
DA-06762-001_v11.4 | October 2024

CUDA for Tegra

Application Note

CUDA for Tegra DA-06762-001_v11.4 | ii

Table of Contents

Chapter 1. Overview.. 1

Chapter 5. cuDLA.. 24
5.1. Developer Guide.. 25

5.1.1. Device Model.. 25

5.1.2. Loading and Querying Modules... 27

5.1.3. Memory Model..28

5.1.4. Task Execution and Synchronization Model.. 29

5.1.4.1. Task Execution... 29

5.1.4.2. Synchronization.. 31

5.1.4.3. Fault Diagnostics.. 36

5.1.4.4. NOOP Submission..36

5.1.5. Error Reporting Model..36

5.2. Migrating from NvMediaDla to cuDLA..37

5.3. Profiling a cuDLA App... 39

5.4. cuDLA Release Notes..39

CUDA for Tegra DA-06762-001_v11.4 | 1

Chapter 1. Overview

This document provides an overview of NVIDIA® Tegra® memory architecture and considerations
for porting code from a discrete GPU (dGPU) attached to an x86 system to the Tegra® integrated GPU
(iGPU). It also discusses EGL interoperability.

This guide is for developers who are already familiar with programming in CUDA®, and C/C++, and
who want to develop applications for the Tegra® SoC.

Performance guidelines, best practices, terminology, and general information provided in the CUDA
C++ Programming Guide and the CUDA C++ Best Practices Guide are applicable to all CUDA-
capable GPU architectures, including Tegra® devices.

The CUDA C++ Programming Guide and the CUDA C Best Practices Guide are available at the
following web sites:

CUDA C++ Programming Guide:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA C++ Best Practices Guide:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

CUDA for Tegra DA-06762-001_v11.4 | 2

Chapter 2. Memory Management

In Tegra® devices, both the CPU (Host) and the iGPU share SoC DRAM memory. A dGPU with
separate DRAM memory can be connected to the Tegra device over PCIe or NVLink. It is currently
supported only on the NVIDIA DRIVE platform.

An overview of a dGPU-connected Tegra® memory system is shown in Figure 1.

Figure 1. dGPU-connected Tegra Memory System

In Tegra, device memory, host memory, and unified memory are allocated on the same physical SoC
DRAM. On a dGPU, device memory is allocated on the dGPU DRAM. The caching behavior in a
Tegra system is different from that of an x86 system with a dGPU. The caching and accessing behavior
of different memory types in a Tegra system is shown in Table 1.

Table 1. Characteristics of Different Memory Types in a Tegra System

Memory Type CPU iGPU Tegra-connected dGPU

Device memory Not directly accessible Cached Cached

Pageable host
memory

Cached Not directly accessible Not directly accessible

Pinned host memory Uncached where
compute capability is less
than 7.2.

Uncached Uncached

Memory Management

CUDA for Tegra DA-06762-001_v11.4 | 3

Cached where compute
capability is greater than
or equal to 7.2.

Unified memory Cached Cached Not supported

On Tegra, because device memory, host memory, and unified memory are allocated on the same
physical SoC DRAM, duplicate memory allocations and data transfers can be avoided.

2.1. I/O Coherency
I/O coherency (also known as one-way coherency) is a feature with which an I/O device such as a GPU
can read the latest updates in CPU caches. It removes the need to perform CPU cache management
operations when the same physical memory is shared between CPU and GPU. The GPU cache
management operations still need to be performed because the coherency is one way. Please note that
the CUDA driver internally performs the GPU cache management operations when managed memory
or interop memory is used.

I/O coherency is supported on Tegra devices starting with Xavier SOC. Applications should realize
benefits from this HW feature without needing to make changes to the application’s code (see point 2
below).

The following functionalities depend on I/O coherency support:

 1. cudaHostRegister()/cuMemHostRegister() is supported only
on platforms which are I/O coherent. The host register support can be
queried using the device attribute cudaDevAttrHostRegisterSupported /
CU_DEVICE_ATTRIBUTE_HOST_REGISTER_SUPPORTED.

 2. CPU cache for pinned memory allocated using
cudaMallocHost()/cuMemHostAlloc()/cuMemAllocHost() is enabled only on platforms
which are I/O coherent.

2.2. Estimating Total Allocatable Device
Memory on an Integrated GPU Device

The cudaMemGetInfo() API returns the snapshot of free and total amount of memory available for
allocation for the GPU. The free memory could change if any other client allocate memory.

The discrete GPU has the dedicated DRAM called VIDMEM which is separate from CPU memory.
The snapshot of free memory in discrete GPU is returned by the cudaMemGetInfo API.

The integrated GPU, on Tegra SoC, shares the DRAM with CPU and other the Tegra engines. The
CPU can control the contents of DRAM and free DRAM memory by moving the contents of DMAR to
SWAP area or vice versa. The cudaMemGetInfo API currently does not account for SWAP memory
area. The cudaMemGetInfo API may return a smaller size than the actually allocatable memory since
the CPU may be able to free up some DRAM region by moving pages to the SWAP area. In order to
estimate the amount of allocatable device memory, CUDA application developers should consider
following:

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cd6ea4a004a336c3c95b6ff06ec6269e29

Memory Management

CUDA for Tegra DA-06762-001_v11.4 | 4

On Linux and Android platforms: Device allocatable memory on Linux and Android depends mainly
on the total and free sizes of swap space and main memory. The following points can help users to
estimate the total amount of device allocatable memory in various situations:

‣ Host allocated memory = Total used physical memory – Device allocated memory

‣ If (Host allocated memory < Free Swap Space) then Device allocatable memory = Total Physical
Memory – already allocated device memory

‣ If (Host allocated memory > Free Swap Space) then Device allocatable memory = Total Physical
Memory – (Host allocated memory - Free swap space)

Here,

‣ Device allocated memory is memory already allocated on the device. It can be obtained from the
NvMapMemUsed field in /proc/meminfo or from the total field of /sys/kernel/debug/
nvmap/iovmm/clients.

‣ Total used physical memory can be obtained using the free -m command. The used field in row
Mem represents this information.

‣ Total Physical memory is obtained from the MemTotal field in /proc/meminfo.

‣ Free swap space can be find by using the free -m command. The free field in the Swap row
represents this information.

‣ If the free command is not available, the same information can be obtained from /proc/
meminfo as:

‣ Total Used physical memory = MemTotal – MemFree

‣ Free swap space = SwapFree

On QNX platforms: QNX does not use swap space, hence, cudaMemGetInfo.free will be a fair
estimate of allocatable device memory as there is no swap space to move memory pages to swap area.

CUDA for Tegra DA-06762-001_v11.4 | 5

Chapter 3. Porting Considerations

CUDA applications originally developed for dGPUs attached to x86 systems may require modifications
to perform efficiently on Tegra systems. This section describes the considerations for porting such
applications to a Tegra system, such as selecting an appropriate memory buffer type (pinned memory,
unified memory, and others) and selecting between iGPU and dGPU, to achieve efficient performance
for the application.

3.1. Memory Selection
CUDA applications can use various kinds of memory buffers, such as device memory, pageable host
memory, pinned memory, and unified memory. Even though these memory buffer types are allocated
on the same physical device, each has different accessing and caching behaviors, as shown in Table 1.
It is important to select the most appropriate memory buffer type for efficient application execution.

Device Memory

Use device memory for buffers whose accessibility is limited to the iGPU. For example, in an
application with multiple kernels, there may be buffers that are used only by the intermediate kernels of
the application as input or output. These buffers are accessed only by the iGPU. Such buffers should be
allocated with device memory.

Pageable Host Memory

Use pageable host memory for buffers whose accessibility is limited to the CPU.

Pinned Memory

Tegra® systems with different compute capabilities exhibit different behavior in terms of I/O
coherency. For example, Tegra® systems with compute capability greater than or equal to 7.2 are I/O
coherent and others are not I/O coherent. On Tegra® systems with I/O coherency, the CPU access time
of pinned memory is as good as pageable host memory because it is cached on the CPU. However, on
Tegra® systems without I/O coherency, the CPU access time of pinned memory is higher, because it is
not cached on the CPU.

Pinned memory is recommended for small buffers because the caching effect is negligible for such
buffers and also because pinned memory does not involve any additional overhead, unlike Unified
Memory. With no additional overhead, pinned memory is also preferable for large buffers if the access

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 6

pattern is not cache friendly on iGPU. For large buffers, when the buffer is accessed only once on
iGPU in a coalescing manner, performance on iGPU can be as good as unified memory on iGPU.

Unified Memory

Unified memory is cached on the iGPU and the CPU. On Tegra®, using unified memory in
applications requires additional coherency and cache maintenance operations during the kernel launch,
synchronization and prefetching hint calls. This coherency maintenance overhead is slightly higher on a
Tegra® system with compute capability less than 7.2 as they lack I/O coherency.

On Tegra® devices with I/O coherency (with a compute capability of 7.2 or greater) where unified
memory is cached on both CPU and iGPU, for large buffers which are frequently accessed by the iGPU
and the CPU and the accesses on iGPU are repetitive, unified memory is preferable since repetitive
accesses can offset the cache maintenance cost. On Tegra® devices without I/O coherency (with a
compute capability of less than 7.2), for large buffers which are frequently accessed by the CPU and
the iGPU and the accesses on iGPU are not repetitive, unified memory is still preferable over pinned
memory because pinned memory is not cached on both CPU and iGPU. That way, the application can
take advantage of unified memory caching on the CPU.

Pinned memory or unified memory can be used to reduce the data transfer overhead between CPU and
iGPU as both memories are directly accessible from the CPU and the iGPU. In an application, input
and output buffers that must be accessible on both the host and the iGPU can be allocated using either
unified memory or pinned memory.

Note: The unified memory model requires the driver and system software to manage coherence on the

current Tegra SOC. Software managed coherence is by nature non-deterministic and not recommended

in a safe context. Zero-copy memory (pinned memory) is preferable in these applications.

