NVIDIA.

CUDA Runtime API

APl Reference Manual

v11.4 August 2021

Table of Contents

Chapter 1. Difference between the driver and runtime APIs.........ooooiiiiii, 1
Chapter 2. API synchronization behavior..........coei e 3
Chapter 3. Stream synchronization behavior.............. 5
Chapter 4. Graph object thread safety....... e 7
Chapter 5. Rules for version mMiXing.......oooooiiiiiiiiiii e, 8
Chapter 6. MOAULES.... et e e e e e e e e e e e eeeeeeeens 9
6.7. DeVvIiCe Management. ... o 10
CUAACN00SEDBVICE .. it 10
cudaDeviceFlushGPUDIFre CtRDMAWTIITES .. .ottt 1
cudaDeviceGetAtIIIDULE. .. .oo 12
cudaDeviceGetByPCIBUSIA. ... 17
cudaDeviceGetCachelonfig. .. i i 18
cudaDeviceGetDefaultMemPOOL........oiiii e 19
CUAADVICEGRLIMIT . e 19
cudaDeviceGetMEmMPOOL. i 20
cudaDeviceGetNVSCISYNCAHIIDULES. ...ooi i 21
cudaDeviceGetP2PAIIIDULE. 22
cudaDeviceGetPCIBUSIA.oiiii e 23
cudaDeviceGetSharedMemCoNTig.o 24
cudaDeviceGetStreamPriorityRaNGe. ... oo 25
cudaDeviceGetTextureTDLinearMaxWidth.........oooiiiiii e 26
CUAADEVICERESEE ... 27
cudaDeviceSetCacheCoN ig. .. oo i 28
CUAADVICESEELIMIT. ..ot 29
cudaDeviceSetMEMPOOo 31
cudaDeviceSetSharedMemCoNTig.. ... oot 32
CUAADVICESYNCRIONIZE ..o 33
CUAAGEEDEVICE .. 34
CUAAGETDEVICEC OUNT. ... 34
CUAAGEIDEVICEFLAGS. .. et 35
CUAAGEtDEVICEP TOPEITIES. . i 36
cudalpcCloseMemHaNALE.o 42
cudalpcGetEventHaNdLe.o 43
cudalpcGetMemMHANALE.o L4

CUDA Runtime API vRelease Version | i

cudalpcOpenEVentHaNALE 45

cudalpcOpenMemHaNALE. ... 46
CUAASEEDBVICE .. 47
CUAASEtDOVICEFLAGS. .. it 48
CUAASEEVAlIADEVICES. .. 50
6.2. Thread Management [DEPRECATED]. ..ot 51
CUAATRTEAAEXIT. ..o o1
cudaThreadGetCacheConfig. ..o i e, 52
CUAATRrEad Gt LMt . e 53
cudaThreadSetCacheCONfig. ..o i i, 54
CUAATRTEAASETLIMIT. .ot 95
CUATRrEAdSYNCNIONIZE i 56
0.3, ErTOr HanAUiNg . o 57
CUAAGETEITOINGIMIE . .o 57
CUAAGEEE IO NG et 57
CUAAGETLAS BT O . e o8
CUAAPEEKATLASTE IO .o o9
0.4, SIream ManagemMENt. . e 60
cUdaStream Callback b . L 60
cudaCtxResetPersistingL2Cache.o 60
cudaStreamAddCallbacK.oii 61
cudaStreamAttaChMEMASYNC. .. oo 62
cUdaStreamBeginCapiUre i e 65
cUdaStreamCoPY AT I IDULES. .. oo 66
CUAASETEAM C T RATE ot 66
cudaStreamlCreateWithFLlags. . ..o 67
cudaStreamCreateWithPriority. . .oc.oo e, 68
CUAASETEAMDESEIOY ... 69
cUdaStreamENACaPIUIE. .. o i 70
CUdaStream G etATI I IDULE. ... 71
cudaStreamGetCapturelnfo. .. oo 72
cudaStreamGetCapturelNfO_VZ2. . ..o 73
CUAASErEaM G EEFLAgS .. o 74
CUAASErEaM Gt P IONIEY .. o 75
CUAASTreamMISCaPlUIING ... i 76
CUAASTTEAMQIUETY . .o 77
cUdaStream SetAtIIDULE. ..ot 78
CUAAStrEAM Y NCNIONIZE e 78

CUDA Runtime API vRelease Version i

cudaStreamUpdateCaptureDependenCies.ot 79

cUdaStreamWaitEVENT. ..o i 80
cudaThreadExchangeStreamCaptureMode.o 81
6.9, Event Management. ... 82
CUAAEVENTCTEATE. .o 83
cudaEventCreateWIthFLags.ooi i 83
CUAAEVENED SOV o e 85
cudaEventELaPSeadTIME. ... 86
CUAAEVENTQUBTY ..o 87
CUAAEVENTRECOIT. ..o 88
cudaEventRecordWItNFLags.ooii 89
CUdAEVENESYNCRIONIZE oo 90
6.6. External Resource Interoperability........cccooiiiiii 91
cudaDestroyEXtErNalMeEmMOIY. . .o 91
cudaDestroyExternalSemaphoreo 92
cudakExternalMemoryGetMappedBuffer.......o.coi 93
cudakExternalMemoryGetMappedMipmappedArray. ..o 94
cudalmportExternalMemOory ... 96
cudalmportEXternalSemaphore. .. o 99
cudaSignalExternalSemaphoreSASYNC. .. .ooiiii e 102
cudaWaltExternalSemaphoreSASYNC.ii i 104
0.7, EXECULION CONTIOL. ..ttt 106
CUAAFUNCGETATIIIDULES. ..o 106
CUAAFUNCS O ATIIIDULE ... 107
cUdaFuNCSetCacheConTig. ... i i 108
cudaFuncSetSharedMemCoONTig... ..o 109
cudaBGetParameterBuifer. ... o 1M1
cudaGetParameterBufferV2. ... 1M1
cudalaunchCooperativeKerNel. . ..o i 112
cudalaunchCooperativeKernelMUltiDeVviCe........cocciiiiiiii e, 114
CUdalaunChHOSTFUNC. ... 117
CUdalaunChKEINE L. i 118
CUdASEtDOUBLEFOrDEVICE ...t 120
cUdaSetDoUBLEFOrHOSE ..o 120
6.8 DCCUPANCY ittt 121
cudaOccupancyAvailableDynamicSMemPerBlocK. ... 122
cudaOccupancyMaxActiveBlocksPerMultiprocessor........ooovviiiiiiiiiii e 123
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags. ..., 124

CUDA Runtime API vRelease Version v

6.9, MemMOry ManagemMENt. ... e 125

CUAAAITAY G NTO. o 126
CUAAAITAYGEIPLANE ... 127
CUdaATTayGetSParsePrOPertiEs. ..o i e 128
CUAAF T e 128
CUAAFTEEATTAY .o 129
CUAAFTEEHOST e 130
CUdaFreeMIpMapPPEAATTAY ... 131
cudaGetMipmappedArrayLevel.......c.ooiii 132
CUAGEtSYMBOIAAAIESS. ..o 133
CUAAGEESYMDOLSIZE o 134
CUAAHOSTALLOC .. 135
CUdaHOStGEtDEVICEPOINTET .. o i 136
CUAAHOSEGEtFLAGS. . e 138
CUAAHOSEREGISTOT .. 138
CUAAHOSTUNT QIS 141
CUAAMALLOC e 141
CUAAMALLOCSD e 142
CUAAMALLOCIDATTAY . ..o 143
CUAAMALLOCATTAY ..o 146
CUAAMALLOCHOSE e 148
CUAAMAlOCMANAGEA. ..o i 149
cudaMallocMipmMapPRedATTAY....... i 191
CUAAMALLOCPIECR ..o 154
CUAAMEIMAGVISE .. 155
CUAAM BIMICPY .ot 159
CUABMEMICPYZD e 160
CUdAMEMCPYZDAMTAY TOATTAY ..ottt 162
CUAAMEMCPYZDASYNC. e 163
CUAAMEMCPYZD FFOMATITAY . ..ot 165
cudaMemcpyZDFrOMAITAYASYNC ..o i 167
CUAAMEMCPYZD T OATTAY ..ot 169
cUdaMeEmMCPYZDTOATTAYASYNC. ... oot 170
CUAAMEMCPY3D . e 172
CUAAMEMCPYBDASYNC. oo 174
CUAAMEMICPYBD P RO . ..o 177
CUAAMEMCPY3DPEEIASYNC. ..ot 178
CUAAMEIMCPYASYNC et 179

CUDA Runtime API vRelease Version v

cudaMemcpYFromMSYMbBOL ..o 180

cudaMemcpyFromSYMbBOLASYNC. ..oiiiiie e, 182
CUAAMEMCPY P T ... e 183
CUAAMEMCPYPEEIASYNC. .. 184
CUAAMEMCPYTOSYMDOL. . i 185
cudaMemcpYTOSYMBOLASYNC. . .ot 187
CUAAMEMGETINTO. .t 188
CUdAMeEMPrEfEECRASYNC. ... 189
cudaMemRaNgeGetAtIIDULE 191
cudaMemRaNgeGetATIIIDULES.ooi 193
CUAAMEBIMISEE e 194
CUAAMEMSEEZD . 195
CUAAMEMSEEZDASYNC. i 196
CUAAMEMSEEBD e 197
CUAAMEMSEESDASYNC. ..o 199
CUAAMEMISEIASYNC . it 200
cudaMipmappedArrayGetSparseProperties. ..o 201
Make cUdaEXtent 202
MaKe CUAAP I N EA P e e 203
MNAKE CUAAP O e 203
6.10. Memory Management [DEPRECATEDI.......cocooiiiiiiiiiii et 204
CUAAM M CPYATTAY TOATTAY .. ittt 204
CUAAMEMCPYFFOMAITAY ..o e 206
CUdaMeEMCPYFTOMATITAYASYNC. ..o 207
CUAAMEMCPY T OATTAY ...t 209
CUAAMEMCPY TOATTAYASYNC. .. ittt 210
6.11. Stream Ordered Memory ALLOCAtON. . .o.ii i 217
CUAAFTEEASY M. e 212
CUAAMALLOCASYNC .o 213
cudaMalloCFromMPOOLASYNC. ..o, 214
CUAAMEMPOOLCTEATE L. i 215
CUAAMEMPOOID ESTIOY ... e 216
cudaMemPOOLEXPOrtPOINTEI. .o e 217
cudaMemPoolExportToShareableHandle. ... 217
CUAAMEMPOOLGEIACCESS. ..o 218
cudaMemPOOlGEtATIIIDULE. .. .o 219
cudaMemPoollmportFromShareableHandle. ... 220
cudaMemPoollMpPortPoINte . ..o 221

CUDA Runtime API vRelease Version vi

CUAAM M P OO S B A C S S . it 221

cudaMemPoolSetAtIIIDULEoi i 222
CUAAMEMPOOLT FIMIT 0 et 223
0. 12, UNIfIed AQAreSSING .. it 224
CUdaPOINTErGetAIIIDULES. ..o 225
6.13. Peer Device MemMOrY ACCESS.uiiiiiii e 227
CUdaDeVIiCeCanACCESS PO ... o i 227
cudaDeviceDisablePeerACCesSs. . ..o, 228
cudaDeviceENablePeerACCESS. i 229
6.14. OpenGL INteroperability....c..o i 230
CUAAG LD EVICELIST. .t 230
CUAAGLGEEDEVICES. ..t 230
cudaGraphicsGLRegISterBUfer.... .o 231
cudaBGraphicsGLREegISTErIMAGE. .. o ittt 232
CUAAW G L GEEDEVICE ... 234
6.15. OpenGL Interoperability [DEPRECATED] ..o 234
CUAAGLMAPFLAGS. . e 234
CUdaGLMapBUffErOD e ... it 235
cudaGLMapBUfferObjeCtASYNC. . .o it 236
cudaGLRegisterBufferODJeCt. . ..o i 237
cudaGLSetBufferObjectMapFlags.o 237
CUABG LS GLDEVICE. ..t 238
cudaGLUnNmapBufferOBJeCt.o 239
cudaGLUNmMapBufferObjeCtASYNC. ..o i 240
cudaGLUnregisterBufferObject... ... i 241
6.16. Direct3D 9 Interoperability.......ooooiii e 247
CUAAD DI D VICELIST ..o 241
CUAAD DG GEEDOVICE ..ot 242
CUAAD 3D G GEIDOVICES. ..t 243
CUdaD3D9GetDIreCt3DDEVICE. ... ittt 244
CUdaD3D 7S etDIreCtEDDOVICE .. it 244
cudaGraphicsD3DIREgISTErRESOUNCE. . .iui it 245
6.17. Direct3D 9 Interoperability [DEPRECATED]. ..ot 248
CUAAD 3D IMaAPFLAGS. . 248
cUdaD3DIREGISTEIFLAgS. .. i 248
CUAADEDIMAPRESOUICES. .. 248
CUAaD3DIREGISTErRESOUICE .. ittt 249
cudaD3D9ResourceGetMapPedAITAY.ciii it 251

CUDA Runtime API vRelease Version vii

cudaD3D9ResourceGetMappedPitCh. ..., 252

cudaD3D9ResourceGetMappedPointer. ..o, 253
cudaD3DIResourceGetMapPedSizZe. .. cociiii it 254
cudaD3D9ResourceGetSurfaceDimensSioNS. . ..o 256
cudaD3D9ResourceSetMapFlags.oo i 257
cudaD3DUNMaPRESOUINCES. ...t 258
cUdaD3DUNTegiSterRESOUICE i 259
6.18. Direct3D 10 INteroperability.......coiiiiii e 259
CUAAD3D TODEVICELISE .ottt 259
CUAAD3D TOGEEDEVICE .. 260
CUAAD3D TOGEEDEVICES i 261
cudaGraphicsD3DT0REgISTErRESOUICEttt 262
6.19. Direct3D 10 Interoperability [DEPRECATEDI.......cooiiiiiiiii i 264
CUAAD 3D T OMAPFLAGS. . et 264
cUdaD3DTOREGISTEIFLAgS. ..ot 264
cUdaD3D T0GEetDIreCt3DDOVICE. .. ittt 264
CUAAD3D T TOMAPRESOUICES. ..o 265
cUdaD3D T0REGISTEIRESOUICE. ... it 266
cudaD3D10ResourceGetMappedArTaYo..i it 268
cudaD3D10ResourceGetMappedPitCh. ..o 269
cudaD3D10ResourceGetMappedPointer. ... 270
cudaD3D10Res0oUrceGetMapPedSIZe. . .oo.iiiiiiiiiee e 271
cudaD3D10ResourceGetSurfaceDimeNSIONS. ...co..iiiiiii i 272
cudaD3DT0Res0oUrceSetMapFLags. . .o..oiiiiiiii e 273
cudaD3DT0SetDIreCt3DDEVICE.iiiiiiiiii et 274
CUdaD3D T T0UNMAPRESOUINCES. ...t 275
cUdaD3D T0UNIEgiStErRESOUNCE. . ittt 276
6.20. Direct3D 171 INteroperability.......coiiiiiiiii e 276
CUAAD 3D T TDEVICELISE. .ottt 276
CUAAD 3D T TGEEDEVICE ...t 277
CUAAD 3D T TGEEDEVICES ... it 278
cudaGraphicsD3D1TRegIStErRESOUICE ... ittt 279
6.21. Direct3D 11 Interoperability [DEPRECATED]......oooovoiicoooeeeeeeeeeeeeeeee 281
cUdaD3D T 1GetDIreCt3DDOVICE .. ittt 281
cudaD3DT1SetDIreCt3DDEVICEuiiiiiiiii e 282
6.22. VDPAU Interoperability.......oo i 282
cudaGraphicsVDPAURegisterOutputSUrface. ..o 283
cudaGraphicsVDPAURegisterVideoSurfaCe.oooiiiiiiiiii e 284

CUDA Runtime API vRelease Version vili

CUAAY D P AU G Ot D OV IC . e 285

CUdaVDPAUSEtVDPAUDEVICE. ...t 285
6.23. EGL INteroperability.. ..o 286
cudaEGLStreamConsumerACqUIreFTame. ..o i 286
cudaEGLStreamConsumerCoNNE i 287
cudaEGLStreamConsumerConnectWithFLlags. ..o, 288
cudaEGLStreamConsumerDISCONNECT.ciiiiiii e 289
cudaEGLStreamConsumerReleaseFrame. 289
cudaEGLStreamProducerConNECt.o i 290
cudaEGLStreamProducerDiSCONNECE. . .iuiiiiiiiie e 291
cudaEGLStreamProducerPresentFrame. 291
cudaEGLStreamProducerReturnFrame. 292
cudaEventCreateFromMEGLSYNC. ..ot 293
cudaGraphicsEGLREGISTErImMage. ..o 294
cudaGraphicsResourceGetMappedEglFrame. ... 295
6.24. Graphics INteroperability... ..o 296
CUdaGraphiCSMaPRESOUICES. ... it 296
cudaGraphicsResourceGetMappedMipmappedArTay.......ccooiiiiiiiiii i 297
cudaGraphicsResourceGetMappedPointer.. ..o 298
cudaGraphicsResourceSetMapFlags.o 299
cudaGraphicsSubResourceGetMappedArTaY.........oiiiiiii e 300
cUdaBraphiCSUNMapRESOUICES. ... it 307
cudaGraphicsUnregisterRESOUICE. ... iiiiiiii i 302
6.25. Texture Reference Management [DEPRECATED].........ocoiiiiiiiiiiiii 303
CUAABINAT EXTUT ..t 304
CUAABINATEXTUTEZD ... i 305
CUdABINATEXTUETOATTAY ..o it 307
cudaBindTextureToMipmMapPedATTAY.......ooiiii e 308
cudaGetTextureAlgNmMentOffSet. .. i 309
CUdaGetTeXtUrERE B NCE. .. it 310
CUAAUNDINA T EXEUIE et 311
6.26. Surface Reference Management [DEPRECATED].ococoooiiiiiiiieee e, 311
CUdaBINASUMTACETOATTAY ..o 312
cudaGetSurfaceREfEIrENCE. .. i i 313
6.27. Texture Object Management. ... 314
cudaCreateChannelDesC . . i 314
cudaCreateTextuUreODJECT. .o i 315
cuUdaDestroy TexXtUrEOD et ... it 320

CUDA Runtime API vRelease Version iX

CUAAG R AN D S . e 320

cudaGetTextureObjectResSOUrCEDESC. . iiuii it 321
cudaGetTextureObjectResourceVieWDESC. . ..ioiiiiiiie e 322
cudaGetTextureObjectTeXtUrEDeSC. . i it 323
6.28. Surface Object Management.. o i 324
cudalCreateSurfacelb]eCT. ... i 324
cudaDestroySurfacelbh et . 325
cudaGetSurfaceObjectResoUrCEDESC. .. .iiiiiiiii i 326
6.29. Version Managemient.o 326
CUAADTIVEIG OV EISION . e 327
CUdARUNTIMEGEEVEISION. ... 327
6.30. Graph Management. .. e 328
cudaDeviceGetGraphMemAIIBULE.oii i 328
cudaDeviceGraphMemM T IIM ..o o e 330
cudaDeviceSetGraphMemArIBULE.ooiiii 331
cudaGraphAddChildGraphNOGe.ooiiiiii e 332
cUdaGraphAddDePENAENCIES. ...c..iiiiii e 333
cudaGraphAddEMPLYNOGE. . ..ot 334
cudaGraphAddEVentRECOrANOGE. .. .c..iiiii i 335
cudaGraphAddEventWaitNOe.ooo e 337
cudaGraphAddExternalSemaphoresSignalNode. ... 338
cudaGraphAddExternalSemaphoresWaitNode..........oooiiiiiiiiii e, 340
cudaBGraphAddHOSINOGE. . ..ot 341
cudaGraphAddKerNElNOGE.oiii i 342
cudaGraphAddMemALOCNOGEo, 345
cudaGraphAddMemMCPYNOGE.t 346
cudaGraphAddMemepYNOETD ... i 348
cudaGraphAddMemcpyNodeFromSymbol.......coooiiiiii 349
cudaGraphAddMemcpyNodeToSymMboLl. ..o 351
cudaGraphAddMemFreeNOTe. ... o i 353
cudaGraphAddMemSEtNOGE.o 354
cudaGraphChildGraphNodeGetGraph. ..o 355
CUAAGIAPNCLONE. ... 356
CUAAGTAPN IR .t 357
cudaGraphDebugDotPrint. ... 358
CUAAGTAPNDESIIOY. oo 359
CUAaGraphDestrOYNOGE. ... it 359
cudaGraphEventRecordNodeGetEvent. ..o 360

CUDA Runtime API vRelease Version X

cudaGraphEventRecordNodeSetEvent. ... 361

cudaGraphEventWaitNodeGetEVent. ..o 362
cudaGraphEventWaitNodeSetEvent.o 363
cudaGraphExecChildGraphNodeSetParams.........ooiiiiiiiiiiii e 364
CUAAGraphEXECDESTIOY ... i 365
cudaGraphExecEventRecordNodeSetEvent. ..o 366
cudaGraphExecEventWaitNodeSetEvent. ..., 367
cudaGraphExecExternalSemaphoresSignalNodeSetParams.........ocooiiiiiiiiiiiiii 368
cudaGraphExecExternalSemaphoresWaitNodeSetParams...........occooiiiiiiiiiiii 370
cudaGraphExecHostNodeSetParams.o 371
cudaGraphExecKernelNodeSetParams. ... 372
cudaGraphExecMemcpyNodeSetParams. ... 374
cudaGraphExecMemcpyNodeSetParams D ... 375
cudaGraphExecMemcpyNodeSetParamsFromSymbol.........ccoooiiiiii, 377
cudaGraphExecMemcpyNodeSetParamsToSymbol.. ... 378
cudaGraphExecMemsetNodeSetParams. . ..o 380
CUdaGraphEXECUDPAate. . oo i 381
cudaGraphExternalSemaphoresSignalNodeGetParams. ..o 384
cudaGraphExternalSemaphoresSignalNodeSetParams.........cocooiiiiiiiiiii 385
cudaGraphExternalSemaphoresWaitNodeGetParams. ..o 386
cudaGraphExternalSemaphoresWaitNodeSetParams.........ccccoiviiiiii 387
CUAAGTAPN GO EAGES . i 388
CUAAGrapPhGEtNOGES. ..o 389
cudaBGraphGetROOINOGES. oo 390
cudaGraphHostNOdeGEetParamS.oi i 391
cudaGraphHostNOdEeSEtParamIS. . .o i 392
CUAaGraphINStANtIAte. . o 393
cudaGraphinstantiateWithFLlags.......c.ooiiii 394
cudaGraphKernelNodeCopyAtIrIDULES.o..iiiiii e 395
cudaGraphKernelNodeGetAtrIDULE.o 396
cudaGraphKernelNodeGetParams. ..o 396
cudaGraphKernelNodeSetAtrIBULE.o i 397
cudaGraphKernelNodeSetParams.........coiiiiii e 398
CUAAGTaPNLaUNCR. .o 399
cudaGraphMemALlocNOdeGetParams.o 400
cudaGraphMemcpyNodeGetParams. 401
cudaGraphMemcpyNodeSetParams.o i 402
cudaGraphMemcpyNodeSetParamsTD ..o, 403

CUDA Runtime API vRelease Version Xi

cudaGraphMemcpyNodeSetParamsFromSymbol........coccoiiiiiiiiii 404

cudaGraphMemcpyNodeSetParamsToSymbol... ..o 405
cudaGraphMemFreeNodeGetParams.o 407
cudaGraphMemsetNodeGetParams........oiiiiiiii e 408
cudaGraphMemsetNodeSetParams.ot 409
cudaGraphNodeFiNAINCLONE. ..o i 410
cudaGraphNodeGetDependenCIBS. . ..o it 411
cudaGraphNodeGetDependentNOGES.oiiiiiiiii e 412
CUAaGraphNOAEG I TYPE .. o 413
cudaBGraphReleaseUserOD]eCt.o 414
cudaGraphRemoveDepeNdENCIES. . .ouiiiiiii e 414
cudaGraphRetainUserOD et .. oo 416
CUAAGraPRUPLOGA. ... i 416
CUAAUSEIOD]ECECTEALE. ..ottt 417
CUdAUSerObjeCtRELEASE ... o 418
CUAUSErODJECREEAIN. ... i 419
6.371. Driver ENtry Point ACCESS .. i 419
cudaGetDriVerENtryPoOINt. ... 420
6.32. Ct AP ROULINES . 421
_cudalccupanCyB2DHEIPE N ..o 421
CUdaBINASUITACETOATTAY ..o 421
CUdaBINASUMTACETOATTAY ..ot 422
CUAABINA T EXTUME . 423
CUAABINAT EXTUT .. 424
CUAABINATEXTUTEZD ..o 426
CUAABINATEXTUTEZD ... i 427
CUdABINATEXTUETOATTAY ..o it 429
CUdABINATEXTUIETOATTAY ... i 430
cudaBindTexXtureToMIpmMapPEAATTAYttt 431
cudaBindTexture ToMIpmMapPeAATTAYoiiiiii i 432
cUdaCreateChannelDESC. . i 433
CUAAEVENTCTEATE. ..o 434
CUAAFUNCGETATIIIDULES ..o e 435
CUAAFUNCS AT IIDULE 436
cudaFunNCcSetCacheConTig. ... i i 437
CUAGEtSYMBDOIAAAIESS. . i 438
CUAAGEESYMDOLSIZE o oo 439
cudaGetTexture AligNmMentOffSet. . i 440

CUDA Runtime API vRelease Version Xii

cudaGraphAddMemcpyNodeFromSymbol.........oooiiiii 441

cudaGraphAddMemcpyNodeToSyMbBOL. . ..o 443
cudaGraphExecMemcpyNodeSetParamsFromSymbol.........coocooiiiiiiiii 445
cudaGraphExecMemcpyNodeSetParamsToSymbol.......oocooiiiiiiiii 446
cudaGraphMemcpyNodeSetParamsFromSymbol...........oooiiii 448
cudaGraphMemcpyNodeSetParamsToSymbol.......coooiiiiiiii e 449
cudalaunchCooperatiVeKErNeL. . ..o i 450
CUdalaunChKEINEL .. i e 452
CUAAMALLOCASYNC. o 453
CUAAMALLOCHOSE e 453
CUdAMallOCMaANAGEA. ... i 455
cudaMemcpyFromSYMbBOLo 457
cudaMemcpYFromMSYMbBOLASYNC. ..ot 459
CUAAMEMCPY TOSYMDOL. .t 460
cudaMemCpPyY TOSYMBDOLASYNC. ..o 461
cudaOccupancyAvailableDynamicSMemPerBlocK. ... 463
cudaOccupancyMaxActiveBlocksPerMultiprocessor. ..o 464
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags..........cocooiiiiiiiiiii 463
cudaOccupancyMaxPotentialBloCKSIZE.oiiiiiii 467
cudaOccupancyMaxPotentialBlockSizeVariableSMem, 468
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags.........occooiiiiiii 469
cudaOccupancyMaxPotentialBlockSizeWithFLlags......ccoooiiiiiiii e, 471
cudaStreamAttaChMEMASYNC.....oii i 473
CUAAUNDINA T EXEUIE . 475
6.33. Interactions with the CUDA Driver APl .. .o 476
cudaGetFuncBYSYMBOL . .o 478
6.34. Profiler Control [DEPRECATED].......ovioiiiit oo, 479
CUAAPrOTILErINITIALIZE . 479
6.35. Profiler COoNTrOL .. oo 480
CUAAPTOTILEISTAIT .. e 480
CUAAP IO ILEI S O et 480
6.36. Data types used by CUDA RUNTIMIE.....oiiiiiii i 481
CUdAACCESSPOLICYWINAOW. ... 482
CUAAAITAYSPArSEPrOPEITIES. ..o it 482
cudaChannelFormatDesC . . i 482
CUAADEVICEPTOD . .. e 482
CUAAEGLFramMe. . 482
CUAAEGIPLANEDESC .o 482

CUDA Runtime API vRelease Version Xiii

CUAAE X N e e 482

cudakExternalMemoryBufferDes ... oo i 482
cudaExternalMemoryHandleDesC. .o v i 482
cudaExternalMemoryMipmappedArrayDesc.......cooiiiiiiiiii 482
cudaExternalSemaphoreHandleDesC. . .oouiiiiiiiiii 482
cudaExternalSemaphoreSignalNodeParams. ..o 482
cudaExternalSemaphoreSignalParams. ..o 482
cudaExternalSemaphoreWaitNodeParams. ..o 482
cudaExternalSemaphoreWaitParams. . ..o 482
CUAAFUNCATTIIULES .o 482
CUdAHOSINOGAEPAraMIS. ... 482
cudalpcEventHandle b ... 483
cudalpcMemHaNALE_t.. ... 483
cudakernelNOdeAITValUB. . ..o 483
cudaKernelNOdeParamS.o e 483
CUAALaUNCRParamIS. .. o 483
CUAAMEMACCESSDOSC o 483
cudaMemALLOCNOAEPEraMS. .. o 483
CUAAMEMCPYDP AN .o 483
cUdaMemCpPY3DPEErPAIMIS. ... e 483
CUAAMEMLOCATION ... 483
CUAAMEMPOOIPTOPS ... 483
cudaMemPoolPtrEXpOrtData.. ... 483
CUAAMEMSEEPAIAMIS. e 483
CUAAP I B AP . 483
CUAAPOINTErATI I IDULES ..o 483
CUAAP OS. e 483
CUAARESOUNCED ST it 483
CUAARESOUICEVIEWDESC. ..o 484
CUAASTreamMATIIValUe. ..o 484
CUAA T EXEUIEDESC. e 484
U St 484
SUMACEREIBIENCE. ..o 484
LEXtUTERE B BN CE e 484
CUAAACCESSPTOPEITY .o 484
CUAAC G S COPE it 484
cudaChannelFormatiKing. e 484
CUAACOMPUEEMOTE. .. 485

CUDA Runtime API vRelease Version Xiv

CUAA D BV GO A M e e 485

CUdaDEVICEP 2P AT ... 491
CUAEEGLCOLOTFOrMET. i 491
CUAAEGIFram e Ty Pe. e 498
cudaEglResourcelocatioNFlags. .. .o 498
CUAAETTO . e, 499
cudakExternalMemoryHandle TYPe. . oo 509
cudakExternalSemaphoreHandleType.o 509
cudaFlushGPUDIirectRDMAWTIteSOPLIONS.cuviiiiiii e 510
cudaFlushGPUDIrectRDMAWIITESSCOPE. . iviiiiiiii e 510
cudaFlushGPUDIrectRDMAWItESTarget. ..o, 510
CUAaFUNCATIIIDULE ..., 511
CUAAFUNCCACIE e 511
cudaGetDriverEntryPointFlags.oooiii e 511
cudaGPUDIrectRDMAWIItESOrdering. ... oot 512
cudaGraphDebugDotFlags.ooiii 512
cudaGraphExecUpdateResuUlt. . oo 513
cudaBraphicsCUuBEFaCe. ..o 513
CUAAGraphiCSMapPFLags. ..o 514
cudaBGraphicsRegISTErFLags.o i 514
cudaGraphinstantiateFlags.o 514
cudaBGraphMemATIDULETYPEoi i 514
CUAAGTAPNNOGETYPE . 515
CUdaKerNelNOGEALIIIDo 516
CUAALIMIT. e 516
CUAAMEMACCESSFLAGS. .ot 516
cudaMemAllocationHandleType. ... 517
cudaMemALLOCAtIONTYPE. ... 017
CUAAMEMCPYKING. et 517
CUAAMEM LOCAtIONTY PO i 518
CUAAMEMONYAGVISE ..t 518
CUAAM BN O Y Ty DBttt 518
CUAAMEMPOOLATET . .. e 519
cUdaMemMRANGEATIIIDULE. ... 519
CUAAOUTPULMOTE .. 520
CUAARESOUNCE T P e 520
cudaResourceVieWFormat. ... 520
CUAASNATEACAIVEOUL. ..ot 522

CUDA Runtime API vRelease Version XV

cUdaSharedMeEmMCONTIG. .. . i 522

CUAASTrE@MALEIIID .o 523
CUdaStreamCaptureMOde. i 523
CUdaStreamCaptureStatus. ... i i 523
cudaStreamUpdateCaptureDependenciesFlags.......cccooiiiiiiiiiiiii 523
cudaSurfaceBoundaryMOde.o 524
cudaSurfaceFormMatMOde. oo 524
cudaTextureAddreSSMOe.o 524
CUdATeXtUrEFILEEIrMOTE. ..o 524
cUdaTextUreREAAMOTE. ... oo 525
CUAAUSErOD]ECTFLAGS. .. i 525
cudalUserObjectRetainFlags.oo o 525
o o F=Y AN o = 1Y ofo] =3 R SRR 525
CUABATTAY L 525
cudaEglStreamConNECTION. .. oo i 525
CUAA T O b e e 526
CUAA B N b 526
cUdaEXternNalMemOry Lo 526
CUdaEXternalSemMapnOre b e 526
CUAA R UN G 0N b e 526
CUAAGTAPN b 526
CUAAGTAPNEXEC i 526
CUAAGraPNICSRESOUICE b ittt 526
CUAAGTAPNNOGE . i 526
CUAAH O N e e 527
CUAAM M P OOt e 527
cudaMipmappedArray_CONSE_ T e 527
cUdaMipmMapPeAATTAY b 527
CUAAOULPUIMOE T 527
CUAA S T M b e 527
CUAASUITACEOD]ECT T e 527
CUAATEXTUNEOD ECT L. 527
CUAAUSEIODJECE . i 527
CUDA_EGL_MAX _PLANES ... e 528
CUDA _IPC_HANDLE _SIZE ... oo 528
cudaArrayColorAttaChmENT ... e 528
CUABATTAY CUDEMIAP .. 528
CUAAATTAYDETAULL ... 528

CUDA Runtime API vRelease Version Xvi

CUAAATAYLAYEIEA. .. oo 528

CUABATTAY S PAISE ettt 528
cudaArraySparsePropertiesSIiNngleMipTail.....ooiiiiiii i 528
cUdaArraySUrfaceloadStore. .. o 528
CUdAATaY TeXtUrE Gather. oo e 529
cudaCooperativeLaunchMultiDeviceNOPOStSYNC ..o 529
cudaCooperativeLaunchMultiDeviceNOPreSyNC ..o 529
CUAACPUDBVICEIT. . 529
cudaDeviceBLoCKINGSYNC. ..o i 529
cudaDeviceLmemRESIZETOMAX.......oiiiiiiii i 529
CUdADEVICEMAPHOST ... o 529
CUAADEVICEMASK ... 529
cUdaDevicePropDONtCare. . .. e 530
cuUdaDeviceSCREAULEAULO. ...t 530
cudaDeviceScheduleBloCKINGSYNC.....oiiiiii e 530
cudaDeviceSChedULEMASK.iiiii e 530
CUdaDEVICESChEAULESPIN. . i 530
cudaDeviceSChedUuleYield.o 530
CUdAEVENtBLOCKINGSYNC oo 530
CUdAEVENTDEfAULL. ..o 530
CUdaEVeNtDISablETIMING. ... it 530
CUAAEVENE N O PIOCESS i 530
cudabventRecordDefaull. ... 530
cudaEventRecOrdEXtErNal. ..o 531
CUdAEVENTWAITDEFAULL ..o 531
cudaBEventWaltEXTErnal . ..o 531
cudaExternalMemoryDedicated. . ..o 531
cudaExternalSemaphoreSignalSkipNvSciBufMemSync. ..o 531
cudaExternalSemaphoreWaitSkipNvSciBufMemSync.......oocooiiii 531
CUd@HOSEALLOCD EFAULL. ... 531
CUAAHOSEALLOCMAPPEA. ..o 532
cUdaHOSTALLOCPOTTADLE. ... i 532
cudaHOoStALLOCWIItECOMBINE. ... i 532
cudaHostRegiSterDefaull. ... 532
cudaHOoStREGISTEMTOMEMIOIY. ... i 532
cudaHOStREGIStErMaPPEA. .. . i 532
cudaHostRegisterPortable. 532
cudaHostRegisterReadONly.ooiiii e 532

CUDA Runtime API vRelease Version XVii

CUAAINVALAD OVICEIA. . e 532

cudalpcMemlLazyEnablePeerACCeSS. . .o i 532
cudaMemAtaChGLODALo 532
CUdaMeEMATIACRHOST. ... e 533
CUdAMEMATEACHSINGLE .. e 533
CUdaNVSCISYNCATIISIGNAL. .o 533
CUdaNVSCISYNCALIIWEIL. .o 533
cudalccuPaNCYDE AUl ..o 533
cudaOccupancyDisableCachingOVverride.ooiiiiiiii i 533
cuUdaPeerAccessDefaull. . oo 533
cudaStreambDefault.o 533
CUAA ST A LB GACY ittt 533
cudaStreamNONBLOCKING. ...t 534
CUdaStreamPerTRrEa. ... i 534
Chapter 7. Data StrUCTUMES. ... et a e e e 535
_cuda0ccupanCyB2DHEIPE ... i 536
CUAAACCESSPOLICYWINAOW. ..o 536
DS P e 536
P P O e 536

P R EEI0. e 536
TV S S PO s 537
010 o AT o) (=T USSR 537
CUdAAITAYSPArSEPrOPEITIES. ..o 537
0T o1 4o O T T SO U PSP PO UTPURROUPPR 537
LGS et 537

P G Nt e 537
MUPEAILFITSTLEOVEL. .o 537
MNIDEAILSIZE e 537
WD e 537
cUdaChannelFormMatDesC. ... i 538
e 538
N e 538
TSP PP PRPPRPRPPROS 538
U PSPPSR PRUPRPPON 538
PSP P PP PP PUPPRRUPPN 538
CUAAD VICEPTOP. . 538
accessPolicyMaxWINdOWSIZE ... 538
ASYNCENGINECOUNT. ..o e 538

CUDA Runtime API vRelease Version XVviil

CANMAPHOSTMEMIOIY ..o 539

canUseHostPointerForRegisteredMem. . ..o 539
CLOCKR AT e e 539
COMPUEEMOTE. .. e 539
computePreemptioNSUPPOITEA. . ..o i 539
CONCUITENTIKEIMELS .. 539
CONCUITENTMANAGEAACCESS ...t 539
CoOPerativeLaUNCRL ..o 539
cooperativeMultiDeviceLaunCh. ... 539
OVICEOVETLAP . ettt 539
directManagedMemACCesSFrOMHOST.ot 540
EC CENGDLE. e 540
globallL1CacheSUPPOItEA. ... i 540
hoStNatiVEATOMICSUPPOITEA. ... it 540
G AT O e 540
ISMULLIGPUBOAIT. . 540
kernelExecTimeoUtENabled.o 540
L2 aCNESIZE e 540
l0CallLTCaCheSUPPOITEA. . . i 540
LU e 540
LUTADEVICENOAEMASK. ...t 541
n T Lo PP O PO PPRPRPPR 541
MANAGEAMEIMOTY ...t 041
MaXBloCKSPerMULtIPIrOCESSON. .. o it 541
MNAXGIIASIZE .t 541
MIAXSUMTACETD e 041
MAXSUMTACETDLAYEIEA. .. i 541
MIAXSUITACEZD . e 541
MAaXSUrTACeZ2D LAy red.o 541
MAXSUMTACE3D . e 541
MAXSUNTACECUDEMIAD. . i 541
maxSurfaceCubemaplayered.o 542
MIAXTEXEUTE T D e 542
MAXTeXtUrE TDLAYEIEA . e 542
MAXTEXEUIE T D LN . i 542
MAXTEXEUFE TDMIDIMAD ettt 542
MIAXTEXEUTEZD oo 542
MaAXTeXtUrEZD Gater. .o i e 542

CUDA Runtime API vRelease Version Xix

MAXTEXtUNEZDLAYEIEa. . i 542

MAX T EXEUTEZ D LINBaT . .o 042
MAXTEXTUNEZDMIDIMIAP . . ettt 542
MIAXTEXEUTE3D e 543
MAXTEXEUFEBDALL. ..o e 543
MAX T eXtUNECUDEIMAP . i 543
MaxTextureCubemMaplayered. ..o 543
MAX TRFEAAS DML ..o e 543
MaXxThreadsSPerBLOCK.o 543
MaxThreadsPerMultiProCeSSO . . .o 543
MEeMOTYBUSWIALN ... 543
MEMOTYCLOCKRAEE .. o 543
B P T C N e 543
a1 aTo] TP PP PP R UPR PRSPPI 543
MUUIGPUBOArdGroUPID ... oo D44
MULTPIOCESSOTCOUNT. ... D44
A=Y 0 0= PSSP P PR UPR PR 044
PAGEablEMEMOIYACCESS. ... o i D44
pageableMemoryAccessUsesHostPageTables. ... D44
DCIBUSID e b44
PCIDEVICEID e 544
PCIDOMEINTD e 544
PersistingL2CacheMaXxSIzZe. . oo i D44
PRSP EIBLOCK .. i S44
FEGSP MU I PIOCESSO .. it 545
reservedSharedMemPerBLoCK.o 945
SharedMemPerBLOCK. 545
sharedMemPerBLoCKOPTIN.coii e 545
SharedMemPerMuUlliPrOCESSOT i i i 545
singleToDoublePrecisionPerfRatio.o 545
StreamPrioritieSSUPPOITEA. ..o i 545
SUMTACEALIGNMIENT. . e 545
L D IV T e 545
EEXTUTEALIGNMIENT e 545
teXtUrePItChALIGNMENT. . e 546
EOTALlCONSIMEIM .. 046
E0TALGLODAIMEIMN . . 546
UNIFIEAAAAITESSING . et 546

CUDA Runtime API vRelease Version XX

WP SIZB e 546
CUAAE G rame. e 546
EGLCOLOTF O ML e 546
T T P e 547
DA T T Y e 547
PLANEC OUNT. e 547
PLANED S C e 547
PP N 547
CUAAEGIPLAN@DESC. e 547
CRANNEIDESC. .o 047
0T o1 { o O PO U U PP PP PRSP PPPPUPPRN 547
P g e 547
NUMCNANNELS ..o 547
DI C D e 548
ST V=T F PSP P PSP R UPRUPRPP 548
LV e 1 PSPPSR UPR PP 048
CUAAE X N e 548
DN 548
P g 548
TN e 548
cudabExternalMemoryBuffErDeSC .. i i i 548
G e 548
O S B 549
T4 = PP PP PR PSS PR PRSPPI 549
cudabExternalMemoryHandleDesSCu . i ii i 549
B 549
LGS e 549
NANALE .o 549
0F=1 0 2= PSSP PR PPPPR 549
NVSCIBUTOD ECT. ..o 549
S0z ettt 550
D e 550
LV 1 PSS PRSP SPRPPRPRPPN 550
cudakExternalMemoryMipmappedArrayDeSC. .. .o iui i 550
X 550
LB e 591
FOTINATD RS e 551

CUDA Runtime API vRelease Version XXI

DT S B e 591
cudaExternalSemaphoreHandleDesC.oiiiiiii e 551
B 551
LGS et 551
P ANALE 552
A=Y 0 0= PSSP PSR PP PR 552
NVSCISYNCOD] e 552
D e 552
WINIBZ e 552
cudaExternalSemaphoreSignalNodeParams. ..o 552
EXE S MM ATTAY e 553
MU EXE S BN e 553
PATAMISATTAY et 553
cudaExternalSemaphoreSignalParams. 553
M e 553
B L e 553
LB 553
KEYEAMULEX. ..o 554
VLU B e 554
cudakxternalSemaphoreWaitNodeParams. ..o 554
EXE S BIMNATTAY ..o 554
MU E X S OIS e 054
PATAMISATTAY et 554
cudakExternalSemaphoreWaitParams. ... 554
M e 555
O LB e e 555
LGS e 0395
Y e 555
KEYEAMULEX. ..o 555
LI EOUTIMIS e 555
VAU B e 555
CUAAFUN CATE T IDULES e 556
DINAIYV EISION e 556
CACNEMOAECA e 556
CONSE S ZEBY S e 556
LOCALSIZEBYLES ..o 556
MaxDynamicSharedSizeBytes., 556

CUDA Runtime API vRelease Version XXii

MNAX TNEEAAS P I BlOCK o ettt 556

UM R O S ettt eeees 556
preferredShmemMCarve0OUL.o 556
PEXVEISION e 097
SNATEA S ZEBY S . e 557
CUAAHOSENOAEPArAMIS. ... e, 557
L0 T USSR 557
USEI D ata. eeee 557
cudalpCEventHaNALe_tu . o 557
CUdAlPCMEMHANALE T e 557
cudaKernelNOdeATValUe. e 558
ACCESSPOUCYWINAOW. ... i 558
cudaKernelNOdeParams. 558
L0 K D NN e 558
L2 QU = T PR 558
U G e 558
oL Lo 1 1] o T PSSP RO P P UPPP RPN 558
KB P ara NS . e 558
ShAredMEMBYLES ..o 559
CUAALaUNCN ParaMS. e 559
AT 0 S ettt 559
o] KoY ol 4 01T o'a PR STR 559
U G 559
G D 559
SNATEAM M. ..o 559
S U A=Y-10 0T SRUUURT 559
CUAAMEMNACCESSDESC oo 559
LGS e 560
(o Tor= 14 Te] o TR PR 560
cudaMemALLOCNOAEPArAMIS. ... e 560
ACCESSDESCLOUNT . et 560
ACCESS D OGS it 560
DY ST Z e 560
o] oL (PSP PUUPPPRPTPRPPN 560
POOLPTODS .. 560
CUAAMEMCPYBD PAIINS ..o 561
01 FAN ol = PSPPSR PPRTUSPRRRTPN 561
St P OS 561

CUDA Runtime API vRelease Version XXiii

B M 561
K O e 561
T o7 AN ol)PP PSPPSR 961
ST P 0., 561
ST P e 561
cUdaMemMCPY3DPEEIPAIMIS. .. e 562
S A T T Y e 562
St D VI C . e 562
St P O 562
St e 562
B e 562
] oy A o or= PP PPR PP 562
ST D VI e 562
ST P 0., 562
ST P e 563
CUAAM ML OCATION . e 563
o F SRS 563
By D e 563
CUAAMEMPOOIPIODS ... 563
AL O Y P 563
P AN A L Ty PES e 563
(Lo Tor=Y 41 o R P PPPUURUR 563
oYYy Y=Y HE USRS 564
WIN32S U AT TTIULES .. e 564
cudaMemPoolPIrEXPOrEDAta. ..oiiii 564
CUAaMEM St ParamMS. .. 564
o1 S PP PRRUSTRURT 564
Bl M N S ZE e, 564
P G 564
011413 T T TP PSSP PPPPTUPPRRPPTR 564
VAU B . 564
WD 565
CUAAP I CN O P . e 565
DI e 565
oL L T TSP T PP R PUPPRUPPPP 565
D=1 4 =SSR 565
Sz e 565

CUDA Runtime API vRelease Version XXIV

CUAAP O N O T A T UL O S e e 565

VI L e 565
VIO P O N O .o e 566
PO P O M B . e 566
D e 566
CUAAPIOS . e 566
PSP PP USRI SPRPPRUPRPIN 566
T TSP P UPSUUPRUPRRTPRRPPN 566
Z e 566
CUAARESOUNCEDESC ot 567
BT Y et 567
0= oSSR URTOPSROPRRSPRPPPN 967
BV P e 567
P g 567
a1l oTa 2= o PSP PP S SPRUPRPPRPN 567
DI CI I By S e 567
TN Y o1 PSSP PP PPPTUPPR 567
SIZE N By S e 567
WA e 567
CUAARESOUICEVIEWDIESC ..o 568
(0T o] 4o O T T T T U PSP PR UUOPRRRUPPR 568
TS LAY BT 568
fIrStMIPMAPLEVEL.... 568
[ToL ol aa I L SRR URR TR 568
P g e 568
LB LAY e 568
@STMIPMIAPLEVEL. ... 568
WD e 568
CUAASTrEaMAIIVALUE. ... e 569
CUAA T EXEUIE DS C e 569
AAATESSMOTE .. 569
oTo] oo T=Y ol 0o o} oS UURRT 569
disableTrilinearOptimIZation.o, 569
FILEEIMOAE. . e 569
MNAXANTS OTIOPY .. 569
MAXMIPINAPLEVELC AMIP. it 569
MINMIPMAPLEVELCLAMIP. .o 569
MIPMAPFIEEIMOGE. .o 570

CUDA Runtime API vRelease Version XXV

MIPMAPLEVELBIAS. ..o, 570

NOTMALIZEACOOTAS. ..o 570
FEAAMOT . e 570
SR G B e 570
U U St e 570
DY S e 570
SUMTACEREIEIENCE . i 570
CRANNEIDESC ..o, 570
LEXEUTE RO BN CE e 571
AAATESSMOTE ..o 571
CRANNEIDESC. .o 571
disableTrilinearOptimiZatioN. . ..o i 571
FIEEIMOE. . e 571
Y AXA NSO T OPY .. ettt 571
MAaXMIPMAPLEVELCIaMIP . i 571
MINMIPINAPLEVELCIAMIP. e 571
MIPMEPFILEEIMOTE . ..o 571
MIPMAPLEVELBIAS. ..o, 572
NOTMAUZEA. ..o 572
SR G B 572
Chapter 8. Data Fields ... 573
Chapter 9. Deprecated LISt ... e e e e e 586

CUDA Runtime API vRelease Version XXVi

Chapter 1. Difference between the
driver and runtime APIs

The driver and runtime APls are very similar and can for the most part be used
interchangeably. However, there are some key differences worth noting between the two.

Complexity vs. control

The runtime API eases device code management by providing implicit initialization, context
management, and module management. This leads to simpler code, but it also lacks the level
of control that the driver API has.

In comparison, the driver APl offers more fine-grained control, especially over contexts and
module loading. Kernel launches are much more complex to implement, as the execution
configuration and kernel parameters must be specified with explicit function calls. However,
unlike the runtime, where all the kernels are automatically loaded during initialization and
stay loaded for as long as the program runs, with the driver APl it is possible to only keep the
modules that are currently needed loaded, or even dynamically reload modules. The driver AP
is also language-independent as it only deals with cubin objects.

Context management

Context management can be done through the driver API, but is not exposed in the runtime
API. Instead, the runtime API decides itself which context to use for a thread: if a context has
been made current to the calling thread through the driver API, the runtime will use that, but if
there is no such context, it uses a "primary context.” Primary contexts are created as needed,
one per device per process, are reference-counted, and are then destroyed when there are

no more references to them. Within one process, all users of the runtime APl will share the
primary context, unless a context has been made current to each thread. The context that

the runtime uses, i.e, either the current context or primary context, can be synchronized with
cudaDeviceSynchronize (), and destroyed with cudaDeviceReset ().

Using the runtime APl with primary contexts has its tradeoffs, however. It can cause trouble
for users writing plug-ins for larger software packages, for example, because if all plug-

ins run in the same process, they will all share a context but will likely have no way to
communicate with each other. So, if one of them calls cudaDeviceReset () after finishing all
its CUDA work, the other plug-ins will fail because the context they were using was destroyed

CUDA Runtime API vRelease Version | 1

Difference between the driver and runtime APIs

without their knowledge. To avoid this issue, CUDA clients can use the driver API to create and
set the current context, and then use the runtime API to work with it. However, contexts may
consume significant resources, such as device memory, extra host threads, and performance
costs of context switching on the device. This runtime-driver context sharing is important

when using the driver APl in conjunction with libraries built on the runtime API, such as
cuBLAS or cuFFT.

