
DA-10158-001-01_v11.4 | November 2021

cuFile API

API Reference

cuFile API DA-10158-001-01_v11.4 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Usage.. 2
2.1. Dynamic Interactions.. 2

2.2. Driver, File, and Buffer Management.. 3

2.3. cuFile Compatibility Mode.. 4

Chapter 3. cuFile API Specification..6
3.1. Data Types... 6

3.1.1. Declarations and Definitions... 6

3.1.2. Typedefs.. 8

3.1.3. Enumerations..8

3.2. cuFile Driver APIs... 10

3.3. cuFile IO APIs..11

3.4. cuFile File Handle APIs.. 11

3.5. cuFile Buffer APIs...12

3.6. Future cuFile File Stream APIs... 12

3.7. Future cuFile Batch APIs... 12

Chapter 4. cuFile API Functional Specification... 14
4.1. cuFileDriver API Functional Specification... 14

4.1.1. cuFileDriverOpen.. 14

4.1.2. cuFileDriverClose... 15

4.1.3. cuFileDriverGetProperties..16

4.1.4. cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size).................................... 17

4.1.5. cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)... 18

4.1.6. cuFileDriverSetMaxCacheSize(size_t max_cache_size)... 19

4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size).......................20

4.1.8. JSON Configuration File.. 21

4.2. cuFile IO API Functional Specification...23

4.2.1. cuFileHandleRegister... 24

4.2.2. cuFileHandleDeregister... 25

4.2.3. cuFileRead.. 26

4.2.4. cuFileWrite.. 27

4.3. cuFile Memory Management Functional Specification...28

4.3.1. cuFileBufRegister... 28

4.3.2. cuFileBufDeregister... 29

4.4. cuFile Stream API Functional Specification.. 30

cuFile API DA-10158-001-01_v11.4 | iii

4.4.1. cuFileReadAsync...30

4.4.2. cuFileWriteAsync.. 31

4.5. cuFile Batch API Functional Specification...33

4.5.1. cuFileBatchIOSubmit..33

4.5.2. cuFileBatchIOGetStatus... 35

4.5.3. cuFileBatchIOCancel.. 36

4.5.4. cuFileBatchIODestroy...36

Chapter 5. Sample Program with cuFile APIs...38

cuFile API DA-10158-001-01_v11.4 | iv

cuFile API DA-10158-001-01_v11.4 | 1

Chapter 1. Introduction

NVIDIA® GPUDirect® Storage (GDS) is the newest addition to the GPUDirect family. GDS
enables a direct data path for direct memory access (DMA) transfers between GPU memory
and storage, which avoids a bounce buffer through the CPU. This direct path increases system
bandwidth and decreases the latency and utilization load on the CPU.

This document provides information about the cuFile APIs that are used in applications and
frameworks to leverage GDS technology and describes the intent, context, and operation of
those APIs which are part of the GDS technology.

Note: The APIs and descriptions are subject to change without notice.

cuFile API DA-10158-001-01_v11.4 | 2

Chapter 2. Usage

This section describes the operation of the cuFile APIs.

Because the functionality is part of the CUDA Driver C API, the APIs use the cuFile prefix and
camel case motif of the CUDA Driver.

All APIs are thread-safe.

All APIs are issued from the CPU, not the GPU.

2.1. Dynamic Interactions
The following describes the dynamic interactions between the cuFile APIs.

Some of the cuFile APIs are optional. If they are not called proactively, their actions will occur
reactively:

If cuFile{Open, HandleRegister, BufRegister} is called on a driver, file, or buffer,
respectively that has been opened or registered by a previous cuFile* API call, this will result
in an error. Calling cuFile{BufDeregister, HandleDeregister, DriverClose} on a
buffer, file, or driver, respectively that has never been opened or registered by a previous
cuFile* API call results in an error. For these errors, the output parameters of the APIs are
left in an undefined state, and there are no other side effects.

‣ cuFileDriverOpen explicitly causes driver initialization.

Its use is optional. If it is not used, driver initialization happens implicitly at the first use of
the cuFile{HandleRegister, Read, Write, BufRegister} APIs.

‣ (Mandatory) cuFileHandleRegister turns an OS-specific file descriptor into a
cuFileHandle and performs checking on the GDS supportability based on the mount point
and the way that the file was opened.

‣ cuFileBufRegister explicitly registers a memory buffer.

If this API is not called, a memory buffer is registered the first time the buffer is used, for
example, in cuFile{Read, Write}.

‣ cuFile{BufDeregister, HandleDeregister} explicitly frees a buffer and file
resources.

If this API is not called, the buffer and resources are implicitly freed when the driver is
closed.

Usage

cuFile API DA-10158-001-01_v11.4 | 3

‣ cuFileDriverClose explicitly frees driver resources.

If this API is not called, the driver resources are implicitly freed when the process is
terminated.

If cuFile{Open, HandleRegister, BufRegister} is called on a driver, file, or buffer,
respectively that has been opened or registered by a previous cuFile* API call, results in an
error. Calling cuFile{BufDeregister, HandleDeregister, DriverClose} on a buffer,
file, or driver, respectively that has never been opened or registered by a previous cuFile* API
call also results in an error. For these errors, the output parameters of the APIs are left in an
undefined state and there are no other side effects.

2.2. Driver, File, and Buffer Management
This section descrbes the overall workflow to manage the driver, the file, and buffer
management:

 1. Optional: Call cuFileDriverOpen() to initialize the state of the critical performance path.

 2. Required: Allocate GPU memory with cudaMalloc.

 3. Optional: To register the buffer, call cuFileBufRegister to initialize the buffer state of
the critical performance path.

 4. Complete the following IO workflow:

 a). Required: For Linux, open a file with POSIX open.

 b). Required: Call cuFileHandleRegister to wrap an existing file descriptor in an OS-
agnostic cuFileHandle. This step evaluates the suitability of the file state and the file
mount for GDS and initializes the file state of the critical performance path.

 c). Required: Call cuFileRead/cuFileWrite on an existing cuFile handle and existing
buffer.

‣ If the cuFileBufRegister has not been previously called, the first time that
cuFileRead/cuFileWrite is accessed, the GDS library performs a validation
check on the GPU buffer and an IO is issued.

‣ Not using cuFileBufRegister might not be performant for small IO sizes.

‣ Refer to the GPUDirect Best Practices Guide for more information.

 d). Unless an error condition is returned, the IO is performed successfully.

 5. Optional: Call cuFileBufDeregister to free the buffer-specific cuFile state.

 6. Optional: Call cuFileHandleDeregister to free the file-specific cuFile state.

 7. Optional: Call cuFileDriverClose to free up the cuFile state.

Note: Not using the Deregister and Close APIs (steps 5, 6, and 7) might unnecessarily consume
resources, as shown by tools such as valgrind. The best practice is to always use these APIs.

https://docs.nvidia.com/gpudirect-storage/best-practices-guide/index.html

Usage

cuFile API DA-10158-001-01_v11.4 | 4

2.3. cuFile Compatibility Mode
Use Cases

cuFile APIs can be used in different scenarios:

‣ Developers building GPUDirect Storage applications with cuFile APIs, but don’t have the
supported hardware configurations.

‣ Developers building applications running on GPU cards that have CUDA compute capability
> 6, but don’t have BAR space exposed.

‣ Deployments where nvidia-fs.ko is not loaded or cannot be loaded.

‣ Deployments where the Linux distribution does not support GPUDirect Storage.

‣ Deployments where the filesystem may be not supported with GPUDirect Storage.

‣ Deployments where the network links are not enabled with RDMA support.

‣ Deployment where the configuration is not optimal for GPUDirect Storage.

Behavior

The cuFile library provides a mechanism for cuFile reads and writes to use compatibility
mode using POSIX pread and pwrite APIS respectively to system memory and copying to GPU
memory. The behavior of compatibility mode with cuFile APIs is determined by the following
configuration parameters.

Configuration Option (default) cuFile IO Behavior
"allow_compat_mode": true If true, falls back to using compatibility mode

when the library detects that the buffer file
descriptor opened cannot use GPUDirect Storage.

"GPUDirect Storage_rdma_write_support":
true

If false, forces compatibility mode to be used
for writes even when the underlying file system is
capable of performing GPUDirect Storage writes.

"posix_unaligned_writes" : false If true, forces compatibility mode to be used for
writes where the file offset and/or IO size is not
aligned to Page Boundary (4KB).

“lustre:posix_GPUDirect
Storage_min_kb" : 0

If greater than 0, compatibility mode is used
for IO sizes between [1 - posix_GPUDirect
Storage_min_kb] specified in kB.
Note: This option will force posix mode even if
“allow_compat_mode” is set to “false”.