Evaluate the impact of unified memory overheads, pinned memory cache misses, and device memory
data transfers in applications to determine the correct memory selection.

3.2. Pinned Memory
This section provides guidelines for porting applications that use pinned memory allocations in x86
systems with dGPUs to Tegra®. CUDA applications developed for a dGPU attached to x86 system
use pinned memory to reduce data transfer time and to overlap data transfers with kernel execution
time. For specific information on this topic, see “Data Transfer Between Host and Device” and
“Asynchronous and Overlapping Transfers with Computation” at the following websites.

“Data Transfer Between Host and Device”:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-
device

“Asynchronous and Overlapping Transfers with Computation”:

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 7

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-
overlapping-transfers-with-computation

On Tegra® systems with no I/O coherency, repetitive access of pinned memory degrades application
performance, because pinned memory is not cached on the CPU in such systems.

A sample application is shown below in which a set of filters and operations (k1, k2, and k3) are
applied to an image. Pinned memory is allocated to reduce data transfer time on an x86 system with
a dGPU, increasing the overall application speed. However, targeting a Tegra® device with the
same code causes a drastic increase in the execution time of the readImage() function because it
repeatedly accesses an uncached buffer. This increases the overall application time. If the time taken
by readImage() is significantly higher compared to kernels execution time, it is recommended
to use unified memory to reduce the readImage() time. Otherwise, evaluate the application with
pinned memory and unified memory by removing unnecessary data transfer calls to decide best suited
memory.

// Sample code for an x86 system with a discrete GPU
int main()
{
 int *h_a,*d_a,*d_b,*d_c,*d_d,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

 //Pinned memory allocated to reduce data transfer time
 cudaMallocHost(h_a, sizeOfImage);
 cudaMallocHost(h_d, sizeOfImage);

 //Allocate buffers on GPU
 cudaMalloc(&d_a, sizeOfImage);
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);
 cudaMalloc(&d_d, sizeOfImage);

 //CPU reads Image;
 readImage(h_a); // Intialize the h_a buffer

 // Transfer image to GPU
 cudaMemcpy(d_a, h_a, sizeOfImage, cudaMemcpyHostToDevice);

 // Data transfer is fast as we used pinned memory
 // ----- CUDA Application pipeline start ----
 k1<<<..>>>(d_a,d_b) // Apply filter 1
 k2<<<..>>>(d_b,d_c)// Apply filter 2
 k3<<<..>>>(d_c,d_d)// Some operation on image data
 // ----- CUDA Application pipeline end ----

 // Transfer processed image to CPU
 cudaMemcpy(h_d, d_d, sizeOfImage, cudaMemcpyDeviceToHost);
 // Data transfer is fast as we used pinned memory

 // Use processed Image i.e h_d in later computations on CPU.
 UseImageonCPU(h_d);
}

// Porting the code on Tegra
int main()
{
 int *h_a,*d_b,*d_c,*h_d;
 int height = 1024;
 int width = 1024;
 size_t sizeOfImage = width * height * sizeof(int); // 4MB image

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 8

 //Unified memory allocated for input and output
 //buffer of application pipeline
 cudaMallocManaged(h_a, sizeOfImage,cudaMemAttachHost);
 cudaMallocManaged(h_d, sizeOfImage);

 //Intermediate buffers not needed on CPU side.
 //So allocate them on device memory
 cudaMalloc(&d_b, sizeOfImage);
 cudaMalloc(&d_c, sizeOfImage);

 //CPU reads Image;
 readImage (h_a); // Intialize the h_a buffer
 // ----- CUDA Application pipeline start ----
 // Prefetch input image data to GPU
 cudaStreamAttachMemAsync(NULL, h_a, 0, cudaMemAttachGlobal);
 k1<<<..>>>(h_a,d_b)
 k2<<<..>>>(d_b,d_c)
 k3<<<..>>>(d_c,h_d)
 // Prefetch output image data to CPU
 cudaStreamAttachMemAsync(NULL, h_d, 0, cudaMemAttachHost);
 cudaStreamSynchronize(NULL);
 // ----- CUDA Application pipeline end ----

 // Use processed Image i.e h_d on CPU side.
 UseImageonCPU(h_d);
}

The cudaHostRegister() function

The cudaHostRegister() function is not supported on Tegra® devices with compute capability
less than 7.2, because those devices do not have I/O coherency. Use other pinned memory allocation
functions such as cudaMallocHost() and cudaHostAlloc() if cudaHostRegister() is not
supported on the device.

GNU Atomic operations on pinned memory

The GNU atomic operations on uncached memory is not supported on Tegra® CPU. As pinned
memory is not cached on Tegra® devices with compute capability less than 7.2, GNU atomic
operations is not supported on pinned memory.

3.3. Effective Usage of Unified Memory on
Tegra

Using unified memory in applications requires additional coherency and cache maintenance operations
at kernel launch, synchronization, and prefetching hint calls. These operations are performed
synchronously with other GPU work which can cause unpredictable latencies in the application.

The performance of unified memory on Tegra® can be improved by providing data prefetching hints.
The driver can use these prefetching hints to optimize the coherence operations. To prefetch the data,
the cudaStreamAttachMemAsync() function can be used, in addition to the techniques described in
the “Coherency and Concurrency” section of the CUDA C Programming Guide at the following link:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 9

to prefetch the data. The prefetching behavior of unified memory, as triggered by the changing states of
the attachment flag, is shown in Table 2.

Table 2. Unified Memory Prefetching Behavior per Changing Attachment Flag
States

Previous Flag Current Flag Prefetching Behavior

cudaMemAttachGlobal/
cudaMemAttachSingle

cudaMemAttachHost Causes prefetch to CPU

cudaMemAttachHost cudaMemAttachGlobal/

cudaMemAttachSingle

Causes prefetch to GPU

cudaMemAttachGlobal cudaMemAttachSingle No prefetch to GPU

cudaMemAttachSingle cudaMemAttachGlobal No prefetch to GPU

The following example shows usage of cudaStreamAttachMemAsync() to prefetch data.

Note:

However, not supported on Tegra® devices are the data prefetching techniques that use
cudaMemPrefetchAsync() as described in the “Performance Tuning” section of the CUDA C++
Programming Guide at the following web site:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Note: There are limitations in QNX system software which prevent implementation of all UVM
optimizations. Because of this, using cudaStreamAttachMemAsync() to prefetch hints on QNX does
not benefit performance.

__global__ void matrixMul(int *p, int *q, int*r, int hp, int hq, int wp, int wq)
{
// Matrix multiplication kernel code
}
void MatrixMul(int hp, int hq, int wp, int wq)
{
 int *p,*q,*r;
 int i;
 size_t sizeP = hp*wp*sizeof(int);
 size_t sizeQ = hq*wq*sizeof(int);
 size_t sizeR = hp*wq*sizeof(int);

 //Attach buffers ‘p’ and ‘q’ to CPU and buffer ‘r’ to GPU
 cudaMallocManaged(&p, sizeP, cudaMemAttachHost);
 cudaMallocManaged(&q, sizeQ, cudaMemAttachHost);
 cudaMallocManaged(&r, sizeR);
 //Intialize with random values
 randFill(p,q,hp,wp,hq,wq);

 // Prefetch p,q to GPU as they are needed in computation
 cudaStreamAttachMemAsync(NULL, p, 0, cudaMemAttachGlobal);
 cudaStreamAttachMemAsync(NULL, q, 0, cudaMemAttachGlobal);
 matrixMul<<<....>>>(p,q,r, hp,hq,wp,wq);

 // Prefetch 'r' to CPU as only 'r' is needed
 cudaStreamAttachMemAsync(NULL, r, 0, cudaMemAttachHost);

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 10

 cudaStreamSynchronize(NULL);

 // Print buffer ‘r’ values
 for(i = 0; i < hp*wq; i++)
 printf("%d ", r[i]);
}

Note:

An additional cudaStreamSynchronize(NULL) call can be added after the matrixMul kernel code
to avoid callback threads that cause unpredictability in a cudaStreamAttachMemAsync() call.

3.4. GPU Selection
On a Tegra system with a dGPU, deciding whether a CUDA application runs on the iGPU or the
dGPU can have implications for the performance of the application. Some of the factors that need to
be considered while making such a decision are kernel execution time, data transfer time, data locality,
and latency. For example, to run an application on a dGPU, data must be transferred between the SoC
and the dGPU. This data transfer can be avoided if the application runs on an iGPU.

3.5. Synchronization Mechanism Selection
The cudaSetDeviceFlags API is used to control the synchronization behaviour of CPU thread.
Until CUDA 10.1, by default, the synchronization mechanism on iGPU uses cudaDeviceBlockingSync
flag, which blocks the CPU thread on a synchronization primitive when waiting for the device to
finish work. The cudaDeviceBlockingSync flag is suited for platforms with power constraints. But
on platforms which requires low latency, cudaDeviceScheduleSpin flag needs to set manually.
Since CUDA 10.1, for each platform, the default synchronization flag is determined based on
what is optimized for that platform. More information about the synchronization flags is given at
cudaSetDeviceFlags API documentation.

3.6. CUDA Features Not Supported on Tegra
All core features of CUDA are supported on Tegra platforms. The exceptions are listed below.

‣ The cudaHostRegister() function is not supported on QNX systems. This is due to the
limitations on QNX OS. It is supported in Linux systems with compute capability greater than or
equal to 7.2.

‣ System wide atomics are not supported on Tegra devices with compute capability less than 7.2.

‣ Unified memory is not supported on dGPU attached to Tegra.

‣ cudaMemPrefetchAsync() function is not supported since unified memory with concurrent
access is not yet supported on iGPU.

‣ NVIDIA management library (NVML) library is not supported on Tegra. However, as an
alternative to monitor the resource utilization, tegrastats can be used.