CUDA Runtime API vRelease Version | 2

Chapter 2. APl synchronization
behavior

The API provides memcpy/memset functions in both synchronous and asynchronous
forms, the latter having an "Async” suffix. This is a misnomer as each function may exhibit
synchronous or asynchronous behavior depending on the arguments passed to the function.

Memcpy

In the reference documentation, each memcpy function is categorized as synchronous or
asynchronous, corresponding to the definitions below.

Synchronous
1. All transfers involving Unified Memory regions are fully synchronous with respect to the
host.

2. Fortransfers from pageable host memory to device memory, a stream sync is performed
before the copy is initiated. The function will return once the pageable buffer has been
copied to the staging memory for DMA transfer to device memory, but the DMA to final
destination may not have completed.

3. For transfers from pinned host memory to device memory, the function is synchronous
with respect to the host.

4. For transfers from device to either pageable or pinned host memory, the function returns
only once the copy has completed.

0. Fortransfers from device memory to device memory, no host-side synchronization is
performed.

6. Fortransfers from any host memory to any host memory, the function is fully synchronous
with respect to the host.

Asynchronous

1. For transfers from device memory to pageable host memory, the function will return only
once the copy has completed.

2. Fortransfers from any host memory to any host memory, the function is fully synchronous
with respect to the host.

CUDA Runtime API vRelease Version | 3

APl synchronization behavior

3. Forall other transfers, the function is fully asynchronous. If pageable memory must first
be staged to pinned memory, this will be handled asynchronously with a worker thread.

Memset

The synchronous memset functions are asynchronous with respect to the host except when
the target is pinned host memory or a Unified Memory region, in which case they are fully
synchronous. The Async versions are always asynchronous with respect to the host.

Kernel Launches

Kernel launches are asynchronous with respect to the host. Details of concurrent kernel
execution and data transfers can be found in the CUDA Programmers Guide.

CUDA Runtime API vRelease Version | 4

Chapter 3. Stream synchronization
behavior

Default stream

The default stream, used when 0 is passed as a cudaStream t or by APls that operate on
a stream implicitly, can be configured to have either legacy or per-thread synchronization
behavior as described below.

The behavior can be controlled per compilation unit with the --default-stream

nvcc option. Alternatively, per-thread behavior can be enabled by defining the

CUDA API PER THREAD DEFAULT STREAM macro before including any CUDA headers. Either
way, the CUDA_ API PER THREAD DEFAULT STREAM macro will be defined in compilation units
using per-thread synchronization behavior.

Legacy default stream

The legacy default stream is an implicit stream which synchronizes with all other streams
in the same cUcontext except for non-blocking streams, described below. (For applications
using the runtime APIs only, there will be one context per device.] When an action is taken in
the legacy stream such as a kernel launch or cudastreamwaitEvent (), the legacy stream
first waits on all blocking streams, the action is queued in the legacy stream, and then all
blocking streams wait on the legacy stream.

For example, the following code launches a kernel k_1 in stream s, then k_2 in the legacy

stream, then k_3in stream s:

k 1<<<1, 1, 0, s>>>();

k 2<<<1, 1>>>();

k 3<<<1, 1, 0, s>>>();

The resulting behavior is that k_2 will block on k1 and k_3 will block on k_2.

Non-blocking streams which do not synchronize with the legacy stream can be created using
the cudaStreamNonBlocking flag with the stream creation APls.

The legacy default stream can be used explicitly with the CUstream (cudaStream t) handle
CU_STREAM LEGACY [cudaStreamLegacy].

CUDA Runtime API vRelease Version | 5

Stream synchronization behavior

Per-thread default stream

The per-thread default stream is an implicit stream local to both the thread and the
CUcontext, and which does not synchronize with other streams (just like explcitly created
streams). The per-thread default stream is not a non-blocking stream and will synchronize
with the legacy default stream if both are used in a program.

The per-thread default stream can be used explicitly with the cUstream (cudaStream t)
handle CU_STREAM PER THREAD (cudaStreamPerThread).

CUDA Runtime API vRelease Version | 6

Chapter 4. Graph object thread safety

Graph objects (cudaGraph_t, CUgraph] are not internally synchronized and must not be
accessed concurrently from multiple threads. API calls accessing the same graph object must
be serialized externally.

Note that this includes APIs which may appear to be read-only, such as cudaGraphClone ()
(cuGraphClone ()] and cudaGraphInstantiate () (cuGraphInstantiate ()]. No APl or pair
of APIs is guaranteed to be safe to call on the same graph object from two different threads
without serialization.

CUDA Runtime API vRelease Version | 7

Chapter 5. Rules for version mixing

1. Starting with CUDA 11.0, the ABI version for the CUDA runtime is bumped every
major release. CUDA-defined types, whether opaque handles or structures like
cudaDeviceProp, have their ABl tied to the major release of the CUDA runtime. It is
unsafe to pass them from function A to function B if those functions have been compiled
with different major versions of the toolkit and linked together into the same device
executable.

2. The CUDA Driver API has a per-function ABI denoted with a _v* extension. CUDA-defined
types (e.qg structs) should not be passed across different ABI versions. For example, an
application calling cuMemcpy2D v2 (const CUDA MEMCPY2D v2 *pCopy) and using the
older version of the struct cuba MEMCPY2D vl instead of CUDA MEMCPY2D v2.

3. Users should not arbitrarily mix different APl versions during the lifetime of a resource.
These resources include IPC handles, memory, streams, contexts, events, etc. For
example, a user who wants to allocate CUDA memory using cuMemAlloc v2 should free
the memory using cuMemFree v2 and not cuMemFree.

CUDA Runtime API vRelease Version | 8

Chapter 6. Modules

Here is a list of all modules:

vV vV v vV v vV vV v vV vV v vV vV v vV vV v vV vV v vV vV v v Vv Yy

Device Management
Thread Management [DEPRECATED]
Error Handling

Stream Management

Event Management

External Resource Interoperability

Execution Control

Occupancy

Memory Management

Memory Management [DEPRECATED]
Stream Ordered Memory Allocator
Unified Addressing

Peer Device Memory Access

OpenGL Interoperability

OpenGL Interoperability [DEPRECATED]
Direct3D 9 Interoperability

Direct3D 9 Interoperability [DEPRECATED]
Direct3D 10 Interoperability

Direct3D 10 Interoperability [DEPRECATED]
Direct3D 11 Interoperability

Direct3D 11 Interoperability [DEPRECATED]
VDPAU Interoperability

EGL Interoperability

Graphics Interoperability
Texture Reference Management [DEPRECATED]
Surface Reference Management [DEPRECATED]

CUDA Runtime AP!I

vRelease Version | 9

Modules

Texture Object Management

Surface Object Management

Version Management

Graph Management

Driver Entry Point Access

C++ API Routines

Interactions with the CUDA Driver API
Profiler Control [DEPRECATED]
Profiler Control

Data types used by CUDA Runtime

vV vV v vV v vV v v VvV

6.1. Device Management

This section describes the device management functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaChooseDevice (int *device,
const cudaDeviceProp *prop]

Select compute-device which best matches criteria.

Parameters

device
- Device with best match

prop
- Desired device properties

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *device the device which has properties that best match *prop.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 10

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties

__host_ _cudaError_t
cudaDeviceFlushGPUDirectRDMAWT ites
(cudaFlushGPUDirectRDMAWTritesTarget target,
cudaFlushGPUDirectRDMAWTritesScope scope)

Blocks until remote writes are visible to the specified scope.

Parameters

target

- The target of the operation, see cudaFlushGPUDirectRDMAWritesTarget
scope

- The scope of the operation, see cudaFlushGPUDirectRDMAWTritesScope

Returns

cudaSuccess, cudaErrorNotSupported,

Description

Blocks until remote writes to the target context via mappings created through GPUDirect
RDMA APIs, like nvidia_p2p_get_pages (see https://docs.nvidia.com/cuda/gpudirect-rdma for
more information), are visible to the specified scope.

If the scope equals or lies within the scope indicated by
cudaDevAttrGPUDirectRDMAWTritesOrdering, the call will be a no-op and can be safely omitted
for performance. This can be determined by comparing the numerical values between the two
enums, with smaller scopes having smaller values.

Users may query support for this APl via cudaDevAttrGPUDirectRDMAFlushWritesOptions.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 11

https://docs.nvidia.com/cuda/gpudirect-rdma

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cuFlushGPUDirectRDMAWT ites

__host_ device cudaError_t
cudaDeviceGetAttribute (int *value, cudaDeviceAttr
attr, int device)

Returns information about the device.

Parameters

value

- Returned device attribute value
attr

- Device attribute to query
device

- Device number to query

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

Description

Returns in *value the integer value of the attribute attr on device device. The supported
attributes are:

cudaDevAttrMaxThreadsPerBlock: Maximum number of threads per block;

cudaDevAttrMaxBlockDimX: Maximum x-dimension of a block;

cudaDevAttrMaxBlockDimY: Maximum y-dimension of a block;

cudaDevAttrMaxBlockDimZ: Maximum z-dimension of a block;

cudaDevAttrMaxGridDimY: Maximum y-dimension of a grid;

cudaDevAttrMaxGridDimZ: Maximum z-dimension of a grid;

>
>
>
>
» cudaDevAttrMaxGridDimX: Maximum x-dimension of a grid;
>
>
>

cudaDevAttrMaxSharedMemoryPerBlock: Maximum amount of shared memory available
to a thread block in bytes;

» cudaDevAttrTotalConstantMemory: Memory available on device for __constant__ variables
in a CUDA C kernel in bytes;

» cudaDevAttrWarpSize: Warp size in threads;

CUDA Runtime API vRelease Version | 12

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g265e3c82ef0f0fe035f85c4c45a8fbdf

v

vV v v Vv

vV vV.v v v v

vV vV . v v v v Y

Modules

cudaDevAttrMaxPitch: Maximum pitch in bytes allowed by the memory copy functions that

involve memory regions allocated through cudaMallocPitch(J;
cudaDevAttrMaxTexture1 DWidth: Maximum 1D texture width;

cudaDevAttrMaxTexture1DLinearWidth: Maximum width for a 1D texture bound to linear

memory;

cudaDevAttrMaxTexture1DMipmappedWidth: Maximum mipmapped 1D texture width;

cudaDevAttrMaxTexture2DWidth: Maximum 2D texture width;

cudaDevAttrMaxTexture2DHeight: Maximum 2D texture height;

cudaDevAttrMaxTexture2DLinearWidth: Maximum width for a 2D texture bound to linear

memory;

cudaDevAttrMaxTexture2DLinearHeight: Maximum height for a 2D texture bound to linear

memory;

cudaDevAttrMaxTextureZDLinearPitch: Maximum pitch in bytes for a 2D texture bound to

linear memory;

cudaDevAttrMaxTexture2DMipmappedWidth: Maximum mipmapped 2D texture width;

cudaDevAttrMaxTexture2DMipmappedHeight: Maximum mipmapped 2D texture height;

cudaDevAttrMaxTexture3DWidth: Maximum 3D texture width;

cudaDevAttrMaxTexture3DHeight: Maximum 3D texture height;

cudaDevAttrMaxTexture3DDepth: Maximum 3D texture depth;
cudaDevAttrMaxTexture3DWidthAlt: Alternate maximum 3D texture width, 0 if no alternate

maximum 3D texture size is supported;
cudaDevAttrMaxTexture3DHeightAlt: Alternate maximum 3D texture height, 0 if no

alternate maximum 3D texture size is supported;

cudaDevAttrMaxTexture3DDepthAlt: Alternate maximum 3D texture depth, 0 if no alternate

maximum 3D texture size is supported;

cudaDevAttrMaxTextureCubemapWidth: Maximum cubemap texture width or height;
cudaDevAttrMaxTexture1DLayeredWidth: Maximum 1D layered texture width;

cudaDevAttrMaxTexture1DLayeredlLayers: Maximum layers in a 1D layered texture;

cudaDevAttrMaxTexture2DLayeredWidth: Maximum 2D layered texture width;

cudaDevAttrMaxTexture2DLayeredHeight: Maximum 2D layered texture height;

cudaDevAttrMaxTexture2DLayeredlLayers: Maximum layers in a 2D layered texture;

cudaDevAttrMaxTextureCubemaplayeredWidth: Maximum cubemap layered texture width

or height;

cudaDevAttrMaxTextureCubemaplayeredlLayers: Maximum layers in a cubemap layered

texture;
cudaDevAttrMaxSurface 1DWidth: Maximum 1D surface width;

cudaDevAttrMaxSurface2DWidth: Maximum 2D surface width;

cudaDevAttrMaxSurface?DHeight: Maximum 2D surface height;

CUDA Runtime API vRelease Version | 13

Modules

cudaDevAttrMaxSurface3DWidth: Maximum 3D surface width;
cudaDevAttrMaxSurface3DHeight: Maximum 3D surface height;

cudaDevAttrMaxSurface3DDepth: Maximum 3D surface depth;

cudaDevAttrMaxSurfacelDLayeredWidth: Maximum 1D layered surface width;

cudaDevAttrMaxSurfacelDlLayeredlLayers: Maximum layers in a 1D layered surface;

cudaDevAttrMaxSurface?DlLayeredWidth: Maximum 2D layered surface width;

cudaDevAttrMaxSurface?DlLayeredHeight: Maximum 2D layered surface height;

cudaDevAttrMaxSurface?DlLayeredlLayers: Maximum layers in a 2D layered surface;

cudaDevAttrMaxSurfaceCubemapWidth: Maximum cubemap surface width;

vV V. v v VvV vV v v v v

cudaDevAttrMaxSurfaceCubemaplayeredWidth: Maximum cubemap layered surface
width;

> cudaDevAttrMaxSurfaceCubemaplayeredlLayers: Maximum layers in a cubemap layered
surface;

» cudaDevAttrMaxRegistersPerBlock: Maximum number of 32-bit registers available to a
thread block;

» cudaDevAttrClockRate: Peak clock frequency in kilohertz;

» cudaDevAttrTextureAlignment: Alignment requirement; texture base addresses aligned to
textureAlign bytes do not need an offset applied to texture fetches;

» cudaDevAttrTexturePitchAlignment: Pitch alignment requirement for 2D texture
references bound to pitched memory;

» cudaDevAttrGpuQverlap: 1 if the device can concurrently copy memory between host and
device while executing a kernel, or 0 if not;

» cudaDevAttrMultiProcessorCount: Number of multiprocessors on the device;

> cudaDevAttrKernelExecTimeout: 1 if there is a run time limit for kernels executed on the
device, or 0 if not;

» cudaDevAttrintegrated: 1 if the device is integrated with the memory subsystem, or 0 if not;

» cudaDevAttrCanMapHostMemory: 1 if the device can map host memory into the CUDA
address space, or 0 if not;

> cudaDevAttrComputeMode: Compute mode is the compute mode that the device is
currently in. Available modes are as follows:

> cudaComputeModeDefault: Default mode - Device is not restricted and multiple
threads can use cudaSetDevice(] with this device.

» cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able
to use cudaSetDevice() with this device.

» cudaComputeModeProhibited: Compute-prohibited mode - No threads can use
cudaSetDevice(] with this device.

» cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many
threads in one process will be able to use cudaSetDevice(] with this device.

CUDA Runtime API vRelease Version | 14

v

vV v v VY

Modules

cudaDevAttrConcurrentKernels: 1 if the device supports executing multiple kernels within
the same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels
will be resident on the device concurrently so this feature should not be relied upon for
correctness;

cudaDevAttrEccEnabled: 1 if error correction is enabled on the device, 0 if error correction
is disabled or not supported by the device;

cudaDevAttrPciBusld: PCl bus identifier of the device;

cudaDevAttrPciDeviceld: PCl device (also known as slot) identifier of the device:

cudaDevAttrTccDriver: 1 if the device is using a TCC driver. TCC is only available on Tesla
hardware running Windows Vista or later;

cudaDevAttrMemoryClockRate: Peak memory clock frequency in kilohertz;
cudaDevAttrGlobalMemoryBusWidth: Global memory bus width in bits;
cudaDevAttrL 2CacheSize: Size of L2 cache in bytes. O if the device doesn’t have L2 cache;

cudaDevAttrMaxThreadsPerMultiProcessor: Maximum resident threads per
multiprocessor;

cudaDevAttrUnifiedAddressing: 1 if the device shares a unified address space with the
host, or 0 if not;

cudaDevAttrComputeCapabilityMajor: Major compute capability version number;

cudaDevAttrComputeCapabilityMinor: Minor compute capability version number;

cudaDevAttrStreamPrioritiesSupported: 1 if the device supports stream priorities, or 0 if
not;

cudaDevAttrGloball1CacheSupported: 1 if device supports caching globals in L1 cache, O if
not;

cudaDevAttrLocallL1CacheSupported: 1 if device supports caching locals in L1 cache, O if
not;

cudaDevAttrMaxSharedMemoryPerMultiprocessor: Maximum amount of shared memory
available to a multiprocessor in bytes; this amount is shared by all thread blocks
simultaneously resident on a multiprocessor;

cudaDevAttrMaxRegistersPerMultiprocessor: Maximum number of 32-bit registers
available to a multiprocessor; this number is shared by all thread blocks simultaneously
resident on a multiprocessor;

cudaDevAttrManagedMemory: 1 if device supports allocating managed memory, 0 if not;
cudaDevAttrisMultiGpuBoard: 1 if device is on a multi-GPU board, 0 if not;

cudaDevAttrMultiGpuBoardGrouplD: Unique identifier for a group of devices on the same
multi-GPU board;

cudaDevAttrHostNativeAtomicSupported: 1 if the link between the device and the host
supports native atomic operations;

cudaDevAttrSingleToDoublePrecisionPerfRatio: Ratio of single precision performance (in
floating-point operations per second) to double precision performance;

CUDA Runtime API vRelease Version | 15

Modules

cudaDevAttrPageableMemoryAccess: 1 if the device supports coherently accessing
pageable memory without calling cudaHostRegister on it, and 0 otherwise.

cudaDevAttrConcurrentManagedAccess: 1 if the device can coherently access managed
memory concurrently with the CPU, and 0 otherwise.

cudaDevAttrComputePreemptionSupported: 1 if the device supports Compute Preemption,
0 if not.

cudaDevAttrCanUseHostPointerForRegisteredMem: 1 if the device can access host
registered memory at the same virtual address as the CPU, and 0 otherwise.

cudaDevAttrCooperativeLaunch: 1 if the device supports launching cooperative kernels via
cudal.aunchCooperativeKernel, and 0 otherwise.

cudaDevAttrCooperativeMultiDeviceLaunch: 1 if the device supports launching cooperative
kernels via cudalLaunchCooperativeKernelMultiDevice, and 0 otherwise.

cudaDevAttrCanFlushRemoteWrites: 1 if the device supports flushing of outstanding
remote writes, and 0 otherwise.

cudaDevAttrHostRegisterSupported: 1 if the device supports host memory registration via
cudaHostRegister, and 0 otherwise.

cudaDevAttrPageableMemoryAccessUsesHostPageTables: 1 if the device accesses
pageable memory via the host’s page tables, and 0 otherwise.

cudaDevAttrDirectManagedMemAccessFromHost: 1 if the host can directly access
managed memory on the device without migration, and 0 otherwise.

cudaDevAttrMaxSharedMemoryPerBlockOptin: Maximum per block shared memory size
on the device. This value can be opted into when using cudaFuncSetAttribute

cudaDevAttrMaxBlocksPerMultiprocessor: Maximum number of thread blocks that can
reside on a multiprocessor.

cudaDevAttrMaxPersistingL2CacheSize: Maximum L2 persisting lines capacity setting in
bytes.

cudaDevAttrMaxAccessPolicyWindowSize: Maximum value of
cudaAccessPolicyWindow::num_bytes.

cudaDevAttrHostRegisterReadOnly: Device supports using the cudaHostRegister flag
cudaHostRegisterReadOnly to register memory that must be mapped as read-only to the
GPU

cudaDevAttrSparseCudaArraySupported: 1 if the device supports sparse CUDA arrays and
sparse CUDA mipmapped arrays.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 16

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaGetDeviceProperties, cuDeviceGetAttribute

__host__cudaError_t cudaDeviceGetByPCIBusld (int
*device, const char *pciBusld)

Returns a handle to a compute device.

Parameters

device
- Returned device ordinal

pciBusld
- String in one of the following forms: [domain]:[bus]:[device].[function] [domain]:[bus]:
[device] [bus]:[device].[function] where domain, bus, device, and function are all
hexadecimal values

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Returns in *device a device ordinal given a PCl bus ID string.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetPClBusld, cuDeviceGetByPCIBusld

CUDA Runtime API vRelease Version | 17

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga89cd3fa06334ba7853ed1232c5ebe2a

Modules

__host_ _device_ cudaError_t
cudaDeviceGetCacheConfig (cudaFuncCache
*pCacheConfig]

Returns the preferred cache configuration for the current device.

Parameters

pCacheConfig
- Returned cache configuration

Returns

cudaSuccess

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
returns through pCacheConfig the preferred cache configuration for the current device. This
is only a preference. The runtime will use the requested configuration if possible, but it is free
to choose a different configuration if required to execute functions.

This will return a pCacheConfig of cudaFuncCachePreferNone on devices where the size of
the L1 cache and shared memory are fixed.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default]

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 18

Modules

cudaDeviceSetCacheConfig, cudaFuncSetCacheConfig [C API), cudaFuncSetCacheConfig [C+
+ API], cuCtxGetCacheConfig

__host__cudaError_t cudaDeviceGetDefaultMemPool
(cudaMemPool t *memPool, int device)

Returns the default mempool of a device.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue cudaErrorNotSupported

Description

The default mempool of a device contains device memory from that device.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cuDeviceGetDefaultMemPool, cudaMallocAsync, cudaMemPoolTrimTo,
cudaMemPoolGetAttribute, cudaDeviceSetMemPool, cudaMemPoolSetAttribute,
cudaMemPoolSetAccess

__host device_ cudaError_t cudaDeviceGetLimit
[size_t *pValue, cudalLimit limit)

Returns resource limits.

Parameters

pValue

- Returned size of the limit
limit

- Limit to query

CUDA Runtime API vRelease Version | 19

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g40b6b141698f76744dea6e39b9a25360
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gc8bca3c97a78816303b8aa5773b741f2

Modules

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description
Returns in *pvalue the current size of 1imit. The supported cudalLimit values are:

» cudalimitStackSize: stack size in bytes of each GPU thread;

» cudalimitPrintfFifoSize: size in bytes of the shared FIFO used by the printf() device system
call.

» cudalimitMallocHeapSize: size in bytes of the heap used by the malloc() and free() device
system calls;

» cudaLimitDevRuntimeSyncDepth: maximum grid depth at which a thread can isssue the
device runtime call cudaDeviceSynchronize() to wait on child grid launches to complete.

» cudaLimitDevRuntimePendinglaunchCount: maximum number of outstanding device
runtime launches.

» cudaLimitMaxL?2FetchGranularity: L2 cache fetch granularity.

» cudaLimitPersistingL2CacheSize: Persisting L2 cache size in bytes

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetLimit, cuCtxGetLimit

__host_ _cudaError_t cudaDeviceGetMemPool
(cudaMemPool t *memPool, int device)

Gets the current mempool for a device.

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorNotSupported

CUDA Runtime API vRelease Version | 20

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g9f2d47d1745752aa16da7ed0d111b6a8

Modules

Description

Returns the last pool provided to cudaDeviceSetMemPool for this device or the device's
default memory pool if cudaDeviceSetMemPool has never been called. By default the current
mempool is the default mempool for a device, otherwise the returned pool must have been set
with cuDeviceSetMemPool or cudaDeviceSetMemPool.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuDeviceGetMemPool, cudaDeviceGetDefaultMemPool, cudaDeviceSetMemPool

__host_ _cudaError_t
cudaDeviceGetNvSciSyncAttributes (void
*nvSciSyncAttrList, int device, int flags)

Return NvSciSync attributes that this device can support.

Parameters

nvSciSyncAttrList

- Return NvSciSync attributes supported.
device

- Valid Cuda Device to get NvSciSync attributes for.
flags

- flags describing NvSciSync usage.

Description

Returns in nvSciSyncAttrList, the properties of NvSciSync that this CUDA device, dev
can support. The returned nvSciSyncAttrList can be used to create an NvSciSync that
matches this device's capabilities.

If NvSciSyncAttrKey_RequiredPerm field in nvSciSyncAttrList is already set this APl will
return cudaErrorinvalidValue.

CUDA Runtime API vRelease Version | 21

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g4f2f276b84d9c2eaefdc76d6274db4a0
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gdf186e9559d53a5eb18e572d48c1121b

Modules

The applications should set nvSciSyncAttrList to avalid NvSciSyncAttrList failing which
this APl will return cudaErrorinvalidHandle.

The flags controls how applications intends to use the NvSciSync created from the
nvSciSyncAttrList. The valid flags are:

» cudaNvSciSyncAttrSignal, specifies that the applications intends to signal an NvSciSync on
this CUDA device.

» cudaNvSciSyncAttrWait, specifies that the applications intends to wait on an NvSciSync on
this CUDA device.

At least one of these flags must be set, failing which the APl returns cudaErrorinvalidValue.
Both the flags are orthogonal to one another: a developer may set both these flags that allows
to set both wait and signal specific attributes in the same nvSciSyncAttrList.

cudaSuccess, cudaErrorDeviceUninitialized, cudaErrorinvalidValue, cudaErrorinvalidHandle,
cudaErrorinvalidDevice, cudaErrorNotSupported, cudaErrorMemoryAllocation

See also:

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync

__host__cudaError_t cudaDeviceGetP2PAttribute
(int *value, cudaDeviceP2PAttr attr, int srcDevice, int
dstDevice]

Queries attributes of the link between two devices.

Parameters

value

- Returned value of the requested attribute
attr
srcDevice

- The source device of the target link.
dstDevice

- The destination device of the target link.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

Description

Returns in *value the value of the requested attribute attrib of the link between
srcDevice and dstDevice. The supported attributes are:

CUDA Runtime API vRelease Version | 22

Modules

» cudaDevP?2PAttrPerformanceRank: A relative value indicating the performance of the link
between two devices. Lower value means better performance (0 being the value used for
most performant link).

> cudaDevP2PAttrAccessSupported: 1 if peer access is enabled.

> cudaDevP2PAttrNativeAtomicSupported: 1 if native atomic operations over the link are
supported.

» cudaDevP2PAttrCudaArrayAccessSupported: 1 if accessing CUDA arrays over the link is
supported.

Returns cudakrrorinvalidDevice if srcDevice or dstDevice are not valid or if they
represent the same device.

Returns cudaErrorinvalidValue if attrib is not valid or if value is a null pointer.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.
> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCtxEnablePeerAccess, cudaCtxDisablePeerAccess, cudaCtxCanAccessPeer,
cuDeviceGetP2PAttribute

__host__cudaError_t cudaDeviceGetPCIBusld (char
*pciBusld, int len, int device)

Returns a PCI Bus Id string for the device.

Parameters

pciBusld
- Returned identifier string for the device in the following format [domain]:[bus]:[device].
[function] where domain, bus, device, and function are all hexadecimal values.
pciBusld should be large enough to store 13 characters including the NULL-terminator.
len
- Maximum length of string to store in name
device
- Device to get identifier string for

CUDA Runtime API vRelease Version | 23

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g4c55c60508f8eba4546b51f2ee545393

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Returns an ASCII string identifying the device dev in the NULL-terminated string pointed to by
pciBusId. len specifies the maximum length of the string that may be returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceGetByPCIBusld, cuDeviceGetPCIBusld

__host_ _device cudaError_t
cudaDeviceGetSharedMemConfig
(cudaSharedMemConfig *pConfig]

Returns the shared memory configuration for the current device.

Parameters

pConfig
- Returned cache configuration

Returns

cudaSuccess, cudaErrorinvalidValue

Description

This function will return in pConfig the current size of shared memory banks on the current
device. On devices with configurable shared memory banks, cudaDeviceSetSharedMemConfig
can be used to change this setting, so that all subsequent kernel launches will by default

use the new bank size. When cudaDeviceGetSharedMemConfig is called on devices without
configurable shared memory, it will return the fixed bank size of the hardware.

CUDA Runtime API vRelease Version | 24

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g85295e7d9745ab8f0aa80dd1e172acfc

Modules

The returned bank configurations can be either:

» cudaSharedMemBankSizeFourByte - shared memory bank width is four bytes.

» cudaSharedMemBankSizeEightByte - shared memory bank width is eight bytes.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceSetSharedMemConfig,
cudaFuncSetCacheConfig, cuCtxGetSharedMemConfig

__host_ cudaError_t
cudaDeviceGetStreamPriorityRange (int
*leastPriority, int *greatestPriority]

Returns numerical values that correspond to the least and greatest stream priorities.

Parameters

leastPriority

- Pointer to an int in which the numerical value for least stream priority is returned
greatestPriority

- Pointer to an int in which the numerical value for greatest stream priority is returned

Returns

cudaSuccess

Description

Returns in *leastPriority and *greatestPriority the numerical values that
correspond to the least and greatest stream priorities respectively. Stream priorities follow
a convention where lower numbers imply greater priorities. The range of meaningful stream
priorities is given by [*greatestPriority, *leastPriorityl. If the user attempts to
create a stream with a priority value that is outside the the meaningful range as specified

CUDA Runtime API vRelease Version | 25

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g17153a1b8b8c756f7ab8505686a4ad74

Modules

by this AP, the priority is automatically clamped down or up to either *leastPriority or
*greatestPriority respectively. See cudaStreamCreateWithPriority for details on creating
a priority stream. A NULL may be passed in for *1leastPriority or *greatestPriority
if the value is not desired.

This function will return ‘0" in both *1leastPriority and *greatestPriority if the
current context's device does not support stream priorities (see cudaDeviceGetAttribute).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamGetPriority, cuCtxGetStreamPriorityRange

__host__cudaError_t
cudaDeviceGetTexture1DLinearMaxWidth
(size t *maxWidthInElements, const
cudaChannelFormatDesc *fmtDesc, int device)

Returns the maximum number of elements allocatable in a 1D linear texture for a given
element size.

Parameters

maxWidthInElements

- Returns maximum number of texture elements allocatable for given fmtDesc.
fmtDesc

- Texture format description.
device

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 26

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g137920ab61a71be6ce67605b9f294091

Modules

Description

Returns in maxWidthInElements the maximum number of elements allocatable ina 1D
linear texture for given format descriptor fmtDesc.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuDeviceGetMaxTexture1DLinear,

__host___cudaError_t cudaDeviceReset (void)

Destroy all allocations and reset all state on the current device in the current process.

Returns

cudaSuccess

Description

Explicitly destroys and cleans up all resources associated with the current device in the
current process. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’'s responsibility to
ensure that the device is not being accessed by any other host threads from the process when
this function is called.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 27

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSynchronize

__host__cudaError_t cudaDeviceSetCacheConfig
(cudaFuncCache cacheConfig)

Sets the preferred cache configuration for the current device.

Parameters

cacheConfig
- Requested cache configuration

Returns

cudaSuccess

Description

On devices where the L1 cache and shared memory use the same hardware resources,

this sets through cacheConfig the preferred cache configuration for the current device.

This is only a preference. The runtime will use the requested configuration if possible, but

it is free to choose a different configuration if required to execute the function. Any function
preference set via cudaFuncSetCacheConfig [C API) or cudaFuncSetCacheConfig [C++ API)
will be preferred over this device-wide setting. Setting the device-wide cache configuration to
cudaFuncCachePreferNone will cause subsequent kernel launches to prefer to not change the
cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

>
» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache
>
>

cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

CUDA Runtime API vRelease Version | 28

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetCacheConfig, cudaFuncSetCacheConfig [C API), cudaFuncSetCacheConfig [C+
+ API], cuCtxSetCacheConfig

__host__cudaError_t cudaDeviceSetLimit (cudaLimit
limit, size t value)

Set resource limits.

Parameters
limit

- Limit to set
value

- Size of Limit

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue,
cudaErrorMemoryAllocation

Description

Setting 1imit to value is a request by the application to update the current limit maintained
by the device. The driver is free to modify the requested value to meet h/w requirements (this

could be clamping to minimum or maximum values, rounding up to nearest element size, etc).
The application can use cudaDeviceGetLimit(] to find out exactly what the limit has been set to.

Setting each cudalimit has its own specific restrictions, so each is discussed here.

» cudaLimitStackSize controls the stack size in bytes of each GPU thread.

» cudalimitPrintfFifoSize controls the size in bytes of the shared FIFO used by the printf()
device system call. Setting cudalLimitPrintfFifoSize must not be performed after launching

CUDA Runtime API vRelease Version | 29

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g54699acf7e2ef27279d013ca2095f4a3

Modules

any kernel that uses the printf(] device system call - in such case cudaErrorinvalidValue
will be returned.

» cudalimitMallocHeapSize controls the size in bytes of the heap used by the malloc(] and
free() device system calls. Setting cudaLimitMallocHeapSize must not be performed after
launching any kernel that uses the malloc() or free() device system calls - in such case
cudaErrorinvalidValue will be returned.

» cudaLimitDevRuntimeSyncDepth controls the maximum nesting depth of a grid
at which a thread can safely call cudaDeviceSynchronize(]. Setting this limit must
be performed before any launch of a kernel that uses the device runtime and calls
cudaDeviceSynchronize() above the default sync depth, two levels of grids. Calls to
cudaDeviceSynchronize() will fail with error code cudaErrorSyncDepthExceeded if the
limitation is violated. This limit can be set smaller than the default or up the maximum
launch depth of 24. When setting this limit, keep in mind that additional levels of sync
depth require the runtime to reserve large amounts of device memory which can
no longer be used for user allocations. If these reservations of device memory fail,
cudaDeviceSetLimit will return cudaErrorMemoryAllocation, and the limit can be reset to
a lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the
error cudaErrorUnsupportedLimit being returned.

» cudaLimitDevRuntimePendinglaunchCount controls the maximum number of
outstanding device runtime launches that can be made from the current device. A
grid is outstanding from the point of launch up until the grid is known to have been
completed. Device runtime launches which violate this limitation fail and return
cudaErrorLaunchPendingCountExceeded when cudaGetlLastError() is called after launch.
If more pending launches than the default (2048 launches) are needed for a module using
the device runtime, this limit can be increased. Keep in mind that being able to sustain
additional pending launches will require the runtime to reserve larger amounts of device
memory upfront which can no longer be used for allocations. If these reservations fail,
cudaDeviceSetLimit will return cudaErrorMemoryAllocation, and the limit can be reset to
a lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the
error cudaErrorUnsupportedlLimit being returned.

» cudaLimitMaxL?2FetchGranularity controls the L2 cache fetch granularity. Values can
range from OB to 128B. This is purely a performance hint and it can be ignored or clamped
depending on the platform.

» cudaLimitPersistingL2CacheSize controls size in bytes available for persisting L2 cache.
This is purely a performance hint and it can be ignored or clamped depending on the
platform.

CUDA Runtime API vRelease Version | 30

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetLimit, cuCtxSetLimit

__host__cudaError_t cudaDeviceSetMemPool (int
device, cudaMemPool t memPool]

Sets the current memory pool of a device.

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidDevice cudaErrorNotSupported

Description

The memory pool must be local to the specified device. Unless a mempool is specified in the
cudaMallocAsync call, cudaMallocAsync allocates from the current mempool of the provided
stream’s device. By default, a device's current memory pool is its default memory pool.

Note:

Use cudaMallocFromPoolAsync to specify asynchronous allocations from a device different

than the one the stream runs on.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 31

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g0651954dfb9788173e60a9af7201e65a

Modules

cuDeviceSetDefaultMemPool, cudaDeviceGetMemPool, cudaDeviceGetDefaultMemPool,
cudaMemPoolCreate, cudaMemPoolDestroy, cudaMallocFromPoolAsync

__host_ _cudaError_t
cudaDeviceSetSharedMemConfig
(cudaSharedMemConfig config)

Sets the shared memory configuration for the current device.

Parameters

config
- Requested cache configuration

Returns

cudaSuccess, cudaErrorinvalidValue

Description

On devices with configurable shared memory banks, this function will set the shared memory
bank size which is used for all subsequent kernel launches. Any per-function setting of shared
memory set via cudaFuncSetSharedMemConfig will override the device wide setting.

Changing the shared memory configuration between launches may introduce a device side
synchronization point.

Changing the shared memory bank size will not increase shared memory usage or affect
occupancy of kernels, but may have major effects on performance. Larger bank sizes will
allow for greater potential bandwidth to shared memory, but will change what kinds of
accesses to shared memory will result in bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.
The supported bank configurations are:

» cudaSharedMemBankSizeDefault: set bank width the device default (currently, four bytes)

> cudaSharedMemBankSizeFourByte: set shared memory bank width to be four bytes
natively.

» cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight bytes
natively.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 32

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceGetSharedMemConfig,
cudaFuncSetCacheConfig, cuCtxSetSharedMemConfig

__host_ _device_ cudaError_t
cudaDeviceSynchronize (void)

Wait for compute device to finish.

Returns

cudaSuccess

Description

Blocks until the device has completed all preceding requested tasks.
cudaDeviceSynchronize() returns an error if one of the preceding tasks has failed. If the
cudaDeviceScheduleBlockingSync flag was set for this device, the host thread will block until
the device has finished its work.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceReset, cuCtxSynchronize

CUDA Runtime API vRelease Version | 33

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g2574235fa643f8f251bf7bc28fac3692
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g7a54725f28d34b8c6299f0c6ca579616

Modules

__host_ device_ cudaError_t cudaGetDevice (int
*device)

Returns which device is currently being used.

Parameters

device

- Returns the device on which the active host thread executes the device code.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *device the current device for the calling host thread.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuCtxGetCurrent

__host device_ cudaError_t cudaGetDeviceCount
(int *count)

Returns the number of compute-capable devices.

Parameters

count
- Returns the number of devices with compute capability greater or equal to 2.0

CUDA Runtime API vRelease Version | 34

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g8f13165846b73750693640fb3e8380d0

Modules

Returns

cudaSuccess

Description

Returns in *count the number of devices with compute capability greater or equal to 2.0 that
are available for execution.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuDeviceGetCount

__host__cudaError_t cudaGetDeviceFlags (unsigned
int *flags)
Gets the flags for the current device.

Parameters

flags
- Pointer to store the device flags

Returns

cudaSuccess, cudaErrorinvalidDevice

Description

Returns in £lags the flags for the current device. If there is a current device for the calling
thread, the flags for the device are returned. If there is no current device, the flags for

the first device are returned, which may be the default flags. Compare to the behavior of
cudaSetDeviceFlags.

CUDA Runtime API vRelease Version | 35

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g52b5ce05cb8c5fb6831b2c0ff2887c74

Modules

Typically, the flags returned should match the behavior that will be seen if the calling thread
uses a device after this call, without any change to the flags or current device inbetween by
this or another thread. Note that if the device is not initialized, it is possible for another thread
to change the flags for the current device before it is initialized. Additionally, when using
exclusive mode, if this thread has not requested a specific device, it may use a device other
than the first device, contrary to the assumption made by this function.

If a context has been created via the driver APl and is current to the calling thread, the flags
for that context are always returned.

Flags returned by this function may specifically include cudaDeviceMapHost even though it is

not accepted by cudaSetDeviceFlags because it is implicit in runtime API flags. The reason for
this is that the current context may have been created via the driver APl in which case the flag
is not implicit and may be unset.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDevice, cudaGetDeviceProperties, cudaSetDevice, cudaSetDeviceFlags,
cuCtxGetFlags, cuDevicePrimaryCtxGetState

__host__cudaError_t cudaGetDeviceProperties
(cudaDeviceProp *prop, int device]

Returns information about the compute-device.

Parameters

prop

- Properties for the specified device
device

- Device number to get properties for

Returns

cudaSuccess, cudaErrorinvalidDevice

CUDA Runtime API vRelease Version | 36

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1gf81eef983c1e3b2ef4f166d7a930c86d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1g65f3e018721b6d90aa05cfb56250f469

Description

Returns in *prop the properties of device dev. The cudaDeviceProp structure

r struct cudaDeviceProp {

CUDA Runtime AP!I

char name[256];
cudaUUID t uuid;

size t totalGlobalMem;
size t sharedMemPerBlock;

int
int

?egsPerBlock;
warpSize;

size_t memPitch;

int
int
int
int

maxThreadsPerBlock;
maxThreadsDim[3];
maxGridSize[3];
clockRate;

size t totalConstMem;

int
int

major;
minor;

size t textureAlignment;
size t texturePitchAlignment;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

deviceOverlap;
multiProcessorCount;
kernelExecTimeoutEnabled;
integrated;
canMapHostMemory;
computeMode;
maxTexturelD;
maxTexturelDMipmap;
maxTexturelDLinear;
maxTexture2D[2];
maxTexture2DMipmap([2];
maxTexture2DLinear([3];
maxTexture2DGather([2];
maxTexture3D[3];
maxTexture3DA1t[3];
maxTextureCubemap;
maxTexturelDLayered[2];
maxTexture2DLayered[3];
maxTextureCubemapLlLayered[2];
maxSurfacelD;
maxSurface2D[2];
maxSurface3D[3];
maxSurfacelDLayered[2];
maxSurface2DLayered[3];
maxSurfaceCubemap;
maxSurfaceCubemaplLayered[2];

size t surfaceAlignment;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

size t sharedMemPerMultiprocessor;

int

concurrentKernels;
ECCEnabled;

pciBusID;

pciDevicelD;

pciDomainID;

tccDriver;
asyncEngineCount;
unifiedAddressing;
memoryClockRate;
memoryBusWidth;
12CacheSize;
persistinglL2CacheMaxSize;
maxThreadsPerMultiProcessor;
streamPrioritiesSupported;
globallLlCacheSupported;
localllCacheSupported;

regsPerMultiprocessor;

Modules

vRelease Version

is defined as:

37

Modules

int managedMemory;

int isMultiGpuBoard;

int multiGpuBoardGrouplD;

int singleToDoublePrecisionPerfRatio;
int pageableMemoryAccess;

int concurrentManagedAccess;

int computePreemptionSupported;

int canUseHostPointerForRegisteredMem;
int cooperativelaunch;

int cooperativeMultiDeviceLaunch;

int pageableMemoryAccessUsesHostPageTables;
int directManagedMemAccessFromHost;
int accessPolicyMaxWindowSize;

where:

vV v v VY

v

v

vV vV v v v v

name([256] is an ASCII string identifying the device;
uuid is a 16-byte unique identifier.

totalGlobalMem is the total amount of global memory available on the device in bytes;

sharedMemPerBlock is the maximum amount of shared memory available to a thread
block in bytes;

regsPerBlock is the maximum number of 32-bit registers available to a thread block;
warpSize is the warp size in threads;

memPitch is the maximum pitch in bytes allowed by the memory copy functions that
involve memory regions allocated through cudaMallocPitch(J;

maxThreadsPerBlock is the maximum number of threads per block;

maxThreadsDim[3] contains the maximum size of each dimension of a block:

maxGridSize[3] contains the maximum size of each dimension of a grid;
clockRate is the clock frequency in kilohertz;

totalConstMem is the total amount of constant memory available on the device in bytes;

major, minor are the major and minor revision numbers defining the device's compute
capability;

textureAlignment is the alignment requirement; texture base addresses that are aligned to
textureAlignment bytes do not need an offset applied to texture fetches;

texturePitchAlignment is the pitch alignment requirement for 2D texture references that
are bound to pitched memory;

deviceQOverlap is 1 if the device can concurrently copy memory between host and device
while executing a kernel, or 0 if not. Deprecated, use instead asyncEngineCount.

multiProcessorCount is the number of multiprocessors on the device;

kernelExecTimeoutEnabled is 1 if there is a run time limit for kernels executed on the
device, or 0 if not.

integrated is 1 if the device is an integrated (motherboard) GPU and 0 if it is a discrete
(card) component.

canMapHostMemory is 1 if the device can map host memory into the CUDA address space
for use with cudaHostAlloc()/cudaHostGetDevicePointer(], or 0 if not;

CUDA Runtime API vRelease Version | 38

| 2

v vV vV . v Vv Vv v

vV vV v v v Vv

vV vV.v v v v

Modules

computeMode is the compute mode that the device is currently in. Available modes are as
follows:

» cudaComputeModeDefault: Default mode - Device is not restricted and multiple
threads can use cudaSetDevice(] with this device.

» cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able
to use cudaSetDevice(] with this device.

> cudaComputeModeProhibited: Compute-prohibited mode - No threads can use
cudaSetDevice(] with this device.

» cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many
threads in one process will be able to use cudaSetDevice(] with this device.

If cudaSetDevice() is called on an already occupied device with computeMode
cudaComputeModeExclusive, cudaErrorDeviceAlreadylnUse will be immediately
returned indicating the device cannot be used. When an occupied exclusive mode
device is chosen with cudaSetDevice, all subsequent non-device management runtime
functions will return cudaErrorDevicesUnavailable.

maxTexturelD is the maximum 1D texture size.

maxTexture1DMipmap is the maximum 1D mipmapped texture texture size.

maxTexturel1DLinear is the maximum 1D texture size for textures bound to linear memory.

maxTexture2D[2] contains the maximum 2D texture dimensions.

maxTexture2DMipmapl[2] contains the maximum 2D mipmapped texture dimensions.

maxTexture2DLinear[3] contains the maximum 2D texture dimensions for 2D textures
bound to pitch linear memory.

maxTexture2DGather[2] contains the maximum 2D texture dimensions if texture gather
operations have to be performed.

maxTexture3D[3] contains the maximum 3D texture dimensions.

maxTexture3DALt[3] contains the maximum alternate 3D texture dimensions.

maxTextureCubemap is the maximum cubemap texture width or height.

maxTexturel1DLayered[2] contains the maximum 1D layered texture dimensions.

maxTexture2Dlayered([3] contains the maximum 2D layered texture dimensions.

maxTextureCubemaplayered[2] contains the maximum cubemap layered texture
dimensions.

maxSurfacelD is the maximum 1D surface size.

maxSurface2D[2] contains the maximum 2D surface dimensions.

maxSurface3D[3] contains the maximum 3D surface dimensions.

maxSurfacelDLayered[2] contains the maximum 1D layered surface dimensions.

maxSurface?2DLayered[3] contains the maximum 2D layered surface dimensions.

maxSurfaceCubemap is the maximum cubemap surface width or height.

CUDA Runtime API vRelease Version | 39

vV V. v v v v

vV v v Vv VY

Modules

maxSurfaceCubemapl ayered[2] contains the maximum cubemap layered surface
dimensions.

surfaceAlignment specifies the alignment requirements for surfaces.

concurrentKernels is 1 if the device supports executing multiple kernels within the
same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels will
be resident on the device concurrently so this feature should not be relied upon for
correctness;

ECCEnabled is 1 if the device has ECC support turned on, or 0 if not.

pciBuslID is the PCl bus identifier of the device.

pciDevicelD is the PCl device [sometimes called slot] identifier of the device.
pciDomainlD is the PCl domain identifier of the device.

tccDriver is 1 if the device is using a TCC driver or 0 if not.

asyncEngineCount is 1T when the device can concurrently copy memory between host and
device while executing a kernel. It is 2 when the device can concurrently copy memory
between host and device in both directions and execute a kernel at the same time. It is O if
neither of these is supported.

unifiedAddressing is 1 if the device shares a unified address space with the host and O
otherwise.

memoryClockRate is the peak memory clock frequency in kilohertz.

memoryBusWidth is the memory bus width in bits.

(2CacheSize is L2 cache size in bytes.

persistinglL2CacheMaxSize is L2 cache's maximum persisting lines size in bytes.

maxThreadsPerMultiProcessor is the number of maximum resident threads per
multiprocessor.

streamPrioritiesSupported is 1 if the device supports stream priorities, or 0 if it is not
supported.

globalL1CacheSupported is 1 if the device supports caching of globals in L1 cache, or 0 if it
Is not supported.

locallL1CacheSupported is 1 if the device supports caching of locals in L1 cache, or Qif it is
not supported.

sharedMemPerMultiprocessor is the maximum amount of shared memory available to
a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously
resident on a multiprocessor;

regsPerMultiprocessor is the maximum number of 32-bit registers available to a
multiprocessor; this number is shared by all thread blocks simultaneously resident on a
multiprocessor;

managedMemory is 1 if the device supports allocating managed memory on this system, or
0 if it is not supported.

isMultiGpuBoard is 1 if the device is on a multi-GPU board (e.g. Gemini cards), and 0 if not;

CUDA Runtime API vRelease Version | 40

Modules

» multiGpuBoardGrouplD is a unique identifier for a group of devices associated with the
same board. Devices on the same multi-GPU board will share the same identifier;

» singleToDoublePrecisionPerfRatio is the ratio of single precision performance [in floating-
point operations per second) to double precision performance.

» pageableMemoryAccess is 1 if the device supports coherently accessing pageable memory
without calling cudaHostRegister on it, and 0 otherwise.

» concurrentManagedAccess is 1 if the device can coherently access managed memory
concurrently with the CPU, and 0 otherwise.

» computePreemptionSupported is 1 if the device supports Compute Preemption, and 0
otherwise.

» canUseHostPointerForRegisteredMem is 1 if the device can access host registered
memory at the same virtual address as the CPU, and 0 otherwise.

» cooperativeLaunch is 1 if the device supports launching cooperative kernels via
cudalaunchCooperativeKernel, and 0 otherwise.

» cooperativeMultiDeviceLaunch is 1 if the device supports launching cooperative kernels via
cudalLaunchCooperativeKernelMultiDevice, and 0 otherwise.

» pageableMemoryAccessUsesHostPageTables is 1 if the device accesses pageable memory
via the host's page tables, and 0 otherwise.

> directManagedMemAccessFromHost is 1 if the host can directly access managed memory
on the device without migration, and O otherwise.

» maxBlocksPerMultiProcessor is the maximum number of thread blocks that can reside on
a multiprocessor.

» accessPolicyMaxWindowSize is the maximum value of
cudaAccessPolicyWindow::num_bytes.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaDeviceGetAttribute, cuDeviceGetAttribute, cuDeviceGetName

CUDA Runtime API vRelease Version | 41

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gef75aa30df95446a845f2a7b9fffbb7f

Modules

__host__cudaError_t cudalpcCloseMemHandle (void
*devPtr)

Attempts to close memory mapped with cudalpcOpenMemHandle.

Parameters

devPtr
- Device pointer returned by cudalpcOpenMemHandle

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorNotSupported,
cudaErrorinvalidValue

Description

Decrements the reference count of the memory returnd by cudalpcOpenMemHandle by 1.
When the reference count reaches 0, this APl unmaps the memory. The original allocation in
the exporting process as well as imported mappings in other processes will be unaffected.

Any resources used to enable peer access will be freed if this is the last mapping using them.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcGetMemHandle, cudalpcOpenMemHandle, culpcCloseMemHandle

CUDA Runtime API vRelease Version | 42

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gd6f5d5bcf6376c6853b64635b0157b9e

Modules

__host__cudaError_t cudalpcGetEventHandle
(cudalpcEventHandle_t *handle, cudaEvent_t event]

Gets an interprocess handle for a previously allocated event.

Parameters

handle
- Pointer to a user allocated cudalpcEventHandle in which to return the opaque event
handle

event
- Event allocated with cudaEventInterprocess and cudaEventDisableTiming flags.

