a read or a write on a file, you can specify the block size (- i}, which says that

|0 would be performed in chunks of block sized lengths. To check the stats for what block
sizes are used use the gds_stats tool. Ensure the the /etc/cufile.json file has cufile_stats is
setto 3:

./gds_stats -p <pid of the gdsio process> -1 3

Sample output:
0-4(KiB): 0 0
4-8(KiB): 0 17205
8-16(KiB) : 0 45859
16-32(KiB): 0 40125
32-64 (KiB): 0 O
64-128 (KiB): 0 0
128-256 (KiB): 0 O
256-512(KiB): 0 0
512-1024 (KiB): 0 O
1024-2048 (KiB): 0 0
2048-4096 (KiB): 0 0
4096-8192 (KiB): 0 O
8192-16384 (KiB): 0 0
16384-32768 (KiB): 0 0
32768-65536 (KiB): 0 0
65536-...(KiB): 0 O

The highlighted counters show that, for the command above, the block sizes that are used
for file 10 are in the 4-32 KiB range.

» Verification mode usage and limitations.

To ensure data integrity, there is an option to perform 10 in a Write and Read in verify mode
using the -v option. Here is an example:

./gdsio -V -f /root/sg/test -d 0 -w 1 -s 2G -0 0 -x 0 -k 0 -1 4K:32K:1K -I 1
IoType: WRITE XferType: GPUD Threads: 1 DataSetSize: 2097144/2097152 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.074048 GiB/sec, Avg Latency: 231.812570 usecs ops:
116513 total time 27.009349 secs

Verifying data

IoType: READ XferType: GPUD Threads: 1 DataSetSize: 2097144/2097152 (KiB) IOSize:
4-32-1(KiB) Throughput: 0.103465 GiB/sec, Avg Latency: 165.900663 usecs ops:
116513 total time 19.330184 secs

The command mentioned above will perform a write followed by a read verify test.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 90

Displaying GDS NVIDIA FS Driver Statistics

While using the verify mode, remember the following points:

» read test (-1 0) with verify option (-v) should be used with files written (-1 1) with the -v
option

» read test (-1 2] with verify option (-v] should be used with files written (-1 3) with the -
v option and using same random seed (-k] using same number of threads, offset, and
data size

» write test (-1 1/3) with verify option (-v] will perform writes followed by read.
» Verify mode cannot be used in timed mode (-T option).

If Verify mode is used in a timed mode, it will be ignored.
» The configuration file

GDSIO has an option to configure the parameters that are needed to performan 10 in a
configuration file and run the 10 using those configurations. The configuration file gives the
option of performing multiple jobs, where each job has some different configurations.

The configuration file has global parameters and job specific parameter support. For
example, with a configuration file, you can configure each job to perform on a GPU and
with a different number of threads. The global parameters, such as |0 Size and transfer
mode, remain the same for each job. For more information, refer to /usr/local/cuda-
x.y/tools/README and /usr/local/cuda-x.y/tools/rw-sample.gdsio files. After
configuring the parameters, to perform the 10 operation using the configuration file, run
the following command:

./gdsio <config file name>

See Tabulated Fields for a list of the tabulated fields.

14.8. Tabulated Fields

This section describes the tabulated fields after you run the #./gdsio <config file name>
command.

Table 7. Tabulated Fields
Global Option Description
xfer type GDSIO Transfer types:

» 0:Storage->GPU
» 1:Storage->CPU

» 2:Storage->CPU->GPU

» 3:Storage->CPU->GPU_ASYNC

» 4 :Storage->PAGE_CACHE->CPU->GPU
» 5:Storage->GPU_ASYNC

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 91

Global Option

rw

bs

size
runtime
do verify

skip bufregister

enable nvlinks

random_seed
refill buffer
fill random
unaligned random
start offset
Per-Job Options
numa node
gpu_dev_id
num_threads

directory

filename

14.9. GDSCHECK

Theis section describes the GDSCHECK tool.

Displaying GDS NVIDIA FS Driver Statistics

Description

|0 type, rw=read, rw=write, rw=randread,
rw=randwrite

block size, for example, bs=1M, for variable
block size can specify range, for example,
bs=1M:4M:1M, (1M : start block size, 4M : end
block size, 1M :steps in which size is varied).

File-size, for example, size=20.
Duration in seconds.
Use 1 for enabling verification

Skip cufile buffer registration, ignored in cpu
mode.

Set up NVlinks.

This field is recommended if p2p traffic is cross
node.

Use random seed, for example, 1234.

Refill io buffer after every write.

Fill request buffer with random data.

Use random offsets which are not page-aligned.
File offset to start read/write from.

Description

NUMA node.

GPU device index (check nvidia-smi).

Number of |0 Threads per job.

Directory name where files are present. Each
thread will work on a per file basis.

Filename for single file mode, where threads
share the same file. [Note: directory mode and
filemode should not be used in a mixed manner
across jobs).

The /usr/local/cuda-x.y/tools/gdscheck.py tool is used to perform a GDS platform
check and has other options that can be found by using -h option.

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 92

$./gdscheck.py -h

usage:

-h, --help
-f FILE

-v

-V

To perform a GDS platform check, issue the following command and expect the output in the

gdscheck.py

gds
gds
gds
gds

following format:
./gdscheck.py -p

GDS release version:
nvidia fs version:

[-h] [-p]

file check

[-f FILE]
GPUDirectStorage platform checker
optional arguments:
show this help message and exit
platform check

version checks

fs checks

ol

DRIVER CONFIGURATION:

NVMe

Suppor

8

ted

NVMeOF
SCSIT

ScaleF
NVMesh

lux CSD

DDN EXAScaler

IBM Spectrum Scale

NF'S
WekaF's
Usersp

ace RDMA

Unsupported
Unsupported
Unsupported
Unsupported
Supported

Unsupported
Unsupported
Unsupported
Unsupported

--Mellanox PeerDirect

--rdma library
--rdma devices

--rdma device status

Enabled

[-v] [-V]

1.0.0
2.7 libcufile version: 2.4

Displaying GDS NVIDIA FS Driver Statistics

Not Loaded (libcufile rdma.so)

Not configured

Up:

CUFILE CONFIGURATION:

properties.
properties.
properties.
.poll mode max size kb

properties
properties
properties
properties
properties
properties
properties

.max_batch io timeout msecs

use_ co

mpat mode

gds_rdma write support

use po

11 mode

.max_direct io size kb
.max device cache size kb

.max _device pinned mem size kb

.posix _pool slab size kb
.posix pool slab count

properties.
properties.
.posix unaligned writes

fs.generic

rdma peer affinity policy
rdma dynamic_ routing

fs.lustre.posix gds min kb:
fs.weka.rdma write support:

profile.nvtx

fa

1lse

profile.cufile stats : 0
miscellaneous.api check aggressive

oUW O

Tesla
Tesla
Tesla
Tesla
Tesla
Tesla
Tesla
Tesla

V100-SXM3
V100-SXM3
V100-SXM3
V100-SXM3
V100-SXM3
V100-SXM3
V100-SXM3
V100-SXM3

0 Down: O
true
true
false
4
3 B
16384
131072
_ 33554432
4 1024 16384
128 64 32
RoundRobin
0
false
0
false
false
-32GB bar:1 bar size (
-32GB bar:1 bar size (MiB
-32GB bar:1 bar size (MiB
-32GB bar:1 bar size (MiB
-32GB bar:1 bar size (Mi
-32GB bar:1 bar size (MiB
-32GB bar:1 bar size (MiB
-32GB bar:1 bar size i

NVIDIA Magnum 10 GPUDirect Storage

) :32768
) :32768
) :32768
) :32768
) :32768
) :32768
) :32768
) 132768

supports
supports
supports
supports
supports
supports
supports
supports

TB-10112-001_v1.0.0

GDS
GDS
GDS
GDS
GDS
GDS
GDS
GDS

93

Displaying GDS NVIDIA FS Driver Statistics

GPU index 8 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 9 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 10 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 11 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 12 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 13 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS

(

(

el

GPU index 14 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS
GPU index 15 Tesla V100-SXM3-32GB bar:1 bar size (MiB) :32768 supports GDS

PLATFORM INFO:

IOMMU: disabled
Platform verification succeeded

14.10. NFS Support with GPUDirect Storage

This section provides information about NFS support with GDS.

14.10.1. Install Linux NFS server with RDMA Support

on MLNX OFED 5.3 or Later

Here is some information about how to install a Linux NFS server with RMMA support on
MLNX OFED 5.3 or later.
To install a standard Linux kernel-based NFS server with RDMA support, complete the

following steps:

Note: The server must have a Mellanox connect-X4/5 NIC with MLNX_OFED 5.3 or later
installed.

1. lIssue the following command:
$ ofed info -s MLNX OFED LINUX-5.3-1.0.5.1:

2. Review the output to ensure that the server was installed.

$ sudo apt-get install nfs-kernel-server
$ mkfs.ext4 /dev/nvmeOnl
$ mount -o data=ordered /dev/nvmeOnl /mnt/nvme
$ cat /etc/exports
/mnt/nvme * (rw,async,insecure,no root squash,no subtree check)
$ service nfs-kernel-server restart
$ modprobe rpcrdma
$ echo rdma 20049 > /proc/fs/nfsd/portlist

14.10.2. Install GPUDirect Storage Support for the
NFS Client

Here is some information about installing GDS support for the NFS client.

To install a NFS client with GDS support complete the following steps:

Note: The client must have a Mellanox connect-X4/5 NIC with MLNX_OFED 5.3 or later
installed.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0

94

Displaying GDS NVIDIA FS Driver Statistics

1. lIssue the following command:
$ ofed info -s MLNX OFED_LINUX-5.3-1.0.5.0:

2. Review the output to ensure that the support exists.

$ sudo apt-get install nfs-common

$ modprobe rpcrdma

$ mkdir -p /mnt/nfs rdma gds

$ sudo mount -v -o proto=rdma,port=20049,vers=3 172.16.0.101:/ /mnt/nfs rdma gds

To mount with nconnect using VAST nfs client package:

Eg: client IB interfaces 172.16.0.17 , 172.16.0.18, 172.16.0.19, 172.16.0.20,
172.16.0.21,172.16.0.22,172.16.0.23 172.16.0.24

$ sudo mount -v -o

proto=rdma,port=20049,vers=3,nconnect=20, localports=172.16.0.17-172.16.0.24, remoteports=172.1¢
172.16.0.101:/ /mnt/nfs rdma gds

14.11. NFS GPUDirect Storage Statistics
and Debugging

Here is some information about NFS and GDS statistics and debugging.

NFS 10 can be observed using regular Linux tools that are used for monitoring 10, such as
lotop and nfsstat.