‣ CUDA IPC (CUDA Inter-process communication) is not supported on Tegra devices. EGLStream
or NvSci can be used to communicate between CUDA contexts in two processes.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gf01347c3dafebf07e1a0b4321a030a63
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac

Porting Considerations

CUDA for Tegra DA-06762-001_v11.4 | 11

‣ Remote direct memory access (RDMA) is not supported on Tegra devices.

‣ JIT compilation might require a considerable amount of CPU and bandwidth resources, potentially
interfering with other workloads in the system. Thus, JIT compilations such as PTX-JIT and
NVRTC JIT are not recommended for deterministic embedded applications and can be bypassed
completely by compiling for specific GPU targets. For example: If you are compiling for SM
version 87, use this nvcc flag --generate-code arch=compute_87,code=sm_87 to create
a CUDA binary for this device. This avoids JIT compilation during the first run and improves the
runtime performance. JIT compilation is not supported on Tegra devices in the safe context.

‣ Multi process service (MPS) is not supported on Tegra.

‣ Peer to peer (P2P) communication calls are not supported on Tegra.

‣ The cuSOLVER library is not supported on in Tegra® systems running QNX.

‣ The nvGRAPH library is not supported.

‣ CUB is experimental on Tegra products.

More information on some of these features can be found at the following web sites:

IPC:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication

NVSCI:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-
interface-interoperability-nvsci

RDMA:

http://docs.nvidia.com/cuda/gpudirect-rdma/index.html

MPS:

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

P2P:

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access

https://docs.nvidia.com/cuda/cub/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
http://docs.nvidia.com/cuda/gpudirect-rdma/index.html
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access

CUDA for Tegra DA-06762-001_v11.4 | 12

Chapter 4. EGL Interoperability

An interop is an efficient mechanism to share resources between two APIs. To share data with multiple
APIs, an API must implement an individual interop for each.

EGL provides interop extensions that allow it to function as a hub connecting APIs, removing the need
for multiple interops, and encapsulating the shared resource. An API must implement these extensions
to interoperate with any other API via EGL. The CUDA supported EGL interops are EGLStream,
EGLImage, and EGLSync.

EGL interop extensions allow applications to switch between APIs without the need to rewrite code.
For example, an EGLStream-based application in which NvMedia is the producer and CUDA is the
consumer can be modified to use OpenGL as the consumer without modifying the producer code.

Note: On the DRIVE OS platform, NVSCI is provided as an alternative to EGL interoperability for
safety critical applications. Please see NVSCI for more details.

4.1. EGLStream
EGLStream interoperability facilitates efficient transfer of a sequence of frames from one API to
another API, allowing use of multiple Tegra® engines such as CPU, GPU, ISP, and others.

Consider an application where a camera captures images continuously, shares them with CUDA
for processing, and then later renders those images using OpenGL. In this application, the image
frames are shared across NvMedia, CUDA and OpenGL. The absence of EGLStream interoperability
would require the application to include multiple interops and redundant data transfers between APIs.
EGLStream has one producer and one consumer.

EGLStream offers the following benefits:

‣ Efficient transfer of frames between a producer and a consumer.

‣ Implicit synchronization handling.

‣ Cross-process support.

‣ dGPU and iGPU support.

‣ Linux, QNX, and Android operating system support.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 13

4.1.1. EGLStream Flow
The EGLStream flow has the following steps:

 1. Initialize producer and consumer APIs

 2. Create an EGLStream and connect the consumer and the producer.

Note:

EGLStream is created using eglCreateStreamKHR() and destroyed using
eglDestroyStreamKHR().

The consumer should always connect to EGLStream before the producer.

For more information see the EGLStream specification at the following web site: https://
www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

 3. Allocate memory used for EGL frames.

 4. The producer populates an EGL frame and presents it to EGLStream.

 5. The consumer acquires the frame from EGLStream and releases it back to EGLStream after
processing.

 6. The producer collects the consumer-released frame from EGLStream.

 7. The producer presents the same frame, or a new frame to EGLStream.

 8. Steps 4-7 are repeated until completion of the task, with an old frame or a new frame.

 9. The consumer and the producer disconnect from EGLStream.

 10. Deallocate the memory used for EGL frames.

 11. De-initialize the producer and consumer APIs.

EGLStream application flow is shown in Figure 2.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 14

Figure 2. EGLStream Flow

CUDA producer and consumer functions are listed in Table 3.

Table 3. CUDA Producer and Consumer Functions

Role Functionality API

To connect a producer to
EGLStream

cuEGLStreamProducerConnect()

cudaEGLStreamProducerConnect()

To present frame to EGLStream cuEGLStreamProducerPresentFrame()

cudaEGLStreamProducerPresentFrame()

Obtain released frames cuEGLStreamProducerReturnFrame()

cudaEGLStreamProducerReturnFrame()

Producer

To disconnect from EGLStream cuEGLStreamProducerDisconnect()

cudaEGLStreamProducerDisconnect()

To connect a consumer to
EGLStream

cuEGLStreamConsumerConnect()

cuEGLStreamConsumeConnectWithFlags()

cudaEGLStreamConsumerConnect()

cudaEGLStreamConsumerConnectWithFlags()

Consumer

To acquire frame from
EGLStream

cuEGLStreamConsumerAcquireFrame()

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g7993b0e3802420547e3f403549be65a1

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 15

cudaEGLStreamConsumerAcquireFrame()

To release the consumed frame cuEGLStreamConsumerReleaseFrame()

cudaEGLStreamConsumerReleaseFrame()

To disconnect from EGLStream cuEGLStreamConsumerDisconnect()

cudaEGLStreamConsumerDisconnect()

4.1.2. CUDA as Producer
When CUDA is the producer, the supported consumers are CUDA, NvMedia and OpenGL. API
functions to be used when CUDA is the producer are listed in Table 3. Except for connecting and
disconnecting from EGLStream, all API calls are non-blocking.

The following producer side steps are shown in the example code that follows:

 1. Prepare a frame (lines 3-19).

 2. Connect the producer to EGLStream (line 21).

 3. Populate the frame and present to EGLStream (lines 23-25).

 4. Get the released frame back from EGLStream (Line 27).

 5. Disconnect the consumer after completion of the task. (Line 31).

void ProducerThread(EGLStreamKHR eglStream) {
 //Prepares frame
 cudaEglFrame* cudaEgl = (cudaEglFrame *)malloc(sizeof(cudaEglFrame));
 cudaEgl->planeDesc[0].width = WIDTH;
 cudaEgl->planeDesc[0].depth = 0;
 cudaEgl->planeDesc[0].height = HEIGHT;
 cudaEgl->planeDesc[0].numChannels = 4;
 cudaEgl->planeDesc[0].pitch = WIDTH * cudaEgl->planeDesc[0].numChannels;
 cudaEgl->frameType = cudaEglFrameTypePitch;
 cudaEgl->planeCount = 1;
 cudaEgl->eglColorFormat = cudaEglColorFormatARGB;
 cudaEgl->planeDesc[0].channelDesc.f=cudaChannelFormatKindUnsigned
 cudaEgl->planeDesc[0].channelDesc.w = 8;
 cudaEgl->planeDesc[0].channelDesc.x = 8;
 cudaEgl->planeDesc[0].channelDesc.y = 8;
 cudaEgl->planeDesc[0].channelDesc.z = 8;
 size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
 // Buffer allocated by producer
 cudaMalloc(&(cudaEgl->pPitch[0].ptr), numElem);
 //CUDA producer connects to EGLStream
 cudaEGLStreamProducerConnect(&conn, eglStream, WIDTH, HEIGHT))
 // Sets all elements in the buffer to 1
 K1<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem);
 // Present frame to EGLStream
 cudaEGLStreamProducerPresentFrame(&conn, *cudaEgl, NULL);

 cudaEGLStreamProducerReturnFrame(&conn, cudaEgl, eglStream);
 .
 .
 //clean up
 cudaEGLStreamProducerDisconnect(&conn);

 .
}

A frame is represented as a cudaEglFramestructure. The frameType parameter in
cudaEglFrame indicates the memory layout of the frame. The supported memory layouts are CUDA

http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58
http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61
http://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1gb2ef252e72ad2419506f3cf305753c6a

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 16

Array and device pointer. Any mismatch in the width and height values of frame with the values
specified in cudaEGLStreamProducerConnect() leads to undefined behavior. In the sample, the
CUDA producer is sending a single frame, but it can send multiple frames over a loop. CUDA cannot
present more than 64 active frames to EGLStream.

The cudaEGLStreamProducerReturnFrame() call waits until it receives the released frame from
the consumer. Once the CUDA producer presents the first frame to EGLstream, at least one frame is
always available for consumer acquisition until the producer disconnects. This prevents the removal of
the last frame from EGLStream, which would block cudaEGLStreamProducerReturnFrame().

Use the EGL_NV_stream_reset extension to set EGLStream attribute EGL_SUPPORT_REUSE_NV to
false to allow the last frame to be removed from EGLStream. This allows removing or returning the
last frame from EGLStream.

4.1.3. CUDA as Consumer
When CUDA is the consumer, the supported producers are CUDA, OpenGL, NvMedia, Argus, and
Camera. API functions to be used when CUDA is the consumer are listed in Table 3. Except for
connecting and disconnecting from EGLStream, all API calls are non-blocking.

