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Chapter 1. Introduction

1.1.  The Benefits of Using GPUs
The Graphics Processing Unit (GPU)1 provides much higher instruction throughput and
memory bandwidth than the CPU within a similar price and power envelope. Many applications
leverage these higher capabilities to run faster on the GPU than on the CPU (see GPU
Applications). Other computing devices, like FPGAs, are also very energy efficient, but offer
much less programming flexibility than GPUs.

This difference in capabilities between the GPU and the CPU exists because they are designed
with different goals in mind. While the CPU is designed to excel at executing a sequence of
operations, called a thread, as fast as possible and can execute a few tens of these threads in
parallel, the GPU is designed to excel at executing thousands of them in parallel (amortizing
the slower single-thread performance to achieve greater throughput).

The GPU is specialized for highly parallel computations and therefore designed such that
more transistors are devoted to data processing rather than data caching and flow control.
The schematic Figure 1 shows an example distribution of chip resources for a CPU versus a
GPU.

1 The graphics qualifier comes from the fact that when the GPU was originally created, two decades ago, it was designed as a
specialized processor to accelerate graphics rendering. Driven by the insatiable market demand for real-time, high-definition,
3D graphics, it has evolved into a general processor used for many more workloads than just graphics rendering.

http://www.nvidia.com/object/gpu-applications.html
http://www.nvidia.com/object/gpu-applications.html
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Figure 1. The GPU Devotes More Transistors to Data Processing
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Devoting more transistors to data processing, e.g., floating-point computations, is
beneficial for highly parallel computations; the GPU can hide memory access latencies with
computation, instead of relying on large data caches and complex flow control to avoid long
memory access latencies, both of which are expensive in terms of transistors.

In general, an application has a mix of parallel parts and sequential parts, so systems are
designed with a mix of GPUs and CPUs in order to maximize overall performance. Applications
with a high degree of parallelism can exploit this massively parallel nature of the GPU to
achieve higher performance than on the CPU.

1.2.  CUDA®: A General-Purpose
Parallel Computing Platform and
Programming Model

In November 2006, NVIDIA® introduced CUDA®, a general purpose parallel computing
platform and programming model that leverages the parallel compute engine in NVIDIA GPUs
to solve many complex computational problems in a more efficient way than on a CPU.

CUDA comes with a software environment that allows developers to use C++ as a high-level
programming language. As illustrated by Figure 2, other languages, application programming
interfaces, or directives-based approaches are supported, such as FORTRAN, DirectCompute,
OpenACC.
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Figure 2. GPU Computing Applications
CUDA is designed to support various languages and application programming interfaces.

1.3.  A Scalable Programming Model
The advent of multicore CPUs and manycore GPUs means that mainstream processor chips
are now parallel systems. The challenge is to develop application software that transparently
scales its parallelism to leverage the increasing number of processor cores, much as 3D
graphics applications transparently scale their parallelism to manycore GPUs with widely
varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard programming
languages such as C.

At its core are three key abstractions - a hierarchy of thread groups, shared memories, and
barrier synchronization - that are simply exposed to the programmer as a minimal set of
language extensions.
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These abstractions provide fine-grained data parallelism and thread parallelism, nested within
coarse-grained data parallelism and task parallelism. They guide the programmer to partition
the problem into coarse sub-problems that can be solved independently in parallel by blocks
of threads, and each sub-problem into finer pieces that can be solved cooperatively in parallel
by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate when
solving each sub-problem, and at the same time enables automatic scalability. Indeed, each
block of threads can be scheduled on any of the available multiprocessors within a GPU, in
any order, concurrently or sequentially, so that a compiled CUDA program can execute on any
number of multiprocessors as illustrated by Figure 3, and only the runtime system needs to
know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market
range by simply scaling the number of multiprocessors and memory partitions: from the
high-performance enthusiast GeForce GPUs and professional Quadro and Tesla computing
products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-Enabled GPUs for
a list of all CUDA-enabled GPUs).
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Figure 3. Automatic Scalability
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Note: A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks of
threads that execute independently from each other, so that a GPU with more multiprocessors
will automatically execute the program in less time than a GPU with fewer multiprocessors.

1.4.  Document Structure
This document is organized into the following chapters:

‣ Chapter Introduction is a general introduction to CUDA.

‣ Chapter Programming Model outlines the CUDA programming model.

‣ Chapter Programming Interface describes the programming interface.

‣ Chapter Hardware Implementation describes the hardware implementation.

‣ Chapter Performance Guidelines gives some guidance on how to achieve maximum
performance.

‣ Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.
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‣ Appendix C++ Language Extensions is a detailed description of all extensions to the C++
language.

‣ Appendix Cooperative Groups describes synchronization primitives for various groups of
CUDA threads.

‣ Appendix CUDA Dynamic Parallelism describes how to launch and synchronize one kernel
from another.

‣ Appendix Virtual Memory Management describes how to manage the unified virtual
address space.

‣ Appendix Stream Ordered Memory Allocator describes how applications can order
memory allocation and deallocation.

‣ Appendix Graph Memory Nodes describes how graphs can create and own memory
allocations.

‣ Appendix Mathematical Functions lists the mathematical functions supported in CUDA.

‣ Appendix C++ Language Support lists the C++ features supported in device code.

‣ Appendix Texture Fetching gives more details on texture fetching

‣ Appendix Compute Capabilities gives the technical specifications of various devices, as
well as more architectural details.

‣ Appendix Driver API introduces the low-level driver API.

‣ Appendix CUDA Environment Variables lists all the CUDA environment variables.

‣ Appendix Unified Memory Programming introduces the Unified Memory programming
model.
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Chapter 2. Programming Model

This chapter introduces the main concepts behind the CUDA programming model by outlining
how they are exposed in C++.

An extensive description of CUDA C++ is given in Programming Interface.

Full code for the vector addition example used in this chapter and the next can be found in the 
vectorAdd CUDA sample.

2.1.  Kernels
CUDA C++ extends C++ by allowing the programmer to define C++ functions, called kernels,
that, when called, are executed N times in parallel by N different CUDA threads, as opposed to
only once like regular C++ functions.

A kernel is defined using the __global__ declaration specifier and the number of CUDA
threads that execute that kernel for a given kernel call is specified using a new <<<...>>>
execution configuration syntax (see C++ Language Extensions). Each thread that executes
the kernel is given a unique thread ID that is accessible within the kernel through built-in
variables.

As an illustration, the following sample code, using the built-in variable threadIdx, adds two
vectors A and B of size N and stores the result into vector C:

// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}

Here, each of the N threads that execute VecAdd() performs one pair-wise addition.

http://docs.nvidia.com/cuda/cuda-samples/index.html#vector-addition
http://docs.nvidia.com/cuda/cuda-samples/index.html#vector-addition
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2.2.  Thread Hierarchy
For convenience, threadIdx is a 3-component vector, so that threads can be identified using
a one-dimensional, two-dimensional, or three-dimensional thread index, forming a one-
dimensional, two-dimensional, or three-dimensional block of threads, called a thread block.
This provides a natural way to invoke computation across the elements in a domain such as a
vector, matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way: For a
one-dimensional block, they are the same; for a two-dimensional block of size (Dx, Dy),the
thread ID of a thread of index (x, y) is (x + y Dx); for a three-dimensional block of size (Dx, Dy, Dz),
the thread ID of a thread of index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the result
into matrix C:

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
                       float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation with one block of N * N * 1 threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}

There is a limit to the number of threads per block, since all threads of a block are expected to
reside on the same processor core and must share the limited memory resources of that core.
On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the total
number of threads is equal to the number of threads per block times the number of blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional grid
of thread blocks as illustrated by Figure 4. The number of thread blocks in a grid is usually
dictated by the size of the data being processed, which typically exceeds the number of
processors in the system.
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Figure 4. Grid of Thread Blocks
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The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional, or
three-dimensional unique index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the built-in
blockDim variable.

Extending the previous MatAdd() example to handle multiple blocks, the code becomes as
follows.

// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}

int main()
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{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common choice.
The grid is created with enough blocks to have one thread per matrix element as before. For
simplicity, this example assumes that the number of threads per grid in each dimension is
evenly divisible by the number of threads per block in that dimension, although that need not
be the case.

Thread blocks are required to execute independently: It must be possible to execute them
in any order, in parallel or in series. This independence requirement allows thread blocks to
be scheduled in any order across any number of cores as illustrated by Figure 3, enabling
programmers to write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and by
synchronizing their execution to coordinate memory accesses. More precisely, one can specify
synchronization points in the kernel by calling the  __syncthreads() intrinsic function; 
__syncthreads() acts as a barrier at which all threads in the block must wait before any is
allowed to proceed. Shared Memory gives an example of using shared memory. In addition to
__syncthreads(), the Cooperative Groups API provides a rich set of thread-synchronization
primitives.

For efficient cooperation, the shared memory is expected to be a low-latency memory near
each processor core (much like an L1 cache) and __syncthreads() is expected to be
lightweight.

2.3.  Memory Hierarchy
CUDA threads may access data from multiple memory spaces during their execution as
illustrated by Figure 5. Each thread has private local memory. Each thread block has shared
memory visible to all threads of the block and with the same lifetime as the block. All threads
have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the constant
and texture memory spaces. The global, constant, and texture memory spaces are optimized
for different memory usages (see Device Memory Accesses). Texture memory also offers
different addressing modes, as well as data filtering, for some specific data formats (see
Texture and Surface Memory).

The global, constant, and texture memory spaces are persistent across kernel launches by the
same application.
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Figure 5. Memory Hierarchy
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2.4.  Heterogeneous Programming
As illustrated by Figure 6, the CUDA programming model assumes that the CUDA threads
execute on a physically separate device that operates as a coprocessor to the host running the
C++ program. This is the case, for example, when the kernels execute on a GPU and the rest of
the C++ program executes on a CPU.



Programming Model

CUDA C++ Programming Guide PG-02829-001_v11.5   |   12

The CUDA programming model also assumes that both the host and the device maintain
their own separate memory spaces in DRAM, referred to as host memory and device memory,
respectively. Therefore, a program manages the global, constant, and texture memory spaces
visible to kernels through calls to the CUDA runtime (described in Programming Interface).
This includes device memory allocation and deallocation as well as data transfer between host
and device memory.

Unified Memory provides managed memory to bridge the host and device memory spaces.
Managed memory is accessible from all CPUs and GPUs in the system as a single, coherent
memory image with a common address space. This capability enables oversubscription of
device memory and can greatly simplify the task of porting applications by eliminating the
need to explicitly mirror data on host and device. See Unified Memory Programming for an
introduction to Unified Memory.
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Figure 6. Heterogeneous Programming
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Note: Serial code executes on the host while parallel code executes on the device.
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2.5.  Asynchronous SIMT Programming
Model

In the CUDA programming model a thread is the lowest level of abstraction for doing a
computation or a memory operation. Starting with devices based on the NVIDIA Ampere GPU
architecture, the CUDA programming model provides acceleration to memory operations via
the asynchronous programming model. The asynchronous programming model defines the
behavior of asynchronous operations with respect to CUDA threads.

The asynchronous programming model defines the behavior of Asynchronous Barrier
for synchronization between CUDA threads. The model also explains and defines how
cuda::memcpy_async can be used to move data asynchronously from global memory while
computing in the GPU.

2.5.1.  Asynchronous Operations
An asynchronous operation is defined as an operation that is initiated by a CUDA thread and
is executed asynchronously as-if by another thread. In a well formed program one or more
CUDA threads synchronize with the asynchronous operation. The CUDA thread that initiated
the asynchronous operation is not required to be among the synchronizing threads.

Such an asynchronous thread (an as-if thread) is always associated with the CUDA thread
that initiated the asynchronous operation. An asynchronous operation uses a synchronization
object to synchronize the completion of the operation. Such a synchronization object can
be explicitly managed by a user (e.g., cuda::memcpy_async) or implicitly managed within a
library (e.g., cooperative_groups::memcpy_async).

A synchronization object could be a cuda::barrier or a cuda::pipeline. These objects
are explained in detail in Asynchronous Barrier and Asynchronous Data Copies using
cuda::pipeline. These synchronization objects can be used at different thread scopes. A scope
defines the set of threads that may use the synchronization object to synchronize with the
asynchronous operation. The following table defines the thread scopes available in CUDA C++
and the threads that can be synchronized with each.

Thread Scope Description

cuda::thread_scope::thread_scope_thread
Only the CUDA thread which initiated
asynchronous operations synchronizes.

cuda::thread_scope::thread_scope_block
All or any CUDA threads within the same thread
block as the initiating thread synchronizes.

cuda::thread_scope::thread_scope_device
All or any CUDA threads in the same GPU device
as the initiating thread synchronizes.
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Thread Scope Description

cuda::thread_scope::thread_scope_system
All or any CUDA or CPU threads in the same
system as the initiating thread synchronizes.

These thread scopes are implemented as extensions to standard C++ in the CUDA Standard C
++ library.

2.6.  Compute Capability
The compute capability of a device is represented by a version number, also sometimes
called its "SM version". This version number identifies the features supported by the GPU
hardware and is used by applications at runtime to determine which hardware features and/or
instructions are available on the present GPU.

The compute capability comprises a major revision number X and a minor revision number Y
and is denoted by X.Y.