» To enable NFS RPC stats debugging, run the following command.
$ rpcdebug -v
» Toobserver GDS-related 10 stats, run the following command.
$ cat /proc/driver/nvidia-fs/stats
» Todetermine GDS statistics per process, run the following command.

$ /usr/local/cuda-x.y/tools/gds_stats -p <PID> -1 3

14.12. GPUDirect Storage |10 Behavior

This section provides information about 10 behavior in GDS.

14.12.1. Read/Write Atomicity Consistency with
GPUDirect Storage Direct 10

Here is some information about read/write atomiity consistency with GDS.

In GDS, the max _direct io size kb property controls the |0 unit size in which the limitation
Is issued to the underlying file system. By default, this value is T6MB. This implies that from a
Linux VFS perspective, the atomicity of size is limited to the max direct io size kb size and
not the original request size. This limitation exists in the standard GDS path and in compatible
mode.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 95

Displaying GDS NVIDIA FS Driver Statistics

14.12.2. Write with File a Opened in O_APPEND Mode
(cuFileWrite)

Here is some information about writing to a file that is opened in O_APPEND mode.

For a file that is opened in O_APPEND mode with concurrent writers, if the 10 size that is
used is larger than the max_direct io size kb property, because of the write atomicity
limitations, the file might have interleaved data from multiple writers. This cannot be
prevented even if the underlying file-system has locking guarantees.

14.12.3. GPU to NIC Peer Affinity

Here is some information about GPU to NIC peer affinity.

The library maintains a peer affinity table that is a pci-distance-based ranking for a GPU and
the available NICs in the platform for RDMA. Currently, the limitation in the ranking does not
consider NUMA attributes for the NICs. For a NIC that does not share a common root port with
a GPU, the P2P traffic might get routed cross socket over QPI links even if there is a NIC that
resides on the same CPU socket as the GPU.

14.12.4. Compatible Mode with Unregistered Buffers

Here is some information about the compatible mode with unregistered buffers.

Currently in compatible mode, the |10 path with non-registered buffers does not have optimal
performance and does buffer allocation and deallocation in every cuFileRead or cuFileWrite.

14.12.5. Unaligned writes with Non-Registered
Buffers

Here is some information about unaligned writes with non-registered buffers.

For unaligned writes, using unregistered buffers performance may not be optimal as
compared to registered buffers.

14.12.6. Process Hang with NFS

Here is some information about process hanges with NFS.

A process hang is observed in NFS environments when the application crashes.

14.12.7. Tools Support Limitations for CUDA 9 and
Earlier

Here is some information about the tool support issues with CUDA 9 and earlier.

The gdsio binary has been built against CUDA runtime 10.1 and has a dependency on the
CUDA runtime environment to be equal to version 10.1 or later. Otherwise a driver dependency
error will be reported by the tool.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 96

Displaying GDS NVIDIA FS Driver Statistics

14.13. GDS Statistics for Dynamic Routing

Dynamic Routing decisions are performed at I/0 operation granularity. The GDS User-space
Statistics contain a per-GPU counter to indicate the number of I/Os that have been routed
using Dynamic Routing.

Table 8. cuFile Dynamic Routing Counter
Entry Description
dr Number of cuFileRead/cuFileWrite for which I/O was routed using Dynamic

Routing for a given GPU.

There are existing counters in the PER_GPU POOL BUFFER STATS and PER_GPU POSIX POOL
BUFFER STATS from which a user can infer the GPUs that are chosen by dynamic routing for
use as the bounce buffers.

a) Platform has GPUs (0 and 1) not sharing the same PCle host bridge as the NICs:

"rdma dev_addr list": ["192.168.0.12", "192.168.1.12" 1],
"rdma dynamic routing": true,
"rdma dynamic_routing order": ["GPU MEM NVLINKS", "GPU MEM", "SYS MEM"]

$ gds_stats -p <process id> -1 3

GPU 0 Read: bw=0 util (%)=0 n=0 posix=0 unalign=0 dr=0 r sparse=0 r inline=0 err=0
MiB=0 Write: bw=3.37598 util (%)=532 n=6629 posix=0 unalign=0 dr=6629 err=0 MiB=6629
BufRegister: n=4 err=0 free=0 MiB=4

GPU 1 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 dr=0 r sparse=0 r inline=0 err=0
MiB=0 Write: bw=3.29297 util (%)=523 n=6637 posix=0 unalign=0 dr=6637 err=0 MiB=6637
BufRegister: n=4 err=0 free=0 MiB=4

PER GPU POOL BUFFER STATS:

GPU : 6 pool size MiB : 7 usage : 1/7 used MiB
GPU 7 pool size MiB : 7 usage : 0/7 used MiB
GPU : 8 pool size MiB : 7 usage : 2/7 used MiB
GPU 9 pool size MiB : 7 usage : 2/7 used MiB

NN O

PER GPU POSIX POOL BUFFER STATS:

PER GPU RDMA STATS:

GPU 0000:34:00.0 : mlx5 3(138:48):0 mlx5 6(265:48):0
GPU 0000:36:00.0 : mlx5 3(138:48):0 mlx5 6(265:48):0
GPU 0000:39:00.0 mlx5 3(138:48):0 mlx5 6(265:48):0
GPU 0000:3b:00.0 mlx5 3(138:48):0 mlx5 6(265:48):0
GPU 0000:57:00.0 mlx5 3(7:48):0 mlx5 6(265:48):0
GPU 0000:59:00.0 mlx5 3(7:48):0 mlx5 6(265:48):0
GPU 0000:5c:00.0 mlx5 3(3:48):3318 mlx5 6(265:48):0
GPU 0000:5e:00.0 mlx5 3(3:48):3318 mlx5 6(265:48):0
GPU 0000:b7:00.0 mlx5 6(3:48):3316 mlx5 3(265:48):0
GPU 0000:09:00.0 mlx5 6(3:48):3317 mlx5 3(265:48):0
GPU 0000:bc:00.0 mlx5 6(7:48):0 mlx5 3(265:48):0
GPU 0000:be:00.0 mlx5 6(7:48):0 mlx5 3(265:48):0
GPU 0000:e0:00.0 mlx5 6(138:48):0 mlx5 3(265:48):0
GPU 0000:e2:00.0 mlx5 6(138:48):0 mlx5 3(265:48):0
GPU 0000:e5:00.0 mlx5 6(138:48):0 mlx5 3(265:48):0
GPU 0000:e7:00.0 mlx5 6(138:48):0 mlx5 3(265:48):0

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 97

Displaying GDS NVIDIA FS Driver Statistics

b) Platform configuration that has no GPUs sharing the same PCle host bridge as the NICs
and no NVLinks between the GPUs. For such configurations, an admin can set a policy to use
system memory other than the default P2P policy.

"rdma dev addr list": ["192.168.0.12", "192.168.1.12" 1],

"rdma dynamic_routing": true,

"rdma dynamic_routing order": ["SYS MEM"]

PER GPU STATS:

GPU 4 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r sparse=0 r inline=0 err=0 MiB=0
Write: bw=1.11GiB util (%)=0 n=1023 posix=1023 unalign=1023 dr=1023 err=0 MiB=1023
BufRegister: n=0 err=0 free=0 MiB=0

GPU 8 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 r sparse=0 r inline=0 err=0 MiB=0
Write: bw=1.11GiB util (%)=0 n=1023 posix=1023 unalign=1023 dr=1023 err=0 MiB=1023
BufRegister: n=0 err=0 free=0 MiB=0

PER GPU POSIX POOL BUFFER STATS:

GPU 4 4(KiB) :0/0 1024 (KiB) :0/1 16384 (KiB) :0/0

GPU 8 4 (KiB) :0/0 1024 (KiB) :1/1 16384 (KiB) :0/0

14.13.1. Peer Affinity Dynamic Routing

Dynamic Routing decisions are performed at I/O operation granularity. The GDS User-space
Statistics contain a per-GPU counter to indicate the number of I/Os that have been routed
using Dynamic Routing.

Table 9. cuFile Dynamic Routing Counter
Entry Description
dr Number of cuFileRead/cuFilenrite for which I/O was routed using Dynamic

Routing for a given GPU.

There are existing counters in the PER_ GPU POOL BUFFER STATS and PER GPU POSIX POOL
BUFFER STATS from which a user can infer the GPUs that are chosen by dynamic routing for
use as the bounce buffers.

// "rdma dev addr list": ["192.168.4.12", "192.168.5.12", "192.168.6.12",
"192.168.7.12" 1,

cufile.log:

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:133 Computing
GPU->NIC affinity table:

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:34:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:36:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:39:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:3b:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:57:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:59:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:5¢c:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:5€:00.0 RDMA dev: mlx5 6 mlx5 8 mlx5 7 mlx5 9

23-02-2021 10:17:49:641 [pid=22436 tid=22436] INFO curdma-ldbal:139 GPU:
0000:b7:00.0 RDMA dev: mlx5 6

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 98

23-02-2021

0000:b9:00.

23-02-2021

0000:bc:00.

23-02-2021

0000:be:00.

23-02-2021

0000:e0:00.

23-02-2021

0000:e2:00.

23-02-2021

0000:e5:00.

23-02-2021

0000:e7:00.

10:

0

10:

0

10:

0

10:

0

10:

0

10:

0

10:

0

17:49:641
RDMA dev:
17:49:0641
RDMA dev:
17:49:641
RDMA dev:
17:49:0641
RDMA dev:
17:49:641
RDMA dev:
17:49:0641
RDMA dev:
17:49:641
RDMA dev:

[pid=22436
mlx5 6
[pid=22436
mlx5 7
[pid=22436
mlx5 7
[pid=22436
mlx5 8
[pid=22436
mlx5 8
[pid=22436
mlx5 9
[pid=22436
mlx5 9

tid=22436]
tid=22436]
tid=22436]
tid=22436]
tid=22436]
tid=22436]

tid=22436]

INFO

INFO

INFO

INFO

INFO

INFO

INFO

Displaying GDS NVIDIA FS Driver Statistics

curdma-ldbal:

curdma-1ldbal:

curdma-ldbal:

curdma-1ldbal:

curdma-ldbal:

curdma-1ldbal:

139

139

139

139

139

139

curdma-1dbal:139

GPU:

GPU:

GPU:

GPU:

GPU:

GPU:

GPU:

A sample from gds_stats showing the GPU to NIC binding during a sample 10 test:
PER GPU RDMA STATS:

GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
GPU 0000:
mlx5 9(265:
:b7:00.
mlx5 9(138:
:b9:00.
mlx5 9(138:
:bc:00.
mlx5 9(138:
:be:00.
mlx5 9(138:
GPU 0000:
mlx5 7(138:
GPU 0000:
mlx5 7(138:
GPU 0000:
mlx5 7(138:
GPU 0000:
mlx5 7(138:

GPU 0000
GPU 0000
GPU 0000

GPU 0000

34:00.