The following consumer side steps are shown in the sample code that follows:

 1. Connect consumer to EGLStream (line 5).

 2. Acquire frame from EGLStream (lines 8-10).

 3. Process the frame on consumer (line 16).

 4. Release frame back to EGLStream (line 19).

 5. Disconnect the consumer after completion of the task (line 22).

void ConsumerThread(EGLStreamKHR eglStream) {
.
.
//Connect consumer to EGLStream
cudaEGLStreamConsumerConnect(&conn, eglStream);
// consumer acquires a frame
unsigned int timeout = 16000;
cudaEGLStreamConsumerAcquireFrame(& conn, &cudaResource, eglStream, timeout);
//consumer gets a cuda object pointer
cudaGraphicsResourceGetMappedEglFrame(&cudaEgl, cudaResource, 0, 0);
size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
.
.
int checkIfOne = 1;
// Checks if each value in the buffer is 1, if any value is not 1, it sets
 checkIfOne = 0.
K2<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem, checkIfOne);
.
.
cudaEGLStreamConsumerReleaseFrame(&conn, cudaResource, &eglStream);
.
.
cudaEGLStreamConsumerDisconnect(&conn);
.
}

In the sample code, the CUDA consumer receives a single frame, but it can also receive multiple
frames over a loop. If a CUDA consumer fails to receive a new frame in the specified time limit using
cudaEGLStreamConsumerAcquireFrame(), it reacquires the previous frame from EGLStream. The
time limit is indicated by the timeout parameter.

http://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 17

The application can use eglQueryStreamKHR() to query for the availability of new frames using. If
the consumer uses already released frames, it results in undefined behavior. The consumer behavior is
defined only for read operations. Behavior is undefined when the consumer writes to a frame.

If the CUDA context is destroyed while connected to EGLStream, the stream is placed in the
EGL_STREAM_STATE_DISCONNECTED_KHR state and the connection handle is invalidated.

4.1.4. Implicit Synchronization
EGLStream provides implicit synchronization in an application. For example, in the previous code
samples, both the producer and consumer threads are running in parallel and the K1 and K2 kernel
processes access the same frame, but K2 execution in the consumer thread is guaranteed to occur only
after kernel K1 in the producer thread finishes. The cudaEGLStreamConsumerAcquireFrame()
function waits on the GPU side until K1 finishes and ensures synchronization between producer and
consumer. The variable checkIfOne is never set to 0 inside the K2 kernel in the consumer thread.

Similarly, cudaEGLStreamProducerReturnFrame() in the producer thread is guaranteed to get the
frame only after K2 finishes and the consumer releases the frame. These non-blocking calls allow the
CPU to do other computation in between, as synchronization is taken care of on the GPU side.

The EGLStreams_CUDA_Interop CUDA sample code shows the usage of EGLStream in detail.

4.1.5. Data Transfer Between Producer and Consumer
Data transfer between producer and consumer is avoided when they are present on the same device. In
a Tegra® platform that includes a dGPU however, such as is in NVIDIA DRIVE™ PX 2, the producer
and consumer can be present on different devices. In that case, an additional memory copy is required
internally to move the frame between Tegra® SoC DRAM and dGPU DRAM. EGLStream allows
producer and consumer to run on any GPU without code modification.

Note: On systems where a Tegra® device is connected to a dGPU, if a producer frame uses CUDA array,
both producer and consumer should be on the same GPU. But if a producer frame uses CUDA device
pointers, the consumer can be present on any GPU.

4.1.6. EGLStream Pipeline
An application can use multiple EGL streams in a pipeline to pass the frames from one API to another.
For an application where NvMedia sends a frame to CUDA for computation, CUDA sends the same
frame to OpenGL for rendering after the computation.

The EGLStream pipeline is illustrated in Figure 3.

Figure 3. EGLStream Pipeline

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 18

NvMedia and CUDA connect as producer and consumer respectively to one EGLStream. CUDA and
OpenGL connect as producer and consumer respectively to another EGLStream.

Using multiple EGLStreams in pipeline fashion gives the flexibility to send frames across multiple
APIs without allocating additional memory or requiring explicit data transfers. Sending a frame across
the above EGLStream pipeline involves the following steps.

 1. NvMedia sends a frame to CUDA for processing.

 2. CUDA uses the frame for computation and sends to OpenGL for rendering.

 3. OpenGL consumes the frame and releases it back to CUDA.

 4. CUDA releases the frame back to NvMedia.

The above steps can be performed in a loop to facilitate the transfer of multiple frames in the
EGLStream pipeline.

4.2. EGLImage
An EGLImage interop allows an EGL client API to share image data with other EGL client APIs. For
example, an application can use an EGLImage interop to share an OpenGL texture with CUDA without
allocating any additional memory. A single EGLImage object can be shared across multiple client APIs
for modification.

An EGLImage interop does not provide implicit synchronization. Applications must maintain
synchronization to avoid race conditions.

Note: An EGLImage is created using eglCreateImageKHR() and destroyed using
eglDestroyImageKHR().

For more information see the EGLImage specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

4.2.1. CUDA interop with EGLImage
CUDA supports interoperation with EGLImage, allowing CUDA to read or modify the data of
an EGLImage. An EGLImage can be a single or multi-planar resource. In CUDA, a single-planar
EGLImage object is represented as a CUDA array or device pointer. Similarly, a multi-planar
EGLImage object is represented as an array of device pointers or CUDA arrays. EGLImage is
supported on Tegra® devices running the Linux, QNX, or Android operating systems.

Use the cudaGraphicsEGLRegisterImage() API to register an EGLImage object
with CUDA. Registering an EGLImage with CUDA creates a graphics resource object. An
application can use cudaGraphicsResourceGetMappedEglFrame() to get a frame from
the graphics resource object. In CUDA, a frame is represented as a cudaEglFrame structure.
The frameType parameter in cudaEglFrame indicates if the frame is a CUDA device pointer
or a CUDA array. For a single planar graphics resource, an application can directly obtain a
device pointer or CUDA array using cudaGraphicsResourceGetMappedPointer() or
cudaGraphicsSubResourceGetMappedArray() respectively. A CUDA array can be bound to a

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 19

texture or surface reference to access inside a kernel. Also, a multi-dimensional CUDA array can be
read and written via cudaMemcpy3D().

Note: An EGLImage cannot be created from a CUDA object. The
cudaGraphicsEGLRegisterImage() function is only supported on Tegra® devices. Also,
cudaGraphicsEGLRegisterImage() expects only the ‘0’ flag as other API flags are for future use.

The following sample code shows EGLImage interoperability. In the code, an EGLImage object
eglImage is created using OpenGL texture. The eglImage object is mapped as a CUDA array
pArray in CUDA. The pArray array is bound to a surface object to allow modification of the
OpenGL texture in the changeTexture. The function checkBuf() checks if the texture is updated with
new values.
int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 CUarray pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Initialize the buffer
 for(int y = 0; y < HEIGHT; y++)
 {
 for(int x = 0; x < WIDTH; x++)
 {
 pSurf[(y*WIDTH + x) * 4] = 0; pSurf[(y*WIDTH + x) * 4 + 1] = 0;
 pSurf[(y*WIDTH + x) * 4 + 2] = 0; pSurf[(y*WIDTH + x) * 4 + 3] = 0;
 }
 }

 // NOP call to error-check the above glut calls
 GL_SAFE_CALL({});

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));

 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);
 glFinish();
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf);
 glFinish();

 // Register buffer with CUDA
cuGraphicsEGLRegisterImage(&pResource, eglImage,0);

 //Get CUDA array from graphics resource object
 cuGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);

 cuCtxSynchronize();

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 20

 //Create a CUDA surface object from pArray
 CUresult status = CUDA_SUCCESS;
 CUDA_RESOURCE_DESC wdsc;
 memset(&wdsc, 0, sizeof(wdsc));
 wdsc.resType = CU_RESOURCE_TYPE_ARRAY; wdsc.res.array.hArray = pArray;
 CUsurfObject writeSurface;
 cuSurfObjectCreate(&writeSurface, &wdsc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the OpenGL texture using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(writeSurface, width, height);
 cuCtxSynchronize();

 CUDA_MEMCPY3D cpdesc;
 memset(&cpdesc, 0, sizeof(cpdesc));
 cpdesc.srcXInBytes = cpdesc.srcY = cpdesc.srcZ = cpdesc.srcLOD = 0;
 cpdesc.dstXInBytes = cpdesc.dstY = cpdesc.dstZ = cpdesc.dstLOD = 0;
 cpdesc.srcMemoryType = CU_MEMORYTYPE_ARRAY; cpdesc.dstMemoryType =
 CU_MEMORYTYPE_HOST;
 cpdesc.srcArray = pArray; cpdesc.dstHost = (void *)hostSurf;
 cpdesc.WidthInBytes = WIDTH * 4; cpdesc.Height = HEIGHT; cpdesc.Depth = 1;

 //Copy CUDA surface object values to hostSurf
 cuMemcpy3D(&cpdesc);

 cuCtxSynchronize();

 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values as
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 glFinish();
 // Check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cuGraphicsUnregisterResource(pResource);
 cuSurfObjectDestroy(writeSurface);
 .
 .
}
__global__ void changeTexture(cudaSurfaceObject_t arr, unsigned int
 width, unsigned int height){
 unsigned int x = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int y = threadIdx.y + blockIdx.y * blockDim.y;
 uchar4 data = make_uchar4(1, 2, 3, 4);
 surf2Dwrite(data, arr, x * 4, y);
}
void checkbuf(unsigned char *ref, unsigned char *hostSurf) {
 for(int y = 0; y < height*width*4; y++){
 if (ref[y] != hostSurf[y])
 printf("mis match at %d\n",y);
 }
}

Because EGLImage does not provide implicit synchronization, the above sample application uses
glFinish() and cudaThreadSynchronize() calls to achieve synchronization. Both calls block the
CPU thread. To avoid blocking the CPU thread, use EGLSync to provide synchronization. An example
using EGLImage and EGLSync is shown in the following section.

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 21

4.3. EGLSync
EGLSync is a cross-API synchronization primitive. It allows an EGL client API to share its
synchronization object with other EGL client APIs. For example, applications can use an EGLSync
interop to share the OpenGL synchronization object with CUDA.

Note: An EGLSync object is created using eglCreateSyncKHR() and destroyed using
eglDestroySyncKHR().

