
DA-09074-001_v11.4    |    November 2021

NVIDIA Ampere GPU Architecture
Compatibility Guide for CUDA
Applications

Application Note



NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   ii

Table of Contents

Chapter 1. NVIDIA Ampere GPU Architecture Compatibility...............................................1
1.1. About this Document................................................................................................................ 1

1.2. Application Compatibility on the NVIDIA Ampere GPU Architecture......................................1

1.3. Verifying Ampere Compatibility for Existing Applications.......................................................2

1.3.1. Applications Built Using CUDA Toolkit 10.2 or Earlier.....................................................2

1.3.2. Applications Built Using CUDA Toolkit 11.0..................................................................... 3

1.4. Building Applications with the NVIDIA Ampere GPU Architecture Support...........................3

1.4.1. Building Applications Using CUDA Toolkit 10.x or Earlier............................................... 3

1.4.2. Building Applications Using CUDA Toolkit 11.0................................................................4

1.4.3. Independent Thread Scheduling Compatibility................................................................. 5

Appendix A. Revision History............................................................................................... 6



NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   1

Chapter 1. NVIDIA Ampere GPU
Architecture Compatibility

1.1.  About this Document
This application note, NVIDIA Ampere GPU Architecture Compatibility Guide for CUDA
Applications, is intended to help developers ensure that their NVIDIA® CUDA® applications will
run on the NVIDIA® Ampere Architecture based GPUs. This document provides guidance to
developers who are familiar with programming in CUDA C++ and want to make sure that their
software applications are compatible with the NVIDIA Ampere GPU architecture.

1.2.  Application Compatibility on the
NVIDIA Ampere GPU Architecture

A CUDA application binary (with one or more GPU kernels) can contain the compiled GPU code
in two forms, binary cubin objects and forward-compatible PTX assembly for each kernel. Both
cubin and PTX are generated for a certain target compute capability. A cubin generated for
a certain compute capability is supported to run on any GPU with the same major revision
and same or higher minor revision of compute capability. For example, a cubin generated for
compute capability 7.0 is supported to run on a GPU with compute capability 7.5, however a
cubin generated for compute capability 7.5 is not supported to run on a GPU with compute
capability 7.0, and a cubin generated with compute capability 7.x is not supported to run on a
GPU with compute capability 8.x.

Kernel can also be compiled to a PTX form. At the application load time, PTX is compiled to
cubin and the cubin is used for kernel execution. Unlike cubin, PTX is forward-compatible.
Meaning PTX is supported to run on any GPU with compute capability higher than the compute
capability assumed for generation of that PTX. For example, PTX code generated for compute
capability 7.x is supported to run on compute capability 7.x or any higher revision (major or
minor), including compute capability 8.x. Therefore although it is optional, it is recommended
that all applications should include PTX of the kernels to ensure forward-compatibility.
To read more about cubin and PTX compatibilities see Compilation with NVCC from the 
Programming Guide.



NVIDIA Ampere GPU Architecture Compatibility

NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   2

When a CUDA application launches a kernel on a GPU, the CUDA Runtime determines
the compute capability of the GPU in the system and uses this information to find the best
matching cubin or PTX version of the kernel. If a cubin compatible with that GPU is present in
the binary, the cubin is used as-is for execution. Otherwise, the CUDA Runtime first generates
compatible cubin by JIT-compiling 1 the PTX and then the cubin is used for the execution. If
neither compatible cubin nor PTX is available, kernel launch results in a failure.

Application binaries that include PTX version of kernels, should work as-is on the NVIDIA
Ampere architecture based GPUs. In such cases, rebuilding the application is not required.
However application binaries which do not include PTX (only include cubins), need to be
rebuilt to run on the NVIDIA Ampere architecture based GPUs. To know more about building
compatible applications read Building Applications with the NVIDIA Ampere GPU Architecture
Support

1.3.  Verifying Ampere Compatibility for
Existing Applications

The first step towards making a CUDA application compatible with the NVIDIA Ampere GPU
architecture is to check if the application binary already contains compatible GPU code (at
least the PTX). The following sections explain how to accomplish this for an already built CUDA
application.