48) :0

36:00.

48) :0

39:00.

48) :0

3b:00.

48) :0

57:00.

48) :0

59:00.

48) :0

5c¢:00.

48) :0

5e:00.

48) :0
48) :0
48) :0
48) :0

48) :0

e0:00.

48) :0

e2:00.

48) :0

e5:00.

48) :0

e7:00.

48) :0

0

0

0

mlx5 6(265:48):0

mlx5 6(265:
mlx5 6(265:
mlx5 6(265:
mlx5 6(265:
mlx5 6(265:
mlx5 6(265:
mlx5 6(265:
mlx5 6(3:48)
mlx5 6(3:48)
mlx5 7(3:
mlx5 7(3:48)
mlx5 8(3:48)
mlx5 8(3:48)
mlx5 9(3:48)

mlx5 9(3:48)

48) :

48) :0
48) :0
48) :0
48) :0
48) :0
48) :0

48) :0

:22918

:22949

22945

122942

:22937

:22930

122922

:22920

mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 8(265:
mlx5 7(7:
mlx5 7(7:
mlx5 6(7:
mlx5 6(7:
mlx5 9(7:
mlx5 9(7:
mlx5 8(7:

mlx5 8(7:

48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :

48) :

mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 7(265:
mlx5 8(138:
mlx5 8(138:
mlx5 8(138:
mlx5 8(138:
mlx5 6(138:
mlx5 6(138:
mlx5 6(138:

mlx5 6(138:

48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :
48) :

48) :

» For kernel-based DFS, DDN-Lustre and VAST-NFS, nvidia-fs driver provides a callback to
determine the best NIC given a target GPU. The nvidia-fs peer_affinity can be used to track
end-to-end |10 affinity behavior.

For example, with a routing policy of "GPU_MEM_NVLINK", one should not see cross-port

traffic as shown in the statistics snippet below:

$ cat /proc/driver/nvidia-fs/peer_ affinity
GPU P2P DMA distribution based on pci-distance

(last column indicates p2p via root complex
:00000O0O0O0CO0O
:0 0 205305577 0 0 O

GPU
GPU

0 00O
GPU

:0000:bc:00.0
:0000:e0:00.0

:0000:e5:00.0

ple
00
00

)
0
0

0000000O0CO0CO0OO0OOOO0OCOOOO0OO
060000000O0COO0OO0OOOO0OCOOOOO

:000000O0OO0CO0COODOOCOOOOOOOOOOOOOOOOOOOO

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

99

Displaying GDS NVIDIA FS Driver Statistics

GPU :0000:57:00.0 :0 0 00 0O0OO0OO00O0O0O0O0O0OOOO0OOOOOOOOOOOOOOOO
GPU :0000:59:00.0 :0 0 0 0 0O0O0O00O0O0O0O0O00OOOOOOOOOOOOOOOOOO
GPU :0000:be:00.0 :0 0 0 00O0O0000O0O0O0O0DOOOO0OOOOOOOOOOOOOOO
GPU :0000:34:00.0 :0 000000 000000O0CO0O0O0OOO0COOOOOOOOCOOO0OO
GPU :0000:e7:00.0 :0 0 0 00O 0O0000O0O0O0O0OOOO0OO0OO0OOOOO0OOO0OOOOOOO0O
GPU :0000:b7:00.0 :0 0 205279892 0 0 0 0 000 0O0OO0CO0O0O0OO0O0O0OO0O0OO0OOOOOO0O
000O
GPU :0000:36:00.0 :0 0 000 0O0O0OO00000O0O0OO0OO0OOOO0OOOOOOOOCOOO0OO
GPU :0000:3b:00.0 :0 0 00 0O0O0O0O0O0O0O0O0O0OOOO0OO0OOOOOOOOOOOOOO
GPU :0000:39:00.0 :0 0 0 00O 0O0OO00O0O0O0O0O0OOOOOOOOOOOOOOOOOO
GPU :0000:b9:00.0 :0 0 0 0 0O0O0O000O0O0O0O0OOO0OO0O0OOOOOOOOOOOOOO
GPU :0000:5¢:00.0 :0 0 000 0O0O0O00000O0O0OO0O0OOOO0OOCOOOOOOOCOOO0OO
GPU :0000:e2:00.0 :0 0 0 000 0000O0O0O0O0OOOO0OO0OO0OOOOOOO0OOOOOOOO
GPU :0000:5e:00.0 :0 0 0 00O0O0O00O0O0O0O0O0OOOCOOOOOOOOOOOOOOO

With routing policy of P2P, one can expect to see cross-port traffic as shown in the following
statistics snippet:

dgxuser@el55j-dgx2-c6-ul4:~/ssen$ cat /proc/driver/nvidia-fs/peer affinity
GPU P2P DMA distribution based on pci-distance

(last column indicates p2p via root complex)

GPU :0000:bc:00.0 :0 0 0 0000 000000000OO0O0O0OOOO0OO0OOOO0OOOO
GPU :0000:e0:00.0 :0 0 00 0O0OO0000O0O0O0O0O0OOO0OO0O0OOOO0OOO0OOOOOOOO
GPU :0000:e5:00.0 :0 0 00 0O0O0O00000000O0OO0O0OO0OOOOOOOOOOOOO
GPU :0000:57:00.0 :0 0 00 0O0O0O0O00000000O0OO0O0O0OOOOOOOOOOOOO
GPU :0000:59:00.0 :0 0 00 0O0O0O00000000O0OO0OO0O0OOOOOO0OOOOOOO
GPU :0000:be:00.0 :0 0 00 0O0O0O000O0O0O0O0O0OO0OO0O0OO0OOOOO0OO0OO0OOOO0OOO0O
GPU :0000:34:00.0 :0 0 00 0O0O0O00000000O0OO0O0O0OOOOOOOOOOOOO

9186359
GPU :0000:e7:00. :
GPU :0000:b7:00.0 :0 0 00O 0OOO0O0O0O0O0O0O0O0O0O0OO0OOOOOOOOOOOOOOODOOOO
GPU :0000:36:00.0 :0 0 00O O0O0O0O0O0O00ODO0O0O0O0OODODOOOOOODODOOOOODODOOO

(@]
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

9191164
GPU :0000:3b:00.0 :0 0 0 00O0O0000O0O0O0O0OOOO0OOOOOOOOOOOOOOO
9194318
GPU :0000:39:00.0 :0 0 0 0 0O0O0O000O000O0O0OO0OO0OOO0OOOOOOOOOOOOOO
9188836
GPU :0000:09:00.0 :0 0 0 00O0OO0O000O00O0O0OOO0OO0OO0OOOOOOOOOOOOOO
GPU :0000:5¢:00.0 :0 0 000 0O0OO0OO00000O0COO0OO0OOOO0OOOOOOOOOOOO
GPU :0000:e2:00.0 :0 0 0 0 0O0O0000O0O0O0OOOO0OOOOOOOOOOOOOOOO
GPU :0000:5e:00.0 :0 0 0 00O0O0O000O0CO0O00O0OOOCOOOOOOOOOOOOOOO

14.13.2. cuFile Log Related to Dynamic Routing

The following log shows the routing table with possible GPUS to be used for IP addresses:

/"rdma dev addr list": ["192.168.0.12", "192.168.1.12", "192.168.2.12",
T192,.168.3.127, Vi92,.168.4,127, Vi92,1l68.5.127, Wi92,.1l68.6.127, "iO2.1l68.7.127],

O O O O oo

O O O o oo O OO OO oo

[eoNeoNeNe]

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:141 Computing NIC-

>GPU affinity table for rdma devices available in config:

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib3
bdf:0000:5d:00.0 ip: 192.168.3.12 best gpus: 6 7 4 5

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib9
bdf:0000:e6:00.0 ip: 192.168.5.12 best gpus: 14 15 12 13

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib2
bdf:0000:58:00.0 ip: 192.168.2.12 best gpus: 4 5 6 7

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib6
bdf:0000:b8:00.0 ip: 192.168.6.12 best gpus: 8 9 10 11

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ibl
bdf:0000:3a:00.0 ip: 192.168.1.12 best gpus: 3 2 0 1

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib8
bdf:0000:e1:00.0 ip: 192.168.4.12 best gpus: 12 13 14 15

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib0
bdf:0000:35:00.0 ip: 192.168.0.12 best gpus: 0 1 3 2

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 |

100

Displaying GDS NVIDIA FS Driver Statistics

22-02-2021 21:16:27:776 [pid=90794 tid=90794] INFO cufio-route:156 netdev:ib7
bdf:0000:bd:00.0 ip: 192.168.7.12 best gpus: 10 11 8 9

22-02-2021 21:16:27:776 [pid=90794 tid=90794] DEBUG cufio:1218 target gpu: 4 best
gpu: 4 selected based on dynamic routing

14.14. Installing and Uninstalling the Debian
Package

This section provides information about how to install and uninstall the Debian packages.
The following packages are shipped as part of the Debian package:

1. nvidia-fs 2.2 amd64.deb

2. gds _0.8.0 amd64.deb

3. gds-tools 0.8.0 amd64.deb

Currently, NVIDIA only supports the Debian installation with Ubuntu 18.04 and 20.04. The
first package, nvidia-fs 2.2 amd64.deb, can be installed or uninstalled without any

dependencies. You must install the other three packages in the order as listed above and
uninstalled in reverse order that is listed above.

For more information about how to install and uninstall the Debian package, see:

» Install the Debian Package

» Uninstall the Debian Package

14.14.1. Install the Debian Package

Here are the steps to install the Debian package.

Before you install the Debian package, complete the following tasks:
» Ensure that the NVIDIA driver is installed by using APT package manager.
> You installed the NVIDIA driver by using NVIDIA-Linux-x86_64.

The <version>.run file is not supported with the nvidia-gds package.

» Ensure that you download the correct GDS debian package based on your Ubuntu
distribution and CUDA toolkit.