For more information see the EGLSync specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

4.3.1. CUDA Interop with EGLSync
In an imaging application, where two clients run on a GPU and share a resource, the absence
of a cross-API GPU synchronization object forces the clients to use CPU-side synchronization
to avoid race conditions. The CUDA interop with EGLSync allows the application to exchange
synchronization objects between CUDA and other client APIs directly. This avoids the need for
CPU-side synchronization and allows CPU to complete other tasks. In CUDA, an EGLSync object is
mapped as a CUDA event.

Note: Currently CUDA interop with EGLSync is supported only on Tegra® devices.

4.3.2. Creating EGLSync from a CUDA Event
Creating an EGLSync object from a CUDA event is shown in the following sample code. Note that
EGLSync object creation from a CUDA event should happen immediately after the CUDA event is
recorded.
EGLDisplay dpy = eglGetCurrentDisplay();
// Create CUDA event
cudaEvent_t event;
cudaStream_t *stream;
cudaEventCreate(&event);
cudaStreamCreate(&stream);
// Record the event with cuda event
cudaEventRecord(event, stream);
const EGLAttrib attribs[] = {
 EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib)event,
 EGL_NONE
};
//Create EGLSync from the cuda event
eglsync = eglCreateSync(dpy, EGL_NV_CUDA_EVENT_NV, attribs);
//Wait on the sync
eglWaitSyncKHR(...);

Note: Initialize a CUDA event before creating an EGLSync object from it to avoid undefined behavior.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 22

4.3.3. Creating a CUDA Event from EGLSync
Creating a CUDA event from an EGLSync object is shown in the following sample code.
EGLSync eglsync;
EGLDisplay dpy = eglGetCurrentDisplay();
// Create an eglSync object from openGL fense sync object
eglsync = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
cudaEvent_t event;
cudaStream_t* stream;
cudaStreamCreate(&stream);
// Create CUDA event from eglSync
cudaEventCreateFromEGLSync(&event, eglSync, cudaEventDefault);
// Wait on the cuda event. It waits on GPU till OpenGL finishes its
// task
cudaStreamWaitEvent(stream, event, 0);

Note: The cudaEventRecord() and cudaEventElapsedTime() functions are not supported for
events created from an EGLSync object.

The same example given in the EGLImage section is re-written below to illustrate the usage
of an EGLSync interop. In the sample code, the CPU blocking calls such as glFinish() and
cudaThreadSynchronize() are replaced with EGLSync interop calls.
int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 cudaArray_t pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Intialize the buffer
 for(int y = 0; y < bufferSize; y++)
 pSurf[y] = 0;

 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));
 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();

 cudaEvent_t cuda_event;
 cudaEventCreateWithFlags(cuda_event, cudaEventDisableTiming);
 EGLAttribKHR eglattrib[] = { EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib) cuda_event,
 EGL_NONE};
 cudaStream_t* stream;
 cudaStreamCreateWithFlags(&stream,cudaStreamDefault);

 EGLSyncKHR eglsync1, eglsync2;
 cudaEvent_t egl_event;

 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);

EGL Interoperability

CUDA for Tegra DA-06762-001_v11.4 | 23

 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf);
 //Creates an EGLSync object from GL Sync object to track
 //finishing of copy.
 eglsync1 = eglCreateSyncKHR(eglDisplayHandle, EGL_SYNC_FENCE_KHR, NULL);

 //Create CUDA event object from EGLSync obejct
 cuEventCreateFromEGLSync(&egl_event, eglsync1, cudaEventDefault);

 //Waiting on GPU to finish GL copy
 cuStreamWaitEvent(stream, egl_event, 0);

 // Register buffer with CUDA
 cudaGraphicsEGLRegisterImage(&pResource, eglImage, cudaGraphicsRegisterFlagsNone);
 //Get CUDA array from graphics resource object
 cudaGraphicsSubResourceGetMappedArray(&pArray, pResource, 0, 0);
 .
 .
 //Create a CUDA surface object from pArray
 struct cudaResourceDesc resDesc;
 memset(&resDesc, 0, sizeof(resDesc));
 resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = pArray;
 cudaSurfaceObject_t inputSurfObj = 0;
 cudaCreateSurfaceObject(&inputSurfObj, &resDesc);

 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the CUDA array using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(inputSurfObj, width, height);
 cuEventRecord(cuda_event, stream);
 //Create EGLsync object from CUDA event cuda_event
 eglsync2 = eglCreateSync64KHR(dpy, EGL_SYNC_CUDA_EVENT_NV, eglattrib);
 //waits till kernel to finish
 eglWaitSyncKHR(eglDisplayHandle, eglsync2, 0);
 .
 //Copy modified pArray values to hostSurf
 .
 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 .
 .
 // This function check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);

 // Clean up CUDA
 cudaGraphicsUnregisterResource(pResource);
 cudaDestroySurfaceObject(inputSurfObj);
 eglDestroySyncKHR(eglDisplayHandle, eglsync1);
 eglDestroySyncKHR(eglDisplayHandle, eglsync2);
 cudaEventDestroy(egl_event);
 cudaEventDestroy(cuda_event);
 .
 .
}

CUDA for Tegra DA-06762-001_v11.4 | 24

Chapter 5. cuDLA

DLA (Deep Learning Accelerator) is a fixed function accelerator present on the NVIDIA Tegra SoC
and is used for inference applications. The DLA HW has superior performance/W and can natively
run many of the layers in modern neural networks, thus making it an attractive value proposition for
embedded AI applications. Programming the DLA typically consists of an offline and online step: in
the offline step, an input network is parsed and compiled by the DLA compiler into a loadable and in
the online step, that loadable is executed by the DLA HW to generate an inference result. The SW stack
that is currently provided by NVIDIA to perform the online or execution step consists of NvMediaDla
and the DLA runtime/KMD. Together, these APIs enable the user to submit a DLA task to the DLA
HW for inferencing purposes. The main functional paths are illustrated in the figure below.

Figure 4. DLA SW stack

It follows from the model above that users wishing to use GPU and DLA together in an application
would have to use interop mechanisms such as EGLStreams/NvSci to share buffers as well as
synchronization primitives between the GPU and DLA. These interop mechanisms usually involve

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 25

many steps for each buffer that is being shared and have limited ability to fine-tune the scheduling
of tasks between the GPU and DLA. cuDLA is an extension of the CUDA programming model that
integrates DLA (Deep Learning Accelerator) with CUDA thereby making it possible to submit DLA
tasks using CUDA programming constructs such as streams and graphs. Managing shared buffers as
well as synchronizing the tasks between GPU and DLA is transparently handled by cuDLA, freeing up
the programmer to focus on the high-level usecase.

5.1. Developer Guide
This section describes the key principles involved in programming the DLA HW using cuDLA APIs.
The cuDLA interfaces expose mechanisms to initialize devices, manage memory and submit DLA
tasks. As such, this section discusses how the cuDLA APIs can be used for these usecases. The detailed
specification of these APIs is described in the API specification and should be referred while writing a
cuDLA application.

Since cuDLA is an extension of CUDA, it is designed to work in conjunction with CUDA APIs that
perform CUDA functions such as GPU management, context management etc. Therefore, the current
state of the application in terms of which GPU is selected and the current active context (and its
lifecycle) are all important considerations while evaluating the behavior of a cuDLA API.

5.1.1. Device Model
To perform any DLA operation, it is necessary that an application first create a cuDLA device handle.
The cudlaCreateDevice() API creates a logical instance of a cuDLA device wherein the selected
DLA HW instance is coupled with the current active GPU selected using CUDA. For example, the
following code snippet would create a logical instance consisting of the current GPU (set using
cudaSetDevice()) and DLA HW 0. Currently, cuDLA supports only iGPU on Tegra and an attempt
to create a device handle by setting the current GPU as a dGPU would result in a device creation error
during cudlaCreateDevice().
cudlaDevHandle devHandle;
cudlaStatus ret;
ret = cudlaCreateDevice(0, &devHandle, CUDLA_CUDA_DLA);

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 26

Figure 5. Device model

The user can create any number of such logical instances using cudlaCreateDevice() using any
combination of GPU and DLA HW instances (subject to system resource availability):

Figure 6. Device model - multiple instances

In addition, cudlaCreateDevice() supports an alternative flag during device creation -
CUDLA_STANDALONE. This flag can be used by applications when they want to create a cuDLA
device in standalone mode i.e without coupling it with a GPU device. All device submissions can be
accomplished using cuDLA in standalone mode as well but in this mode there is no support for CUDA

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 27

interactions. Consequently, in what follows, two modes of execution are considered while describing
a particular API or a particular use case: the hybrid mode and the standalone mode. The API spec has
complete details about which API is supported in which mode.

5.1.2. Loading and Querying Modules
The cuDLA device handle needs an appropriate loadable to be associated with it before any DLA
task submission occurs. The loadable is usually created offline using TensorRT. The loadable has
information about the number of input and output tensors as well as their respective metadata and can
be queried by the application to retrieve this information. A typical application flow after a successful
cuDLA device initialization would look like this (interspersed with some debug logs):
DPRINTF("Device created successfully\n");

// Load the loadable from 'loadableData' in which the loadable binary has
// been copied from the location of the loadable - disk or otherwise.
err = cudlaModuleLoadFromMemory(devHandle, loadableData, file_size,
 &moduleHandle, 0);
if (err != cudlaSuccess)
{
 // handle error
}

// Get tensor attributes.
uint32_t numInputTensors = 0;
uint32_t numOutputTensors = 0;
cudlaModuleAttribute attribute;

err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_INPUT_TENSORS,
 &attribute);
if (err != cudlaSuccess)
{
 // handle error
}
numInputTensors = attribute.numInputTensors;
DPRINTF("numInputTensors = %d\n", numInputTensors);

err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_OUTPUT_TENSORS,
 &attribute);
if (err != cudlaSuccess)
{
 // handle error
}
numOutputTensors = attribute.numOutputTensors;
DPRINTF("numOutputTensors = %d\n", numOutputTensors);

cudlaModuleTensorDescriptor* inputTensorDesc =
 (cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)
 *numInputTensors);
cudlaModuleTensorDescriptor* outputTensorDesc =
 (cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)
 *numOutputTensors);

if ((inputTensorDesc == NULL) || (outputTensorDesc == NULL))
{
 // handle error
}

attribute.inputTensorDesc = inputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
 CUDLA_INPUT_TENSOR_DESCRIPTORS,
 &attribute);
if (err != cudlaSuccess)
{

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 28

 // handle error
}

attribute.outputTensorDesc = outputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
 CUDLA_OUTPUT_TENSOR_DESCRIPTORS,
 &attribute);
if (err != cudlaSuccess)
{
 // handle error
}

Applications can use the retrieved tensor descriptors to set up their data buffers in terms of size
and formats. Detailed information about the contents of the tensor descriptors is present in the API
specification section under cudlaModuleGetAttributes().