Devices with the same major revision number are of the same core architecture. The major
revision number is 8 for devices based on the NVIDIA Ampere GPU architecture, 7 for devices
based on the Volta architecture, 6 for devices based on the Pascal architecture, 5 for devices
based on the Maxwell architecture, 3 for devices based on the Kepler architecture, 2 for
devices based on the Fermi architecture, and 1 for devices based on the Tesla architecture.

The minor revision number corresponds to an incremental improvement to the core
architecture, possibly including new features.

Turing is the architecture for devices of compute capability 7.5, and is an incremental update
based on the Volta architecture.

CUDA-Enabled GPUs lists of all CUDA-enabled devices along with their compute capability.
Compute Capabilities gives the technical specifications of each compute capability.

Note: The compute capability version of a particular GPU should not be confused with the
CUDA version (e.g., CUDA 7.5, CUDA 8, CUDA 9), which is the version of the CUDA software
platform. The CUDA platform is used by application developers to create applications that
run on many generations of GPU architectures, including future GPU architectures yet to be
invented. While new versions of the CUDA platform often add native support for a new GPU
architecture by supporting the compute capability version of that architecture, new versions of
the CUDA platform typically also include software features that are independent of hardware
generation.

The Tesla and Fermi architectures are no longer supported starting with CUDA 7.0 and CUDA
9.0, respectively.

https://nvidia.github.io/libcudacxx/extended_api/thread_scopes.html
https://nvidia.github.io/libcudacxx/extended_api/thread_scopes.html
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Chapter 3. Programming Interface

CUDA C++ provides a simple path for users familiar with the C++ programming language to
easily write programs for execution by the device.

It consists of a minimal set of extensions to the C++ language and a runtime library.

The core language extensions have been introduced in Programming Model. They allow
programmers to define a kernel as a C++ function and use some new syntax to specify the
grid and block dimension each time the function is called. A complete description of all
extensions can be found in C++ Language Extensions. Any source file that contains some of
these extensions must be compiled with nvcc as outlined in Compilation with NVCC.

The runtime is introduced in CUDA Runtime. It provides C and C++ functions that execute on
the host to allocate and deallocate device memory, transfer data between host memory and
device memory, manage systems with multiple devices, etc. A complete description of the
runtime can be found in the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is also
accessible by the application. The driver API provides an additional level of control by exposing
lower-level concepts such as CUDA contexts - the analogue of host processes for the device
- and CUDA modules - the analogue of dynamically loaded libraries for the device. Most
applications do not use the driver API as they do not need this additional level of control and
when using the runtime, context and module management are implicit, resulting in more
concise code. As the runtime is interoperable with the driver API, most applications that need
some driver API features can default to use the runtime API and only use the driver API where
needed. The driver API is introduced in Driver API and fully described in the reference manual.

3.1.  Compilation with NVCC
Kernels can be written using the CUDA instruction set architecture, called PTX, which is
described in the PTX reference manual. It is however usually more effective to use a high-level
programming language such as C++. In both cases, kernels must be compiled into binary code
by nvcc to execute on the device.

nvcc is a compiler driver that simplifies the process of compiling C++ or PTX code: It provides
simple and familiar command line options and executes them by invoking the collection
of tools that implement the different compilation stages. This section gives an overview of
nvcc workflow and command options. A complete description can be found in the nvcc user
manual.
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3.1.1.  Compilation Workflow

3.1.1.1.  Offline Compilation
Source files compiled with nvcc can include a mix of host code (i.e., code that executes on the
host) and device code (i.e., code that executes on the device). nvcc's basic workflow consists in
separating device code from host code and then:

‣ compiling the device code into an assembly form (PTX code) and/or binary form (cubin
object),

‣ and modifying the host code by replacing the <<<...>>> syntax introduced in Kernels
(and described in more details in Execution Configuration) by the necessary CUDA runtime
function calls to load and launch each compiled kernel from the PTX code and/or cubin
object.

The modified host code is output either as C++ code that is left to be compiled using another
tool or as object code directly by letting nvcc invoke the host compiler during the last
compilation stage.

Applications can then:

‣ Either link to the compiled host code (this is the most common case),

‣ Or ignore the modified host code (if any) and use the CUDA driver API (see Driver API) to
load and execute the PTX code or cubin object.

3.1.1.2.  Just-in-Time Compilation
Any PTX code loaded by an application at runtime is compiled further to binary code
by the device driver. This is called just-in-time compilation. Just-in-time compilation
increases application load time, but allows the application to benefit from any new compiler
improvements coming with each new device driver. It is also the only way for applications
to run on devices that did not exist at the time the application was compiled, as detailed in
Application Compatibility.

When the device driver just-in-time compiles some PTX code for some application, it
automatically caches a copy of the generated binary code in order to avoid repeating the
compilation in subsequent invocations of the application. The cache - referred to as compute
cache - is automatically invalidated when the device driver is upgraded, so that applications
can benefit from the improvements in the new just-in-time compiler built into the device
driver.

Environment variables are available to control just-in-time compilation as described in CUDA
Environment Variables

As an alternative to using nvcc to compile CUDA C++ device code, NVRTC can be used to
compile CUDA C++ device code to PTX at runtime. NVRTC is a runtime compilation library for
CUDA C++; more information can be found in the NVRTC User guide.
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3.1.2.  Binary Compatibility
Binary code is architecture-specific. A cubin object is generated using the compiler option
-code that specifies the targeted architecture: For example, compiling with -code=sm_35
produces binary code for devices of compute capability 3.5. Binary compatibility is guaranteed
from one minor revision to the next one, but not from one minor revision to the previous one or
across major revisions. In other words, a cubin object generated for compute capability X.y will
only execute on devices of compute capability X.z where z≥y.

Note: Binary compatibility is supported only for the desktop. It is not supported for Tegra. Also,
the binary compatibility between desktop and Tegra is not supported.

3.1.3.  PTX Compatibility
Some PTX instructions are only supported on devices of higher compute capabilities. For
example, Warp Shuffle Functions are only supported on devices of compute capability 3.0
and above. The -arch compiler option specifies the compute capability that is assumed
when compiling C++ to PTX code. So, code that contains warp shuffle, for example, must be
compiled with -arch=compute_30 (or higher).

PTX code produced for some specific compute capability can always be compiled to binary
code of greater or equal compute capability. Note that a binary compiled from an earlier
PTX version may not make use of some hardware features. For example, a binary targeting
devices of compute capability 7.0 (Volta) compiled from PTX generated for compute capability
6.0 (Pascal) will not make use of Tensor Core instructions, since these were not available on
Pascal. As a result, the final binary may perform worse than would be possible if the binary
were generated using the latest version of PTX.

3.1.4.  Application Compatibility
To execute code on devices of specific compute capability, an application must load binary or
PTX code that is compatible with this compute capability as described in Binary Compatibility
and PTX Compatibility. In particular, to be able to execute code on future architectures with
higher compute capability (for which no binary code can be generated yet), an application
must load PTX code that will be just-in-time compiled for these devices (see Just-in-Time
Compilation).

Which PTX and binary code gets embedded in a CUDA C++ application is controlled by the -
arch and -code compiler options or the -gencode compiler option as detailed in the nvcc user
manual. For example,

nvcc x.cu
        -gencode arch=compute_50,code=sm_50
        -gencode arch=compute_60,code=sm_60
        -gencode arch=compute_70,code=\"compute_70,sm_70\"

embeds binary code compatible with compute capability 5.0 and 6.0 (first and second -gencode
options) and PTX and binary code compatible with compute capability 7.0 (third -gencode
option).
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Host code is generated to automatically select at runtime the most appropriate code to load
and execute, which, in the above example, will be:

‣ 5.0 binary code for devices with compute capability 5.0 and 5.2,

‣ 6.0 binary code for devices with compute capability 6.0 and 6.1,

‣ 7.0 binary code for devices with compute capability 7.0 and 7.5,

‣ PTX code which is compiled to binary code at runtime for devices with compute capability
8.0 and 8.6.

x.cu can have an optimized code path that uses warp shuffle operations, for example, which
are only supported in devices of compute capability 3.0 and higher. The __CUDA_ARCH__ macro
can be used to differentiate various code paths based on compute capability. It is only defined
for device code. When compiling with -arch=compute_35 for example, __CUDA_ARCH__ is equal
to 350.

Applications using the driver API must compile code to separate files and explicitly load and
execute the most appropriate file at runtime.

The Volta architecture introduces Independent Thread Scheduling which changes the way
threads are scheduled on the GPU. For code relying on specific behavior of SIMT scheduling
in previous architecures, Independent Thread Scheduling may alter the set of participating
threads, leading to incorrect results. To aid migration while implementing the corrective
actions detailed in Independent Thread Scheduling, Volta developers can opt-in to Pascal's
thread scheduling with the compiler option combination -arch=compute_60 -code=sm_70.

The nvcc user manual lists various shorthands for the -arch, -code, and -gencode
compiler options. For example, -arch=sm_70 is a shorthand for -arch=compute_70 -
code=compute_70,sm_70 (which is the same as -gencode arch=compute_70,code=
\"compute_70,sm_70\").

3.1.5.  C++ Compatibility
The front end of the compiler processes CUDA source files according to C++ syntax rules. Full
C++ is supported for the host code. However, only a subset of C++ is fully supported for the
device code as described in C++ Language Support.

3.1.6.  64-Bit Compatibility
The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit).
Device code compiled in 64-bit mode is only supported with host code compiled in 64-bit
mode.

Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device code
compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.

The 32-bit version of nvcc can compile device code in 64-bit mode also using the -m64
compiler option.

The 64-bit version of nvcc can compile device code in 32-bit mode also using the -m32
compiler option.
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3.2.  CUDA Runtime
The runtime is implemented in the cudart library, which is linked to the application, either
statically via cudart.lib or libcudart.a, or dynamically via cudart.dll or libcudart.so.
Applications that require cudart.dll and/or cudart.so for dynamic linking typically include
them as part of the application installation package. It is only safe to pass the address of
CUDA runtime symbols between components that link to the same instance of the CUDA
runtime.

All its entry points are prefixed with cuda.

As mentioned in Heterogeneous Programming, the CUDA programming model assumes
a system composed of a host and a device, each with their own separate memory. Device
Memory gives an overview of the runtime functions used to manage device memory.

Shared Memory illustrates the use of shared memory, introduced in Thread Hierarchy, to
maximize performance.

Page-Locked Host Memory introduces page-locked host memory that is required to overlap
kernel execution with data transfers between host and device memory.

Asynchronous Concurrent Execution describes the concepts and API used to enable
asynchronous concurrent execution at various levels in the system.

Multi-Device System shows how the programming model extends to a system with multiple
devices attached to the same host.

Error Checking describes how to properly check the errors generated by the runtime.

Call Stack mentions the runtime functions used to manage the CUDA C++ call stack.

Texture and Surface Memory presents the texture and surface memory spaces that provide
another way to access device memory; they also expose a subset of the GPU texturing
hardware.

Graphics Interoperability introduces the various functions the runtime provides to interoperate
with the two main graphics APIs, OpenGL and Direct3D.

3.2.1.  Initialization
There is no explicit initialization function for the runtime; it initializes the first time a runtime
function is called (more specifically any function other than functions from the error handling
and version management sections of the reference manual). One needs to keep this in mind
when timing runtime function calls and when interpreting the error code from the first call
into the runtime.

The runtime creates a CUDA context for each device in the system (see Context for more
details on CUDA contexts). This context is the primary context for this device and is initialized
at the first runtime function which requires an active context on this device. It is shared among
all the host threads of the application. As part of this context creation, the device code is just-
in-time compiled if necessary (see Just-in-Time Compilation) and loaded into device memory.
This all happens transparently. If needed, e.g. for driver API interoperability, the primary
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context of a device can be accessed from the driver API as described in Interoperability
between Runtime and Driver APIs.

When a host thread calls cudaDeviceReset(), this destroys the primary context of the device
the host thread currently operates on (i.e., the current device as defined in Device Selection).
The next runtime function call made by any host thread that has this device as current will
create a new primary context for this device.

Note: The CUDA interfaces use global state that is initialized during host program initiation and
destroyed during host program termination. The CUDA runtime and driver cannot detect if this
state is invalid, so using any of these interfaces (implicitly or explicity) during program initiation
or termination after main) will result in undefined behavior.

3.2.2.  Device Memory
As mentioned in Heterogeneous Programming, the CUDA programming model assumes
a system composed of a host and a device, each with their own separate memory. Kernels
operate out of device memory, so the runtime provides functions to allocate, deallocate, and
copy device memory, as well as transfer data between host memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are described in
Texture and Surface Memory.

Linear memory is allocated in a single unified address space, which means that separately
allocated entities can reference one another via pointers, for example, in a binary tree or
linked list. The size of the address space depends on the host system (CPU) and the compute
capability of the used GPU:

Table 1. Linear Memory Address Space

x86_64
(AMD64)

POWER
(ppc64le) ARM64

up to compute capability 5.3 (Maxwell) 40bit 40bit 40bit

compute capability 6.0 (Pascal) or newer up to 47bit up to 49bit up to 48bit

Note: On devices of compute capability 5.3 (Maxwell) and earlier, the CUDA driver creates an
uncommitted 40bit virtual address reservation to ensure that memory allocations (pointers) fall
into the supported range. This reservation appears as reserved virtual memory, but does not
occupy any physical memory until the program actually allocates memory.