» For 20.04:

$ sudo dpkg -i gpudirect-storage-local-repo-ubuntu2004-cuda-
x.y=-0.9.0 1.0-1 amdé64.deb

> For 18.04:

$ sudo dpkg -i gpudirect-storage-local-repo-ubuntul804-cuda-
x.y=-0.9.0 1.0-1 amdé64.deb

The following packages, which are shipped in the Debian package, will be uninstalled:

» nvidia-fs 2.3 amdé64.deb

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 101

Displaying GDS NVIDIA FS Driver Statistics

> gds 0.9.0 amd64.deb
» gds-tools 0.9.0 amd64.deb

1. Download the debian packages to local client.

$ sudo apt-key add /var/gpudirect-storage-local-repo-*/7fa2af80.pub
$ sudo apt-get update

2. Install all the GDS-related packages by running nvidia-gds metapackage.

If you installed version 0.8.0, run the following commands before you upgrade to version
0.9.0:

$ sudo dpkg --purge nvidia-fs
$ sudo dpkg --purge gds-tools
$ sudo dpkg --purge gds

3. To get the current NVIDIA driver version in the system:

$ NVIDIA DRV_VERSION=$ (cat /proc/driver/nvidia/version | grep Module | awk
'{print $8}' | cut -d '.' -f 1)

On DGX-based systems or systems with nvidia prebuilt kernels, run the following
commands to install nvidia-gds with correct dependencies:

$ sudo apt install nvidia-gds nvidia-dkms-${NVIDIA DRV _VERSION}-server
$ sudo modprobe nvidia fs

For systems with the nvidia-dkms-${NVIDIA DRV_VERSION} package installed:

$ sudo apt install nvidia-gds
$ sudo modprobe nvidia fs

4. Verify the package installation.

$ dpkg -s nvidia-gds

Package: nvidia-gds

Status: install ok installed

Priority: optional

Section: multiverse/devel

Installed-Size: 7

Maintainer: cudatools <cudatools@nvidia.com>
Architecture: amdo64

Source: gds-ubuntul804

Version: 0.9.0.15-1

Provides: gds

Depends: libcufileO, gds-tools, nvidia-fs
Description: Metapackage for GPU Direct Storage
GPU Direct Storage metapackage

5. Toverify GDS install run gdscheck:

$ /usr/local/cuda-x.y/gds/tools/gdscheck.py -p

Here is the ouput:

GDS release version (beta): 0.9.0.15

nvidia fs version: 2.3 libcufile version: 2.3
cuFile CONFIGURATION:

NVMe : Supported

NVMeOF : Unsupported

SCSI : Unsupported

SCALEFLUX CSD : Unsupported

LUSTRE : Unsupported

NFS : Unsupported

WEKAFS : Supported

USERSPACE RDMA : Supported

--MOFED peer direct : enabled

--rdma library : Loaded (libcufile rdma.so)
—--rdma devices : Configured

--rdma device status : Up: 1 Down: 0

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 102

properties.
properties.
properties.

properties
properties
properties

properties.

properties
properties

properties.
fs.generic.

use_compat mode : 1
use poll mode
poll mode max size kb

0

4

.max_batch io timeout msecs
.max_direct io size kb
.max_device cache size kb

.posix pool slab size kb
.posix pool slab count

fs.lustre.posix gds min kb: 0
fs.weka.rdma write support: 0
profile.nvtx : O
profile.cufile stats : 3
miscellaneous.api check aggressive

GPU
GPU
GPU
GPU
GPU
IOMMU

INFO:
index
index
index
index
di

Platform verification succeeded

0 Tesla
1 Tesla
2 Tesla
3 Tesla
sabled

T4 bar
T4 bar
T4 bar
T4 bar

:1 bar
:1 bar
:1 bar
:1 bar

size
size
size
size

max device pinned mem size kb

5

16384

131072

128 64 32

rdma peer affinity policy
posix unaligned writes

0

RoundRobin

) 1256
) 1256
) :256
) :256

Displaying GDS NVIDIA FS Driver Statistics

: 33554432
4096 1048576 16777216

supports GDS
supports GDS
supports GDS
supports GDS

14.14.2. Uninstall the Debian Package

Here is the information about how to uninstall the Debian package.

Before you install GDS version 0.9, you need to uninstall GDS version 0.8 or earlier to uninstall
GDS and remove the following packages:

>

>

nvidia-fs 2.2 amd64.deb

gds 0.8.0 amd64.deb

gds-tools 0.8.0 amd64.deb

To uninstall the Debian package, run the following command:
$ sudo dpkg --purge nvidia-gds

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

103

Chapter 15. GDS Library Tracing

The GDS Library has USDT (static tracepoints), which can be used with Linux tools such as
1ttng, bee/bpf, pert. This section assumes familiarity with these tools.

The examples in this section show tracing by using the bec/bpf tracing facility. GDS does not
ship these tracing tools. Refer to Installing BCC for more information about installing bcc/bpf
tools. Users must have root privileges to install.

Note: The user must also have sudo access to use these tools.

15.1.

This example shows how you can display tracepoints.

1.

To display tracepoints, run the following command:
./tplist -1 /usr/local/gds/lib/libcufile.so

Review the output, for example:

/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.
/usr/local/cuda-x.

15.1.1.

cufio px read

y/1lib/libcufile.
y/1lib/libcufile.
y/lib/libcufile.
y/lib/libcufile.
y/1lib/libcufile.
y/1lib/libcufile.
y/lib/libcufile.
y/lib/libcufile.
y/1lib/libcufile.
y/1lib/libcufile.
y/lib/libcufile.
y/lib/libcufile.

SO
SO
SO
SO
SO
SO
SO
SO
SO
SO
SO
SO

cufio:

Example: Display Tracepoints

cufio px read

cufio:
cufio:

cufio

cufio rdma read
cufio gds read

:cufio gds read async
cufio:
cufio:
cufio:

cufio px write
cufio gds write

cufio gds write async
cufio-internal:
cufio-internal:
cufio-internal:
cufio-internal:
cufio-internal:

cufio-internal-write-bb
cufio-internal-read-bb
cufio-internal-bb-done
cufio-internal-io-done
cufio-internal-map

Example: Tracepoint Arguments

Here are examples of tracepoint arguments.

This tracepoint tracks POSIX |0 reads and takes the following arguments:

» Argl: File descriptor
» Arg 2: File offset
» Arg 3: Read size

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0

104

https://github.com/iovisor/bcc
https://github.com/iovisor/bcc/blob/master/INSTALL.md

GDS Library Tracing

» Arg 4: GPU Buffer offset
» Arg 5: Return value
» Arg 6: GPU ID for which |0 is done

cufio rdma read

This tracepoint tracks |0 reads for through WEKA filesystem and takes the following
arguments:

» Argl: File descriptor

> Arg2: File offset

Arg3: Read size

Arg4: GPU Buffer offset

Argb: Return value

Arg6: GPU ID for which 10 is done

Arg7: 1s the 10 done to GPU Bounce buffer

vV v v Vv VY

cufio gds read

This tracepoint tracks |0 reads going through the GDS kernel drive and takes the following
arguments:

Arg1: File descriptor

Arg?2: File offset

Arg3: Read size

Arg4: GPU Buffer offset

Argbo: Return value

Argé: GPU ID for which 10 is done

Arg7: Is the |0 done to GPU Bounce buffer

vV vV . v vV v v Y

cufio gds read async

This tracepoint tracks i0 reads going through the GDS kernel driver and poll mode is set and
takes the following arguments:

» Argl: File descriptor

> Arg?2: File offset

» Arg3: Read size

» Arg4: GPU Buffer offset

» Argb: Return value

» Argé: GPU ID for which 10 is done

» Arg7: s the |0 done to GPU Bounce buffer

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 105

GDS Library Tracing

cufio px write

This tracepoint tracks POSIX |0 writes and takes the following arguments:

> Argl: File descriptor

» Arg 2: File offset

» Arg 3: Write size

» Arg 4: GPU Buffer offset
» Arg 3: Return value

>

Arg 6: GPU ID for which |0 is done

cufio gds write

This tracepoint tracks |0 writes going through the GDS kernel driver and takes the following
arguments:

» Argl: File descriptor

> Arg?2: File offset

Arg3: Write size

Arg4: GPU Buffer offset

Arg5: Return value

Argé: GPU ID for which 10 is done

Arg7: |s the |0 done to GPU Bounce buffer

v

vV v v Vv

cufio gds write async

This tracepoint tracks |0 writes going through the GDS kernel driver, and poll mode is set and
takes the following arguments:

Arg1: File descriptor

Arg2: File offset

Arg3: Write size

Arg4: GPU Buffer offset

Argb: Return value

Arg6: GPU ID for which 10 is done

Arg7: Is the 10 done to GPU Bounce buffer

vV vV v v VvV v Vv

cufio-internal-write-bb

This tracepoint tracks |0 writes going through internal GPU Bounce buffers and is specific to
the EXAScaler® filesystem and block device-based filesystems. This tracepoint is in hot |0-
path tracking in every |0 and takes the following arguments:

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 106

v

vV vV v v VY

Arg1:
Arg2:
Arg3:
Argé:
Argb:
Argé:
Arg7:
Arg8:
Arg9:

GDS Library Tracing

Application GPU (GPU ID)

GPU Bounce buffer (GPU ID)

File descriptor

File offset

Write size

Application GPU Buffer offset

Size is bytes transferred from application GPU buffer to target GPU bounce buffer.
Total Size in bytes transferred so far through bounce buffer.

Pending 10 count in this transaction

cufio-internal-read-bb

This tracepoint tracks |0 reads going through internal GPU Bounce buffers and is specific to
the EXAScaler® filesystem and block device-based filesystems. This tracepoint is in hot 10-
path tracking every 10 and takes the following arguments:

vV vV v v v Vv

v

v

Argl:
Arg2:
Arg3:
Argé:
Argo:
Argé:
Arg7:
Arg8:
Arg9:

Application GPU (GPU ID)

GPU bounce buffer (GPU ID)

File descriptor

File offset

Read size

Application GPU Buffer offset

Size is bytes transferred from the GPU bounce buffer to application GPU buffer.
Total Size in bytes transferred so far through bounce buffer.

Pending 10 count in this transaction.

cufio-internal-bb-done

This tracepoint tracks all 10 going through bounce buffers and is invoked when 10 is completed
through bounce buffers. The tracepoint can be used to track all 10 going through bounce
buffers and takes the following arguments:

vV vV v v vV vV v v v

Arg1:
Arg2:
Arg3:
Argé:
Argb:
Argé:
Arg7:
Arg8:
Arg9:

|0-type READ - 0, WRITE - 1
Application GPU (GPU ID)

GPU Bounce buffer (GPU ID)

File descriptor

File offset

Read/Write size

GPU buffer offset

10 is unaligned (1 - True, 0 - False]

Buffer is registered (1 - True, 0 - False)

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 107

GDS Library Tracing

cufio-internal-io-done

This tracepoint tracks all 10 going through the GDS kernel driver. This tracepoint is invoked

when the |0 is completed and takes the following arguments:

vV vV

v

Arg1: 10-type READ - 0, WRITE - 1
Arg2: GPU ID for which 10 is done
Arg3: File descriptor

Arg4: File offset

Argb: Total bytes transferred

cufio-internal-map

This tracepoint tracks GPU buffer registration using cuFileBufRegister and takes the
following arguments:

>

>

>

>

»

>

Argl1: GPU ID
Arg2: GPU Buffer size for which registration is done

Arg3: max_direct_io_size that was used for this buffer.

The shadow memory size is set in the /etc/cufile.json file.