"weka:rdma_write_support" : false If this option is false, WekaFs will use
compatibility mode for all writes to the filesystem.
Note: if the option is set to “false”, cuFile
library will use the posix path even if the
allow_compat_mode option is true or false.

Usage

cuFile API DA-10158-001-01_v11.4 | 5

Configuration Option (default) cuFile IO Behavior

"rdma_dynamic_routing": false,

"rdma_dynamic_routing_order": ["
"SYS_MEM"]

If rdma_dynamic_routing is set to true and
rdma_dynamic_routing_order is set to
[“SYS_MEM”] , then all IO for DFS will use
compatibility mode.

In addition to the above configuration options, compatibility mode will be used as a fallback
option for following use cases.

Use Case cuFile IO Behavior
IBM Spectrum Scale File System writes. Note: All IBM Spectrum Scale in GPUDirect

Storage 1.0.0.x release use posix path for writes
even if the allow_compat_mode option is set to
false.

No BAR1 memory in GPU. Use compatibility mode.

For wekaFS or IBM Spectrum Scale mounts: If
there are no rdma_dev_addr_list specified, or
failure to register MR with ib device.

Use compatibility mode.

Bounce buffers cannot be allocated in GPU
memory.

Use compatibility mode.

For WekaFS and IBM Spectrum Scale: If the
kernel returns -ENOTSUP for GPUDirect Storage
read/write.

Retry the IO operation internally using
compatibility mode.

The nvidia_fs.ko driver is not loaded. All IO operations will use compatibility mode.

Limitations

‣ Compatible mode does not work in cases where the GPUs have CUDA compute capability
less than 6.

‣ Compatible mode is supported only on GPUDirect Storage enabled filesystems.

‣ There is no option to force all IO to use compatibility mode. The user can unload the
nvidia_fs.ko or not expose the character devices in the docker container environment.

cuFile API DA-10158-001-01_v11.4 | 6

Chapter 3. cuFile API Specification

This section provides information about the cuFile APIs that are used from the CPU to enable
applications and frameworks.

3.1. Data Types
Data types are used by the cuFile APIs first, the typedefs second, and finally, the
enumerations.

3.1.1. Declarations and Definitions
Here are the relevant enums and their descriptions.

typedef struct CUfileError {
 CUfileOpError err; // cufile error
 enum CUresult cu_err; // for CUDA-specific errors
} CUfileError_t;

/**
 * error macros to inspect error status of type CUfileOpError
 */

#define IS_CUFILE_ERR(err) \
 (abs((err)) > CUFILEOP_BASE_ERR)

#define CUFILE_ERRSTR(err) \
 cufileop_status_error(static_cast<CUfileOpError>(abs((err))))

#define IS_CUDA_ERR(status) \
 ((status).err == CU_FILE_CUDA_DRIVER_ERROR)

#define CU_FILE_CUDA_ERR(status) ((status).cu_

The following enum and two structures enable broader cross-OS support:

enum CUfileFileHandleType {
 CU_FILE_HANDLE_TYPE_OPAQUE_FD = 1, /* linux based fd */
 CU_FILE_HANDLE_TYPE_OPAQUE_WIN32 = 2, /* windows based handle */
CU_FILE_HANDLE_TYPE_USERSPACE_FS = 3, /* userspace based FS */
};

typedef struct CUfileDescr_t {
CUfileFileHandleType type; /* type of file being registered */
union {
int fd; /* Linux */
void *handle; /* Windows */
} handle;
const CUfileFSOps_t *fs_ops; /* file system operation table */

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 7

}CUfileDescr_t;

/* cuFile handle type */
typedef void* CUfileHandle_t;

typedef struct cufileRDMAInfo
{
 int version;
 int desc_len;
 const char *desc_str;
}cufileRDMAInfo_t;

typedef struct CUfileFSOps {
 /* NULL means discover using fstat */
 const char* (*fs_type) (void *handle);

 /* list of host addresses to use, NULL means no restriction */
 int (*getRDMADeviceList)(void *handle, sockaddr_t **hostaddrs);

 /* -1 no pref */
 int (*getRDMADevicePriority)(void *handle, char*, size_t,
 loff_t, sockaddr_t* hostaddr);

 /* NULL means try VFS */
 ssize_t (*read) (void *handle, char*, size_t, loff_t, cufileRDMAInfo_t*);
 ssize_t (*write) (void *handle, const char *, size_t, loff_t ,
 cufileRDMAInfo_t*);
}CUfileFSOps_t;

enum CUfileDriverStatusFlags {
 CU_FILE_LUSTRE_SUPPORTED = 0,
 CU_FILE_WEKAFS_SUPPORTED = 1
};

enum CUfileDriverControlFlags {
 CU_FILE_USE_POLL_MODE = 0, /*!< use POLL mode. properties.use_poll_mode*/
 CU_FILE_ALLOW_COMPAT_MODE = 1 /*!< allow COMPATIBILITY mode.
 properties.allow_compat_mode*/
};

typedef enum CUfileFeatureFlags {
 CU_FILE_DYN_ROUTING_SUPPORTED =0,
 CU_FILE_BATCH_IO_SUPPORTED = 1,
 CU_FILE_STREAMS_SUPPORTED = 2
} CUfileFeatureFlags_t;;

/* cuFileDriverGetProperties describes this structure’s members */
typedef struct CUfileDrvProps {
 struct {
 unsigned int major_version;
 unsigned int minor_version;
 size_t poll_thresh_size;
 size_t max_direct_io_size;
 unsigned int dstatusflags;
 unsigned int dcontrolflags;
 } nvfs;
 CUfileFeatureFlags_t fflags;
 unsigned int max_device_cache_size;
 unsigned int per_buffer_cache_size;
 unsigned int max_pinned_memory_size;
 unsigned int max_batch_io_timeout_msecs;
}CUfileDrvProps_t;

/* Parameter block for async cuFile IO */
/* Batch APIs use an array of these */
/* Status must be CU_FILE_WAITING when submitted, and is
 updated when enqueued and when complete, so this user-allocated

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 8

 structure is live until the operation completes. */

/* Status of Batch IO operation */
enum CUfileBatchIOStatus {
 CU_FILE_WAITING, /* required value prior to submission */
 CU_FILE_PENDING, /* once enqueued */
 CU_FILE_INVALID, /* request was ill-formed or could not be enqueued */
 CU_FILE_CANCELED, /* request successfully canceled */
 CU_FILE_COMPLETE, /* request successfully completed */
 CU_FILE_TIMEOUT, /* request timed out */
 CU_FILE_FAILED /* unable to complete */
};

struct CUfileBatchIOParams {
 CUFileHandle_t cfh; /* File descriptor */
 off_t file_offset; /* File offset in bytes */
 volatile void* target_buf; /* Location of buffer in memory */
 size_t nbytes; /* length of the buffer */
 size_t nbytes_transacted; /* what was actually moved */
 CufileBatchOpcode_t opcode; /* op code to perform */
 CUfileStatus_t status; /* status of the operation */
 CUfileError_t error; /* operation level error */
};

3.1.2. Typedefs
cuFile typedefs:

typedef struct CUfileDescr CUfileDesr_t
typedef struct CUfileError CUfileError_t
typedef struct CUfileDrvProps CUfileDrvProps_t
typedef enum CUfileFeatureFlags CUfileFeatureFlags_t
typedef enum CUfileDriverStatusFlags_enum CUfileDriverStatusFlags_t
typedef enum CUfileDriverControlFlags_enum CUfileDriverControlFlags_t
typedef struct CUfileIOParams CUfileIOParams_t
typedef enum CUfileBatchOpcode CUfileBatchOpcode_t

3.1.3. Enumerations
cuFile enums:

‣ enum CUfileBatchOpcode_enum

This is the cuFile operation code for batch mode.

OpCode Value Description
CU_FILE_READ 0 Batch Read

CU_FILE_WRITE 1 Batch Write

/* cuFile Batch IO operation kind */
enum CUfileOBatchpcode {
 CU_FILE_READ,
 CU_FILE_WRITE,
};

‣ enum CUfileStatus

The cuFile Status codes for batch mode.

Status Value Description
CU_FILE_WAITING 0 The initial value.

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 9

Status Value Description
CU_FILE_PENDING 1 Set once enqueued into the

driver.

CU_FILE_INVALID 2 Invalid parameters.

CU_FILE_COMPLETE 3 Successfully completed.

CU_FILE_TIMEOUT 4 The operation has timed out.