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorMemoryAllocation,
cudakErrorMapBufferObjectFailed, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Takes as input a previously allocated event. This event must have been created with the
cudaEventInterprocess and cudakventDisableTiming flags set. This opaque handle may be
copied into other processes and opened with cudalpcOpenEventHandle to allow efficient
hardware synchronization between GPU work in different processes.

After the event has been been opened in the importing process, cudaEventRecord,
cudakventSynchronize, cudaStreamWaitEvent and cudakventQuery may be used in either
process. Performing operations on the imported event after the exported event has been freed
with cudaEventDestroy will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 43

Modules

cudakEventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudalpcOpenEventHandle, cudalpcGetMemHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcGetEventHandle

__host__cudaError_t cudalpcGetMemHandle
(cudalpcMemHandle_t *handle, void *devPtr)

Gets an interprocess memory handle for an existing device memory allocation.

Parameters

handle

- Pointer to user allocated cudalpcMemHandle to return the handle in.
devPtr

- Base pointer to previously allocated device memory

Returns

cudaSuccess, cudaErrorMemoryAllocation, cudaErrorMapBufferObjectFailed,
cudaErrorNotSupported, cudaErrorinvalidValue

Description

Takes a pointer to the base of an existing device memory allocation created with cudaMalloc
and exports it for use in another process. This is a lightweight operation and may be called
multiple times on an allocation without adverse effects.

If a region of memory is freed with cudaFree and a subsequent call to cudaMalloc returns
memory with the same device address, cudalpcGetMemHandle will return a unique handle for
the new memory.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 44

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gea02eadd12483de5305878b13288a86c

Modules

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcGetMemHandle

__host__cudaError_t cudalpcOpenEventHandle
(cudaEvent_t *event, cudalpcEventHandle_t handle)

Opens an interprocess event handle for use in the current process.

Parameters

event

- Returns the imported event
handle

- Interprocess handle to open

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorNotSupported,
cudaErrorinvalidValue, cudaErrorDeviceUninitialized

Description

Opens an interprocess event handle exported from another process with
cudalpcGetEventHandle. This function returns a cudakEvent t that behaves like a locally
created event with the cudaEventDisableTiming flag specified. This event must be freed with
cudaEventDestroy.

Performing operations on the imported event after the exported event has been freed with
cudaEventDestroy will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 45

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g6f1b5be767b275f016523b2ac49ebec1

Modules

cudakEventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudalpcGetEventHandle, cudalpcGetMemHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcOpenEventHandle

__host__cudaError_t cudalpcOpenMemHandle (void
**devPtr, cudalpcMemHandle_t handle, unsigned int
flags)

Opens an interprocess memory handle exported from another process and returns a device
pointer usable in the local process.

Parameters

devPtr
- Returned device pointer
handle
- cudalpcMemHandle to open
flags
- Flags for this operation. Must be specified as cudalpcMemLazyEnablePeerAccess

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorinvalidResourceHandle,
cudaErrorDeviceUninitialized, cudaErrorTooManyPeers, cudaErrorNotSupported,
cudaErrorinvalidValue

Description

Maps memory exported from another process with cudalpcGetMemHandle into the current
device address space. For contexts on different devices cudalpcOpenMemHandle can attempt
to enable peer access between the devices as if the user called cudaDeviceEnablePeerAccess.
This behavior is controlled by the cudalpcMemLlazyEnablePeerAccess flag.
cudaDeviceCanAccessPeer can determine if a mapping is possible.

cudalpcOpenMemHandle can open handles to devices that may not be visible in the process
calling the API.

Contexts that may open cudalpcMemHandles are restricted in the following way.
cudalpcMemHandles from each device in a given process may only be opened by one context
per device per other process.

If the memory handle has already been opened by the current context, the reference count on
the handle is incremented by 1 and the existing device pointer is returned.

Memory returned from cudalpcOpenMemHandle must be freed with
cudalpcCloseMemHandle.

CUDA Runtime API vRelease Version | 46

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf1d525918b6c643b99ca8c8e42e36c2e

Modules

Calling cudaFree on an exported memory region before calling cudalpcCloseMemHandle in
the importing context will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

> No guarantees are made about the address returned in *devPtr. In particular, multiple
processes may not receive the same address for the same handle.

See also:

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcGetMemHandle, cudalpcCloseMemHandle, cudaDeviceEnablePeerAccess,
cudaDeviceCanAccessPeer, culpcOpenMemHandle

__host__cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions.

Parameters

device
- Device on which the active host thread should execute the device code.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorDeviceAlreadylnUse

Description

Sets device as the current device for the calling host thread. Valid device id's are 0 to
(cudaGetDeviceCount(] - 1).

Any device memory subsequently allocated from this host thread using cudaMalloc|],
cudaMallocPitch() or cudaMallocArray(] will be physically resident on device. Any host
memory allocated from this host thread using cudaMallocHost() or cudaHostAlloc() or
cudaHostRegister(] will have its lifetime associated with device. Any streams or events
created from this host thread will be associated with device. Any kernels launched from this
host thread using the <<<>>> operator or cudalaunchKernel(] will be executed on device.

CUDA Runtime API vRelease Version | 47

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga8bd126fcff919a0c996b7640f197b79

Modules

This call may be made from any host thread, to any device, and at any time. This function will
do no synchronization with the previous or new device, and should be considered a very low
overhead call.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuCtxSetCurrent

__host__cudaError_t cudaSetDeviceFlags (unsigned
int flags)

Sets flags to be used for device executions.

Parameters

flags
- Parameters for device operation

Returns

cudaSuccess, cudaErrorlnvalidValue,

Description

Records flags as the flags for the current device. If the current device has been set and that

device has already been initialized, the previous flags are overwritten. If the current device has
not been initialized, it is initialized with the provided flags. If no device has been made current

to the calling thread, a default device is selected and initialized with the provided flags.

The two LSBs of the f1ags parameter can be used to control how the CPU thread interacts
with the OS scheduler when waiting for results from the device.

» cudaDeviceScheduleAuto: The default value if the f1ags parameter is zero, uses
a heuristic based on the number of active CUDA contexts in the process C and
the number of logical processors in the system P. If C > P, then CUDA will yield to

CUDA Runtime API vRelease Version | 48

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1gbe562ee6258b4fcc272ca6478ca2a2f7

Modules

other OS threads when waiting for the device, otherwise CUDA will not yield while
waiting for results and actively spin on the processor. Additionally, on Tegra devices,
cudaDeviceScheduleAuto uses a heuristic based on the power profile of the platform and
may choose cudaDeviceScheduleBlockingSync for low-powered devices.

cudaDeviceScheduleSpin: Instruct CUDA to actively spin when waiting for results from
the device. This can decrease latency when waiting for the device, but may lower the
performance of CPU threads if they are performing work in parallel with the CUDA thread.

cudaDeviceScheduleYield: Instruct CUDA to yield its thread when waiting for results from
the device. This can increase latency when waiting for the device, but can increase the
performance of CPU threads performing work in parallel with the device.
cudaDeviceScheduleBlockingSync: Instruct CUDA to block the CPU thread on a
synchronization primitive when waiting for the device to finish work.

cudaDeviceBlockingSync: Instruct CUDA to block the CPU thread on a synchronization
primitive when waiting for the device to finish work.

Deprecated: This flag was deprecated as of CUDA 4.0 and replaced with
cudaDeviceScheduleBlockingSync.

cudaDeviceMapHost: This flag enables allocating pinned host memory that is accessible

to the device. It is implicit for the runtime but may be absent if a context is created using
the driver API. If this flag is not set, cudaHostGetDevicePointer(] will always return a failure
code.

cudaDeviceLmemResizeToMax: Instruct CUDA to not reduce local memory after resizing
local memory for a kernel. This can prevent thrashing by local memory allocations when
launching many kernels with high local memory usage at the cost of potentially increased
memory usage.

Deprecated: This flag is deprecated and the behavior enabled by this flag is now the default
and cannot be disabled.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceFlags, cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties,

cudaSetDevice, cudaSetValidDevices, cudaChooseDevice, cuDevicePrimaryCtxSetFlags

CUDA Runtime API vRelease Version | 49

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1gd779a84f17acdad0d9143d9fe719cfdf

Modules

__host__cudaError_t cudaSetValidDevices (int

*device_arr, int len)
Set a list of devices that can be used for CUDA.

Parameters

device_arr
- List of devices to try
len
- Number of devices in specified list

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Sets a list of devices for CUDA execution in priority order using device arr. The parameter
len specifies the number of elements in the list. CUDA will try devices from the list
sequentially until it finds one that works. If this function is not called, or if it is called with a
len of 0, then CUDA will go back to its default behavior of trying devices sequentially from

a default list containing all of the available CUDA devices in the system. If a specified device
ID in the list does not exist, this function will return cudaErrorinvalidDevice. If 1en is not

0 and device arris NULL orif 1en exceeds the number of devices in the system, then
cudaErrorinvalidValue is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaSetDeviceFlags,
cudaChooseDevice

CUDA Runtime API vRelease Version | 50

Modules

6.2. Thread Management [DEPRECATED]

This section describes deprecated thread management functions of the CUDA runtime
application programming interface.

__host__cudaError_t cudaThreadExit (void]

Exit and clean up from CUDA launches.

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceReset(], which should be
used instead.

Explicitly destroys all cleans up all resources associated with the current device in the current
process. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’'s responsibility to
ensure that the device is not being accessed by any other host threads from the process when
this function is called.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceReset

CUDA Runtime API vRelease Version | 51

Modules

__host__cudaError_t cudaThreadGetCacheConfig
(cudaFuncCache *pCacheConfig)

Returns the preferred cache configuration for the current device.

Parameters

pCacheConfig
- Returned cache configuration

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceGetCacheConfig(], which
should be used instead.

On devices where the L1 cache and shared memory use the same hardware resources, this
returns through pCacheConfig the preferred cache configuration for the current device. This
is only a preference. The runtime will use the requested configuration if possible, but it is free
to choose a different configuration if required to execute functions.

This will return a pCacheConfig of cudaFuncCachePreferNone on devices where the size of
the L1 cache and shared memory are fixed.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 52

Modules

See also:

cudaDeviceGetCacheConfig

__host__cudaError_t cudaThreadGetLimit (size t
*pValue, cudaLimit limit]

Returns resource limits.

Parameters

pValue

- Returned size in bytes of limit
limit

- Limit to query

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceGetLimit(), which should be
used instead.

Returns in *pvalue the current size of 1imit. The supported cudalLimit values are:

> cudalLimitStackSize: stack size of each GPU thread;

» cudalimitPrintfFifoSize: size of the shared FIFO used by the printf() device system call.

» cudalimitMallocHeapSize: size of the heap used by the malloc() and free(] device system
calls;

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 53

Modules

cudaDeviceGetLimit

__host__cudaError_t cudaThreadSetCacheConfig
(cudaFuncCache cacheConfig)

Sets the preferred cache configuration for the current device.

Parameters

cacheConfig
- Requested cache configuration

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceSetCacheConfig(], which
should be used instead.

On devices where the L1 cache and shared memory use the same hardware resources,

this sets through cacheConfig the preferred cache configuration for the current device.

This is only a preference. The runtime will use the requested configuration if possible, but

it is free to choose a different configuration if required to execute the function. Any function
preference set via cudaFuncSetCacheConfig [C API) or cudaFuncSetCacheConfig [C++ API)
will be preferred over this device-wide setting. Setting the device-wide cache configuration to
cudaFuncCachePreferNone will cause subsequent kernel launches to prefer to not change the
cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferlL1: prefer larger L1 cache and smaller shared memory

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 54

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig

__host__cudaError_t cudaThreadSetLimit (cudaLimit
limit, size_t value)

Set resource limits.

Parameters
limit
- Limit to set
value
- Size in bytes of limit

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceSetLimit(], which should be
used instead.

Setting 1imit to value is a request by the application to update the current limit maintained
by the device. The driver is free to modify the requested value to meet h/w requirements (this
could be clamping to minimum or maximum values, rounding up to nearest element size, etc].
The application can use cudaThreadGetLimit() to find out exactly what the limit has been set
to.

Setting each cudalimit has its own specific restrictions, so each is discussed here.

> cudalLimitStackSize controls the stack size of each GPU thread.

» cudalimitPrintfFifoSize controls the size of the shared FIFO used by the printf() device
system call. Setting cudaLimitPrintfFifoSize must be performed before launching any
kernel that uses the printf(] device system call, otherwise cudaErrorinvalidValue will be
returned.

CUDA Runtime API vRelease Version | 55

Modules

» cudalimitMallocHeapSize controls the size of the heap used by the malloc() and free()
device system calls. Setting cudaLimitMallocHeapSize must be performed before
launching any kernel that uses the malloc() or free() device system calls, otherwise
cudaErrorinvalidValue will be returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetLimit

__host__cudaError_t cudaThreadSynchronize (void]

Wait for compute device to finish.

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is similar to the non-deprecated function cudaDeviceSynchronize(), which should
be used instead.

Blocks until the device has completed all preceding requested tasks.
cudaThreadSynchronize() returns an error if one of the preceding tasks has failed. If the
cudaDeviceScheduleBlockingSync flag was set for this device, the host thread will block until
the device has finished its work.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 56

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceSynchronize

6.3. Error Handling

This section describes the error handling functions of the CUDA runtime application
programming interface.

__host device const char *cudaGetErrorName
(cudaError_t error)

Returns the string representation of an error code enum name.

Parameters

error
- Error code to convert to string

Returns
char* pointer to a NULL-terminated string
Description

Returns a string containing the name of an error code in the enum. If the error code is not
recognized, “unrecognized error code” is returned.

See also:

cudaGetErrorString, cudaGetLastError, cudaPeekAtlLastError, cudaError, cuGetErrorName

__host device__const char *cudaGetErrorString
(cudaError_t error]

Returns the description string for an error code.

Parameters

error
- Error code to convert to string

CUDA Runtime API vRelease Version | 57

../cuda-driver-api/cuda-driver-api/content/group__CUDA__ERROR.html#group__CUDA__ERROR_1g2c4ac087113652bb3d1f95bf2513c468

Modules

Returns

char* pointer to a NULL-terminated string

Description

Returns the description string for an error code. If the error code is not recognized,
“unrecognized error code” is returned.

See also:

cudaGetErrorName, cudaGetlLastError, cudaPeekAtlLastError, cudaError, cuGetErrorString

__host device_ cudaError_t cudaGetLastError
(void]

Returns the last error from a runtime call.

Returns

cudaSuccess, cudaErrorMissingConfiguration, cudaErrorMemoryAllocation,
cudaErrorinitializationError, cudaErrorLaunchFailure, cudaErrorLaunchTimeout,
cudakrrorLaunchOutOfResources, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidConfiguration, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidPitchValue, cudaErrorinvalidSymbol, cudaErrorUnmapBufferObjectFailed,
cudakrrorinvalidDevicePointer, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding,
l
(

cudakrrorinvalidChannelDescriptor, cudaErrorinvalidMemcpyDirection,
cudaErrorinvalidFilterSetting, cudaErrorinvalidNormSetting, cudaErrorUnknown,
cudakrrorinvalidResourceHandle, cudakrrorinsufficientDriver, cudaErrorNoDevice,
cudaErrorSetOnActiveProcess, cudaErrorStartupFailure, cudaErrorinvalidPtx,
cudaErrorUnsupportedPtxVersion, cudaErrorNoKernellmageForDevice,
cudaErrorJitCompilerNotFound, cudaErrorJitCompilationDisabled

Description

Returns the last error that has been produced by any of the runtime calls in the same host
thread and resets it to cudaSuccess.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 58

../cuda-driver-api/cuda-driver-api/content/group__CUDA__ERROR.html#group__CUDA__ERROR_1g72758fcaf05b5c7fac5c25ead9445ada

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaPeekAtLastError, cudaGetErrorName, cudaGetErrorString, cudaError

__host_ device cudaError_t
cudaPeekAtLastError (void]

Returns the last error from a runtime call.

Returns

cudaSuccess, cudaErrorMissingConfiguration, cudaErrorMemoryAllocation,
cudaErrorinitializationError, cudaErrorLaunchFailure, cudaErrorLaunchTimeout,
cudakrrorLaunchOutOfResources, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidConfiguration, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidPitchValue, cudaErrorinvalidSymbol, cudaErrorUnmapBufferObjectFailed,
cudakrrorinvalidDevicePointer, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding,
cudakErrorinvalidChannelDescriptor, cudaErrorinvalidMemcpyDirection,
cudaErrorinvalidFilterSetting, cudaErrorinvalidNormSetting, cudaErrorUnknown,
cudakrrorinvalidResourceHandle, cudakrrorinsufficientDriver, cudaErrorNoDevice,
cudaErrorSetOnActiveProcess, cudaErrorStartupFailure, cudaErrorinvalidPtx,
cudaErrorUnsupportedPtxVersion, cudaErrorNoKernellmageForDevice,
cudaErrorJitCompilerNotFound, cudaErrorJitCompilationDisabled

L
L
L
L

Description

Returns the last error that has been produced by any of the runtime calls in the same host
thread. Note that this call does not reset the error to cudaSuccess like cudaGetlLastError().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 59

Modules

cudaGetLastError, cudaGetErrorName, cudaGetErrorString, cudaError

6.4. Stream Management

This section describes the stream management functions of the CUDA runtime application
programming interface.

typedef void (CUDART_CB *cudaStreamCallback_t]
(cudaStream_t stream, cudaError t status, void*
userData)

Type of stream callback functions.

__host_ _cudaError_t
cudaCtxResetPersistingL2Cache (void]

Resets all persisting lines in cache to normal status.

Returns

cudaSuccess,

Description

Resets all persisting lines in cache to normal status. Takes effect on function return.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

CUDA Runtime API vRelease Version | 60

Modules

__host_ _cudaError_t cudaStreamAddCallback
(cudaStream_t stream, cudaStreamCallback t
callback, void *userData, unsigned int flags)

Add a callback to a compute stream.

Parameters

stream
- Stream to add callback to
callback
- The function to call once preceding stream operations are complete
userData
- User specified data to be passed to the callback function
flags
- Reserved for future use, must be 0

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue,
cudaErrorNotSupported

Description

Note:

This function is slated for eventual deprecation and removal. If you do not require the callback
to execute in case of a device error, consider using cudalLaunchHostFunc. Additionally, this
function is not supported with cudaStreamBeginCapture and cudaStreamEndCapture, unlike

cudalaunchHostFunc.

Adds a callback to be called on the host after all currently enqueued items in the stream have
completed. For each cudaStreamAddCallback call, a callback will be executed exactly once.
The callback will block later work in the stream until it is finished.

The callback may be passed cudaSuccess or an error code. In the event of a device error, all
subsequently executed callbacks will receive an appropriate cudaError_t.

Callbacks must not make any CUDA API calls. Attempting to use CUDA APIs may result in
cudaErrorNotPermitted. Callbacks must not perform any synchronization that may depend
on outstanding device work or other callbacks that are not mandated to run earlier. Callbacks
without a mandated order (in independent streams) execute in undefined order and may be
serialized.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

CUDA Runtime API vRelease Version | 61

Modules

» The callback stream is considered idle for the duration of the callback. Thus, for example,
a callback may always use memory attached to the callback stream.

» The start of execution of a callback has the same effect as synchronizing an event
recorded in the same stream immediately prior to the callback. It thus synchronizes

streams which have been "joined” prior to the callback.

» Adding device work to any stream does not have the effect of making the stream active
until all preceding callbacks have executed. Thus, for example, a callback might use global
attached memory even if work has been added to another stream, if it has been properly
ordered with an event.

» Completion of a callback does not cause a stream to become active except as described
above. The callback stream will remain idle if no device work follows the callback, and
will remain idle across consecutive callbacks without device work in between. Thus, for
example, stream synchronization can be done by signaling from a callback at the end of
the stream.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamDestroy, cudaMallocManaged,
cudaStreamAttachMemAsync, cudalaunchHostFunc, cuStreamAddCallback

__host__cudaError_t cudaStreamAttachMemAsync
(cudaStream_t stream, void *devPtr, size t length,
unsigned int flags)

Attach memory to a stream asynchronously.

Parameters

stream
- Stream in which to enqueue the attach operation

CUDA Runtime API vRelease Version | 62

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g613d97a277d7640f4cb1c03bd51c2483

Modules

devPtr
- Pointer to memory (must be a pointer to managed memory or to a valid host-accessible
region of system-allocated memory)

length
- Length of memory (defaults to zero)

flags
- Must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle
(defaults to cudaMemAttachSingle)

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Enqueues an operation in stream to specify stream association of length bytes of memory
starting from devPtr. This function is a stream-ordered operation, meaning that it is
dependent on, and will only take effect when, previous work in stream has completed. Any
previous association is automatically replaced.

devPtr must point to an one of the following types of memories:

» managed memory declared using the __managed__ keyword or allocated with
cudaMallocManaged.

» avalid host-accessible region of system-allocated pageable memory. This type of memory
may only be specified if the device associated with the stream reports a non-zero value for
the device attribute cudaDevAttrPageableMemoryAccess.

For managed allocations, 1length must be either zero or the entire allocation’s size. Both
indicate that the entire allocation’s stream association is being changed. Currently, it is not
possible to change stream association for a portion of a managed allocation.

For pageable allocations, 1ength must be non-zero.

The stream association is specified using f1ags which must be one of cudaMemAttachGlobal,
cudaMemAttachHost or cudaMemAttachSingle. The default value for flags is
cudaMemAttachSingle If the cudaMemAttachGlobal flag is specified, the memory

can be accessed by any stream on any device. If the cudaMemAttachHost flag is

specified, the program makes a guarantee that it won't access the memory on the

device from any stream on a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess. If the cudaMemAttachSingle flag is specified
and stream is associated with a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, the program makes a guarantee that it will only
access the memory on the device from stream. It is illegal to attach singly to the NULL
stream, because the NULL stream is a virtual global stream and not a specific stream. An
error will be returned in this case.

CUDA Runtime API vRelease Version | 63

Modules

When memory is associated with a single stream, the Unified Memory system will allow

CPU access to this memory region so long as all operations in stream have completed,
regardless of whether other streams are active. In effect, this constrains exclusive ownership
of the managed memory region by an active GPU to per-stream activity instead of whole-GPU
activity.

Accessing memory on the device from streams that are not associated with it will produce
undefined results. No error checking is performed by the Unified Memory system to ensure
that kernels launched into other streams do not access this region.

It is a program’s responsibility to order calls to cudaStreamAttachMemAsync via events,
synchronization or other means to ensure legal access to memory at all times. Data visibility
and coherency will be changed appropriately for all kernels which follow a stream-association
change.

If stream is destroyed while data is associated with it, the association is removed

and the association reverts to the default visibility of the allocation as specified at
cudaMallocManaged. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cudaMallocManaged,
cuStreamAttachMemAsync

CUDA Runtime API vRelease Version | 64

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6e468d680e263e7eba02a56643c50533

Modules

__host__cudaError_t cudaStreamBeginCapture
(cudaStream_t stream, cudaStreamCaptureMode
mode)

Begins graph capture on a stream.

Parameters

stream
- Stream in which to initiate capture

mode
- Controls the interaction of this capture sequence with other API calls that are potentially
unsafe. For more details see cudaThreadExchangeStreamCaptureMode.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Begin graph capture on stream. When a stream is in capture mode, all operations pushed
into the stream will not be executed, but will instead be captured into a graph, which

will be returned via cudaStreamEndCapture. Capture may not be initiated if streamis
cudaStreamLlegacy. Capture must be ended on the same stream in which it was initiated, and
it may only be initiated if the stream is not already in capture mode. The capture mode may be
queried via cudaStreamlsCapturing. A unique id representing the capture sequence may be
queried via cudaStreamGetCapturelnfo.

If mode is not cudaStreamCaptureModeRelaxed, cudaStreamEndCapture must be called on
this stream from the same thread.

Note:

Kernels captured using this APl must not use texture and surface references. Reading or
writing through any texture or surface reference is undefined behavior. This restriction does
not apply to texture and surface objects.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamlsCapturing, cudaStreamEndCapture,
cudaThreadExchangeStreamCaptureMode

CUDA Runtime API vRelease Version | 65

Modules

__host__cudaError_t cudaStreamCopyAttributes
(cudaStream t dst, cudaStream t src)

Copies attributes from source stream to destination stream.

Parameters
dst
Destination stream
src
Source stream For attributes see cudaStreamAttrID

Returns

cudaSuccess, cudaErrorNotSupported

Description

Copies attributes from source stream src to destination stream dst. Both streams must
have the same context.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamCreate
(cudaStream_t *pStream)

Create an asynchronous stream.

Parameters

pStream
- Pointer to new stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new asynchronous stream.

CUDA Runtime API vRelease Version | 66

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority,
cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamCreate

__host_ _device_ cudaError_t
cudaStreamCreateWithFlags (cudaStream_t
*pStream, unsigned int flags)

Create an asynchronous stream.

Parameters

pStream

- Pointer to new stream identifier
flags

- Parameters for stream creation

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new asynchronous stream. The flags argument determines the behaviors of the
stream. Valid values for flags are

» cudaStreamDefault: Default stream creation flag.

» cudaStreamNonBlocking: Specifies that work running in the created stream may run
concurrently with work in stream 0 (the NULL stream), and that the created stream should
perform no implicit synchronization with stream 0.

CUDA Runtime API vRelease Version | 67

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1ga581f0c5833e21ded8b5a56594e243f4

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithPriority, cudaStreamGetFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamAddCallback,
cudaStreamDestroy, cuStreamCreate

__host__cudaError_t cudaStreamCreateWithPriority
(cudaStream_t *pStream, unsigned int flags, int
priority]

Create an asynchronous stream with the specified priority.

Parameters

pStream
- Pointer to new stream identifier

flags
- Flags for stream creation. See cudaStreamCreateWithFlags for a list of valid flags that
can be passed

priority
- Priority of the stream. Lower numbers represent higher priorities. See
cudaDeviceGetStreamPriorityRange for more information about the meaningful stream
priorities that can be passed.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a stream with the specified priority and returns a handle in pStream. This APl alters
the scheduler priority of work in the stream. Work in a higher priority stream may preempt
work already executing in a low priority stream.

CUDA Runtime API vRelease Version | 68

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1ga581f0c5833e21ded8b5a56594e243f4

Modules

priority follows a convention where lower numbers represent higher priorities. ‘0’
represents default priority. The range of meaningful numerical priorities can be queried using
cudaDeviceGetStreamPriorityRange. If the specified priority is outside the numerical range
returned by cudaDeviceGetStreamPriorityRange, it will automatically be clamped to the lowest
or the highest number in the range.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Stream priorities are supported only on GPUs with compute capability 3.5 or higher.

> Inthe current implementation, only compute kernels launched in priority streams are
affected by the stream’s priority. Stream priorities have no effect on host-to-device and
device-to-host memory operations.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaDeviceGetStreamPriorityRange,
cudaStreamGetPriority, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamAddCallback,
cudaStreamSynchronize, cudaStreamDestroy, cuStreamCreateWithPriority

__host_device__cudaError_t cudaStreamDestroy
(cudaStream_t stream)

Destroys and cleans up an asynchronous stream.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Destroys and cleans up the asynchronous stream specified by stream.

CUDA Runtime API vRelease Version | 69

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g95c1a8c7c3dacb13091692dd9c7f7471

Modules

In case the device is still doing work in the stream stream when cudaStreamDestroy(] is
called, the function will return immediately and the resources associated with stream will be
released automatically once the device has completed all work in stream.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cuStreamDestroy

__host__cudaError_t cudaStreamEndCapture
(cudaStream_t stream, cudaGraph_t *pGraph)

Ends capture on a stream, returning the captured graph.

Parameters

stream

- Stream to query
pGraph

- The captured graph

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCaptureWrongThread

Description

End capture on stream, returning the captured graph via pGraph. Capture must have been
initiated on stream via a call to cudaStreamBeginCapture. If capture was invalidated, due to a
violation of the rules of stream capture, then a NULL graph will be returned.

If the mode argument to cudaStreamBeginCapture was not cudaStreamCaptureModeRelaxed,
this call must be from the same thread as cudaStreamBeginCapture.

CUDA Runtime API vRelease Version | 70

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g244c8833de4596bcd31a06cdf21ee758

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeginCapture, cudaStreamlIsCapturing

__host_ _cudaError_t cudaStreamGetAttribute
(cudaStream_t hStream, cudaStreamAttrID attr,
cudaStreamAttrValue *value_out)

Queries stream attribute.

Parameters

hStream
attr
value_out

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Queries attribute attr from hStream and stores it in corresponding member of value out.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

CUDA Runtime API vRelease Version | 71

Modules

__host__cudaError_t cudaStreamGetCapturelnfo
(cudaStream_t stream, cudaStreamCaptureStatus
*pCaptureStatus, unsigned long long *pld]

Query capture status of a stream.

Parameters

stream
- Stream to query
pCaptureStatus
- Returns the stream’s capture status
pld
- Returns the unique id of the capture sequence

Returns

cudaSuccess, cudaErrorStreamCapturelmplicit

Description

Note there is a later version of this API, cudaStreamGetCapturelnfo_v2. It will supplant this
version in 12.0, which is retained for minor version compatibility.

Query the capture status of a stream and get a unique id representing the capture sequence
over the lifetime of the process.

If called on cudaStreamlegacy (the "null stream”) while a stream not created with
cudaStreamNonBlocking is capturing, returns cudaErrorStreamCapturelmplicit.

Avalid id is returned only if both of the following are true:

> the call returns cudaSuccess

» captureStatus is set to cudaStreamCaptureStatusActive

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamGetCapturelnfo v2, cudaStreamBeqinCapture, cudaStreamlsCapturing

CUDA Runtime API vRelease Version | 72

Modules

__host__cudaError_t cudaStreamGetCapturelnfo_v2
(cudaStream_t stream, cudaStreamCaptureStatus
*captureStatus_out, unsigned long long *id_out,
cudaGraph_t *graph_out, const cudaGraphNode_t
**dependencies_out, size_t *numDependencies_out]

Query a stream's capture state (11.3+).

Parameters

stream
- The stream to query

captureStatus_out
- Location to return the capture status of the stream; required

id_out
- Optional location to return an id for the capture sequence, which is unique over the
lifetime of the process

graph_out
- Optional location to return the graph being captured into. All operations other than
destroy and node removal are permitted on the graph while the capture sequence is
in progress. This APl does not transfer ownership of the graph, which is transferred or
destroyed at cudaStreamEndCapture. Note that the graph handle may be invalidated
before end of capture for certain errors. Nodes that are or become unreachable from the
original stream at cudaStreamEndCapture due to direct actions on the graph do not trigger
cudaErrorStreamCaptureUnjoined.

dependencies_out
- Optional location to store a pointer to an array of nodes. The next node to be captured in
the stream will depend on this set of nodes, absent operations such as event wait which
modify this set. The array pointer is valid until the next API call which operates on the
stream or until end of capture. The node handles may be copied out and are valid until they
or the graph is destroyed. The driver-owned array may also be passed directly to APIs that
operate on the graph [not the stream] without copying.

numDependencies_out
- Optional location to store the size of the array returned in dependencies_out.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCapturelmplicit

Description

Query stream state related to stream capture.

CUDA Runtime API vRelease Version | 73

Modules

If called on cudaStreamlegacy (the “null stream”) while a stream not created with
cudaStreamNonBlocking is capturing, returns cudaErrorStreamCapturelmplicit.

Valid data (other than capture status) is returned only if both of the following are true:

> the call returns cudaSuccess

» the returned capture status is cudaStreamCaptureStatusActive

This version of cudaStreamGetCapturelnfo is introduced in CUDA 11.3 and will supplant the
previous version cudaStreamGetCapturelnfo in 12.0. Developers requiring compatibility across
minor versions to CUDA 11.0 (driver version 445) can do one of the following:

> Use the older version of the API, cudaStreamGetCapturelnfo

» Passnull for all of graph out, dependencies out, and numDependencies out.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamGetCapturelnfo, cudaStreamBeqginCapture, cudaStreamlsCapturing,
cudaStreamUpdateCaptureDependencies

__host__cudaError_t cudaStreamGetFlags
(cudaStream_t hStream, unsigned int *flags)

Query the flags of a stream.

Parameters

hStream
- Handle to the stream to be queried
flags
- Pointer to an unsigned integer in which the stream’s flags are returned

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Query the flags of a stream. The flags are returned in flags. See
cudaStreamCreateWithFlags for a list of valid flags.

CUDA Runtime API vRelease Version | 74

Modules

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority,
cuStreamGetFlags

__host__cudaError_t cudaStreamGetPriority
(cudaStream_t hStream, int *priority)

Query the priority of a stream.

Parameters

hStream
- Handle to the stream to be queried
priority
- Pointer to a signed integer in which the stream’s priority is returned

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Query the priority of a stream. The priority is returned in in priority. Note that if the
stream was created with a priority outside the meaningful numerical range returned
by cudaDeviceGetStreamPriorityRange, this function returns the clamped priority. See
cudaStreamCreateWithPriority for details about priority clamping.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 75

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g4d39786855a6bed01215c1907fbbfbb7

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaDeviceGetStreamPriorityRange, cudaStreamGetFlags,
cuStreamGetPriority

__host__cudaError_t cudaStreamlsCapturing
(cudaStream_t stream, cudaStreamCaptureStatus
*pCaptureStatus)

Returns a stream’s capture status.

Parameters

stream
- Stream to query
pCaptureStatus
- Returns the stream’s capture status

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCapturelmplicit

Description

Return the capture status of streamvia pCaptureStatus. After a successful call,
*pCaptureStatus will contain one of the following:

» cudaStreamCaptureStatusNone: The stream is not capturing.

» cudaStreamCaptureStatusActive: The stream is capturing.

» cudaStreamCaptureStatusinvalidated: The stream was capturing but an error has
invalidated the capture sequence. The capture sequence must be terminated with
cudaStreamEndCapture on the stream where it was initiated in order to continue using
stream.

Note that, if this is called on cudaStreamlLegacy (the "null stream”) while a blocking
stream on the same device is capturing, it will return cudaErrorStreamCapturelmplicit
and *pCaptureStatus is unspecified after the call. The blocking stream capture is not
invalidated.

CUDA Runtime API vRelease Version | 76

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g5bd5cb26915a2ecf1921807339488484

Modules

When a blocking stream is capturing, the legacy stream is in an unusable state until the
blocking stream capture is terminated. The legacy stream is not supported for stream
capture, but attempted use would have an implicit dependency on the capturing stream(s).

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeqginCapture, cudaStreamEndCapture

__host__cudaError_t cudaStreamQuery
(cudaStream_t stream)

Queries an asynchronous stream for completion status.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidResourceHandle

Description

Returns cudaSuccess if all operations in stream have completed, or cudaErrorNotReady if
not.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having
called cudaStreamSynchronize().

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 77

Modules

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamQuery

__host__cudaError_t cudaStreamSetAttribute
(cudaStream_t hStream, cudaStreamAttrID attr, const
cudaStreamAttrValue *value)

Sets stream attribute.

Parameters

hStream
attr
value

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Sets attribute attr on hStream from corresponding attribute of value. The updated
attribute will be applied to subsequent work submitted to the stream. It will not affect
previously submitted work.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamSynchronize
(cudaStream_t stream)

Waits for stream tasks to complete.

Parameters

stream
- Stream identifier

CUDA Runtime API vRelease Version | 78

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g1b0d24bbe97fa68e4bc511fb6adfeb0b

Modules

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Blocks until stream has completed all operations. If the cudaDeviceScheduleBlockingSync
flag was set for this device, the host thread will block until the stream is finished with all of its
tasks.

Note:

» This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamSynchronize

__host__cudaError_t
cudaStreamUpdateCaptureDependencies
(cudaStream_t stream, cudaGraphNode_t
*dependencies, size_t numDependencies, unsigned
int flags)

Update the set of dependencies in a capturing stream (11.3+).

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlllegalState

Description

Modifies the dependency set of a capturing stream. The dependency set is the set of nodes
that the next captured node in the stream will depend on.

CUDA Runtime API vRelease Version | 79

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g15e49dd91ec15991eb7c0a741beb7dad

Modules

Valid flags are cudaStreamAddCaptureDependencies and
cudaStreamSetCaptureDependencies. These control whether the set passed to
the APl is added to the existing set or replaces it. A flags value of 0 defaults to
cudaStreamAddCaptureDependencies.

Nodes that are removed from the dependency set via this APl do not result in
cudaErrorStreamCaptureUnjoined if they are unreachable from the stream at
cudaStreamEndCapture.

Returns cudaErrorlllegalState if the stream is not capturing.

This APl'is new in CUDA 11.3. Developers requiring compatibility across minor versions of the
CUDA driver to 11.0 should not use this APl or provide a fallback.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeqginCapture, cudaStreamGetCapturelnfo, cudaStreamGetCapturelnfo v2

__host device cudaError_t
cudaStreamWaitEvent (cudaStream_t stream,
cudaEvent_t event, unsigned int flags]

Make a compute stream wait on an event.

Parameters

stream
- Stream to wait
event
- Event to wait on
flags
- Parameters for the operation(See above]

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Makes all future work submitted to stream wait for all work captured in event. See
cudaEventRecord(] for details on what is captured by an event. The synchronization will be
performed efficiently on the device when applicable. event may be from a different device
than stream.

CUDA Runtime API vRelease Version | 80

Modules

flags include:

» cudaEventWaitDefault: Default event creation flag.

> cudaEventWaitExternal: Event is captured in the graph as an external event node when
performing stream capture.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamWaitEvent

__host__cudaError_t
cudaThreadExchangeStreamCaptureMode
(cudaStreamCaptureMode *mode])

Swaps the stream capture interaction mode for a thread.

Parameters

mode
- Pointer to mode value to swap with the current mode

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the calling thread's stream capture interaction mode to the value contained in *mode,
and overwrites *mode with the previous mode for the thread. To facilitate deterministic
behavior across function or module boundaries, callers are encouraged to use this APl in a
push-pop fashion:

r cudaStreamCaptureMode mode = desiredMode;
cudaThreadExchangeStreamCaptureMode (&mode) ;

CUDA Runtime API vRelease Version | 81

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6a898b652dfc6aa1d5c8d97062618b2f

Modules

cudaThreadExchangeStreamCaptureMode (&mode) ; // restore previous mode

During stream capture (see cudaStreamBeginCapture), some actions, such as a call to
cudaMalloc, may be unsafe. In the case of cudaMalloc, the operation is not enqueued
asynchronously to a stream, and is not observed by stream capture. Therefore, if the sequence
of operations captured via cudaStreamBeginCapture depended on the allocation being
replayed whenever the graph is launched, the captured graph would be invalid.

Therefore, stream capture places restrictions on API calls that can be made within or
concurrently to a cudaStreamBeginCapture-cudaStreamEndCapture sequence. This behavior
can be controlled via this APl and flags to cudaStreamBeginCapture.

A thread’s mode is one of the following:

» cudaStreamCaptureModeGlobal: Thisis the default mode. If the
local thread has an ongoing capture sequence that was not initiated with
cudaStreamCaptureModeRelaxed at cuStreamBeginCapture, or if any other thread
has a concurrent capture sequence initiated with cudaStreamCaptureModeGlobal,
this thread is prohibited from potentially unsafe API calls.

» cudaStreamCaptureModeThreadLocal: If the local thread has an ongoing capture
sequence not initiated with cudaStreamCaptureModeRelaxed, it is prohibited from
potentially unsafe API calls. Concurrent capture sequences in other threads are ignored.

» cudaStreamCaptureModeRelaxed: The local thread is not prohibited from potentially
unsafe API calls. Note that the thread is still prohibited from API calls which necessarily
conflict with stream capture, for example, attempting cudaEventQuery on an event that
was last recorded inside a capture sequence.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeqginCapture

6.9. Event Management

This section describes the event management functions of the CUDA runtime application
programming interface.

CUDA Runtime API vRelease Version | 82

Modules

__host__cudaError_t cudaEventCreate (cudaEvent_t
*event]

Creates an event object.

Parameters

event
- Newly created event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description

Creates an event object for the current device using cudaEventDefault.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C++ API), cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cuEventCreate

___host device_ cudaError_t
cudaEventCreateWithFlags (cudaEvent_t *event,
unsigned int flags)

Creates an event object with the specified flags.

Parameters

event
- Newly created event

CUDA Runtime API vRelease Version | 83

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g450687e75f3ff992fe01662a43d9d3db

Modules

flags
- Flags for new event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description
Creates an event object for the current device with the specified flags. Valid flags include:

» cudaEventDefault: Default event creation flag.

» cudaEventBlockingSync: Specifies that event should use blocking synchronization. A host
thread that uses cudaEventSynchronize() to wait on an event created with this flag will
block until the event actually completes.

» cudaEventDisableTiming: Specifies that the created event does not need to record timing
data. Events created with this flag specified and the cudaEventBlockingSync flag not
specified will provide the best performance when used with cudaStreamWaitEvent(] and
cudaEventQuery(].

» cudaEventinterprocess: Specifies that the created event may be used as an interprocess
event by cudalpcGetEventHandle(). cudaEventInterprocess must be specified along with
cudakventDisableTiming.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime,
cudaStreamWaitEvent, cuEventCreate

CUDA Runtime API vRelease Version | 84

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g450687e75f3ff992fe01662a43d9d3db

Modules

__host device_ cudaEkrror_t cudaEventDestroy
(cudaEvent _t event)

Destroys an event object.

Parameters

event
- Event to destroy

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description
Destroys the event specified by event.

An event may be destroyed before it is complete (i.e., while cudaEventQuery(] would return
cudaErrorNotReady]. In this case, the call does not block on completion of the event, and any
associated resources will automatically be released asynchronously at completion.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudakEventSynchronize, cudaEventRecord, cudaEventElapsedTime, cuEventDestroy

CUDA Runtime API vRelease Version | 85

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g593ec73a8ec5a5fc031311d3e4dca1ef

Modules

__host__cudaError_t cudaEventElapsedTime (float
*ms, cudaEvent t start, cudaEvent t end]

Computes the elapsed time between events.

Parameters

ms

- Time between start and end in ms
start

- Starting event
end

- Ending event

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Computes the elapsed time between two events (in milliseconds with a resolution of around
0.5 microseconds).

If either event was last recorded in a non-NULL stream, the resulting time may be greater
than expected (even if both used the same stream handle). This happens because the
cudaEventRecord() operation takes place asynchronously and there is no guarantee that

the measured latency is actually just between the two events. Any number of other different
stream operations could execute in between the two measured events, thus altering the timing
in a significant way.

If cudaEventRecord() has not been called on either event, then
cudaErrorinvalidResourceHandle is returned. If cudaEventRecord() has been called on both
events but one or both of them has not yet been completed (that is, cudaEventQuery(] would
return cudaErrorNotReady on at least one of the events), cudaErrorNotReady is returned. If
either event was created with the cudaEventDisableTiming flag, then this function will return
cudaErrorinvalidResourceHandle.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 86

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventRecord, cuEventElapsedTime

__host__cudaError_t cudaEventQuery (cudaEvent_t
event)

Queries an event's status.

Parameters

event
- Event to query

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudakErrorLaunchFailure

Description

Queries the status of all work currently captured by event. See cudaEventRecord(] for details
on what is captured by an event.

Returns cudaSuccess if all captured work has been completed, or cudaErrorNotReady if any
captured work is incomplete.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having
called cudaEventSynchronize().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 87

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1gdfb1178807353bbcaa9e245da497cf97

Modules

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventRecord,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cuEventQuery

__host_ _device_ cudaError_t cudakventRecord
(cudaEvent t event, cudaStream t stream)

Records an event.

Parameters

event
- Event to record
stream
- Stream in which to record event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Captures in event the contents of stream at the time of this call. event and stream must
be on the same device. Calls such as cudaEventQuery() or cudaStreamWaitEvent(] will then
examine or wait for completion of the work that was captured. Uses of stream after this call
do not modify event. See note on default stream behavior for what is captured in the default
case.

cudaEventRecord() can be called multiple times on the same event and will overwrite

the previously captured state. Other APIs such as cudaStreamWaitEvent(] use the most
recently captured state at the time of the API call, and are not affected by later calls to
cudaEventRecord(). Before the first call to cudaEventRecord(), an event represents an empty
set of work, so for example cudaEventQuery(] would return cudaSuccess.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 88

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g6f0704d755066b0ee705749ae911deef

Modules

See also:

cudaEventCreate [C API], cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cudaEventRecordWithFlags, cuEventRecord

__host__cudaError_t cudakEventRecordWithFlags
(cudaEvent_t event, cudaStream_t stream, unsigned
int flags)

Records an event.

Parameters

event
- Event to record
stream
- Stream in which to record event
flags
- Parameters for the operation(See above]

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Captures in event the contents of stream at the time of this call. event and stream must
be on the same device. Calls such as cudaEventQuery() or cudaStreamWaitEvent(] will then
examine or wait for completion of the work that was captured. Uses of stream after this call
do not modify event. See note on default stream behavior for what is captured in the default
case.

cudaEventRecordWithFlags() can be called multiple times on the same event and will
overwrite the previously captured state. Other APIs such as cudaStreamWaitEvent(] use the
most recently captured state at the time of the API call, and are not affected by later calls to
cudaEventRecordWithFlags(). Before the first call to cudaEventRecordWithFlags(], an event
represents an empty set of work, so for example cudaEventQuery() would return cudaSuccess.

flags include:

» cudaEventRecordDefault: Default event creation flag.

» cudaEventRecordExternal: Event is captured in the graph as an external event node when
performing stream capture.

CUDA Runtime API vRelease Version | 89

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cudakEventRecord, cuEventRecord,

__host__cudaError_t cudaEventSynchronize
(cudaEvent _t event)

Waits for an event to complete.

Parameters

event
- Event to wait for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Waits until the completion of all work currently captured in event. See cudaEventRecord() for
details on what is captured by an event.

Waiting for an event that was created with the cudaEventBlockingSync flag will cause

the calling CPU thread to block until the event has been completed by the device. If the
cudaEventBlockingSync flag has not been set, then the CPU thread will busy-wait until the
event has been completed by the device.

n Note:

CUDA Runtime API vRelease Version | 90

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery,
cudakEventDestroy, cudaEventElapsedTime, cuEventSynchronize

6.6. External Resource Interoperability

This section describes the external resource interoperability functions of the CUDA runtime
application programming interface.

__host__cudaError_t cudaDestroybExternalMemory
(cudaExternalMemory_t extMem)]

Destroys an external memory object.

Parameters

extMem
- External memory object to be destroyed

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Destroys the specified external memory object. Any existing buffers and CUDA mipmapped
arrays mapped onto this object must no longer be used and must be explicitly freed using
cudaFree and cudaFreeMipmappedArray respectively.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 91

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g9e520d34e51af7f5375610bca4add99c

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudalmportExternalMemory, cudaExternalMemoryGetMappedBuffer,
cudaExternalMemoryGetMappedMipmappedArray

__host__cudaError_t
cudaDestroyExternalSemaphore
(cudaExternalSemaphore_t extSem)

Destroys an external semaphore.

Parameters

extSem
- External semaphore to be destroyed

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Destroys an external semaphore object and releases any references to the underlying
resource. Any outstanding signals or waits must have completed before the semaphore is
destroyed.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 92

Modules

- » Use of the handle after this call is undefined behavior.

See also:

cudalmportExternalSemaphore, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaExternalMemoryGetMappedBuffer (void
**devPtr, cudabExternalMemory_t extMem, const
cudaExternalMemoryBufferDesc *bufferDesc]

Maps a buffer onto an imported memory object.

Parameters

devPtr

- Returned device pointer to buffer
extMem

- Handle to external memory object
bufferDesc

- Buffer descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Maps a buffer onto an imported memory object and returns a device pointer in devPtr.

The properties of the buffer being mapped must be described in bufferDesc. The
cudaExternalMemoryBufferDesc structure is defined as follows:

r typedef struct cudaExternalMemoryBufferDesc st {
unsigned long long offset;
unsigned long long size;
unsigned int flags;
} cudaExternalMemoryBufferDesc;

where cudaExternalMemoryBufferDesc::offset is the offset in the memory object where
the buffer's base address is. cudaExternalMemoryBufferDesc::size is the size of the buffer.
cudaExternalMemoryBufferDesc::flags must be zero.

The offset and size have to be suitably aligned to match the requirements of the external API.
Mapping two buffers whose ranges overlap may or may not result in the same virtual address
being returned for the overlapped portion. In such cases, the application must ensure that all
accesses to that region from the GPU are volatile. Otherwise writes made via one address are
not guaranteed to be visible via the other address, even if they're issued by the same thread.

CUDA Runtime API vRelease Version | 93

Modules

It is recommended that applications map the combined range instead of mapping separate
buffers and then apply the appropriate offsets to the returned pointer to derive the individual
buffers.

The returned pointer devPtr must be freed using cudaFree.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalmportExternalMemory, cudaDestroyExternalMemory,
cudaExternalMemoryGetMappedMipmappedArray

__host__cudaError_t
cudaExternalMemoryGetMappedMipmappedArray
(cudaMipmappedArray_t *mipmanp,
cudaExternalMemory_t extMem, const
cudaExternalMemoryMipmappedArrayDesc
*mipmapDesc]

Maps a CUDA mipmapped array onto an external memory object.

Parameters
mipmap

- Returned CUDA mipmapped array
extMem

- Handle to external memory object
mipmapDesc

- CUDA array descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

CUDA Runtime API vRelease Version | 94

Modules

Description
Maps a CUDA mipmapped array onto an external object and returns a handle to it in mipmap.

The properties of the CUDA mipmapped array being mapped must be described in
mipmapDesc. The structure cudaExternalMemoryMipmappedArrayDesc is defined as follows:

r typedef struct cudaExternalMemoryMipmappedArrayDesc st {
unsigned long long offset;
cudaChannelFormatDesc formatDesc;
cudaExtent extent;
unsigned int flags;
unsigned int numLevels;

} cudaExternalMemoryMipmappedArrayDesc;

where cudaExternalMemoryMipmappedArrayDesc::offset is the offset

in the memory object where the base level of the mipmap chain is.
cudaExternalMemoryMipmappedArrayDesc::formatDesc describes the format of the
data. cudakxternalMemoryMipmappedArrayDesc::extent specifies the dimensions of
the base level of the mipmap chain. cudaExternalMemoryMipmappedArrayDesc::flags
are flags associated with CUDA mipmapped arrays. For further details, please refer
to the documentation for cudaMalloc3DArray. Note that if the mipmapped array is
bound as a color target in the graphics API, then the flag cudaArrayColorAttachment
must be specified in cudaExternalMemoryMipmappedArrayDesc::flags.
cudakExternalMemoryMipmappedArrayDesc::numLevels specifies the total number of levels in
the mipmap chain.

The returned CUDA mipmapped array must be freed using cudaFreeMipmappedArray.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalmportExternalMemory, cudaDestroyExternalMemory,
cudakExternalMemoryGetMappedBuffer

m Note:

CUDA Runtime API vRelease Version | 95

Modules

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeNvSciBuf, then

cudaExternalMemoryMipmappedArrayDesc::numlLevels must not be greater than 1.

__host__cudaError_t cudalmportExternalMemory
(cudaExternalMemory_t *extMem_out, const
cudaExternalMemoryHandleDesc *memHandleDesc])

Imports an external memory object.