5.1.3. Memory Model
The GPU and DLA have different MMUs that manage the VA to PA conversion while performing their
respective functions. The figure below shows an example where the GMMU performs a translation for
GPU VAs and the SMMU performs a similar function for the VAs arriving from the DLA.

Figure 7. Virtual address to physical address conversion

In hybrid mode, before a CUDA pointer can be accessed by the DLA, it is necessary that the CUDA
pointer be registered with the DLA. This registration step creates an entry in the SMMU and returns
the corresponding VA for use in task submissions. The following code snippet shows an example
registration for a device handle created with the flag CUDLA_CUDA_DLA:

// Allocate memory on GPU.
void* buffer;
uint32_t size = 100;

result = cudaMalloc(&inputBufferGPU, size);
if (result != cudaSuccess)

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 29

{
 // handle error
}

// Register the CUDA-allocated buffers.
uint64_t* bufferRegisteredPtr = NULL;

err = cudlaMemRegister(devHandle,
 (uint64_t*)inputBufferGPU,
 size,
 &bufferRegisteredPtr,
 0);
if (err != cudlaSuccess)
{
 // handle error
}

In standalone mode, cuDLA functions without the underlying CUDA device. Consequently, in this
mode, the memory allocations performed by the application (which need to be subsequently registered)
need to come from outside CUDA. On Tegra systems, cuDLA supports registration of NvSciBuf
allocations via the cudlaImportExternalMemory() API as the following code snippet shows:
// Allocate the NvSciBuf object.
NvSciBufObj inputBufObj;
sciError = NvSciBufObjAlloc(reconciledInputAttrList, &inputBufObj);
if (sciError != NvSciError_Success)
{
 // handle error
}

uint64_t* inputBufObjRegPtr = NULL;

// importing external memory
cudlaExternalMemoryHandleDesc memDesc = { 0 };
memset(&memDesc, 0, sizeof(memDesc));
memDesc.extBufObject = (void *)inputBufObj;
memDesc.size = size;
err = cudlaImportExternalMemory(devHandle, &memDesc, &inputBufObjRegPtr, 0);
if (err != cudlaSuccess)
{
 // handle error
}

5.1.4. Task Execution and Synchronization Model

5.1.4.1. Task Execution
Submitting a DLA task for execution is similar to submitting a CUDA kernel to the GPU. cuDLA
natively supports CUDA streams and works seamlessly with the stream semantics to ensure that all
tasks intended for the DLA are executed by the DLA HW only after the previous tasks on the stream
have completed execution. This enables applications to set up complex processing workflows between
the GPU and the DLA using familiar stream semantics without having to manage memory coherency
and execution dependencies between GPU and DLA. A visual illustration of the execution model is
shown in the following figure. DLA tasks can be interspersed with GPU tasks in a given stream or
multiple streams and cudlaSubmitTask() handles all the memory/execution dependencies.

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 30

Figure 8. cuDLA task execution model

The submit task API needs the input and output tensors in the form of the addresses registered with the
DLA (using cudlaMemRegister()). An application can pre-register all the required pointers with
cuDLA and then use the registered pointers during cudlaSubmitTask(). This API, in turn, ensures
that the results of the previous operations on the underlying memory corresponding to the registered
pointers are visible to the DLA before it begins execution of the current task. A typical application code
consisting of CUDA and cuDLA operations is shown in the snippet below:
DPRINTF("ALL MEMORY REGISTERED SUCCESSFULLY\n");

// Copy data from CPU buffers to GPU buffers.
result = cudaMemcpyAsync(inputBufferGPU, inputBuffer, inputTensorDesc[0].size,
 cudaMemcpyHostToDevice, stream);
if (result != cudaSuccess)
{
 // handle error
}

result = cudaMemsetAsync(outputBufferGPU, 0, outputTensorDesc[0].size, stream);
if (result != cudaSuccess)
{
 // handle error
}

// Enqueue a cuDLA task.
cudlaTask task;
task.moduleHandle = moduleHandle;
task.outputTensor = &outputBufferRegisteredPtr;
task.numOutputTensors = 1;
task.numInputTensors = 1;
task.inputTensor = &inputBufferRegisteredPtr;
task.waitEvents = NULL;
task.signalEvents = NULL;
err = cudlaSubmitTask(devHandle, &task, 1, stream, 0);
if (err != cudlaSuccess)
{
 // handle error
}
DPRINTF("SUBMIT IS DONE !!!\n");

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 31

result = cudaMemcpyAsync(outputBuffer, outputBufferGPU, outputTensorDesc[0].size,
 cudaMemcpyDeviceToHost, stream);
if (result != cudaSuccess)
{
 // handle error
}

In standalone mode, the stream parameter in cudlaSubmitTask() must be specified as NULL as
cuDLA is operating independently of CUDA. In this case, the tasks submitted to the DLA are executed
in FIFO order.

5.1.4.1.1. Multithreaded User Submission
Users can specify the CUDLA_SUBMIT_SKIP_LOCK_ACQUIRE flag during submission to a particular
device handle if they are sure that submission to this particular device handle occurs only in this thread
and that there is no shared data at the application level between this device handle and any other device
handle which might be used in a parallel thread for submission. This flag facilitates some optimizations
in the submission path which might lead to better submission times from the application point of view.

5.1.4.2. Synchronization
Synchronization of tasks in hybrid mode does not need a different API. Since DLA tasks are submitted
to CUDA streams, it is sufficient to wait on the stream to complete its work in order to ensure that
all DLA tasks submitted on that stream are completed. In this regard DLA task synchronization is
compatible with any of the different synchronization mechanisms available in CUDA -- Event, Stream,
Device -- and the entire CUDA machinery is available for applications to set up different flows and
usecases.

In standalone mode, however, the synchronization mechanisms are different given that cuDLA operates
independently of CUDA. In this mode, the cudlaTask structure has a provision to specify wait and
signal events that cuDLA must wait on and signal respectively as part of cudlaSubmitTask().
Each submitted task will wait for all its wait events to be signaled before beginning execution and will
provide a signal event (if one is requested for during cudlaSubmitTask()) that the application (or
any other entity) can wait on to ensure that the submitted task has completed execution. In cuDLA 1.0,
only NvSciSync fences are supported as part of wait events. Furthermore, only NvSciSync objects can
be registered and signaled as part of signal events and the fence corresponding to the signaled event is
returned as part of cudlaSubmitTask().

Like all memory operations, the underlying backing store for the events (in this case the NvSciSync
object) must be registered with cuDLA before using it in a task submission. The code snippet below
shows an example flow where the application creates an input and output NvSciSync object and
registers them, creates fences corresponding to them, marks the corresponding fences as wait/signal as
part of cudlaSubmitTask() and then signals the input fence and waits on the output fence.

5.1.4.2.1. Registering an External Semaphore
sciError = NvSciSyncObjAlloc(nvSciSyncReconciledListObj1, &syncObj1);
if (sciError != NvSciError_Success)
{
 // handle error
}

sciError = NvSciSyncObjAlloc(nvSciSyncReconciledListObj2, &syncObj2);
if (sciError != NvSciError_Success)
{

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 32

 // handle error
}

// importing external semaphore
uint64_t* nvSciSyncObjRegPtr1 = NULL;
uint64_t* nvSciSyncObjRegPtr2 = NULL;
cudlaExternalSemaphoreHandleDesc semaMemDesc = { 0 };
memset(&semaMemDesc, 0, sizeof(semaMemDesc));
semaMemDesc.extSyncObject = syncObj1;
err = cudlaImportExternalSemaphore(devHandle,
 &semaMemDesc,
 &nvSciSyncObjRegPtr1,
 0);
if (err != cudlaSuccess)
{
 // handle error
}

memset(&semaMemDesc, 0, sizeof(semaMemDesc));
semaMemDesc.extSyncObject = syncObj2;
err = cudlaImportExternalSemaphore(devHandle,
 &semaMemDesc,
 &nvSciSyncObjRegPtr2,
 0);
if (err != cudlaSuccess)
{
 // handle error
}

DPRINTF("ALL EXTERNAL SEMAPHORES REGISTERED SUCCESSFULLY\n");

5.1.4.2.2. Events Setup for cudlaSubmitTask()
// Wait events
NvSciSyncFence preFence = NvSciSyncFenceInitializer;
sciError = NvSciSyncObjGenerateFence(syncObj1, &preFence);
if (sciError != NvSciError_Success)
{
 // handle error
}

cudlaWaitEvents* waitEvents;
waitEvents = (cudlaWaitEvents *)malloc(sizeof(cudlaWaitEvents));
if (waitEvents == NULL)
{
 // handle error
}

waitEvents->numEvents = 1;
CudlaFence* preFences = (CudlaFence *)malloc(waitEvents->numEvents *
 sizeof(CudlaFence));
if (preFences == NULL)
{
 // handle error
}

preFences[0].fence = &preFence;
preFences[0].type = CUDLA_NVSCISYNC_FENCE;
waitEvents->preFences = preFences;