Linear memory is typically allocated using cudaMalloc() and freed using cudaFree()
and data transfer between host memory and device memory are typically done using
cudaMemcpy(). In the vector addition code sample of Kernels, the vectors need to be copied
from host memory to device memory:

// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)
{
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    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}
            
// Host code
int main()
{
    int N = ...;
    size_t size = N * sizeof(float);

    // Allocate input vectors h_A and h_B in host memory
    float* h_A = (float*)malloc(size);
    float* h_B = (float*)malloc(size);
    float* h_C = (float*)malloc(size);

    // Initialize input vectors
    ...

    // Allocate vectors in device memory
    float* d_A;
    cudaMalloc(&d_A, size);
    float* d_B;
    cudaMalloc(&d_B, size);
    float* d_C;
    cudaMalloc(&d_C, size);

    // Copy vectors from host memory to device memory
    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

    // Invoke kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =
            (N + threadsPerBlock - 1) / threadsPerBlock;
    VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

    // Copy result from device memory to host memory
    // h_C contains the result in host memory
    cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);
            
    // Free host memory
    ...
}

Linear memory can also be allocated through cudaMallocPitch() and cudaMalloc3D().
These functions are recommended for allocations of 2D or 3D arrays as it makes sure that the
allocation is appropriately padded to meet the alignment requirements described in Device
Memory Accesses, therefore ensuring best performance when accessing the row addresses
or performing copies between 2D arrays and other regions of device memory (using the
cudaMemcpy2D() and cudaMemcpy3D() functions). The returned pitch (or stride) must be used
to access array elements. The following code sample allocates a width x height 2D array of
floating-point values and shows how to loop over the array elements in device code:

// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch,
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                width * sizeof(float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global__ void MyKernel(float* devPtr,
                         size_t pitch, int width, int height)
{
    for (int r = 0; r < height; ++r) {
        float* row = (float*)((char*)devPtr + r * pitch);
        for (int c = 0; c < width; ++c) {
            float element = row[c];
        }
    }
}

The following code sample allocates a width x height x depth 3D array of floating-point
values and shows how to loop over the array elements in device code:

// Host code
int width = 64, height = 64, depth = 64;
cudaExtent extent = make_cudaExtent(width * sizeof(float),
                                    height, depth);
cudaPitchedPtr devPitchedPtr;
cudaMalloc3D(&devPitchedPtr, extent);
MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
                         int width, int height, int depth)
{
    char* devPtr = devPitchedPtr.ptr;
    size_t pitch = devPitchedPtr.pitch;
    size_t slicePitch = pitch * height;
    for (int z = 0; z < depth; ++z) {
        char* slice = devPtr + z * slicePitch;
        for (int y = 0; y < height; ++y) {
            float* row = (float*)(slice + y * pitch);
            for (int x = 0; x < width; ++x) {
                float element = row[x];
            }
        }
    }
}

Note: To avoid allocating too much memory and thus impacting system-wide performance,
request the allocation parameters from the user based on the problem size. If the
allocation fails, you can fallback to other slower memory types (cudaMallocHost(),
cudaHostRegister(), etc.), or return an error telling the user how much memory was needed
that was denied. If your application cannot request the allocation parameters for some reason,
we recommend using cudaMallocManaged() for platforms that support it.

The reference manual lists all the various functions used to copy memory between linear
memory allocated with cudaMalloc(), linear memory allocated with cudaMallocPitch()
or cudaMalloc3D(), CUDA arrays, and memory allocated for variables declared in global or
constant memory space.

The following code sample illustrates various ways of accessing global variables via the
runtime API:

__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol(constData, data, sizeof(data));
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cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(devData, &value, sizeof(float));

__device__ float* devPointer;
float* ptr;
cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory allocated
for a variable declared in global memory space. The size of the allocated memory is obtained
through cudaGetSymbolSize().

3.2.3.  Device Memory L2 Access Management
When a CUDA kernel accesses a data region in the global memory repeatedly, such data
accesses can be considered to be persisting. On the other hand, if the data is only accessed
once, such data accesses can be considered to be streaming.

Starting with CUDA 11.0, devices of compute capability 8.0 and above have the capability to
influence persistence of data in the L2 cache, potentially providing higher bandwidth and lower
latency accesses to global memory.

3.2.3.1.  L2 cache Set-Aside for Persisting Accesses
A portion of the L2 cache can be set aside to be used for persisting data accesses to global
memory. Persisting accesses have prioritized use of this set-aside portion of L2 cache,
whereas normal or streaming, accesses to global memory can only utilize this portion of L2
when it is unused by persisting accesses.

The L2 cache set-aside size for persisting accesses may be adjusted, within limits:

cudaGetDeviceProperties(&prop, device_id);                
size_t size = min(int(prop.l2CacheSize * 0.75), prop.persistingL2CacheMaxSize);
cudaDeviceSetLimit(cudaLimitPersistingL2CacheSize, size); /* set-aside 3/4 of L2
 cache for persisting accesses or the max allowed*/ 

When the GPU is configured in Multi-Instance GPU (MIG) mode, the L2 cache set-aside
functionality is disabled.

When using the Multi-Process Service (MPS), the L2 cache set-aside size
cannot be changed by cudaDeviceSetLimit. Instead, the set-aside size can
only be specified at start up of MPS server through the environment variable
CUDA_DEVICE_DEFAULT_PERSISTING_L2_CACHE_PERCENTAGE_LIMIT.

3.2.3.2.  L2 Policy for Persisting Accesses
An access policy window specifies a contiguous region of global memory and a persistence
property in the L2 cache for accesses within that region.
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The code example below shows how to set an L2 persisting access window using a CUDA
Stream.

CUDA Stream Example

cudaStreamAttrValue stream_attribute;                                         //
 Stream level attributes data structure
stream_attribute.accessPolicyWindow.base_ptr  = reinterpret_cast<void*>(ptr); //
 Global Memory data pointer
stream_attribute.accessPolicyWindow.num_bytes = num_bytes;                    //
 Number of bytes for persistence access.
                                                                              //
 (Must be less than cudaDeviceProp::accessPolicyMaxWindowSize)
stream_attribute.accessPolicyWindow.hitRatio  = 0.6;                          //
 Hint for cache hit ratio
stream_attribute.accessPolicyWindow.hitProp   = cudaAccessPropertyPersisting; //
 Type of access property on cache hit
stream_attribute.accessPolicyWindow.missProp  = cudaAccessPropertyStreaming;  //
 Type of access property on cache miss.

//Set the attributes to a CUDA stream of type cudaStream_t
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow,
 &stream_attribute);    

When a kernel subsequently executes in CUDA stream, memory accesses within the global
memory extent [ptr..ptr+num_bytes) are more likely to persist in the L2 cache than
accesses to other global memory locations.

L2 persistence can also be set for a CUDA Graph Kernel Node as shown in the example below:

CUDA GraphKernelNode Example

cudaKernelNodeAttrValue node_attribute;                                     //
 Kernel level attributes data structure
node_attribute.accessPolicyWindow.base_ptr  = reinterpret_cast<void*>(ptr); //
 Global Memory data pointer
node_attribute.accessPolicyWindow.num_bytes = num_bytes;                    //
 Number of bytes for persistence access.
                                                                            // (Must
 be less than cudaDeviceProp::accessPolicyMaxWindowSize)
node_attribute.accessPolicyWindow.hitRatio  = 0.6;                          // Hint
 for cache hit ratio
node_attribute.accessPolicyWindow.hitProp   = cudaAccessPropertyPersisting; // Type
 of access property on cache hit
node_attribute.accessPolicyWindow.missProp  = cudaAccessPropertyStreaming;  // Type
 of access property on cache miss.
                                    
//Set the attributes to a CUDA Graph Kernel node of type cudaGraphNode_t
cudaGraphKernelNodeSetAttribute(node, cudaKernelNodeAttributeAccessPolicyWindow,
 &node_attribute); 

The hitRatio parameter can be used to specify the fraction of accesses that receive the
hitProp property. In both of the examples above, 60% of the memory accesses in the global
memory region [ptr..ptr+num_bytes) have the persisting property and 40% of the memory
accesses have the streaming property. Which specific memory accesses are classified
as persisting (the hitProp) is random with a probability of approximately hitRatio; the
probability distribution depends upon the hardware architecture and the memory extent.
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For example, if the L2 set-aside cache size is 16KB and the num_bytes in the
accessPolicyWindow is 32KB:

‣ With a hitRatio of 0.5, the hardware will select, at random, 16KB of the 32KB window to
be designated as persisting and cached in the set-aside L2 cache area.

‣ With a hitRatio of 1.0, the hardware will attempt to cache the whole 32KB window in
the set-aside L2 cache area. Since the set-aside area is smaller than the window, cache
lines will be evicted to keep the most recently used 16KB of the 32KB data in the set-aside
portion of the L2 cache.

The hitRatio can therefore be used to avoid thrashing of cache lines and overall reduce the
amount of data moved into and out of the L2 cache.

A hitRatio value below 1.0 can be used to manually control the amount of data different
accessPolicyWindows from concurrent CUDA streams can cache in L2. For example, let
the L2 set-aside cache size be 16KB; two concurrent kernels in two different CUDA streams,
each with a 16KB accessPolicyWindow, and both with hitRatio value 1.0, might evict
each others' cache lines when competing for the shared L2 resource. However, if both
accessPolicyWindows have a hitRatio value of 0.5, they will be less likely to evict their own or
each others' persisting cache lines.

3.2.3.3.  L2 Access Properties
Three types of access properties are defined for different global memory data accesses:

 1. cudaAccessPropertyStreaming: Memory accesses that occur with the streaming
property are less likely to persist in the L2 cache because these accesses are
preferentially evicted.

 2. cudaAccessPropertyPersisting: Memory accesses that occur with the persisting
property are more likely to persist in the L2 cache because these accesses are
preferentially retained in the set-aside portion of L2 cache.

 3. cudaAccessPropertyNormal: This access property forcibly resets previously applied
persisting access property to a normal status. Memory accesses with the persisting
property from previous CUDA kernels may be retained in L2 cache long after their
intended use. This persistence-after-use reduces the amount of L2 cache available
to subsequent kernels that do not use the persisting property. Resetting an access
property window with the cudaAccessPropertyNormal property removes the persisting
(preferential retention) status of the prior access, as if the prior access had been without
an access property.

3.2.3.4.  L2 Persistence Example
The following example shows how to set-aside L2 cache for persistent accesses, use the set-
aside L2 cache in CUDA kernels via CUDA Stream and then reset the L2 cache.
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cudaStream_t stream;
cudaStreamCreate(&stream);                                                          
        // Create CUDA stream

cudaDeviceProp prop;                                                                
        // CUDA device properties variable
cudaGetDeviceProperties( &prop, device_id);                                         
        // Query GPU properties
size_t size = min( int(prop.l2CacheSize * 0.75) , prop.persistingL2CacheMaxSize );
cudaDeviceSetLimit( cudaLimitPersistingL2CacheSize, size);                          
        // set-aside 3/4 of L2 cache for persisting accesses or the max allowed

size_t window_size = min(prop.accessPolicyMaxWindowSize, num_bytes);                
        // Select minimum of user defined num_bytes and max window size.

cudaStreamAttrValue stream_attribute;                                               
        // Stream level attributes data structure
stream_attribute.accessPolicyWindow.base_ptr  = reinterpret_cast<void*>(data1);     
          // Global Memory data pointer
stream_attribute.accessPolicyWindow.num_bytes = window_size;                        
        // Number of bytes for persistence access
stream_attribute.accessPolicyWindow.hitRatio  = 0.6;                                
        // Hint for cache hit ratio
stream_attribute.accessPolicyWindow.hitProp   = cudaAccessPropertyPersisting;       
        // Persistence Property
stream_attribute.accessPolicyWindow.missProp  = cudaAccessPropertyStreaming;        
        // Type of access property on cache miss

cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow,
 &stream_attribute);   // Set the attributes to a CUDA Stream

for(int i = 0; i < 10; i++) {
    cuda_kernelA<<<grid_size,block_size,0,stream>>>(data1);                         
        // This data1 is used by a kernel multiple times
}                                                                                   
        // [data1 + num_bytes) benefits from L2 persistence
cuda_kernelB<<<grid_size,block_size,0,stream>>>(data1);                             
        // A different kernel in the same stream can also benefit
                                                                                    
        // from the persistence of data1

stream_attribute.accessPolicyWindow.num_bytes = 0;                                  
        // Setting the window size to 0 disable it
cudaStreamSetAttribute(stream, cudaStreamAttributeAccessPolicyWindow,
 &stream_attribute);   // Overwrite the access policy attribute to a CUDA Stream
cudaCtxResetPersistingL2Cache();                                                    
        // Remove any persistent lines in L2 

cuda_kernelC<<<grid_size,block_size,0,stream>>>(data2);                             
        // data2 can now benefit from full L2 in normal mode
            

3.2.3.5.  Reset L2 Access to Normal
A persisting L2 cache line from a previous CUDA kernel may persist in L2 long after it has
been used. Hence, a reset to normal for L2 cache is important for streaming or normal
memory accesses to utilize the L2 cache with normal priority. There are three ways a
persisting access can be reset to normal status.

 1. Reset a previous persisting memory region with the access property,
cudaAccessPropertyNormal.
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 2. Reset all persisting L2 cache lines to normal by calling
cudaCtxResetPersistingL2Cache().