Parameters

extMem_out

- Returned handle to an external memory object
memHandleDesc

- Memory import handle descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Imports an externally allocated memory object and returns a handle to that in extMem out.

The properties of the handle being imported must be described in memHandleDesc. The
cudakExternalMemoryHandleDesc structure is defined as follows:

r typedef struct cudaExternalMemoryHandleDesc st ({
cudaExternalMemoryHandleType type;
union {

int fd;
struct {
void *handle;
const void *name;
} win32;
const void *nvSciBufObject;
} handle;
unsigned long long size;
unsigned int flags;
} cudaExternalMemoryHandleDesc;

where cudaExternalMemoryHandleDesc::type specifies the type of handle being imported.
cudaExternalMemoryHandleType is defined as:

r typedef enum cudaExternalMemoryHandleType enum {
cudaExternalMemoryHandleTypeOpaqueFd
cudaExternalMemoryHandleTypeOpaqueWin32
cudaExternalMemoryHandleTypeOpaqueWin32Kmt
cudaExternalMemoryHandleTypeD3D12Heap
cudaExternalMemoryHandleTypeD3D12Resource
cudaExternalMemoryHandleTypeD3Dl11Resource
cudaExternalMemoryHandleTypeD3D1l1ResourceKmt
cudaExternalMemoryHandleTypeNvSciBuf

} cudaExternalMemoryHandleType;

O Jo Ul W N
S N S S S~ S~ o~

CUDA Runtime API vRelease Version | 96

Modules

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeOpaqueFd, then
cudaExternalMemoryHandleDesc::handle::fd must be a valid file descriptor referencing a
memory object. Ownership of the file descriptor is transferred to the CUDA driver when the
handle is imported successfully. Performing any operations on the file descriptor after it is
imported results in undefined behavior.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeOpaqueWin32,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudaExternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
avalid shared NT handle that references a memory object. Ownership of this handle is not
transferred to CUDA after the import operation, so the application must release the handle
using the appropriate system call. If cudaExternalMemoryHandleDesc::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a
memory object.

If cudaExternalMemoryHandleDesc::type is
cudaExternalMemoryHandleTypeOpaqueWin32Kmt, then
cudaExternalMemoryHandleDesc::handle::win32::handle must be non-NULL and
cudakExternalMemoryHandleDesc::handle::win32::name must be NULL. The handle specified
must be a globally shared KMT handle. This handle does not hold a reference to the
underlying object, and thus will be invalid when all references to the memory object are
destroyed.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeD3D12Heap,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudakxternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle when
referring to a ID3D12Heap object. This handle holds a reference to the underlying object. If
cudakExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D12Heap object.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeD3D12Resource,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudaExternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle when
referring to a ID3D12Resource object. This handle holds a reference to the underlying object.
If cudaExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D12Resource object.

If cudaExternalMemoryHandleDesc::type is
cudakExternalMemoryHandleTypeD3D11Resource,then exactly one
of cudakxternalMemoryHandleDesc::handle::win32::handle and
cudaExternalMemoryHandleDesc::handle::win32::name must not be

CUDA Runtime API vRelease Version | 97

Modules

NULL. If cudaExternalMemoryHandleDesc::handle::win32::handle is not

NULL, then it must represent a valid shared NT handle that is returned by
IDXGIResourcel::CreateSharedHandle when referring to a ID3D11Resource object. If
cudakExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D11Resource object.

If cudaExternalMemoryHandleDesc::type is
cudaExternalMemoryHandleTypeD3D11ResourceKmt, then
cudakxternalMemoryHandleDesc::handle::win32::handle must be non-NULL and
cudaExternalMemoryHandleDesc::handle::win32::name must be NULL. The handle specified
must be a valid shared KMT handle that is returned by IDXGIResource::GetSharedHandle
when referring to a ID3D11Resource object.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeNvSciBuf,

then cudakxternalMemoryHandleDesc::handle::nvSciBufObject must be NON-NULL and
reference a valid NvSciBuf object. If the NvSciBuf object imported into CUDA is also mapped
by other drivers, then the application must use cudaWaitExternalSemaphoresAsync or
cudaSignalExternalSemaphoresAsync as approprriate barriers to maintain coherence
between CUDA and the other drivers. See cudaExternalSemaphoreWaitSkipNvSciBufMemSync
and cudaExternalSemaphoreSignalSkipNvSciBufMemSync for memory synchronization.

The size of the memory object must be specified in cudaExternalMemoryHandleDesc::size.

Specifying the flag cudaExternalMemoryDedicated in cudaExternalMemoryHandleDesc::flags
indicates that the resource is a dedicated resource. The definition

of what a dedicated resource is outside the scope of this extension.

This flag must be set if cudaExternalMemoryHandleDesc::type is one

of the following: cudaExternalMemoryHandleTypeD3D12Resource
cudaExternalMemoryHandleTypeD3D11Resource
cudaExternalMemoryHandleTypeD3D11ResourceKmt

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» If the Vulkan memory imported into CUDA is mapped on the CPU then the application
must use vkinvalidateMappedMemoryRanges/vkFlushMappedMemoryRanges as well as
appropriate Vulkan pipeline barriers to maintain coherence between CPU and GPU. For

CUDA Runtime API vRelease Version | 98

Modules

more information on these APls, please refer to "Synchronization and Cache Control”
chapter from Vulkan specification.

See also:

cudaDestroyExternalMemory, cudaExternalMemoryGetMappedBuffer,
cudakExternalMemoryGetMappedMipmappedArray

__host__cudaError_t cudalmportExternalSemaphore
(cudaExternalSemaphore_t *extSem_out,

const cudakxternalSemaphoreHandleDesc
*semHandleDesc]

Imports an external semaphore.

Parameters

extSem_out

- Returned handle to an external semaphore
semHandleDesc

- Semaphore import handle descriptor

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Imports an externally allocated synchronization object and returns a handle to that in
extSem out.

The properties of the handle being imported must be described in semHandleDesc. The
cudaExternalSemaphoreHandleDesc is defined as follows:

r typedef struct cudaExternalSemaphoreHandleDesc st ({
cudaExternal SemaphoreHandleType type;
union {

int fd;
struct {
void *handle;
const void *name;
} win32;
const void* NvSciSyncObj;
} handle;
unsigned int flags;
} cudaExternalSemaphoreHandleDesc;

where cudaExternalSemaphoreHandleDesc::type specifies the type of handle being imported.
cudaExternalSemaphoreHandleType is defined as:

r typedef enum cudaExternalSemaphoreHandleType enum {
cudaExternal SemaphoreHandleTypeOpaqueFd =1,

CUDA Runtime API vRelease Version | 99

Modules

cudaExternal SemaphoreHandleTypeOpaqueWin32
cudaExternal SemaphoreHandleTypeOpaqueWin32Kmt
cudaExternalSemaphoreHandleTypeD3D12Fence
cudaExternalSemaphoreHandleTypeD3Dl1Fence
cudaExternalSemaphoreHandleTypeNvSciSync
cudaExternal SemaphoreHandleTypeKeyedMutex
cudaExternal SemaphoreHandleTypeKeyedMutexKmt
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd
cudaExternal SemaphoreHandleTypeTimelineSemaphoreWin32
} cudaExternalSemaphoreHandleType;

I
O 00 Jo U WN

OSN N~ N N N N N~

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeOpaqueFd,
then cudakExternalSemaphoreHandleDesc::handle::fd must be a valid file descriptor
referencing a synchronization object. Ownership of the file descriptor is transferred to the
CUDA driver when the handle is imported successfully. Performing any operations on the file
descriptor after it is imported results in undefined behavior.

If cudaExternalSemaphoreHandleDesc::type is
cudakxternalSemaphoreHandleTypeOpaqueWin32, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it

must represent a valid shared NT handle that references a synchronization object.
Ownership of this handle is not transferred to CUDA after the import operation,

so the application must release the handle using the appropriate system call. If
cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt, then
cudaExternalSemaphoreHandleDesc::handle::win32::handle must be non-NULL and
cudakxternalSemaphoreHandleDesc::handle::win32::name must be NULL. The handle
specified must be a globally shared KMT handle. This handle does not hold a reference to the
underlying object, and thus will be invalid when all references to the synchronization object
are destroyed.

If cudaExternalSemaphoreHandleDesc::type is
cudakExternalSemaphoreHandleTypeD3D12Fence, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudakxternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must
represent a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle
when referring to a ID3D12Fence object. This handle holds a reference to the underlying
object. If cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must
name a valid synchronization object that refers to a valid ID3D12Fence object.

If cudaExternalSemaphoreHandleDesc::type is
cudakxternalSemaphoreHandleTypeD3D11Fence, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If

CUDA Runtime API vRelease Version | 100

Modules

cudakxternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must
represent a valid shared NT handle that is returned by ID3D11Fence::CreateSharedHandle. If
cudakxternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object that refers to a valid ID3D11Fence object.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeNvSciSync,
then cudakExternalSemaphoreHandleDesc::handle::nvSciSyncObj represents a valid
NvSciSyncOb.

cudakxternalSemaphoreHandleTypeKeyedMutex, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudakExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it represent
a valid shared NT handle that is returned by IDXGIResourcel::CreateSharedHandle when
referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then
cudakxternalSemaphoreHandleDesc::handle::win32::handle must be non-NULL
and cudaExternalSemaphoreHandleDesc::handle::win32::name must be NULL.
The handle specified must represent a valid KMT handle that is returned by
IDXGIResource::GetSharedHandle when referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is
cudakExternalSemaphoreHandleTypeTimelineSemaphorekFd, then
cudaExternalSemaphoreHandleDesc::handle::fd must be a valid file descriptor referencing a
synchronization object. Ownership of the file descriptor is transferred to the CUDA driver when
the handle is imported successfully. Performing any operations on the file descriptor after it is
imported results in undefined behavior.

If cudaExternalSemaphoreHandleDesc::type is
cudakExternalSemaphoreHandleTypeTimelineSemaphoreWin32, then exactly

one of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudakxternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it

must represent a valid shared NT handle that references a synchronization object.
Ownership of this handle is not transferred to CUDA after the import operation,

so the application must release the handle using the appropriate system call. If
cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 101

> Note that this function may also return cudaErrorinitializationError,

Modules

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDestroyExternalSemaphore, cudaSignalExternalSemaphoresAsync,

cudaWaitExternalSemaphoresAsync

__host__cudaError_t

cudaSignalExternalSemaphoresAsync (const
cudaExternalSemaphore_t *extSemArray, const

cudaExternalSemaphoreSignalParams *paramsArray,

unsigned int numExtSems, cudaStream_t stream]

Signals a set of external semaphore objects.

Parameters

extSemArray

- Set of external semaphores to be signaled
paramsArray

- Array of semaphore parameters
numExtSems

- Number of semaphores to signal
stream

- Stream to enqueue the signal operations in

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Enqueues a signal operation on a set of externally allocated semaphore object in the specified
stream. The operations will be executed when all prior operations in the stream complete.

The exact semantics of signaling a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:

cudaExternalSemaphoreHandleTypeOpaqueFd,

cudaExternalSemaphoreHandleTypeOpagueWin32,

CUDA Runtime AP!I

vRelease Version | 102

Modules

cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt then signaling the semaphore will set it
to the signaled state.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeD3D12Fence,
cudaExternalSemaphoreHandleTypeD3D11Fence,
cudakxternalSemaphoreHandleTypeTimelineSemaphoreFd,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 then the semaphore will be set
to the value specified in cudaExternalSemaphoreSignalParams::params::fence::value.

If the semaphore object is of the type cudaExternalSemaphoreHandleTypeNvSciSync

this APl sets cudaExternalSemaphoreSignalParams::params::nvSciSync::fence to a

value that can be used by subsequent waiters of the same NvSciSync object to order
operations with those currently submitted in stream. Such an update will overwrite
previous contents of cudaExternalSemaphoreSignalParams::params::nvSciSync::fence.

By deefault, signaling such an external semaphore object causes appropriate memory
synchronization operations to be performed over all the external memory objects

that are imported as cudaExternalMemoryHandleTypeNvSciBuf. This ensures that

any subsequent accesses made by other importers of the same set of NvSciBuf

memory object(s) are coherent. These operations can be skipped by specifying the flag
cudaExternalSemaphoreSignalSkipNvSciBufMemSync, which can be used as a performance
optimization when data coherency is not required. But specifying this flag in scenarios
where data coherency is required results in undefined behavior. Also, for semaphore object
of the type cudaExternalSemaphoreHandleTypeNvSciSync, if the NvSciSyncAttrList used

to create the NvSciSyncObj had not set the flags in cudaDeviceGetNvSciSyncAttributes to
cudaNvSciSyncAttrSignal, this APl will return cudaErrorNotSupported.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeKeyedMutex,
cudakxternalSemaphoreHandleTypeKeyedMutexKmt, then the keyed mutex will be released
with the key specified in cudaExternalSemaphoreSignalParams::params::keyedmutex::key.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 103

Modules

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaWaitExternalSemaphoresAsync (const
cudaExternalSemaphore_t *extSemArray, const
cudaEkxternalSemaphoreWaitParams *paramsArray,
unsigned int numExtSems, cudaStream_t stream]

Waits on a set of external semaphore objects.

Parameters

extSemArray

- External semaphores to be waited on
paramsArray

- Array of semaphore parameters
numExtSems

- Number of semaphores to wait on
stream

- Stream to enqueue the wait operations in

Returns

cudaSuccess, cudaErrorinvalidResourceHandle cudaErrorTimeout

Description

Enqueues a wait operation on a set of externally allocated semaphore object in the specified
stream. The operations will be executed when all prior operations in the stream complete.

The exact semantics of waiting on a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeOpaquefd,
cudaExternalSemaphoreHandleTypeOpaqueWin32,
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt then waiting on the semaphore will
wait until the semaphore reaches the signaled state. The semaphore will then be reset to the
unsignaled state. Therefore for every signal operation, there can only be one wait operation.

If the semaphore object is any one of the following types:
cudakExternalSemaphoreHandleTypeD3D12Fence,
cudaExternalSemaphoreHandleTypeD3D11Fence,
cudakExternalSemaphoreHandleTypeTimelineSemaphoreFd,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 then waiting on the

CUDA Runtime API vRelease Version | 104

Modules

semaphore will wait until the value of the semaphore is greater than or equal to
cudakExternalSemaphoreWaitParams::params::fence::value.

If the semaphore object is of the type cudakExternalSemaphoreHandleTypeNvSciSync then,
waiting on the semaphore will wait until the
cudaExternalSemaphoreSignalParams::params::nvSciSync::fence is signaled by the
signaler of the NvSciSyncObj that was associated with this semaphore object. By

default, waiting on such an external semaphore object causes appropriate memory
synchronization operations to be performed over all external memory objects that

are imported as cudaExternalMemoryHandleTypeNvSciBuf. This ensures that any
subsequent accesses made by other importers of the same set of NvSciBuf memory
object(s) are coherent. These operations can be skipped by specifying the flag
cudakxternalSemaphoreWaitSkipNvSciBufMemSync, which can be used as a performance
optimization when data coherency is not required. But specifying this flag in scenarios
where data coherency is required results in undefined behavior. Also, for semaphore object
of the type cudaExternalSemaphoreHandleTypeNvSciSync, if the NvSciSyncAttrList used
to create the NvSciSyncObj had not set the flags in cudaDeviceGetNvSciSyncAttributes to
cudaNvSciSyncAttrWait, this APl will return cudaErrorNotSupported.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeKeyedMutex,
cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then the keyed

mutex will be acquired when it is released with the key specified in
cudaExternalSemaphoreSignalParams::params::keyedmutex::key or until the timeout
specified by cudaExternalSemaphoreSignalParams::params::keyedmutex::timeoutMs has
lapsed. The timeout interval can either be a finite value specified in milliseconds or an infinite
value. In case an infinite value is specified the timeout never elapses. The windows INFINITE
macro must be used to specify infinite timeout

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaSignalExternalSemaphoresAsync

CUDA Runtime API vRelease Version | 105

Modules

6.7. Execution Control

This section describes the execution control functions of the CUDA runtime application
programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
AP| Routines module.

__host_ _device_ cudaError_t
cudaFuncGetAttributes (cudaFuncAttributes *attr,
const void *func]

Find out attributes for a given function.

Parameters

attr

- Return pointer to function’s attributes
func

- Device function symbol

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

Description

This function obtains the attributes of a function specified via func. func is a

device function symbol and must be declared asa global function. The

fetched attributes are placed in attr. If the specified function does not exist, then
cudaErrorinvalidDeviceFunction is returned. For templated functions, pass the function
symbol as follows: func_name<template_arg_0,...,template_arg_N>

Note that some function attributes such as maxThreadsPerBlock may vary based on the device
that is currently being used.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

CUDA Runtime API vRelease Version | 106

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes [C++ API), cudalLaunchKernel [C
API), cuFuncGetAttribute

__host__cudaError_t cudaFuncSetAttribute (const
void *func, cudaFuncAttribute attr, int value]

Set attributes for a given function.

Parameters

func

- Function to get attributes of
attr

- Attribute to set
value

- Value to set

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidValue

Description

This function sets the attributes of a function specified via func. The parameter func must

be a pointer to a function that executes on the device. The parameter specified by func must
be declaredasa global function. The enumeration defined by attr is set to the value
defined by value. If the specified function does not exist, then cudaErrorinvalidDeviceFunction
is returned. If the specified attribute cannot be written, or if the value is incorrect, then
cudaErrorinvalidValue is returned.

Valid values for attr are:

» cudaFuncAttributeMaxDynamicSharedMemorySize - The requested maximum
size in bytes of dynamically-allocated shared memory. The sum of this value
and the function attribute sharedSizeBytes cannot exceed the device attribute
cudaDevAttrMaxSharedMemoryPerBlockOptin. The maximal size of requestable dynamic
shared memory may differ by GPU architecture.

CUDA Runtime API vRelease Version | 107

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g5e92a1b0d8d1b82cb00dcfb2de15961b

>

Modules

cudaFuncAttributePreferredSharedMemoryCarveout - On devices where the

L1 cache and shared memory use the same hardware resources, this sets the

shared memory carveout preference, in percent of the total shared memory. See
cudaDevAttrMaxSharedMemoryPerMultiprocessor. This is only a hint, and the driver can
choose a different ratio if required to execute the function.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C++ API), cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes (C

API),

host_ cudaError_t cudaFuncSetCacheConfig (const

void *func, cudaFuncCache cacheConfig]

Sets the preferred cache configuration for a device function.

Parameters

func

- Device function symbol

cacheConfig

- Requested cache configuration

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
sets through cacheConfig the preferred cache configuration for the function specified via
func. Thisis only a preference. The runtime will use the requested configuration if possible,
but it is free to choose a different configuration if required to execute func.

func is a device function symbol and must be declared asa global function.
If the specified function does not exist, then cudaErrorinvalidDeviceFunction

is returned. For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

CUDA Runtime API vRelease Version | 108

Modules

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes [C API), cudaLaunchKernel (C
API], cudaThreadGetCacheConfig, cudaThreadSetCacheConfig, cuFuncSetCacheConfig

__host__cudaError_t cudaFuncSetSharedMemConfig
[const void *func, cudaSharedMemConfig config)

Sets the shared memory configuration for a device function.

Parameters

func
- Device function symbol
config
- Requested shared memory configuration

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 109

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g40f8c11e81def95dc0072a375f965681

Modules

Description

On devices with configurable shared memory banks, this function will force all subsequent
launches of the specified device function to have the given shared memory bank size
configuration. On any given launch of the function, the shared memory configuration of the
device will be temporarily changed if needed to suit the function’s preferred configuration.
Changes in shared memory configuration between subsequent launches of functions, may
introduce a device side synchronization point.

Any per-function setting of shared memory bank size set via cudaFuncSetSharedMemConfig
will override the device wide setting set by cudaDeviceSetSharedMemConfig.

Changing the shared memory bank size will not increase shared memory usage or affect
occupancy of kernels, but may have major effects on performance. Larger bank sizes will
allow for greater potential bandwidth to shared memory, but will change what kinds of
accesses to shared memory will result in bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

The supported bank configurations are:
» cudaSharedMemBankSizeDefault: use the device's shared memory configuration when

launching this function.

> cudaSharedMemBankSizeFourByte: set shared memory bank width to be four bytes
natively when launching this function.

» cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight bytes
natively when launching this function.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 110

Modules

cudaDeviceSetSharedMemConfig, cudaDeviceGetSharedMemConfig,
cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaFuncSetCacheConfig,
cuFuncSetSharedMemConfig

__device_ void *cudaGetParameterBuffer (size t
alignment, size_t size)

Obtains a parameter buffer.

Parameters

alignment

- Specifies alignment requirement of the parameter buffer
size

- Specifies size requirement in bytes

Returns

Returns pointer to the allocated parameterBuffer

Description

Obtains a parameter buffer which can be filled with parameters for a kernel launch.
Parameters passed to cudalLaunchDevice must be allocated via this function.

This is a low level APl and can only be accessed from Parallel Thread Execution (PTX). CUDA
user code should use <<< >>> to launch kernels.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudalaunchDevice

__device_ void *cudaGetParameterBufferV2 (void
*func, dim3 gridDimension, dim3 blockDimension,
unsigned int sharedMemSize])

Launches a specified kernel.

Parameters

func
- Pointer to the kernel to be launched

CUDA Runtime API vRelease Version | 111

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g430b913f24970e63869635395df6d9f5

Modules

gridDimension

- Specifies grid dimensions
blockDimension

- Specifies block dimensions
sharedMemSize

- Specifies size of shared memory

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorLaunchMaxDepthExceeded,
cudaErrorinvalidConfiguration, cudaErrorStartupFailure,
cudaErrorLaunchPendingCountExceeded, cudaErrorLaunchOutOfResources

Description

Launches a specified kernel with the specified parameter buffer. A parameter buffer can be
obtained by calling cudaGetParameterBuffer(].

This is a low level APl and can only be accessed from Parallel Thread Execution (PTX). CUDA
user code should use <<< >>> to launch the kernels.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

Please refer to Execution Configuration and Parameter Buffer Layout from the CUDA
Programming Guide for the detailed descriptions of launch configuration and parameter layout
respectively.

See also:

cudaGetParameterBuffer

__host__cudaError_t cudaLaunchCooperativeKernel
(const void *func, dim3 gridDim, dim3 blockDim, void
**args, size_t sharedMem, cudaStream_t stream)

Launches a device function where thread blocks can cooperate and synchronize as they
execute.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions

CUDA Runtime API vRelease Version | 112

Modules

blockDim

- Block dimentions
args

- Arguments
sharedMem

- Shared memory
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudakErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorCooperativeLaunchToolarge, cudaErrorSharedObjectlnitFailed

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim. z) threads.

The device on which this kernel is invoked must have a non-zero value for the device attribute
cudaDevAttrCooperativeLaunch.

The total number of blocks launched cannot exceed the maximum number of blocks

per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount.

The kernel cannot make use of CUDA dynamic parallelism.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
fromargs[0] toargs[N - 1], pointto the region of memory from which the actual
parameter will be copied.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

sharedMem sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:

» This function uses standard default stream semantics.

» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 113

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchCooperativeKernel [C++ API], cudalaunchCooperativeKernelMultiDevice,
cuLaunchCooperativeKernel

__host__cudaError_t
cudaLaunchCooperativeKernelMultiDevice
(cudaLaunchParams *launchParamsList, unsigned int
numDevices, unsigned int flags]

Launches device functions on multiple devices where thread blocks can cooperate and
synchronize as they execute.

Parameters

launchParamsList

- List of launch parameters, one per device
numbDevices

- Size of the launchParamsList array
flags

- Flags to control launch behavior

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudakErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorCooperativeLaunchToolarge, cudaErrorSharedObjectlnitFailed

Description

Deprecated This function is deprecated as of CUDA 11.3.

Invokes kernels as specified in the launchParamsList array where each element of
the array specifies all the parameters required to perform a single kernel launch. These

kernels can cooperate and synchronize as they execute. The size of the array is specified by
numDevices.

CUDA Runtime API vRelease Version | 114

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g06d753134145c4584c0c62525c1894cb

Modules

No two kernels can be launched on the same device. All the devices targeted by this multi-
device launch must be identical. All devices must have a non-zero value for the device
attribute cudaDevAttrCooperativeMultiDeviceLaunch.

The same kernel must be launched on all devices. Note that any __device_ or __constant__
variables are independently instantiated on every device. It is the application’s responsiblity to
ensure these variables are initialized and used appropriately.

The size of the grids as specified in blocks, the size of the blocks themselves and the amount
of shared memory used by each thread block must also match across all launched kernels.

The streams used to launch these kernels must have been created via either
cudaStreamCreate or cudaStreamCreateWithPriority or cudaStreamCreateWithPriority. The
NULL stream or cudaStreamlegacy or cudaStreamPerThread cannot be used.

The total number of blocks launched per kernel cannot exceed the maximum number of
blocks per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount. Since
the total number of blocks launched per device has to match across all devices, the maximum
number of blocks that can be launched per device will be limited by the device with the least
number of multiprocessors.

The kernel cannot make use of CUDA dynamic parallelism.

The cudalLaunchParams structure is defined as:

r struct cudalLaunchParams

{

void *func;
dim3 gridDim;
dim3 blockDim;
void **args;
size t sharedMem;
cudaStream t
stream;
}i
where:

» cudalaunchParams::func specifies the kernel to be launched. This same functions must
be launched on all devices. For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....template_arg_N>

» cudalaunchParams::gridDim specifies the width, height and depth of the grid in blocks.
This must match across all kernels launched.

» cudalaunchParams::blockDim is the width, height and depth of each thread block. This
must match across all kernels launched.

» cudalaunchParams::args specifies the arguments to the kernel. If the kernel has N
parameters then cudalaunchParams::args should point to array of N pointers. Each
pointer, from cudaLaunchParams::args[0] t0 cudalaunchParams::args[N - 1],
point to the region of memory from which the actual parameter will be copied.

CUDA Runtime API vRelease Version | 115

Modules

» cudalaunchParams::sharedMem is the dynamic shared-memory size per thread block in
bytes. This must match across all kernels launched.

» cudalaunchParams::stream is the handle to the stream to perform the launch in. This
cannot be the NULL stream or cudaStreamLegacy or cudaStreamPerThread.

By default, the kernel won't begin execution on any GPU until all prior work in all the
specified streams has completed. This behavior can be overridden by specifying the flag
cudaCooperativeLaunchMultiDeviceNoPreSync. When this flag is specified, each kernel will
only wait for prior work in the stream corresponding to that GPU to complete before it begins
execution.

Similarly, by default, any subsequent work pushed in any of the specified streams will not
begin execution until the kernels on all GPUs have completed. This behavior can be overridden
by specifying the flag cudaCooperativeLaunchMultiDeviceNoPostSync. When this flag is
specified, any subsequent work pushed in any of the specified streams will only wait for

the kernel launched on the GPU corresponding to that stream to complete before it begins
execution.

Note:

» This function uses standard default stream semantics.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchCooperativeKernel [C++ API), cudalLaunchCooperativeKernel,
cuLaunchCooperativeKernelMultiDevice

CUDA Runtime API vRelease Version | 116

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g1d34025bc4f8fcec82fbcfc18d07a6e2

Modules

__host__cudaError_t cudalLaunchHostFunc
(cudaStream t stream, cudaHostFn t fn, void
*userData)

Engueues a host function call in a stream.

Parameters

stream
fn

- The function to call once preceding stream operations are complete
userData

- User-specified data to be passed to the function

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue,
cudakErrorNotSupported

Description

Enqueues a host function to run in a stream. The function will be called after currently
enqueued work and will block work added after it.

The host function must not make any CUDA API calls. Attempting to use a CUDA APl may
result in cudaErrorNotPermitted, but this is not required. The host function must not perform
any synchronization that may depend on outstanding CUDA work not mandated to run earlier.
Host functions without a mandated order (such as in independent streams) execute in
undefined order and may be serialized.

For the purposes of Unified Memory, execution makes a number of guarantees:

» The stream is considered idle for the duration of the function’s execution. Thus, for
example, the function may always use memory attached to the stream it was enqueued in.

» The start of execution of the function has the same effect as synchronizing an event
recorded in the same stream immediately prior to the function. It thus synchronizes
streams which have been “joined” prior to the function.

» Adding device work to any stream does not have the effect of making the stream active
until all preceding host functions and stream callbacks have executed. Thus, for example,
a function might use global attached memory even if work has been added to another
stream, if the work has been ordered behind the function call with an event.

» Completion of the function does not cause a stream to become active except as described
above. The stream will remain idle if no device work follows the function, and will remain
idle across consecutive host functions or stream callbacks without device work in

CUDA Runtime API vRelease Version | 117

Modules

between. Thus, for example, stream synchronization can be done by signaling from a host
function at the end of the stream.

Note that, in constrast to cuStreamAddCallback, the function will not be called in the event of
an error in the CUDA context.

Note:

» This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamDestroy, cudaMallocManaged, cudaStreamAttachMemAsync,
cudaStreamAddCallback, cuLaunchHostFunc

__host__cudaError_t cudaLaunchKernel (const void
*func, dim3 gridDim, dim3 blockDim, void **args,
size t sharedMem, cudaStream_t stream)

Launches a device function.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions
blockDim

- Block dimentions
args

- Arguments
sharedMem

- Shared memory
stream

- Stream identifier

CUDA Runtime API vRelease Version | 118

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g613d97a277d7640f4cb1c03bd51c2483
../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1gab95a78143bae7f21eebb978f91e7f3f

Modules

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudakErrorSharedObjectInitFailed, cudaErrorinvalidPtx, cudaErrorUnsupportedPtxVersion,
cudakErrorNoKernellmageForDevice, cudaErrorJitCompilerNotFound,
cudaErrorJitCompilationDisabled

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim. z) threads.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
fromargs[0] toargs[N - 117, pointto the region of memory from which the actual
parameter will be copied.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....template_arg_N>

sharedMemn sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchKernel [C++ API), cuLaunchKernel

CUDA Runtime API vRelease Version | 119

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1gb8f3dc3031b40da29d5f9a7139e52e15

Modules

__host_ _cudaError_t cudaSetDoubleForDevice
(double *d]

Converts a double argument to be executed on a device.

Parameters

d
- Double to convert

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 7.5

Converts the double value of d to an internal float representation if the device does not support
double arithmetic. If the device does natively support doubles, then this function does nothing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes (C API], cudaSetDoubleForHost

__host__cudaError_t cudaSetDoubleForHost (double

Converts a double argument after execution on a device.

Parameters

d
- Double to convert

CUDA Runtime API vRelease Version | 120

Modules

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 7.5

Converts the double value of d from a potentially internal float representation if the device
does not support double arithmetic. If the device does natively support doubles, then this
function does nothing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes [C API), cudaSetDoubleForDevice

6.8. Occupancy

This section describes the occupancy calculation functions of the CUDA runtime application
programming interface.

Besides the occupancy calculator functions
(cudaOccupancyMaxActiveBlocksPerMultiprocessor and
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags), there are also C++ only
occupancy-based launch configuration functions documented in C++ API Routines module.

See cudaOccupancyMaxPotentialBlockSize [C++ API), cudaOccupancyMaxPotentialBlockSize
(C++ APIJ), cudaOccupancyMaxPotentialBlockSizeVariableSMem [C+

+ API), cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API)
cudaOccupancyAvailableDynamicSMemPerBlock [C++ APIJ,

CUDA Runtime API vRelease Version | 121

Modules

__host__cudaError_t
cudaOccupancyAvailableDynamicSMemPerBlock
[size_t *dynamicSmemSize, const void *func, int
numBlocks, int blockSize)

Returns dynamic shared memory available per block when launching numBlocks blocks on
SM.

Parameters

dynamicSmemSize

- Returned maximum dynamic shared memory
func

- Kernel function for which occupancy is calculated
numBlocks

- Number of blocks to fit on SM
blockSize

- Size of the block

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorlnvalidValue, cudaErrorUnknown,

Description

Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow
numBlocks blocks per SM.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags,
cudaOccupancyMaxPotentialBlockSize [C++ API],

CUDA Runtime API vRelease Version | 122

Modules

cudaOccupancyMaxPotentialBlockSizeWithFlags [C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMem (C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C++ APIJ,
cudaOccupancyAvailableDynamicSMemPerBlock

__host _device cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessor
(int *numBlocks, const void *func, int blockSize, size t
dynamicSMemSize]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calculated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 123

Modules

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags,
cudaOccupancyMaxPotentialBlockSize (C++ API),
cudaOccupancyMaxPotentialBlockSizeWithFlags [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C+
+ APl), cudaOccupancyAvailableDynamicSMemPerBlock [C++ APIJ,
cuOccupancyMaxActiveBlocksPerMultiprocessor

__host__cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
(int *numBlocks, const void *func, int blockSize, size t
dynamicSMemSize, unsigned int flags)

Returns occupancy for a device function with the specified flags.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calculated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
flags

- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

The flags parameter controls how special cases are handled. Valid flags include:

» cudaOccupancyDefault: keeps the default behavior as
cudaOccupancyMaxActiveBlocksPerMultiprocessor

CUDA Runtime API vRelease Version | 124

../cuda-driver-api/cuda-driver-api/content/group__CUDA__OCCUPANCY.html#group__CUDA__OCCUPANCY_1gcc6e1094d05cba2cee17fe33ddd04a98

Modules

» cudaOccupancyDisableCachingOverride: This flag suppresses the default behavior
on platform where global caching affects occupancy. On such platforms, if caching is
enabled, but per-block SM resource usage would result in zero occupancy, the occupancy
calculator will calculate the occupancy as if caching is disabled. Setting this flag makes
the occupancy calculator to return 0 in such cases. More information can be found about
this feature in the "Unified L1/Texture Cache” section of the Maxwell tuning guide.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessor, cudaOccupancyMaxPotentialBlockSize
(C++ API), cudaOccupancyMaxPotentialBlockSizeWithFlags [C++

API), cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C+

+ API), cudaOccupancyAvailableDynamicSMemPerBlock [C++ APIJ,
cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

6.9. Memory Management

This section describes the memory management functions of the CUDA runtime application
programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

CUDA Runtime API vRelease Version | 125

../cuda-driver-api/cuda-driver-api/content/group__CUDA__OCCUPANCY.html#group__CUDA__OCCUPANCY_1g8f1da4d4983e5c3025447665423ae2c2

Modules

__host__cudaError_t cudaArrayGetlnfo
(cudaChannelFormatDesc *desc, cudaExtent *extent,
unsigned int *flags, cudaArray_t array)

Gets info about the specified cudaArray.

Parameters

desc
- Returned array type
extent
- Returned array shape. 2D arrays will have depth of zero
flags
- Returned array flags
array
- The cudaArray to get info for

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Returns in *desc, *extent and *flags respectively, the type, shape and flags of array.

Any of *desc, *extent and *flags may be specified as NULL.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuArrayGetDescriptor, cuArray3DGetDescriptor

CUDA Runtime API vRelease Version | 126

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g661fe823dbd37bf11f82a71bd4762acf
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb58549f2f3f390b9e0e7c8f3acd53857

Modules

__host__cudaError_t cudaArrayGetPlane
(cudaArray_t *pPlaneArray, cudaArray_t hArray,

unsigned int planeldx]
Gets a CUDA array plane from a CUDA array.

Parameters
pPlaneArray
- Returned CUDA array referenced by the planeIdx
hArray
- CUDA array
planeldx
- Plane index

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidResourceHandle

Description

Returns in pPlaneArray a CUDA array that represents a single format plane of the CUDA
array hArray.

If planeIdx is greater than the maximum number of planes in this array or if the array does
not have a multi-planar format e.g: cudaChannelFormatKindNV12, then cudaErrorinvalidValue
Is returned.

Note that if the hArray has format cudaChannelFormatKindNV12, then passing in O for
planeIdx returns a CUDA array of the same size as hArray but with one 8-bit channel and
cudaChannelFormatKindUnsigned as its format kind. If 1 is passed for planeIdx, then the
returned CUDA array has half the height and width of hArray with two 8-bit channels and
cudaChannelFormatKindUnsigned as its format kind.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cuArrayGetPlane

CUDA Runtime API vRelease Version | 127

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge66ce245a1e3802f9ccc3583cec6b71f

Modules

__host__cudaError_t cudaArrayGetSparseProperties
(cudaArraySparseProperties *sparseProperties,
cudaArray_t array)

Returns the layout properties of a sparse CUDA array.

Parameters

sparseProperties

- Pointer to return the cudaArraySparseProperties
array

- The CUDA array to get the sparse properties of

Returns

cudaSuccess cudaErrorinvalidValue

Description

Returns the layout properties of a sparse CUDA array in sparseProperties. If the CUDA
array is not allocated with flag cudaArraySparse cudaErrorinvalidValue will be returned.

If the returned value in cudaArraySparseProperties::flags contains
cudaArraySparsePropertiesSingleMipTail, then cudaArraySparseProperties::miptailSize
represents the total size of the array. Otherwise, it will be zero. Also, the returned value in
cudaArraySparseProperties::miptailFirstLevel is always zero. Note that the array must have
been allocated using cudaMallocArray or cudaMalloc3DArray. For CUDA arrays obtained

using cudaMipmappedArrayGetLevel, cudaErrorinvalidValue will be returned. Instead,
cudaMipmappedArrayGetSparseProperties must be used to obtain the sparse properties of the
entire CUDA mipmapped array to which array belongs to.

See also:

cudaMipmappedArrayGetSparseProperties, cuMemMapArrayAsync

__host_ device_ cudaError_t cudaFree (void
*devPtr]

Frees memory on the device.

Parameters

devPtr
- Device pointer to memory to free

CUDA Runtime API vRelease Version | 128

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the memory space pointed to by devPtr, which must have been returned by a previous
call to cudaMalloc(] or cudaMallocPitch(]. Otherwise, or if cudaFree(devPtr) has already
been called before, an error is returned. If devPtr is 0, no operation is performed. cudaFree
returns cudaErrorValue in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API,
and vice versa.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocArray, cudaFreeArray, cudaMallocHost [C AP,
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemFree

__host__cudaError_t cudaFreeArray (cudaArray_t
array)

Frees an array on the device.

Parameters

array
- Pointer to array to free

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 129

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g89b3f154e17cc89b6eea277dbdf5c93a

Modules

Description

Frees the CUDA array array, which must have been returned by a previous call to
cudaMallocArray(). If devPtr is 0, no operation is performed.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaMallocHost [C APIJ,
cudaFreeHost, cudaHostAlloc, cuArrayDestroy

__host__cudaError_t cudaFreeHost (void *ptr)

Frees page-locked memory.

Parameters

ptr
- Pointer to memory to free

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the memory space pointed to by hostPtr, which must have been returned by a
previous call to cudaMallocHost() or cudaHostAlloc().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 130

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g982878affbbc023de84874faac838b0b

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost (C
API), cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemFreeHost

__host__cudaError_t cudaFreeMipmappedArray
(cudaMipmappedArray_t mipmappedArray])

Frees a mipmapped array on the device.

Parameters

mipmappedArray
- Pointer to mipmapped array to free

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the CUDA mipmapped array mipmappedArray, which must have been returned by a
previous call to cudaMallocMipmappedArray(]. If devPtr is 0, no operation is performed.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaMallocHost [C API),
cudaFreeHost, cudaHostAlloc, cuMipmappedArrayDestroy

CUDA Runtime API vRelease Version | 131

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g62e0fdbe181dab6b1c90fa1a51c7b92c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge0d7c768b6a6963c4d4bde5bbc74f0ad

Modules

__host__cudaError_t cudaGetMipmappedArrayLevel
(cudaArray_t *levelArray,
cudaMipmappedArray_const_t mipmappedArray,

unsigned int level)
Gets a mipmap level of a CUDA mipmapped array.

Parameters

levelArray

- Returned mipmap level CUDA array
mipmappedArray

- CUDA mipmapped array
level

- Mipmap level

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidResourceHandle

Description

Returnsin *levelArray a CUDA array that represents a single mipmap level of the CUDA
mipmapped array mipmappedArray.

If level is greater than the maximum number of levels in this mipmapped array,
cudaErrorinvalidValue is returned.

If mipmappedArray is NULL, cudaErrorinvalidResourceHandle is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API], cudaFreeHost, cudaHostAlloc, make cudaExtent, cuMipmappedArrayGetLevel

CUDA Runtime API vRelease Version | 132

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g82f276659f05be14820e99346b0f86b7

Modules

__host__cudaError_t cudaGetSymbolAddress (void

**devPtr, const void *symbol]
Finds the address associated with a CUDA symbol.

Parameters

devPtr

- Return device pointer associated with symbol
symbol

- Device symbol address

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *devPtr the address of symbol symbol on the device. symbol is a variable that
resides in global or constant memory space. If symbol cannot be found, or if symbol is

not declared in the global or constant memory space, *devPtr is unchanged and the error
cudakrrorinvalidSymbol is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetSymbolAddress [C++ API), cudaGetSymbolSize [C API), cuModuleGetGlobal

CUDA Runtime API vRelease Version | 133

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1gf3e43672e26073b1081476dbf47a86ab

Modules

__host__cudaError_t cudaGetSymbolSize (size_t

*size, const void *symbol)
Finds the size of the object associated with a CUDA symbol.

Parameters
size

- Size of object associated with symbol
symbol

- Device symbol address

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *size the size of symbol symbol. symbol is a variable that resides in global or
constant memory space. If symbol cannot be found, or if symbol is not declared in global
or constant memory space, *size is unchanged and the error cudaErrorinvalidSymbol is
returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetSymbolAddress [C API), cudaGetSymbolSize (C++ API), cuModuleGetGlobal

CUDA Runtime API vRelease Version | 134

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1gf3e43672e26073b1081476dbf47a86ab

Modules

__host__cudaError_t cudaHostAlloc (void **pHost,
size_t size, unsigned int flags)

Allocates page-locked memory on the host.

Parameters

pHost
- Device pointer to allocated memory
size
- Requested allocation size in bytes
flags
- Requested properties of allocated memory

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device.

The driver tracks the virtual memory ranges allocated with this function and automatically
accelerates calls to functions such as cudaMemcpyl). Since the memory can be accessed
directly by the device, it can be read or written with much higher bandwidth than pageable
memory obtained with functions such as malloc(). Allocating excessive amounts of pinned
memory may degrade system performance, since it reduces the amount of memory available
to the system for paging. As a result, this function is best used sparingly to allocate staging
areas for data exchange between host and device.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaHostAllocDefault: This flag's value is defined to be 0 and causes cudaHostAlloc(] to
emulate cudaMallocHost().

> cudaHostAllocPortable: The memory returned by this call will be considered as pinned
memory by all CUDA contexts, not just the one that performed the allocation.

» cudaHostAllocMapped: Maps the allocation into the CUDA address space. The device
pointer to the memory may be obtained by calling cudaHostGetDevicePointer(].

» cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC). WC
memory can be transferred across the PCI Express bus more quickly on some system
configurations, but cannot be read efficiently by most CPUs. WC memory is a good option
for buffers that will be written by the CPU and read by the device via mapped pinned
memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is
portable, mapped and/or write-combined with no restrictions.

CUDA Runtime API vRelease Version | 135

Modules

In order for the cudaHostAllocMapped flag to have any effect, the CUDA context must
support the cudaDeviceMapHost flag, which can be checked via cudaGetDeviceFlags(). The
cudaDeviceMapHost flag is implicitly set for contexts created via the runtime API.

The cudaHostAllocMapped flag may be specified on CUDA contexts for devices that do not
support mapped pinned memory. The failure is deferred to cudaHostGetDevicePointer(]
because the memory may be mapped into other CUDA contexts via the cudaHostAllocPortable
flag.

Memory allocated by this function must be freed with cudaFreeHost(].

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaSetDeviceFlags, cudaMallocHost [C API), cudaFreeHost, cudaGetDeviceFlags,
cuMemHostAlloc

__host__cudaError_t cudaHostGetDevicePointer (void
**pDevice, void *pHost, unsigned int flags)

Passes back device pointer of mapped host memory allocated by cudaHostAlloc or registered
by cudaHostRegister.

Parameters

pDevice

- Returned device pointer for mapped memory
pHost

- Requested host pointer mapping
flags

- Flags for extensions (must be 0 for now

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

CUDA Runtime API vRelease Version | 136

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g572ca4011bfcb25034888a14d4e035b9

Modules

Description

Passes back the device pointer corresponding to the mapped, pinned host buffer allocated by
cudaHostAlloc() or registered by cudaHostRegister().

cudaHostGetDevicePointer(] will fail if the cudaDeviceMapHost flag was not specified before
deferred context creation occurred, or if called on a device that does not support mapped,
pinned memory.

For devices that have a non-zero value for the device attribute
cudaDevAttrCanUseHostPointerForRegisteredMem, the memory can also be accessed

from the device using the host pointer pHost. The device pointer returned by
cudaHostGetDevicePointer() may or may not match the original host pointer pHost

and depends on the devices visible to the application. If all devices visible to the

application have a non-zero value for the device attribute, the device pointer returned by
cudaHostGetDevicePointer() will match the original pointer pHost. If any device visible

to the application has a zero value for the device attribute, the device pointer returned by
cudaHostGetDevicePointer() will not match the original host pointer pHost, but it will be
suitable for use on all devices provided Unified Virtual Addressing is enabled. In such systems,
it is valid to access the memory using either pointer on devices that have a non-zero value for
the device attribute. Note however that such devices should access the memory using only of
the two pointers and not both.

flags provides for future releases. For now, it must be set to 0.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaSetDeviceFlags, cudaHostAlloc, cuMemHostGetDevicePointer

CUDA Runtime API vRelease Version | 137

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g57a39e5cba26af4d06be67fc77cc62f0

Modules

__host__cudaError_t cudaHostGetFlags (unsigned int
*pFlags, void *pHost)

Passes back flags used to allocate pinned host memory allocated by cudaHostAlloc.

Parameters

pFlags

- Returned flags word
pHost

- Host pointer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

cudaHostGetFlags(] will fail if the input pointer does not reside in an address range allocated
by cudaHostAlloc(].

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaHostAlloc, cuMemHostGetFlags

__host__cudaError_t cudaHostRegister (void *ptr,
size_t size, unsigned int flags]

Registers an existing host memory range for use by CUDA.

Parameters

ptr
- Host pointer to memory to page-lock

CUDA Runtime API vRelease Version | 138

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g42066246915fcb0400df2a17a851b35f

Modules

size

- Size in bytes of the address range to page-lock in bytes
flags

- Flags for allocation request

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation,
cudaErrorHostMemoryAlreadyReqgistered, cudaErrorNotSupported

Description

Page-locks the memory range specified by ptr and size and maps it for the device(s) as
specified by flags. This memory range also is added to the same tracking mechanism as
cudaHostAlloc() to automatically accelerate calls to functions such as cudaMemcpy(]. Since
the memory can be accessed directly by the device, it can be read or written with much higher
bandwidth than pageable memory that has not been registered. Page-locking excessive
amounts of memory may degrade system performance, since it reduces the amount of
memory available to the system for paging. As a result, this function is best used sparingly to
register staging areas for data exchange between host and device.

cudaHostRegister is supported only on 1/0 coherent devices that have a non-zero value for the
device attribute cudaDevAttrHostRegisterSupported.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaHostRegisterDefault: On a system with unified virtual addressing, the memory will be
both mapped and portable. On a system with no unified virtual addressing, the memory will
be neither mapped nor portable.

» cudaHostRegisterPortable: The memory returned by this call will be considered as pinned
memory by all CUDA contexts, not just the one that performed the allocation.

» cudaHostRegisterMapped: Maps the allocation into the CUDA address space. The device
pointer to the memory may be obtained by calling cudaHostGetDevicePointer(].

» cudaHostRegisterloMemory: The passed memory pointer is treated as pointing to some
memory-mapped |/0 space, e.g. belonging to a third-party PCle device, and it will marked
as non cache-coherent and contiguous.

» cudaHostRegisterReadOnly: The passed memory pointer is treated as pointing
to memory that is considered read-only by the device. On platforms without
cudaDevAttrPageableMemoryAccessUsesHostPageTables, this flag is required in order to
register memory mapped to the CPU as read-only. Support for the use of this flag can be
queried from the device attribute cudaDeviceAttrReadOnlyHostRegisterSupported. Using
this flag with a current context associated with a device that does not have this attribute
set will cause cudaHostRegister to error with cudakrrorNotSupported.

CUDA Runtime API vRelease Version | 139

Modules

All of these flags are orthogonal to one another: a developer may page-lock memory that is
portable or mapped with no restrictions.

The CUDA context must have been created with the cudaMapHost flag in order for the
cudaHostRegisterMapped flag to have any effect.

The cudaHostRegisterMapped flag may be specified on CUDA contexts for

devices that do not support mapped pinned memory. The failure is deferred to
cudaHostGetDevicePointer() because the memory may be mapped into other CUDA contexts
via the cudaHostRegisterPortable flag.

For devices that have a non-zero value for the device attribute
cudaDevAttrCanUseHostPointerForRegisteredMem, the memory can also be

accessed from the device using the host pointer ptr. The device pointer returned by
cudaHostGetDevicePointer() may or may not match the original host pointer ptr and depends
on the devices visible to the application. If all devices visible to the application have a non-zero
value for the device attribute, the device pointer returned by cudaHostGetDevicePointer(] will
match the original pointer ptr. If any device visible to the application has a zero value for the
device attribute, the device pointer returned by cudaHostGetDevicePointer(] will not match the
original host pointer ptr, but it will be suitable for use on all devices provided Unified Virtual
Addressing is enabled. In such systems, it is valid to access the memory using either pointer
on devices that have a non-zero value for the device attribute. Note however that such devices
should access the memory using only of the two pointers and not both.

The memory page-locked by this function must be unregistered with cudaHostUnregister().

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaHostUnreqister, cudaHostGetFlags, cudaHostGetDevicePointer, cuMemHostReqgister

CUDA Runtime API vRelease Version | 140

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf0a9fe11544326dabd743b7aa6b54223

Modules

__host__cudaError_t cudaHostUnregister (void *ptr)

Unregisters a memory range that was registered with cudaHostRegister.

Parameters

ptr
- Host pointer to memory to unregister

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorHostMemoryNotRegistered

Description

Unmaps the memory range whose base address is specified by ptr, and makes it pageable
again.

The base address must be the same one specified to cudaHostRegister().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaHostUnregister, cuMemHostUnreqgister

__host device_ cudaError_t cudaMalloc (void
**devPtr, size t size)

Allocate memory on the device.

Parameters

devPtr

- Pointer to allocated device memory
size

- Requested allocation size in bytes

CUDA Runtime API vRelease Version | 141

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g63f450c8125359be87b7623b1c0b2a14

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to
the allocated memory. The allocated memory is suitably aligned for any kind of variable. The
memory is not cleared. cudaMalloc() returns cudaErrorMemoryAllocation in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API,
and vice versa.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMallocPitch, cudaFree, cudaMallocArray, cudafFreeArray, cudaMalloc3D,
cudaMalloc3DArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc, cuMemAlloc

__host__cudaError_t cudaMalloc3D (cudaPitchedPtr
*pitchedDevPtr, cudaExtent extent]

Allocates logical 1D, 2D, or 3D memory objects on the device.