// Signal Events
cudlaSignalEvents* signalEvents;
signalEvents = (cudlaSignalEvents *)malloc(sizeof(cudlaSignalEvents));
if (signalEvents == NULL)
{
 // handle error
}

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 33

signalEvents->numEvents = 1;
uint64_t** devPtrs = (uint64_t **)malloc(signalEvents->numEvents *
 sizeof(uint64_t *));
if (devPtrs == NULL)
{
 // handle error
}

devPtrs[0] = nvSciSyncObjRegPtr2;
signalEvents->devPtrs = devPtrs;

signalEvents->eofFences = (CudlaFence *)malloc(signalEvents->numEvents *
 sizeof(CudlaFence));
if (signalEvents->eofFences == NULL)
{
 // handle error
}

NvSciSyncFence eofFence = NvSciSyncFenceInitializer;
signalEvents->eofFences[0].fence = &eofFence;
signalEvents->eofFences[0].type = CUDLA_NVSCISYNC_FENCE;

// Enqueue a cuDLA task.
cudlaTask task;
task.moduleHandle = moduleHandle;
task.outputTensor = &outputBufObjRegPtr;
task.numOutputTensors = 1;
task.numInputTensors = 1;
task.inputTensor = &inputBufObjRegPtr;
task.waitEvents = waitEvents;
task.signalEvents = signalEvents;
err = cudlaSubmitTask(devHandle, &task, 1, NULL, 0);
if (err != cudlaSuccess)
{
 // handle error
}
DPRINTF("SUBMIT IS DONE !!!\n");

5.1.4.2.3. Waiting on the Signal Event
// Signal wait events.
// For illustration purposes only. In practice, this signal will be done by another
// entity or driver that provides the data input for this particular submitted task.
NvSciSyncObjSignal(syncObj1);

// Wait for operations to finish.
// For illustration purposes only. In practice, this wait will be done by
// another entity or driver that is waiting for the output of the submitted task.
sciError = NvSciSyncFenceWait(reinterpret_cast<NvSciSyncFence*>(signalEvents-
>eofFences[0].fence),
 nvSciCtx, -1);
if (sciError != NvSciError_Success)
{
 // handle error
}

5.1.4.2.4. Supported Synchronization Primitives in cuDLA
cuDLA supports two types of NvSciSync object primitives. These are sync point and deterministic
semaphores. By default, cuDLA prioritizes sync point primitive over deterministic semaphore primitive
and sets these priorities in the NvSciSync attribute list when requested by the application using
cudlaGetNvSciSyncAttributes().

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 34

For Deterministic semaphore, NvSciSync attribute list used to create the NvSciSync object must have
value of NvSciSyncAttrKey_RequireDeterministicFences key set to true. Deterministic
fences allow users to enqueue a wait over the semaphore object even before corresponding signal is
enqueued. For such semaphore object, cuDLA guarantees that each signal operation will increment the
fence value by '1'. Users are expected to keep track of signals enqueued on the semaphore object and
insert waits accordingly.

5.1.4.2.5. Setting NvSciSyncAttrKey_RequireDeterministicFences key in
NvSciSyncAttrList

// Set NvSciSyncAttrKey_RequireDeterministicFences key to true in
// NvScisyncAtrrList that is used to create NvSciSync object with
// Deterministic Semaphore primitive.
NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_SignalOnly;
 keyValue[0].attrKey = NvSciSyncAttrKey_RequiredPerm;
 keyValue[0].value = (void*) &cpuPerm;
 keyValue[0].len = sizeof(cpuPerm);

bool detFenceReq = true;
 keyValue[1].attrKey = NvSciSyncAttrKey_RequireDeterministicFences;
 keyValue[1].value = (const void*)&detFenceReq;
 keyValue[1].len = sizeof(detFenceReq);

 return NvSciSyncAttrListSetAttrs(list, keyValue, 2);

5.1.4.2.6. Timestamp support for NvSciFence
Timestamp support for NvSciFence

cuDLA supports the timestamp feature of NvSci in cuDLA standalone mode.

Timestamp support enables users to get the time at which a particular fence has been signaled. This
time value is the snapshot of the DLA clock in microseconds.

The users of cuDLA can request for timestamp support by setting the value of
NvSciSyncAttrKey_WaiterRequireTimestamps key as true while filling up the NvSci waiter
attribute list.

The users can use this timestamp along with SOF(Start Of Frame) fence and EOF(End OF Frame)
fence to get a snapshot of DLA clock just before start of task & after task completion respectively. This
enables users to calculate time taken by DLA to execute the submitted task.

5.1.4.2.7. Requesting timestamp support for NvSciSync object
sciError fillCpuWaiterAttrList(NvSciSyncAttrList list)
{
 bool cpuWaiter = true;
 NvSciSyncAttrKeyValuePair keyValue[3];
 memset(keyValue, 0, sizeof(keyValue));
 keyValue[0].attrKey = NvSciSyncAttrKey_NeedCpuAccess;
 keyValue[0].value = (void*) &cpuWaiter;
 keyValue[0].len = sizeof(cpuWaiter);

 NvSciSyncAccessPerm cpuPerm = NvSciSyncAccessPerm_WaitOnly;
 keyValue[1].attrKey = NvSciSyncAttrKey_RequiredPerm;
 keyValue[1].value = (void*) &cpuPerm;
 keyValue[1].len = sizeof(cpuPerm);

 bool cpuRequiresTimeStamp = true;
 keyValue[2].attrKey = NvSciSyncAttrKey_WaiterRequireTimestamps;

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 35

 keyValue[2].value = (void*) &cpuRequiresTimeStamp;
 keyValue[2].len = sizeof(cpuRequiresTimeStamp);

 return NvSciSyncAttrListSetAttrs(list, keyValue, 3);
}

NvSciSyncCpuWaitContext nvSciCtx;
NvSciSyncModule syncModule;
NvSciSyncAttrList waiterAttrListObj = nullptr;
NvSciSyncAttrList signalerAttrListObj = nullptr;
NvSciSyncAttrList syncAttrListObj[2];
NvSciSyncAttrList nvSciSyncConflictListObj;
NvSciSyncAttrList nvSciSyncReconciledListObj;

sciError = NvSciSyncModuleOpen(&syncModule);
if (sciError != NvSciError_Success) {
 //handle error
}

sciError = NvSciSyncAttrListCreate(syncModule, &signalerAttrListObj);
if (sciError != NvSciError_Success) {
 //handle error
}

sciError = NvSciSyncAttrListCreate(syncModule, &waiterAttrListObj);
if (sciError != NvSciError_Success) {
 //handle error
}

err = cudlaGetNvSciSyncAttributes(reinterpret_cast<uint64_t*>(signalerAttrListObj),
 CUDLA_NVSCISYNC_ATTR_SIGNAL);
if (err != cudlaSuccess) {
 //handle error
}

sciError = fillCpuWaiterAttrList(waiterAttrListObj);
if (sciError != NvSciError_Success) {
 //handle error
}

syncAttrListObj[0] = signalerAttrListObj;
syncAttrListObj[1] = waiterAttrListObj;
sciError = NvSciSyncAttrListReconcile(syncAttrListObj,
 2,
 &nvSciSyncReconciledListObj,
 &nvSciSyncConflictListObj3);
if (sciError != NvSciError_Success) {
 //handle error
}

sciError = NvSciSyncObjAlloc(nvSciSyncReconciledListObj, &syncObj);
if (sciError != NvSciError_Success) {
 //handle error
}

sciError = NvSciSyncCpuWaitContextAlloc(syncModule, &nvSciCtx);
if (sciError != NvSciError_Success) {
 //handle error
}

5.1.4.2.8. Extracting Timestamp Value from Fence
Refer to these sections for more information:

‣ Registering an External Semaphore

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 36

‣ Events Setup for cudlaSubmitTask()

‣ Waiting on the Signal Event

// To extract Timestamp of the fence
// Timestamp will be valid only after fence is signaled
// hence Fence must be waited up on before extracting timestamp value

uint64_t eofTimestampUS = 0UL;
sciError =
 NvSciSyncFenceGetTimestamp(reinterpret_cast<NvSciSyncFence*>(signalEvents-
>eofFences.fence), &(eofTimestampUS));
if ((sciError != NvSciError_Success) || (eofTimestampUS == 0UL)) {
 //handle error
}

5.1.4.3. Fault Diagnostics
To perform fault diagnostics for DLA HW, users should specify the
CUDLA_MODULE_ENABLE_FAULT_DIAGNOSTICS flag to load the module and
CUDLA_SUBMIT_DIAGNOSTICS_TASK during task submission. This task can be used to probe the
state of DLA HW. With this flag set, in standalone mode the user is not allowed to do event only
submissions, where tensor information is NULL and only events (wait/signal or both) are present in
task. This is because the task always runs on an internally loaded diagnostic module. This diagnostic
module does not expect any input tensors and so does not require input tensor memory. However the
user is expected to query the number of output tensors, allocate the output tensor memory, and pass the
same while using the submit task.

5.1.4.4. NOOP Submission
Users can mark certain tasks as noop tasks while calling cudlaSubmitTask().

This is done by passing CUDLA_SUBMIT_NOOP in the flags parameter of cudlaSubmitTask(). A
noop submission implies that all the other submission semantics are maintained. Specifically, the
task is submitted to DLA, wait/signal events are considered before and after and stream semantics are
respected. The key difference is that the task is skipped by the DLA for execution. This is supported in
both hybrid and standalone modes.