 3. Eventually untouched lines are automatically reset to normal. Reliance on automatic reset
is strongly discouraged because of the undetermined length of time required for automatic
reset to occur.

3.2.3.6.  Manage Utilization of L2 set-aside cache
Multiple CUDA kernels executing concurrently in different CUDA streams may have a different
access policy window assigned to their streams. However, the L2 set-aside cache portion is
shared among all these concurrent CUDA kernels. As a result, the net utilization of this set-
aside cache portion is the sum of all the concurrent kernels' individual use. The benefits of
designating memory accesses as persisting diminish as the volume of persisting accesses
exceeds the set-aside L2 cache capacity.

To manage utilization of the set-aside L2 cache portion, an application must consider the
following:

‣ Size of L2 set-aside cache.

‣ CUDA kernels that may concurrently execute.

‣ The access policy window for all the CUDA kernels that may concurrently execute.

‣ When and how L2 reset is required to allow normal or streaming accesses to utilize the
previously set-aside L2 cache with equal priority.

3.2.3.7.  Query L2 cache Properties
Properties related to L2 cache are a part of cudaDeviceProp struct and can be queried using
CUDA runtime API cudaGetDeviceProperties

CUDA Device Properties include:

‣ l2CacheSize: The amount of available L2 cache on the GPU.

‣ persistingL2CacheMaxSize: The maximum amount of L2 cache that can be set-aside for
persisting memory accesses.

‣ accessPolicyMaxWindowSize: The maximum size of the access policy window.

3.2.3.8.  Control L2 Cache Set-Aside Size for Persisting
Memory Access

The L2 set-aside cache size for persisting memory accesses is queried using
CUDA runtime API cudaDeviceGetLimit and set using CUDA runtime API
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cudaDeviceSetLimit as a cudaLimit. The maximum value for setting this limit is
cudaDeviceProp::persistingL2CacheMaxSize.

enum cudaLimit {
    /* other fields not shown */
    cudaLimitPersistingL2CacheSize
};           

3.2.4.  Shared Memory
As detailed in Variable Memory Space Specifiers shared memory is allocated using the
__shared__ memory space specifier.

Shared memory is expected to be much faster than global memory as mentioned in Thread
Hierarchy and detailed in Shared Memory. It can be used as scratchpad memory (or software
managed cache) to minimize global memory accesses from a CUDA block as illustrated by the
following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication that
does not take advantage of shared memory. Each thread reads one row of A and one column
of B and computes the corresponding element of C as illustrated in Figure 7. A is therefore
read B.width times from global memory and B is read A.height times.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
    int width;
    int height;
    float* elements;
} Matrix;

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
               cudaMemcpyHostToDevice);

    // Allocate C in device memory
    Matrix d_C;
    d_C.width = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);
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    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Each thread computes one element of C
    // by accumulating results into Cvalue
    float Cvalue = 0;
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    for (int e = 0; e < A.width; ++e)
        Cvalue += A.elements[row * A.width + e]
                * B.elements[e * B.width + col];
    C.elements[row * C.width + col] = Cvalue;
}
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Figure 7. Matrix Multiplication without Shared Memory
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The following code sample is an implementation of matrix multiplication that does take
advantage of shared memory. In this implementation, each thread block is responsible for
computing one square sub-matrix Csub of C and each thread within the block is responsible for
computing one element of Csub. As illustrated in Figure 8, Csub is equal to the product of two
rectangular matrices: the sub-matrix of A of dimension (A.width, block_size) that has the same
row indices as Csub, and the sub-matrix of B of dimension (block_size, A.width )that has the
same column indices as Csub. In order to fit into the device's resources, these two rectangular
matrices are divided into as many square matrices of dimension block_size as necessary and
Csub is computed as the sum of the products of these square matrices. Each of these products
is performed by first loading the two corresponding square matrices from global memory to
shared memory with one thread loading one element of each matrix, and then by having each
thread compute one element of the product. Each thread accumulates the result of each of
these products into a register and once done writes the result to global memory.

By blocking the computation this way, we take advantage of fast shared memory and save a
lot of global memory bandwidth since A is only read (B.width / block_size) times from global
memory and B is read (A.height / block_size) times.
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The Matrix type from the previous code sample is augmented with a stride field, so that sub-
matrices can be efficiently represented with the same type. __device__ functions are used to
get and set elements and build any sub-matrix from a matrix.

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
    int width;
    int height;
    int stride; 
    float* elements;
} Matrix;

// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
    return A.elements[row * A.stride + col];
}

// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
                           float value)
{
    A.elements[row * A.stride + col] = value;
}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
 __device__ Matrix GetSubMatrix(Matrix A, int row, int col) 
{
    Matrix Asub;
    Asub.width    = BLOCK_SIZE;
    Asub.height   = BLOCK_SIZE;
    Asub.stride   = A.stride;
    Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
                                         + BLOCK_SIZE * col];
    return Asub;
}

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);

    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
    cudaMemcpyHostToDevice);
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    // Allocate C in device memory
    Matrix d_C;
    d_C.width = d_C.stride = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);

    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
 __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Block row and column
    int blockRow = blockIdx.y;
    int blockCol = blockIdx.x;

    // Each thread block computes one sub-matrix Csub of C
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
    float Cvalue = 0;

    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;

    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

        // Get sub-matrix Asub of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);

        // Get sub-matrix Bsub of B
        Matrix Bsub = GetSubMatrix(B, m, blockCol);

        // Shared memory used to store Asub and Bsub respectively
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

        // Load Asub and Bsub from device memory to shared memory
        // Each thread loads one element of each sub-matrix
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);

        // Synchronize to make sure the sub-matrices are loaded
        // before starting the computation
        __syncthreads();

        // Multiply Asub and Bsub together
        for (int e = 0; e < BLOCK_SIZE; ++e)
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            Cvalue += As[row][e] * Bs[e][col];

        // Synchronize to make sure that the preceding
        // computation is done before loading two new
        // sub-matrices of A and B in the next iteration
        __syncthreads();
    }

    // Write Csub to device memory
    // Each thread writes one element
    SetElement(Csub, row, col, Cvalue);
}

Figure 8. Matrix Multiplication with Shared Memory
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3.2.5.  Page-Locked Host Memory
The runtime provides functions to allow the use of page-locked (also known as pinned) host
memory (as opposed to regular pageable host memory allocated by malloc()):

‣ cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host memory;

‣ cudaHostRegister() page-locks a range of memory allocated by malloc() (see
reference manual for limitations).
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Using page-locked host memory has several benefits:

‣ Copies between page-locked host memory and device memory can be performed
concurrently with kernel execution for some devices as mentioned in Asynchronous
Concurrent Execution.

‣ On some devices, page-locked host memory can be mapped into the address space of the
device, eliminating the need to copy it to or from device memory as detailed in Mapped
Memory.

‣ On systems with a front-side bus, bandwidth between host memory and device memory
is higher if host memory is allocated as page-locked and even higher if in addition it is
allocated as write-combining as described in Write-Combining Memory.

Page-locked host memory is a scarce resource however, so allocations in page-locked
memory will start failing long before allocations in pageable memory. In addition, by reducing
the amount of physical memory available to the operating system for paging, consuming too
much page-locked memory reduces overall system performance.

Note: Page-locked host memory is not cached on non I/O coherent Tegra devices. Also,
cudaHostRegister() is not supported on non I/O coherent Tegra devices.

The simple zero-copy CUDA sample comes with a detailed document on the page-locked
memory APIs.

3.2.5.1.  Portable Memory
A block of page-locked memory can be used in conjunction with any device in the system
(see Multi-Device System for more details on multi-device systems), but by default, the
benefits of using page-locked memory described above are only available in conjunction
with the device that was current when the block was allocated (and with all devices sharing
the same unified address space, if any, as described in Unified Virtual Address Space). To
make these advantages available to all devices, the block needs to be allocated by passing
the flag cudaHostAllocPortable to cudaHostAlloc() or page-locked by passing the flag
cudaHostRegisterPortable to cudaHostRegister().

3.2.5.2.  Write-Combining Memory
By default page-locked host memory is allocated as cacheable. It can optionally be
allocated as write-combining instead by passing flag cudaHostAllocWriteCombined to
cudaHostAlloc(). Write-combining memory frees up the host's L1 and L2 cache resources,
making more cache available to the rest of the application. In addition, write-combining
memory is not snooped during transfers across the PCI Express bus, which can improve
transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-combining
memory should in general be used for memory that the host only writes to.
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3.2.5.3.  Mapped Memory
A block of page-locked host memory can also be mapped into the address space of the
device by passing flag cudaHostAllocMapped to cudaHostAlloc() or by passing flag
cudaHostRegisterMapped to cudaHostRegister(). Such a block has therefore in general
two addresses: one in host memory that is returned by cudaHostAlloc() or malloc(), and
one in device memory that can be retrieved using cudaHostGetDevicePointer() and then
used to access the block from within a kernel. The only exception is for pointers allocated with
cudaHostAlloc() and when a unified address space is used for the host and the device as
mentioned in Unified Virtual Address Space.

Accessing host memory directly from within a kernel does not provide the same bandwidth as
device memory, but does have some advantages:

‣ There is no need to allocate a block in device memory and copy data between this block
and the block in host memory; data transfers are implicitly performed as needed by the
kernel;

‣ There is no need to use streams (see Concurrent Data Transfers) to overlap data transfers
with kernel execution; the kernel-originated data transfers automatically overlap with
kernel execution.

Since mapped page-locked memory is shared between host and device however, the
application must synchronize memory accesses using streams or events (see Asynchronous
Concurrent Execution) to avoid any potential read-after-write, write-after-read, or write-after-
write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-
locked memory mapping must be enabled by calling cudaSetDeviceFlags() with
the cudaDeviceMapHost flag before any other CUDA call is performed. Otherwise,
cudaHostGetDevicePointer() will return an error.

cudaHostGetDevicePointer() also returns an error if the device does not support
mapped page-locked host memory. Applications may query this capability by checking the
canMapHostMemory device property (see Device Enumeration), which is equal to 1 for devices
that support mapped page-locked host memory.

Note that atomic functions (see Atomic Functions) operating on mapped page-locked memory
are not atomic from the point of view of the host or other devices.

Also note that CUDA runtime requires that 1-byte, 2-byte, 4-byte, and 8-byte naturally aligned
loads and stores to host memory initiated from the device are preserved as single accesses
from the point of view of the host and other devices. On some platforms, atomics to memory
may be broken by the hardware into separate load and store operations. These component
load and store operations have the same requirements on preservation of naturally aligned
accesses. As an example, the CUDA runtime does not support a PCI Express bus topology
where a PCI Express bridge splits 8-byte naturally aligned writes into two 4-byte writes
between the device and the host.
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3.2.6.  Asynchronous Concurrent Execution
CUDA exposes the following operations as independent tasks that can operate concurrently
with one another:

‣ Computation on the host;

‣ Computation on the device;

‣ Memory transfers from the host to the device;

‣ Memory transfers from the device to the host;

‣ Memory transfers within the memory of a given device;

‣ Memory transfers among devices.

The level of concurrency achieved between these operations will depend on the feature set and
compute capability of the device as described below.

3.2.6.1.  Concurrent Execution between Host and Device
Concurrent host execution is facilitated through asynchronous library functions that
return control to the host thread before the device completes the requested task. Using
asynchronous calls, many device operations can be queued up together to be executed by the
CUDA driver when appropriate device resources are available. This relieves the host thread of
much of the responsibility to manage the device, leaving it free for other tasks. The following
device operations are asynchronous with respect to the host:

‣ Kernel launches;

‣ Memory copies within a single device's memory;

‣ Memory copies from host to device of a memory block of 64 KB or less;

‣ Memory copies performed by functions that are suffixed with Async;

‣ Memory set function calls.

Programmers can globally disable asynchronicity of kernel launches for all CUDA applications
running on a system by setting the CUDA_LAUNCH_BLOCKING environment variable to 1. This
feature is provided for debugging purposes only and should not be used as a way to make
production software run reliably.

Kernel launches are synchronous if hardware counters are collected via a profiler (Nsight,
Visual Profiler) unless concurrent kernel profiling is enabled. Async memory copies will also
be synchronous if they involve host memory that is not page-locked.
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3.2.6.2.  Concurrent Kernel Execution
Some devices of compute capability 2.x and higher can execute multiple kernels concurrently.
Applications may query this capability by checking the concurrentKernels device property
(see Device Enumeration), which is equal to 1 for devices that support it.

The maximum number of kernel launches that a device can execute concurrently depends on
its compute capability and is listed in Table 15.

A kernel from one CUDA context cannot execute concurrently with a kernel from another
CUDA context.

Kernels that use many textures or a large amount of local memory are less likely to execute
concurrently with other kernels.

3.2.6.3.  Overlap of Data Transfer and Kernel Execution
Some devices can perform an asynchronous memory copy to or from the GPU
concurrently with kernel execution. Applications may query this capability by checking the
asyncEngineCount device property (see Device Enumeration), which is greater than zero for
devices that support it. If host memory is involved in the copy, it must be page-locked.

It is also possible to perform an intra-device copy simultaneously with kernel execution (on
devices that support the concurrentKernels device property) and/or with copies to or from
the device (for devices that support the asyncEngineCount property). Intra-device copies are
initiated using the standard memory copy functions with destination and source addresses
residing on the same device.