Parameters

pitchedDevPtr

- Pointer to allocated pitched device memory
extent

- Requested allocation size (width field in bytes)

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

CUDA Runtime API vRelease Version | 142

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb82d2a09844a58dd9e744dc31e8aa467

Modules

Description

Allocates at least width * height * depth bytes of linear memory on the device and returns
a cudaPitchedPtr in which ptr is a pointer to the allocated memory. The function may pad
the allocation to ensure hardware alignment requirements are met. The pitch returned in the
pitch field of pitchedDevPtr is the width in bytes of the allocation.

The returned cudaPitchedPtr contains additional fields xsize and ysize, the logical
width and height of the allocation, which are equivalent to the width and height extent
parameters provided by the programmer during allocation.

For allocations of 2D and 3D objects, it is highly recommended that programmers perform
allocations using cudaMalloc3D() or cudaMallocPitch(). Due to alignment restrictions in the
hardware, this is especially true if the application will be performing memory copies involving
2D or 3D objects (whether linear memory or CUDA arrays).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMallocPitch, cudaFree, cudaMemcpy3D, cudaMemset3D, cudaMalloc3DArray,
cudaMallocArray, cudaFreeArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc,
make cudaPitchedPtr, make cudaExtent, cuMemAllocPitch

__host__cudaError_t cudaMalloc3DArray
(cudaArray_t *array, const cudaChannelFormatDesc
*desc, cudaExtent extent, unsigned int flags)

Allocate an array on the device.

Parameters

array

- Pointer to allocated array in device memory
desc

- Requested channel format

CUDA Runtime API vRelease Version | 143

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gcbe9b033f6c4de80f63cc6e58ed9a45a

Modules

extent

- Requested allocation size (width field in elements)
flags

- Flags for extensions

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns
a handle to the new CUDA array in *array.

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int x, y, 2z, w;
enum cudaChannelFormatKind
£;

}i
where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMalloc3DArray() can allocate the following:

A 1D array is allocated if the height and depth extents are both zero.
A 2D array is allocated if only the depth extent is zero.

A 3D array is allocated if all three extents are non-zero.

vV v v VY

A 1D layered CUDA array is allocated if only the height extent is zero and the
cudaArraylayered flag is set. Each layer is a 1D array. The number of layers is determined
by the depth extent.

» A 2D layered CUDA array is allocated if all three extents are non-zero and the
cudaArraylayered flag is set. Each layer is a 2D array. The number of layers is determined
by the depth extent.

» A cubemap CUDA array is allocated if all three extents are non-zero and the
cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. A
cubemap is a special type of 2D layered CUDA array, where the six layers represent the
six faces of a cube. The order of the six layers in memory is the same as that listed in
cudaGraphicsCubeFace.

> A cubemap layered CUDA array is allocated if all three extents are non-zero, and both,
cudaArrayCubemap and cudaArraylLayered flags are set. Width must be equal to height,
and depth must be a multiple of six. A cubemap layered CUDA array is a special type of 2D
layered CUDA array that consists of a collection of cubemaps. The first six layers represent
the first cubemap, the next six layers form the second cubemap, and so on.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

CUDA Runtime API vRelease Version | 144

Modules

» cudaArrayDefault: This flag's value is defined to be 0 and provides default array allocation

» cudaArraylLayered: Allocates a layered CUDA array, with the depth extent indicating the
number of layers

» cudaArrayCubemap: Allocates a cubemap CUDA array. Width must be equal to height, and
depth must be six. If the cudaArraylLayered flag is also set, depth must be a multiple of six.

» cudaArraySurfaceloadStore: Allocates a CUDA array that could be read from or written to
using a surface reference.

» cudaArrayTextureGather: This flag indicates that texture gather operations will be
performed on the CUDA array. Texture gather can only be performed on 2D CUDA arrays.

» cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by calling
cuMemMapArrayAsync. This flag can only be used for creating 2D, 3D or 2D layered sparse
CUDA arrays. The physical backing memory must be allocated via cuMemCreate.

The width, height and depth extents must meet certain size requirements as listed in the
following table. All values are specified in elements.

Note that 2D CUDA arrays have different size requirements if the cudaArrayTextureGather flag
is set. In that case, the valid range for (width, height, depth) is ((1,maxTexture2DGather[0]),
(1,maxTexture2DGather[1]], 0).

Valid extents with
Valid extents that must always be met cudaArraySurfaceLoadStore set
CUDA array {(width range in elements), (height {(width range in elements), (height

type range), (depth range)} range), (depth range)}
1D { (1,maxTexture1D), 0,0} { (1,maxSurface1D), 0,0}
2D { (1,maxTexture2DI[0]), { (1,maxSurface2D[0]),
(1,maxTexture2DI[1]), 0} (1,maxSurface2D[1]), 0}
3D { (1,maxTexture3D[0]), { (1,maxSurface3DI[0]),
(1,maxTexture3D[1]), (1,maxTexture3D[2]) } (1,maxSurface3D[1]),
OR { (1,maxTexture3DALt[0]), (1,maxSurface3D[2]) }

(1,maxTexture3DALt[1]),
(1,maxTexture3DALt[2]) }

1D Layered {(1,maxTexture1DLayered[0]), 0, { (1,maxSurface1DLayered[0]), 0,
(1,maxTexture1DLayered[1]) } (1,maxSurface1DLayered[1]) }
2D Layered | {(1,maxTexture2DLayered[0]), { (1,maxSurface2DLayered[0]),
(1,maxTexture2DLayered[1]), (1,maxSurface2DLayered[1]),
(1,maxTexture2DLayered[2]) } (1,maxSurface2DLayered(2]) }
Cubemap { (1,maxTextureCubemap), { (1,maxSurfaceCubemap),
(1, maxTextureCubemap), 6 } (1,maxSurfaceCubemap), 6}

CUDA Runtime API vRelease Version | 145

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c

Modules

Valid extents with
Valid extents that must always be met cudaArraySurfaceLoadStore set
CUDA array {(width range in elements), (height {(width range in elements), (height

type range), (depth range)} range), (depth range)}
Cubemap { (1,maxTextureCubemaplayered[0]), { (1,maxSurfaceCubemaplayered[0]),
Layered (1, maxTextureCubemaplayered[0]), (1,maxSurfaceCubemaplayered[0]),
(1,maxTextureCubemapLayered[1]] } (1,maxSurfaceCubemaplayered[1]) }
Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API), cudaFreeHost, cudaHostAlloc, make cudaExtent, cuArray3DCreate

__host__cudaError_t cudaMallocArray (cudaArray _t
*array, const cudaChannelFormatDesc *desc, size_t
width, size_t height, unsigned int flags])

Allocate an array on the device.

Parameters

array
- Pointer to allocated array in device memory
desc
- Requested channel format
width
- Requested array allocation width
height
- Requested array allocation height
flags
- Requested properties of allocated array

CUDA Runtime API vRelease Version | 146

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gc2322c70b38c2984536c90ed118bb1d7

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns
a handle to the new CUDA array in *array.

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int x, y, 2z, w;
enum cudaChannelFormatKind
£;

i
where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaArrayDefault: This flag's value is defined to be 0 and provides default array allocation

» cudaArraySurfaceloadStore: Allocates an array that can be read from or written to using a
surface reference

> cudaArrayTextureGather: This flag indicates that texture gather operations will be
performed on the array.

» cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by
calling cuMemMapArrayAsync. The physical backing memory must be allocated via
cuMemCreate.

width and height must meet certain size requirements. See cudaMalloc3DArray(] for more
details.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 147

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c

cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C AP,
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuArrayCreate

__host__cudaError_t cudaMallocHost (void **ptr,
size t size)

Allocates page-locked memory on the host.

Parameters

ptr

- Pointer to allocated host memory
size

- Requested allocation size in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device.

Modules

The driver tracks the virtual memory ranges allocated with this function and automatically
accelerates calls to functions such as cudaMemcpy*(). Since the memory can be accessed
directly by the device, it can be read or written with much higher bandwidth than pageable
memory obtained with functions such as malloc(). Allocating excessive amounts of memory
with cudaMallocHost() may degrade system performance, since it reduces the amount of
memory available to the system for paging. As a result, this function is best used sparingly to

allocate staging areas for data exchange between host and device.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.
> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocArray, cudaMalloc3D, cudaMalloc3DArray,
cudaHostAlloc, cudaFree, cudaFreeArray, cudaMallocHost [C++ API), cudaFreeHost,
cudaHostAlloc, cuMemAllocHost

CUDA Runtime API vRelease Version | 148

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4192ff387a81c3bd5ed8c391ed62ca24
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gdd8311286d2c2691605362c689bc64e0

Modules

__host__cudaError_t cudaMallocManaged (void
**devPtr, size_t size, unsigned int flags]

Allocates memory that will be automatically managed by the Unified Memory system.

Parameters

devPtr
- Pointer to allocated device memory
size
- Requested allocation size in bytes
flags
- Must be either cudaMemAttachGlobal or cudaMemAttachHost (defaults to
cudaMemAttachGlobal)

Returns

cudaSuccess, cudaErrorMemoryAllocation, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Allocates size bytes of managed memory on the device and returns in *devPtr a pointer
to the allocated memory. If the device doesn't support allocating managed memory,
cudaErrorNotSupported is returned. Support for managed memory can be queried using the
device attribute cudaDevAttrManagedMemory. The allocated memory is suitably aligned for
any kind of variable. The memory is not cleared. If size is 0, cudaMallocManaged returns
cudaErrorinvalidValue. The pointer is valid on the CPU and on all GPUs in the system that
support managed memory. All accesses to this pointer must obey the Unified Memory
programming model.

flags specifies the default stream association for this allocation. f1ags must be

one of cudaMemAttachGlobal or cudaMemAttachHost. The default value for flags is
cudaMemAttachGlobal. If cudaMemAttachGlobal is specified, then this memory is accessible
from any stream on any device. If cudaMemAttachHost is specified, then the allocation
should not be accessed from devices that have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess; an explicit call to cudaStreamAttachMemAsync will
be required to enable access on such devices.

If the association is later changed via cudaStreamAttachMemAsync to a single stream,

the default association, as specifed during cudaMallocManaged, is restored when that
stream is destroyed. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

Memory allocated with cudaMallocManaged should be released with cudaFree.

CUDA Runtime API vRelease Version | 149

Modules

Device memory oversubscription is possible for GPUs that have a non-zero value for the device
attribute cudaDevAttrConcurrentManagedAccess. Managed memory on such GPUs may be
evicted from device memory to host memory at any time by the Unified Memory driver in order
to make room for other allocations.

In a multi-GPU system where all GPUs have a non-zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, managed memory may not be populated when this
APl returns and instead may be populated on access. In such systems, managed memory
can migrate to any processor's memory at any time. The Unified Memory driver will employ
heuristics to maintain data locality and prevent excessive page faults to the extent possible.
The application can also guide the driver about memory usage patterns via cudaMemAdvise.
The application can also explicitly migrate memory to a desired processor’'s memory via
cudaMemPrefetchAsync.

In @ multi-GPU system where all of the GPUs have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess and all the GPUs have peer-to-peer support with
each other, the physical storage for managed memory is created on the GPU which is active
at the time cudaMallocManaged is called. All other GPUs will reference the data at reduced
bandwidth via peer mappings over the PCle bus. The Unified Memory driver does not migrate
memory among such GPUs.

In @ multi-GPU system where not all GPUs have peer-to-peer support with each other and
where the value of the device attribute cudaDevAttrConcurrentManagedAccess is zero for
at least one of those GPUs, the location chosen for physical storage of managed memory is
system-dependent.

» On Linux, the location chosen will be device memory as long as the current set of active
contexts are on devices that either have peer-to-peer support with each other or have a
non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. If there
is an active context on a GPU that does not have a non-zero value for that device attribute
and it does not have peer-to-peer support with the other devices that have active contexts
on them, then the location for physical storage will be ‘zero-copy’ or host memory. Note
that this means that managed memory that is located in device memory is migrated to
host memory if a new context is created on a GPU that doesn’t have a non-zero value
for the device attribute and does not support peer-to-peer with at least one of the other
devices that has an active context. This in turn implies that context creation may fail if
there is insufficient host memory to migrate all managed allocations.

» On Windows, the physical storage is always created in ‘zero-copy’ or host memory.
All GPUs will reference the data at reduced bandwidth over the PCle bus. In these
circumstances, use of the environment variable CUDA_VISIBLE _DEVICES is recommended
to restrict CUDA to only use those GPUs that have peer-to-peer support. Alternatively,
users can also set CUDA_MANAGED _FORCE_DEVICE_ALLOC to a non-zero value
to force the driver to always use device memory for physical storage. When this
environment variable is set to a non-zero value, all devices used in that process that
support managed memory have to be peer-to-peer compatible with each other. The error
cudaErrorinvalidDevice will be returned if a device that supports managed memory is used

CUDA Runtime API vRelease Version | 150

Modules

and it is not peer-to-peer compatible with any of the other managed memory supporting
devices that were previously used in that process, even if cudaDeviceReset has been called
on those devices. These environment variables are described in the CUDA programming
guide under the "CUDA environment variables” section.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMalloc3D,
cudaMalloc3DArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc,
cudaDeviceGetAttribute, cudaStreamAttachMemAsync, cuMemAllocManaged

__host__cudaError_t cudaMallocMipmappedArray
(cudaMipmappedArray_t *mipmappedArray, const

cudaChannelFormatDesc *desc, cudaExtent extent,
unsigned int numLevels, unsigned int flags]

Allocate a mipmapped array on the device.

Parameters

mipmappedArray

- Pointer to allocated mipmapped array in device memory
desc

- Requested channel format
extent

- Requested allocation size (width field in elements]
numLevels

- Number of mipmap levels to allocate
flags

- Flags for extensions

CUDA Runtime API vRelease Version | 151

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb347ded34dc326af404aa02af5388a32

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA mipmapped array according to the cudaChannelFormatDesc structure desc
and returns a handle to the new CUDA mipmapped array in *mipmappedArray. numLevels

specifies the number of mipmap levels to be allocated. This value is clamped to the range [1, 1

+ floor(log2(max(width, height, depth]]]].

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int x, y, 2z, w;
enum cudaChannelFormatKind
i£g

i
where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMallocMipmappedArray(] can allocate the following:

A 1D mipmapped array is allocated if the height and depth extents are both zero.
A 2D mipmapped array is allocated if only the depth extent is zero.

A 3D mipmapped array is allocated if all three extents are non-zero.

vV v v Vv

A 1D layered CUDA mipmapped array is allocated if only the height extent is zero and the
cudaArraylayered flag is set. Each layer is a 1D mipmapped array. The number of layers is
determined by the depth extent.

» A 2D layered CUDA mipmapped array is allocated if all three extents are non-zero and the
cudaArraylayered flag is set. Each layer is a 2D mipmapped array. The number of layers is
determined by the depth extent.

» A cubemap CUDA mipmapped array is allocated if all three extents are non-zero and the
cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. The
order of the six layers in memory is the same as that listed in cudaGraphicsCubeFace.

» A cubemap layered CUDA mipmapped array is allocated if all three extents are non-zero,
and both, cudaArrayCubemap and cudaArraylLayered flags are set. Width must be equal to
height, and depth must be a multiple of six. A cubemap layered CUDA mipmapped array
is a special type of 2D layered CUDA mipmapped array that consists of a collection of
cubemap mipmapped arrays. The first six layers represent the first cubemap mipmapped
array, the next six layers form the second cubemap mipmapped array, and so on.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaArrayDefault: This flag's value is defined to be 0 and provides default mipmapped
array allocation

CUDA Runtime API vRelease Version | 152

Modules

> cudaArrayl ayered: Allocates a layered CUDA mipmapped array, with the depth extent
indicating the number of layers

» cudaArrayCubemap: Allocates a cubemap CUDA mipmapped array. Width must be equal
to height, and depth must be six. If the cudaArraylLayered flag is also set, depth must be a
multiple of six.

» cudaArraySurfaceloadStore: This flag indicates that individual mipmap levels of the CUDA
mipmapped array will be read from or written to using a surface reference.

» cudaArrayTextureGather: This flag indicates that texture gather operations will be
performed on the CUDA array. Texture gather can only be performed on 2D CUDA
mipmapped arrays, and the gather operations are performed only on the most detailed
mipmap level.

» cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by calling
cuMemMapArrayAsync. This flag can only be used for creating 2D, 3D or 2D layered
sparse CUDA mipmapped arrays. The physical backing memory must be allocated via
cuMemCreate.

The width, height and depth extents must meet certain size requirements as listed in the
following table. All values are specified in elements.

Valid extents with
Valid extents that must always be met | cudaArraySurfacelLoadStore set
CUDA array {(width range in elements), (height {(width range in elements), (height

type range), ([depth range)} range), (depth range)}
1D { [1,maxTexture1DMipmap), 0, 0 } { (1,maxSurface1D), 0,0}
2D { (1,maxTexture2DMipmapl0]), { (1,maxSurface2DI0]),
(1,maxTexture2DMipmapl[1]), 0 } (1,maxSurface2D[1]), 0 }
3D { (1, maxTexture3DI[0]), { (1,maxSurface3D[0]),
(1,maxTexture3D[1]), (1,maxTexture3D[2]) } ' (1,maxSurface3D[1]),
OR { (1,maxTexture3DALt[0]), (1,maxSurface3DI[2]) }

(1,maxTexture3DALt[1]),
(1,maxTexture3DALt[2]) }

1D Layered | {(1,maxTexturelDLayered[0]), 0, { (1,maxSurface1DLayered[0]), 0,
(1,maxTexture1DLayered[1]) } (1,maxSurface1DLayered[1]) }

2D Layered | {(1,maxTexture2DLayered[0]), { (1,maxSurface2DLayered[0]),
(1,maxTexture2DLayered[1]), (1,maxSurface2DLayered[1]),
(1,maxTexture2DLayered[2]) } (1,maxSurface2DLayered[2]) }

Cubemap { (1,maxTextureCubemap), { (1,maxSurfaceCubemap),
(1,maxTextureCubemap), 6 } (1,maxSurfaceCubemap), 6 }

CUDA Runtime API vRelease Version | 153

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c

Modules

Valid extents with
Valid extents that must always be met cudaArraySurfaceLoadStore set
CUDA array {(width range in elements), (height {(width range in elements), (height

type range), (depth range)} range), (depth range)}
Cubemap { (1,maxTextureCubemaplayered[0]), { (1,maxSurfaceCubemaplayered[0]),
Layered (1, maxTextureCubemaplayered[0]), (1,maxSurfaceCubemaplayered[0]),
(1,maxTextureCubemapLayered[1]] } (1,maxSurfaceCubemaplayered[1]) }
Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API), cudaFreeHost, cudaHostAlloc, make cudaExtent, cuMipmappedArrayCreate

__host cudaError_t cudaMallocPitch (void **devPtr,
size_t *pitch, size_t width, size_t height]

Allocates pitched memory on the device.

Parameters
devPtr

- Pointer to allocated pitched device memory
pitch

- Pitch for allocation
width

- Requested pitched allocation width [(in bytes)
height

- Requested pitched allocation height

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

CUDA Runtime API vRelease Version | 154

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga5d2e311c7f9b0bc6d130af824a40bd3

Modules

Description

Allocates at least width (in bytes] * height bytes of linear memory on the device and returns
in *devPtr a pointer to the allocated memory. The function may pad the allocation to ensure
that corresponding pointers in any given row will continue to meet the alignment requirements
for coalescing as the address is updated from row to row. The pitch returned in *pitch by
cudaMallocPitch(] is the width in bytes of the allocation. The intended usage of pitch is as a
separate parameter of the allocation, used to compute addresses within the 2D array. Given

the row and column of an array element of type T, the address is computed as:
r T* pElement = (T*) ((char*)BaseAddress + Row * pitch) + Column;

For allocations of 2D arrays, it is recommended that programmers consider performing pitch
allocations using cudaMallocPitch(). Due to pitch alignment restrictions in the hardware, this
is especially true if the application will be performing 2D memory copies between different
regions of device memory (whether linear memory or CUDA arrays).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost [C AP,
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemAllocPitch

__host__cudaError_t cudaMemAdvise (const void
*devPtr, size_t count, cudaMemoryAdvise advice, int
device])

Advise about the usage of a given memory range.

Parameters

devPtr

- Pointer to memory to set the advice for
count

- Size in bytes of the memory range

CUDA Runtime API vRelease Version | 155

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gcbe9b033f6c4de80f63cc6e58ed9a45a

Modules

advice

- Advice to be applied for the specified memory range
device

- Device to apply the advice for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlnvalidDevice

Description

Advise the Unified Memory subsystem about the usage pattern for the memory range starting
at devPtr with a size of count bytes. The start address and end address of the memory
range will be rounded down and rounded up respectively to be aligned to CPU page size
before the advice is applied. The memory range must refer to managed memory allocated via
cudaMallocManaged or declared via __managed__ variables. The memory range could also
refer to system-allocated pageable memory provided it represents a valid, host-accessible
region of memory and all additional constraints imposed by advice as outlined below are
also satisfied. Specifying an invalid system-allocated pageable memory range results in an
error being returned.

The advice parameter can take the following values:

» cudaMemAdviseSetReadMostly: This implies that the data is mostly going to be read
from and only occasionally written to. Any read accesses from any processor to this
region will create a read-only copy of at least the accessed pages in that processor'’s
memory. Additionally, if cudaMemPrefetchAsync is called on this region, it will create a
read-only copy of the data on the destination processor. If any processor writes to this
region, all copies of the corresponding page will be invalidated except for the one where
the write occurred. The device argument is ignored for this advice. Note that for a page
to be read-duplicated, the accessing processor must either be the CPU or a GPU that
has a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess.
Also, if a context is created on a device that does not have the device attribute
cudaDevAttrConcurrentManagedAccess set, then read-duplication will not occur until
all such contexts are destroyed. If the memory region refers to valid system-allocated
pageable memory, then the accessing device must have a non-zero value for the device
attribute cudaDevAttrPageableMemoryAccess for a read-only copy to be created on that
device. Note however that if the accessing device also has a non-zero value for the device
attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then setting this
advice will not create a read-only copy when that device accesses this memory region.

> cudaMemAdviceUnsetReadMostly: Undoes the effect of cudaMemAdviceReadMostly and
also prevents the Unified Memory driver from attempting heuristic read-duplication on
the memory range. Any read-duplicated copies of the data will be collapsed into a single
copy. The location for the collapsed copy will be the preferred location if the page has a

CUDA Runtime API vRelease Version | 156

Modules

preferred location and one of the read-duplicated copies was resident at that location.
Otherwise, the location chosen is arbitrary.

» cudaMemAdviseSetPreferredlocation: This advice sets the preferred location for the data
to be the memory belonging to device. Passing in cudaCpuDeviceld for device sets the
preferred location as host memory. If device is a GPU, then it must have a non-zero value
for the device attribute cudaDevAttrConcurrentManagedAccess. Setting the preferred
location does not cause data to migrate to that location immediately. Instead, it guides the
migration policy when a fault occurs on that memory region. If the data is already in its
preferred location and the faulting processor can establish a mapping without requiring
the data to be migrated, then data migration will be avoided. On the other hand, if the data
is not in its preferred location or if a direct mapping cannot be established, then it will be
migrated to the processor accessing it. It is important to note that setting the preferred
location does not prevent data prefetching done using cudaMemPrefetchAsync. Having
a preferred location can override the page thrash detection and resolution logic in the
Unified Memory driver. Normally, if a page is detected to be constantly thrashing between
for example host and device memory, the page may eventually be pinned to host memory
by the Unified Memory driver. But if the preferred location is set as device memory, then
the page will continue to thrash indefinitely. If cudaMemAdviseSetReadMostly is also set
on this memory region or any subset of it, then the policies associated with that advice
will override the policies of this advice, unless read accesses from device will not result
in a read-only copy being created on that device as outlined in description for the advice
cudaMemAdviseSetReadMostly. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect. Note however that this behavior may change in the future.

> cudaMemAdviseUnsetPreferredlocation: Undoes the effect of
cudaMemAdviseSetPreferredlocation and changes the preferred location to none.

» cudaMemAdviseSetAccessedBy: This advice implies that the data will be accessed by
device. Passing in cudaCpuDeviceld for device will set the advice for the CPU. If
device is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess
must be non-zero. This advice does not cause data migration and has no impact on
the location of the data per se. Instead, it causes the data to always be mapped in
the specified processor’s page tables, as long as the location of the data permits a
mapping to be established. If the data gets migrated for any reason, the mappings are
updated accordingly. This advice is recommended in scenarios where data locality is not
important, but avoiding faults is. Consider for example a system containing multiple GPUs
with peer-to-peer access enabled, where the data located on one GPU is occasionally
accessed by peer GPUs. In such scenarios, migrating data over to the other GPUs is
not as important because the accesses are infrequent and the overhead of migration
may be too high. But preventing faults can still help improve performance, and so
having a mapping set up in advance is useful. Note that on CPU access of this data,

CUDA Runtime API vRelease Version | 157

Modules

the data may be migrated to host memory because the CPU typically cannot access
device memory directly. Any GPU that had the cudaMemAdviceSetAccessedBy flag set
for this data will now have its mapping updated to point to the page in host memory.

If cudaMemAdviseSetReadMostly is also set on this memory region or any subset of

it, then the policies associated with that advice will override the policies of this advice.
Additionally, if the preferred location of this memory region or any subset of it is also
device, then the policies associated with cudaMemAdviseSetPreferredlLocation will
override the policies of this advice. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect.

cudaMemAdviseUnsetAccessedBy: Undoes the effect of cudaMemAdviseSetAccessedBy.
Any mappings to the data from device may be removed at any time causing accesses

to result in non-fatal page faults. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cudaMemPrefetchAsync, cuMemAdvise

CUDA Runtime API vRelease Version |

158

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1g27608c857a9254789c13f3e3b72029e2

Modules

__host__cudaError_t cudaMemcpy (void *dst, const
void *src, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description

Copies count bytes from the memory area pointed to by src to the memory area

pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
Calling cudaMemcpy() with dst and src pointers that do not match the direction of the copy
results in an undefined behavior.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.
» This function exhibits synchronous behavior for most use cases.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations

CUDA Runtime API vRelease Version | 159

Modules

that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy?D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyDtoH, cuMemcpyHtoD, cuMemcpyDtoD,

cuMemcpy

__host__cudaError_t cudaMemcpy2D (void *dst,
size_t dpitch, const void *src, size_t spitch, size_t
width, size_t height, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
dpitch

- Pitch of destination memory
src

- Source memory address
spitch

- Pitch of source memory
width

- Width of matrix transfer (columns in bytes)
height

- Height of matrix transfer (rows])
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed
to by src to the memory area pointed to by dst, where kind specifies the direction
of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,

CUDA Runtime API vRelease Version | 160

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3480368ee0208a98f75019c9a8450893
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4d32266788c440b0220b1a9ba5795169
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698

Modules

cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from
the pointer values. However, cudaMemcpyDefault is only allowed on systems that support
unified virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D
arrays pointed to by dst and src, including any padding added to the end of each row. The
memory areas may not overlap. width must not exceed either dpitch or spitch. Calling
cudaMemcpy?D(] with dst and src pointers that do not match the direction of the copy
results in an undefined behavior. cudaMemcpy2D(] returns an error if dpitch or spitch
exceeds the maximum allowed.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

> Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpyZ2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy?2D, cuMemcpy?2DUnaligned

CUDA Runtime API vRelease Version | 161

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

__host__cudaError_t cudaMemcpy2DArrayToArray
(cudaArray_t dst, size_t wOffsetDst, size_t
hOffsetDst, cudaArray_const_t src, size_t wOffsetSrc,
size_t hOffsetSrc, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffsetDst
- Destination starting X offset (columns in bytes)
hOffsetDst
- Destination starting Y offset (rows)
src
- Source memory address
wOffsetSrc
- Source starting X offset (columns in bytes)
hOffsetSrc
- Source starting Y offset [rows)
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the CUDA array src starting at
hOffsetSrc rows and wOffsetSrc bytes from the upper left corner to the CUDA array

dst starting at hOffsetDst rows and wOffsetDst bytes from the upper left corner,

where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of
transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on
systems that support unified virtual addressing. woffsetDst + width must not exceed the

CUDA Runtime API vRelease Version | 162

Modules

width of the CUDA array dst. wOffsetSrc + width must not exceed the width of the CUDA
array src.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpyZ2DAsync,
cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpy?2DUnaligned

__host__device cudaError_t
cudaMemcpy2DAsync (void *dst, size_t dpitch, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
dpitch

- Pitch of destination memory
src

- Source memory address
spitch

- Pitch of source memory
width

- Width of matrix transfer (columns in bytes)
height

- Height of matrix transfer (rows)

CUDA Runtime API vRelease Version | 163

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed

to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D arrays
pointed to by dst and src, including any padding added to the end of each row. The memory
areas may not overlap. width must not exceed either dpitch or spitch.

Calling cudaMemcpy2DAsync(] with dst and src pointers that do not match the direction of
the copy results in an undefined behavior. cudaMemcpy2DAsync(] returns an error if dpitch
or spitch is greater than the maximum allowed.

cudaMemcpy2DAsync(] is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
stream argument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
streamis non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 164

Modules

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy?2D, cudaMemcpy2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy2DAsync

__host__cudaError_t cudaMemcpy2DFromArray (void
*dst, size_t dpitch, cudaArray_const_t src, size_t
wOffset, size_t hOffset, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters
dst
- Destination memory address
dpitch
- Pitch of destination memory
src
- Source memory address
wOffset
- Source starting X offset (columns in bytes)
hOffset
- Source starting Y offset (rows])
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows)
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

CUDA Runtime API vRelease Version | 165

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

Description

Copies a matrix (height rows of width bytes each) from the CUDA array src starting

at hOffset rows and wOf fset bytes from the upper left corner to the memory area
pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any
padding added to the end of each row. wOffset + width must not exceed the width of the
CUDA array src. width must not exceed dpitch. cudaMemcpy2DFromArray(] returns an
error if dpitch exceeds the maximum allowed.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits synchronous behavior for most use cases.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy?2D, cudaMemcpy?2DToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync,
cudaMemcpyZ2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpyZ2DUnaligned

CUDA Runtime API vRelease Version | 166

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

__host__cudaError_t
cudaMemcpy2DFromArrayAsync (void *dst, size_t
dpitch, cudaArray_const_t src, size_t wOffset, size t
hOffset, size_t width, size_t height, cudaMemcpyKind
kind, cudaStream_t stream)

Copies data between host and device.

Parameters
dst
- Destination memory address
dpitch
- Pitch of destination memory
src
- Source memory address
wOffset
- Source starting X offset (columns in bytes)
hOffset
- Source starting Y offset [rows)
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind
- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each) from the CUDA array src starting
athOffset rows and wOffset bytes from the upper left corner to the memory area

pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

CUDA Runtime API vRelease Version | 167

Modules

dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any
padding added to the end of each row. wOffset + width must not exceed the width of the
CUDA array src. width must not exceed dpitch. cudaMemcpy2DFromArrayAsync() returns
an error If dpitch exceeds the maximum allowed.

cudaMemcpy2DFromArrayAsync(] is asynchronous with respect to the host, so the call

may return before the copy is complete. The copy can optionally be associated to a

stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpyZ2DAsync, cudaMemcpyZ2DToArrayAsync,

cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpyZ2DAsync

CUDA Runtime API vRelease Version | 168

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

__host__cudaError_t cudaMemcpy2DToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters

dst
- Destination memory address
wOffset
- Destination starting X offset (columns in bytes)
hOffset
- Destination starting Y offset (rows)
src
- Source memory address
spitch
- Pitch of source memory
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed

to by src to the CUDA array dst starting at hOf fset rows and wOffset bytes from

the upper left corner, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
spitch is the width in memory in bytes of the 2D array pointed to by src, including any
padding added to the end of each row. woffset + width must not exceed the width of the
CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArray(] returns an error
if spitch exceeds the maximum allowed.

CUDA Runtime API vRelease Version | 169

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

> Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy?2D, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync,
cudaMemcpy?2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpyZ2DUnaligned

__host__cudaError_t cudaMemcpy2DToArrayAsync
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address
wOffset
- Destination starting X offset (columns in bytes)
hOffset
- Destination starting Y offset (rows)
src
- Source memory address
spitch
- Pitch of source memory

CUDA Runtime API vRelease Version | 170

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows)
kind
- Type of transfer
stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed

to by src to the CUDA array dst starting at hOf fset rows and wOffset bytes from

the upper left corner, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
spitchis the width in memory in bytes of the 2D array pointed to by src, including any
padding added to the end of each row. woffset + width must not exceed the width of the
CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArrayAsync(] returns an
error if spitch exceeds the maximum allowed.

cudaMemcpy?2DToArrayAsync(] is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 171

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZDArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpyZ2DAsync,

cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2DAsync

__host__cudaError_t cudaMemcpy3D (const
cudaMemcpy3DParms *p]

Copies data between 3D objects.

Parameters

p
- 3D memory copy parameters

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

[struct cudaExtent {
size t width;
size t height;
size t depth;
i
struct cudaExtent
make cudaExtent (size t w, size t h, size t d);

struct cudaPos {
size t x;
size t y;
size t z;
}i
struct cudaPos
make cudaPos(size t x, size t y, size t z);

struct cudaMemcpy3DParms {
cudaArray t

SrcArray;
struct cudaPos

CUDA Runtime API vRelease Version | 172

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

srcPos;
struct cudaPitchedPtr
srcPtr;
cudaArray t
dstArray;
struct cudaPos
dstPos;
struct cudaPitchedPtr
dstPtr;
struct cudaExtent
extent;
enum cudaMemcpyKind
kind;

b

cudaMemcpy3D(] copies data betwen two 3D objects. The source and destination objects may
be in either host memory, device memory, or a CUDA array. The source, destination, extent,
and kind of copy performed is specified by the cudaMemcpy3DParms struct which should be
initialized to zero before use:

[cudaMemcpy3DParms myParms = {0};

The struct passed to cudaMemcpy3D(] must specify one of srcArray or srcPtr and one
of dstArray or dstPtr. Passing more than one non-zero source or destination will cause
cudaMemcpy3D(] to return an error.

The srcPos and dstPos fields are optional offsets into the source and destination objects
and are defined in units of each object’s elements. The element for a host or device pointer is
assumed to be unsigned char.

The extent field defines the dimensions of the transferred area in elements. If a CUDA array
is participating in the copy, the extent is defined in terms of that array’s elements. If no CUDA
array is participating in the copy then the extents are defined in elements of unsigned char.

The kind field defines the direction of the copy. It must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the

type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only
allowed on systems that support unified virtual addressing. For cudaMemcpyHostToHost or
cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost passed as kind and cudaArray type
passed as source or destination, if the kind implies cudaArray type to be present on the host,
cudaMemcpy3D() will disregard that implication and silently correct the kind based on the fact
that cudaArray type can only be present on the device.

If the source and destination are both arrays, cudaMemcpy3D(] will return an error if they do
not have the same element size.

The source and destination object may not overlap. If overlapping source and destination
objects are specified, undefined behavior will result.

The source object must entirely contain the region defined by srcPos and extent. The
destination object must entirely contain the region defined by dstPos and extent.

cudaMemcpy3D() returns an error if the pitch of srcPtr or dstPtr exceeds the maximum
allowed. The pitch of a cudaPitchedPtr allocated with cudaMalloc3D() will always be valid.

CUDA Runtime API vRelease Version | 173

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc3DArray, cudaMemset3D, cudaMemcpy3DAsync,
cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy?2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, make cudaExtent, make cudaPos, cuMemcpy3D

__host__device cudaError_t
cudaMemcpy3DAsync (const cudaMemcpy3DParms
*p, cudaStream_t stream)

Copies data between 3D objects.

Parameters

p

- 3D memory copy parameters
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

[struct cudaExtent {
size t width;
size t height;
size t depth;

} .

struct cudaExtent

CUDA Runtime API vRelease Version | 174

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4b5238975579f002c0199a3800ca44df

Modules

make cudaExtent (size t w, size t h, size t d);

struct cudaPos {
size t x;
size t y;
size t z;
i
struct cudaPos
make cudaPos(size t x, size t y, size t z);

struct cudaMemcpy3DParms {
cudaArray t

SrcArray;
struct cudaPos
srcPos;
struct cudaPitchedPtr
srcPtr;
cudaArray_ t
dstArray;
struct cudaPos
dstPos;
struct cudaPitchedPtr
dstPtr;
struct cudaExtent
extent;
enum cudaMemcpyKind
kind;

}i

cudaMemcpy3DAsync() copies data betwen two 3D objects. The source and destination objects
may be in either host memory, device memory, or a CUDA array. The source, destination,
extent, and kind of copy performed is specified by the cudaMemcpy3DParms struct which
should be initialized to zero before use:

[cudaMemcpy3DParms myParms = {0};

The struct passed to cudaMemcpy3DAsync() must specify one of srcArray or srcPtr and
one of dstArray or dstPtr. Passing more than one non-zero source or destination will
cause cudaMemcpy3DAsync(] to return an error.

The srcPos and dstPos fields are optional offsets into the source and destination objects
and are defined in units of each object’s elements. The element for a host or device pointeris
assumed to be unsigned char. For CUDA arrays, positions must be in the range [0, 2048) for
any dimension.

The extent field defines the dimensions of the transferred area in elements. If a CUDA array
is participating in the copy, the extent is defined in terms of that array’s elements. If no CUDA
array is participating in the copy then the extents are defined in elements of unsigned char.

The kind field defines the direction of the copy. It must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the

type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only
allowed on systems that support unified virtual addressing. For cudaMemcpyHostToHost or
cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost passed as kind and cudaArray type
passed as source or destination, if the kind implies cudaArray type to be present on the host,
cudaMemcpy3DAsync() will disregard that implication and silently correct the kind based on
the fact that cudaArray type can only be present on the device.

CUDA Runtime API vRelease Version | 175

Modules

If the source and destination are both arrays, cudaMemcpy3DAsync(] will return an error if
they do not have the same element size.

The source and destination object may not overlap. If overlapping source and destination
objects are specified, undefined behavior will result.

The source object must lie entirely within the region defined by srcPos and extent. The
destination object must lie entirely within the region defined by dstPos and extent.

cudaMemcpy3DAsync() returns an error if the pitch of srcPtr or dstPtr exceeds the
maximum allowed. The pitch of a cudaPitchedPtr allocated with cudaMalloc3D() will always be
valid.

cudaMemcpy3DAsync(] is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
streamargument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
streamis non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc3DArray, cudaMemset3D, cudaMemcpy3D, cudaMemcpy,
cudaMemcpy?D, cudaMemcpy?2DToArray, :cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy?2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, make cudaExtent, make cudaPos, cuMemcpy3DAsync

CUDA Runtime API vRelease Version | 176

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g79f4f3fde6ae0f529568d881d9e11987

Modules

__host__cudaError_t cudaMemcpy3DPeer (const
cudaMemcpy3DPeerParms *p)

Copies memory between devices.

Parameters

p
- Parameters for the memory copy

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Perform a 3D memory copy according to the parameters specified in p. See the definition of
the cudaMemcpy3DPeerParms structure for documentation of its parameters.

Note that this function is synchronous with respect to the host only if the source or destination
of the transfer is host memory. Note also that this copy is serialized with respect to all pending
and future asynchronous work in to the current device, the copy's source device, and the
copy's destination device (use cudaMemcpy3DPeerAsync to avoid this synchronization).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync,
cudaMemcpy3DPeerAsync, cuMemcpy3DPeer

CUDA Runtime API vRelease Version | 177

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g11466fd70cde9329a4e16eb1f258c433

Modules

__host__cudaError_t cudaMemcpy3DPeerAsync
(const cudaMemcpy3DPeerParms *p, cudaStream_t
stream)

Copies memory between devices asynchronously.

Parameters

p
- Parameters for the memory copy

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Perform a 3D memory copy according to the parameters specified in p. See the definition of
the cudaMemcpy3DPeerParms structure for documentation of its parameters.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync,
cudaMemcpy3DPeerAsync, cuMemcpy3DPeerAsync

CUDA Runtime API vRelease Version | 178

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gc4e4bfd9f627d3aa3695979e058f1bb8

Modules

__host__ device__cudaError_t cudaMemcpyAsync
(void *dst, const void *src, size t count,
cudaMemcpyKind kind, cudaStream_t stream]

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description

Copies count bytes from the memory area pointed to by src to the memory area

pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

The memory areas may not overlap. Calling cudaMemcpyAsync() with dst and src pointers
that do not match the direction of the copy results in an undefined behavior.

cudaMemcpyAsync(] is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
streamargument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
the stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

u Note:

CUDA Runtime API vRelease Version | 179

Modules

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy?2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpyAsync,
cuMemcpyDtoHAsync, cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemcpyFromSymbol (void
*dst, const void *symbol, size_t count, size_t offset,
cudaMemcpyKind kind)

Copies data from the given symbol on the device.

Parameters

dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

CUDA Runtime API vRelease Version | 180

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1572263fe2597d7ba4f6964597a354a3
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by of fset bytes from the start of
symbol symbol to the memory area pointed to by dst. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyAsync,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy, cuMemcpyDtoH,
cuMemcpyDtoD

CUDA Runtime API vRelease Version | 181

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3480368ee0208a98f75019c9a8450893
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b

Modules

__host__cudaError_t cudaMemcpyFromSymbolAsync
(void *dst, const void *symbol, size_t count, size_t
offset, cudaMemcpyKind kind, cudaStream_t stream]

Copies data from the given symbol on the device.

Parameters

dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by of fset bytes from the start of
symbol symbol to the memory area pointed to by dst. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyFromSymbolAsync() is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream by
passing a non-zero streamargument. If kind is cudaMemcpyDeviceToHost and stream is
non-zero, the copy may overlap with operations in other streams.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 182

Modules

> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync, cuMemcpyAsync,
cuMemcpyDtoHAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemcpyPeer (void *dst, int
dstDevice, const void *src, int srcDevice, size t count]

Copies memory between two devices.

Parameters

dst

- Destination device pointer
dstDevice

- Destination device
src

- Source device pointer
srcDevice

- Source device
count

- Size of memory copy in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Copies memory from one device to memory on another device. dst is the base device pointer
of the destination memory and dstDevice is the destination device. src is the base device

CUDA Runtime API vRelease Version | 183

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8

Modules

pointer of the source memory and srcDevice is the source device. count specifies the
number of bytes to copy.

Note that this function is asynchronous with respect to the host, but serialized with respect all
pending and future asynchronous work in to the current device, srcDevice, and dstDevice
(use cudaMemcpyPeerAsync to avoid this synchronization).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyAsync, cudaMemcpyPeerAsync, cudaMemcpy3DPeerAsync,
cuMemcpyPeer

__host__cudaError_t cudaMemcpyPeerAsync (void
*dst, int dstDevice, const void *src, int srcDevice,
size t count, cudaStream t stream)

Copies memory between two devices asynchronously.

Parameters

dst

- Destination device pointer
dstDevice

- Destination device
src

- Source device pointer
srcDevice

- Source device
count

- Size of memory copy in bytes
stream

- Stream identifier

CUDA Runtime API vRelease Version | 184

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge1f5c7771544fee150ada8853c7cbf4a

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Copies memory from one device to memory on another device. dst is the base device pointer
of the destination memory and dstDevice is the destination device. src is the base device
pointer of the source memory and srcDevice is the source device. count specifies the
number of bytes to copy.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cuMemcpyPeerAsync

__host__cudaError_t cudaMemcpyToSymbol (const
void *symbol, const void *src, size_t count, size_t
offset, cudaMemcpyKind kind)

Copies data to the given symbol on the device.

Parameters

symbol

- Device symbol address
src

- Source memory address

CUDA Runtime API vRelease Version | 185

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g82fcecb38018e64b98616a8ac30112f2

Modules

count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudakErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed

to by of fset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

» Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy?2DArrayToArray, cudaMemcpyFromSymbol, cudaMemcpyAsync,
cudaMemcpy?2DAsync, cudaMemcpy?2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy, cuMemcpyHtoD,
cuMemcpyDtoD

CUDA Runtime API vRelease Version | 186

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4d32266788c440b0220b1a9ba5795169
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b

Modules

__host__cudaError_t cudaMemcpyToSymbolAsync
(const void *symbol, const void *src, size_t count,
size_t offset, cudaMemcpyKind kind, cudaStream_t
stream)

Copies data to the given symbol on the device.

Parameters

symbol

- Device symbol address
src

- Source memory address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed

to by of fset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyToSymbolAsync() is asynchronous with respect to the host, so the call may return
before the copy is complete. The copy can optionally be associated to a stream by passing a
non-zero streamargument. If kind is cudaMemcpyHostToDevice and stream is non-zero,
the copy may overlap with operations in other streams.

CUDA Runtime API vRelease Version | 187

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy?2D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyFromSymbolAsync, cuMemcpyAsync,
cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemGetinfo (size t *free,
size t *total

Gets free and total device memory.

Parameters

free

- Returned free memory in bytes
total

- Returned total memory in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure

Description

Returns in *free and *total respectively, the free and total amount of memory available for
allocation by the device in bytes.

CUDA Runtime API vRelease Version | 188

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1572263fe2597d7ba4f6964597a354a3
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuMemGetInfo

__host__cudaError_t cudaMemPrefetchAsync
(const void *devPtr, size t count, int dstDevice,
cudaStream_t stream)

Prefetches memory to the specified destination device.

Parameters

devPtr
- Pointer to be prefetched
count
- Size in bytes
dstDevice
- Destination device to prefetch to
stream
- Stream to enqueue prefetch operation

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Prefetches memory to the specified destination device. devPtr is the base device pointer

of the memory to be prefetched and dstDevice is the destination device. count specifies
the number of bytes to copy. streamis the stream in which the operation is enqueued. The
memory range must refer to managed memory allocated via cudaMallocManaged or declared
via __managed__ variables.

Passing in cudaCpuDeviceld for dstDevice will prefetch the data to host memory. If
dstDevice is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess must

CUDA Runtime API vRelease Version | 189

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g808f555540d0143a331cc42aa98835c0

Modules

be non-zero. Additionally, stream must be associated with a device that has a non-zero value
for the device attribute cudaDevAttrConcurrentManagedAccess.

The start address and end address of the memory range will be rounded down and rounded up
respectively to be aligned to CPU page size before the prefetch operation is enqueued in the
stream.

If no physical memory has been allocated for this region, then this memory region will be
populated and mapped on the destination device. If there's insufficient memory to prefetch the
desired region, the Unified Memory driver may evict pages from other cudaMallocManaged
allocations to host memory in order to make room. Device memory allocated using
cudaMalloc or cudaMallocArray will not be evicted.

By default, any mappings to the previous location of the migrated pages are removed and
mappings for the new location are only setup on dstDevice. The exact behavior however also
depends on the settings applied to this memory range via cudaMemAdvise as described below:

If cudaMemAdviseSetReadMostly was set on any subset of this memory range, then that
subset will create a read-only copy of the pages on dstDevice.

If cudaMemAdviseSetPreferredLocation was called on any subset of this memory range, then
the pages will be migrated to dstDevice even if dstDevice is not the preferred location of
any pages in the memory range.

If cudaMemAdviseSetAccessedBy was called on any subset of this memory range, then
mappings to those pages from all the appropriate processors are updated to refer to the new
location if establishing such a mapping is possible. Otherwise, those mappings are cleared.

Note that this APl is not required for functionality and only serves to improve performance by
allowing the application to migrate data to a suitable location before it is accessed. Memory
accesses to this range are always coherent and are allowed even when the data is actively
being migrated.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 190

Modules

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cudaMemAdvise, cuMemPrefetchAsync

__host__cudaError_t cudaMemRangeGetAttribute
[void *data, size_t dataSize, cudaMemRangeAttribute
attribute, const void *devPtr, size t count)

Query an attribute of a given memory range.

Parameters

data
- A pointers to a memory location where the result of each attribute query will be written to.
dataSize
- Array containing the size of data
attribute
- The attribute to query
devPtr
- Start of the range to query
count
- Size of the range to query

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Query an attribute about the memory range starting at devPtr with a size of count bytes.
The memory range must refer to managed memory allocated via cudaMallocManaged or
declared via __managed__ variables.

The attribute parameter can take the following values:

» cudaMemRangeAttributeReadMostly: If this attribute is specified, data will be interpreted
as a 32-bit integer, and dataSize must be 4. The result returned will be 1 if all pages in
the given memory range have read-duplication enabled, or 0 otherwise.

» cudaMemRangeAttributePreferredLocation: If this attribute is specified, data will be
interpreted as a 32-bit integer, and dataSize must be 4. The result returned will be a
GPU device id if all pages in the memory range have that GPU as their preferred location,
or it will be cudaCpuDeviceld if all pages in the memory range have the CPU as their
preferred location, or it will be cudalnvalidDeviceld if either all the pages don’t have the
same preferred location or some of the pages don't have a preferred location at all. Note

CUDA Runtime API vRelease Version | 191

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gfe94f8b7fb56291ebcea44261aa4cb84

Modules

that the actual location of the pages in the memory range at the time of the query may be
different from the preferred location.

cudaMemRangeAttributeAccessedBy: If this attribute is specified, data will be interpreted
as an array of 32-bit integers, and dataSize must be a non-zero multiple of 4. The result
returned will be a list of device ids that had cudaMemAdviceSetAccessedBy set for that
entire memory range. If any device does not have that advice set for the entire memory
range, that device will not be included. If data is larger than the number of devices that
have that advice set for that memory range, cudalnvalidDeviceld will be returned in all

the extra space provided. For ex., if dataSize is 12 (i.e. data has 3 elements) and only
device 0 has the advice set, then the result returned will be { 0, cudalnvalidDeviceld,
cudalnvalidDeviceld }. If data is smaller than the number of devices that have that

advice set, then only as many devices will be returned as can fit in the array. There is no
guarantee on which specific devices will be returned, however.

cudaMemRangeAttributel astPrefetchlLocation: If this attribute is specified, data will

be interpreted as a 32-bit integer, and dataSize must be 4. The result returned will be
the last location to which all pages in the memory range were prefetched explicitly via
cudaMemPrefetchAsync. This will either be a GPU id or cudaCpuDeviceld depending on
whether the last location for prefetch was a GPU or the CPU respectively. If any page in
the memory range was never explicitly prefetched or if all pages were not prefetched to
the same location, cudalnvalidDeviceld will be returned. Note that this simply returns the
last location that the applicaton requested to prefetch the memory range to. It gives no
indication as to whether the prefetch operation to that location has completed or even
begun.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemRangeGetAttributes, cudaMemPrefetchAsync, cudaMemAdyvise,

cuMemRangeGetAttribute

CUDA Runtime API vRelease Version | 192

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1g1c92408a7d0d8875e19b1a58af56f67d

Modules

__host__cudaError_t cudaMemRangeGetAttributes
(void **data, size t *dataSizes,
cudaMemRangeAttribute *attributes, size_t
numAttributes, const void *devPtr, size t count])

Query attributes of a given memory range.

Parameters

data
- A two-dimensional array containing pointers to memory locations where the result of
each attribute query will be written to.
dataSizes
- Array containing the sizes of each result
attributes
- An array of attributes to query (numAttributes and the number of attributes in this array
should match]
numAttributes
- Number of attributes to query
devPtr
- Start of the range to query
count
- Size of the range to query

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Query attributes of the memory range starting at devPtr with a size of count bytes.

The memory range must refer to managed memory allocated via cudaMallocManaged
or declared via __managed__ variables. The attributes array will be interpreted to
have numAttributes entries. The dataSizes array will also be interpreted to have
numAttributes entries. The results of the query will be stored in data.