CU_FILE_FAILED 5 IO has failed.

‣ enum CUfileOpError

‣ The cuFile Operation error types.

‣ All error code values, other than CU_FILE_SUCCESS, are considered failures that might
leave the output and input parameter values of APIs in an undefined state.

These values cannot have any side effects on the file system, the application process,
and the larger system.

We selected a base number for error codes that enables users to distinguish between
POSIX errors and cuFile errors.

#define CUFILEOP_BASE_ERR 5000

Error Code Value Description
CU_FILE_SUCCESS 0 The cufile is successful.

CU_FILE_DRIVER_NOT_INITIALIZED 5001 The nvidia-fs driver is not loaded.

CU_FILE_DRIVER_INVALID_PROPS 5002 An invalid property.

CU_FILE_DRIVER_UNSUPPORTED_LIMIT 5003 A property range error.

CU_FILE_DRIVER_VERSION_MISMATCH 5004 An nvidia-fs driver version
mismatch.

CU_FILE_DRIVER_VERSION_READ_ERROR 5005 An nvidia-fs driver version read
error.

CU_FILE_DRIVER_CLOSING 5006 Driver shutdown in progress.

CU_FILE_PLATFORM_NOT_SUPPORTED 5007 GDS is not supported on the
current platform.

CU_FILE_IO_NOT_SUPPORTED 5008 GDS is not supported on the
current file.

CU_FILE_DEVICE_NOT_SUPPORTED 5009 GDS is not supported on the
current GPU.

CU_FILE_NVFS_DRIVER_ERROR 5010 An nvidia-fs driver ioctl error.

CU_FILE_CUDA_DRIVER_ERROR 5011 A CUDA Driver API error.

This error indicates a CUDA
driver-api error. If this is set,
a CUDA-specific error code
is set in the cu_err field for
cuFileError.

CU_FILE_CUDA_POINTER_INVALID 5012 An invalid device pointer.

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 10

Error Code Value Description
CU_FILE_CUDA_MEMORY_TYPE_INVALID 5013 An invalid pointer memory type.

CU_FILE_CUDA_POINTER_RANGE_ERROR 5014 The pointer range exceeds the
allocated address range.

CU_FILE_CUDA_CONTEXT_MISMATCH 5015 A CUDA context mismatch.

CU_FILE_INVALID_MAPPING_SIZE 5016 Access beyond the maximum
pinned memory size.

CU_FILE_INVALID_MAPPING_RANGE 5017 Access beyond the mapped size.

CU_FILE_INVALID_FILE_TYPE 5018 An unsupported file type.

CU_FILE_INVALID_FILE_OPEN_FLAG 5019 Unsupported file open flags.

CU_FILE_DIO_NOT_SET 5020 The fd direct IO is not set.

CU_FILE_INVALID_VALUE 5022 Invalid API arguments.

CU_FILE_MEMORY_ALREADY_REGISTERED 5023 Device pointer is already
registered.

CU_FILE_MEMORY_NOT_REGISTERED 5024 A device pointer lookup failure
has occurred.

CU_FILE_PERMISSION_DENIED 5025 A driver or file access error.

CU_FILE_DRIVER_ALREADY_OPEN 5026 The driver is already open.

CU_FILE_HANDLE_NOT_REGISTERED 5027 The file descriptor is not
registered.

CU_FILE_HANDLE_ALREADY_REGISTERED 5028 The file descriptor is already
registered.

CU_FILE_DEVICE_NOT_FOUND 5029 The GPU device cannot be not
found.

CU_FILE_INTERNAL_ERROR 5030 An internal error has occurred.

CU_FILE_NEWFD_FAILED 5031 Failed to obtain new file
descriptor.

CU_FILE_NVFS_SETUP_ERROR 5033 An NVFS driver initialization error
has occurred.

CU_FILE_IO_DISABLED 5034 GDS is disabled by config on the
current file.

Note: Data path errors are captured via standard error codes by using errno. The long-
term expectation is that these error codes will be folded into CUresult, and CUfileOpError
will go away.

3.2. cuFile Driver APIs
The following cuFile APIs that are used to initialize, finalize, query, and tune settings for the
cuFile system.

/* Initialize the cuFile infrastructure */
CUfileError_t cuFileDriverOpen();

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 11

/* Finalize the cuFile system */
CUfileError_t cuFileDriverClose();

/* Query capabilities based on current versions, installed functionality */
CUfileError_t cuFileGetDriverProperties(CUfileDrvProps_t *props);

/*API to set whether the Read/Write APIs use polling to do IO operations */
CUfileError_t cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size);

/*API to set max IO size(KB) used by the library to talk to nvidia-fs driver */
CUfileError_t cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size);

/* API to set maximum GPU memory reserved per device by the library for internal
 buffering */
CUfileError_t cuFileDriverSetMaxCacheSize(size_t max_cache_size);

/* Sets maximum buffer space that is pinned in KB for use by cuFileBufRegister
CUfileError_t cuFileDriverSetMaxPinnedMemSize(size_t
 max_pinned_memory_size);

3.3. cuFile IO APIs
The core of the cuFile IO APIs are the read and write functions.

ssize_t cuFileRead(CUFileHandle_t fh, void *devPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);
ssize_t cuFileWrite(CUFileHandle_t fh, const void *devPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);

The buffer on the device has both a base (devPtr_base) and offset (devPtr_offset). This
offset is distinct from the offset in the file.

Note that by default for all paths where GDS is not supported, the cuFile IO
API will be attempting IO using file system supported posix mode APIs when
properties.allow_compat_mode is set to true. In order to disable cuFile APIs falling back
to posix APIs for unsupported GDS paths, properties.allow_compat_mode in the /etc/
cufile.json file should be set to false.

3.4. cuFile File Handle APIs
Here is some information about the cuFile Handle APIs.

The cuFileHandleRegister API makes a file descriptor or handle that is known to the cuFile
subsystem by using an OS-agnostic interface. The API returns an opaque handle that is owned
by the cuFile subsystem.

To conserve memory, the cuFileHandleDeregister API is used to release cuFile-related
memory objects. Using only the POSIX close will not clean up resources that were used by
cuFile. Additionally, the clean up of cuFile objects associated with the files that were operated
on in the cuFile context will occur at cuFileDriverClose.

CUfileError_t cuFileHandleRegister(CUFileHandle_t *fh, CUFileDescr_t *descr);
void cuFileHandleDeregister(CUFileHandle_t fh);

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 12

3.5. cuFile Buffer APIs
The cuFileBufRegister API incurs a significant performance cost, so registration costs
should be amortized where possible. Developers must ensure that buffers are registered up
front and off the critical path.

The cuFileBufRegister API is optional. If this is not used, instead of pinning the user’s
memory, cuFile-managed and internally pinned buffers are used.

The cuFileBufDeregister API is used to optimally clean up cuFile-related memory objects,
but CUDA currently has no analog to cuFileBufDeregister. The cleaning up of objects
associated with the buffers operated on in the cuFile context occurs at cuFileDriverClose.
If explicit APIs are used, the incurred errors are reported immediately, but if the operations of
these explicit APIs are performed implicitly, error reporting and handling are less clear.

CUfileError_t cuFileBufRegister(const void *devPtr_base, size_t size, int flags);
CUfileError_t cuFileBufDeregister(const void *devPtr_base);

3.6. Future cuFile File Stream APIs
Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect to other
work on the stream and must be completed before continuing with the next action in the
stream. cuFile Stream APIs require special enabling with the NVreg_EnableStreamMemOPs=1
modprobe.

Note: Support for these APIs might be staged over time.

There are two flavors of these two APIs, for runtime APIs and types (cudaStream_t) and those
for the driver (CUstream). We anticipate that the runtime APIs will be integrated into cuda.h,
and the driver APIs will be integrated into cuda_runtime.h.

CUfileError_t cuFileReadAsync(CUFileHandle_t fh, void *devPtr_base,
 size_t *size, off_t *file_offset, off_t *devPtr_offset,
 ssize_t *bytes_read, CUStream stream);
CUfileError_t cuFileWriteAsync(CUFileHandle_t fh, void *devPtr_base,
 size_t *size, off_t *file_offset, off_t *devPtr_offset,
 ssize_t *bytes_written, CUstream stream);

3.7. Future cuFile Batch APIs
cuFile Batch APIs enable an arbitrary mix of read and write transactions, multiple files, and
multiple locations in a file in one dispatch. Operations enqueued with cuFile Batch APIs

cuFile API Specification

cuFile API DA-10158-001-01_v11.4 | 13

are FIFO ordered with respect to other work on the stream, and must be completed before
continuing to the next action in the stream.