5.1.5. Error Reporting Model
The asynchronous nature of task execution results in two kinds of errors that can get reported via
cuDLA APIs:

‣ Synchronous errors

‣ Asynchronous errors

Synchronous errors are those that are reported by the cuDLA APIs as part of their return code when
they are invoked in an application. Asynchronous errors are those that are detected later compared to
sequential program execution. The typical scenario here is that each task submitted to the DLA HW
executes after a particular duration of time. As a result, if there are errors in the task execution, they
cannot be reported as part of the task submission APIs. Depending on the timing of the errors, they
are reported during a subsequent cuDLA API call or after a synchronization operation. HW execution
errors reported as part of cuDLA APIs are straightforward to handle at the application level. However,

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 37

if there is a no cuDLA API call currently executing or about to execute in the application, then the
application needs to perform extra steps to handle asynchronous errors.

In hybrid mode, DLA HW errors can get reported via CUDA synchronization operations. As
mentioned in the device model section, cuDLA logically associates DLA with a GPU for the purposes
of execution. Therefore, any DLA HW errors are propagated via CUDA to the user. The user needs
to check for DLA-specific errors from CUDA synchronization operations and then check the cuDLA
device handle for the exact error using cudlaGetLastError(). If there are multiple cuDLA device
handles in the application and each of them have submitted some tasks to cuDLA in hybrid mode, then
each and every device handle much be checked for errors. The underlying model here is to use CUDA
to detect DLA HW errors and then use cudlaGetLastError() on the relevant handle to report the
exact error. The code snippet below shows an example:

result = cudaStreamSynchronize(stream);
if (result != cudaSuccess)
{
 DPRINTF("Error in synchronizing stream = %s\n", cudaGetErrorName(result));

 if (result == cudaErrorExternalDevice)
 {
 cudlaStatus hwStatus = cudlaGetLastError(devHandle);
 if (hwStatus != cudlaSuccess)
 {
 DPRINTF("Asynchronous error in HW = %u\n", hwStatus);
 }
 }
}

This error reporting model is compatible with CUDA Driver APIs as well and therefore if the
application uses CUDA Driver APIs for synchronization, similar error codes and error handling flow is
applicable.

In standalone mode, the model is similar with the exception that there is no corresponding mechanism
to detect errors as part of synchronization operations. In this mode, the only option that an application
has to wait on the submitted tasks is to wait on the NvSciSync fence returned by the latest submission.
As of this writing, NvSciSync does not support reporting DLA HW errors and therefore an application
is expected to wait for the fence and then query cudlaGetLastError() for any errors during
execution.

5.2. Migrating from NvMediaDla to cuDLA
NvMediaDla and cuDLA have different programming models with some degree of overlap in the
functionality exposed by the respective APIs. The following table provides a mapping from the
NvMediaDla API to the equivalent cuDLA API or functionality. This is intended to be used as a
reference when migrating an NvMediaDla app to a cuDLA app.

NvMediaDla cuDLA

NvMediaDlaGetVersion() cudlaGetVersion()

NvMediaDlaPingById() Not required as ping is done inside
cudlaCreateDevice and only upon successful ping
does device handle creation succeed.

NvMediaDlaCreate() cudlaCreateDevice()

NvMediaDlaDestroy() cudlaDestroyDevice()

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 38

NvMediaDla cuDLA

NvMediaDlaGetUMDVersion() Not available

NvMediaDlaGetNumEngines() cudlaDeviceGetCount()

NvMediaDlaGetMaxOutstandingTasks() Not available

NvMediaDlaInit() cudlaCreateDevice (but specifying number of
input tasks is not available)

NvMediaDlaGetInstanceId() Not available

NvMediaDlaGetNumTasks() Not available

NvMediaDlaLoadableCreate() Not required as declaring a variable of
type cudlaModule is sufficient alongwith
cudlaModuleLoadFromMemory().

NvMediaDlaLoadableDestroy() Not required as cuDLA modules are declared as
variables of type cudlaModule.

NvMediaDlaAppendLoadable() Not required as this is done inside
cudlaModuleLoadFromMemory().

NvMediaDlaSetCurrentLoadable() Not required as this is done inside
cudlaModuleLoadFromMemory().

NvMediaDlaGetNumOfInputTensors() cudlaModuleGetAttributes()

NvMediaDlaGetInputTensorDescriptor() cudlaModuleGetAttributes()

NvMediaDlaGetNumOfOutputTensors() cudlaModuleGetAttributes()

NvMediaDlaGetOutputTensorDescriptor() cudlaModuleGetAttributes()

NvMediaDlaDataRegister() cudlaMemRegister()

NvMediaDlaDataUnregister() cudlaMemUnregister()

NvMediaDlaLoadLoadable() cudlaModuleLoadFromMemory()

NvMediaDlaRemoveLoadable() cudlaModuleUnload()

NvMediaDlaSubmit() cudlaSubmitTask()

NvMediaDlaNvSciSyncGetVersion() Not available

NvMediaDlaFillNvSciSyncAttrList() cudlaGetNvSciSyncAttributes()

NvMediaDlaRegisterNvSciSyncObj() cudlaImportExternalSemaphore()

NvMediaDlaUnregisterNvSciSyncObj() cudlaMemUnregister()

NvMediaDlaSetNvSciSyncObjforEOF()() Not required as cudlaTask structure has the required
capability to specify this.

NvMediaDlaInsertPreNvSciSyncFence() Not required as cudlaTask structure has the required
capability to specify this.

NvMediaDlaGetEOFNvSciSyncFence() Not required as cudlaTask structure has the required
capability to retrieve this.

cuDLA

CUDA for Tegra DA-06762-001_v11.4 | 39

5.3. Profiling a cuDLA App
cuDLA APIs can be profiled using NVIDIA Nsight Systems. The following command can be used to
generate traces for cuDLA APIs. These traces can be viewed in Nsight.
$ nsys profile --trace nvtx -e CUDLA_NVTX_LEVEL=1 --output <file> <cudla_App>

5.4. cuDLA Release Notes
Known Issues in cuDLA 1.2.1:

‣ In hybrid mode, cuDLA internally allocates memory with CUDA using the primary context. As a
result, before destroying/resetting a CUDA primary context, it is mandatory that all cuDLA device
initializations are destroyed.

‣ Before destroying a cuDLA device handle, it is important to ensure that all tasks submitted
previously to the device are completed. Failure to do so can lead to application crashes as the
internal memory allocations would still be in use.

‣ NvSciBuf buffer allocations made by the application must adhere to DLA alignment constraints.

‣ It is the application's responsibility to ensure that there are no duplicate fences specified as part of
wait events while submitting tasks.

‣ In general, any synchronous or asynchronous error returned by cuDLA APIs must be treated as a
non-recoverable error. In this case, the application is expected to restart and initialize cuDLA again
in order to submit DLA tasks. The exception to this rule is cudlaErrorMemoryRegistered
which is returned by cuDLA when the application tries to register a particular memory again
without unregistering.

‣ cuDLA does not support UVM between CUDA and DLA.

‣ cuDLA does not support CUDA Graph.

‣ cuDLA does not support per-thread default stream.

‣ cuDLA does not support CNP (DLA functions cannot be used with CNP).

‣ cuDLA does not support block linear memory.

‣ cuDLA does not support CUDA VMM APIs at the present moment.

‣ cuDLA does not support dGPU.

‣ Under certain conditions, DLA FW can hang for certain tasks. This can result in the application
hanging in both hybrid as well as standalone mode. Applications are expected to detect these
scenarios and respond accordingly.

‣ Loading of multiple modules is supported.

‣ Layerwise statistics functionality is not supported when multiple modules are loaded.

‣ Layerwise statistics is supported when there is a single module loaded and the same module is used
for the task submission as well as translation of statistics.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA Corporation
(“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this document and assumes no
responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any infringement of patents or other rights of
third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material (defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed in an individual
sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any customer general terms and
conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may be
trademarks of the respective companies with which they are associated.

Copyright

© 2018-2024 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Overview
	Memory Management
	2.1. I/O Coherency
	2.2. Estimating Total Allocatable Device Memory on an Integrated GPU Device

	Porting Considerations
	3.1. Memory Selection
	3.2. Pinned Memory
	3.3. Effective Usage of Unified Memory on Tegra
	3.4. GPU Selection
	3.5. Synchronization Mechanism Selection
	3.6. CUDA Features Not Supported on Tegra

	EGL Interoperability
	4.1. EGLStream
	4.1.1. EGLStream Flow
	4.1.2. CUDA as Producer
	4.1.3. CUDA as Consumer
	4.1.4. Implicit Synchronization
	4.1.5. Data Transfer Between Producer and Consumer
	4.1.6. EGLStream Pipeline

	4.2. EGLImage
	4.2.1. CUDA interop with EGLImage

	4.3. EGLSync
	4.3.1. CUDA Interop with EGLSync
	4.3.2. Creating EGLSync from a CUDA Event
	4.3.3. Creating a CUDA Event from EGLSync

	cuDLA
	5.1. Developer Guide
	5.1.1. Device Model
	5.1.2. Loading and Querying Modules
	5.1.3. Memory Model
	5.1.4. Task Execution and Synchronization Model
	5.1.4.1. Task Execution
	5.1.4.1.1. Multithreaded User Submission

	5.1.4.2. Synchronization
	5.1.4.2.1. Registering an External Semaphore
	5.1.4.2.2. Events Setup for cudlaSubmitTask()
	5.1.4.2.3. Waiting on the Signal Event
	5.1.4.2.4. Supported Synchronization Primitives in cuDLA
	5.1.4.2.5. Setting NvSciSyncAttrKey_RequireDeterministicFences key in NvSciSyncAttrList
	5.1.4.2.6. Timestamp support for NvSciFence
	5.1.4.2.7. Requesting timestamp support for NvSciSync object
	5.1.4.2.8. Extracting Timestamp Value from Fence

	5.1.4.3. Fault Diagnostics
	5.1.4.4. NOOP Submission

	5.1.5. Error Reporting Model

	5.2. Migrating from NvMediaDla to cuDLA
	5.3. Profiling a cuDLA App
	5.4. cuDLA Release Notes