3.2.6.4.  Concurrent Data Transfers
Some devices of compute capability 2.x and higher can overlap copies to and from the device.
Applications may query this capability by checking the asyncEngineCount device property
(see Device Enumeration), which is equal to 2 for devices that support it. In order to be
overlapped, any host memory involved in the transfers must be page-locked.

3.2.6.5.  Streams
Applications manage the concurrent operations described above through streams. A stream
is a sequence of commands (possibly issued by different host threads) that execute in order.
Different streams, on the other hand, may execute their commands out of order with respect
to one another or concurrently; this behavior is not guaranteed and should therefore not be
relied upon for correctness (e.g., inter-kernel communication is undefined). The commands
issued on a stream may execute when all the dependencies of the command are met. The
dependencies could be previously launched commands on same stream or dependencies
from other streams. The successful completion of synchronize call guarantees that all the
commands launched are completed.
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3.2.6.5.1.  Creation and Destruction
A stream is defined by creating a stream object and specifying it as the stream parameter to a
sequence of kernel launches and host <-> device memory copies. The following code sample
creates two streams and allocates an array hostPtr of float in page-locked memory.

cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);

Each of these streams is defined by the following code sample as a sequence of one memory
copy from host to device, one kernel launch, and one memory copy from device to host:

for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel <<<100, 512, 0, stream[i]>>>
          (outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device
memory, processes inputDevPtr on the device by calling MyKernel(), and copies the result
outputDevPtr back to the same portion of hostPtr. Overlapping Behavior describes how the
streams overlap in this example depending on the capability of the device. Note that hostPtr
must point to page-locked host memory for any overlap to occur.

Streams are released by calling cudaStreamDestroy().

for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);

In case the device is still doing work in the stream when cudaStreamDestroy() is called,
the function will return immediately and the resources associated with the stream will be
released automatically once the device has completed all work in the stream.

3.2.6.5.2.  Default Stream
Kernel launches and host <-> device memory copies that do not specify any stream
parameter, or equivalently that set the stream parameter to zero, are issued to the default
stream. They are therefore executed in order.

For code that is compiled using the --default-stream per-thread compilation flag (or that
defines the CUDA_API_PER_THREAD_DEFAULT_STREAM macro before including CUDA headers
(cuda.h and cuda_runtime.h)), the default stream is a regular stream and each host thread
has its own default stream.

Note: #define CUDA_API_PER_THREAD_DEFAULT_STREAM 1 cannot be used to enable this
behavior when the code is compiled by nvcc as nvcc implicitly includes cuda_runtime.h at the
top of the translation unit. In this case the --default-stream per-thread compilation flag
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needs to be used or the CUDA_API_PER_THREAD_DEFAULT_STREAM macro needs to be defined
with the -DCUDA_API_PER_THREAD_DEFAULT_STREAM=1 compiler flag.

For code that is compiled using the --default-stream legacy compilation flag, the default
stream is a special stream called the NULL stream and each device has a single NULL stream
used for all host threads. The NULL stream is special as it causes implicit synchronization as
described in Implicit Synchronization.

For code that is compiled without specifying a --default-stream compilation flag, --
default-stream legacy is assumed as the default.

3.2.6.5.3.  Explicit Synchronization
There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize() waits until all preceding commands in all streams of all host
threads have completed.

cudaStreamSynchronize()takes a stream as a parameter and waits until all preceding
commands in the given stream have completed. It can be used to synchronize the host with a
specific stream, allowing other streams to continue executing on the device.

cudaStreamWaitEvent()takes a stream and an event as parameters (see Events for a
description of events)and makes all the commands added to the given stream after the call to
cudaStreamWaitEvent()delay their execution until the given event has completed.

cudaStreamQuery()provides applications with a way to know if all preceding commands in a
stream have completed.

3.2.6.5.4.  Implicit Synchronization
Two commands from different streams cannot run concurrently if any one of the following
operations is issued in-between them by the host thread:

‣ a page-locked host memory allocation,

‣ a device memory allocation,

‣ a device memory set,

‣ a memory copy between two addresses to the same device memory,

‣ any CUDA command to the NULL stream,

‣ a switch between the L1/shared memory configurations described in Compute Capability
3.x and Compute Capability 7.x.

For devices that support concurrent kernel execution and are of compute capability 3.0 or
lower, any operation that requires a dependency check to see if a streamed kernel launch is
complete:

‣ Can start executing only when all thread blocks of all prior kernel launches from any
stream in the CUDA context have started executing;
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‣ Blocks all later kernel launches from any stream in the CUDA context until the kernel
launch being checked is complete.

Operations that require a dependency check include any other commands within the
same stream as the launch being checked and any call to cudaStreamQuery() on that
stream. Therefore, applications should follow these guidelines to improve their potential for
concurrent kernel execution:

‣ All independent operations should be issued before dependent operations,

‣ Synchronization of any kind should be delayed as long as possible.

3.2.6.5.5.  Overlapping Behavior
The amount of execution overlap between two streams depends on the order in which the
commands are issued to each stream and whether or not the device supports overlap of data
transfer and kernel execution (see Overlap of Data Transfer and Kernel Execution), concurrent
kernel execution (see Concurrent Kernel Execution), and/or concurrent data transfers (see
Concurrent Data Transfers).

For example, on devices that do not support concurrent data transfers, the two streams of the
code sample of Creation and Destruction do not overlap at all because the memory copy from
host to device is issued to stream[1] after the memory copy from device to host is issued to
stream[0], so it can only start once the memory copy from device to host issued to stream[0]
has completed. If the code is rewritten the following way (and assuming the device supports
overlap of data transfer and kernel execution)

for (int i = 0; i < 2; ++i)
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
for (int i = 0; i < 2; ++i)
    MyKernel<<<100, 512, 0, stream[i]>>>
          (outputDevPtr + i * size, inputDevPtr + i * size, size);
    for (int i = 0; i < 2; ++i)
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);

then the memory copy from host to device issued to stream[1] overlaps with the kernel launch
issued to stream[0].

On devices that do support concurrent data transfers, the two streams of the code sample of
Creation and Destruction do overlap: The memory copy from host to device issued to stream[1]
overlaps with the memory copy from device to host issued to stream[0] and even with the
kernel launch issued to stream[0] (assuming the device supports overlap of data transfer
and kernel execution). However, for devices of compute capability 3.0 or lower, the kernel
executions cannot possibly overlap because the second kernel launch is issued to stream[1]
after the memory copy from device to host is issued to stream[0], so it is blocked until the first
kernel launch issued to stream[0] is complete as per Implicit Synchronization. If the code is
rewritten as above, the kernel executions overlap (assuming the device supports concurrent
kernel execution) since the second kernel launch is issued to stream[1] before the memory
copy from device to host is issued to stream[0]. In that case however, the memory copy from
device to host issued to stream[0] only overlaps with the last thread blocks of the kernel
launch issued to stream[1] as per Implicit Synchronization, which can represent only a small
portion of the total execution time of the kernel.
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3.2.6.5.6.  Host Functions (Callbacks)
The runtime provides a way to insert a CPU function call at any point into a stream via
cudaLaunchHostFunc(). The provided function is executed on the host once all commands
issued to the stream before the callback have completed.

The following code sample adds the host function MyCallback to each of two streams after
issuing a host-to-device memory copy, a kernel launch and a device-to-host memory copy into
each stream. The function will begin execution on the host after each of the device-to-host
memory copies completes.

void CUDART_CB MyCallback(cudaStream_t stream, cudaError_t status, void *data){
    printf("Inside callback %d\n", (size_t)data);
}
...
for (size_t i = 0; i < 2; ++i) {
    cudaMemcpyAsync(devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice,
 stream[i]);
    MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);
    cudaMemcpyAsync(hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
 stream[i]);
    cudaLaunchHostFunc(stream[i], MyCallback, (void*)i);
}
        

The commands that are issued in a stream after a host function do not start executing before
the function has completed.

A host function enqueued into a stream must not make CUDA API calls (directly or indirectly),
as it might end up waiting on itself if it makes such a call leading to a deadlock.

3.2.6.5.7.  Stream Priorities
The relative priorities of streams can be specified at creation using
cudaStreamCreateWithPriority(). The range of allowable priorities, ordered as [ highest
priority, lowest priority ] can be obtained using the cudaDeviceGetStreamPriorityRange()
function. At runtime, pending work in higher-priority streams takes preference over pending
work in low-priority streams.

The following code sample obtains the allowable range of priorities for the current device, and
creates streams with the highest and lowest available priorities.

// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);
// create streams with highest and lowest available priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, priority_low);

3.2.6.6.  CUDA Graphs
CUDA Graphs present a new model for work submission in CUDA. A graph is a series of
operations, such as kernel launches, connected by dependencies, which is defined separately
from its execution. This allows a graph to be defined once and then launched repeatedly.
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Separating out the definition of a graph from its execution enables a number of optimizations:
first, CPU launch costs are reduced compared to streams, because much of the setup is done
in advance; second, presenting the whole workflow to CUDA enables optimizations which
might not be possible with the piecewise work submission mechanism of streams.

To see the optimizations possible with graphs, consider what happens in a stream: when you
place a kernel into a stream, the host driver performs a sequence of operations in preparation
for the execution of the kernel on the GPU. These operations, necessary for setting up and
launching the kernel, are an overhead cost which must be paid for each kernel that is issued.
For a GPU kernel with a short execution time, this overhead cost can be a significant fraction
of the overall end-to-end execution time.

Work submission using graphs is separated into three distinct stages: definition, instantiation,
and execution.

‣ During the definition phase, a program creates a description of the operations in the graph
along with the dependencies between them.

‣ Instantiation takes a snapshot of the graph template, validates it, and performs much of
the setup and initialization of work with the aim of minimizing what needs to be done at
launch. The resulting instance is known as an executable graph.

‣ An executable graph may be launched into a stream, similar to any other CUDA work. It
may be launched any number of times without repeating the instantiation.

3.2.6.6.1.  Graph Structure
An operation forms a node in a graph. The dependencies between the operations are the
edges. These dependencies constrain the execution sequence of the operations.

An operation may be scheduled at any time once the nodes on which it depends are complete.
Scheduling is left up to the CUDA system.
3.2.6.6.1.1.  Node Types

A graph node can be one of:

‣ kernel

‣ CPU function call

‣ memory copy

‣ memset

‣ empty node

‣ waiting on an event

‣ recording an event

‣ signalling an external semaphore

‣ waiting on an external semaphore

‣ child graph: To execute a separate nested graph. See Figure 9.



Programming Interface

CUDA C++ Programming Guide PG-02829-001_v11.5   |   44

Figure 9. Child Graph Example

3.2.6.6.2.  Creating a Graph Using Graph APIs
Graphs can be created via two mechanisms: explicit API and stream capture. The following is
an example of creating and executing the below graph.
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Figure 10. Creating a Graph Using Graph APIs Example

// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

// For the purpose of this example, we'll create
// the nodes separately from the dependencies to
// demonstrate that it can be done in two stages.
// Note that dependencies can also be specified 
// at node creation. 
cudaGraphAddKernelNode(&a, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&b, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&c, graph, NULL, 0, &nodeParams);
cudaGraphAddKernelNode(&d, graph, NULL, 0, &nodeParams);

// Now set up dependencies on each node
cudaGraphAddDependencies(graph, &a, &b, 1);     // A->B
cudaGraphAddDependencies(graph, &a, &c, 1);     // A->C
cudaGraphAddDependencies(graph, &b, &d, 1);     // B->D
cudaGraphAddDependencies(graph, &c, &d, 1);     // C->D
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3.2.6.6.3.  Creating a Graph Using Stream Capture
Stream capture provides a mechanism to create a graph from existing stream-based APIs. A
section of code which launches work into streams, including existing code, can be bracketed
with calls to cudaStreamBeginCapture() and cudaStreamEndCapture(). See below.

cudaGraph_t graph;

cudaStreamBeginCapture(stream);

kernel_A<<< ..., stream >>>(...);
kernel_B<<< ..., stream >>>(...);
libraryCall(stream);
kernel_C<<< ..., stream >>>(...);

cudaStreamEndCapture(stream, &graph);

A call to cudaStreamBeginCapture() places a stream in capture mode. When a stream is
being captured, work launched into the stream is not enqueued for execution. It is instead
appended to an internal graph that is progressively being built up. This graph is then returned
by calling cudaStreamEndCapture(), which also ends capture mode for the stream. A graph
which is actively being constructed by stream capture is referred to as a capture graph.

Stream capture can be used on any CUDA stream except cudaStreamLegacy (the “NULL
stream”). Note that it can be used on cudaStreamPerThread. If a program is using the legacy
stream, it may be possible to redefine stream 0 to be the per-thread stream with no functional
change. See Default Stream.

Whether a stream is being captured can be queried with cudaStreamIsCapturing().
3.2.6.6.3.1.  Cross-stream Dependencies and Events

Stream capture can handle cross-stream dependencies expressed with cudaEventRecord()
and cudaStreamWaitEvent(), provided the event being waited upon was recorded into the
same capture graph.

When an event is recorded in a stream that is in capture mode, it results in a captured event. A
captured event represents a set of nodes in a capture graph.

When a captured event is waited on by a stream, it places the stream in capture mode if it is
not already, and the next item in the stream will have additional dependencies on the nodes in
the captured event. The two streams are then being captured to the same capture graph.