Individual operations in each batch might be reordered with respect to each other.

Note: The batch APIs are considered experimental and might take a different form later or be
absorbed into other approaches such as CUDA Graphs.

Support for these APIs might be staged over time. There are two flavors of these two APIs:
runtime APIs and types (cudaStream_t) and APIs for the driver (CUstream). We anticipate that
the runtime APIs will be integrated into cuda.h, while the driver APIs will be integrated into
cuda_runtime.h.

CUfileError_t
 cudaFileBatchIOSubmit(int *batch_idp, int nr, CUfileIOParams_t *iocbp,
 unsigned int flags, cudaStream_t stream);
CUfileError_t
 cuFileBatchIOSubmit(int *batch_idp, int nr, CUfileIOParams_t *iocbp,
 unsigned int flags, CUstream stream);
CUfileError_t
 cuFileBatchIOGetStatus(int batch_idp, int *nr, CUfileIOParams_t *iocbp);
CUfileError_t cuFileBatchIOCancel(int batch_idp);
void cuFileBatchIODestroy(int batch_idp);

cuFile API DA-10158-001-01_v11.4 | 14

Chapter 4. cuFile API Functional
Specification

This section provides information about the cuFile API functional specification.

See the GPUDirect Storage Overview Guide for a high-level analysis of the set of functions and
their relation to each other. We anticipate adding additional return codes for some of these
functions.

All cuFile APIs are called from the CPU.

4.1. cuFileDriver API Functional
Specification

This section provides information about the cuFileDriver API functional specification.

4.1.1. cuFileDriverOpen
CUfileError_t cuFileDriverOpen();

Opens the Driver session to support GDS IO operations.

Parameters

‣ None

Returns

‣ CU_FILE_SUCCESS on a successful open, or if the driver is already open.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on a failure to open the driver.

‣ CU_FILE_PERMISSION_DENIED on a failure to open.

This can happen when the character device (/dev/nvidia_fs[0-15]) is restricted to
certain users by an administrator, for example, admin, where /dev is not exposed with
read permissions in the container.

‣ CU_FILE_DRIVER_VERSION_MISMATCH, when there is a mismatch between the cuFile
library and its kernel driver.

https://docs.nvidia.com/gpudirect-storage/overview-guide/index.html

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 15

‣ CU_FILE_CUDA_DRIVER_ERROR if the CUDA driver failed to initialize.
CU_FILE_PLATFORM_NOT_SUPPORTED if the current platform is not supported by GDS.

‣ CU_FILE_NVFS_SETUP_ERROR for a cuFile-specific internal error.

Refer to the cufile.log file for more information.

Description

‣ This API opens the session with the NVFS kernel driver to communicate from userspace to
kernel space and calls the GDS driver to set up the resources required to support GDS IO
operations.

‣ The API checks whether the current platform supports GDS and initializes the cuFile
library.

‣ This API loads the cuFile settings from a JSON configuration file in /etc/cufile.JSON.

If the JSON configuration file does not exist, the API loads the default library settings. To
modify this default config file, administrative privileges are needed. The administrator can
modify it to grant cuFile access to the specified devices and mount paths and also tune IO
parameters (in KB, 4K aligned) that are based on the type of workload. Refer to the default
config file (/etc/cufile.json) for more information.

4.1.2. cuFileDriverClose
cuFileDriverClose API

CUfileError_t cuFileDriverClose();

‣ Closes the driver session and frees any associated resources for GDS.

‣ This happens implicitly upon process exit.

‣ The driver can be reopened once it is closed.

Parameters

‣ None

Returns

‣ CU_FILE_SUCCESS on a successful close.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure.

Description

‣ Close the GDS session and any associated memory resources. If there are buffers
registered by using cuFileBufRegister, which are not unregistered, a driver close
implicitly unregisters those buffers. Any in-flight IO when cuFileDriverClose is in-
progress will receive an error.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 16

4.1.3. cuFileDriverGetProperties
cuFileDriverGetProperties API.

The cuFileDrvProps_t structure can be queried with cuFileDriverGetProperties and
selectively modified with cuFileDriverSetProperties. The structure is self-describing, and
its fields are consistent with the major and minor API version parameters.

CUfileError_t cuFileDriverGetProperties(cuFileDrvProps_t *props);

‣ Gets the Driver session properties for GDS functionality.

Parameters

props

‣ Pointer to the cuFile Driver properties.

Returns

‣ CU_FILE_SUCCESS on a successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure.

‣ CU_FILE_DRIVER_VERSION_MISMATCH on a driver version mismatch.

‣ CU_FILE_INVALID_VALUE if input is invalid.

Description

This API is used to get current GDS properties and nvidia-fs driver properties and functionality,
such as support for SCSI, NVMe, and NVMe-OF.

This API is used to get the current nvidia-fs drivers-specific properties such as the
following:

‣ major_version: the cuFile major version

‣ minor_version: the cuFile minor version

‣ props.nvfs.dstatusflags, which are bit flags that indicate support for the following
driver features:

‣ CU_FILE_EXASCALER_SUPPORTED, a bit to check whether the DDN EXAScaler parallel
filesystem solutions (based on the Lustre filesystem) client supports GDS.

‣ CU_FILE_WEKAFS_SUPPORTED, a bit to check whether WekaFS supports GDS.

‣ Props.nvfs.dcontrolflags, which are bit flags that indicate the current activation for
driver features:

‣ CU_FILE_USE_POLL_MODE, when bit is set, IO uses polling mode.

‣ CU_FILE_ALLOW_COMPAT_MODE, if the value is 1 compatible mode is set.

Otherwise, the compatible mode is disabled.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 17

‣ Props.fflags, which are bit flags that indicate whether the following library features are
supported:

‣ CU_FILE_STREAMS_SUPPORTED, an attribute that checks whether CUDA-streams are
supported.

‣ CU_FILE_DYN_ROUTING_SUPPORTED, an attribute that checks whether dynamic routing
feature is supported.

‣ Props.nvfs.poll_thresh_size, a maximum IO size, in KB and must be 4K-aligned, that
is used for the POLLING mode.

‣ Props.nvfs.max_direct_io_size, a maximum GDS IO size, in KB and must be 4K-
aligned, that is requested by the nvidia-fs driver to the underlying filesystem.

‣ Props.max_device_cache_size, a maximum GPU buffer space per device, in KB and
must be 4K-aligned. Used internally, for example, to handle unaligned IO and optimal IO
path routing. This value might be rounded down to the nearest GPU page size.

‣ Props.max_device_pinned_mem_size, a maximum buffer space, in KB and must be 4K-
aligned, that is pinned and mapped to the GPU BAR space. This might be rounded down to
the nearest GPU page size.

‣ Props.per_buffer_cache_size, a GPU bounce buffer size, in KB, used for internal pools.

Additional Information

Support for NVMe, NVMe-OF, and SCSI are experimental.

See the following for more information:

‣ cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size)

‣ cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)

‣ cuFileDriverSetMaxCacheSize(size_t max_cache_size)

‣ cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size)

4.1.4. cuFileDriverSetPollMode(bool poll, size_t
poll_threshold_size)

cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size) API

CUfileError_t cuFileDriverSetPollMode(bool poll,
 size_t poll_threshold_size);

‣ Sets whether the Read/Write APIs use polling to complete IO operations. If poll mode is
enabled, an IO size less than or equal to the threshold value is used for polling.

‣ The poll_threshold_size must be 4K aligned.

Parameters

poll

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 18

‣ Boolean to indicate whether to use the poll mode.

poll_threshold_size

‣ IO size to use for POLLING mode in KB.

‣ The default value is 4KB.

Returns

‣ CU_FILE_SUCCESS on a successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid threshold size

Description

This API is used in conjunction with cuFileGetDriverProperties. This API is used to set
whether the library should use polling and the maximum IO threshold size less than or equal
to which it will poll.

This API overrides the default value that may be set through the JSON configuration file
using the config keys properties.poll_mode and properties.poll_max_size_kb for the
current process.

See the following for more information:

‣ cuFileDriverGetProperties

4.1.5. cuFileDriverSetMaxDirectIOSize(size_t
max_direct_io_size)

The following is information about the cuFileDriverSetMaxDirectIOSize(size_t
max_direct_io_size) API.

CUfileError_t cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size);

‣ Sets the max IO size, in KB.

This parameter is used by the nvidia-fs driver as the maximum IO chunk size in which IO
is issued to the underlying filesystem. In compatible mode, this is the maximum IO chunk
size that the library uses to issue POSIX read/writes.