The list of supported attributes are given below. Please refer to cudaMemRangeGetAttribute
for attribute descriptions and restrictions.

cudaMemRangeAttributeReadMostly

cudaMemRangeAttributePreferredLocation

cudaMemRangeAttributeAccessedBy

vV v v VY

cudaMemRangeAttributelLastPrefetchlLocation

CUDA Runtime API vRelease Version | 193

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemRangeGetAttribute, cudaMemAdvise, cudaMemPrefetchAsync,
cuMemRangeGetAttributes

__host__cudaError_t cudaMemset (void *devPtr, int
value, size t count]

Initializes or sets device memory to a value.

Parameters

devPtr

- Pointer to device memory
value

- Value to set for each byte of specified memory
count

- Size in bytes to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Fills the first count bytes of the memory area pointed to by devPtr with the constant byte
value value.

Note that this function is asynchronous with respect to the host unless devPtr refers to
pinned host memory.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 194

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gc7ce142e60f8613cfb7d722b87dc9d12

Modules

> See also memset synchronization details.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cuMemsetD8, cuMemsetD16, cuMemsetD32

__host__cudaError_t cudaMemset2D (void *devPtr,
size_t pitch, int value, size_t width, size_t height)

Initializes or sets device memory to a value.

Parameters

devPtr
- Pointer to 2D device memory
pitch
- Pitch in bytes of 2D device memory(Unused if height is 1)
value
- Value to set for each byte of specified memory
width
- Width of matrix set (columns in bytes)
height
- Height of matrix set (rows)

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets to the specified value value a matrix (height rows of width bytes each) pointed to
by dstPtr. pitch is the width in bytes of the 2D array pointed to by dstPtr, including any
padding added to the end of each row. This function performs fastest when the pitch is one
that has been passed back by cudaMallocPitch().

Note that this function is asynchronous with respect to the host unless devPtr refers to
pinned host memory.

CUDA Runtime API vRelease Version | 195

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g6e582bf866e9e2fb014297bfaf354d7b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g7d805e610054392a4d11e8a8bf5eb35c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g983e8d8759acd1b64326317481fbf132

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> See also memset synchronization details.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset3D, cudaMemsetAsync, cudaMemset2DAsync,
cudaMemset3DAsync, cuMemsetD2D8, cuMemsetD2D16, cuMemsetD2D3?2

__host_ _device cudaError_t
cudaMemset2DAsync (void *devPtr, size_t pitch,
int value, size_t width, size_t height, cudaStream_t
stream)

Initializes or sets device memory to a value.

Parameters

devPtr

- Pointer to 2D device memory
pitch

- Pitch in bytes of 2D device memory(Unused if height is 1)
value

- Value to set for each byte of specified memory
width

- Width of matrix set (columns in bytes)
height

- Height of matrix set (rows])
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 196

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge88b13e646e2be6ba0e0475ef5205974
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g7f561a15a66144fa9f6ab5350edc8a30
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g74b359b2d026bfeb7c795b5038d07523

Modules

Description

Sets to the specified value value a matrix (height rows of width bytes each) pointed to
by dstPtr. pitch is the width in bytes of the 2D array pointed to by dstPtr, including any
padding added to the end of each row. This function performs fastest when the pitch is one
that has been passed back by cudaMallocPitch(].

cudaMemset?2DAsyncl(] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero streamargument. If stream is non-zero, the operation may overlap with operations
in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemsetAsync, cudaMemset3DAsync,
cuMemsetD2D8Async, cuMemsetD2D16Async, cuMemsetD2D32Async

__host__cudaError_t cudaMemset3D (cudaPitchedPtr
pitchedDevPtr, int value, cudaExtent extent]

Initializes or sets device memory to a value.

Parameters

pitchedDevPir
- Pointer to pitched device memory
value
- Value to set for each byte of specified memory

CUDA Runtime API vRelease Version | 197

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3f7b6924a3e49c3265b328f534102e97
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g64ee197befac3d74d9fefedcf6ef6b10
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8a78d3147ac93fac955052c815d9ea3c

Modules

extent
- Size parameters for where to set device memory (width field in bytes]

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Initializes each element of a 3D array to the specified value value. The object to initialize is
defined by pitchedDevPtr. The pitch field of pitchedDevPtr is the width in memory

in bytes of the 3D array pointed to by pitchedDevPtr, including any padding added to the
end of each row. The xsize field specifies the logical width of each row in bytes, while the
ysize field specifies the height of each 2D slice in rows. The pitch field of pitchedDevPtr
isignored when height and depth are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a height in rows, and a
depth in slices.

Extents with width greater than or equal to the xsize of pitchedDevPtr may perform
significantly faster than extents narrower than the xsize. Secondarily, extents with height
equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter
than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by
cudaMalloc3D(].

Note that this function is asynchronous with respect to the host unless pitchedDevPtr
refers to pinned host memory.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» See also memset synchronization details.

» Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset?2D, cudaMemsetAsync, cudaMemsetZ2DAsync,
cudaMemset3DAsync, cudaMalloc3D, make cudaPitchedPtr, make cudaExtent

CUDA Runtime API vRelease Version | 198

Modules

__host_ _device_ cudaError_t
cudaMemset3DAsync (cudaPitchedPtr pitchedDevPtr,
int value, cudaExtent extent, cudaStream_t stream)

Initializes or sets device memory to a value.

Parameters

pitchedDevPtr
- Pointer to pitched device memory
value
- Value to set for each byte of specified memory
extent
- Size parameters for where to set device memory (width field in bytes]
stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Initializes each element of a 3D array to the specified value value. The object to initialize is
defined by pitchedDevPtr. The pitch field of pitchedDevPtr is the width in memory

in bytes of the 3D array pointed to by pitchedDevPtr, including any padding added to the
end of each row. The xsize field specifies the logical width of each row in bytes, while the
ysize field specifies the height of each 2D slice in rows. The pitch field of pitchedDevPtr
isignored when height and depth are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a height in rows, and a
depth in slices.

Extents with width greater than or equal to the xsize of pitchedDevPtr may perform
significantly faster than extents narrower than the xsize. Secondarily, extents with height
equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter
than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by
cudaMalloc3D(].

cudaMemset3DAsyncl] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero stream argument. If stream is non-zero, the operation may overlap with operations
in other streams.

CUDA Runtime API vRelease Version | 199

Modules

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

» See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemsetAsync, cudaMemset2DAsync,
cudaMalloc3D, make cudaPitchedPtr, make cudaExtent

__host_ device__cudaError_t cudaMemsetAsync
(void *devPtr, int value, size t count, cudaStream t
stream]
Initializes or sets device memory to a value.
Parameters
devPtr
- Pointer to device memory
value
- Value to set for each byte of specified memory
count
- Size in bytes to set
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 200

Modules

Description

Fills the first count bytes of the memory area pointed to by devPtr with the constant byte
value value.

cudaMemsetAsync(] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero streamargument. If stream is non-zero, the operation may overlap with operations
in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemset2DAsync, cudaMemset3DAsync,
cuMemsetD8Async, cuMemsetD16Async, cuMemsetD32Async

__host__cudaError_t
cudaMipmappedArrayGetSparseProperties
(cudaArraySparseProperties *sparseProperties,
cudaMipmappedArray_t mipmap)

Returns the layout properties of a sparse CUDA mipmapped array.

Parameters

sparseProperties
- Pointer to return cudaArraySparseProperties
mipmap
- The CUDA mipmapped array to get the sparse properties of

CUDA Runtime API vRelease Version | 201

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gaef08a7ccd61112f94e82f2b30d43627
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf731438877dd8ec875e4c43d848c878c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g58229da5d30f1c0cdf667b320ec2c0f5

Modules

Returns

cudaSuccess cudaErrorinvalidValue

Description

Returns the sparse array layout properties in sparseProperties. If the CUDA mipmapped
array is not allocated with flag cudaArraySparse cudaErrorinvalidValue will be returned.

For non-layered CUDA mipmapped arrays, cudaArraySparseProperties::miptailSize
returns the size of the mip tail region. The mip tail region includes all mip levels whose
width, height or depth is less than that of the tile. For layered CUDA mipmapped arrays,

if cudaArraySparseProperties::flags contains cudaArraySparsePropertiesSingleMipTail,
then cudaArraySparseProperties::miptailSize specifies the size of the mip tail of all layers
combined. Otherwise, cudaArraySparseProperties::miptailSize specifies mip tail size per
layer. The returned value of cudaArraySparseProperties::miptailFirstLevel is valid only if
cudaArraySparseProperties::miptailSize is non-zero.

See also:

cudaArrayGetSparseProperties, cuMemMapArrayAsync

__host__make cudaExtent (size tw, size th, size_t
d)

Returns a cudaExtent based on input parameters.

Parameters

w
- Width in elements when referring to array memory, in bytes when referring to linear
memory

h

- Height in elements
d

- Depth in elements
Returns

cudaExtent specified by w, h, and d

Description

Returns a cudaExtent based on the specified input parameters w, h, and d.

See also:

CUDA Runtime API vRelease Version | 202

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab

Modules

make cudaPitchedPtr, make cudaPos

__host__make_cudaPitchedPtr (void *d, size_t p,
size_t xsz, size_t ysz]

Returns a cudaPitchedPtr based on input parameters.

Parameters

d
- Pointer to allocated memory

p
- Pitch of allocated memory in bytes

Xsz

- Logical width of allocation in elements
ysz

- Logical height of allocation in elements

Returns
cudaPitchedPtr specified by d, p, xsz, and ysz

Description

Returns a cudaPitchedPtr based on the specified input parameters d, p, xsz, and ysz.

See also:

make cudaExtent, make cudaPos

__host__make_cudaPos (size_t x, size_ty, size_t z]

Returns a cudaPos based on input parameters.

Parameters

X

- X position
y

- Y position

- Z position

Returns

cudaPos specified by %, y, and z

CUDA Runtime API vRelease Version | 203

Modules

Description

Returns a cudaPos based on the specified input parameters %, y, and z.

See also:

make cudaExtent, make cudaPitchedPtr

6.10. Memory Management
[DEPRECATED]

This section describes deprecated memory management functions of the CUDA runtime
application programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

__host__cudaError_t cudaMemcpyArrayToArray
(cudaArray_t dst, size_t wOffsetDst, size_t hOffsetDst,
cudaArray_const_t src, size_t wOffsetSrc, size_t
hOffsetSrc, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffsetDst
- Destination starting X offset (columns in bytes)
hOffsetDst
- Destination starting Y offset (rows)
src
- Source memory address
wOffsetSrc
- Source starting X offset (columns in bytes)
hOffsetSrc
- Source starting Y offset [rows)
count

- Size in bytes to copy

CUDA Runtime API vRelease Version | 204

Modules

kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the CUDA array src starting at hOf fsetSrc rows and
wOffsetSrc bytes from the upper left corner to the CUDA array dst starting at
hOffsetDst rows and wOffsetDst bytes from the upper left corner, where kind

specifies the direction of the copy, and must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of
transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on
systems that support unified virtual addressing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoA

CUDA Runtime API vRelease Version | 205

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf81b218c984a31436ec9e23a85fb604a

Modules

__host__cudaError_t cudaMemcpyFromArray (void
*dst, cudaArray_const_t src, size_t wOffset, size_t
hOffset, size_t count, cudaMemcpyKind kind])

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
wOffset

- Source starting X offset (columns in bytes)
hOffset

- Source starting Y offset (rows)
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the CUDA array src starting at hOffset rows and wOffset bytes
from the upper left corner to the memory area pointed to by dst, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 206

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpy2DFromArray, cudaMemcpyArrayToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoH, cuMemcpyAtoD

__host__cudaError_t cudaMemcpyFromArrayAsync
(void *dst, cudaArray_const_t src, size_t wOffset,
size_t hOffset, size_t count, cudaMemcpyKind kind,
cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
wOffset

- Source starting X offset (columns in bytes)
hOffset

- Source starting Y offset [rows)
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

CUDA Runtime API vRelease Version | 207

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf7ad1edb2539cccc352c6b8b76f657f4
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g825b3f037f7f51382cae991bae8173fd

Modules

Copies count bytes from the CUDA array src starting at hOf fset rows and wOffset bytes
from the upper left corner to the memory area pointed to by dst, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyFromArrayAsync(] is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy?2DFromArray, cudaMemcpyArrayToArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpyToArrayAsync,
cudaMemcpyZ2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoHAsync, cuMemcpyZ2DAsync

CUDA Runtime API vRelease Version | 208

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g64cbd2e60436699aebdd0bdbf14d0f01
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

__host__cudaError_t cudaMemcpyToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
wOffset

- Destination starting X offset (columns in bytes)
hOffset

- Destination starting Y offset (rows)
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting
at hOffset rows and wOf fset bytes from the upper left corner, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 209

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpyFromArray,
cudaMemcpy2DFromArray, cudaMemcpyArrayToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyHtoA, cuMemcpyDtoA

__host__cudaError_t cudaMemcpyToArrayAsync
(cudaArray_t dst, size_t wOffset, size_t hOffset,
const void *src, size_t count, cudaMemcpyKind kind,
cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
wOffset

- Destination starting X offset (columns in bytes)
hOffset

- Destination starting Y offset (rows)
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

CUDA Runtime API vRelease Version | 210

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g57d3d780d165ecc0e3b3ce08e141cd89
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gad6827247af91600b56ce6e2ddb802e1

Modules

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting
athOffset rows and wOffset bytes from the upper left corner, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyToArrayAsyncl] is asynchronous with respect to the host, so the call may

return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy?2DFromArray, cudaMemcpyArrayToArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyHtoAAsync, cuMemcpy2DAsync

6.11. Stream Ordered Memory Allocator

overview

The asynchronous allocator allows the user to allocate and free in stream order. All
asynchronous accesses of the allocation must happen between the stream executions of the

CUDA Runtime API vRelease Version | 211

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb5c4863f64f132b4bc2661818b3fd188
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

allocation and the free. If the memory is accessed outside of the promised stream order, a use
before allocation / use after free error will cause undefined behavior.

The allocator is free to reallocate the memory as long as it can guarantee that compliant
memory accesses will not overlap temporally. The allocator may refer to internal stream
ordering as well as inter-stream dependencies (such as CUDA events and null stream
dependencies) when establishing the temporal guarantee. The allocator may also insert inter-
stream dependencies to establish the temporal guarantee.

Supported Platforms

Whether or not a device supports the integrated stream ordered memory allocator
may be queried by calling cudaDeviceGetAttribute() with the device attribute
cudaDevAttrMemoryPoolsSupported.

__host__cudaError_t cudaFreeAsync (void *devPtr,
cudaStream_t hStream)

Frees memory with stream ordered semantics.

Parameters

devPtr
hStream
- The stream establishing the stream ordering promise

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported

Description

Inserts a free operation into hStream. The allocation must not be accessed after stream
execution reaches the free. After this API returns, accessing the memory from any subsequent
work launched on the GPU or querying its pointer attributes results in undefined behavior.

Note:

During stream capture, this function results in the creation of a free node and must therefore
be passed the address of a graph allocation.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» This function uses standard default stream semantics.

CUDA Runtime API vRelease Version | 212

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuMemFreeAsync, cudaMallocAsync

__host__cudaError_t cudaMallocAsync (void
**devPtr, size t size, cudaStream_t hStream)

Allocates memory with stream ordered semantics.

Parameters

devPtr
- Returned device pointer
size
- Number of bytes to allocate
hStream
- The stream establishing the stream ordering contract and the memory pool to allocate
from

Returns

cudaSuccess, cudakErrorinvalidValue, cudaErrorNotSupported, cudaErrorOutOfMemory,

Description

Inserts an allocation operation into hStream. A pointer to the allocated memory is returned
immediately in *dptr. The allocation must not be accessed until the the allocation operation
completes. The allocation comes from the memory pool associated with the stream’s device.

Note:

> The default memory pool of a device contains device memory from that device.

> Basic stream ordering allows future work submitted into the same stream to use the
allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee
that the allocation operation completes before work submitted in a separate stream runs.

» During stream capture, this function results in the creation of an allocation node. In this
case, the allocation is owned by the graph instead of the memory pool. The memory pool's
properties are used to set the node’s creation parameters.

CUDA Runtime API vRelease Version | 213

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g41acf4131f672a2a75cd93d3241f10cf

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuMemAllocAsync, cudaMallocAsync [C++ API), cudaMallocFromPoolAsync, cudaFreeAsync,
cudaDeviceSetMemPool, cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool,
cudaMemPoolSetAccess, cudaMemPoolSetAttribute, cudaMemPoolGetAttribute

__host__cudaError_t cudaMallocFromPoolAsync
(void **ptr, size_t size, cudaMemPool_t memPool,
cudaStream_t stream)

Allocates memory from a specified pool with stream ordered semantics.

Parameters
ptr
- Returned device pointer
size
memPool
- The pool to allocate from
stream
- The stream establishing the stream ordering semantic

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported, cudaErrorOutOfMemory

CUDA Runtime API vRelease Version | 214

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g13413273e84a641bce1929eae9e6501f

Modules

Description

Inserts an allocation operation into hStream. A pointer to the allocated memory is returned
immediately in *dptr. The allocation must not be accessed until the the allocation operation
completes. The allocation comes from the specified memory pool.

Note:

> The specified memory pool may be from a device different than that of the specified
hStream.

» Basic stream ordering allows future work submitted into the same stream to use the
allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee
that the allocation operation completes before work submitted in a separate stream runs.

Note:

During stream capture, this function results in the creation of an allocation node. In this case,
the allocation is owned by the graph instead of the memory pool. The memory pool's properties
are used to set the node’s creation parameters.

See also:

cuMemAllocFromPoolAsync, cudaMallocAsync [C++ API), cudaMallocAsync, cudaFreeAsync,
cudaDeviceGetDefaultMemPool, cudaMemPoolCreate, cudaMemPoolSetAccess,
cudaMemPoolSetAttribute

__host__cudaError_t cudaMemPoolCreate
(cudaMemPool_t *memPool, const
cudaMemPoolProps *poolProps]

Creates a memory pool.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported

Description

Creates a CUDA memory pool and returns the handle in pool. The poolProps determines
the properties of the pool such as the backing device and IPC capabilities.

CUDA Runtime API vRelease Version | 215

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gf1dd6e1e2e8f767a5e0ea63f38ff260b

Modules

By default, the pool's memory will be accessible from the device it is allocated on.

Note:

Specifying cudaMemHandleTypeNone creates a memory pool that will not support IPC.

See also:

cuMemPoolCreate, cudaDeviceSetMemPool, cudaMallocFromPoolAsync,
cudaMemPoolExportToShareableHandle, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool

__host__cudaError_t cudaMemPoolDestroy
(cudaMemPool t memPool)

Destroys the specified memory pool.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

If any pointers obtained from this pool haven't been freed or the pool has free operations that
haven't completed when cudaMemPoolDestroy is invoked, the function will return immediately
and the resources associated with the pool will be released automatically once there are no
more outstanding allocations.

Destroying the current mempool of a device sets the default mempool of that device as the
current mempool for that device.

Note:

A device's default memory pool cannot be destroyed.

See also:

cuMemPoolDestroy, cudaFreeAsync, cudaDeviceSetMemPool,
cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool, cudaMemPoolCreate

CUDA Runtime API vRelease Version | 216

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g8aa4c143dbc20293659cd883232b95f2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1ge0e211115e5ad1c79250b9dd425b77f7

Modules

__host__cudaError_t cudaMemPoolExportPointer
(cudaMemPoolPtrExportData *exportData, void *ptr]

Export data to share a memory pool allocation between processes.

Parameters

exportData
ptr
- pointer to memory being exported

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Constructs shareData out for sharing a specific allocation from an already shared memory
pool. The recipient process can import the allocation with the cudaMemPoollmportPointer api.
The data is not a handle and may be shared through any IPC mechanism.

See also:

cuMemPoolExportPointer, cudaMemPoolExportToShareableHandle,
cudaMemPoollmportFromShareableHandle, cudaMemPoollmportPointer

__host__cudaError_t
cudaMemPoolExportToShareableHandle (void
*shareableHandle, cudaMemPool_t memPool,
cudaMemAllocationHandleType handleType, unsigned
int flags)

Exports a memory pool to the requested handle type.

Parameters

shareableHandle
memPool
handleType
- the type of handle to create
flags
- must be 0

CUDA Runtime API vRelease Version | 217

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gfe89f0478d26edaa91eb8a2e0349329d

Modules

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Given an IPC capable mempool, create an OS handle to share the pool with another

process. A recipient process can convert the shareable handle into a mempool with
cudaMemPoollmportFromShareableHandle. Individual pointers can then be shared with the
cudaMemPoolExportPointer and cudaMemPoollmportPointer APIs. The implementation of
what the shareable handle is and how it can be transferred is defined by the requested handle

type.

Note:

: To create an IPC capable mempool, create a mempool with a CUmemAllocationHandleType
other than cudaMemHandleTypeNone.

See also:

cuMemPoolExportToShareableHandle, cudaMemPoollmportFromShareableHandle,
cudaMemPoolExportPointer, cudaMemPoollmportPointer

__host_ cudaError_t cudaMemPoolGetAccess
(cudaMemAccessFlags *flags, cudaMemPool t
memPool, cudaMemLocation *location)

Returns the accessibility of a pool from a device.

Parameters

flags

- the accessibility of the pool from the specified location
memPool

- the pool being queried
location

- the location accessing the pool

Description
Returns the accessibility of the pool’'s memory from the specified location.

See also:

cuMemPoolGetAccess, cudaMemPoolSetAccess

CUDA Runtime API vRelease Version | 218

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g79ed285fdfffb76932871fb96fbba8f8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g838f28fd535a1cbd06c5f7fe0edbdcc7

Modules

__host__cudaError_t cudaMemPoolGetAttribute
(cudaMemPool t memPool, cudaMemPoolAttr attr,
void *value)

Gets attributes of a memory pool.

Parameters

memPool
attr

- The attribute to get
value

- Retrieved value

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Supported attributes are:

» cudaMemPoolAttrReleaseThreshold: (value type = cuuinté4_t) Amount of reserved memory

in bytes to hold onto before trying to release memory back to the 0S. When more than the
release threshold bytes of memory are held by the memory pool, the allocator will try to

release memory back to the OS on the next call to stream, event or context synchronize.
(default 0)

» cudaMemPoolReuseFollowEventDependencies: [value type = int] Allow cudaMallocAsync
to use memory asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda events and null stream
interactions can create the required stream ordered dependencies. (default enabled)

» cudaMemPoolReuseAllowOpportunistic: (value type = int) Allow reuse of already
completed frees when there is no dependency between the free and allocation. (default
enabled)

» cudaMemPoolReuseAllowInternalDependencies: (value type = int) Allow cudaMallocAsync

to insert new stream dependencies in order to establish the stream ordering required to
reuse a piece of memory released by cudaFreeAsync (default enabled).

Note:

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in
such case.

CUDA Runtime API vRelease Version | 219

Modules

See also:

cuMemPoolGetAttribute, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

__host__cudaError_t
cudaMemPoollmportFromShareableHandle
([cudaMemPool_t *memPool, void *shareableHandle,
cudaMemAllocationHandleType handleType, unsigned
int flags)

imports a memory pool from a shared handle.

Parameters

memPool
shareableHandle
handleType
- The type of handle being imported
flags
- must be 0

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Specific allocations can be imported from the imported pool with cudaMemPoollmportPointer.

Note:

Imported memory pools do not support creating new allocations. As such imported memory
pools may not be used in cudaDeviceSetMemPool or cudaMallocFromPoolAsync calls.

See also:

cuMemPoollmportFromShareableHandle, cudaMemPoolExportToShareableHandle,
cudaMemPoolExportPointer, cudaMemPoollmportPointer

CUDA Runtime API vRelease Version | 220

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gd45ea7c43e4a1add4b971d06fa72eda4
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g02b4f18dd8a1c45b7f302800e90cec5b

Modules

__host__cudaError_t cudaMemPoollmportPointer
[void **ptr, cudaMemPool_t memPool,
cudaMemPoolPtrExportData *exportData)

Import a memory pool allocation from another process.

Returns

CUDA_SUCCESS, CUDA_ERROR_INVALID_VALUE, CUDA_ERROR_NOT_INITIALIZED,
CUDA_ERROR_OUT_OF_MEMORY

Description

Returns in ptr out a pointer to the imported memory. The imported memory must not be
accessed before the allocation operation completes in the exporting process. The imported
memory must be freed from all importing processes before being freed in the exporting
process. The pointer may be freed with cudaFree or cudaFreeAsync. If cudaFreeAsync is
used, the free must be completed on the importing process before the free operation on the
exporting process.

Note:

The cudaFreeAsync api may be used in the exporting process before the cudaFreeAsync
operation completes in its stream as long as the cudaFreeAsync in the exporting process
specifies a stream with a stream dependency on the importing process’'s cudaFreeAsync.

See also:

cuMemPoollmportPointer, cudaMemPoolExportToShareableHandle,
cudaMemPoollmportFromShareableHandle, cudaMemPoolExportPointer

__host__cudaError_t cudaMemPoolSetAccess
(cudaMemPool_t memPool, const
cudaMemAccessDesc *desclList, size t count])

Controls visibility of pools between devices.

Parameters

memPool
descList
count
- Number of descriptors in the map array.

CUDA Runtime API vRelease Version | 221

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e9a0eed720f8a87cd1c5fd1c453bc7a03d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e990696c86fcee1f536a1ec7d25867feeb
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e98feb999f0af99b4a25ab26b3866f4df8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e9264c50688ed110e8476b591befe60c02
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g2620bb972ed5edcce312d3689454acbd

Ret

Modules

urns

cudaSuccess, cudaErrorinvalidValue

Description

See

also:

cuMemPoolSetAccess, cudaMemPoolGetAccess, cudaMallocAsync, cudaFreeAsync

host cudaError_t cudaMemPoolSetAttribute

(cudaMemPool t memPool, cudaMemPoolAttr attr,

VO

id *value)

Sets attributes of a memory pool.

Parameters

memPool

attr

The attribute to modify

value

Pointer to the value to assign

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sup

»

ported attributes are:

cudaMemPoolAttrReleaseThreshold: (value type = cuuinté4_t] Amount of reserved memory

in bytes to hold onto before trying to release memory back to the 0S. When more than the
release threshold bytes of memory are held by the memory pool, the allocator will try to
release memory back to the OS on the next call to stream, event or context synchronize.
(default 0)

cudaMemPoolReuseFollowEventDependencies: (value type = int) Allow cudaMallocAsync

to use memory asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda events and null stream
interactions can create the required stream ordered dependencies. (default enabled)

cudaMemPoolReuseAllowOpportunistic: (value type = int) Allow reuse of already

CuD

completed frees when there is no dependency between the free and allocation. (default
enabled)

A Runtime API vRelease Version | 222

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gff3ce33e252443f4b087b94e42913406

Modules

» cudaMemPoolReuseAllowInternalDependencies: (value type = int] Allow cudaMallocAsync
to insert new stream dependencies in order to establish the stream ordering required to
reuse a piece of memory released by cudaFreeAsync (default enabled).

Note:

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in

such case.

See also:

cuMemPoolSetAttribute, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

__host__cudaError_t cudaMemPoolTrimTo
[cudaMemPool_t memPool, size_t minBytesToKeep)

Tries to release memory back to the 0S.

Parameters

memPool

minBytesToKeep
- If the pool has less than minBytesToKeep reserved, the TrimTo operation is a no-op.
Otherwise the pool will be guaranteed to have at least minBytesToKeep bytes reserved after
the operation.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Releases memory back to the OS until the pool contains fewer than minBytesToKeep reserved
bytes, or there is no more memory that the allocator can safely release. The allocator cannot
release OS allocations that back outstanding asynchronous allocations. The 0S allocations
may happen at different granularity from the user allocations.

Note:

> : Allocations that have not been freed count as outstanding.

> : Allocations that have been asynchronously freed but whose completion has not been
observed on the host (eg. by a synchronize) can count as outstanding.

CUDA Runtime API vRelease Version | 223

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g223e786cb217709235a06e41bccaec00

Modules

Note:

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in

such case.

See also:

cuMemPoolTrimTo, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

6.12. Unified Addressing

This section describes the unified addressing functions of the CUDA runtime application
programming interface.

Overview

CUDA devices can share a unified address space with the host. For these devices there is

no distinction between a device pointer and a host pointer -- the same pointer value may be
used to access memory from the host program and from a kernel running on the device (with
exceptions enumerated below).

Supported Platforms

Whether or not a device supports unified addressing may be queried by calling
cudaGetDeviceProperties(] with the device property cudaDeviceProp::unifiedAddressing.

Unified addressing is automatically enabled in 64-bit processes .
Looking Up Information from Pointer Values

It is possible to look up information about the memory which backs a pointer value.
For instance, one may want to know if a pointer points to host or device memory.

As another example, in the case of device memory, one may want to know on which
CUDA device the memory resides. These properties may be queried using the function
cudaPointerGetAttributes()

Since pointers are unique, it is not necessary to specify information about the pointers
specified to cudaMemcpyl) and other copy functions. The copy direction cudaMemcpyDefault
may be used to specify that the CUDA runtime should infer the location of the pointer from its
value.

Automatic Mapping of Host Allocated Host Memory

All host memory allocated through all devices using cudaMallocHost() and cudaHostAlloc(] is
always directly accessible from all devices that support unified addressing. This is the case

CUDA Runtime API vRelease Version | 224

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g9c7e267e3460945b0ca76c48314bb669

Modules

regardless of whether or not the flags cudaHostAllocPortable and cudaHostAllocMapped are
specified.

The pointer value through which allocated host memory may be accessed in kernels on all
devices that support unified addressing is the same as the pointer value through which that
memory is accessed on the host. It is not necessary to call cudaHostGetDevicePointer(] to get
the device pointer for these allocations.

Note that this is not the case for memory allocated using the flag
cudaHostAllocWriteCombined, as discussed below.

Direct Access of Peer Memory

Upon enabling direct access from a device that supports unified addressing to another peer
device that supports unified addressing using cudaDeviceEnablePeerAccess() all memory
allocated in the peer device using cudaMalloc(] and cudaMallocPitch() will immediately be
accessible by the current device. The device pointer value through which any peer’'s memory
may be accessed in the current device is the same pointer value through which that memory
may be accessed from the peer device.

Exceptions, Disjoint Addressing

Not all memory may be accessed on devices through the same pointer value through

which they are accessed on the host. These exceptions are host memory registered using
cudaHostRegister(] and host memory allocated using the flag cudaHostAllocWriteCombined.
For these exceptions, there exists a distinct host and device address for the memory. The
device address is guaranteed to not overlap any valid host pointer range and is guaranteed to
have the same value across all devices that support unified addressing.

This device address may be queried using cudaHostGetDevicePointer(] when a device using
unified addressing is current. Either the host or the unified device pointer value may be used
to refer to this memory in cudaMemcpyl] and similar functions using the cudaMemcpyDefault
memory direction.

__host__cudaError_t cudaPointerGetAttributes
(cudaPointerAttributes *attributes, const void *ptr)

Returns attributes about a specified pointer.

Parameters

attributes

- Attributes for the specified pointer
ptr

- Pointer to get attributes for

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 225

Modules

Description

Returnsin *attributes the attributes of the pointer ptr. If pointer was not allocated in,
mapped by or registered with context supporting unified addressing cudaErrorinvalidValue is
returned.

Note:

In CUDA 11.0 forward passing host pointer will return cudaMemoryTypeUnregistered in

cudaPointerAttributes::type and call will return cudaSuccess.

The cudaPointerAttributes structure is defined as:

r struct cudaPointerAttributes {
enum cudaMemoryType
type;
int device;
void *devicePointer;
void *hostPointer;

}
In this structure, the individual fields mean

> cudaPointerAttributes::type identifies type of memory. It can be
cudaMemoryTypeUnregistered for unregistered host memory, cudaMemoryTypeHost
for registered host memory, cudaMemoryTypeDevice for device memory or
cudaMemoryTypeManaged for managed memory.

> device is the device against which ptr was allocated. If ptr has memory type
cudaMemoryTypeDevice then this identifies the device on which the memory referred
to by ptr physically resides. If ptr has memory type cudaMemoryTypeHost then this
identifies the device which was current when the allocation was made (and if that device is
deinitialized then this allocation will vanish with that device's state).

» devicePointer is the device pointer alias through which the memory referred to by ptr may
be accessed on the current device. If the memory referred to by ptr cannot be accessed
directly by the current device then this is NULL.

> hostPointer is the host pointer alias through which the memory referred to by ptr may be
accessed on the host. If the memory referred to by ptr cannot be accessed directly by the
host then this is NULL.

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 226

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cuPointerGetAttributes

6.13. Peer Device Memory Access

This section describes the peer device memory access functions of the CUDA runtime
application programming interface.

__host__cudaError_t cudaDeviceCanAccessPeer (int
*canAccessPeer, int device, int peerDevice]

Queries if a device may directly access a peer device's memory.

Parameters

canAccessPeer

- Returned access capability
device

- Device from which allocations on peerDevice are to be directly accessed.
peerDevice

- Device on which the allocations to be directly accessed by device reside.

Returns

cudaSuccess, cudaErrorinvalidDevice

Description

Returns in *canAccessPeer avalue of 1 if device device is capable of directly accessing
memory from peerDevice and 0 otherwise. If direct access of peerDevice from device is
possible, then access may be enabled by calling cudaDeviceEnablePeerAccess().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 227

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gf65e9ea532e311dd049166e4894955ad

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceEnablePeerAccess, cudaDeviceDisablePeerAccess, cuDeviceCanAccessPeer

__host_ _cudaError_t cudaDeviceDisablePeerAccess
lint peerDevice])

Disables direct access to memory allocations on a peer device.

Parameters

peerDevice
- Peer device to disable direct access to

Returns

cudaSuccess, cudaErrorPeerAccessNotEnabled, cudaErrorinvalidDevice

Description

Returns cudaErrorPeerAccessNotEnabled if direct access to memory on peerDevice has not
yet been enabled from the current device.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceCanAccessPeer, cudaDeviceEnablePeerAccess, cuCtxDisablePeerAccess

CUDA Runtime API vRelease Version | 228

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g496bdaae1f632ebfb695b99d2c40f19e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g5b4b6936ea868d4954ce4d841a3b4810

Modules

__host___cudaError_t cudaDeviceEnablePeerAccess
lint peerDevice, unsigned int flags]

Enables direct access to memory allocations on a peer device.

Parameters

peerDevice

- Peer device to enable direct access to from the current device
flags

- Reserved for future use and must be setto 0

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorPeerAccessAlreadyEnabled,
cudaErrorinvalidValue

Description

On success, all allocations from peerDevice will immediately be accessible by the
current device. They will remain accessible until access is explicitly disabled using
cudaDeviceDisablePeerAccess|(] or either device is reset using cudaDeviceReset(].

Note that access granted by this call is unidirectional and that in order to access
memory on the current device from peerDevice, a separate symmetric call to
cudaDeviceEnablePeerAccess(] is required.

Note that there are both device-wide and system-wide limitations per system configuration, as
noted in the CUDA Programming Guide under the section "Peer-to-Peer Memory Access”.

Returns cudaErrorinvalidDevice if cudaDeviceCanAccessPeer(] indicates that the current
device cannot directly access memory from peerDevice.

Returns cudakErrorPeerAccessAlreadyEnabled if direct access of peerDevice from the
current device has already been enabled.

Returns cudaErrorinvalidValue if flags is not 0.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 229

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceCanAccessPeer, cudaDeviceDisablePeerAccess, cuCtxEnablePeerAccess

6.14. OpenGL Interoperability

This section describes the OpenGL interoperability functions of the CUDA runtime application
programming interface. Note that mapping of OpenGL resources is performed with the
graphics APl agnostic, resource mapping interface described in Graphics Interopability.

enum cudaGLDevicelList

CUDA devices corresponding to the current OpenGL context

Values

cudaGLDeviceListAll = 1
The CUDA devices for all GPUs used by the current OpenGL context
cudaGLDeviceListCurrentFrame = 2
The CUDA devices for the GPUs used by the current OpenGL context in its currently
rendering frame
cudaGLDeviceListNextFrame = 3
The CUDA devices for the GPUs to be used by the current OpenGL context in the next frame

__host__cudaError_t cudaGLGetDevices (unsigned int
*pCudaDeviceCount, int *pCudaDevices, unsigned int
cudaDeviceCount, cudaGLDeviceList deviceList]

Gets the CUDA devices associated with the current OpenGL context.

Parameters

pCudaDeviceCount

- Returned number of CUDA devices corresponding to the current OpenGL context
pCudaDevices

- Returned CUDA devices corresponding to the current OpenGL context
cudaDeviceCount

- The size of the output device array pCudaDevices

CUDA Runtime API vRelease Version | 230

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g0889ec6728e61c05ed359551d67b3f5a

Modules

deviceList
- The set of devices to return. This set may be cudaGl Devicel istAll for all devices,
cudaGLDevicelListCurrentFrame for the devices used to render the current frame (in SLIJ,
or cudaGLDevicelistNextFrame for the devices used to render the next frame (in SLIJ.

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorinvalidGraphicsContext, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding to
the current OpenGL context. Also returns in *pCudaDevices at most cudaDeviceCount of
the CUDA-compatible devices corresponding to the current OpenGL context. If any of the GPUs
being used by the current OpenGL context are not CUDA capable then the call will return
cudaErrorNoDevice.

Note:

» This function is not supported on Mac OS X.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGLGetDevices

__host__cudaError_t cudaGraphicsGLRegisterBuffer
(cudaGraphicsResource **resource, GLuint buffer,

unsigned int flags)
Registers an OpenGL buffer object.

Parameters

resource

- Pointer to the returned object handle
buffer

- name of buffer object to be registered
flags

- Register flags

CUDA Runtime API vRelease Version | 231

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g98bb15525b04d2f6a817c21e07d8b7cd

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the buffer object specified by buffer for access by CUDA. A handle to the
registered object is returned as resource. The register flags £1ags specify the intended
usage, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

» cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsResourceGetMappedPointer, cuGraphicsGLReqgisterBuffer

__host__cudaError_t cudaGraphicsGLRegisterlmage
(cudaGraphicsResource **resource, GLuint image,
GLenum target, unsigned int flags)

Register an OpenGL texture or renderbuffer object.

Parameters

resource
- Pointer to the returned object handle
image
- name of texture or renderbuffer object to be registered
target
- Identifies the type of object specified by image
flags
- Register flags

CUDA Runtime API vRelease Version | 232

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1gd530f66cc9ab43a31a98527e75f343a0

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the texture or renderbuffer object specified by image for access by CUDA. A handle
to the registered object is returned as resource.

target must match the type of the object, and must be one of GL_TEXTURE_2D,
GL _TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP, GL_TEXTURE_3D,
GL TEXTURE 2D _ARRAY, or GL_ RENDERBUFFER.

The register flags £1lags specify the intended usage, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

> cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

> cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

> cudaGraphicsRegisterFlagsSurfacel oadStore: Specifies that CUDA will bind this resource
to a surface reference.

» cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

The following image formats are supported. For brevity's sake, the list is abbreviated. For ex.,
{GL_R, GL_RG} X {8, 16} would expand to the following 4 formats {GL_R8, GL_R16, GL_RGS,
GL_RG1é}:

» GL_RED, GL_RG, GL_RGBA, GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA,
GL_INTENSITY

» {GL_R, GL_RG, GL_RGBA} X {8, 16, 16F, 32F, 8Ul, 16Ul, 32Ul, 8I, 16l, 321}

» {GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA, GL_INTENSITY} X {8, 16,
16F_ARB, 32F_ARB, 8UI_EXT, 16UI_EXT, 32UI_EXT, 8I_EXT, 16I_EXT, 32I_EXT}

The following image classes are currently disallowed:

> Textures with borders

> Multisampled renderbuffers

D Note:

CUDA Runtime API vRelease Version | 233

Modules

- Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsGLRegisterlmage

__host__cudaError_t cudaWGLGetDevice (int *device,
HGPUNV hGpul)

Gets the CUDA device associated with hGpu.

Parameters

device

- Returns the device associated with hGpu, or -1 if hGpu is not a compute device.
hGpu
- Handle to a GPU, as queried via WGL_NV_gpu_affinity

Returns

cudaSuccess

Description

Returns the CUDA device associated with a hGpu, if applicable.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

WGL_NV_gpu_affinity, cuWGLGetDevice

6.15. OpenGL Interoperability
[DEPRECATED]

This section describes deprecated OpenGL interoperability functionality.

enum cudaGLMapFlags

CUDA GL Map Flags

CUDA Runtime API vRelease Version | 234

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g52c3a36c4c92611b6fcf0662b2f74e40
../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g21ff8296192dc38dff42ba3346078282

Modules

Values

cudaGLMapFlagsNone =0

Default; Assume resource can be read/written
cudaGLMapFlagsReadOnly =1

CUDA kernels will not write to this resource
cudaGLMapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

__host__cudaError_t cudaGLMapBufferObject (void
**devPtr, GLuint bufObj)

Maps a buffer object for access by CUDA.

Parameters

devPtr

- Returned device pointer to CUDA object
bufObj

- Buffer object ID to map

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufObj into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered

by calling cudaGLRegisterBufferObject(]. While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the
current thread when this is called.

All streams in the current thread are synchronized with the current GL context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

CUDA Runtime API vRelease Version | 235

Modules

__host__cudaError_t cudaGLMapBufferObjectAsync

[void **devPtr, GLuint bufObj, cudaStream_t stream]
Maps a buffer object for access by CUDA.

Parameters

devPtr

- Returned device pointer to CUDA object
bufObj

- Buffer object ID to map
stream

- Stream to synchronize

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufOb7j into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered

by calling cudaGLRegisterBufferObject(]. While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the
current thread when this is called.

Stream /p stream is synchronized with the current GL context.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

CUDA Runtime API vRelease Version | 236

Modules

__host__cudaError_t cudaGLRegisterBufferObject
(GLuint bufObj)

Registers a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object ID to register

Returns

cudaSuccess, cudaErrorinitializationError

Description
Deprecated This function is deprecated as of CUDA 3.0.

Registers the buffer object of ID bufObj for access by CUDA. This function must be called
before CUDA can map the buffer object. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsGLReqisterBuffer

__host_ _cudaError_t
cudaGLSetBufferObjectMapFlags (GLuint bufQObj,

unsigned int flags)
Set usage flags for mapping an OpenGL buffer.

Parameters

bufObj

- Registered buffer object to set flags for
flags

- Parameters for buffer mapping

CUDA Runtime API vRelease Version | 237

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Set flags for mapping the OpenGL buffer bufOb]

Changes to flags will take effect the next time bufObj is mapped. The £1lags argument may
be any of the following:

» cudaGLMapFlagsNone: Specifies no hints about how this buffer will be used. It is therefore
assumed that this buffer will be read from and written to by CUDA kernels. This is the
default value.

> cudaGLMapFlagsReadOnly: Specifies that CUDA kernels which access this buffer will not
write to the buffer.

» cudaGLMapFlagsWriteDiscard: Specifies that CUDA kernels which access this buffer will
not read from the buffer and will write over the entire contents of the buffer, so none of the
data previously stored in the buffer will be preserved.

If bufObj has not been registered for use with CUDA, then cudaErrorinvalidResourceHandle
is returned. If bufObj is presently mapped for access by CUDA, then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceSetMapFlags

_ _host__cudaError_t cudaGLSetGLDevice (int device)
Sets a CUDA device to use OpenGL interoperability.

Parameters

device
- Device to use for OpenGL interoperability

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorSetOnActiveProcess

CUDA Runtime API vRelease Version | 238

Modules

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with an OpenGL context in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsGLReqgisterBuffer, cudaGraphicsGLRegisterlmage

__host__cudaError_t cudaGLUnmapBufferObject
(GLuint bufObj)

Unmaps a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object to unmap

Returns

cudaSuccess, cudaErrorUnmapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the buffer object of ID bufObj for access by CUDA. When a buffer is unmapped, the
base address returned by cudaGLMapBufferObject(] is invalid and subsequent references to
the address result in undefined behavior. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

All streams in the current thread are synchronized with the current GL context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 239

Modules

See also:

cudaGraphicsUnmapResources

__host_ _cudaError_t
cudaGLUnmapBufferObjectAsync (GLuint bufObj,

cudaStream t stream)
Unmaps a buffer object for access by CUDA.

Parameters

bufObj

- Buffer object to unmap
stream

- Stream to synchronize

Returns

cudaSuccess, cudaErrorUnmapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the buffer object of ID bufObj for access by CUDA. When a buffer is unmapped, the
base address returned by cudaGlLMapBufferObject(] is invalid and subsequent references to
the address result in undefined behavior. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

Stream /p stream is synchronized with the current GL context.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnmapResources

CUDA Runtime API vRelease Version | 240

Modules

__host__cudaError_t cudaGLUnregisterBufferObject
(GLuint bufObj)

Unregisters a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object to unregister

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the buffer object of ID bufObj for access by CUDA and releases any CUDA
resources associated with the buffer. Once a buffer is unregistered, it may no longer be
mapped by CUDA. The GL context used to create the buffer, or another context from the same
share group, must be bound to the current thread when this is called.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource

6.16. Direct3D 9 Interoperability

This section describes the Direct3D 9 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 9 resources is performed
with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D9Devicelist

CUDA devices corresponding to a D3D9 device

Values
cudaD3D9DeviceListAll =1

CUDA Runtime API vRelease Version | 241

Modules

The CUDA devices for all GPUs used by a D3D9 device
cudaD3D9DevicelListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D9 device in its currently rendering frame
cudaD3D9DeviceListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D9 device in the next frame

__host__cudaError_t cudaD3D9GetDevice (int
*device, const char *pszAdapterName)

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pszAdapterName
pszAdapterName

- D3D9 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter name
pszAdapterName obtained from EnumDisplayDevices or IDirect3D9::GetAdapterldentifier(). If
no device on the adapter with name pszAdapterName is CUDA-compatible then the call will
fail.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9SetDirect3DDevice, cudaGraphicsD3D?ReqgisterResource, cuD3D9GetDevice

CUDA Runtime API vRelease Version | 242

Modules

__host__cudaError_t cudaD3D9GetDevices (unsigned
Int *pCudaDeviceCount, int *pCudaDevices, unsigned
Int cudaDeviceCount, IDirect3DDevice? *pD3D9Device,
cudaD3D9DevicelList devicelList]

Gets the CUDA devices corresponding to a Direct3D 9 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D9Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D9Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D9Device
- Direct3D 9 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D9Devicel istAll for all devices,
cudaD3D9DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D9DeviceListNextFrame for the devices used to render the next frame (in
SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 9 device pD3D9Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 9
device pD3D9Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 243

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D9GetDevices

__host__cudaError_t cudaD3D9GetDirect3DDevice
(IDirect3DDevice9 **ppD3D9Device]

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D9Device
- Returns the Direct3D device for this thread

Returns

cudaSuccess, cudaErrorlnvalidGraphicsContext, cudaErrorUnknown

Description

Returns in *ppD3D9Device the Direct3D device against which this CUDA context was created
in cudaD3D9SetDirect3DDevice(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9SetDirect3DDevice, cuD3D9GetDirect3DDevice

__host__cudaError_t cudaD3D9SetDirect3DDevice
(IDirect3DDevice9 *pD3D9Device, int device)

Sets the Direct3D 9 device to use for interoperability with a CUDA device.

Parameters

pD3D9Device
- Direct3D device to use for this thread

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D9DeviceListAll from cudaD3D9GetDevices, may be set to -1 to automatically select
an appropriate CUDA device.

CUDA Runtime API vRelease Version | 244

Modules

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudaErrorSetOnActiveProcess

Description

Records pD3D9Device as the Direct3D 9 device to use for Direct3D 9 interoperability with the
CUDA device device and sets device as the current device for the calling host thread.

If device has already been initialized then this call will fail with the error
cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using
cudaDeviceReset(] before Direct3D 9 interoperability on device may be enabled.

Successfully initializing CUDA interoperability with pD3D9Device will increase the internal
reference count on pD3D9Device. This reference count will be decremented when device is
reset using cudaDeviceReset().

Note that this function is never required for correct functionality. Use of this function will
result in accelerated interoperability only when the operating system is Windows Vista
or Windows 7, and the device pD3DDdevice is not an IDirect3DDevice9Ex. In all other
cirumstances, this function is not necessary.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9GetDevice, cudaGraphicsD3D9ReqgisterResource, cudaDeviceReset

__host__cudaError_t
cudaGraphicsD3D9RegisterResource
(cudaGraphicsResource **resource,
IDirect3DResource9 *pD3DResource, unsigned int
flags)

Register a Direct3D 9 resource for access by CUDA.

Parameters

resource
- Pointer to returned resource handle

CUDA Runtime API vRelease Version | 245

Modules

pD3DResource
- Direct3D resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 9 resource pD3DResource for access by CUDA.

If this call is successful then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.

» |Direct3DVertexBuffer9: may be accessed through a device pointer
» IDirect3DIndexBuffer?: may be accessed through a device pointer

» |Direct3DSurface?: may be accessed through an array. Only stand-alone objects of
type IDirect3DSurface? may be explicitly shared. In particular, individual mipmap levels
and faces of cube maps may not be registered directly. To access individual surfaces
associated with a texture, one must register the base texture object.

» |Direct3DBaseTexture9: individual surfaces on this texture may be accessed through an
array.

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

» cudaGraphicsRegisterFlagsSurfacel oadStore: Specifies that CUDA will bind this resource
to a surface reference.

> cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

» The primary rendertarget may not be registered with CUDA.

> Resources allocated as shared may not be registered with CUDA.

CUDA Runtime API vRelease Version | 246

Modules

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

» Surfaces of depth or stencil formats cannot be shared.
A complete list of supported formats is as follows:

D3DFMT L8

D3DFMT L16
D3DFMT_ASR8G8BS
D3DFMT _X8R8GSBS
D3DFMT G16R16

D3DFMT _ASBSG8RS
D3DFMT A8

D3DFMT A8LS
D3DFMT_Q8W8V8U8
D3DFMT V16U16
D3DFMT A16B16G16R16F
D3DFMT A16B16G16R16
D3DFMT R32F

D3DFMT G16R16F
D3DFMT A32B32G32R32F
D3DFMT G32R32F
D3DFMT R16F

vV vV v v vV vV v vV vV v vV v v vV v v v

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then
cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9SetDirect3DDevice, cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D9RegisterResource

CUDA Runtime API vRelease Version | 247

Modules

6.17. Direct3D 9 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 9 interoperability functions.

enum cudaD3D9MapkFlags

CUDA D3D9 Map Flags

Values

cudaD3D9MapFlagsNone =0

Default; Assume resource can be read/written
cudaD3D9MapFlagsReadOnly = 1

CUDA kernels will not write to this resource
cudaD3D9MapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

enum cudaD3D9RegisterFlags

CUDA D3D9 Register Flags

Values

cudaD3D9RegisterFlagsNone =0

Default; Resource can be accessed througa void*
cudaD3D9RegisterFlagsArray = 1

Resource can be accessed through a CUarray*

__host__cudaError_t cudaD3D9MapResources (int

count, IDirect3DResource? **ppResources]
Map Direct3D resources for access by CUDA.