1.3.1.  Applications Built Using CUDA Toolkit 10.2 or
Earlier

CUDA applications built using CUDA Toolkit versions 2.1 through 10.2 are compatible with
NVIDIA Ampere architecture based GPUs as long as they are built to include PTX versions of
their kernels. This can be tested by forcing the PTX to JIT-compile at application load time with
following the steps:

‣ Download and install the latest driver from http://www.nvidia.com/drivers.

‣ Set the environment variable CUDA_FORCE_PTX_JIT=1.

‣ Launch the application.

With CUDA_FORCE_PTX_JIT=1, GPU binary code embedded in an application binary is ignored.
Instead PTX code for each kernel is JIT-compiled to produce GPU binary code. An application
fails to execute if it does not include PTX. This means the application is not compatible with
the NVIDIA Ampere GPU architecture and needs to be rebuilt for compatibility. On the other
hand, if the application works properly with this environment variable set, then the application
is compatible with the NVIDIA Ampere GPU architecture.

Note: Be sure to unset the CUDA_FORCE_PTX_JIT environment variable after testing is done.

1 Just-in-time compilation

http://www.nvidia.com/drivers


NVIDIA Ampere GPU Architecture Compatibility

NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   3

1.3.2.  Applications Built Using CUDA Toolkit 11.0
CUDA applications built using CUDA Toolkit 11.0 are compatible with the NVIDIA Ampere GPU
architecture as long as they are built to include kernels in native cubin (compute capability 8.0)
or PTX form or both.

1.4.  Building Applications with the NVIDIA
Ampere GPU Architecture Support

Depending on the version of the CUDA Toolkit used for building the application, it can be built
to include PTX and/or native cubin for the NVIDIA Ampere GPU architecture. Although it is
enough to just include PTX, including native cubin also has the following advantages:

‣ It saves the end user the time it takes to JIT-compile kernels that are available only as
PTX. All kernels which do not have native cubins are JIT-compiled from PTX, including
kernels from all the libraries linked to the application, even if those kernels are never
launched by the application. Especially when using large libraries, this JIT compilation
can take a significant amount of time. The CUDA driver caches the cubins generated as a
result of the PTX JIT, so this is mostly a one-time cost for a user, but it is time best avoided
whenever possible.

‣ PTX JIT-compiled kernels often cannot take advantage of architectural features of newer
GPUs, meaning that native-compiled cubins may be faster or of greater accuracy.

1.4.1.  Building Applications Using CUDA Toolkit
10.x or Earlier

The nvcc compiler included with versions 10.x (10.0, 10.1 and 10.2) of the CUDA Toolkit can
generate cubins native to the Volta and Turing architectures (compute capability 7.x). When
using CUDA Toolkit 10.x, to ensure that nvcc will generate cubin files for all recent GPU
architectures as well as a PTX version for forward compatibility with future GPU architectures,
specify the appropriate -gencode= parameters on the nvcc command line as shown in the
examples below.

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
  -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
  -gencode=arch=compute_52,code=sm_52
  -gencode=arch=compute_60,code=sm_60
  -gencode=arch=compute_61,code=sm_61
  -gencode=arch=compute_70,code=sm_70
  -gencode=arch=compute_75,code=sm_75
  -gencode=arch=compute_75,code=compute_75
  --compile -o "Release\mykernel.cu.obj" "mykernel.cu"



NVIDIA Ampere GPU Architecture Compatibility

NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   4

Mac/Linux

/usr/local/cuda/bin/nvcc
  -gencode=arch=compute_52,code=sm_52
  -gencode=arch=compute_60,code=sm_60
  -gencode=arch=compute_61,code=sm_61
  -gencode=arch=compute_70,code=sm_70
  -gencode=arch=compute_75,code=sm_75
  -gencode=arch=compute_75,code=compute_75
  -O2 -o mykernel.o -c mykernel.cu

Alternatively, the simplified  nvcc command-line option -arch=sm_XX can be used. It is a
shorthand equivalent to the following more explicit -gencode= command-line options used
above. -arch=sm_XX expands to the following:

-gencode=arch=compute_XX,code=sm_XX
-gencode=arch=compute_XX,code=compute_XX

However, while the -arch=sm_XX command-line option does result in inclusion of a PTX back-
end target binary by default, it can only specify a single target cubin architecture at a time, and
it is not possible to use multiple -arch= options on the same nvcc command line, which is
why the examples above use -gencode= explicitly.