‣ The max direct IO size must be 4K aligned.

Parameters

max_direct_io_size

‣ The maximum allowed direct IO size in KB.

‣ The default value is 16384KB. This is because typically parallel-file systems perform better
with bulk read/writes.

Returns

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 19

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid size.

Description

This API is used with cuFileGetDriverProperties and is used to set the maximum direct
IO size used by the library to specify the nvidia-fs kernel driver the maximum chunk size in
which the latter can issue IO to the underlying filesystem. In compatible mode, this is the
maximum IO chunk size which the library uses for issuing POSIX read/writes. This parameter
is dependent on the underlying GPU hardware and system memory.

This API overrides the default value that might be set through the JSON configuration file by
using the properties.max_direct_io_size_kb config key for the current process.

Refer to the following for more information:

‣ cuFileDriverGetProperties

4.1.6. cuFileDriverSetMaxCacheSize(size_t
max_cache_size)

The following is information about the cuFileDriverSetMaxCacheSize(size_t
max_cache_size) API.

CUfileError_t cuFileDriverSetMaxCacheSize(size_t max_cache_size);

‣ Sets the maximum GPU buffer space, in KB, per device and is used for internal use, for
example, to handle unaligned IO and optimal IO path routing. This value might be rounded
down to the nearest GPU page size.

‣ The max cache size must be 4K aligned.

‣ This API overrides the default value that might be set through the JSON configuration file
using the properties.max_device_cache_size_kb config key for the current process.

Parameters

max_cache_size

‣ The maximum GPU buffer space, in KB, per device used for internal use, for example, to
handle unaligned IO and optimal IO path routing. This value might be rounded down to the
nearest GPU page size.

‣ The default value is 131072KB.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid IO size

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 20

Description

This API is used with cuFileGetDriverProperties and is used to set the upper limit on the
cache size per device for internal use by the library.

See cuFileDriverGetProperties for more information.

4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t
max_pinned_memory_size)

Here is some information about the cuFileDriverSetMaxPinnedMemSize(size_t
max_pinned_memory_size) API.

CUfileError_t cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_mem_size);

‣ Sets the maximum GPU buffer space, in KB, that is pinned and mapped. This value might
be rounded down to the nearest GPU page size.

‣ The max pinned size must be 4K aligned.

‣ The default value corresponds to the maximum PinnedMemory or the physical memory
size of the device.

‣ This API overrides the default value that may be set by the
properties.max_device_pinned_mem_size_kb JSON config key for the current process.

Parameters

max_pinned_memory_size

‣ The maximum buffer space, in KB, that is pinned and mapped to the GPU BAR space.

‣ This value might be rounded down to the nearest GPU page size.

‣ The maximum limit may be set to UINT64_MAX, which is equivalent to no enforced limit. It
may be set to something smaller than the size of the GPU’s physical memory.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load driver.

‣ CU_FILE_DRIVER_UNSUPPORTED_LIMIT on failure to set with valid size.

Description

This API is used with cuFileGetDriverProperties and is used to set an upper limit on
the maximum size of GPU memory that can be pinned and mapped and is dependent on the
underlying GPU hardware and system memory. This API is related to cuFileBufRegister,
which is used to register GPU device memory. SeecuFileDriverGetProperties for more
information.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 21

4.1.8. JSON Configuration File
This section provides the schema for the cufile.json configuration file. The values for each
parameter are default values, if the parameters are not listed in the file. APIs are available
that correspond to a subset of these parameters. When they are invoked, they override the
cufile.json parameter values for the process from which they are called.

The following table lists the usage of different configuration parameters:

Configuration Parameter Description
logging:dir The log directory for the cufile.log file. If the log

directory has not been enabled, the log file is
created under the current working directory.

The default value is currently the working
directory.

logging:level The level indicates the type of messages that will
be logged.

‣ ERROR indicates log critical errors only.

‣ DEBUG indicates the log information that
includes error, informational, and debugging
the library.

The default value is set to ERROR.

properties:max_direct_io_size_kb This parameter indicates the maximum unit of IO
size that is exchanged between the cufile library
and the storage system.

The default value is set to 16MB.

properties:max_device_cache_size_kb This parameter indicates the maximum per GPU
memory-size in KB that can be reserved for
internal bounce buffers.

The default value is set to 128MB.

properties:max_device_pinned_mem_size_kb This parameter indicates the maximum per GPU
memory-size in KB that can be pinned including
the memory for internal bounce buffers.

The default value is set to 32GB

properties:use_poll_mode Boolean that indicates whether the cufile library
uses polling or synchronous wait for the storage
to complete IO. Polling might be useful for small
IO transactions.

The default value is false.

properties:poll_mode_max_size_kb The maximum IO size in KB used as the threshold
if polling mode is set to true.

properties:allow_compat_mode If this option is set to true, cuFile APIs work
functionally with the nvidia-fs driver. The purpose
is to test newer file systems for environments

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 22

Configuration Parameter Description
where GDS applications do not have the kernel
driver installed, or for comparison tests.

properties:rdma_dev_addr_list This parameter list provides the list of IPv4
addresses for all the interfaces that can be used
for RDMA.

fs:generic:posix_unaligned_writes If this option is set to true, the GDS path is
disabled for unaligned writes and will go through
the POSIX compatibility mode.

fs:lustre:posix_gds_min_kb This option is applicable only for the EXAScaler
filesystem. It provides an option to fallback to
the POSIX compatible mode for IO sizes that are
smaller than or equal to the set value. This is
applicable for reads and writes.

denylist:drivers An administrative setting to disable specific
supported storage drivers on the node.

denylist:devices An administrative setting to disable specific
supported block devices on the node. Not
applicable for DFS.

denylist:mounts An administrative setting to disable specific
mounts in the supported GDS enabled file
systems on the node.

denylist:filesystems An administrative setting to disable specific
supported GDS-ready file systems on the node.

CUFILE_ENV_PATH_JSON An environment variable to change the default
path of /etc/cufile.json for a specific
application instance to use different settings for
the application and further restrict using the
blacklist option if the application is not ready for
that filesystem or the mount paths.

The following is the JSON schema:

/etc/cufile.json
{
 "logging": {
 // log directory, if not enabled will create log file
 // under current working directory
 //"dir": "/home/<xxxx>",
 // ERROR|WARN|INFO|DEBUG|TRACE (in decreasing order of priority)

 "level": "ERROR"
 },

 "profile": {
 // nvtx profiling on/off
 "nvtx": false,
 // cufile stats level(0-3)
 "cufile_stats": 0
 },

 "properties": {
 // max IO size (4K aligned) issued by cuFile to nvidia-fs driver(in KB)
 "max_direct_io_size_kb" : 16384,
 // device memory size (4K aligned) for reserving bounce buffers

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 23

 // for the entire GPU (in KB)
 "max_device_cache_size_kb" : 131072,
 // limit on maximum memory (4K aligned) that can be pinned
 // for a given process (in KB)
 "max_device_pinned_mem_size_kb" : 33554432,
 // true or false (true will enable asynchronous io submission to nvidia-fs
 driver)
 "use_poll_mode" : false,
 // maximum IO request size (4K aligned) within or equal
 // to which library will poll (in KB)
 "poll_mode_max_size_kb": 4,
 // allow compat mode, this will enable use of cufile posix read/writes
 "allow_compat_mode": false,
 // client-side rdma addr list for user-space file-systems

 // (e.g ["10.0.1.0", "10.0.2.0"])
 "rdma_dev_addr_list": []
 },

 "fs": {
 "generic": {
 // for unaligned writes, setting it to true
 // will use posix write instead of cuFileWrite

 "posix_unaligned_writes" : false
 },

 "lustre": {
 // IO threshold for read/write (4K aligned)) equal to or below
 // which cufile will use posix reads (KB)
 "posix_gds_min_kb" : 0
 }
 },

 "blacklist": {
 // specify list of vendor driver modules to blacklist for nvidia-fs
 "drivers": [],
 // specify list of block devices to prevent IO using libcufile
 "devices": [],
 // specify list of mount points to prevent IO using libcufile
 // (e.g. ["/mnt/test"])
 "mounts": [],
 // specify list of file-systems to prevent IO using libcufile
 // (e.g ["lustre", "wekafs", "vast"])
 "filesystems": []
 }
 // Application can override custom configuration via
 // export CUFILE_ENV_PATH_JSON=<filepath>
 // e.g : export CUFILE_ENV_PATH_JSON="/home/<xxx>/cufile.json"
 }

4.2. cuFile IO API Functional Specification
This section provides information about the cuFile IO API function specification.