When cross-stream dependencies are present in stream capture, cudaStreamEndCapture()
must still be called in the same stream where cudaStreamBeginCapture() was called;
this is the origin stream. Any other streams which are being captured to the same capture
graph, due to event-based dependencies, must also be joined back to the origin stream. This
is illustrated below. All streams being captured to the same capture graph are taken out of
capture mode upon cudaStreamEndCapture(). Failure to rejoin to the origin stream will
result in failure of the overall capture operation.

// stream1 is the origin stream
cudaStreamBeginCapture(stream1);

kernel_A<<< ..., stream1 >>>(...);

// Fork into stream2



Programming Interface

CUDA C++ Programming Guide PG-02829-001_v11.5   |   47

cudaEventRecord(event1, stream1);
cudaStreamWaitEvent(stream2, event1);

kernel_B<<< ..., stream1 >>>(...);
kernel_C<<< ..., stream2 >>>(...);

// Join stream2 back to origin stream (stream1)
cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(stream1, event2);

kernel_D<<< ..., stream1 >>>(...);

// End capture in the origin stream
cudaStreamEndCapture(stream1, &graph);

// stream1 and stream2 no longer in capture mode    

Graph returned by the above code is shown in Figure 10.

Note: When a stream is taken out of capture mode, the next non-captured item in the stream
(if any) will still have a dependency on the most recent prior non-captured item, despite
intermediate items having been removed.

3.2.6.6.3.2.  Prohibited and Unhandled Operations

It is invalid to synchronize or query the execution status of a stream which is being captured
or a captured event, because they do not represent items scheduled for execution. It is also
invalid to query the execution status of or synchronize a broader handle which encompasses
an active stream capture, such as a device or context handle when any associated stream is in
capture mode.

When any stream in the same context is being captured, and it was not created with
cudaStreamNonBlocking, any attempted use of the legacy stream is invalid. This is because
the legacy stream handle at all times encompasses these other streams; enqueueing to the
legacy stream would create a dependency on the streams being captured, and querying it or
synchronizing it would query or synchronize the streams being captured.

It is therefore also invalid to call synchronous APIs in this case. Synchronous APIs, such as
cudaMemcpy(), enqueue work to the legacy stream and synchronize it before returning.

Note: As a general rule, when a dependency relation would connect something that is captured
with something that was not captured and instead enqueued for execution, CUDA prefers to
return an error rather than ignore the dependency. An exception is made for placing a stream
into or out of capture mode; this severs a dependency relation between items added to the
stream immediately before and after the mode transition.

It is invalid to merge two separate capture graphs by waiting on a captured event from a
stream which is being captured and is associated with a different capture graph than the
event. It is invalid to wait on a non-captured event from a stream which is being captured.

A small number of APIs that enqueue asynchronous operations into streams are not currently
supported in graphs and will return an error if called with a stream which is being captured,
such as cudaStreamAttachMemAsync().
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3.2.6.6.3.3.  Invalidation

When an invalid operation is attempted during stream capture, any associated capture graphs
are invalidated. When a capture graph is invalidated, further use of any streams which are
being captured or captured events associated with the graph is invalid and will return an
error, until stream capture is ended with cudaStreamEndCapture(). This call will take the
associated streams out of capture mode, but will also return an error value and a NULL graph.

3.2.6.6.4.  Updating Instantiated Graphs
Work submission using graphs is separated into three distinct stages: definition, instantiation,
and execution. In situations where the workflow is not changing, the overhead of definition and
instantiation can be amortized over many executions, and graphs provide a clear advantage
over streams.

A graph is a snapshot of a workflow, including kernels, parameters, and dependencies, in
order to replay it as rapidly and efficiently as possible. In situations where the workflow
changes the graph becomes out of date and must be modified. Major changes to graph
structure such as topology or types of nodes will require re-instantiation of the source graph
because various topology-related optimization techniques must be re-applied.

The cost of repeated instantiation can reduce the overall performance benefit from graph
execution, but it is common for only node parameters, such as kernel parameters and
cudaMemcpy addresses, to change while graph topology remains the same. For this case,
CUDA provides a lightweight mechanism known as “Graph Update,” which allows certain node
parameters to be modified in-place without having to rebuild the entire graph. This is much
more efficient than re-instantiation.

Updates will take effect the next time the graph is launched, so they will not impact previous
graph launches, even if they are running at the time of the update. A graph may be updated
and relaunched repeatedly, so multiple updates/launches can be queued on a stream.

CUDA provides two mechanisms for updating instantiated graphs, whole graph update and
individual node update. Whole graph update allows the user to supply a topologically identical
cudaGraph_t object whose nodes contain updated parameters. Individual node update
allows the user to explicitly update the parameters of individual nodes. Using an updated
cudaGraph_t is more convenient when a large number of nodes are being updated, or when
the graph topology is unknown to the caller (i.e., The graph resulted from stream capture of a
library call). Using individual node update is preferred when the number of changes is small
and the user has the handles to the nodes requiring updates. Individual node update skips the
topology checks and comparisons for unchanged nodes, so it can be more efficient in many
cases. The following sections explain each approach in more detail.
3.2.6.6.4.1.  Graph Update Limitations

Kernel nodes:

‣ The owning context of the function cannot change.

‣ A node whose function originally did not use CUDA dynamic parallelism cannot be updated
to a function which uses CUDA dynamic parallelism.

cudaMemset and cudaMemcpy nodes:
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‣ The CUDA device(s) to which the operand(s) was allocated/mapped cannot change.

‣ The source/destination memory must be allocated from the same context as the original
source/destination memory.

‣ Only 1D cudaMemset/cudaMemcpy nodes can be changed.

Additional memcpy node restrictions:

‣ Changing either the source or destination memory type (i.e., cudaPitchedPtr,
cudaArray_t, etc.), or the type of transfer (i.e., cudaMemcpyKind) is not supported.

External semaphore wait nodes and record nodes:

‣ Changing the number of semaphores is not supported.

There are no restrictions on updates to host nodes, event record nodes, or event wait nodes.
3.2.6.6.4.2.  Whole Graph Update

cudaGraphExecUpdate() allows an instantiated graph (the "original graph") to be updated
with the parameters from a topologically identical graph (the "updating" graph). The
topology of the updating graph must be identical to the original graph used to instantiate the
cudaGraphExec_t. In addition, the order in which nodes were added to, or removed from, the
original graph must match the order in which the nodes were added to (or removed from) the
updating graph. Therefore, when using stream capture, the nodes must be captured in the
same order and when using the explicit graph node creation APIs, all nodes must be added
and/or deleted in the same order.

The following example shows how the API could be used to update an instantiated graph:

cudaGraphExec_t graphExec = NULL;

for (int i = 0; i < 10; i++) {
    cudaGraph_t graph;
    cudaGraphExecUpdateResult updateResult;
    cudaGraphNode_t errorNode;

    // In this example we use stream capture to create the graph.
    // You can also use the Graph API to produce a graph.
    cudaStreamBeginCapture(stream, cudaStreamCaptureModeGlobal);

    // Call a user-defined, stream based workload, for example
    do_cuda_work(stream);

    cudaStreamEndCapture(stream, &graph);

    // If we've already instantiated the graph, try to update it directly
    // and avoid the instantiation overhead
    if (graphExec != NULL) {
        // If the graph fails to update, errorNode will be set to the
        // node causing the failure and updateResult will be set to a
        // reason code.
        cudaGraphExecUpdate(graphExec, graph, &errorNode, &updateResult);
    }

    // Instantiate during the first iteration or whenever the update
    // fails for any reason
    if (graphExec == NULL || updateResult != cudaGraphExecUpdateSuccess) {

        // If a previous update failed, destroy the cudaGraphExec_t
        // before re-instantiating it
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        if (graphExec != NULL) {
            cudaGraphExecDestroy(graphExec);
        }   
        // Instantiate graphExec from graph. The error node and
        // error message parameters are unused here.
        cudaGraphInstantiate(&graphExec, graph, NULL, NULL, 0);
    }   

    cudaGraphDestroy(graph);
    cudaGraphLaunch(graphExec, stream);
    cudaStreamSynchronize(stream);
}

A typical workflow is to create the initial cudaGraph_t using either the stream capture
or graph API. The cudaGraph_t is then instantiated and launched as normal. After the
initial launch, a new cudaGraph_t is created using the same method as the initial graph
and cudaGraphExecUpdate() is called. If the graph update is successful, indicated by
the updateResult parameter in the above example, the updated cudaGraphExec_t
is launched. If the update fails for any reason, the cudaGraphExecDestroy() and
cudaGraphInstantiate() are called to destroy the original cudaGraphExec_t and
instantiate a new one.

It is also possible to update the cudaGraph_t nodes directly (i.e., Using
cudaGraphKernelNodeSetParams()) and subsequently update the cudaGraphExec_t,
however it is more efficient to use the explicit node update APIs covered in the next section.

Please see the Graph API for more information on usage and current limitations.
3.2.6.6.4.3.  Individual node update

Instantiated graph node parameters can be updated directly. This eliminates the overhead
of instantiation as well as the overhead of creating a new cudaGraph_t. If the number of
nodes requiring update is small relative to the total number of nodes in the graph, it is
better to update the nodes individually. The following methods are available for updating
cudaGraphExec_t nodes:

‣ cudaGraphExecKernelNodeSetParams()

‣ cudaGraphExecMemcpyNodeSetParams()

‣ cudaGraphExecMemsetNodeSetParams()

‣ cudaGraphExecHostNodeSetParams()

‣ cudaGraphExecChildGraphNodeSetParams()

‣ cudaGraphExecEventRecordNodeSetEvent()

‣ cudaGraphExecEventWaitNodeSetEvent()

‣ cudaGraphExecExternalSemaphoresSignalNodeSetParams()

‣ cudaGraphExecExternalSemaphoresWaitNodeSetParams()

Please see the Graph API for more information on usage and current limitations.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH
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3.2.6.6.5.  Using Graph APIs
cudaGraph_t objects are not thread-safe. It is the responsibility of the user to ensure that
multiple threads do not concurrently access the same cudaGraph_t.

A cudaGraphExec_t cannot run concurrently with itself. A launch of a cudaGraphExec_t will
be ordered after previous launches of the same executable graph.

Graph execution is done in streams for ordering with other asynchronous work. However, the
stream is for ordering only; it does not constrain the internal parallelism of the graph, nor
does it affect where graph nodes execute.

See Graph API.

3.2.6.7.  Events
The runtime also provides a way to closely monitor the device's progress, as well as perform
accurate timing, by letting the application asynchronously record events at any point in the
program, and query when these events are completed. An event has completed when all tasks
- or optionally, all commands in a given stream - preceding the event have completed. Events
in stream zero are completed after all preceding tasks and commands in all streams are
completed.

3.2.6.7.1.  Creation and Destruction
The following code sample creates two events:

cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

They are destroyed this way:

cudaEventDestroy(start);
cudaEventDestroy(stop);

3.2.6.7.2.  Elapsed Time
The events created in Creation and Destruction can be used to time the code sample of
Creation and Destruction the following way:

cudaEventRecord(start, 0);
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDev + i * size, inputHost + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel<<<100, 512, 0, stream[i]>>>
               (outputDev + i * size, inputDev + i * size, size);
    cudaMemcpyAsync(outputHost + i * size, outputDev + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__GRAPH.html#group__CUDART__GRAPH
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3.2.6.8.  Synchronous Calls
When a synchronous function is called, control is not returned to the host thread before the
device has completed the requested task. Whether the host thread will then yield, block,
or spin can be specified by calling cudaSetDeviceFlags()with some specific flags (see
reference manual for details) before any other CUDA call is performed by the host thread.

3.2.7.  Multi-Device System

3.2.7.1.  Device Enumeration
A host system can have multiple devices. The following code sample shows how to enumerate
these devices, query their properties, and determine the number of CUDA-enabled devices.

int deviceCount;
cudaGetDeviceCount(&deviceCount);
int device;
for (device = 0; device < deviceCount; ++device) {
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);
    printf("Device %d has compute capability %d.%d.\n",
           device, deviceProp.major, deviceProp.minor);
}

3.2.7.2.  Device Selection
A host thread can set the device it operates on at any time by calling cudaSetDevice().
Device memory allocations and kernel launches are made on the currently set device;
streams and events are created in association with the currently set device. If no call to
cudaSetDevice() is made, the current device is device 0.

The following code sample illustrates how setting the current device affects memory
allocation and kernel execution.

size_t size = 1024 * sizeof(float);
cudaSetDevice(0);            // Set device 0 as current
float* p0;
cudaMalloc(&p0, size);       // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1);            // Set device 1 as current
float* p1;
cudaMalloc(&p1, size);       // Allocate memory on device 1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1

3.2.7.3.  Stream and Event Behavior
A kernel launch will fail if it is issued to a stream that is not associated to the current device as
illustrated in the following code sample.

cudaSetDevice(0);               // Set device 0 as current
cudaStream_t s0;
cudaStreamCreate(&s0);          // Create stream s0 on device 0
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 0 in s0
cudaSetDevice(1);               // Set device 1 as current
cudaStream_t s1;
cudaStreamCreate(&s1);          // Create stream s1 on device 1
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MyKernel<<<100, 64, 0, s1>>>(); // Launch kernel on device 1 in s1

// This kernel launch will fail:
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 1 in s0

A memory copy will succeed even if it is issued to a stream that is not associated to the
current device.

cudaEventRecord() will fail if the input event and input stream are associated to different
devices.

cudaEventElapsedTime() will fail if the two input events are associated to different devices.

cudaEventSynchronize() and cudaEventQuery() will succeed even if the input event is
associated to a device that is different from the current device.

cudaStreamWaitEvent() will succeed even if the input stream and input event are associated
to different devices. cudaStreamWaitEvent() can therefore be used to synchronize multiple
devices with each other.

