
DU-06702-001_v11.4 | June 2021

NVBLAS Library

User Guide

NVBLAS Library DU-06702-001_v11.4 | 1

Chapter 1. Introduction

The NVBLAS Library is a GPU-accelerated Libary that implements BLAS (Basic Linear Algebra
Subprograms). It can accelerate most BLAS Level-3 routines by dynamically routing BLAS
calls to one or more NVIDIA GPUs present in the system, when the charateristics of the call
make it to speedup on a GPU.

NVBLAS Library DU-06702-001_v11.4 | 2

Chapter 2. Overview

The NVBLAS Library is built on top of the cuBLAS Library using only the CUBLASXT API (See
the CUBLASXT API section of the cuBLAS Documentation for more details). NVBLAS also
requires the presence of a CPU BLAS lirbary on the system. Currently NVBLAS intercepts only
compute intensive BLAS Level-3 calls (see table below). Depending on the charateristics of
those BLAS calls, NVBLAS will redirect the calls to the GPUs present in the system or to CPU.
That decision is based on a simple heuristic that estimates if the BLAS call will execute for
long enough to amortize the PCI transfers of the input and output data to the GPU. Because
NVBLAS does not support all standard BLAS routines, it might be necessary to associate it
with an existing full BLAS Library. Please refer to the Usage section for more details.

NVBLAS Library DU-06702-001_v11.4 | 3

Chapter 3. GPU accelerated routines

NVBLAS offloads only the compute-intensive BLAS3 routines which have the best potential for
acceleration on GPUs.

The current supported routines are in the table below :

Routine Types Operation

gemm S,D,C,Z multiplication of 2 matrices.

syrk S,D,C,Z symmetric rank-k update

herk C,Z hermitian rank-k update

syr2k S,D,C,Z symmetric rank-2k update

her2k C,Z hermitian rank-2k update

trsm S,D,C,Z triangular solve with multiple right-hand sides

trmm S,D,C,Z triangular matrix-matrix multiplication

symm S,D,C,Z symmetric matrix-matrix multiplication

hemm C,Z hermitian matrix-matrix multiplication

NVBLAS Library DU-06702-001_v11.4 | 4

Chapter 4. BLAS symbols interception

Standard BLAS Library implementations usually expose multiple symbols for the same
routines. Let say func is a BLAS routine name, func_ or/and func are usually defined as
extern symbols. Some BLAS Libraries might also expose some symbols with a proprietary
appended prefix. NVBLAS intercepts only the symbols func_ and func. The user needs to
make sure that the application intended to be GPU-accelerated by NVBLAS actually calls
those defined symbols. Any other symbols will not be intercepted and the original BLAS
routine will be executed for those cases.

NVBLAS Library DU-06702-001_v11.4 | 5

Chapter 5. Device Memory Support

Starting with Release 8.0, data can be located on any GPU device, even on GPU devices that
are not configured to be part of the computation. When any of the data is located on a GPU,
the computation will be exclusively done on GPU whatever the size of the problem. Also, this
feature has to be used with caution : the user has to be sure that the BLAS call will be indeed
intercepted by NVBLAS, otherwise it will result on a crash when the CPU Blas tries to execute
it.

NVBLAS Library DU-06702-001_v11.4 | 6

Chapter 6. Security precaution

Because the NVBLAS Library relies on a symbols interception mechanism, it is essential to
make sure it has not been compromised. In that regard, NVBLAS should never be used from a
process running at elevated privileges, such as Administrator on Windows or root on Linux.

NVBLAS Library DU-06702-001_v11.4 | 7

Chapter 7. Configuration

Because NVBLAS is a drop-in replacement of BLAS, it must be configured through an ASCII
text file that describes how many and which GPUs can participate in the intercepted BLAS
calls. The configuration file is parsed at the time of the loading of the library. The format of
the configuration file is based on keywords optionally followed by one or more user-defined
parameters. At most one keyword per line is allowed. Blank lines or lines started by the
character # are ignored.

7.1. NVBLAS_CONFIG_FILE environment
variable

The location and name of the configuration file must be defined by the environment variable
NVBLAS_CONFIG_FILE. By default, if NVBLAS_CONFIG_FILE is not defined, NVBLAS will
try to open the file nvblas.conf in the current directory. For a safe use of NVBLAS, the
configuration file should have have restricted write permissions.

7.2. Configuration keywords
The configuration keywords syntax is described in the following sub-sections.

7.2.1. NVBLAS_LOGFILE
This keyword defines the file where NVBLAS should print status and error messages. By
default, if not defined, the standard error output file (e.g stderr) will be used. It is advised to
define this keyword early in the configuration to capture errors in parsing that file itself.

7.2.2. NVBLAS_TRACE_LOG_ENABLED
When this keyword is defined, every intercepted BLAS calls will be logged into the
NVBLAS_LOGFILE. This feature, even though intrusive, can be useful for debugging purpose.