The device pointer addresses referred to in these APIs pertain to the current context for the
caller.

Unlike the non-async version of cuMemcpy, the cuFileHandleRegister,
cuFileHandleDeregister, cuFileRead, and cuFileWrite APIs do not have the semantic of
being ordered with respect to other work in the null stream.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 24

4.2.1. cuFileHandleRegister
The following is information about the cuFileHandleRegister API.

CUfileError_t cuFileHandleRegister(CUFileHandle_t *fh, CUfileDescr_t *descr);

‣ Register an open file.

‣ cuFileHandleRegister is required and performs extra checking that is memoized to
provide increased performance on later cuFile operations.

‣ This API is OS agnostic.

Parameters

‣ fh

Valid pointer to the OS-neutral cuFile handle structure supplied by the user but populated
and maintained by the cuFile runtime.

‣ desc

Valid pointer to the OS-neutral file descriptor supplied by the user carrying details
regarding the file to be opened such as fd for Linux-based files.

Returns

‣ CU_FILE_SUCCESS on successful completion.

‣ CU_FILE_DRIVER_NOT_INITIALIZED on failure to load the driver.

‣ CU_FILE_IO_NOT_SUPPORTED, if the filesystem is not supported.

‣ CU_FILE_INVALID_VALUE if there are null or bad API arguments.

‣ CU_FILE_INVALID_FILE_OPEN_FLAG, if the file is opened with unsupported modes
like no O_DIRECT, without compat mode enabled, O_APPEND, O_NOCTTY, O_NONBLOCK,
O_DIRECTORY, O_NOFOLLOW, O_NOATIME, and O_TMPFILE.

‣ CU_FILE_INVALID_FILE_TYPE, if the file path is not valid, not a regular file, not a symbolic
link, or not a device file.

‣ CU_FILE_HANDLE_ALREADY_REGISTERED if the file is already registered using the same
file-descriptor.

Description

‣ Given a file-descriptor will populate and return the cuFileHandle needed for issuing IO with
cuFile APIs.

‣ A return value of anything other than CU_FILE_SUCCESS leaves fh in an undefined state
but has no other side effects.

‣ By default this API expects the file descriptor to be opened with O_DIRECT mode. But if
compatibility mode is enabled, then this requirement is relaxed.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 25

‣ It is recognized that in order to be fully compatible, cuFileHandleRegister should not
limit the set of flags that are supported, relative to a POSIX pread or pwrite. But those
conditions are not fully tested. Currently checks for O_DIRECT and GDS supported file
system-specific checks are relaxed. We anticipate additional relaxation on restrictions over
time.

Refer to the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

‣ cuFileHandleDeregister

4.2.2. cuFileHandleDeregister
Here is some information about the cuFileHandleDeregister API.

CUfileError_t cuFileHandleDeregister(CUFileHandle_t *fh);

Parameters

‣ fh

The file handle obtained from cuFileHandleRegister.

Returns

None

Note: This API only logs an ERROR level message in the cufile.log file for valid inputs.

Description

‣ The API is used to release resources that are claimed by cuFileHandleRegister.

This API should be invoked only after the application ensures there are no outstanding IO
operations with the handle. If cuFileHandleDeregister is called while IO on the file is in
progress might result in undefined behavior.

‣ The user is still expected to close the file descriptor outside the cuFile subsystem after
calling this API using close system call.

Closing a file handle without calling cuFileHandleDeregister does not release the
resources that are held in the cuFile library. If this API is not called, the cuFile subsystem
releases the resources lazily or when the application exits.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 26

‣ cuFileHandleDeregister

4.2.3. cuFileRead
The following is information about the cuFileRead API.

ssize_t cuFileRead(CUFileHandle fh, void *devPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);

‣ Reads specified bytes from the file descriptor into the device memory.

Parameters

‣ fh

File descriptor for the file.

‣ devPtr_base

Base address of buffer in device memory. For registered buffers, devPtr_base must
remain set to the base address used in the cuFileBufRegister call.

‣ size

Size in bytes to read.

‣ file_offset

Offset in the file to read from.

‣ devPtr_offset

Offset relative to the devPtr_base pointer to read into. This parameter should be used only
with registered buffers.

Returns

‣ Size of bytes that were successfully read.

‣ -1 on an error, so errno is set to indicate filesystem errors.

‣ All other errors return a negative integer value of the CUfileOpError enum value.

Description

This API reads the data from a specified file handle at a specified offset and size bytes into the
GPU memory by using GDS functionality. The API works correctly for unaligned offsets and any
data size, although the performance might not match the performance of aligned reads.This is
a synchronous call and blocks until the IO is complete.

Note: For the devPtr_offset, if data will be read starting exactly from the devPtr_base that
is registered with cuFileBufRegister, devPtr_offset should be set to 0. To read starting
from an offset in the registered buffer range, the relative offset should be specified in the
devPtr_offset, and the devPtr_base must remain set to the base address that was used in
the cuFileBufRegister call.

See the following for more information:

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 27

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

4.2.4. cuFileWrite
The following is information about the cuFileWrite API.

ssize_t cuFileWrite(CUFileHandle fh, const void *devPtr_base, size_t size, off_t
 file_offset, off_t devPtr_offset);

‣ Writes specified bytes from the device memory into the file descriptor using GDS.

Parameters

‣ fh

File descriptor for the file

‣ devPtr_base

Base address of buffer in device memory. For registered buffers, devPtr_base must
remain set to the base address used in the cuFileBufRegister call.

‣ size

Size in bytes to which to write.

‣ file_offset

Offset in the file to which to write.

‣ devPtr_offset

Offset relative to the devPtr_base pointer from which to write. This parameter should be
used only with registered buffers.

Returns

‣ Size of bytes that were successfully written.

‣ -1 on an error, so errno is set to indicate filesystem errors.

‣ All other errors return a negative integer value of the CUfileOpError enum value.

Description

This API writes the data from a specified file handle at a specified offset and size bytes into the
GPU memory by using GDS functionality. The API works correctly for unaligned offset and data
sizes, although the performance is not on-par with aligned writes.This is a synchronous call
and will block until the IO is complete.

Note: GDS functionality modified the standard file system metadata in SysMem. However,
GDS functionality does not take any special responsibility for writing that metadata back to
permanent storage. The data is not guaranteed to be present after a system crash unless the

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 28

application uses an explicit fsync(2) call. If the file is opened with an O_SYNC flag, the metadata
will be written to the disk before the call is complete.

Refer to the note in cuFileRead for more information about devPtr_offset:.

Refer to the following for more information:

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

4.3. cuFile Memory Management
Functional Specification

The device pointer addresses that are mentioned in the APIs in this section pertain to the
current context for the caller. cuFile relies on users to complete their own allocation before
using the cuFileBufRegister API and free after using the cuFileBufDeregister API.

4.3.1. cuFileBufRegister
The following is information about the cuFileBufRegister API.

CUfileError_t cuFileBufRegister(const void *devPtr_base,
 size_t size, int flags);

‣ Registers existing cuMemAlloc’d (pinned) memory for GDS IO operations.

Parameters

‣ devPtr_base

Address of device pointer. cuFileRead and cuFileWrite must use this devPtr_base as
the base address.

‣ size

Size in bytes from the start of memory to map.

‣ flags

Reserved for future use, must be 0.

Returns

‣ CU_FILE_SUCCESS on a successful registration.

‣ CU_FILE_NVFS_DRIVER_ERROR if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_INVALID_VALUE on a failure.

‣ CU_FILE_CUDA_DRIVER_ERROR on CUDA-specific errors. CUresult code can be obtained
using CU_FILE_CUDA_ERR(err).

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 29

‣ CU_FILE_MEMORY_ALREADY_REGISTERED, if memory is already registered.

‣ CU_FILE_INTERNAL_ERROR, an internal library-specific error.

‣ CU_FILE_CUDA_MEMORY_TYPE_INVALID, for device memory that is not allocated via
cudaMalloc or cuMemAlloc.

‣ CU_FILE_CUDA_POINTER_RANGE_ERROR, if the size exceeds the bounds of the allocated
memory.

‣ CU_FILE_INVALID_MAPPING_SIZE, if the size exceeds the GPU resource limits.

Description

This API registers the specified GPU address and size for use with the cuFileRead and
cuFileWrite operations. The user must call cuFileBufDeregister to release the pinned
memory mappings.

See the following for more information:

‣ cuFileBufDeregister

4.3.2. cuFileBufDeregister
The following is information about the cuFileBufDeregister API.