Argé4: boolean value indicating whether buffer is pinned.

Arg5: boolean value indicating whether this buffer is a GPU bounce buffer.
Argé: GPU offset.

The data type of each argument in these tracepoints can be found by running the following
command:

#

./tplist -1 /usr/local/cuda-x.y/lib/libcufile.so

cufio:cufio px read [sema 0x0]

Here is the output:

#

./tplist -1 /usr/local/cuda-x.y/lib/libcufile.so

cufio:cufio px read [sema 0x0]

location #1 /usr/local/cuda-x.y/lib/libcufile.so 0x16437c

argument #1 4 signed bytes @ dx
argument #2 8 signed bytes @ cx
argument #3 8 unsigned bytes @ si
argument #4 8 signed bytes @ di
argument #5 8 signed bytes @ r8
argument #6 4 signed bytes @ ax

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0

-vvv | grep cufio px read -A 7

-vvv | grep cufio px read -A 7

108

GDS Library Tracing

15.2. Example: Track the |0 Activity of
a Process that Issues cuFileRead/
cuFileWrite

This example provides information about how you can track the 10 activity of a process that
Issues the cuFileRead or the cuFileWrite APL

1. Run the folloiwng command.

./funccount u:/usr/local/cuda-x.y/lib/libcufile.so:cufio * -i 1 -T -p 59467
Tracing 7 functions for "u:/usr/local/cuda-x.y/lib/libcufile.so:cufio *"... Hit

Ctrl-C to end.

2. Review the output, for example:

cufio gds write

16:21:13
FUNC
cufio gds write

16:21:14

FUNC
cufio gds write
“C

16:21:14

FUNC
cufio gds write
Detaching..

1891

COUNT
1852

COUNT
1865

COUNT
1138

15.3. Example: Display the 10 Pattern of all
the |0s that Go Through GDS

This example provides information about how you can display and understand the 10 pattern of

all 10s that go through GDS.

1. Run the following command:

./argdist -C 'u:/usr/local/cuda-x.y/lib/
libcufile.so:cufio gds read():size t:arg3# Size Distribution'

2. Review the output, for example:

[16:38:22]

IO Size Distribution
COUNT EVENT
4654 arg3 =
7480 arg3 =
9029 arg3 =
13561 arg3 =
14200 arg3 =

[16:38:23]

IO Size Distribution
COUNT EVENT
4682 arg3 =

1048576
131072
65536
8192
4096

1048576

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 109

The 1M, 128K, 64K, 8K, and 4K |0s are all completing reads through GDS.

15.4.

You can review the output to understand the |0 pattern of a process.

1.

7459 arg3 = 131072
9049 arg3 = 65536
13556 arg3 = 8192
14085 arg3 = 4096
[16:38:24]
IO Size Distribution
COUNT EVENT
4678 arg3 = 1048576
7416 arg3 = 131072
9018 arg3 = 65536
13536 arg3 = 8192
14082 arg3 = 4096

Process

Run the following command.

./argdist -C 'u:/usr/local/cuda-x.y/lib/
libcufile.so:cufio gds read() :size t:arg3#IO
Size Distribution' -p 59702

Review the output.
[16:40:46]
IO Size Distribution

COUNT EVENT

20774 arg3 = 4096
[16:40:47]
IO Size Distribution

COUNT EVENT

20727 arg3 = 4096
[16:40:48]
IO Size Distribution

COUNT EVENT

20713 arg3 = 4096

Process 59702 issues 4K |10s.

15.9.

GDS Library Tracing

Understand the [0 Pattern of a

Understand the |0 Pattern of a

Process with the File Descriptor on

Different GPUs

Explain the benefits of the task, the purpose of the task, who should perform the task, and

when to perform the task in 50 words or fewer.

1.

Run the following command.
./argdist -C

'u:/usr/local/cuda-x.y/lib/libcufile.so:cufio gds read() :int,int,size:argl,
argb6,arg3#I0 Size Distribution argl=fd, arg6=GPU# arg3=I0Size' -p ‘pgrep -n

gdsio”

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 | 110

GDS Library Tracing

2. Review the output, for example:

[17:00:03]
u:/usr/local/cuda-x.y/1lib/

libcufile.so:cufio gds read():int,int,size t:argl,arg6,arg3#I0 Size Distribution

argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT

5482 argl = 87, arg6 = 2, arg3 = 131072

7361 argl = 88, arg6 = 1, arg3 = 65536

9797 argl = 89, arg6 = 0, arg3 = 8192

11145 argl = 74, arg6 = 3, arg3 = 4096
[17:00:04]

u:/usr/local/cuda-x.y/lib/

libcufile.so:cufio gds read() :int,int,size t:argl,arg6,arg3#I0 Size Distribution

argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT

5471 argl = 87, arg6 = 2, arg3 = 131072

7409 argl = 88, arg6 = 1, arg3 = 65536

9862 argl = 89, arg6 = 0, arg3 = 8192

11079 argl = 74, arg6 = 3, arg3 = 4096
[17:00:05]

u:/usr/local/cuda-x.y/1lib/

libcufile.so:cufio gds read():int,int,size t:argl,arg6,arg3#I0 Size Distribution

argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT

5490 argl = 87, arg6 = 2, arg3 = 131072
7402 argl = 88, arg6 = 1, arg3 = 65536
9827 argl = 89, arg6 = 0, arg3 = 8192
11131 argl = 74, arg6 = 3, arg3 = 4096

gdsio issues READS to 4 files with fd=87, 88,89, 74 to GPU 2, 1, 0, and 3 and with 10-SIZE of

128K, 64K, 8K, and 4K.

15.6. Determine the IOPS and Bandwidth
for a Process in a GPU

You can determine the IOPS and bandwidth for each process in a GPU.

1. Run the following command.

#./argdist -C
'u:/usr/local/cuda-x.y/lib/libcufile.so:cufio gds read() :int,int,size t:argl,
arg6,arg3:arg6==0| |arg6==3#I0 Size Distribution argl=fd, arg6=GPU#
arg3=I0Size' -p ‘pgrep -n gdsio’

2. Review the output.

[17:49:33]
u:/usr/local/cuda-x.y/1lib/

libcufile.so:cufio gds read() :int,int,size t:argl,arg6,arg3:arg6==0]||arg6==34I0

Size Distribution argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT

9826 argl = 89, arg6 = 0, arg3 = 8192

11168 argl = 86, arg6 = 3, arg3 = 4096
[17:49:34]

u:/usr/local/cuda-x.y/lib/

libcufile.so:cufio gds read():int,int,size t:argl,arg6,arg3:arg6==0||arg6==3#I0

Size Distribution argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT

9815 argl = 89, arg6 = 0, arg3 = 8192

11141 argl = 86, arg6 = 3, arg3 = 4096
[17:49:35]

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0

m

GDS Library Tracing

u:/usr/local/cuda-x.y/lib/
libcufile.so:cufio gds read() :int,int,size t:argl,arg6,arg3:arg6==0||arg6==3#I0
Size Distribution argl=fd, arg6=GPU# arg3=I0Size

COUNT EVENT
9914 argl = 89, arg6 = 0, arg3 = 8192
11194 argl = 86, arg6 = 3, arg3 = 4096

» gdsiois doing 10 on all 4 GPUs, and the output is filtered for GPU 0 and GPU 3.
» Bandwidth per GPU is GPU 0 - 9826 I0PS of 8K block size, and the bandwidth = ~80MB/s .

15.7. Display the Frequency of Reads by
Processes that Issue cuFileRead

You can display information about the frequency of reads by process that issue the
cuFileRead API.

1. Run the following command.
#./argdist -C 'r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID’'

2. Review the output, for example:

[17:58:01]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID
COUNT EVENT
31191 SPID = 60492
31281 SPID = 60593
[17:58:02]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID
COUNT EVENT
11741 SPID = 60669
30447 SPID = 60593
30670 SPID = 60492
[17:58:03]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID
COUNT EVENT
29887 SPID = 60593
29974 SPID = 60669
30017 SPID = 60492
[17:58:04]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID
COUNT EVENT
29972 SPID = 60593
30062 SPID = 60492
30068 SPID = 60669

15.8. Display the Frequency of Reads when
cuFileRead Takes More than 0.1 ms

You can display the frequency of reads when the curileRead API takes more than 0.1 ms.

1. Run the following command.

#./argdist -C 'r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:
Slatency > 100000"

2. Review the output, for example:
[18:07:35]

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 112

GDS Library Tracing

r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:Slatency > 100000

COUNT EVENT
17755 SPID = 60772
[18:07:36]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:Slatency > 100000
COUNT EVENT
17884 SPID = 60772
[18:07:37]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:Slatency > 100000
COUNT EVENT
17748 SPID = 60772
[18:07:38]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:Slatency > 100000
COUNT EVENT
17898 SPID = 60772
[18:07:39]
r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead () :u32:$PID:Slatency > 100000
COUNT EVENT
17811 SPID = 60772

15.9. Displaying the Latency of cuFileRead
for Each Process

You can display the latency of the the cuFileRead API for each process.

1. Run the following command.
#./funclatency /usr/local/cuda-x.y/lib/libcufile.so:cuFileRead -i 1 -T -u

2. Review the output, for example:

Tracing 1 functions for

"/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead"... Hit Ctrl-C to end.
Here are two process with PID 60999 and PID 60894 that are issuing cuFileRead:
18:12:11
Function = cuFileRead [60999]
usecs : count distribution
0 —>1 : 0 | |
2 > 3 : 0 | |
4 -> 7 0 | |
8 -> 15 0 | |
16 —> 31 : 0 | |
32 => 63 : 0 | |
64 -> 127 2 17973 |**I
128 -> 255 g 13383 |***************************** I
256 -> 511 : 27 | |
Function = cuFileRead [60894]
usecs : count distribution
0 —>1 : 0 | |
2 —> 3 : 0 | |
4 -> 7 0 | |
8 -> 15 0 | |
16 -> 31 : 0 | |
32 —=> 63 : 0 | |
64 -> 127 . 17990 |**|
128 -> 255 2 13329 |***************************** I
256 -> 511 : 19 | |
18:12:12
Function = cuFileRead [60999]
usecs : count distribution
0 —>1 : 0 | |
2 > 3 : 0 | |

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 113

GDS Library Tracing

4 -> 7 0 | |

8 -> 15 0 | |

16 -> 31 : 0 | |

32 -> 63 : 0 | |

64 -> 127 g 18209 |**I

128 -> 255 . 13047 |**************************** |

256 -> 511 : 58 | |

Function = cuFileRead [60894]
usecs : count distribution

0 ->1 : 0 | |

2 -> 3 : 0 | |

4 -> 7 0 | |

8 -> 15 0 | |

16 —> 31 : 0 | |

32 -> 63 : 0 | |

64 -> 127 g 18199 |**I

128 -> 255 . 13015 |**************************** |

256 -> 511 : 46 | |
512 -> 1023 g 1 |

15.10. Example: Tracking the Processes
that Issue cuFileBufRegister

This example provides information about how you can track processes that issue the
cuFileBufRegister API.