Configuration

NVBLAS Library DU-06702-001_v11.4 | 8

7.2.3. NVBLAS_CPU_BLAS_LIB
This keyword defines the CPU BLAS dynamic library file (e.g .so file on Linux or .dll on
Windows) that NVBLAS should open to find the CPU BLAS symbols definitions. This keyword
must be defined for NVBLAS to work. Because CPU Blas libraries are often composed of
multiple files, even though this keyword is set to the full path to the main file of the CPU
library, it might still be necessary to define the right path to find the rest of the library files
in the environment of your system. On Linux, this can be done by setting the environment
variable LD_LIBRARY_PATH whereas on Windows, this can be done by setting the environment
variable PATH.

For a safe use of NVBLAS, the following precautions are strongly advised:

‣ the CPU BLAS Library should be located where ordinary users do not have write
permissions.

‣ the path specified should be absolute, not relative.

7.2.4. NVBLAS_GPU_LIST
This keyword defines the list of GPUs that should participate in the computation of the
intercepted BLAS calls. If not defined, only GPU device 0 is used, since that is normally the
most compute-capable GPU installed in the system. This keyword can be set to a list of
device numbers separated by blank characters. Also the following wildcard keywords are also
accepted for simplicity :

Keyword Meaning

ALL All compute-capable GPUs detected on the system will be used by NVBLAS

ALL0 GPU device 0, AND all others GPUs detected that have the same compute-capabilities
as device 0 will be used by NVBLAS

Note : In the current release of CUBLAS, the CUBLASXT API supports two GPUs if they are
on the same board such as Tesla K10 or GeForce GTX690 and one GPU otherwise. Because
NVBLAS is built on top of the CUBLASXT API, NVBLAS has the same restriction. If access to
more GPUs devices is needed, details of the licensing are described at cublasXt.

7.2.5. NVBLAS_TILE_DIM
This keyword defines the tile dimension that should be used to divide the matrices involved
in the computation. This definition maps directly to a call of the cublasXt API routine
cublasXtSetBlockDim. Refer to cuBLAS documentation to understand the tradeoffs
associated with setting this to a larger or a smaller value.

7.2.6. NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>
This keyword, appended with the name of a BLAS routine disables NVBLAS from running
a specified routine on the GPU. This feature is intended mainly for debugging purposes. by
default, all supported BLAS routines are enabled.

https://developer.nvidia.com/cublasxt

Configuration

NVBLAS Library DU-06702-001_v11.4 | 9

7.2.7. NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>
This keyword, appended with the name of ta BLAS routine defines the ratio of the workload
that should remain on the CPU in the event that the NVBLAS decides to offload work for
that routine on the GPU. This functionality is directly mapped to the cublasXt API routine
cublasXtSetCpuRatio. By default, the ratio is defined to zero for all routines. Please refer to
the cuBLAS Documentation for details and for the list of routines which support this feature.

7.2.8. NVBLAS_AUTOPIN_MEM_ENABLED
This keyword enables the Pinning Memory mode. This functionality is directly mapped to the
cublasXt API routine cublasXtSetPinningMemMode. If this keyowrd is not present in the
configuration file, the Pinning Memory mode will be set to CUBLASXT_PINNING_DISABLED.

Note: There are some restrictions to use this feature as specified in the cuBLAS documentation
of the underlying routine cublasXtSetPinningMemMode. Specifically when NVBLAS is used
in a multi-threaded applications, this option should not be used if there is a chance that
matrices used by different threads overlaps while calling NVBLAS. Please refer to the cuBLAS
Documentation of the routine cublasXtSetPinningMemMode for details.

7.2.9. Config file Example
The example below shows a typical NVBLAS configuration file :

This is the configuration file to use NVBLAS Library
Setup the environment variable NVBLAS_CONFIG_FILE to specify your own config file.
By default, if NVBLAS_CONFIG_FILE is not defined,
NVBLAS Library will try to open the file "nvblas.conf" in its current directory
Example : NVBLAS_CONFIG_FILE /home/cuda_user/my_nvblas.conf
The config file should have restricted write permissions accesses

Specify which output log file (default is stderr)
NVBLAS_LOGFILE nvblas.log

Enable trace log of every intercepted BLAS calls
NVBLAS_TRACE_LOG_ENABLED

#Put here the CPU BLAS fallback Library of your choice
#It is strongly advised to use full path to describe the location of the CPU Library
NVBLAS_CPU_BLAS_LIB /usr/lib/libopenblas.so
#NVBLAS_CPU_BLAS_LIB <mkl_path_installtion>/libmkl_rt.so

List of GPU devices Id to participate to the computation
Use ALL if you want all your GPUs to contribute
Use ALL0, if you want all your GPUs of the same type as device 0 to contribute
However, NVBLAS consider that all GPU have the same performance and PCI bandwidth
By default if no GPU are listed, only device 0 will be used

#NVBLAS_GPU_LIST 0 2 4
#NVBLAS_GPU_LIST ALL
NVBLAS_GPU_LIST ALL0

Tile Dimension
NVBLAS_TILE_DIM 2048

Autopin Memory

Configuration

NVBLAS Library DU-06702-001_v11.4 | 10

NVBLAS_AUTOPIN_MEM_ENABLED

#List of BLAS routines that are prevented from running on GPU (use for debugging
 purpose
The current list of BLAS routines supported by NVBLAS are
GEMM, SYRK, HERK, TRSM, TRMM, SYMM, HEMM, SYR2K, HER2K