CUfileError_t cuFileBufDeregister(const void *devPtr_base);

‣ Deregisters CUDA memory registered using the cuFileBufRegister API.

Parameters

‣ devPtr_base

Address of device pointer to release the mappings that were provided to
cuFileBufRegister

Returns

‣ CU_FILE_SUCCESS on a successful deregistration.

‣ CU_FILE_MEMORY_NOT_REGISTERED, if devPtr_base was not registered.

‣ CU_FILE_ERROR_INVALID_VALUE on failure to find the registration for the specified device
memory.

‣ CU_FILE_INTERNAL_ERROR, an internal library-specific error.

Description

This API deregisters memory mappings that were registered by cuFileBufRegister. Refer to
cuFileBufRegister for more information.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 30

4.4. cuFile Stream API Functional
Specification

This section provides information about the cuFile stream API functional specification.

The stream APIs are similar to Read and Write, but they take a stream parameter to support
asynchronous operations and execute in the CUDA stream order.

4.4.1. cuFileReadAsync
The following is information about the cuFileReadAsync API.

CUfileError_t cudaFileReadAsync(CUFileHandle_t fh, void *devPtr_base,
 size_t *size, off_t file_offset,
off_t devPtr_offset,
int *bytes_read, cudaStream_t stream);
CUfileError_t cuFileReadAsync(CUFileHandle_t fh, void *devPtr_base,
 size_t *size, off_t file_offset,
off_t devPtr_offset,
int *bytes_read, CUstream stream);

‣ Enqueues a read operation for the specified bytes from the cuFile handle into the device
memory by using GDS functionality.

‣ If non-NULL, the action is ordered in the stream.

‣ The current context of the caller is assumed.

Parameters

‣ fh

The cuFile handle for the file.

‣ devPtr_base

‣ The base address of the buffer in the device memory into which to read.

‣ For registered buffers, devPtr_base must remain set to the base address used in
cuFileBufRegister call.

‣ size

Size in bytes to read.

‣ file_offset

Offset in the file from which to read.

‣ devPtr_offset

The offset relative to the devPtr_base pointer from which to write.

‣ bytes_read

‣ The number of bytes successfully read.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 31

‣ -1 on IO errors.

‣ All other errors return a negative integer value of the CUfileOpError enum value.

‣ stream

‣ CUDA stream in which to enqueue the operation.

‣ If NULL, make this operation synchronous.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_DRIVER_ERROR, if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_ERROR_INVALID_VALUE on a failure.

‣ CU_FILE_CUDA_ERROR on CUDA-specific errors.

CUresult code can be obtained by using CU_FILE_CUDA_ERR(err).

Description

‣ This API reads the data from the specified file handle at the specified offset and size bytes
into the GPU memory using GDS functionality.

This is an asynchronous call and enqueues the operation into the specified CUDA stream
and will not block the host thread for IO completion. The operation can be waited upon
using cuStreamSynchronize(stream).

‣ The bytes_read memory should be allocated with cuMemHostAlloc or registered with
cuMemHostRegister.

The pointer to access that memory from the device can be obtained by using
cuMemHostGetDevicePointer.

‣ Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect to
other work on the stream and must be completed before continuing to the next action in
the stream.

Refer to the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileWriteAsync

4.4.2. cuFileWriteAsync
The following is information about the cuFileWriteAsync API.

CUfileError_t cudaFileWriteAsync(CUFileHandle_t fh, void *devPtr_base,
 size_t *size, off_t file_offset,
off_t devPtr_offset,
int *bytes_written, cudaStream_t stream);
CUfileError_t cuFileWriteAsync(CUFileHandle_t fh, void *devPtr_base,

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 32

 size_t *size, off_t file_offset,
off_t devPtr_offset,
int *bytes_written, CUstream_t stream);

‣ Queues Write operation for the specified bytes from the device memory into the cuFile
handle by using GDS.

Parameters

‣ fh

The cuFile handle for the file.

‣ devPtr_base

The base address of the buffer in the device memory from which to write. For registered
buffers, devPtr_basedevPtr must remain set to the base address used in the
cuFileBufRegister call.

‣ size

Size in bytes to write.

‣ file_offset

Offset in the file from which to write.

‣ devPtr_offset

Offset relative to the devPtr_base pointer from which to write.

‣ bytes_written

‣ The number of bytes successfully written.

‣ -1 on IO errors.

‣ All other errors will return a negative integer value of the CUfileOpError enum value.

‣ stream

The CUDA stream to enqueue the operation.

Returns

‣ CU_FILE_SUCCESS on a successful submission.

‣ CU_FILE_DRIVER_ERROR, if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_ERROR_INVALID_VALUE on a failure.

‣ CU_FILE_CUDA_ERROR on CUDA-specific errors.

The CUresult code can be obtained by using CU_FILE_CUDA_ERR(err).

Description

‣ This API reads the data from the specified file handle at the specified offset and
size bytes into the GPU memory by using GDS functionality. This is an asynchronous
call and enqueues the operation into the specified CUDA stream and will not block

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 33

the host thread for IO completion. The operation can be waited upon by using
cuStreamSynchronize(stream).

‣ The bytes_written pointer should be allocated with cuMemHostAlloc or registered
with cuMemHostRegister, and the pointer to access that memory from the device can be
obtained by using cuMemHostGetDevicePointer.

‣ Operations that are enqueued with cuFile Stream APIs are FIFO ordered with respect to
other work on the stream and must be completed before continuing to the next action in
the stream.

See the following for more information:

‣ cuFileRead

‣ cuFileWrite

‣ cuFileReadAsync

4.5. cuFile Batch API Functional
Specification

This section provides information about the cuFile batch API functional specification.

Batch APIs can perform a set of IO operations, and these operations can be completed on
different files, different locations in the same file, or a mix. The parameter with the array of
CUfileIOParams_t describes the IO action, status, errors, and bytes transacted for each
instance. The bytes transacted field is valid only when the status indicates a completion. The
completion description includes a stream and a NULL value that indicates that the batch
should occur without stream ordering.

4.5.1. cuFileBatchIOSubmit
Here is some information about the cuFileBatchIOSubmit API.

CUfileError_t cudaFileBatchIOSubmit(int *batch_idp, int nr,
 CUfileIOParams_t *iocbp,
 unsigned int flags,
 cudaStream_t stream)
CUfileError_t cuFileBatchIOSubmit(int *batch_idp, int nr,
 CUfileIOParams_t *iocbp,
 unsigned int flags,
 CUstream stream)

Parameters

‣ batch_idp

The address of the output parameter for the newly created batch ID, which is a -1 on an
error.

‣ nr

‣ The number of requests in the params array.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 34

‣ The value must be greater than 0.

‣ iocbp

The pointer to contain the CUfileIOParams_t array structures of the len nr array.

‣ flags

Reserved as 0.

‣ stream

‣ The CUDA stream to enqueue the operation.

‣ Both CUDA runtime and CUDA driver variations are offered.

Returns

‣ CU_FILE_SUCCESS on success.

*batch_idp will be a value greater than 0.

‣ CU_FILE_MEM_ALLOC_FAILED on memory allocation failures.

‣ CU_FILE_DRIVER_ERROR if the nvidia-fs driver cannot handle the request.

‣ CU_FILE_ERROR_INVALID_VALUE on a failure to correctly set the arguments. Individual
status can be checked to determine whether arguments are invalid for one or more IO
operation elements.

Description

‣ This is a batch API to submit a read/write operation on an array of GPU data pointers from
their respective file handle, offset, and size bytes. The data is transferred into the GPU
memory by using GDS.

‣ This is an asynchronous call and will enqueue the operation and provide a
batch_id. The operation can be monitored when using this batch_id through
cuFileBatchIOGetStatus.

‣ The operation might be canceled by calling cuFileBatchIOCancel or
cuFileBatchIODestroy.

‣ The entries in the CUfileIOParams_t array describe the IO action and report the status,
errors, and bytes that were transacted for that operation. The bytes transacted field is valid
only when the status indicates a completion.

‣ Operations that are enqueued with cuFile Batch APIs are FIFO ordered with respect to
other work on the stream and must be completed before continuing to the next action in
the stream. Operations in each batch might be reordered with respect to each another.

‣ The status field of individual IO operations via CUfileIOParams_t entries will have
undefined values before the entire batch is complete. This definition is subject to change.

See the following for more information:

‣ cuFileRead

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 35

‣ cuFileWrite

‣ cuFileReadAsync

‣ cuFileWriteAsync

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOCancel

‣ cuFileBatchIODestroy

4.5.2. cuFileBatchIOGetStatus
The following is information about the cuFileBatchIOGetStatus API.