1. Run the following command:

./trace 'u:/usr/local/cuda-x.y/lib/libcufile.so:cufio-internal-map "GPU
%d Size %d Bounce-Buffer %d",argl,arg2,arg5’

2. Review the output, for example:

PID TID COMM FUNC -

62624 62624 gdsio verify cufio-internal-map GPU 0 Size 1048576 Bounce-

Buffer 1

62659 62726 fio cufio-internal-map GPU 0 Size 8192 Bounce-Buffer
0

62659 62728 fio cufio-internal-map GPU 2 Size 131072 Bounce-

Buffer O

62659 62727 fio cufio-internal-map GPU 1 Size 65536 Bounce-Buffer
0

62659 62725 fio cufio-internal-map GPU 3 Size 4096 Bounce-Buffer
0

gdsio verifyissued an |0, but it did not register GPU memory using cuFileBufRegister.
As a result, the GDS library pinned 1M of a bounce buffer on GPU 0. FIO, on the other hand,
issued a cuFileBufRegister of 128K on GPU 2.

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 114

GDS Library Tracing

15.11. Example: Tracking Whether the
Process is Constant when Invoking
cuFileBufRegister

You can track whether the process is constant when invoking the cuFileBufRegister AP

1. Run the following command:

./trace

"GPU %d Size %d",argl,arg2’
2. Review the output, for example:

PID TID
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472
444 472

COMM

cufile sample O
cufile sample O
cufile sample 0
cufile sample 0
cufile sample O
cufile sample O
cufile sample 0
cufile sample 0
cufile sample O
cufile sample O
cufile sample 0
cufile sample 0
cufile sample O
cufile sample O
cufile sample 0

FUNC -
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map
cufio-internal-map

GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU
GPU

[cNeoNoNoloNoNoNoloNoNoNoNeNoNe]

'u:/usr/local/cuda-x.y/lib/libcufile.so:cufio-internal-map

Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size
Size

(argb == 0)

1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576
1048576

As seen in this example, there is one thread in a process that continuously issues 1M of
cuFileBufRegister on GPU 0. This might mean that the APl is called in a loop and might

impact performance.

Note: cuFileBufRegister involves pinning GPU memory, which is an expensive operation.

15.12. Example: Monitoring 10s that are
Going Through the Bounce Buffer

This example provides information about how you can monitor whether |10s are going through

the bounce buffer.

1. Run the following command:

./trace

'u:/usr/local/cuda-x.y/lib/libcufile.so:cufio-internal-bb-done

"Application GPU %d Bounce-Buffer GPU %d Transfer Size %d Unaligned %d Registered

5d",

arg2,arg3,arg8,arg9,argll’
2. Review the output, for example:

PID TID COMM FUNC

NVIDIA Magnum 10 GPUDirect Storage

TB-10112-001_v1.0.0 |

115

GDS Library Tracing

1013 1041 gdsio App-GPU 0 Bounce-Buffer GPU 0 Transfer Size 1048576 Unaligned 1
Registered 0

1013 1042 gdsio App-GPU 3 Bounce-Buffer GPU 3 Transfer Size 1048576 Unaligned 1
Registered 0

1013 1041 gdsio App-GPU 0 Bounce-Buffer GPU 0 Transfer Size 1048576 Unaligned 1
Registered 0

1013 1042 gdsio App-GPU 3 Bounce-Buffer GPU 3 Transfer Size 1048576 Unaligned 1
Registered 0

The gdsio app has 2 threads and both are doing unaligned 10 on GPU 0 and GPU 3. Since

the 10 is unaligned, bounce buffers are also from the same application GPU.

15.13. Example: Tracing cuFileRead and
cuFileWrite Failures, Print, Error
Codes, and Time of Failure

This example shows you how to trace the cuFileRead and cuFileWrite failures, print, error
codes, and time of failure.

1. Run the following command:

./trace 'r:/usr/local/cuda-x.y/lib/libcufile.so:cuFileRead ((int)retval < 0)
"cuFileRead failed: %d", retval' 'r:/usr/local/cuda-x.y/lib/
libcufile.so:cuFileWrite ((int)retval < 0)

"cuFileWrite failed: %d", retval' -T

2. Review the output, for example:

TIME PID TID COMM FUNC =
23:22:16 4201 4229 gdsio cuFileRead cuFileRead failed: -5
23:22:42 4237 4265 gdsio cuFileWrite cuFileWrite failed: -5

In this example, two failures were observed with EIO (-5) as the return code with the
timestamp.

15.14. Example: User-Space Statistics for
Each GDS Process

This example provides information about the user-space statistics for each GDS process.
The cuFile library exports user-level statistics in the form of API level counters for each

process. In addition to the regular GDS |0 path, there are paths for user-space file-systems
and |0 compatibility modes that use POSIX read/writes, which do not go through the nvidia-fs
driver. The user-level statistics are more useful in these scenarios.

There is a verbosity level for the counters which users can specify using JSON configuration
file to enable and set the level. The following describes various verbosity levels.

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 116

GDS Library Tracing

Table 10. User-Space Statistics for Each GDS Process

Level Description

Level O cuFile stats will be disabled.

Level 1 cuFile stats will report only Global Counters like
overall throughput, average latency and error
counts.

Level 2 With the Global Counters, an |0 Size histogram
will be reported for information on access
patterns.

Level 3

At this level, per GPU counters are reported and
also live usage

of cuFile internal pool buffers.

Here is the JSON configuration key to enable GDS statistics by using the /etc/cufile.json
file:
"profile": {

// cufile stats level (0-3)

"cufile stats": 3

by

15.15. Example: Viewing GDS User-Level
Statistics for a Process

This example provides information about how you can use the gds_stats tool to display user-
level statistics for a process.

Prerequisite: Before you run the tool, ensure that the |10 application is active, and the
gds_stats has the same user permissions as the application.

The gds_stats tool can be used to read statistics that are exported by libcufile. so.

The output of the statistics is displayed in the standard output. If the user permissions are
not the same, there might not be sufficient privilege to view the stats. A future version of
gds_stats will integrate nvidia-fs kernel level statistics into this tool.

To use the tool, run the following command:
$ /usr/local/cuda-x.y/tools/gds stats -p <pidof application> -1 <stats level(1-3)>

When specifying the statistics level, ensure that the corresponding level
[profile.cufile stats]is also enabledinthe /etc/cufile.json file.

The GDS user level statistics are logged once to cufile.log file when the library is shut
down, or the cuFileDriverClose APl is run. To view statistics in the log file, set the log level
to INFO.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 117

GDS Library Tracing

15.16. Example: Displaying Sample User-
Level Statistics for each GDS Process

This example shows you how to display sample user-level statistics for each GDS process.

1.

Run the following command:
$./gds_stats -p 23198 -1 3

Review the output, for example:

cuFile STATS VERSION : 4
GLOBAL STATS:

Total Files: 1

Total Read Errors : 0

Total Read Size (MiB): 7302
Read BandWidth (GiB/s): 0.691406
Avg Read Latency (us): 6486
Total Write Errors : 0
Total Write Size (MiB): O
Write BandWidth (GiB/s): O
Avg Write Latency (us): O
READ-WRITE SIZE HISTOGRAM :
0-4(KiB): 0 O

4-8(KiB): 0 O

8-16(KiB): 0 O

16-32(KiB): 0 O

32-64 (KiB): 0 O

64-128 (KiB): 0 O
128-256(KiB): 0 O

256-512 (KiB): 0 O
512-1024(KiB): 0 O
1024-2048(KiB): 0 O
2048-4096 (KiB) : 3651 0
4096-8192 (KiB): 0 O
8192-16384 (KiB): 0 O
16384-32768(KiB): 0 O
32768-65536(KiB): 0 O
65536-...(KiB): 0 O

PER GPU STATS:

GPU 0 Read: bw=0.690716 util (%)=199 n=3651 posix=0 unalign=0 dr=0 r sparse=0

r inline=0 err=0 MiB=7302 Write: bw=0 util (%)=0 n=0 posix=0 unalign=0 dr=0 err=0

MiB=0 BufRegister: n=2 err=0 free=0 MiB=4

PER GPU POOL BUFFER STATS:
PER GPU POSIX POOL BUFFER STATS:

PER GPU RDMA STATS:

GPU 0000:43:00.0
3708 Writes: O

RDMA MRSTATS:

peer name nr mrs

mlx5 0 1 2

mlx5 1 1 2

NVIDIA Magnum 10 GPUDirect Storage

mlx5 0(130:64) :Reads: 3594 Writes: 0

mr size (MiB)

TB-10112-001_v1.0.0

mlx5 1(130:64) :Reads:

118

Chapter 16. User-Space Counters in
GPUDirect Storage

This section provides information about user-space counters in GDS.

Table 11. Global cuFile Counters

Counter Name

Total Files

Total Read Errors

Total Read Size

Read Bandwidth

Avg Read Latency

Total Write Errors

Total Write Size

Write Bandwidth

Avg Write Latency

NVIDIA Magnum 10 GPUDirect Storage

Description

Total number of files registered successfully with
cuFileHandleRegister. Thisis a cumulative
counter.

cuFileHandleDeregister does not change this
counter.

Total number of cuFileRead errors.

Total number of bytes read in MB using
cuFileRead.

Average overall read throughput in GiB/s over one
second time period.

Overall average read latency in microseconds
over one second time period.

Total number of cuFileWrite errors.

Total number of bytes written in MB using
cuFileWrite.

Overall average write throughput in GiB/s over
one second time period.

Overall average read latency in microseconds
over one second time period.

TB-10112-001_v1.0.0 | 119

Table 12. |0-Size Histogram
Counter Name

Read

Write

Table 13. Per-GPU Counters

Counter Name
Read.bw/Write.bw

Read.util/Write.util

Read.n/Write.n

Read.posix/Write.posix

Read.dr/Write.dr

Read.unalign/Write.unalign

Read.error/Write.error

Read.mb/Write.mb

NVIDIA Magnum 10 GPUDirect Storage

User-Space Counters in GPUDirect Storage

Description

Distribution of number of cuFileRead requests
based on |0 size. Bin Size uses a 4K log scale.

Distribution of number of cuFileWrite requests
based on |0 size. Bin Size uses a 4K log scale.

Description

Average GPU read/write bandwidth in GiB/s per
GPU.

Average per GPU read/write utilization in %. If A is
the total length of time the resource was busy in
a time interval T, then utilization is defined as A/
T. Here the utilization is reported over one second
period.