#NVBLAS_GPU_DISABLED_SGEMM
#NVBLAS_GPU_DISABLED_DGEMM
#NVBLAS_GPU_DISABLED_CGEMM
#NVBLAS_GPU_DISABLED_ZGEMM

Computation can be optionally hybridized between CPU and GPU
By default, GPU-supported BLAS routines are ran fully on GPU
The option NVBLAS_CPU_RATIO_<BLAS_ROUTINE> give the ratio [0,1]
of the amount of computation that should be done on CPU
CAUTION : this option should be used wisely because it can actually
significantly reduced the overall performance if too much work is given to CPU

#NVBLAS_CPU_RATIO_CGEMM 0.07

NVBLAS Library DU-06702-001_v11.4 | 11

Chapter 8. Installation

The NVBLAS Library is part of the CUDA Toolkit, and will be installed along all the other CUDA
libraries. It is available on 64-bit operating systems. NVBLAS Library is built on top of cuBLAS,
so the cuBLAS library needs to be accessible by NVBLAS.

NVBLAS Library DU-06702-001_v11.4 | 12

Chapter 9. Usage

To use the NVBLAS Library, the user application must be relinked against NVBLAS in addition
to the original CPU Blas (technically only NVBLAS is needed unless some BLAS routines not
supported by NVBLAS are used by the application). To be sure that the linker links against the
exposed symbols of NVBLAS and not the ones from the CPU Blas, the NVBLAS Library needs
to be put before the CPU Blas on the linkage command line.

On Linux, an alternative way to use NVBLAS Library is to use the LD_PRELOAD environment
variable; this technique has the advantage of avoiding the relinkage step. However, the user
should avoid defining that environment variable globally because it will cause the NVBLAS
library to be loaded by every shell command executed on the system, thus leading to a lack of
responsiveness of the system.

Finally mathematical tools and libraries often offer the opportunity to specify the BLAS Library
to be used through an environment variable or a configuration file. Because NVBLAS does not
support all the standard BLAS routines, it might be necessary to pair NVBLAS with a full BLAS
library, even though your application only calls supported NVBLAS routines. Fortunately, those
tools and libraries usually offer a way to specify multiple BLAS Libraries. Please refer to the
documentation of the appropriate tools and libraries for details.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

NVIDIA products are not designed, authorized, or warranted to be suitable for use in medical, military, aircraft, space, or life support equipment, nor in applications
where failure or malfunction of the NVIDIA product can reasonably be expected to result in personal injury, death, or property or environmental damage. NVIDIA
accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on this document will be suitable for any specified use. Testing of all parameters of each product
is not necessarily performed by NVIDIA. It is customer’s sole responsibility to evaluate and determine the applicability of any information contained in this document,
ensure the product is suitable and fit for the application planned by customer, and perform the necessary testing for the application in order to avoid a default of
the application or the product. Weaknesses in customer’s product designs may affect the quality and reliability of the NVIDIA product and may result in additional
or different conditions and/or requirements beyond those contained in this document. NVIDIA accepts no liability related to any default, damage, costs, or problem
which may be based on or attributable to: (i) the use of the NVIDIA product in any manner that is contrary to this document or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA intellectual property right under this document.
Information published by NVIDIA regarding third-party products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property rights of the third party,
or a license from NVIDIA under the patents or other intellectual property rights of NVIDIA.

Reproduction of information in this document is permissible only if approved in advance by NVIDIA in writing, reproduced without alteration and in full compliance
with all applicable export laws and regulations, and accompanied by all associated conditions, limitations, and notices.

THIS DOCUMENT AND ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS
(TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND
FITNESS FOR A PARTICULAR PURPOSE. TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL NVIDIA BE LIABLE FOR ANY DAMAGES, INCLUDING
WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF
THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF NVIDIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
Notwithstanding any damages that customer might incur for any reason whatsoever, NVIDIA’s aggregate and cumulative liability towards customer for the products
described herein shall be limited in accordance with the Terms of Sale for the product.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Introduction
	Overview
	GPU accelerated routines
	BLAS symbols interception
	Device Memory Support
	Security precaution
	Configuration
	7.1. NVBLAS_CONFIG_FILE environment variable
	7.2. Configuration keywords
	7.2.1. NVBLAS_LOGFILE
	7.2.2. NVBLAS_TRACE_LOG_ENABLED
	7.2.3. NVBLAS_CPU_BLAS_LIB
	7.2.4. NVBLAS_GPU_LIST
	7.2.5. NVBLAS_TILE_DIM
	7.2.6. NVBLAS_GPU_DISABLED_<BLAS_FUNC_NAME>
	7.2.7. NVBLAS_CPU_RATIO_<BLAS_FUNC_NAME>
	7.2.8. NVBLAS_AUTOPIN_MEM_ENABLED
	7.2.9. Config file Example

	Installation
	Usage