CUfileError_t cuFileBatchIOGetStatus(int batch_idp,
 int *nrp,
 const CUfileIOParams_t *iocbp)

Parameters

‣ batch_idp

The address of the output parameter for the newly created batch ID, which is a -1 on an
error.

‣ nrp

The pointer to the number of events that were returned in the batch_id. This will match
the nr field in cuFileIOSubmit.

‣ iocbp

The const pointer that points to an array of CUfileIOParams_t with nrp-sized array of
events. This pointer should not be freed and the status field in CUfileIOParams_t will be
updated to reflect the current status of each IO in the batch operation. To get the current
status, refer to the description of the status field in cuFileStatus. The error field will
contain the errors encountered during the batch operations for that IO operation in the
batch.

Returns

‣ CU_FILE_SUCCESS on success.

The success here refers to the completion of the API. Individual IO status and error can be
obtained by examining the returned status and error in the array iocbp.

‣ CU_FILE_ERROR_INVALID_VALUE for an invalid batch ID.

Description

‣ This is a batch API to monitor the status of batch IO operations by using the batch_id that
was returned by cuFileBatchIOSubmit. The operation will be canceled automatically
if cuFileBatchIOCancel is called and the status will reflect CU_FILE_CANCELED for all
canceled IO operations.

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 36

‣ The status of each member of the batch is queried, which would not be possible with one
CUEvent. The status field of individual IO operations via CUfileIOParams_t entries will
have undefined values before the entire batch is completed. This definition is subject to
change.

See the following for more information:

‣ cuFileBatchIOSubmit

‣ cuFileBatchIODestroy

4.5.3. cuFileBatchIOCancel
The following is information about the cuFileBatchIOCancel API.

CUfileError_t cuFileBatchIOCancel(int batch_idp)

Parameters

‣ batch_idp

The batch ID to cancel.

Returns

‣ CU_FILE_SUCCESS on success.

‣ CU_FILE_ERROR_INVALID_VALUE for an invalid batch ID.

Description

‣ This is a batch API to cancel an ongoing IO batch operation by using the batch_id that was
returned by cuFileBatchIOSubmit. This API tries to cancel an individual IO operation in
the batch if possible and provides no guarantee about canceling an ongoing operation. The
operation will wait for a specific time based on the props.max_batch_io_timeout_msecs
value to cancel any ongoing operation or will set the status to CU_FILE_TIMEOUT. The
operation will be canceled automatically if cuFileBatchIODestroy is called.

Refer to the following for more information:

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOSubmit

‣ cuFileBatchIODestroy

4.5.4. cuFileBatchIODestroy
The following is information about the cuFileBatchIODestroy API.

void cuFileBatchIODestroy(int batch_idp)

Parameters

‣ batch_idp

cuFile API Functional Specification

cuFile API DA-10158-001-01_v11.4 | 37

The address of the output parameter for the newly created batch id, -1 on error.

Returns

void

Description

This is a batch API that cancels and destroys a batch context and the resources that are
allocated with cuFileBatchIOSubmit.

Refer to the following for more information:

‣ cuFileBatchIOGetStatus

‣ cuFileBatchIOSubmit

‣ cuFileBatchIOCancel

cuFile API DA-10158-001-01_v11.4 | 38

Chapter 5. Sample Program with
cuFile APIs

The following sample program uses the cuFile APIs:

#include <fcntl.h>
#include <errno.h>
#include <unistd.h>

#include <cstdlib>
#include <cstring>
#include <iostream>
#include <cuda_runtime.h>
#include "cufile.h"

#include "cufile_sample_utils.h"
using namespace std;
// file on a FS which supports GPUDirect Storage
#define TESTFILE "/mnt/gds/gds_test"

int main(void) {
 int fd;
 ssize_t ret;
 void *devPtr_base;
 off_t file_offset = 0x2000;
 off_t devPtr_offset = 0x1000;
 ssize_t IO_size = 1UL << 24;
 size_t buff_size = IO_size + 0x1000;
 CUfileError_t status;
 // CUResult cuda_result;
 int cuda_result;
 CUfileDescr_t cf_descr;
 CUfileHandle_t cf_handle;

 fd = open(TESTFILE, O_CREAT|O_WRONLY|O_DIRECT, 0644);
 if(fd < 0) {
 std::cerr << "file open " << TESTFILE << "errno " << errno <<
 std::endl;
 return -1;
 }

 status = cuFileDriverOpen();
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << " cuFile driver failed to open " << std::endl;
 close(fd);
 return -1;
 }

 memset((void *)&cf_descr, 0, sizeof(CUfileDescr_t));
 cf_descr.handle.fd = fd;

Sample Program with cuFile APIs

cuFile API DA-10158-001-01_v11.4 | 39

 cf_descr.type = CU_FILE_HANDLE_TYPE_OPAQUE_FD;
 status = cuFileHandleRegister(&cf_handle, &cf_descr);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "cuFileHandleRegister fd " << fd << " status " <<
 status.err << std::endl;
 close(fd);
 return -1;
 }
 cuda_result = cudaMalloc(&devPtr_base, buff_size);
 if (cuda_result != CUDA_SUCCESS) {
 std::cerr << "buffer allocation failed " << cuda_result <<
 std::endl;
 cuFileHandleDeregister(cf_handle);
 close(fd);
 return -1;
 }

 status = cuFileBufRegister(devPtr_base, buff_size, 0);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "buffer registration failed " << status.err <<
 std::endl;
 cuFileHandleDeregister(cf_handle);
 close(fd);
 cudaFree(devPtr_base);
 return -1;
 }

 // fill a pattern
 cudaMemset((void *) devPtr_base, 0xab, buff_size);

 // perform write operation directly from GPU mem to file
 ret = cuFileWrite(cf_handle, devPtr_base, IO_size, file_offset,
 devPtr_offset);

 if (ret < 0 || ret != IO_size) {
 std::cerr << "cuFileWrite failed " << ret << std::endl;
 }

 // release the GPU memory pinning
 status = cuFileBufDeregister(devPtr_base);
 if (status.err != CU_FILE_SUCCESS) {
 std::cerr << "buffer deregister failed" << std::endl;
 cudaFree(devPtr_base);
 cuFileHandleDeregister(cf_handle);
 close(fd);
 return -1;
 }

 cudaFree(devPtr_base);
 // deregister the handle from cuFile
 (void) cuFileHandleDeregister(cf_handle);
 close(fd);
 // release all cuFile resources
 (void) cuFileDriverClose();
 return 0;
}

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2020-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction
	Usage
	2.1. Dynamic Interactions
	2.2. Driver, File, and Buffer Management
	2.3. cuFile Compatibility Mode

	cuFile API Specification
	3.1. Data Types
	3.1.1. Declarations and Definitions
	3.1.2. Typedefs
	3.1.3. Enumerations

	3.2. cuFile Driver APIs
	3.3. cuFile IO APIs
	3.4. cuFile File Handle APIs
	3.5. cuFile Buffer APIs
	3.6. Future cuFile File Stream APIs
	3.7. Future cuFile Batch APIs

	cuFile API Functional Specification
	4.1. cuFileDriver API Functional Specification
	4.1.1. cuFileDriverOpen
	4.1.2. cuFileDriverClose
	4.1.3. cuFileDriverGetProperties
	4.1.4. cuFileDriverSetPollMode(bool poll, size_t poll_threshold_size)
	4.1.5. cuFileDriverSetMaxDirectIOSize(size_t max_direct_io_size)
	4.1.6. cuFileDriverSetMaxCacheSize(size_t max_cache_size)
	4.1.7. cuFileDriverSetMaxPinnedMemSize(size_t max_pinned_memory_size)
	4.1.8. JSON Configuration File

	4.2. cuFile IO API Functional Specification
	4.2.1. cuFileHandleRegister
	4.2.2. cuFileHandleDeregister
	4.2.3. cuFileRead
	4.2.4. cuFileWrite

	4.3. cuFile Memory Management Functional Specification
	4.3.1. cuFileBufRegister
	4.3.2. cuFileBufDeregister

	4.4. cuFile Stream API Functional Specification
	4.4.1. cuFileReadAsync
	4.4.2. cuFileWriteAsync

	4.5. cuFile Batch API Functional Specification
	4.5.1. cuFileBatchIOSubmit
	4.5.2. cuFileBatchIOGetStatus
	4.5.3. cuFileBatchIOCancel
	4.5.4. cuFileBatchIODestroy

	Sample Program with cuFile APIs