Number of cuFileRead/cuFileWrite requests
per GPU.

Number of cuFileRead/cuFileWrite using
POSIX read/write APIs per GPU.

Number of cuFileRead/cuFilewWrites for a GPU
have been issued using dynamic routing.

If the routing policy uses SYS_MEM, GPU posix
counters for read/writes will be incrementing in
addition to the dr counter. Note: This counter
does not tell which GPU was actually being used
for routing the 10. For the latter information, one
needs to observe the PER_GPU POOL BUFFER
STATS/PER_GPU POSIX POOL BUFFER STATS.

Number of cuFileRead/cuFileWrite per GPU
which have at least one |0 parameter not 4K
aligned. This can be either size, file offset or
device pointer.

Number of cuFileRead/cuFileWrite errors per
GPU.

Total number of bytes in MB read/written using
cuFileRead/cuFileWrite per GPU.

TB-10112-001_v1.0.0 | 120

User-Space Counters in GPUDirect Storage

Counter Name Description

BufRegister.n Total number of cuFileBufRegister calls per
GPU.

BufRegister.err Total number of errors per GPU seen with

cuFileBufRegister

BufRegister.free Total number of cuFileBufRegister calls per
GPU.
BufRegister.mb Total number of bytes in MB currently registered
per GPU.
Table 14. Bounce Buffer Counters Per GPU
Counter Name Description
pool_size_mb Total size of buffers allocated for per GPU bounce

buffers in MB.

used_mb Total size of buffers currently used per GPU for
bounce buffer based I0.

usage Fraction of bounce buffers used currently.

16.1. Distribution of |0 Usage in Each GPU

Here is some information about how to display the distribution of |0 usage in each GPU.

The cuFile library has a metric for |0 utilization per GPU by application. This metric indicates
the amount of time, in percentage, that the cuFile resource was busy in 10.

To run a single-threaded gdsio test, run the following command:
$./gdsio -f /mnt/mdl/test -d 0 -n 0 -w 1 -s 10G -i 4K -x 0 -I 1

Here is the sample output:

PER GPU STATS

GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 err=0 mb=0 Write: bw=0.154598

util (%)=89 n=510588 posix=0 unalign=0 err=0 mb=1994 BufRegister: n=1 err=0 free=0
mb=0

The util metric says that the application was completing 10 on GPU 0 89% of the time.

To run a gdsio test using two-threads, run the following command:
$./gdsio -f /mnt/mdl/test -d 0 -n 0 -w 2 -s 10G -i 4K -x 0 -I 1

Here is the sample output:
PER GPU STATS
GPU 0 Read: bw=0 util (%)=0 n=0 posix=0 unalign=0 err=0 mb=0 Write:

bw=0.164967 util (%$)=186 n=140854 posix=0 unalign=0 err=0 mb=550 BufRegister: n=2
err=0 free=0 mb=0

Now the utilization is ~186%, which indicates the amount of parallelism in the way each GPU is
used for 10.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 121

User-Space Counters in GPUDirect Storage

16.2. User-space Statistics for Dynamic
Routing

The PER_GPU section of gds_stats has a dr counter which indicates how many
cuFileRead/cuFilelrites for a GPU have been issued using dynamic routing.

$./gds_stats -p <pidof application> -1 3

GPU 0 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 dr=0 r sparse=0 r inline=0
err=0 MiB=0 Write: bw=3.37598 util (%)=532 n=6629 posix=0 unalign=0 dr=6629 err=0
MiB=6629 BufRegister: n=4 err=0 free=0 MiB=4

GPU 1 Read: bw=0 util(%)=0 n=0 posix=0 unalign=0 dr=0 r sparse=0 r inline=0
err=0 MiB=0 Write: bw=3.29297 util (%)=523 n=6637 posix=0 unalign=0 dr=6637 err=0
MiB=6637 BufRegister: n=4 err=0 free=0 MiB=4

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 122

Chapter 17. User-Space RDMA
Counters in GPUDirect
Storage

This section provides information about user-space RDMA counters in GDS.

The library provides counters to monitor the RDMA traffic at a per-GPU level and requires that
cuFile starts verbosity with a value of 3.

Table 14-1 provides the following information:

» Each column stores the total number of bytes that are sent/received between a GPU and a
NIC.

» Each row shows the distribution of RDMA load with regards to a GPU across all NICS.
» Each row reflects the order of affinity that a GPU has with a NIC.

Ideally, all traffic should be routed through the NIC with the best affinity or is closest to the
GPU as shown in Example 7 in cuFile RDMA [0 Counters ([PER_GPU RDMA STATS].

In the annotation of each NIC entry in the table, the major number is the pci-distance in terms
of the number of hops between the GPU and the NIC, and the minor number indicates the
current bandwidth of the NIC (link_width multiplied by pci-generation). The NICs that the
GPUs use for RDMA are loaded from the rdma dev_addr list cufile.json property:
"rdma dev addr list": [

"172.172.1.240",

"172.172.1.241",
V172.172.1.2427,
"172.172.1.243",
"172.172.1.244",
"172.172.1.245",
"172.172.1.246",
"172.172.1.247" 1,

Each IP address corresponds to an IB device that appear as column entries in the RDMA
counter table.

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 123

User-Space RDMA Counters in GPUDirect Storage

17.1. cuFile RDMA IO Counters (PER_GPU

RDMA STATS)

Here is some information about cuFile RDMA 10 counters.

Table 15. cuFile RDMA |10 Counters (PER_GPU RDMA STATS)
Entry Description
GPU Bus device function
NIC +)Bus device function
+)Device Attributes
++)pci-distance between GPU and NIC
++)device bandwidth indicator
+) Send/Receive bytes
Table 16. Example 1
GPU mlx5 3 mlx5 5 mlx5 15 'mlx5 15 mlx5 17 |mlx5 9 mlx5 13 |mlx5 7
0000:34:((3:48) :6: (7:48):0 (138:48:((138:48:((138:48) (138:48) (138:48): (138:12):
GPU mlx5 3 mlx5 5 mlx5 15 mlx5 19 mlx5 17 |mlx5 9 mlx5 13 'mlx5 7
0000:36:((3:48) :6((7:48):1¢ (138:48) (138:48) (138:48) (138:48) (138:48): (138:12):
GPU mlx5 5 mlx5 3 mlx5 15 mlx5 19 mlx5 17 |mlx5 9 mlx5 13 'mlx5 7(13
0000:3b:((3:48) :5¢ (7:48):0 (138:48) (138:48): (138:48) (138:48) (138:48):0
GPU mlx5 7 mlx5 9 mlx5 15 mlx5 19 mlx5 5 mlx5 17 mlx5 13 mlx5 3
0000:57:((3:12):4" (7:48): (138:48) (138:48): (138:48) (138:48) (138:48): (138:48):
GPU mlx5 7 mlx5 9 mlx5 15 |mlx5 19 mlx5 5 mlx5 17 |mlx5 13 'mlx5 3
0000:59:((3:12):4" (7:48):1« (138:48) (138:48): (138:48) (138:48) (138:48): (138:48):
GPU mlx5 9 mlx5 7 mlx5 15 mlx5 19 'mlx5 5 mlx5 17 'mlx5 13 |mlx5 3
0000:5c:((3:48):4" (7:12):0 (138:48) (138:48): (138:48) (138:48) (138:48): (138:48):
GPU mlx5 9 mlx5 7 mlx5 15 mlx5 19 |mlx5 5 mlx5 17 'mlx5 13 |mlx5 3
0000:5e:((3:48):4" (7:12):0 (138:48) (138:48): (138:48) (138:48) (138:48): (138:48):

17.2.

cuFile RDMA Memory Registration
Counters (RDMA MRSTATS]

Here is some information about cuFile RDMA memory registeration counters.

Table 17. cuFile RDMA |0 Counters ([PER_GPU RDMA STATS)
Entry Description
peer name System name of the NIC.
nr_mrs Count of active memory registration per NIC.

NVIDIA Magnum |0 GPUDirect Storage TB-10112-001_v1.0.0 | 124

User-Space RDMA Counters in GPUDirect Storage

Entry Description
mr_size(mb) Total size

Table 18. Example 2

peer name nr_ms mr_size (mb)
mix5_3 128 128
mix5_ 5 128 128
mix5_11 0 0
mix5_1 0 0
mix5_15 128 128
mlx5_ 19 128 128
mix5_17 128 128
mix5_9 128 128
mix5_13 128 128
mlx5_7 128 128

NVIDIA Magnum 10 GPUDirect Storage TB-10112-001_v1.0.0 | 125

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation ("NVIDIA") makes no representations or
warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the
consequences or use of such information or for any infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this

document. No contractual obligations are formed either directly or indirectly by this document

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications where failure or malfunction of the NVIDIA product can
reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore

such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product is not necessarily performed by NVIDIA. It is customer’s
sole responsibility to evaluate and determine the applicability of any information contained in this document, ensure the product is suitable and fit for the application planned by customer, and perform the necessary
testing for the application in order to avoid a default of the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem which may be based on or attributable to: (i] the use
of the NVIDIA product in any manner that is contrary to this document or (i) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products
or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and reqgulations, and
accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING
PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative
liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 (

http://www.nvidia.com

No license, either expressed orimplied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document. Information published by NVIDIA regarding third-party products
or services does not constitute a license from NVIDIA to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other
intellectual property rights of the third party, or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance with all applicable export laws and regulations, and
accompanied by all associated conditions, limitations, and notices

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING
PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT
LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS
DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA's aggregate and cumulative
liability towards customer for the products described herein shall be limited in accordance with the Terms of Sale for the product.

VESA DisplayPort

DisplayPort and DisplayPort Compliance Logo, DisplayPort Compliance Logo for Dual-mode Sources, and DisplayPort Compliance Logo for Active Cables are
trademarks owned by the Video Electronics Standards Association in the United States and other countries.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of HDMI Licensing LLC.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 (

http://www.nvidia.com

Trademarks

NVIDIA, the NVIDIA logo, DGX, DGX-1, DGX-2, DGX-A100, Tesla, and Quadro are trademarks and/or registered trademarks of NVIDIA Corporation in the United States
and other countries. Other company and product names may be trademarks of the respective companies with which they are associated.