For CUDA toolkits prior to 10.0, one or more of the -gencode options will need to be removed
according to the architectures supported by the specific toolkit version (for example, CUDA
toolkit 9.x supports architectures up to _60 and _61). The final -gencode to generate PTX
would also need to be update – for further information and examples see the documentation
for the specific CUDA toolkit version.

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch=
clause of the -gencode= command-line option to nvcc specifies the front-end compilation
target and must always be a PTX version. The code= clause specifies the back-end compilation
target and can either be cubin or PTX or both. Only the back-end target version(s) specified by
the code= clause will be retained in the resulting binary; at least one should be PTX to provide
compatibility with future architectures.

1.4.2.  Building Applications Using CUDA Toolkit
11.0

With versions 11.0 of the CUDA Toolkit, nvcc can generate cubin native to the NVIDIA Ampere
GPU architecture (compute capability 8.0). When using CUDA Toolkit 11.0, to ensure that nvcc
will generate cubin files for all recent GPU architectures as well as a PTX version for forward
compatibility with future GPU architectures, specify the appropriate  -gencode= parameters
on the nvcc command line as shown in the examples below.



NVIDIA Ampere GPU Architecture Compatibility

NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   5

Windows

nvcc.exe -ccbin "C:\vs2010\VC\bin"
  -Xcompiler "/EHsc /W3 /nologo /O2 /Zi /MT"
  -gencode=arch=compute_52,code=sm_52
  -gencode=arch=compute_60,code=sm_60
  -gencode=arch=compute_61,code=sm_61
  -gencode=arch=compute_70,code=sm_70
  -gencode=arch=compute_75,code=sm_75
  -gencode=arch=compute_80,code=sm_80
  -gencode=arch=compute_80,code=compute_80
  --compile -o "Release\mykernel.cu.obj" "mykernel.cu"

Mac/Linux

/usr/local/cuda/bin/nvcc
  -gencode=arch=compute_52,code=sm_52
  -gencode=arch=compute_60,code=sm_60
  -gencode=arch=compute_61,code=sm_61
  -gencode=arch=compute_70,code=sm_70
  -gencode=arch=compute_75,code=sm_75
  -gencode=arch=compute_80,code=sm_80
  -gencode=arch=compute_80,code=compute_80
  -O2 -o mykernel.o -c mykernel.cu

Note: compute_XX refers to a PTX version and sm_XX refers to a cubin version. The arch=
clause of the -gencode= command-line option to nvcc specifies the front-end compilation
target and must always be a PTX version. The code= clause specifies the back-end compilation
target and can either be cubin or PTX or both. Only the back-end target version(s) specified by
the code= clause will be retained in the resulting binary; at least one should be PTX to provide
compatibility with future architectures.

1.4.3.  Independent Thread Scheduling Compatibility
NVIDIA GPUs since Volta architecture have Independent Thread Scheduling among threads in a
warp. If the developer made assumptions about warp-synchronicity2, this feature can alter the
set of threads participating in the executed code compared to previous architectures. Please
see Compute Capability 7.0 in the Programming Guide for details and corrective actions. To
aid migration to the NVIDIA Ampere GPU architecture, developers can opt-in to the Pascal
scheduling model with the following combination of compiler options.

nvcc -gencode=arch=compute_60,code=sm_80 ...

2 Warp-synchronous refers to an assumption that threads in the same warp are synchronized at every instruction and can, for
example, communicate values without explicit synchronization.



NVIDIA Ampere GPU Architecture Compatibility Guide for
CUDA Applications

DA-09074-001_v11.4   |   6

Appendix A. Revision History

Version 1.0

‣ Initial public release.



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© -2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	NVIDIA Ampere GPU Architecture Compatibility
	1.1. About this Document
	1.2. Application Compatibility on the NVIDIA Ampere GPU Architecture
	1.3. Verifying Ampere Compatibility for Existing Applications
	1.3.1. Applications Built Using CUDA Toolkit 10.2 or Earlier
	1.3.2. Applications Built Using CUDA Toolkit 11.0

	1.4. Building Applications with the NVIDIA Ampere GPU Architecture Support
	1.4.1. Building Applications Using CUDA Toolkit 10.x or Earlier
	1.4.2. Building Applications Using CUDA Toolkit 11.0
	1.4.3. Independent Thread Scheduling Compatibility


	Revision History