Parameters

count

- Number of resources to map for CUDA
ppResources

- Resources to map for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 248

Modules

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped.
Direct3D should not access any resources while they are mapped by CUDA. If an application
does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued
before cudaD3D9MapResources() will complete before any CUDA kernels issued after
cudaD3D9MapResources() begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries then cudaErrorinvalidResourceHandle is returned. If any
of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaD3D9RegisterResource
(IDirect3DResource? *pResource, unsigned int flags)

Registers a Direct3D resource for access by CUDA.

Parameters

pResource
- Resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Registers the Direct3D resource pResource for access by CUDA.

CUDA Runtime API vRelease Version | 249

Modules

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaD3D9UnregisterResource(). Also on success, this call
will increase the internal reference count on pResource. This reference count will be

decremented when this resource is unregistered through cudaD3D9UnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pResource must be one of the following.

> |Direct3DVertexBuffer%: No notes.
> |Direct3DIndexBuffer?: No notes.

» |Direct3DSurface?: Only stand-alone objects of type IDirect3DSurface? may be explicitly
shared. In particular, individual mipmap levels and faces of cube maps may not be
registered directly. To access individual surfaces associated with a texture, one must
register the base texture object.

> |Direct3DBaseTexture?: When a texture is registered, all surfaces associated with all
mipmap levels of all faces of the texture will be accessible to CUDA.

The flags argument specifies the mechanism through which CUDA will access the Direct3D
resource. The following value is allowed:

» cudaD3D9RegisterFlagsNone: Specifies that CUDA will access this resource through a
void*. The pointer, size, and pitch for each subresource of this resource may be queried
through cudaD3D9ResourceGetMappedPointer(), cudaD3D9ResourceGetMappedSize(],
and cudaD3D9ResourceGetMappedPitch() respectively. This option is valid for all resource

types.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations:

» The primary rendertarget may not be registered with CUDA.

» Resources allocated as shared may not be registered with CUDA.

» Any resources allocated in D3DPOOL_SYSTEMMEM or D3DPOOL_MANAGED may not be
registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

» Surfaces of depth or stencil formats cannot be shared.

If Direct3D interoperability is not initialized on this context, then cudaErrorinvalidDevice is
returned. If pResource is of incorrect type (e.g, is a non-stand-alone IDirect3DSurface9) or is
already registered, then cudaErrorinvalidResourceHandle is returned. If pResource cannot
be registered then cudaErrorUnknown is returned.

CUDA Runtime API vRelease Version | 250

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D9RegisterResource

__host__cudaError_t
cudaD3D9ResourceGetMappedArray (cudaArray
**ppArray, IDirect3DResource9 *pResource, unsigned
int face, unsigned int level)

Get an array through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

ppArray
- Returned array corresponding to subresource
pResource
- Mapped resource to access
face
- Face of resource to access
level
- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pArray an array through which the subresource of the mapped Direct3D
resource pResource, which corresponds to face and level may be accessed. The value set
in pArray may change every time that pResource is mapped.

If pResource is not registered then cudaErrorinvalidResourceHandle is returned. If
pResource was not registered with usage flags cudaD3D9RegisterFlagsArray, then
cudaErrorinvalidResourceHandle is returned. If pResource is not mapped, then
cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer().

CUDA Runtime API vRelease Version | 251

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D9ResourceGetMappedPitch (size_t *pPitch,
size_t *pPitchSlice, IDirect3DResource? *pResource,
unsigned int face, unsigned int level]

Get the pitch of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters

pPitch

- Returned pitch of subresource
pPitchSlice

- Returned Z-slice pitch of subresource
pResource

- Mapped resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the
mapped Direct3D resource pResource, which corresponds to face and level. The values
setin pPitch and pPitchSlice may change every time that pResource is mapped.

The pitch and Z-slice pitch values may be used to compute the location of a sample on a
surface as follows.

For a 2D surface, the byte offset of the sample at position x, y from the base pointer of the
surface Is:

CUDA Runtime API vRelease Version | 252

Modules

y * pitch + (bytes per pixel] * x

For a 3D surface, the byte offset of the sample at position x, y, z from the base pointer of the
surface Is:

z* slicePitch + y * pitch + (bytes per pixel] * x

Both parameters pPitch and pPitchSlice are optional and may be set to NULL.

If pResource is not of type IDirect3DBaseTexture? or one of its sub-types or if pResource
has not been registered for use with CUDA, then cudaErrorinvalidResourceHandle is returned.
If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone, then

cudaErrorinvalidResourceHandle is returned. If pResource is not mapped for access by
CUDA then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D9ResourceGetMappedPointer (void
**pPointer, |IDirect3DResource? *pResource,
unsigned int face, unsigned int level]

Get a pointer through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

pPointer
- Returned pointer corresponding to subresource
pResource
- Mapped resource to access
face
- Face of resource to access
level
- Level of resource to access

CUDA Runtime API vRelease Version | 253

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource
pResource, which corresponds to face and level. The value set in pPointer may change
every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped, then
cudakrrorUnknown is returned.

If pResource is of type IDirect3DCubeTexture?, then face must one of the values
enumerated by type D3DCUBEMAP_FACES. For all other types, face must be 0. If face is
invalid, then cudaErrorinvalidValue is returned.

If pResource is of type IDirect3DBaseTexture?, then 1evel must correspond to a valid
mipmap level. Only mipmap level O is supported for now. For all other types 1evel must be 0.
If level isinvalid, then cudaErrorinvalidValue is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D9ResourceGetMappedSize (size_t *pSize,
IDirect3DResource9 *pResource, unsigned int face,
unsigned int level)

Get the size of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters

pSize
- Returned size of subresource

CUDA Runtime API vRelease Version | 254

Modules

pResource

- Mapped resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource,
which corresponds to face and level. The value set in pSize may change every time that
pResource is mapped.

If pResource has not been registered for use with CUDA then
cudaErrorinvalidResourceHandle is returned. If pResource was not registered with usage
flags cudaD3D9RegisterFlagsNone, then cudaErrorinvalidResourceHandle is returned. If
pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

CUDA Runtime API vRelease Version | 255

Modules

__host__cudaError_t
cudaD3D9ResourceGetSurfaceDimensions

(size_t *pWidth, size_t *pHeight, size_t *pDepth,
IDirect3DResource9 *pResource, unsigned int face,
unsigned int level)

Get the dimensions of a registered Direct3D surface.

Parameters
pWidth

- Returned width of surface
pHeight

- Returned height of surface
pDepth

- Returned depth of surface
pResource

- Registered resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the
mapped Direct3D resource pResource which corresponds to face and level.

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the
dimensions of a resource will be an integer factor larger than the dimensions reported by the
Direct3D runtime.

The parameters pWwidth, pHeight, and pDepth are optional. For 2D surfaces, the value
returned in *pDepth will be 0.

If pResource is not of type IDirect3DBaseTexture? or IDirect3DSurface? or if pResource has
not been registered for use with CUDA, then cudaErrorinvalidResourceHandle is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer.

CUDA Runtime API vRelease Version | 256

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D9ResourceSetMapFlags (IDirect3DResource?
*pResource, unsigned int flags]

Set usage flags for mapping a Direct3D resource.

Parameters

pResource

- Registered resource to set flags for
flags

- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Set flags for mapping the Direct3D resource pResource.

Changes to flags will take effect the next time pResource is mapped. The £lags argument
may be any of the following:

» cudaD3D9MapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA kernels.
This is the default value.

» cudaD3D9MapFlagsReadOnly: Specifies that CUDA kernels which access this resource will
not write to this resource.

» cudaD3D9MapFlagsWriteDiscard: Specifies that CUDA kernels which access this resource
will not read from this resource and will write over the entire contents of the resource, so
none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA, then
cudaErrorinvalidResourceHandle is returned. If pResource is presently mapped for access
by CUDA, then cudaErrorUnknown is returned.

CUDA Runtime API vRelease Version | 257

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudalnteropResourceSetMapFlags

__host__cudaError_t cudaD3D9UnmapResources [(int
count, IDirect3DResource? **ppResources]

Unmap Direct3D resources for access by CUDA.

Parameters

count

- Number of resources to unmap for CUDA
ppResources

- Resources to unmap for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Unmaps the count Direct3D resources in ppResources.

This function provides the synchronization guarantee that any CUDA kernels issued
before cudaD3D9UnmapResources(] will complete before any Direct3D calls issued after
cudaD3D9UnmapResources(] begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries, then cudaErrorlnvalidResourceHandle is returned. If any of
ppResources are not presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnmapResources

CUDA Runtime API vRelease Version | 258

Modules

__host__cudaError_t cudaD3D9UnregisterResource
(IDirect3DResource? *pResource)

Unregisters a Direct3D resource for access by CUDA.

Parameters

pResource
- Resource to unregister

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the Direct3D resource pResource so it is not accessible by CUDA unless
registered again.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnreqgisterResource

6.18. Direct3D 10 Interoperability

This section describes the Direct3D 10 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 10 resources is
performed with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D10DevicelList

CUDA devices corresponding to a D3D10 device

Values
cudaD3D10DeviceListAll =1

CUDA Runtime API vRelease Version | 259

Modules

The CUDA devices for all GPUs used by a D3D10 device
cudaD3D10DevicelListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D10 device in its currently rendering frame
cudaD3D10DevicelListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D10 device in the next frame

__host__cudaError_t cudaD3D10GetDevice (int
*device, IDXGIAdapter *pAdapter]

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pAdapter
pAdapter

- D3D10 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter pAdapter
obtained from IDXGIFactory::EnumAdapters. This call will succeed only if a device on adapter
pAdapter is CUDA-compatible.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D10RegisterResource, cuD3D10GetDevice

CUDA Runtime API vRelease Version | 260

Modules

__host_ _cudaError_t cudaD3D10GetDevices
(unsigned int *pCudaDeviceCount, int *pCudaDevices,

unsigned int cudaDeviceCount, ID3D10Device
*pD3D10Device, cudaD3D10Devicelist devicelist]

Gets the CUDA devices corresponding to a Direct3D 10 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D10Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D10Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D10Device
- Direct3D 10 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D10DeviceListAll for all devices,
cudaD3D10DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D10DevicelistNextFrame for the devices used to render the next frame (in
SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 10 device pD3D10Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 10
device pD3D10Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 261

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D10GetDevices

__host__cudaError_t
cudaGraphicsD3D10RegisterResource
(cudaGraphicsResource **resource, ID3D10Resource
*pD3DResource, unsigned int flags)

Registers a Direct3D 10 resource for access by CUDA.

Parameters

resource

- Pointer to returned resource handle
pD3DResource

- Direct3D resource to register
flags

- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 10 resource pD3DResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.

ID3D10Buffer: may be accessed via a device pointer
ID3D10Texture1D: individual subresources of the texture may be accessed via arrays

ID3D10Texture2D: individual subresources of the texture may be accessed via arrays

vV v v VY

ID3D10Texture3D: individual subresources of the texture may be accessed via arrays

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

CUDA Runtime API vRelease Version | 262

Modules

> cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

> cudaGraphicsRegisterFlagsSurfacel oadStore: Specifies that CUDA will bind this resource
to a surface reference.

» cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.
» The primary rendertarget may not be registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

> Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation
A {B,C,D} represents A_B, A_C, and A_D.

DXGI_FORMAT_A8_UNORM

DXGI_FORMAT_B8G8R8A8_UNORM

DXGI_FORMAT_B8G8R8X8_UNORM

DXGI_FORMAT_R16_FLOAT
DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R32_FLOAT
DXGI_FORMAT_R32G32B32A32_{FLOAT,SINT,UINT}
DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}
DXGI_FORMAT_R32_{SINT,UINT}
DXGI_FORMAT_R8G8B8A8_{SINT,SNORM,UINT,UNORM,UNORM_SRGB}
DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}

vV v v v Vv

v

vV V. v vV v v v Vv

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then
cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 263

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D10RegisterResource

6.19. Direct3D 10 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 10 interoperability functions.

enum cudaD3D10MapFlags

CUDA D3D10 Map Flags

Values

cudaD3D10MapFlagsNone =0

Default; Assume resource can be read/written
cudaD3D10MapFlagsReadOnly = 1

CUDA kernels will not write to this resource
cudaD3D10MapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

enum cudaD3D10RegisterFlags

CUDA D3D10 Register Flags

Values

cudaD3D10RegisterFlagsNone =0

Default; Resource can be accessed through a void*
cudaD3D10RegisterFlagsArray = 1

Resource can be accessed through a CUarray*

__host_ _cudaError_t cudaD3D10GetDirect3DDevice
(ID3D10Device **ppD3D10Device]

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D10Device
- Returns the Direct3D device for this thread

CUDA Runtime API vRelease Version | 264

Modules

Returns

cudaSuccess, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D10SetDirect3DDevice

__host__cudaError_t cudaD3D10MapResources (int

count, ID3D10Resource **ppResources)
Maps Direct3D Resources for access by CUDA.

Parameters

count

- Number of resources to map for CUDA
ppResources

- Resources to map for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped.
Direct3D should not access any resources while they are mapped by CUDA. If an application
does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued
before cudaD3D10MapResources() will complete before any CUDA kernels issued after
cudaD3D10MapResources() begin.

CUDA Runtime API vRelease Version | 265

Modules

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries then cudaErrorinvalidResourceHandle is returned. If any
of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaD3D10RegisterResource
(ID3D10Resource *pResource, unsigned int flags)

Registers a Direct3D 10 resource for access by CUDA.

Parameters

pResource
- Resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Registers the Direct3D resource pResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaD3D10UnregisterResource(). Also on success, this

call will increase the internal reference count on pResource. This reference count will be
decremented when this resource is unregistered through cudaD3D10UnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pResource must be one of the following:

> |ID3D10Buffer: Cannot be used with flags set to cudaD3D10RegisterFlagsArray.
» |D3D10Texture1D: No restrictions.

CUDA Runtime API vRelease Version | 266

| 2

| 2

Modules

ID3D10Texture2D: No restrictions.
ID3D10Texture3D: No restrictions.

The flags argument specifies the mechanism through which CUDA will access the Direct3D
resource. The following values are allowed.

>

cudaD3D10RegisterFlagsNone: Specifies that CUDA will access this resource through a
void*. The pointer, size, and pitch for each subresource of this resource may be queried
through cudaD3D10ResourceGetMappedPointer(), cudaD3D10ResourceGetMappedSize|(),
and cudaD3D10ResourceGetMappedPitch(] respectively. This option is valid for all
resource types.

cudaD3D10RegisterFlagsArray: Specifies that CUDA will access this

resource through a CUarray queried on a sub-resource basis through
cudaD3D10ResourceGetMappedArray(). This option is only valid for resources of type
ID3D10Texture1D, ID3D10Texture2D, and ID3D10Texture3D.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

»

>

>

>

The primary rendertarget may not be registered with CUDA.
Resources allocated as shared may not be registered with CUDA.

Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

Surfaces of depth or stencil formats cannot be shared.

If Direct3D interoperability is not initialized on this context then cudaErrorinvalidDevice
Is returned. If pResource is of incorrect type or is already registered then
cudaErrorinvalidResourceHandle is returned. If pResource cannot be registered then

cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D10RegisterResource

CUDA Runtime API vRelease Version | 267

Modules

__host__cudaError_t
cudaD3D10ResourceGetMappedArray (cudaArray
**ppArray, ID3D10Resource *pResource, unsigned int
subResource])

Gets an array through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

ppArray

- Returned array corresponding to subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Returns in *ppArray an array through which the subresource of the mapped Direct3D

resource pResource which corresponds to subResource may be accessed. The value set in
ppArray may change every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

If pResource was not registered with usage flags cudaD3D10RegisterFlagsArray,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped then
cudaErrorUnknown is returned.

For usage requirements of the subResource parameter, see
cudaD3D10ResourceGetMappedPointer(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

CUDA Runtime API vRelease Version | 268

Modules

__host__cudaError_t
cudaD3D10ResourceGetMappedPitch (size_t *pPitch,
size_t *pPitchSlice, ID3D10Resource *pResource,
unsigned int subResource)

Gets the pitch of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters
pPitch

- Returned pitch of subresource
pPitchSlice

- Returned Z-slice pitch of subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the
mapped Direct3D resource pResource, which corresponds to subResource. The values set
in pPitch and pPitchS1lice may change every time that pResource is mapped.

The pitch and Z-slice pitch values may be used to compute the location of a sample on a
surface as follows.

For a 2D surface, the byte offset of the sample at position x, y from the base pointer of the
surface Is:

y * pitch + (bytes per pixel] * x

For a 3D surface, the byte offset of the sample at position x, y, z from the base pointer of the
surface is:

z* slicePitch + y * pitch + (bytes per pixel] * x
Both parameters pPitch and pPitchSlice are optional and may be set to NULL.

If pResource is not of type ID3D10Texture1D, ID3D10Texture2D, or
ID3D10Texture3D, or if pResource has not been registered for use with CUDA, then
cudaErrorinvalidResourceHandle is returned. If pResource was not registered with usage

CUDA Runtime API vRelease Version | 269

Modules

flags cudaD3D10RegisterFlagsNone, then cudaErrorinvalidResourceHandle is returned. If
pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see
cudaD3D10ResourceGetMappedPointer(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceGetMappedPointer (void
**pPointer, ID3D10Resource *pResource, unsigned
int subResource)

Gets a pointer through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

pPointer

- Returned pointer corresponding to subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource
pResource which corresponds to subResource. The value set in pPointer may change
every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.
If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone,

CUDA Runtime API vRelease Version | 270

Modules

then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped then
cudaErrorUnknown is returned.

If pResource is of type ID3D10Buffer then subResource must be 0. If pResource is of any
other type, then the value of subResource must come from the subresource calculation in
D3D10CalcSubResource().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D10ResourceGetMappedSize (size_t
*pSize, ID3D10Resource *pResource, unsigned int
subResource]

Gets the size of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters
pSize

- Returned size of subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource
which corresponds to subResource. The value set in pSize may change every time that
pResource is mapped.

If pResource has not been registered for use with CUDA then cudaErrorinvalidHandle is
returned. If pResource was not registered with usage flags cudaD3D10RegisterFlagsNone,

CUDA Runtime API vRelease Version | 271

Modules

then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped for access by
CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see
cudaD3D10ResourceGetMappedPointer(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D10ResourceGetSurfaceDimensions
(size_t *pWidth, size_t *pHeight, size_t *pDepth,
ID3D10Resource *pResource, unsigned int
subResource])

Gets the dimensions of a registered Direct3D surface.

Parameters

pWidth

- Returned width of surface
pHeight

- Returned height of surface
pDepth

- Returned depth of surface
pResource

- Registered resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the
mapped Direct3D resource pResource which corresponds to subResource.

CUDA Runtime API vRelease Version | 272

Modules

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the
dimensions of a resource will be an integer factor larger than the dimensions reported by the
Direct3D runtime.

The parameters pWidth, pHeight, and pDepth are optional. For 2D surfaces, the value
returned in *pDepth will be 0.

If pResource is not of type ID3D10Texture1D, ID3D10Texture2D, or ID3D10Texture3D, or
if pResource has not been registered for use with CUDA, then cudaErrorinvalidHandle is
returned.

For usage requirements of subResource parameters see
cudaD3D10ResourceGetMappedPointer(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host_ cudaError_t
cudaD3D10ResourceSetMapFlags (ID3D10Resource
*pResource, unsigned int flags)

Set usage flags for mapping a Direct3D resource.

Parameters

pResource

- Registered resource to set flags for
flags

- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown,

Description
Deprecated This function is deprecated as of CUDA 3.0.

Set usage flags for mapping the Direct3D resource pResource.

Changes to flags will take effect the next time pResource is mapped. The £lags argument
may be any of the following:

CUDA Runtime API vRelease Version | 273

Modules

» cudaD3D10MapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA kernels.
This is the default value.

» cudaD3D10MapFlagsReadOnly: Specifies that CUDA kernels which access this resource
will not write to this resource.

» cudaD3D10MapFlagsWriteDiscard: Specifies that CUDA kernels which access this
resource will not read from this resource and will write over the entire contents of the
resource, so none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA then cudaErrorinvalidHandle is
returned. If pResource is presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceSetMapFlags

__host__cudaError_t cudaD3D10SetDirect3DDevice
(ID3D10Device *pD3D10Device, int device]

Sets the Direct3D 10 device to use for interoperability with a CUDA device.

Parameters

pD3D10Device
- Direct3D device to use for interoperability

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D10DeviceListAll from cudaD3D10GetDevices, may be set to -1 to automatically
select an appropriate CUDA device.

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudakErrorSetOnActiveProcess

Description
Deprecated This function is deprecated as of CUDA 5.0.

CUDA Runtime API vRelease Version | 274

Modules

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D10GetDevice, cudaGraphicsD3D10ReqisterResource, cudaDeviceReset

__host__cudaError_t cudaD3D10UnmapResources
lint count, ID3D10Resource **ppResources)

Unmaps Direct3D resources.

Parameters

count

- Number of resources to unmap for CUDA
ppResources

- Resources to unmap for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the count Direct3D resource in ppResources.

This function provides the synchronization guarantee that any CUDA kernels issued
before cudaD3D10UnmapResources() will complete before any Direct3D calls issued after
cudaD3D10UnmapResources(] begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries, then cudaErrorinvalidResourceHandle is returned. If any of
ppResources are not presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 275

Modules

See also:

cudaGraphicsUnmapResources

__host__cudaError_t cudaD3D10UnregisterResource
(ID3D10Resource *pResource)

Unregisters a Direct3D resource.

Parameters

pResource
- Resource to unregister

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the Direct3D resource resource so it is not accessible by CUDA unless
registered again.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnreqgisterResource

6.20. Direct3D 11 Interoperability

This section describes the Direct3D 11 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 11 resources is
performed with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D11Devicelist

CUDA devices corresponding to a D3D11 device

CUDA Runtime API vRelease Version | 276

Modules

Values

cudaD3D11DeviceListAll =1

The CUDA devices for all GPUs used by a D3D11 device
cudaD3D11DeviceListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D11 device in its currently rendering frame
cudaD3D11DeviceListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D11 device in the next frame

__host__cudaError_t cudaD3D11GetDevice (int
*device, IDXGIAdapter *pAdapter)

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pAdapter
pAdapter

- D3D11 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter pAdapter
obtained from IDXGlFactory::EnumAdapters. This call will succeed only if a device on adapter
pAdapter is CUDA-compatible.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D11GetDevice

CUDA Runtime API vRelease Version | 277

Modules

__host_ _cudaError_t cudaD3D11GetDevices
(unsigned int *pCudaDeviceCount, int *pCudaDevices,

unsigned int cudaDeviceCount, ID3D11Device
*pD3D11Device, cudaD3D11Devicelist devicelist]

Gets the CUDA devices corresponding to a Direct3D 11 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D11Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D11Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D11Device
- Direct3D 11 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D11DeviceListAll for all devices,
cudaD3D11DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D11DevicelistNextFrame for the devices used to render the next frame (in
SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 11 device pD3D11Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 11
device pD3D11Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 278

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D11GetDevices

__host__cudaError_t
cudaGraphicsD3D11RegisterResource
(cudaGraphicsResource **resource, ID3D11Resource
*pD3DResource, unsigned int flags)

Register a Direct3D 11 resource for access by CUDA.

Parameters

resource

- Pointer to returned resource handle
pD3DResource

- Direct3D resource to register
flags

- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 11 resource pD3DResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.

ID3D11Buffer: may be accessed via a device pointer

ID3D11Texture2D: individual subresources of the texture may be accessed via arrays

vV v v VY

1

ID3D11Texture1D: individual subresources of the texture may be accessed via arrays
1

ID3D11Texture3D: individual subresources of the texture may be accessed via arrays

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

CUDA Runtime API vRelease Version | 279

Modules

> cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

> cudaGraphicsRegisterFlagsSurfacel oadStore: Specifies that CUDA will bind this resource
to a surface reference.

» cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.
» The primary rendertarget may not be registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

> Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation
A {B,C,D} represents A_B, A_C, and A_D.

DXGI_FORMAT_A8_UNORM

DXGI_FORMAT_B8G8R8A8_UNORM

DXGI_FORMAT_B8G8R8X8_UNORM

DXGI_FORMAT_R16_FLOAT
DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R32_FLOAT
DXGI_FORMAT_R32G32B32A32_{FLOAT,SINT,UINT}
DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}
DXGI_FORMAT_R32_{SINT,UINT}
DXGI_FORMAT_R8G8B8A8_{SINT,SNORM,UINT,UNORM,UNORM_SRGB}
DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}

vV v v v Vv

v

vV V. v vV v v v Vv

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then
cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 280

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D11RegisterResource

6.21. Direct3D 11 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 11 interoperability functions.

__host_ _cudaError_t cudaD3D11GetDirect3DDevice
(ID3D11Device **ppD3D11Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D11Device
- Returns the Direct3D device for this thread

Returns

cudaSuccess, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D11 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D11SetDirect3DDevice

CUDA Runtime API vRelease Version | 281

Modules

__host_ cudaError_t cudaD3D11SetDirect3DDevice
(ID3D11Device *pD3D11Device, int device]

Sets the Direct3D 11 device to use for interoperability with a CUDA device.

Parameters

pD3D11Device
- Direct3D device to use for interoperability

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D11DevicelistAll from cudaD3D11GetDevices, may be set to -1 to automatically
select an appropriate CUDA device.

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudaErrorSetOnActiveProcess

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D11 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D11GetDevice, cudaGraphicsD3D11ReqisterResource, cudaDeviceReset

6.22. VDPAU Interoperability

This section describes the VDPAU interoperability functions of the CUDA runtime application
programming interface.

CUDA Runtime API vRelease Version | 282

Modules

__host__cudaError_t
cudaGraphicsVDPAURegisterOutputSurface
(cudaGraphicsResource **resource,
VdpOutputSurface vdpSurface, unsigned int flags)

Register a VdpOutputSurface object.

Parameters

resource

- Pointer to the returned object handle
vdpSurface

- VDPAU object to be registered
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the VdpOutputSurface specified by vdpSurface for access by CUDA. A handle to
the registered object is returned as resource. The surface’s intended usage is specified
using flags, as follows:

» cudaGraphicsMapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA. This is the
default value.

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies that CUDA will not read from this resource
and will write over the entire contents of the resource, so none of the data previously
stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cudaGraphicsUnregisterResource,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsVDPAURegisterOutputSurface

CUDA Runtime API vRelease Version | 283

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1g54874c7f771e51f27292a562c92cee28

Modules

__host__cudaError_t
cudaGraphicsVDPAURegisterVideoSurface
(cudaGraphicsResource **resource, VdpVideoSurface

vdpSurface, unsigned int flags)
Register a VdpVideoSurface object.

Parameters

resource

- Pointer to the returned object handle
vdpSurface

- VDPAU object to be registered
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the VdpVideoSurface specified by vdpSurface for access by CUDA. A handle to the
registered object is returned as resource. The surface's intended usage is specified using
flags, as follows:

» cudaGraphicsMapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA. This is the
default value.

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies that CUDA will not read from this resource
and will write over the entire contents of the resource, so none of the data previously
stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cudaGraphicsUnregisterResource,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsVDPAUReqisterVideoSurface

CUDA Runtime API vRelease Version | 284

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1ga5e00ff2d3ff2f8b680a69f3bc5cd891

Modules

__host__cudaError_t cudaVDPAUGetDevice (int
*device, VdpDevice vdpDevice, VdpGetProcAddress
*vdpGetProcAddress]

Gets the CUDA device associated with a VdpDevice.

Parameters

device
- Returns the device associated with vdpDevice, or -1 if the device associated with
vdpDevice is not a compute device.
vdpDevice
- AVdpDevice handle
vdpGetProcAddress
- VDPAU's VdpGetProcAddress function pointer

Returns

cudaSuccess

Description

Returns the CUDA device associated with a VdpDevice, if applicable.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cuVDPAUGetDevice

__host_ _cudaError_t cudaVDPAUSetVDPAUDevice
[int device, VdpDevice vdpDevice, VdpGetProcAddress
*vdpGetProcAddress]

Sets a CUDA device to use VDPAU interoperability.

Parameters

device

- Device to use for VDPAU interoperability
vdpDevice

- The VdpDevice to interoperate with

CUDA Runtime API vRelease Version | 285

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1g0cce87525545da2cf1e84e007d5fe230

Modules

vdpGetProcAddress
- VDPAU's VdpGetProcAddress function pointer

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorSetOnActiveProcess

Description

Records vdpDevice as the VdpDevice for VDPAU interoperability with the CUDA device
device and sets device as the current device for the calling host thread.

If device has already been initialized then this call will fail with the error
cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using
cudaDeviceReset(] before VDPAU interoperability on device may be enabled.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsVDPAURegisterVideoSurface, cudaGraphicsVDPAURegisterOutputSurface,
cudaDeviceReset

6.23. EGL Interoperability

This section describes the EGL interoperability functions of the CUDA runtime application
programming interface.

__host__cudaError_t
cudaEGLStreamConsumerAcquireFrame
(cudaEglStreamConnection *conn,
cudaGraphicsResource_t *pCudaResource,
cudaStream_t *pStream, unsigned int timeout)

Acquire an image frame from the EGLStream with CUDA as a consumer.

Parameters

conn
- Connection on which to acquire

CUDA Runtime API vRelease Version | 286

Modules

pCudaResource
- CUDA resource on which the EGLStream frame will be mapped for use.
pStream
- CUDA stream for synchronization and any data migrations implied by
cudaEglResourcelocationFlags.
timeout
- Desired timeout in usec.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown, cudaErrorLaunchTimeout

Description

Acquire an image frame from EGLStreamKHR. cudaGraphicsResourceGetMappedEglFrame
can be called on pCudaResource to get cudakEglFrame.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerDisconnect,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerAcquireFrame

__host__cudaError_t
cudaEGLStreamConsumerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream)

Connect CUDA to EGLStream as a consumer.

Parameters

conn

- Pointer to the returned connection handle
eglStream

- EGLStreamKHR handle

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description
Connect CUDA as a consumer to EGLStreamKHR specified by eglStream.

The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API
to another.

CUDA Runtime API vRelease Version | 287

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g10507a0acb74a90136caacb363a3c6a7

Modules

See also:

cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnect

__host__cudaError_t
cudaEGLStreamConsumerConnectWithFlags
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream, unsigned int flags]

Connect CUDA to EGLStream as a consumer with given flags.

Parameters
conn
- Pointer to the returned connection handle
eglStream
- EGLStreamKHR handle
flags
- Flags denote intended location - system or video.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Connect CUDA as a consumer to EGLStreamKHR specified by stream with specified £lags
defined by cudaEglResourcel ocationFlags.

The flags specify whether the consumer wants to access frames from system memory or video
memory. Default is cudaEglResourcelocationVidmem.

See also:

cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnectWithFlags

CUDA Runtime API vRelease Version | 288

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g3f59b85a292d59c19c8b64b8ade8a658
../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g7be3b064ea600a7bac4906e5d61ba4b7

Modules

__host__cudaError_t
cudakEGLStreamConsumerDisconnect
(cudaEglStreamConnection *conn)

Disconnect CUDA as a consumer to EGLStream .

Parameters

conn
- Conection to disconnect.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Disconnect CUDA as a consumer to EGLStreamKHR.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerDisconnect

__host__cudaError_t
cudaEGLStreamConsumerReleaseFrame
(cudaEglStreamConnection *conn,
cudaGraphicsResource_t pCudaResource,
cudaStream_t *pStream)

Releases the last frame acquired from the EGLStream.

Parameters

conn

- Connection on which to release
pCudaResource

- CUDA resource whose corresponding frame is to be released
pStream

- CUDA stream on which release will be done.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

CUDA Runtime API vRelease Version | 289

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61

Modules

Description

Release the acquired image frame specified by pCudaResource to EGLStreamKHR.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerDisconnect,
cudaEGLStreamConsumerAcquireFrame, cuEGLStreamConsumerReleaseFrame

__host__cudaError_t
cudaEGLStreamProducerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream, EGLint width, EGLint height)

Connect CUDA to EGLStream as a producer.

Parameters

conn

- Pointer to the returned connection handle
eglStream

- EGLStreamKHR handle
width

- width of the image to be submitted to the stream
height

- height of the image to be submitted to the stream

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description
Connect CUDA as a producer to EGLStreamKHR specified by stream.

The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API
to another.

See also:

cudaEGLStreamProducerDisconnect, cudaEGLStreamProducerPresentFrame,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerConnect

CUDA Runtime API vRelease Version | 290

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g4dadfefc718210e91c8f44f6a8e4b233
../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef

Modules

__host__cudaError_t
cudaEGLStreamProducerDisconnect
(cudaEglStreamConnection *conn)
Disconnect CUDA as a producer to EGLStream .

Parameters

conn
- Conection to disconnect.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Disconnect CUDA as a producer to EGLStreamKHR.

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerPresentFrame,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerDisconnect

__host__cudaError_t
cudaEGLStreamProducerPresentFrame
(cudaEglStreamConnection *conn, cudaEglFrame

eglframe, cudaStream_t *pStream]
Present a CUDA eglFrame to the EGLStream with CUDA as a producer.

Parameters

conn

- Connection on which to present the CUDA array
eglframe

- CUDA Eglstream Proucer Frame handle to be sent to the consumer over EglStream.
pStream

- CUDA stream on which to present the frame.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

CUDA Runtime API vRelease Version | 291

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd

Modules

Description

The cudaEglFrame is defined as:

[typedef struct cudaEglFrame st {

union {
cudaArray t pArray [CUDA EGL MAX PLANES];
struct cudaPitchedPtr pPitch[CUDA EGL MAX PLANES];
} frame;

cudaEglPlaneDesc planeDesc [CUDA EGL MAX PLANES];
unsigned int planeCount;
cudakEglFrameType frameType;
cudakEglColorFormat eglColorFormat;
} cudaEglFrame;

For cudaEglFrame of type cudaEglFrameTypePitch, the application may present sub-region
of a memory allocation. In that case, cudaPitchedPtr::ptr will specify the start address of the
sub-region in the allocation and cudakEglPlaneDesc will specify the dimensions of the sub-
region.

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerPresentFrame

__host__cudaError_t
cudaEGLStreamProducerReturnFrame
(cudaEglStreamConnection *conn, cudaEglFrame

*eglframe, cudaStream_t *pStream)
Return the CUDA eglFrame to the EGLStream last released by the consumer.

Parameters
conn
- Connection on which to present the CUDA array
eglframe
- CUDA Eglstream Proucer Frame handle returned from the consumer over EglStream.
pStream
- CUDA stream on which to return the frame.

Returns

cudaSuccess, cudaErrorLaunchTimeout, cudaErrorinvalidValue, cudaErrorUnknown

Description

This APl can potentially return cudaErrorLaunchTimeout if the consumer has not returned a
frame to EGL stream. If timeout is returned the application can retry.

CUDA Runtime API vRelease Version | 292

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g60dcaadeabcbaedb4a271d529306687b

Modules

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect,
cudaEGLStreamProducerPresentFrame, cuEGLStreamProducerReturnFrame

__host___cudaError_t cudaEventCreateFromEGLSync
(cudaEvent_t *phEvent, EGLSyncKHR eglSync,
unsigned int flags)

Creates an event from EGLSync object.

Parameters

phEvent

- Returns newly created event
eglSync

- Opaque handle to EGLSync object
flags

- Event creation flags

Returns

cudaSuccess, cudaErrorinitializationError, cudaErrorinvalidValue, cudaErrorLaunchFailure,
cudaErrorMemoryAllocation

Description

Creates an event *phEvent from an EGLSyncKHR eglSync with the flages specified via flags.
Valid flags include:

> cudaEventDefault: Default event creation flag.

» cudaEventBlockingSync: Specifies that the created event should use blocking
synchronization. A CPU thread that uses cudaEventSynchronize(] to wait on an event
created with this flag will block until the event has actually been completed.

cudaEventRecord and TimingData are not supported for events created from EGLSync.

The EGLSyncKHR is an opaque handle to an EGL sync object. typedef void* EGLSyncKHR

See also:

cudakventQuery, cudaEventSynchronize, cudakEventDestroy

CUDA Runtime API vRelease Version | 293

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06

Modules

__host__cudaError_t
cudaGraphicsEGLRegisterlmage
(cudaGraphicsResource **pCudaResource,
EGLImageKHR image, unsigned int flags]

Registers an EGL image.

Parameters

pCudaResource

- Pointer to the returned object handle
image

- An EGLImageKHR image which can be used to create target resource.
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue, cudaErrorUnknown

Description

Registers the EGLImageKHR specified by image for access by CUDA. A handle to the
registered object is returned as pCudaResource. Additional Mapping/Unmapping is not
required for the registered resource and cudaGraphicsResourceGetMappedEglFrame can be
directly called on the pCudaResource.

The application will be responsible for synchronizing access to shared objects. The application
must ensure that any pending operation which access the objects have completed before
passing control to CUDA. This may be accomplished by issuing and waiting for glFinish
command on all GLcontexts (for OpenGL and likewise for other APIs). The application will be
also responsible for ensuring that any pending operation on the registered CUDA resource has
completed prior to executing subsequent commands in other APIs accesing the same memory
objects. This can be accomplished by calling cuCtxSynchronize or cuEventSynchronize
(preferably).

The surface’s intended usage is specified using £lags, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

» cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

CUDA Runtime API vRelease Version | 294

Modules

The EGLImageKHR is an object which can be used to create EGLImage target resource. It is
defined as a void pointer. typedef void* EGLImageKHR

See also:

cudaGraphicsUnreqgisterResource, cudaGraphicsResourceGetMappedEglFrame,
cuGraphicsEGLRegisterlmage

__host__cudaError_t
cudaGraphicsResourceGetMappedEglFrame
(cudaEglFrame *eglFrame, cudaGraphicsResource_t
resource, unsigned int index, unsigned int mipLevel)

Get an eglFrame through which to access a registered EGL graphics resource.

Parameters

eglFrame
- Returned eglFrame.
resource
- Registered resource to access.
index
- Index for cubemap surfaces.
mipLevel
- Mipmap level for the subresource to access.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *eglFrame an eglFrame pointer through which the registered graphics resource
resource may be accessed. This APl can only be called for EGL graphics resources.

The cudaEglFrame is defined as
[typedef struct cudaEglFrame st {

union {
cudaArray t pArray[CUDA EGL MAX PLANES];
struct cudaPitchedPtr pPitch[CUDA EGL MAX PLANES] ;
} frame;

cudaEglPlaneDesc planeDesc [CUDA EGL MAX PLANES];
unsigned int planeCount;

cudaEglFrameType frameType;

cudaEglColorFormat eglColorFormat;

} cudaEglFrame;

CUDA Runtime API vRelease Version | 295

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g9f9b026d175238be6f6e79048d6879c5

Modules

Note:

Note that in case of multiplanar *eglFrame, pitch of only first plane (unsigned int
cudaEglPlaneDesc::pitch] is to be considered by the application.

See also:

cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsResourceGetMappedEglFrame

6.24. Graphics Interoperability

This section describes the graphics interoperability functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaGraphicsMapResources
lint count, cudaGraphicsResource_t *resources,
cudaStream_t stream)

Map graphics resources for access by CUDA.

Parameters

count

- Number of resources to map
resources

- Resources to map for CUDA
stream

- Stream for synchronization

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Maps the count graphics resources in resources for access by CUDA.

The resources in resources may be accessed by CUDA until they are unmapped. The
graphics APl from which resources were registered should not access any resources while
they are mapped by CUDA. If an application does so, the results are undefined.

This function provides the synchronization guarantee that any graphics calls issued before
cudaGraphicsMapResources() will complete before any subsequent CUDA work issued in
stream begins.

CUDA Runtime API vRelease Version | 296

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1ge1e57193ad1dbf554af60d5b2d096ede

Modules

If resources contains any duplicate entries then cudaErrorinvalidResourceHandle
is returned. If any of resources are presently mapped for access by CUDA then
cudaErrorUnknown is returned.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cudaGraphicsSubResourceGetMappedArray,
cudaGraphicsUnmapResources, cuGraphicsMapResources

__host__cudaError_t
cudaGraphicsResourceGetMappedMipmappedArray
(cudaMipmappedArray_t *mipmappedArray,
cudaGraphicsResource_t resource]

Get a mipmapped array through which to access a mapped graphics resource.

Parameters

mipmappedArray

- Returned mipmapped array through which resource may be accessed
resource

- Mapped resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Returns in *mipmappedArray a mipmapped array through which the mapped graphics
resource resource may be accessed. The value set in mipmappedArray may change every
time that resource is mapped.

CUDA Runtime API vRelease Version | 297

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1gffcfd8e78d82cc4f6dd987e8bce4edb0

Modules

If resource is not a texture then it cannot be accessed via an array and cudaErrorUnknown is
returned. If resource is not mapped then cudaErrorUnknown is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cuGraphicsResourceGetMappedMipmappedArray

__host__cudaError_t
cudaGraphicsResourceGetMappedPointer (void
**devPtr, size_t *size, cudaGraphicsResource_t
resource)

Get an device pointer through which to access a mapped graphics resource.

Parameters
devPtr

- Returned pointer through which resource may be accessed
size

- Returned size of the buffer accessible starting at *devPtr
resource

- Mapped resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Returns in *devPtr a pointer through which the mapped graphics resource resource may
be accessed. Returns in *size the size of the memory in bytes which may be accessed from
that pointer. The value set in devPtr may change every time that resource is mapped.

CUDA Runtime API vRelease Version | 298

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g37680bbe89c7fe5c613563eaab9d14c1

Modules

If resource is not a buffer then it cannot be accessed via a pointer and cudaErrorUnknown is
returned. If resource is not mapped then cudaErrorUnknown is returned. *

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsMapResources, cudaGraphicsSubResourceGetMappedArray,
cuGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaGraphicsResourceSetMapFlags
(cudaGraphicsResource_t resource, unsigned int
flags)

Set usage flags for mapping a graphics resource.

Parameters

resource

- Registered resource to set flags for
flags

- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown,

Description
Set flags for mapping the graphics resource resource.

Changes to flags will take effect the next time resource is mapped. The flags argument
may be any of the following:

» cudaGraphicsMapFlagsNone: Specifies no hints about how resource will be used. It is
therefore assumed that CUDA may read from or write to resource.

CUDA Runtime API vRelease Version | 299

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g8a634cf4150d399f0018061580592457

Modules

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies CUDA will not read from resource and

will write over the entire contents of resource, so none of the data previously stored in
resource Will be preserved.

If resource is presently mapped for access by CUDA then cudaErrorUnknown is returned. If
flags is not one of the above values then cudaErrorinvalidValue is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphicsMapResources, cuGraphicsResourceSetMapFlags

__host__cudaError_t
cudaGraphicsSubResourceGetMappedArray
(cudaArray_t *array, cudaGraphicsResource_t
resource, unsigned int arraylndex, unsigned int
mipLevel]

Get an array through which to access a subresource of a mapped graphics resource.

Parameters

array

- Returned array through which a subresource of resource may be accessed

resource

- Mapped resource to access

arraylndex
- Array index for array textures or cubemap face index as defined by
cudaGraphicsCubeFace for cubemap textures for the subresource to access

mipLevel

- Mipmap level for the subresource to access

CUDA Runtime API vRelease Version | 300

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1gfe96aa7747f8b11d44a6fa6a851e1b39

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Returns in *array an array through which the subresource of the mapped graphics resource
resource which corresponds to array index arrayIndex and mipmap level mipLevel may
be accessed. The value set in array may change every time that resource is mapped.

If resource is not a texture then it cannot be accessed via an array and cudaErrorUnknown
is returned. If arrayIndex is not a valid array index for resource then
cudaErrorinvalidValue is returned. If mipLevel is not a valid mipmap level for resource
then cudaErrorinvalidValue is returned. If resource is not mapped then cudaErrorUnknown
Is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cuGraphicsSubResourceGetMappedArray

__host__cudaError_t cudaGraphicsUnmapResources
lint count, cudaGraphicsResource_t *resources,
cudaStream_t stream)

Unmap graphics resources.

Parameters

count

- Number of resources to unmap
resources

- Resources to unmap
stream

- Stream for synchronization

CUDA Runtime API vRelease Version | 301

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g61c55e987e54558cce547240d6123078

Modules

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Unmaps the count graphics resources in resources.

Once unmapped, the resources in resources may not be accessed by CUDA until they are
mapped again.

This function provides the synchronization guarantee that any CUDA work issued in stream
before cudaGraphicsUnmapResources() will complete before any subsequently issued
graphics work begins.

If resources contains any duplicate entries then cudaErrorinvalidResourceHandle
is returned. If any of resources are not presently mapped for access by CUDA then
cudaErrorUnknown is returned.

Note:

> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsMapResources, cuGraphicsUnmapResources

__host__cudaError_t
cudaGraphicsUnregisterResource
(cudaGraphicsResource_t resource)

Unregisters a graphics resource for access by CUDA.

Parameters

resource
- Resource to unregister

CUDA Runtime API vRelease Version | 302

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g8e9ff25d071375a0df1cb5aee924af32

Modules

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Unregisters the graphics resource resource so it is not accessible by CUDA unless
registered again.

If resource is invalid then cudaErrorinvalidResourceHandle is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaGraphicsD3D9ReqgisterResource, cudaGraphicsD3D10RegisterResource,
cudaGraphicsD3D11ReqisterResource, cudaGraphicsGLReqgisterBuffer,
cudaGraphicsGLReqgisterImage, cuGraphicsUnregisterResource

6.25. Texture Reference Management
[DEPRECATED]

This section describes the low level texture reference management functions of the CUDA
runtime application programming interface.

Some functions have overloaded C++ APl template versions documented separately in the C++
APl Routines module.

CUDA Runtime API vRelease Version | 303

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1ga7e5e97b74eaa13dfa6582e853e4c96d

Modules

__host__cudaError_t cudaBindTexture (size t *offset,
const textureReference *texref, const void *devPtr,
const cudaChannelFormatDesc *desc, size t size)

Binds a memory area to a texture.

Parameters

offset
- Offset in bytes
texref
- Texture to bind
devPtr
- Memory area on device
desc
- Channel format
size
- Size of the memory area pointed to by devPtr

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlnvalidTexture

Description
Deprecated

Binds size bytes of the memory area pointed to by devPtr to the texture reference texref.
desc describes how the memory is interpreted when fetching values from the texture. Any
memory previously bound to texref is unbound.

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture(] returns in *offset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size

and passed to kernels that read from the texture so they can be applied to the tex1Dfetch(]
function. If the device memory pointer was returned from cudaMalloc(], the offset is
guaranteed to be 0 and NULL may be passed as the offset parameter.

The total number of elements (or texels] in the linear address range cannot exceed
cudaDeviceProp::maxTexturelDLinear[0]. The number of elements is computed as (size /
elementSize), where elementSize is determined from desc.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 304

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture2D [C API), cudaBindTextureToArray [C API),
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset (C AP}, cuTexRefSetAddress,
cuTexRefSetAddressMode, cuTexRefSetFormat, cuTexRefSetFlags, cuTexRefSetBorderColor

__host__cudaError_t cudaBindTexture2D (size_t
*offset, const textureReference *texref, const void
*devPtr, const cudaChannelFormatDesc *desc, size t
width, size_t height, size_t pitch]

Binds a 2D memory area to a texture.

Parameters
offset

- Offset in bytes
texref

- Texture reference to bind
devPtr

- 2D memory area on device
desc

- Channel format
width

- Width in texel units
height

- Height in texel units
pitch

- Pitch in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

CUDA Runtime API vRelease Version | 305

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga6e288992f58e7a6e3350614bc9e813b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea

Modules

Binds the 2D memory area pointed to by devPtr to the texture reference texref. The size
of the area is constrained by width in texel units, height in texel units, and pitch in byte
units. desc describes how the memory is interpreted when fetching values from the texture.
Any memory previously bound to texref is unbound.

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture2D(] returns in *offset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size and
passed to kernels that read from the texture so they can be applied to the tex2D() function. If
the device memory pointer was returned from cudaMalloc(], the offset is guaranteed to be O
and NULL may be passed as the offset parameter.

width and height, which are specified in elements (or texels), cannot exceed
cudaDeviceProp::maxTexture?2DLinear[0] and cudaDeviceProp::maxTexture2DLinear[1]
respectively. pitch, which is specified in bytes, cannot exceed
cudaDeviceProp::maxTexture?2DLinear[2].

The driver returns cudaErrorinvalidValue if pitch is not a multiple of
cudaDeviceProp::texturePitchAlignment.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D ([C++ API), cudaBindTexture2D [C++ API,
inherited channel descriptor], cudaBindTextureToArray [C API], cudaBindTextureToArray [C
API), cudaGetTextureAlignmentOffset [C API), cuTexRefSetAddress?2D, cuTexRefSetFormat,
cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetBorderColor

CUDA Runtime API vRelease Version | 306

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gbdec8983628f68bcde5db4b4c3f90851
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea

Modules

__host__cudaError_t cudaBindTextureToArray (const
textureReference *texref, cudaArray_const_t array,
const cudaChannelFormatDesc *desc])

Binds an array to a texture.

Parameters

texref

- Texture to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds the CUDA array array to the texture reference texref. desc describes how the
memory is interpreted when fetching values from the texture. Any CUDA array previously
bound to texref is unbound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API}, cudaBindTexture2D (C API), cudaBindTextureToArray (C++ AP,
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset (C API), cuTexRefSetArray,
cuTexRefSetFormat, cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetFilterMode,
cuTexRefSetBorderColor, cuTexRefSetMaxAnisotropy

CUDA Runtime API vRelease Version | 307

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gac3a34b4b10983433865fdadb83b9118
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g93819286c48db39afc253c0f10358d2e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2b144345d6089ec4053c334fb7d04490

Modules

__host__cudaError_t
cudaBindTextureToMipmappedArray

(const textureReference *texref,
cudaMipmappedArray_const_t mipmappedArray,
const cudaChannelFormatDesc *desc)

Binds a mipmapped array to a texture.

Parameters

texref

- Texture to bind
mipmappedArray

- Memory mipmapped array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds the CUDA mipmapped array mipmappedArray to the texture reference texref. desc
describes how the memory is interpreted when fetching values from the texture. Any CUDA
mipmapped array previously bound to texref is unbound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C APIJ, cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C API), cudaBindTextureToArray

CUDA Runtime API vRelease Version | 308

Modules

([C++ API), cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset

[C API), cuTexRefSetMipmappedArray, cuTexRefSetMipmapFilterMode,
cuTexRefSetMipmaplLevelClamp, cuTexRefSetMipmaplevelBias, cuTexRefSetFormat,
cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetBorderColor,
cuTexRefSetMaxAnisotropy

__host__cudaError_t cudaGetTextureAlignmentOffset
(size t *offset, const textureReference *texref]

Get the alignment offset of a texture.

Parameters

offset

- Offset of texture reference in bytes
texref

- Texture to get offset of

Returns

cudaSuccess, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding

Description
Deprecated

Returns in *offset the offset that was returned when texture reference texref was bound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C APIJ, cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C API), cudaBindTextureToArray (C AP,
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset [C++ API)

CUDA Runtime API vRelease Version | 309

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gb35f38ee0738f00c988db5c1ed8c38ea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g82a54190706dd35d8923966b60f320eb
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9b39decf969353890454895e988e9018
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g6d208de7a968f051fc54224883b1994c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2b144345d6089ec4053c334fb7d04490

Modules

__host_ _cudaError_t cudaGetTextureReference
(const textureReference **texref, const void *symbol)

Get the texture reference associated with a symbol.