Copyright
© 2021 NVIDIA Corporation and affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @

http://www.nvidia.com

	Table of Contents
	Introduction
	Installing GPUDirect Storage
	2.1. Before You Install GDS
	2.2. Installing GDS
	Removal of Prior GDS Installation on Ubuntu Systems
	Preparing the OS
	GDS Package Installation
	Verifying the Package Installation
	2.2.1. Removal of Prior GDS Installation on Ubuntu Systems
	2.2.2. Preparing the OS
	2.2.3. GDS Package Installation
	2.2.4. Verifying the Package Installation
	2.2.5. Verifying a Successful GDS Installation

	2.3. Installed GDS Libraries and Tools
	2.4. Uninstalling GPUDirect Storage
	2.5. Environment Variables Used by GPUDirect Storage
	2.6. JSON Config Parameters Used by GPUDirect Storage
	2.7. GDS Configuration File Changes to Support Dynamic Routing
	2.8. Determining Which Version of GDS is Installed
	2.9. Experimental Repos for Network Install of GDS Packages for DGX Systems

	API Errors
	3.1. CU_FILE_DRIVER_NOT_INITIALIZED
	3.2. CU_FILE_DEVICE_NOT_SUPPORTED
	3.3. CU_FILE_IO_NOT_SUPPORTED
	3.4. CU_FILE_CUDA_MEMORY_TYPE_INVALID

	Basic Troubleshooting
	4.1. Log Files for the GDS Library
	4.2. Enabling a Different cufile.log File for Each Application
	4.3. Enabling Tracing GDS Library API Calls
	4.4. cuFileHandleRegister Error
	4.5. Troubleshooting Applications that Return cuFile Errors
	4.6. cuFile-* Errors with No Activity in GPUDirect Storage Statistics
	4.7. CUDA Runtime and Driver Mismatch with Error Code 35
	4.8. CUDA API Errors when Running the cuFile-* APIs
	4.9. Finding GDS Driver Statistics
	4.10. Tracking IO Activity that Goes Through the GDS Driver
	4.11. Read/Write Bandwidth and Latency Numbers in GDS Stats
	4.12. Tracking Registration and Deregistration of GPU Buffers
	4.13. Enabling RDMA-specific Logging for Userspace File Systems
	4.14. CUDA_ERROR_SYSTEM_NOT_READY After Installation
	4.15. Adding udev Rules for RAID Volumes

	Advanced Troubleshooting
	5.1. Resolving Hung cuFile* APIs with No Response
	5.2. Sending Relevant Data to Customer Support
	5.3. Resolving an IO Failure with EIO and Stack Trace Warning
	5.4. Controlling GPU BAR Memory Usage
	5.5. Determining the Amount of Cache to Set Aside
	5.6. Monitoring BAR Memory Usage
	5.7. Resolving an ENOMEM Error Code
	5.8. GDS and Compatibility Mode
	5.9. Enabling Compatibility Mode
	5.10. Tracking the IO After Enabling Compatibility Mode
	5.11. Bypassing GPUDirect Storage
	5.12. GDS Does Not Work for a Mount
	5.13. Simultaneously Running the GPUDirect Storage IO and POSIX IO on the Same File
	5.14. Running Data Verification Tests Using GPUDirect Storage

	Troubleshooting Performance
	6.1. Running Performance Benchmarks with GDS
	6.2. Tracking Whether GPUDirect Storage is Using an Internal Cache
	6.3. Tracking when IO Crosses the PCIe Root Complex and Impacts Performance
	6.4. Using GPUDirect Statistics to Monitor CPU Activity
	6.5. Monitoring Performance and Tracing with cuFile-* APIs
	6.6. Example: Using Linux Tracing Tools
	6.7. Tracing the cuFile-* APIs
	6.8. Improving Performance using Dynamic Routing

	Troubleshooting IO Activity
	7.1. Managing Coherency with the Page Cache

	EXAScaler Filesystem LNet Troubleshooting
	8.1. Determining the EXAScaler Filesystem Client Module Version
	8.2. Checking the LNet Network Setup on a Client
	8.3. Checking the Health of the Peers
	8.4. Checking for Multi-Rail Support
	8.5. Checking GDS Peer Affinity
	8.6. Checking for LNet-Level Errors
	8.7. Resolving LNet NIDs Health Degradation from Timeouts
	8.8. Configuring LNet Networks with Multiple OSTs for Optimal Peer Selection

	Understanding EXAScaler Filesystem Performance
	9.1. osc Tuning Performance Parameters
	9.2. Miscellaneous Commands for osc, mdc, and stripesize
	9.3. Getting the Number of Configured Object-Based Disks
	9.4. Getting Additional Statistics related to the EXAScaler Filesystem
	9.5. Getting Metadata Statistics
	9.6. Checking for an Existing Mount
	9.7. Unmounting an EXAScaler Filesystem Cluster
	9.8. Getting a Summary of EXAScaler Filesystem Statistics
	9.9. Using GPUDirect Storage in Poll Mode

	Troubleshooting and FAQ for the WekaIO Filesystem
	10.1. Downloading the WekaIO Client Package
	10.2. Determining Whether the WekaIO Version is Ready for GDS
	10.3. Mounting a WekaIO File System Cluster
	10.4. Resolving a Failing Mount
	10.5. Resolving 100% Usage for WekaIO for Two Cores
	10.6. Checking for an Existing Mount in the Weka File System
	10.7. Checking for a Summary of the WekaIO Filesystem Status
	10.8. Displaying the Summary of the WekaIO Filesystem Statistics
	10.9. Understanding Why WekaIO Writes Go Through POSIX
	10.10. Checking for nvidia-fs.ko Support for Memory Peer Direct
	10.11. Checking Memory Peer Direct Stats
	10.12. Checking for Relevant nvidia-fs Statistics for the WekaIO Filesystem
	10.13. Conducting a Basic WekaIO Filesystem Test
	10.14. Unmounting a WekaIO File System Cluster
	10.15. Verify the Installed Libraries for the WekaIO Filesystem
	10.16. GDS Configuration File Changes to Support the WekaIO Filesystem
	10.17. Check for Relevant User-Space Statistics for the WekaIO Filesystem
	10.18. Check for WekaFS Support

	Enabling IBM Spectrum Scale Support with GDS
	11.1. IBM Spectrum Scale Limitations with GDS
	11.2. Checking nvidia-fs.ko Support for Mellanox PeerDirect
	11.3. Verifying Installed Libraries for IBM Spectrum Scale
	11.4. Checking PeerDirect Stats
	11.5. Checking for Relevant nvidia-fs Stats with IBM Spectrum Scale
	11.6. GDS User Space Stats for IBM Spectrum Scale for Each Process
	11.7. GDS Configuration to Support IBM Spectrum Scale
	11.8. Scenarios for Falling Back to Compat Mode
	11.9. GDS Limitations with IBM Spectrum Scale

	Setting Up and Troubleshooting VAST Data (NFSoRDMA+MultiPath)
	12.1. Installing MLNX_OFED and VAST NFSoRDMA+Multipath Packages
	12.1.1. Client Software Requirements
	12.1.2. Install the VAST Multipath Package

	12.2. Set Up the Networking
	12.2.1. VAST Network Configuration
	12.2.2. Client Network Configuration
	12.2.3. Verify Network Connectivity

	12.3. Mount VAST NFS
	12.4. Debugging and Monitoring

	Troubleshooting and FAQ for NVMe and NVMeOF Support
	13.1. MLNX_OFED Requirements and Installation
	13.2. Determining Whether the NVMe device is Supported for GDS
	13.3. Check for the RAID Level
	13.4. Mounting an EXT4 Filesystem for GDS
	13.5. Check for an Existing Mount
	13.6. Check for IO Statistics with Block Device Mount
	13.7. RAID Group Configuration for GPU Affinity
	13.8. Conduct a Basic EXT4 Filesystem Test
	13.9. Unmount a EXT4 Filesystem
	13.10. Udev Device Naming for a Block Device

	Displaying GDS NVIDIA FS Driver Statistics
	14.1. Understanding nvidia-fs Statistics
	14.2. Analyze Statistics for each GPU
	14.3. Resetting the nvidia-fs Statistics
	14.4. Checking Peer Affinity Stats for a Kernel Filesystem and Storage Drivers
	14.5. Checking the Peer Affinity Usage for a Kernel File System and Storage Drivers
	14.6. Display the GPU-to-Peer Distance Table
	14.7. The GDSIO Tool
	14.8. Tabulated Fields
	14.9. GDSCHECK
	14.10. NFS Support with GPUDirect Storage
	14.10.1. Install Linux NFS server with RDMA Support on MLNX_OFED 5.3 or Later
	14.10.2. Install GPUDirect Storage Support for the NFS Client

	14.11. NFS GPUDirect Storage Statistics and Debugging
	14.12. GPUDirect Storage IO Behavior
	14.12.1. Read/Write Atomicity Consistency with GPUDirect Storage Direct IO
	14.12.2. Write with File a Opened in O_APPEND Mode (cuFileWrite)
	14.12.3. GPU to NIC Peer Affinity
	14.12.4. Compatible Mode with Unregistered Buffers
	14.12.5. Unaligned writes with Non-Registered Buffers
	14.12.6. Process Hang with NFS
	14.12.7. Tools Support Limitations for CUDA 9 and Earlier

	14.13. GDS Statistics for Dynamic Routing
	14.13.1. Peer Affinity Dynamic Routing
	14.13.2. cuFile Log Related to Dynamic Routing

	14.14. Installing and Uninstalling the Debian Package
	14.14.1. Install the Debian Package
	14.14.2. Uninstall the Debian Package

	GDS Library Tracing
	15.1. Example: Display Tracepoints
	15.1.1. Example: Tracepoint Arguments

	15.2. Example: Track the IO Activity of a Process that Issues cuFileRead/ cuFileWrite
	15.3. Example: Display the IO Pattern of all the IOs that Go Through GDS
	15.4. Understand the IO Pattern of a Process
	15.5. Understand the IO Pattern of a Process with the File Descriptor on Different GPUs
	15.6. Determine the IOPS and Bandwidth for a Process in a GPU
	15.7. Display the Frequency of Reads by Processes that Issue cuFileRead
	15.8. Display the Frequency of Reads when cuFileRead Takes More than 0.1 ms
	15.9. Displaying the Latency of cuFileRead for Each Process
	15.10. Example: Tracking the Processes that Issue cuFileBufRegister
	15.11. Example: Tracking Whether the Process is Constant when Invoking cuFileBufRegister
	15.12. Example: Monitoring IOs that are Going Through the Bounce Buffer
	15.13. Example: Tracing cuFileRead and cuFileWrite Failures, Print, Error Codes, and Time of Failure
	15.14. Example: User-Space Statistics for Each GDS Process
	15.15. Example: Viewing GDS User-Level Statistics for a Process
	15.16. Example: Displaying Sample User-Level Statistics for each GDS Process

	User-Space Counters in GPUDirect Storage
	16.1. Distribution of IO Usage in Each GPU
	16.2. User-space Statistics for Dynamic Routing

	User-Space RDMA Counters in GPUDirect Storage
	17.1. cuFile RDMA IO Counters (PER_GPU RDMA STATS)
	17.2. cuFile RDMA Memory Registration Counters (RDMA MRSTATS)