Each device has its own default stream (see Default Stream), so commands issued to the
default stream of a device may execute out of order or concurrently with respect to commands
issued to the default stream of any other device.

3.2.7.4.  Peer-to-Peer Memory Access
Depending on the system properties, specifically the PCIe and/or NVLINK topology, devices
are able to address each other's memory (i.e., a kernel executing on one device can
dereference a pointer to the memory of the other device). This peer-to-peer memory access
feature is supported between two devices if cudaDeviceCanAccessPeer() returns true for
these two devices.

Peer-to-peer memory access is only supported in 64-bit applications and must be enabled
between two devices by calling cudaDeviceEnablePeerAccess() as illustrated in the
following code sample. On non-NVSwitch enabled systems, each device can support a system-
wide maximum of eight peer connections.

A unified address space is used for both devices (see Unified Virtual Address Space), so the
same pointer can be used to address memory from both devices as shown in the code sample
below.

cudaSetDevice(0);                   // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);              // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0);        // Launch kernel on device 0
cudaSetDevice(1);                   // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0);   // Enable peer-to-peer access
                                    // with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);

3.2.7.4.1.  IOMMU on Linux
On Linux only, CUDA and the display driver does not support IOMMU-enabled bare-metal PCIe
peer to peer memory copy. However, CUDA and the display driver does support IOMMU via VM
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pass through. As a consequence, users on Linux, when running on a native bare metal system,
should disable the IOMMU. The IOMMU should be enabled and the VFIO driver be used as a
PCIe pass through for virtual machines.

On Windows the above limitation does not exist.

See also Allocating DMA Buffers on 64-bit Platforms.

3.2.7.5.  Peer-to-Peer Memory Copy
Memory copies can be performed between the memories of two different devices.

When a unified address space is used for both devices (see Unified Virtual Address Space), this
is done using the regular memory copy functions mentioned in Device Memory.

Otherwise, this is done using cudaMemcpyPeer(), cudaMemcpyPeerAsync(),
cudaMemcpy3DPeer(), or cudaMemcpy3DPeerAsync() as illustrated in the following code
sample.

cudaSetDevice(0);                   // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);              // Allocate memory on device 0
cudaSetDevice(1);                   // Set device 1 as current
float* p1;
cudaMalloc(&p1, size);              // Allocate memory on device 1
cudaSetDevice(0);                   // Set device 0 as current
MyKernel<<<1000, 128>>>(p0);        // Launch kernel on device 0
cudaSetDevice(1);                   // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1);        // Launch kernel on device 1

A copy (in the implicit NULL stream) between the memories of two different devices:

‣ does not start until all commands previously issued to either device have completed and

‣ runs to completion before any commands (see Asynchronous Concurrent Execution)
issued after the copy to either device can start.

Consistent with the normal behavior of streams, an asynchronous copy between the memories
of two devices may overlap with copies or kernels in another stream.

Note that if peer-to-peer access is enabled between two devices via
cudaDeviceEnablePeerAccess() as described in Peer-to-Peer Memory Access, peer-to-
peer memory copy between these two devices no longer needs to be staged through the host
and is therefore faster.

3.2.8.  Unified Virtual Address Space
When the application is run as a 64-bit process, a single address space is used for the host
and all the devices of compute capability 2.0 and higher. All host memory allocations made via
CUDA API calls and all device memory allocations on supported devices are within this virtual
address range. As a consequence:

‣ The location of any memory on the host allocated through CUDA, or on any of the devices
which use the unified address space, can be determined from the value of the pointer
using cudaPointerGetAttributes().

https://download.nvidia.com/XFree86/Linux-x86_64/396.51/README/dma_issues.html
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‣ When copying to or from the memory of any device which uses the unified address space,
the cudaMemcpyKind parameter of cudaMemcpy*() can be set to cudaMemcpyDefault
to determine locations from the pointers. This also works for host pointers not allocated
through CUDA, as long as the current device uses unified addressing.

‣ Allocations via cudaHostAlloc() are automatically portable (see Portable Memory)
across all the devices for which the unified address space is used, and pointers returned
by cudaHostAlloc() can be used directly from within kernels running on these devices
(i.e., there is no need to obtain a device pointer via cudaHostGetDevicePointer() as
described in Mapped Memory.

Applications may query if the unified address space is used for a particular device by checking
that the unifiedAddressing device property (see Device Enumeration) is equal to 1.

3.2.9.  Interprocess Communication
Any device memory pointer or event handle created by a host thread can be directly referenced
by any other thread within the same process. It is not valid outside this process however, and
therefore cannot be directly referenced by threads belonging to a different process.

To share device memory pointers and events across processes, an application must use the
Inter Process Communication API, which is described in detail in the reference manual. The
IPC API is only supported for 64-bit processes on Linux and for devices of compute capability
2.0 and higher. Note that the IPC API is not supported for cudaMallocManaged allocations.

Using this API, an application can get the IPC handle for a given device memory pointer using
cudaIpcGetMemHandle(), pass it to another process using standard IPC mechanisms (e.g.,
interprocess shared memory or files), and use cudaIpcOpenMemHandle() to retrieve a device
pointer from the IPC handle that is a valid pointer within this other process. Event handles can
be shared using similar entry points.

Note that allocations made by cudaMalloc() may be sub-allocated from a larger block
of memory for performance reasons. In such case, CUDA IPC APIs will share the entire
underlying memory block which may cause other sub-allocations to be shared, which can
potentially lead to information disclosure between processes. To prevent this behavior, it is
recommended to only share allocations with a 2MiB aligned size.

An example of using the IPC API is where a single primary process generates a batch of
input data, making the data available to multiple secondary processes without requiring
regeneration or copying.

Applications using CUDA IPC to communicate with each other should be compiled, linked, and
run with the same CUDA driver and runtime.

Note: Since CUDA 11.5, only events-sharing IPC APIs are supported on L4T and embedded
Linux Tegra devices with compute capability 7.x and higher. The memory-sharing IPC APIs are
still not supported on Tegra platforms.

3.2.10.  Error Checking
All runtime functions return an error code, but for an asynchronous function (see
Asynchronous Concurrent Execution), this error code cannot possibly report any of the
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asynchronous errors that could occur on the device since the function returns before the
device has completed the task; the error code only reports errors that occur on the host
prior to executing the task, typically related to parameter validation; if an asynchronous error
occurs, it will be reported by some subsequent unrelated runtime function call.

The only way to check for asynchronous errors just after some asynchronous function call is
therefore to synchronize just after the call by calling cudaDeviceSynchronize() (or by using
any other synchronization mechanisms described in Asynchronous Concurrent Execution) and
checking the error code returned by cudaDeviceSynchronize().

The runtime maintains an error variable for each host thread that is initialized to cudaSuccess
and is overwritten by the error code every time an error occurs (be it a parameter
validation error or an asynchronous error). cudaPeekAtLastError() returns this variable.
cudaGetLastError() returns this variable and resets it to cudaSuccess.

Kernel launches do not return any error code, so cudaPeekAtLastError() or
cudaGetLastError() must be called just after the kernel launch to retrieve any pre-
launch errors. To ensure that any error returned by cudaPeekAtLastError() or
cudaGetLastError() does not originate from calls prior to the kernel launch, one has to
make sure that the runtime error variable is set to cudaSuccess just before the kernel launch,
for example, by calling cudaGetLastError() just before the kernel launch. Kernel launches
are asynchronous, so to check for asynchronous errors, the application must synchronize in-
between the kernel launch and the call to cudaPeekAtLastError() or cudaGetLastError().

Note that cudaErrorNotReady that may be returned by cudaStreamQuery() and
cudaEventQuery() is not considered an error and is therefore not reported by
cudaPeekAtLastError() or cudaGetLastError().

3.2.11.  Call Stack
On devices of compute capability 2.x and higher, the size of the call stack can be queried using
cudaDeviceGetLimit() and set using cudaDeviceSetLimit().

When the call stack overflows, the kernel call fails with a stack overflow error if the application
is run via a CUDA debugger (cuda-gdb, Nsight) or an unspecified launch error, otherwise.

3.2.12.  Texture and Surface Memory
CUDA supports a subset of the texturing hardware that the GPU uses for graphics to access
texture and surface memory. Reading data from texture or surface memory instead of global
memory can have several performance benefits as described in Device Memory Accesses.

There are two different APIs to access texture and surface memory:

‣ The texture reference API that is supported on all devices,

‣ The texture object API that is only supported on devices of compute capability 3.x and
higher.

The texture reference API has limitations that the texture object API does not have. They are
mentioned in [[DEPRECATED]] Texture Reference API.
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3.2.12.1.  Texture Memory
Texture memory is read from kernels using the device functions described in Texture
Functions. The process of reading a texture calling one of these functions is called a texture
fetch. Each texture fetch specifies a parameter called a texture object for the texture object API
or a texture reference for the texture reference API.

The texture object or the texture reference specifies:

‣ The texture, which is the piece of texture memory that is fetched. Texture objects are
created at runtime and the texture is specified when creating the texture object as
described in Texture Object API. Texture references are created at compile time and the
texture is specified at runtime by bounding the texture reference to the texture through
runtime functions as described in [[DEPRECATED]] Texture Reference API; several distinct
texture references might be bound to the same texture or to textures that overlap in
memory. A texture can be any region of linear memory or a CUDA array (described in
CUDA Arrays).

‣ Its dimensionality that specifies whether the texture is addressed as a one dimensional
array using one texture coordinate, a two-dimensional array using two texture coordinates,
or a three-dimensional array using three texture coordinates. Elements of the array are
called texels, short for texture elements. The texture width, height, and depth refer to the
size of the array in each dimension. Table 15 lists the maximum texture width, height, and
depth depending on the compute capability of the device.

‣ The type of a texel, which is restricted to the basic integer and single-precision floating-
point types and any of the 1-, 2-, and 4-component vector types defined in Built-in Vector
Types that are derived from the basic integer and single-precision floating-point types.

‣ The read mode, which is equal to cudaReadModeNormalizedFloat or
cudaReadModeElementType. If it is cudaReadModeNormalizedFloat and the type of the
texel is a 16-bit or 8-bit integer type, the value returned by the texture fetch is actually
returned as floating-point type and the full range of the integer type is mapped to [0.0, 1.0]
for unsigned integer type and [-1.0, 1.0] for signed integer type; for example, an unsigned
8-bit texture element with the value 0xff reads as 1. If it is cudaReadModeElementType, no
conversion is performed.

‣ Whether texture coordinates are normalized or not. By default, textures are referenced (by
the functions of Texture Functions) using floating-point coordinates in the range [0, N-1]
where N is the size of the texture in the dimension corresponding to the coordinate. For
example, a texture that is 64x32 in size will be referenced with coordinates in the range
[0, 63] and [0, 31] for the x and y dimensions, respectively. Normalized texture coordinates
cause the coordinates to be specified in the range [0.0, 1.0-1/N] instead of [0, N-1], so the
same 64x32 texture would be addressed by normalized coordinates in the range [0, 1-1/N]
in both the x and y dimensions. Normalized texture coordinates are a natural fit to some
applications' requirements, if it is preferable for the texture coordinates to be independent
of the texture size.

‣ The addressing mode. It is valid to call the device functions of Section B.8 with coordinates
that are out of range. The addressing mode defines what happens in that case. The default
addressing mode is to clamp the coordinates to the valid range: [0, N) for non-normalized
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coordinates and [0.0, 1.0) for normalized coordinates. If the border mode is specified
instead, texture fetches with out-of-range texture coordinates return zero. For normalized
coordinates, the wrap mode and the mirror mode are also available. When using the wrap
mode, each coordinate x is converted to frac(x)=x - floor(x) where floor(x) is the largest
integer not greater than x. When using the mirror mode, each coordinate x is converted
to frac(x) if floor(x) is even and 1-frac(x) if floor(x) is odd. The addressing mode is specified
as an array of size three whose first, second, and third elements specify the addressing
mode for the first, second, and third texture coordinates, respectively; the addressing
mode are cudaAddressModeBorder, cudaAddressModeClamp, cudaAddressModeWrap,
and cudaAddressModeMirror; cudaAddressModeWrap and cudaAddressModeMirror are
only supported for normalized texture coordinates

‣ The filtering mode which specifies how the value returned when fetching the texture is
computed based on the input texture coordinates. Linear texture filtering may be done only
for textures that are configured to return floating-point data. It performs low-precision
interpolation between neighboring texels. When enabled, the texels surrounding a texture
fetch location are read and the return value of the texture fetch is interpolated based
on where the texture coordinates fell between the texels. Simple linear interpolation
is performed for one-dimensional textures, bilinear interpolation for two-dimensional
textures, and trilinear interpolation for three-dimensional textures. Texture Fetching gives
more details on texture fetching. The filtering mode is equal to cudaFilterModePoint
or cudaFilterModeLinear. If it is cudaFilterModePoint, the returned value is the
texel whose texture coordinates are the closest to the input texture coordinates. If it is
cudaFilterModeLinear, the returned value is the linear interpolation of the two (for
a one-dimensional texture), four (for a two dimensional texture), or eight (for a three
dimensional texture) texels whose texture coordinates are the closest to the input texture
coordinates. cudaFilterModeLinear is only valid for returned values of floating-point
type.