Parameters

texref

- Texture reference associated with symbol
symbol

- Texture to get reference for

Returns

cudaSuccess, cudaErrorinvalidTexture

Description
Deprecated

Returns in *texref the structure associated to the texture reference defined by symbol
symbol.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a variable as the symbol parameter was removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureAlignmentOffset [C
API], cudaBindTexture [C API), cudaBindTexture2D [C API], cudaBindTextureToArray [C AP,
cudaUnbindTexture [C API), cuModuleGetTexRef

CUDA Runtime API vRelease Version | 310

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1g9607dcbf911c16420d5264273f2b5608

Modules

__host__cudaError_t cudaUnbindTexture (const
textureReference *texref)

Unbinds a texture.

Parameters

texref
- Texture to unbind

Returns

cudaSuccess, cudaErrorinvalidTexture

Description
Deprecated

Unbinds the texture bound to texref. If texref is not currently bound, no operation is
performed.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C API), cudaBindTextureToArray [C API),
cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C API]

6.26. Surface Reference Management
[DEPRECATED]

This section describes the low level surface reference management functions of the CUDA
runtime application programming interface.

CUDA Runtime API vRelease Version | 311

Modules

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

__host__cudaError_t cudaBindSurfaceToArray (const
surfaceReference *surfref, cudaArray_const_t array,
const cudaChannelFormatDesc *desc])

Binds an array to a surface.

Parameters

surfref

- Surface to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSurface

Description
Deprecated

Binds the CUDA array array to the surface reference surfref. desc describes how the
memory is interpreted when fetching values from the surface. Any CUDA array previously
bound to surfref is unbound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaBindSurfaceToArray [C++ APIl), cudaBindSurfaceToArray [C++ API, inherited channel
descriptor), cudaGetSurfaceReference, cuSurfRefSetArray

CUDA Runtime API vRelease Version | 312

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFREF__DEPRECATED.html#group__CUDA__SURFREF__DEPRECATED_1g68abcde159fa897b1dfb23387926dd66

Modules

__host_ _cudaError_t cudaGetSurfaceReference
(const surfaceReference **surfref, const void
*symbol)

Get the surface reference associated with a symbol.

Parameters

surfref

- Surface reference associated with symbol
symbol

- Surface to get reference for

Returns

cudaSuccess, cudaErrorinvalidSurface

Description
Deprecated

Returns in *surfref the structure associated to the surface reference defined by symbol
symbol.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> Use of a string naming a variable as the symbol parameter was removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaBindSurfaceToArray [C API], cuModuleGetSurfRef

CUDA Runtime API vRelease Version | 313

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1g71c19dab9374e8481d8d8629a77377b1

Modules

6.27. Texture Object Management

This section describes the low level texture object management functions of the CUDA
runtime application programming interface. The texture object APl is only supported on
devices of compute capability 3.0 or higher.

__host__cudaCreateChannelDesc (int x, inty, int z, int
w, cudaChannelFormatKind f)

Returns a channel descriptor using the specified format.

Parameters
X

- X component
y

- Y component
z

- Z component
w

- W component
f

- Channel format
Returns

Channel descriptor with format £

Description

Returns a channel descriptor with format £ and number of bits of each component %, y, z, and
w. The cudaChannelFormatDesc is defined as:

[struct cudaChannelFormatDesc {
int %, y, z, w;
enum cudaChannelFormatKind
£;

}i

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaCreateTextureObject,
cudaCreateSurfaceObject

CUDA Runtime API vRelease Version | 314

Modules

__host__cudaError_t cudaCreateTextureObject
(cudaTextureObject_t *pTexObject, const
cudaResourceDesc *pResDesc, const
cudaTextureDesc *pTexDesc, const
cudaResourceViewDesc *pResViewDesc)

Creates a texture object.

Parameters

pTexObject

- Texture object to create
pResDesc

- Resource descriptor
pTexDesc

- Texture descriptor
pResViewDesc

- Resource view descriptor

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a texture object and returns it in pTexObject. pResDesc describes the data to
texture from. pTexDesc describes how the data should be sampled. pResViewDesc is an
optional argument that specifies an alternate format for the data described by pResDesc, and
also describes the subresource region to restrict access to when texturing. pResViewDesc
can only be specified if the type of resource is a CUDA array or a CUDA mipmapped array.

Texture objects are only supported on devices of compute capability 3.0 or higher. Additionally,
a texture object is an opaque value, and, as such, should only be accessed through CUDA API
calls.

The cudaResourceDesc structure is defined as:

r struct cudaResourceDesc {
enum cudaResourceType

resType;

union {
struct {
cudaArray t
array;
} array;
struct {
cudaMipmappedArray t

mipmap;
} mipmap;

CUDA Runtime API vRelease Version | 315

Modules

struct {
voild *devPtr;
struct cudaChannelFormatDesc

desc;
size t sizelInBytes;
} linear;
struct {
void *devPtr;
struct cudaChannelFormatDesc

desc;
size t width;
size t height;
size t pitchInBytes;
} pitch2D;
} res;

}i
where:

> cudaResourceDesc::resType specifies the type of resource to texture from.
CUresourceType is defined as:

r enum cudaResourceType {

cudaResourceTypeArray = 0x00,
cudaResourceTypeMipmappedArray = 0x01,
cudaResourceTypelinear = 0x02,
cudaResourceTypePitch2D = 0x03

i

If cudaResourceDesc::resType is set to cudaResourceTypeArray,
cudaResourceDesc::res::array::array must be set to a valid CUDA array handle.

If cudaResourceDesc::resType is set to cudaResourceTypeMipmappedArray,
cudaResourceDesc::res::mipmap:mipmap must be set to a valid CUDA mipmapped array
handle and cudaTextureDesc::normalizedCoords must be set to true.

If cudaResourceDesc::resType is set to cudaResourceTypelinear,
cudaResourceDesc::res::linear::devPtr must be set to a valid device pointer, that is

aligned to cudaDeviceProp::textureAlignment. cudaResourceDesc::res::linear::desc

describes the format and the number of components per array element.
cudaResourceDesc::res::linear::sizelnBytes specifies the size of the array in

bytes. The total number of elements in the linear address range cannot exceed
cudaDeviceProp::maxTexture1DLinear. The number of elements is computed as [sizeInBytes /
sizeof(desc]).

If cudaResourceDesc::resType is set to cudaResourceTypePitch2D,
cudaResourceDesc::res::pitch2D::devPtr must be set to a valid device pointer, that is
aligned to cudaDeviceProp::textureAlignment. cudaResourceDesc::res::pitch2D::desc
describes the format and the number of components per array element.
cudaResourceDesc::res::pitch2D::width and cudaResourceDesc::res::pitch2D::height
specify the width and height of the array in elements, and cannot exceed
cudaDeviceProp::maxTexture2DLinear[0] and cudaDeviceProp::maxTexture2DLinear[1]
respectively. cudaResourceDesc::res::pitch2D::pitchInBytes specifies the pitch between two
rows in bytes and has to be aligned to cudaDeviceProp::texturePitchAlignment. Pitch cannot
exceed cudaDeviceProp::maxTexture2DLinear(2].

CUDA Runtime API vRelease Version | 316

Modules

The cudaTextureDesc struct is defined as

r struct cudaTextureDesc {
enum cudaTextureAddressMode
addressMode [3];
enum cudaTextureFilterMode

filterMode;

enum cudaTextureReadMode

readMode;

int SRGB;

float borderColor[4];

int normalizedCoords;
unsigned int maxAnisotropy;

enum cudaTextureFilterMode

mipmapFilterMode;

float mipmapLevelBias;
float minMipmapLevelClamp;
float maxMipmaplLevelClamp;
int disableTrilinearOptimization;

b8
where

» cudaTlextureDesc::addressMode specifies the addressing mode for each dimension of the
texture data. cudaTlextureAddressMode is defined as:

r enum cudaTextureAddressMode {
cudaAddressModeWrap
cudaAddressModeClamp
cudaAddressModeMirror =
cudaAddressModeBorder =

|
wWN PO

~ N~ 0~

bi
This is ignored if cudaResourceDesc::resType is cudaResourceTypelinear. Also,
if cudaTextureDesc::normalizedCoords is set to zero, cudaAddressModeWrap
and cudaAddressModeMirror won't be supported and will be switched to
cudaAddressModeClamp.

» cudaTextureDesc::filterMode specifies the filtering mode to be used when fetching from
the texture. cudaTextureFilterMode is defined as:

r enum cudaTextureFilterMode {
cudaFilterModePoint = 0,
cudaFilterModeLinear = 1

bi
This is ignored if cudaResourceDesc::resType is cudaResourceTypelinear.

» cudaTextureDesc::readMode specifies whether integer data should be converted to
floating point or not. cudaTextureReadMode is defined as:

r enum cudaTextureReadMode {
cudaReadModeElementType =0,
cudaReadModeNormalizedFloat 1

bi
Note that this applies only to 8-bit and 16-bit integer formats. 32-bit integer format would
not be promoted, regardless of whether or not this cudaTextureDesc::readMode is set

cudaReadModeNormalizedFloat is specified.

» cudaTlextureDesc::sRGB specifies whether sRGB to linear conversion should be performed
during texture fetch.

» cudaTextureDesc::borderColor specifies the float values of color. where:
cudaTextureDesc::borderColor[0] contains value of 'R’, cudaTextureDesc::borderColor[1]

CUDA Runtime API vRelease Version | 317

Modules

contains value of 'G', cudaTextureDesc::borderColor[2] contains value of ‘B,
cudaTextureDesc::borderColor[3] contains value of ‘A" Note that application using integer
border color values will need to <reinterpret_cast> these values to float. The values

are set only when the addressing mode specified by cudaTextureDesc::addressMode is
cudaAddressModeBorder.

cudaTextureDesc::normalizedCoords specifies whether the texture coordinates will be
normalized or not.

cudaTextureDesc::maxAnisotropy specifies the maximum anistropy ratio to be used when
doing anisotropic filtering. This value will be clamped to the range [1,16].

cudaTextureDesc::mipmapFilterMode specifies the filter mode when the calculated
mipmap level lies between two defined mipmap levels.

cudaTextureDesc::mipmaplevelBias specifies the offset to be applied to the calculated
mipmap level.

cudaTextureDesc::minMipmapl evelClamp specifies the lower end of the mipmap level
range to clamp access to.

cudaTextureDesc::maxMipmaplevelClamp specifies the upper end of the mipmap level
range to clamp access to.

cudaTextureDesc::disableTrilinearOptimization specifies whether the trilinear filtering
optimizations will be disabled.

The cudaResourceViewDesc struct is defined as

r struct cudaResourceViewDesc {
enum cudaResourceViewFormat
format;
size t width;
size t height;
size t depth;
unsigned int firstMipmaplLevel;
unsigned int lastMipmapLevel;
unsigned int firstlayer;
unsigned int lastlLayer;
}i

where:

» cudaResourceViewDesc::format specifies how the data contained in the CUDA array or
CUDA mipmapped array should be interpreted. Note that this can incur a change in size
of the texture data. If the resource view format is a block compressed format, then the
underlying CUDA array or CUDA mipmapped array has to have a 32-bit unsigned integer
format with 2 or 4 channels, depending on the block compressed format. For ex., BC1 and
BC4 require the underlying CUDA array to have a 32-bit unsigned int with 2 channels. The
other BC formats require the underlying resource to have the same 32-bit unsigned int
format but with 4 channels.

» cudaResourceViewDesc::width specifies the new width of the texture data. If the resource

view format is a block compressed format, this value has to be 4 times the original width of

CUDA Runtime API vRelease Version | 318

Modules

the resource. For non block compressed formats, this value has to be equal to that of the
original resource.

cudaResourceViewDesc::height specifies the new height of the texture data. If the resource
view format is a block compressed format, this value has to be 4 times the original height
of the resource. For non block compressed formats, this value has to be equal to that of
the original resource.

cudaResourceViewDesc::depth specifies the new depth of the texture data. This value has
to be equal to that of the original resource.

cudaResourceViewDesc::firstMipmapLevel specifies the most detailed mipmap

level. This will be the new mipmap level zero. For non-mipmapped resources,

this value has to be zero.cudaTextureDesc::minMipmapLevelClamp and
cudaTextureDesc::maxMipmapLevelClamp will be relative to this value. For ex., if the
firstMipmapLevel is set to 2, and a minMipmapLevelClamp of 1.2 is specified, then the
actual minimum mipmap level clamp will be 3.2.

cudaResourceViewDesc::lastMipmaplevel specifies the least detailed mipmap level. For
non-mipmapped resources, this value has to be zero.

cudaResourceViewDesc::firstLayer specifies the first layer index for layered textures. This
will be the new layer zero. For non-layered resources, this value has to be zero.

cudaResourceViewDesc::lastLayer specifies the last layer index for layered textures. For
non-layered resources, this value has to be zero.

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDestroyTextureObject, cuTexObjectCreate

CUDA Runtime API vRelease Version | 319

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g1f6dd0f9cbf56db725b1f45aa0a7218a

Modules

__host__cudaError_t cudaDestroyTextureObject
(cudaTextureObject_t texObject]

Destroys a texture object.

Parameters

texObject
- Texture object to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the texture object specified by texObject.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaCreateTextureQObject, cuTexObjectDestroy

__host__cudaError_t cudaGetChannelDesc
(cudaChannelFormatDesc *desc, cudaArray_const_t
array)

Get the channel descriptor of an array.

Parameters

desc
- Channel format
array
- Memory array on device

CUDA Runtime API vRelease Version | 320

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1gcd522ba5e2d1852aff8c0388f66247fd

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *desc the channel descriptor of the CUDA array array.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaCreateTextureObject, cudaCreateSurfaceObject

__host__cudaError_t
cudaGetTextureObjectResourceDesc
(cudaResourceDesc *pResDesc, cudaTextureObject_t
texObject]

Returns a texture object’s resource descriptor.

Parameters

pResDesc

- Resource descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the resource descriptor for the texture object specified by texObject.

CUDA Runtime API vRelease Version | 321

Modules

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetResourceDesc

__host__cudaError_t
cudaGetTextureObjectResourceViewDesc
(cudaResourceViewDesc *pResViewDesc,
cudaTextureObject_t texObject]

Returns a texture object’s resource view descriptor.

Parameters

pResViewDesc

- Resource view descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the resource view descriptor for the texture object specified by texObject. If no
resource view was specified, cudaErrorinvalidValue is returned.

Note:

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 322

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g0cc8eb2fa1e584d2b04d631586d0921f

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetResourceViewDesc

__host__cudaError_t
cudaGetTextureObjectTextureDesc (cudaTextureDesc
*nTexDesc, cudaTextureObject_t texObject]

Returns a texture object’s texture descriptor.

Parameters

pTexDesc

- Texture descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the texture descriptor for the texture object specified by texObject.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetTextureDesc

CUDA Runtime API vRelease Version | 323

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g185fa4c933a1c3a7b6aebe3e4291a37b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g688de37b844df7313c8fce30fc912645

Modules

6.28. Surface Object Management

This section describes the low level texture object management functions of the CUDA
runtime application programming interface. The surface object APl is only supported on
devices of compute capability 3.0 or higher.

__host__cudaError_t cudaCreateSurfaceObject
(cudaSurfaceObject_t *pSurfObject, const
cudaResourceDesc *pResDesc])

Creates a surface object.

Parameters

pSurfObject

- Surface object to create
pResDesc

- Resource descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidChannelDescriptor,
cudaErrorinvalidResourceHandle

Description

Creates a surface object and returns it in pSurfObject. pResDesc describes

the data to perform surface load/stores on. cudaResourceDesc::resType must be
cudaResourceTypeArray and cudaResourceDesc::res::array::array must be set to a valid CUDA
array handle.

Surface objects are only supported on devices of compute capability 3.0 or higher. Additionally,
a surface object is an opaque value, and, as such, should only be accessed through CUDA API
calls.

Note:

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 324

Modules

See also:

cudaDestroySurfaceObject, cuSurfObjectCreate

__host__cudaError_t cudaDestroySurfaceObject
(cudaSurfaceObject_t surfObject]

Destroys a surface object.

Parameters

surfObject
- Surface object to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the surface object specified by surfObject.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaCreateSurfaceObject, cuSurfObjectDestroy

CUDA Runtime API vRelease Version | 325

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g6bc972c90c9590c9f720b2754e6d079d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g4c4ec48d203d1e0bb71750ddc4d7aef3

Modules

__host__cudaError_t
cudaGetSurfaceObjectResourceDesc
(cudaResourceDesc *pResDesc, cudaSurfaceObject_t
surfObject)

Returns a surface object’s resource descriptor Returns the resource descriptor for the
surface object specified by surfObject.

Parameters

pResDesc

- Resource descriptor
surfObject

- Surface object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Note:

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateSurfaceObject, cuSurfObjectGetResourceDesc

6.29. Version Management

CUDA Runtime API vRelease Version | 326

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g2472b7ea0b7e74600ed3d6c244b7ba21

Modules

__host__cudaError_t cudaDriverGetVersion (int

*driverVersion)
Returns the latest version of CUDA supported by the driver.

Parameters

driverVersion
- Returns the CUDA driver version.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *driverVersion the latest version of CUDA supported by the driver. The version
is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be represented by 9020.
If no driver is installed, then 0 is returned as the driver version.

This function automatically returns cudaErrorinvalidValue if drivervVersion is NULL.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaRuntimeGetVersion, cuDriverGetVersion

__host_ _device_ cudaError_t
cudaRuntimeGetVersion (int *runtimeVersion)

Returns the CUDA Runtime version.

Parameters

runtimeVersion
- Returns the CUDA Runtime version.

CUDA Runtime API vRelease Version | 327

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VERSION.html#group__CUDA__VERSION_1g8b7a10395392e049006e61bcdc8ebe71

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *runtimeVersion the version number of the current CUDA Runtime instance.
The version is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be
represented by 9020.

This function automatically returns cudaErrorinvalidValue if the runtimeVersion argument
is NULL.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDriverGetVersion, cuDriverGetVersion

6.30. Graph Management

This section describes the graph management functions of CUDA runtime application
programming interface.

__host__cudaError_t
cudaDeviceGetGraphMemAttribute (int device,
cudaGraphMemAttributeType attr, void *value)

Query asynchronous allocation attributes related to graphs.

Parameters

device

- Specifies the scope of the query
attr

- attribute to get

CUDA Runtime API vRelease Version | 328

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VERSION.html#group__CUDA__VERSION_1g8b7a10395392e049006e61bcdc8ebe71

Modules

value
- retrieved value

Returns

cudaSuccess, cudaErrorinvalidDevice

Description
Valid attributes are:

» cudaGraphMemAttrUsedMemCurrent: Amount of memory, in bytes, currently associated
with graphs

» cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with
graphs since the last time it was reset. High watermark can only be reset to zero.

> cudaGraphMemAttrReservedMemCurrent: Amount of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

» cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode, cudaDeviceGraphMemTrim,
cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

CUDA Runtime API vRelease Version | 329

Modules

__host__cudaError_t cudaDeviceGraphMemTrim (int
device)

Free unused memory that was cached on the specified device for use with graphs back to the
0S.

Parameters

device
- The device for which cached memory should be freed.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Blocks which are not in use by a graph that is either currently executing or scheduled to
execute are freed back to the operating system.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode,
cudaDeviceGetGraphMemAttribute, cudaDeviceSetGraphMemAttribute, cudaMallocAsync,
cudaFreeAsync,

CUDA Runtime API vRelease Version | 330

Modules

__host__cudaError_t
cudaDeviceSetGraphMemAttribute (int device,
cudaGraphMemAttributeType attr, void *value]

Set asynchronous allocation attributes related to graphs.

Parameters

device

- Specifies the scope of the query
attr

- attribute to get
value

- pointer to value to set

Returns

cudaSuccess, cudaErrorinvalidDevice

Description
Valid attributes are:

» cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with
graphs since the last time it was reset. High watermark can only be reset to zero.

» cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode, cudaDeviceGraphMemTrim,
cudaDeviceGetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

CUDA Runtime API vRelease Version | 331

Modules

__host__cudaError_t cudaGraphAddChildGraphNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaGraph_t childGraph)

Creates a child graph node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
childGraph

- The graph to clone into this node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new node which executes an embedded graph, and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

If hGraph contains allocation or free nodes, this call will return an error.

The node executes an embedded child graph. The child graph is cloned in this call.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 332

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphChildGraphNodeGetGraph, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode, cudaGraphClone

__host__cudaError_t cudaGraphAddDependencies
(cudaGraph_t graph, const cudaGraphNode_t
*from, const cudaGraphNode_t *to, size_t

numDependencies)
Adds dependency edges to a graph.

Parameters
graph

- Graph to which dependencies are added
from

- Array of nodes that provide the dependencies
to

- Array of dependent nodes
numDependencies

- Number of dependencies to be added

Returns

cudaSuccess, cudaErrorinvalidValue

Description

The number of dependencies to be added is defined by numDependencies Elements in
pFromand pTo at corresponding indices define a dependency. Each node in pFrom and pTo
must belong to graph.

If numDependencies is 0, elements in pFrom and pTo will be ignored. Specifying an existing
dependency will return an error.

Note:
» Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 333

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphRemoveDependencies, cudaGraphGetEdges, cudaGraphNodeGetDependencies,
cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphAddEmptyNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies)

Creates an empty node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new node which performs no operation, and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

An empty node performs no operation during execution, but can be used for transitive
ordering. For example, a phased execution graph with 2 groups of n nodes with a barrier

CUDA Runtime API vRelease Version | 334

Modules

between them can be represented using an empty node and 2*n dependency edges, rather
than no empty node and n*2 dependency edges.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphAddEventRecordNode (cudaGraphNode_t
*pGraphNode, cudaGraph_t graph, const
cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaEvent_t event]

Creates an event record node and adds it to a graph.

Parameters

pGraphNode
graph
pDependencies
numDependencies

- Number of dependencies
event

- Event for the node

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 335

Modules

Description

Creates a new event record node and adds it to hGraph with numDependencies
dependencies specified via dependencies and event specified in event. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new node will be returned
in phGraphNode.

Each launch of the graph will record event to capture execution of the node’s dependencies.

These nodes may not be used in loops or conditionals.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode,

CUDA Runtime API vRelease Version | 336

Modules

__host__cudaError_t cudaGraphAddEventWaitNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaEvent_t event]

Creates an event wait node and adds it to a graph.

Parameters

pGraphNode
graph
pDependencies
numDependencies

- Number of dependencies
event

- Event for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new event wait node and adds it to hGraph with numDependencies

dependencies specified via dependencies and event specified in event. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new node will be returned
in phGraphNode.

The graph node will wait for all work captured in event. See cuEventRecord() for details on
what is captured by an event. The synchronization will be performed efficiently on the device
when applicable. event may be from a different context or device than the launch stream.

These nodes may not be used in loops or conditionals.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 337

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode,

__host__cudaError_t
cudaGraphAddExternalSemaphoresSignalNode
(cudaGraphNode_t *pGraphNode,

cudaGraph_t graph, const cudaGraphNode_t
*pDependencies, size_t numDependencies, const
cudaExternalSemaphoreSignalNodeParams
*nodeParams]

Creates an external semaphore signal node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new external semaphore signal node and adds it to graph with numDependencies
dependencies specified via dependencies and arguments specified in nodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of

CUDA Runtime API vRelease Version | 338

Modules

the graph. dependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

Performs a signal operation on a set of externally allocated semaphore objects when the node
is launched. The operation(s) will occur after all of the node's dependencies have completed.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphExternalSemaphoresSignalNodeGetParams,
cudaGraphExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddEventRecordNode,
cudaGraphAddEventWaitNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,

CUDA Runtime API vRelease Version | 339

Modules

__host__cudaError_t
cudaGraphAddExternalSemaphoresWaitNode
(cudaGraphNode_t *pGraphNode,

cudaGraph_t graph, const cudaGraphNode_t
*pDependencies, size_t numDependencies,
const cudaExternalSemaphoreWaitNodeParams
*nodeParams]

Creates an external semaphore wait node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new external semaphore wait node and adds it to graph with numDependencies
dependencies specified via dependencies and arguments specified in nodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. dependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

Performs a wait operation on a set of externally allocated semaphore objects when the
node is launched. The node’s dependencies will not be launched until the wait operation has
completed.

Note:
> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 340

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphExternalSemaphoresWaitNodeGetParams,
cudaGraphExternalSemaphoresWaitNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams,
cudaGraphAddExternalSemaphoresSignalNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddEventRecordNode,
cudaGraphAddEventWaitNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,

__host__cudaError_t cudaGraphAddHostNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaHostNodeParams
*pNodeParams)

Creates a host execution node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pNodeParams

- Parameters for the host node

Returns

cudaSuccess, cudaErrorNotSupported, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 341

Modules

Description

Creates a new CPU execution node and adds it to graph with numDependencies
dependencies specified via pDependencies and arguments specified in pNodeParans. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. pDependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

When the graph is launched, the node will invoke the specified CPU function. Host nodes are
not supported under MPS with pre-Volta GPUs.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchHostFunc, cudaGraphHostNodeGetParams, cudaGraphHostNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddKernelNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaKernelNodeParams
*pNodeParams)

Creates a kernel execution node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

CUDA Runtime API vRelease Version | 342

Modules

graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pNodeParams

- Parameters for the GPU execution node

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDeviceFunction

Description

Creates a new kernel execution node and adds it to graph with numDependencies
dependencies specified via pDependencies and arguments specified in pNodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. pDependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

The cudaKernelNodeParams structure is defined as:

[struct cudaKernelNodeParams

{

void* func;

dim3 gridDim;

dim3 blockDim;

unsigned int sharedMemBytes;
void **kernelParams;

vold **extra;

bi
When the graph is launched, the node will invoke kernel func on a (gridDim.x x

gridDim.y x gridDim. z) grid of blocks. Each block contains [blockDim.x x blockDim.y
xblockDim. z) threads.

sharedMemn sets the amount of dynamic shared memory that will be available to each thread
block.

Kernel parameters to func can be specified in one of two ways:

1) Kernel parameters can be specified via kernelParams. If the kernel has N

parameters, then kernelParams needs to be an array of N pointers. Each pointer, from
kernelParams[0] to kernelParams[N-1], points to the region of memory from which the
actual parameter will be copied. The number of kernel parameters and their offsets and sizes
do not need to be specified as that information is retrieved directly from the kernel's image.

2] Kernel parameters can also be packaged by the application into a single buffer that is
passed in via extra. This places the burden on the application of knowing each kernel
parameter’s size and alignment/padding within the buffer. The extra parameter exists to
allow this function to take additional less commonly used arguments. extra specifies a

CUDA Runtime API vRelease Version | 343

Modules

list of names of extra settings and their corresponding values. Each extra setting name is
immediately followed by the corresponding value. The list must be terminated with either
NULL or CU_LAUNCH_PARAM_END.

» CU_LAUNCH PARAM_END, which indicates the end of the extra array;

» CU_LAUNCH_PARAM_BUFFER_POINTER, which specifies that the next value in extra
will be a pointer to a buffer containing all the kernel parameters for launching kernel
func;

» CU_LAUNCH_PARAM_BUFFER_SIZE, which specifies that the next value in

extra will be a pointer to a size_t containing the size of the buffer specified with
CU_LAUNCH_PARAM_BUFFER_POINTER;

The error cudakrrorinvalidValue will be returned if kernel parameters are specified with both
kernelParams and extra (i.e. both kernelParams and extra are non-NULL).

The kernelParams or extra array, as well as the argument values it points to, are copied
during this call.

Note:

Kernels launched using graphs must not use texture and surface references. Reading or
writing through any texture or surface reference is undefined behavior. This restriction does
not apply to texture and surface objects.

Note:

» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphKernelNodeGetParams, cudaGraphKernelNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 344

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd5c11cff5adfa5a69d66829399653532
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g36d10d0b40c51372877578a2cffd6acd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf339c057cd94562ead93a192e11c17e9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g36d10d0b40c51372877578a2cffd6acd

Modules

__host__cudaError_t cudaGraphAddMemAllocNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaMemAllocNodeParams
*nodeParams]

Creates an allocation node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorCudartUnloading, cudaErrorinitializationError,
cudakrrorNotSupported, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Creates a new allocation node and adds it to graph with numDependencies dependencies
specified via pDependencies and arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When cudaGraphAddMemAllocNode creates an allocation node, it returns the address of

the allocation in If the allocation is freed in the same graph, by creating a free node using
cudaGraphAddMemFreeNode, the allocation can be accessed by nodes ordered after the
allocation node but before the free node. These allocations cannot be freed outside the owning
graph, and they can only be freed once in the owning graph.

If the allocation is not freed in the same graph, then it can be accessed not only by nodes in
the graph which are ordered after the allocation node, but also by stream operations ordered
after the graph’s execution but before the allocation is freed.

Allocations which are not freed in the same graph can be freed by:

CUDA Runtime API vRelease Version | 345

Modules

» passing the allocation to cudaMem€FreeAsync or cudaMemFree;
» launching a graph with a free node for that allocation; or

» specifying cudaGraphlnstantiateFlagAutoFreeOnlLaunch during instantiation, which makes
each launch behave as though it called cudaMemFreeAsync for every unfreed allocation.

It is not possible to free an allocation in both the owning graph and another graph. If the
allocation is freed in the same graph, a free node cannot be added to another graph. If the
allocation is freed in another graph, a free node can no longer be added to the owning graph.

The following restrictions apply to graphs which contain allocation and/or memory free nodes:

» Nodes and edges of the graph cannot be deleted.

» The graph cannot be used in a child node.

» Only one instantiation of the graph may exist at any point in time.
» The graph cannot be cloned.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphAddMemFreeNode, cudaGraphMemAllocNodeGetParams,
cudaDeviceGraphMemTrim, cudaDeviceGetGraphMemAttribute,
cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddEventRecordNode, cudaGraphAddEventWaitNode,
cudaGraphAddExternalSemaphoresSignalNode, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host___cudaError_t cudaGraphAddMemcpyNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaMemcpy3DParms
*pCopyParams)

Creates a memcpy node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

CUDA Runtime API vRelease Version | 346

Modules

graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pCopyParams

- Parameters for the memory copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will perform the memcpy described by pCopyParams.
See cudaMemcpy3D(] for a description of the structure and its restrictions.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:

» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy3D, cudaGraphAddMemcpyNodeToSymbol,
cudaGraphAddMemcpyNodeFromSymbol, cudaGraphAddMemcpyNode1D,
cudaGraphMemcpyNodeGetParams, cudaGraphMemcpyNodeSetParams, cudaGraphCreate,
cudaGraphDestroyNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,
cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 347

Modules

__host__cudaError_t cudaGraphAddMemcpyNode1D
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dst, const void *src, size_t
count, cudaMemcpyKind kind]

Creates a 1D memcpy node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new 1D memcpy node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified

CUDA Runtime API vRelease Version | 348

Modules

virtual addressing. Launching a memcpy node with dst and src pointers that do not match the
direction of the copy results in an undefined behavior.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:

» Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParams1D,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphAddMemcpyNodeFromSymbol
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dst, const void *symbol,
size_t count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy from a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node

CUDA Runtime API vRelease Version | 349

Modules

pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node to copy from symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by of fset bytes from the start of symbol symbol to the memory area pointed to by dst.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:

» Graph objects are not threadsafe. More here.

» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 350

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyFromSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeToSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,
cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphAddMemcpyNodeToSymbol
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const void *symbol, const void

*src, size_t count, size_t offset, cudaMemcpyKind
kind)

Creates a memcpy node to copy to a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
symbol

- Device symbol address
src

- Source memory address

CUDA Runtime API vRelease Version | 351

Modules

count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node to copy to symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by of fset bytes from the start of symbol symbol.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:

» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 352

Modules

cudaMemcpyToSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeFromSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemFreeNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dptr]

Creates a memory free node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dptr

- Address of memory to free

Returns

cudaSuccess, cudaErrorCudartUnloading, cudaErrorinitializationError,
cudakrrorNotSupported, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Creates a new memory free node and adds it to graph with numDependencies
dependencies specified via pDependencies and address specified in dptr. Itis possible

for numDependencies to be 0, in which case the node will be placed at the root of the
graph. pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

cudaGraphAddMemFreeNode will return cudaErrorinvalidValue if the user attempts to free:

> an allocation twice in the same graph.
» an address that was not returned by an allocation node.

» aninvalid address.

CUDA Runtime API vRelease Version | 353

Modules

The following restrictions apply to graphs which contain allocation and/or memory free nodes:

Nodes and edges of the graph cannot be deleted.
The graph cannot be used in a child node.

Only one instantiation of the graph may exist at any point in time.

vV v v VY

The graph cannot be cloned.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphAddMemAllocNode, cudaGraphMemFreeNodeGetParams,
cudaDeviceGraphMemTrim, cudaDeviceGetGraphMemAttribute,
cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddEventRecordNode, cudaGraphAddEventWaitNode,
cudaGraphAddExternalSemaphoresSignalNode, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemsetNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t
graph, const cudaGraphNode_t *pDependencies,
size_t numDependencies, const cudaMemsetParams
*nMemsetParams]

Creates a memset node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pMemsetParams

- Parameters for the memory set

CUDA Runtime API vRelease Version | 354

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Creates a new memset node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

The element size must be 1, 2, or 4 bytes. When the graph is launched, the node will perform
the memset described by pMemsetParams.

Note:

» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset2D, cudaGraphMemsetNodeGetParams, cudaGraphMemsetNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemcpyNode

__host__cudaError_t
cudaGraphChildGraphNodeGetGraph
(cudaGraphNode_t node, cudaGraph_t *pGraph])

Gets a handle to the embedded graph of a child graph node.

Parameters

node

- Node to get the embedded graph for
pGraph

- Location to store a handle to the graph

CUDA Runtime API vRelease Version | 355

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Gets a handle to the embedded graph in a child graph node. This call does not clone the graph.
Changes to the graph will be reflected in the node, and the node retains ownership of the
graph.

Allocation and free nodes cannot be added to the returned graph. Attempting to do so will
return an error.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphNodeFindInClone

__host__cudaError_t cudaGraphClone (cudaGraph _t
*pGraphClone, cudaGraph_t originalGraph)

Clones a graph.

Parameters

pGraphClone

- Returns newly created cloned graph
originalGraph

- Graph to clone

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

CUDA Runtime API vRelease Version | 356

Modules

Description

This function creates a copy of originalGraph and returns it in pGraphClone. All
parameters are copied into the cloned graph. The original graph may be modified after this
call without affecting the clone.

Child graph nodes in the original graph are recursively copied into the clone.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphNodeFindInClone

__host__cudaError_t cudaGraphCreate (cudaGraph_t
*pGraph, unsigned int flags)

Creates a graph.

Parameters
pGraph

- Returns newly created graph
flags

- Graph creation flags, must be 0

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Creates an empty graph, which is returned via pGraph.

CUDA Runtime API vRelease Version | 357

Modules

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,
cudaGraphlnstantiate, cudaGraphDestroy, cudaGraphGetNodes, cudaGraphGetRootNodes,
cudaGraphGetEdges, cudaGraphClone

__host__cudaError_t cudaGraphDebugDotPrint
(cudaGraph_t graph, const char *path, unsigned int
flags)

Write a DOT file describing graph structure.

Parameters
graph

- The graph to create a DOT file from
path

- The path to write the DOT file to
flags

- Flags from cudaGraphDebugDotFlags for specifying which additional node information to
write

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorOperatingSystem

Description

Using the provided graph, write to path a DOT formatted description of the graph. By default
this includes the graph topology, node types, node id, kernel names and memcpy direction.
flags can be specified to write more detailed information about each node type such as
parameter values, kernel attributes, node and function handles.

CUDA Runtime API vRelease Version | 358

Modules

__host__cudaError_t cudaGraphDestroy
(cudaGraph_t graph)

Destroys a graph.

Parameters

graph
- Graph to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the graph specified by graph, as well as all of its nodes.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaGraphCreate

__host__cudaError_t cudaGraphDestroyNode
(cudaGraphNode_t node)

Remove a node from the graph.

Parameters

node
- Node to remove

CUDA Runtime API vRelease Version | 359

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Removes node from its graph. This operation also severs any dependencies of other nodes on
node and vice versa.

Dependencies cannot be removed from graphs which contain allocation or free nodes. Any
attempt to do so will return an error.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphEventRecordNodeGetEvent
(cudaGraphNode_t node, cudaEvent_t *event_out]

Returns the event associated with an event record node.

Parameters

node
event_out
- Pointer to return the event

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 360

Description

Returns the event of event record node hNode in event out.

Note:

> Graph objects are not threadsafe. More here.

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.
> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeSetEvent,
cudaGraphEventWaitNodeGetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

__host__cudaError_t
cudaGraphEventRecordNodeSetEvent
(cudaGraphNode_t node, cudaEvent_t event]

Sets an event record node’s event.

Parameters

node
event
- Event to use

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the event of event record node hNode to event.

Note:

> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 361

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeGetEvent,
cudaGraphEventWaitNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

__host_ _cudaError_t
cudaGraphEventWaitNodeGetEvent
(cudaGraphNode_t node, cudaEvent_t *event_out]

Returns the event associated with an event wait node.

Parameters

node
event_out
- Pointer to return the event

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the event of event wait node hNode in event out.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 362

Modules

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeSetEvent,
cudaGraphEventRecordNodeGetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

__host__cudaError_t
cudaGraphEventWaitNodeSetEvent
(cudaGraphNode_t node, cudaEvent_t event)

Sets an event wait node's event.

Parameters

node
event
- Event to use

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the event of event wait node hNode to event.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeGetEvent,
cudaGraphEventRecordNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

CUDA Runtime API vRelease Version | 363

Modules

__host__cudaError_t
cudaGraphExecChildGraphNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, cudaGraph_t childGraph]

Updates node parameters in the child graph node in the given graphExec.

Parameters
hGraphExec
- The executable graph in which to set the specified node
node
- Host node from the graph which was used to instantiate graphExec
childGraph
- The graph supplying the updated parameters

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though the nodes contained in
node's graph had the parameters contained in childGraph's nodes at instantiation. node
must remain in the graph which was used to instantiate hGraphExec. Changed edges to and
from node are ignored.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

The topology of childGraph, as well as the node insertion order, must match that of the
graph contained in node. See cudaGraphExecUpdatel(] for a list of restrictions on what can
be updated in an instantiated graph. The update is recursive, so child graph nodes contained
within the top level child graph will also be updated.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 364

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphChildGraphNodeGetGraph,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t cudaGraphExecDestroy
(cudaGraphExec_t graphExec)

Destroys an executable graph.

Parameters

graphExec
- Executable graph to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the executable graph specified by graphExec.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

CUDA Runtime API vRelease Version | 365

Modules

See also:

cudaGraphlnstantiate, cudaGraphUpload, cudaGraphlLaunch

__host_ _cudaError_t
cudaGraphExecEventRecordNodeSetEvent
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
hNode, cudaEvent_t event]

Sets the event for an event record node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- Event record node from the graph from which graphExec was instantiated
event

- Updated event to use

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the event of an event record node in an executable graph hGraphExec. The node is
identified by the corresponding node hNode in the non-executable graph, from which the
executable graph was instantiated.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 366

Modules

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeGetEvent,
cudaGraphEventWaitNodeSetEvent, cudakEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecEventWaitNodeSetEvent
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
hNode, cudaEvent t event]

Sets the event for an event wait node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- Event wait node from the graph from which graphExec was instantiated
event

- Updated event to use

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the event of an event wait node in an executable graph hGraphExec. The node is
identified by the corresponding node hNode in the non-executable graph, from which the
executable graph was instantiated.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 367

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeGetEvent,
cudaGraphEventRecordNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecExternalSemaphoresSignalNodeSetParams
(cudaGraphExec_t hGraphExec,

cudaGraphNode_t hNode, const
cudaExternalSemaphoreSignalNodeParams

*nodeParams]

Sets the parameters for an external semaphore signal node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- semaphore signal node from the graph from which graphExec was instantiated
nodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 368

Modules

Description

Sets the parameters of an external semaphore signal node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode in the non-executable
graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Changing nodeParams->numExtSems is not supported.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresSignalNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 369

Modules

__host__cudaError_t
cudaGraphExecExternalSemaphoresWaitNodeSetParams
(cudaGraphExec_t hGraphExec,

cudaGraphNode_t hNode, const
cudaEkxternalSemaphoreWaitNodeParams

*nodeParams]

Sets the parameters for an external semaphore wait node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- semaphore wait node from the graph from which graphExec was instantiated
nodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the parameters of an external semaphore wait node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode in the non-executable
graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Changing nodeParams->numExtSemns is not supported.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 370

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresWaitNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecHostNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaHostNodeParams *pNodeParams)

Sets the parameters for a host node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Host node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

CUDA Runtime API vRelease Version | 371

Modules

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddHostNode, cudaGraphHostNodeSetParams,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecKernelNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaKernelNodeParams *pNodeParams)

Sets the parameters for a kernel node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- kernel node from the graph from which graphExec was instantiated
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 372

Modules

Description

Sets the parameters of a kernel node in an executable graph hGraphExec. The node is
identified by the corresponding node node in the non-executable graph, from which the
executable graph was instantiated.

node must not have been removed from the original graph. The func field of nodeParams
cannot be modified and must match the original value. All other values can be modified.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddKernelNode, cudaGraphKernelNodeSetParams,
cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 373

Modules

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, const cudaMemcpy3DParms *pNodeParams)

Sets the parameters for a memcpy node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memcpy node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The source and destination memory in pNodeParams must be allocated from the same
contexts as the original source and destination memory. Both the instantiation-time memory
operands and the memory operands in pNodeParams must be 1-dimensional. Zero-length
operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or either the
original or new memory operands are multidimensional.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 374

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsToSymbol,
cudaGraphExecMemcpyNodeSetParamsFromSymbol,
cudaGraphExecMemcpyNodeSetParams1D, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParamsi1D
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, void *dst, const void *src, size_t count,
cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to perform a 1-dimensional
copy.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memcpy node from the graph which was used to instantiate graphExec
dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 375

Modules

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

src and dst must be allocated from the same contexts as the original source and destination
memory. The instantiation-time memory operands must be 1-dimensional. Zero-length
operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

Note:

» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNode 1D,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParams1D,
cudaGraphExecMemcpyNodeSetParams, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 376

Modules

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParamsFromSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, void *dst, const void *symbol, size_t count,
size_t offset, cudaMemcpyKind kind]

Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the
device.

Parameters

hGraphExec
- The executable graph in which to set the specified node
node
- Memcpy node from the graph which was used to instantiate graphExec
dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

symbol and dst must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

CUDA Runtime API vRelease Version | 377

Modules

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeFromSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,
cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemcpyNodeSetParamsToSymbol,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemsetNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host_ _cudaError_t
cudaGraphExecMemcpyNodeSetParamsToSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const void *symbol, const void *src, size_t
count, size_t offset, cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the
device.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memcpy node from the graph which was used to instantiate graphExec
symbol

- Device symbol address

CUDA Runtime API vRelease Version | 378

Modules

src
- Source memory address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

src and symbol must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

Note:

» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeToSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsFromSymbol,

CUDA Runtime API vRelease Version | 379

Modules

cudaGraphExecKernelNodeSetParams, cudaGraphExecMemsetNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecMemsetNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaMemsetParams *pNodeParams)

Sets the parameters for a memset node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memset node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The destination memory in pNodeParams must be allocated from the same context as the
original destination memory. Both the instantiation-time memory operand and the memory
operand in pNodeParams must be T-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operand’s mappings changed or either the
original or new memory operand are multidimensional.

n Note:

CUDA Runtime API vRelease Version | 380

Modules

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddMemsetNode, cudaGraphMemsetNodeSetParams,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t cudaGraphExecUpdate
(cudaGraphExec_t hGraphExec, cudaGraph_t
hGraph, cudaGraphNode_t *hErrorNode_out,
cudaGraphExecUpdateResult *updateResult_out]

Check whether an executable graph can be updated with a graph and perform the update if
possible.

Parameters

hGraphExec
The instantiated graph to be updated
hGraph
The graph containing the updated parameters
hErrorNode_out
The node which caused the permissibility check to forbid the update, if any
updateResult_out
Whether the graph update was permitted. If was forbidden, the reason why

Returns

cudaSuccess, cudaErrorGraphExecUpdateFailure,

CUDA Runtime API vRelease Version | 381

Modules

Description

Updates the node parameters in the instantiated graph specified by hGraphExec with the
node parameters in a topologically identical graph specified by hGraph.

Limitations:
» Kernel nodes:

» The owning context of the function cannot change.

» A node whose function originally did not use CUDA dynamic parallelism cannot be
updated to a function which uses CDP

» Memset and memcpy nodes:

» The CUDA device(s] to which the operand(s) was allocated/mapped cannot change.

» The source/destination memory must be allocated from the same contexts as the
original source/destination memory.

» Only 1D memsets can be changed.
» Additional memcpy node restrictions:

» Changing either the source or destination memory typeli.e. CU_MEMORYTYPE_DEVICE,
CU_MEMORYTYPE_ARRAY, etc.] is not supported.

Note: The APl may add further restrictions in future releases. The return code should always
be checked.

cudaGraphExecUpdate sets updateResult out to
cudaGraphExecUpdateErrorTopologyChanged under the following conditions:

> The count of nodes directly in hGraphExec and hGraph differ, in which case
hErrorNode out is NULL.

» A node is deleted in hGraph but not not its pair from hGraphExec, in which case
hErrorNode out is NULL.

» A node is deleted in hGraphExec but not its pair from hGraph, in which case
hErrorNode out is the pairless node from hGraph.

» The dependent nodes of a pair differ, in which case hErrorNode out is the node from
hGraph.
cudaGraphExecUpdate sets updateResult out to:

» cudaGraphExecUpdateError if passed an invalid value.
» cudaGraphExecUpdateErrorTopologyChanged if the graph topology changed

» cudaGraphExecUpdateErrorNodeTypeChanged if the type of a node changed, in which case
hErrorNode out is set to the node from hGraph.

» cudaGraphExecUpdateErrorFunctionChanged if the function of a kernel node changed
(CUDA driver < 11.2)

CUDA Runtime API vRelease Version | 382

Modules

» cudaGraphExecUpdateErrorUnsupportedFunctionChange if the func field of a kernel
changed in an unsupported way(see note above}, in which case hErrorNode out is set to
the node from hGraph

» cudaGraphExecUpdateErrorParametersChanged if any parameters to a node changed
in a way that is not supported, in which case hErrorNode out is set to the node from
hGraph

» cudaGraphExecUpdateErrorNotSupported if something about a node is unsupported, like
the node’s type or configuration, in which case hErrorNode out is set to the node from
hGraph

If updateResult out isn't setin one of the situations described above, the update
check passes and cudaGraphExecUpdate updates hGraphExec to match the
contents of hGraph. If an error happens during the update, updateResult out
will be set to cudaGraphExecUpdateError; otherwise, updateResult out is setto
cudaGraphExecUpdateSuccess.

cudaGraphExecUpdate returns cudaSuccess when the updated was performed successfully. It
returns cudaErrorGraphExecUpdateFailure if the graph update was not performed because it
included changes which violated constraints specific to instantiated graph update.

Note:

» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphlnstantiate,

CUDA Runtime API vRelease Version | 383

Modules

__host__cudaError_t
cudaGraphExternalSemaphoresSignalNodeGetParams
(cudaGraphNode_t hNode,
cudaExternalSemaphoreSignalNodeParams
*params_out)

Returns an external semaphore signal node’'s parameters.

Parameters

hNode

- Node to get the parameters for
params_out

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of an external semaphore signal node hNode in params_out. The
extSemArray and paramsArray returned in params_out, are owned by the node. This
memory remains valid until the node is destroyed or its parameters are modified, and should
not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update
the parameters of this node.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphAddExternalSemaphoresSignalNode,
cudaGraphExternalSemaphoresSignalNodeSetParams,

CUDA Runtime API vRelease Version | 384

Modules

cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaGraphExternalSemaphoresSignalNodeSetParams
(cudaGraphNode_t hNode, const
cudaExternalSemaphoreSignalNodeParams
*nodeParams]

Sets an external semaphore signal node’s parameters.

Parameters

hNode

- Node to set the parameters for
nodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of an external semaphore signal node hNode to nodeParams.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresSignalNode,
cudaGraphExternalSemaphoresSignalNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

CUDA Runtime API vRelease Version | 385

Modules

__host__cudaError_t
cudaGraphExternalSemaphoresWaitNodeGetParams
(cudaGraphNode_t hNode,
cudaEkxternalSemaphoreWaitNodeParams
*params_out)

Returns an external semaphore wait node's parameters.

Parameters

hNode

- Node to get the parameters for
params_out

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of an external semaphore wait node hNode in params_out. The
extSemArray and paramsArray returned in params_out, are owned by the node. This
memory remains valid until the node is destroyed or its parameters are modified, and should
not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update
the parameters of this node.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphExternalSemaphoresWaitNodeSetParams,

CUDA Runtime API vRelease Version | 386

Modules

cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaGraphExternalSemaphoresWaitNodeSetParams
(cudaGraphNode_t hNode, const
cudaExternalSemaphoreWaitNodeParams
*nodeParams)

Sets an external semaphore wait node’s parameters.

Parameters

hNode

- Node to set the parameters for
nodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of an external semaphore wait node hNode to nodeParams.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphExternalSemaphoresWaitNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

CUDA Runtime API vRelease Version | 387

Modules

__host__cudaError_t cudaGraphGetEdges
(cudaGraph_t graph, cudaGraphNode_t *from,
cudaGraphNode_t *to, size_t *numEdges]

Returns a graph’s dependency edges.

Parameters
graph

- Graph to get the edges from
from

- Location to return edge endpoints
to

- Location to return edge endpoints
numEdges

- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's dependency edges. Edges are returned via corresponding indices
in from and to; that is, the node in tolil has a dependency on the node in froml[i]. from
and to may both be NULL, in which case this function only returns the number of edges in
numEdges. Otherwise, numEdges entries will be filled in. If numEdges is higher than the
actual number of edges, the remaining entries in from and to will be set to NULL, and the
number of edges actually returned will be written to numEdges.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 388

Modules

cudaGraphGetNodes, cudaGraphGetRootNodes, cudaGraphAddDependencies,
cudaGraphRemoveDependencies, cudaGraphNodeGetDependencies,
cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphGetNodes
(cudaGraph_t graph, cudaGraphNode_t *nodes, size_t
*numNodes]

Returns a graph’s nodes.

Parameters
graph
- Graph to query
nodes
- Pointer to return the nodes
numNodes
- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's nodes. nodes may be NULL, in which case this function will
return the number of nodes in numNodes. Otherwise, numNodes entries will be filled in. If
numNodes is higher than the actual number of nodes, the remaining entries in nodes will be
set to NULL, and the number of nodes actually obtained will be returned in numNodes.

Note:

> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 389

Modules

cudaGraphCreate, cudaGraphGetRootNodes, cudaGraphGetEdges, cudaGraphNodeGetType,
cudaGraphNodeGetDependencies, cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphGetRootNodes
(cudaGraph_t graph, cudaGraphNode_t *pRootNodes,
size_t *pNumRootNodes)

Returns a graph’s root nodes.

Parameters
graph
- Graph to query
pRootNodes
- Pointer to return the root nodes
pNumRootNodes
- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's root nodes. pRootNodes may be NULL, in which case this function
will return the number of root nodes in pNumRootNodes. Otherwise, pNumRootNodes
entries will be filled in. If pNumRootNodes is higher than the