Texture Object API introduces the texture object API.

[[DEPRECATED]] Texture Reference API introduces the texture reference API.

16-Bit Floating-Point Textures explains how to deal with 16-bit floating-point textures.

Textures can also be layered as described in Layered Textures.

Cubemap Textures and Cubemap Layered Textures describe a special type of texture, the
cubemap texture.

Texture Gather describes a special texture fetch, texture gather.

3.2.12.1.1. Texture Object API
A texture object is created using cudaCreateTextureObject() from a resource description
of type struct cudaResourceDesc, which specifies the texture, and from a texture description
defined as such:

struct cudaTextureDesc
{
    enum cudaTextureAddressMode addressMode[3];
    enum cudaTextureFilterMode  filterMode;
    enum cudaTextureReadMode    readMode;
    int                         sRGB;
    int                         normalizedCoords;
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    unsigned int                maxAnisotropy;
    enum cudaTextureFilterMode  mipmapFilterMode;
    float                       mipmapLevelBias;
    float                       minMipmapLevelClamp;
    float                       maxMipmapLevelClamp;
};

‣ addressMode specifies the addressing mode;

‣ filterMode specifies the filter mode;

‣ readMode specifies the read mode;

‣ normalizedCoords specifies whether texture coordinates are normalized or not;

‣ See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias,
minMipmapLevelClamp, and maxMipmapLevelClamp.

The following code sample applies some simple transformation kernel to a texture.

// Simple transformation kernel
__global__ void transformKernel(float* output,
                                cudaTextureObject_t texObj,
                                int width, int height,
                                float theta) 
{
    // Calculate normalized texture coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    float u = x / (float)width;
    float v = y / (float)height;

    // Transform coordinates
    u -= 0.5f;
    v -= 0.5f;
    float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
    float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;

    // Read from texture and write to global memory
    output[y * width + x] = tex2D<float>(texObj, tu, tv);
}

// Host code
int main()
{
    const int height = 1024;
    const int width = 1024;
    float angle = 0.5;

    // Allocate and set some host data
    float *h_data = (float *)std::malloc(sizeof(float) * width * height);
    for (int i = 0; i < height * width; ++i)
        h_data[i] = i;

    // Allocate CUDA array in device memory
    cudaChannelFormatDesc channelDesc =
        cudaCreateChannelDesc(32, 0, 0, 0, cudaChannelFormatKindFloat);
    cudaArray_t cuArray;
    cudaMallocArray(&cuArray, &channelDesc, width, height);

    // Set pitch of the source (the width in memory in bytes of the 2D array pointed
    // to by src, including padding), we dont have any padding
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    const size_t spitch = width * sizeof(float);
    // Copy data located at address h_data in host memory to device memory
    cudaMemcpy2DToArray(cuArray, 0, 0, h_data, spitch, width * sizeof(float),
                        height, cudaMemcpyHostToDevice);

    // Specify texture
    struct cudaResourceDesc resDesc;
    memset(&resDesc, 0, sizeof(resDesc));
    resDesc.resType = cudaResourceTypeArray;
    resDesc.res.array.array = cuArray;

    // Specify texture object parameters
    struct cudaTextureDesc texDesc;
    memset(&texDesc, 0, sizeof(texDesc));
    texDesc.addressMode[0] = cudaAddressModeWrap;
    texDesc.addressMode[1] = cudaAddressModeWrap;
    texDesc.filterMode = cudaFilterModeLinear;
    texDesc.readMode = cudaReadModeElementType;
    texDesc.normalizedCoords = 1;

    // Create texture object
    cudaTextureObject_t texObj = 0;
    cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);

    // Allocate result of transformation in device memory
    float *output;
    cudaMalloc(&output, width * height * sizeof(float));

    // Invoke kernel
    dim3 threadsperBlock(16, 16);
    dim3 numBlocks((width + threadsperBlock.x - 1) / threadsperBlock.x,
                    (height + threadsperBlock.y - 1) / threadsperBlock.y);
    transformKernel<<<numBlocks, threadsperBlock>>>(output, texObj, width, height,
                                                    angle);
    // Copy data from device back to host
    cudaMemcpy(h_data, output, width * height * sizeof(float),
                cudaMemcpyDeviceToHost);

    // Destroy texture object
    cudaDestroyTextureObject(texObj);

    // Free device memory
    cudaFreeArray(cuArray);
    cudaFree(output);

    // Free host memory
    free(h_data);

    return 0;
}

3.2.12.1.2. [[DEPRECATED]] Texture Reference API
Texture Reference API is deprecated.

Some of the attributes of a texture reference are immutable and must be known at compile
time; they are specified when declaring the texture reference. A texture reference is declared
at file scope as a variable of type texture:

texture<DataType, Type, ReadMode> texRef;

where:

‣ DataType specifies the type of the texel;
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‣ Type specifies the type of the texture reference and is equal to cudaTextureType1D,
cudaTextureType2D, or cudaTextureType3D, for a one-dimensional, two-dimensional,
or three-dimensional texture, respectively, or cudaTextureType1DLayered or
cudaTextureType2DLayered for a one-dimensional or two-dimensional layered texture
respectively; Type is an optional argument which defaults to cudaTextureType1D;

‣ ReadMode specifies the read mode; it is an optional argument which defaults to
cudaReadModeElementType.

A texture reference can only be declared as a static global variable and cannot be passed as
an argument to a function.

The other attributes of a texture reference are mutable and can be changed at runtime
through the host runtime. As explained in the reference manual, the runtime API has a low-
level C-style interface and a high-level C++-style interface. The texture type is defined in the
high-level API as a structure publicly derived from the textureReference type defined in the
low-level API as such:

struct textureReference {
    int                          normalized;
    enum cudaTextureFilterMode   filterMode;
    enum cudaTextureAddressMode  addressMode[3];
    struct cudaChannelFormatDesc channelDesc;
    int                          sRGB;
    unsigned int                 maxAnisotropy;
    enum cudaTextureFilterMode   mipmapFilterMode;
    float                        mipmapLevelBias;
    float                        minMipmapLevelClamp;
    float                        maxMipmapLevelClamp;
}

‣ normalized specifies whether texture coordinates are normalized or not;

‣ filterMode specifies the filtering mode;

‣ addressMode specifies the addressing mode;

‣ channelDesc describes the format of the texel; it must match the DataType argument of
the texture reference declaration; channelDesc is of the following type:

struct cudaChannelFormatDesc {
  int x, y, z, w;
  enum cudaChannelFormatKind f;
};

where x, y, z, and w are equal to the number of bits of each component of the returned
value and f is:

‣ cudaChannelFormatKindSigned if these components are of signed integer type,

‣ cudaChannelFormatKindUnsigned if they are of unsigned integer type,

‣ cudaChannelFormatKindFloat if they are of floating point type.

‣ See reference manual for sRGB, maxAnisotropy, mipmapFilterMode, mipmapLevelBias,
minMipmapLevelClamp, and maxMipmapLevelClamp.

normalized, addressMode, and filterMode may be directly modified in host code.
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Before a kernel can use a texture reference to read from texture memory, the texture
reference must be bound to a texture using cudaBindTexture() or cudaBindTexture2D()
for linear memory, or cudaBindTextureToArray() for CUDA arrays. cudaUnbindTexture()
is used to unbind a texture reference. Once a texture reference has been unbound, it can be
safely rebound to another array, even if kernels that use the previously bound texture have not
completed. It is recommended to allocate two-dimensional textures in linear memory using
cudaMallocPitch() and use the pitch returned by cudaMallocPitch() as input parameter
to cudaBindTexture2D().

The following code samples bind a 2D texture reference to linear memory pointed to by
devPtr:

‣ Using the low-level API:

texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, &texRef);
cudaChannelFormatDesc channelDesc =
                             cudaCreateChannelDesc<float>();
size_t offset;
cudaBindTexture2D(&offset, texRefPtr, devPtr, &channelDesc,
                  width, height, pitch);

‣ Using the high-level API:

texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
cudaChannelFormatDesc channelDesc =
                             cudaCreateChannelDesc<float>();
size_t offset;
cudaBindTexture2D(&offset, texRef, devPtr, channelDesc,
                  width, height, pitch);

The following code samples bind a 2D texture reference to a CUDA array cuArray:

‣ Using the low-level API:

texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, &texRef);
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, cuArray);
cudaBindTextureToArray(texRef, cuArray, &channelDesc);

‣ Using the high-level API:

texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
cudaBindTextureToArray(texRef, cuArray);

The format specified when binding a texture to a texture reference must match the
parameters specified when declaring the texture reference; otherwise, the results of texture
fetches are undefined.

There is a limit to the number of textures that can be bound to a kernel as specified in Table
15.
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The following code sample applies some simple transformation kernel to a texture.

// 2D float texture
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

// Simple transformation kernel
__global__ void transformKernel(float* output,
                                int width, int height,
                                float theta) 
{
    // Calculate normalized texture coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    float u = x / (float)width;
    float v = y / (float)height;

    // Transform coordinates
    u -= 0.5f;
    v -= 0.5f;
    float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
    float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;

    // Read from texture and write to global memory
    output[y * width + x] = tex2D(texRef, tu, tv);
}

// Host code
int main()
{
    // Allocate CUDA array in device memory
    cudaChannelFormatDesc channelDesc =
               cudaCreateChannelDesc(32, 0, 0, 0,
                                     cudaChannelFormatKindFloat);
    cudaArray* cuArray;
    cudaMallocArray(&cuArray, &channelDesc, width, height);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Set texture reference parameters
    texRef.addressMode[0] = cudaAddressModeWrap;
    texRef.addressMode[1] = cudaAddressModeWrap;
    texRef.filterMode     = cudaFilterModeLinear;
    texRef.normalized     = true;

    // Bind the array to the texture reference
    cudaBindTextureToArray(texRef, cuArray, channelDesc);

    // Allocate result of transformation in device memory
    float* output;
    cudaMalloc(&output, width * height * sizeof(float));

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    transformKernel<<<dimGrid, dimBlock>>>(output, width, height,
                                           angle);

    // Free device memory
    cudaFreeArray(cuArray);
    cudaFree(output);
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    return 0;
}

3.2.12.1.3. 16-Bit Floating-Point Textures
The 16-bit floating-point or half format supported by CUDA arrays is the same as the IEEE
754-2008 binary2 format.

CUDA C++ does not support a matching data type, but provides intrinsic functions to
convert to and from the 32-bit floating-point format via the unsigned short type:
__float2half_rn(float) and __half2float(unsigned short). These functions are only
supported in device code. Equivalent functions for the host code can be found in the OpenEXR
library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching before
any filtering is performed.

A channel description for the 16-bit floating-point format can be created by calling one of the
cudaCreateChannelDescHalf*() functions.

3.2.12.1.4. Layered Textures
A one-dimensional or two-dimensional layered texture (also known as texture array in
Direct3D and array texture in OpenGL) is a texture made up of a sequence of layers, all of
which are regular textures of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-
point texture coordinate; the index denotes a layer within the sequence and the coordinate
addresses a texel within that layer. A two-dimensional layered texture is addressed using an
integer index and two floating-point texture coordinates; the index denotes a layer within the
sequence and the coordinates address a texel within that layer.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the
cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in tex1DLayered(),
tex1DLayered(), tex2DLayered(), and tex2DLayered(). Texture filtering (see Texture Fetching) is
done only within a layer, not across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.5. Cubemap Textures
A cubemap texture is a special type of two-dimensional layered texture that has six layers
representing the faces of a cube:

‣ The width of a layer is equal to its height.

‣ The cubemap is addressed using three texture coordinates x, y, and z that are interpreted
as a direction vector emanating from the center of the cube and pointing to one face of the
cube and a texel within the layer corresponding to that face. More specifically, the face
is selected by the coordinate with largest magnitude m and the corresponding layer is
addressed using coordinates (s/m+1)/2 and (t/m+1)/2 where s and t are defined in Table 2.
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Table 2. Cubemap Fetch

face m s t
x > 0 0 x -z -y

|x| > |y| and |x| > |z|
x < 0 1 -x z -y

y > 0 2 y x z
|y| > |x| and |y| > |z|

y < 0 3 -y x -z

z > 0 4 z x -y
|z| > |x| and |z| > |y|

z < 0 5 -z -x -y

A cubemap texture can only be a CUDA array by calling cudaMalloc3DArray() with the
cudaArrayCubemap flag.

Cubemap textures are fetched using the device function described in texCubemap() and
texCubemap().

Cubemap textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.6. Cubemap Layered Textures
A cubemap layered texture is a layered texture whose layers are cubemaps of same dimension.

A cubemap layered texture is addressed using an integer index and three floating-point
texture coordinates; the index denotes a cubemap within the sequence and the coordinates
address a texel within that cubemap.

A cubemap layered texture can only be a CUDA array by calling cudaMalloc3DArray() with
the cudaArrayLayered and cudaArrayCubemap flags.

Cubemap layered textures are fetched using the device function described in
texCubemapLayered() and texCubemapLayered(). Texture filtering (see Texture Fetching) is
done only within a layer, not across layers.

Cubemap layered textures are only supported on devices of compute capability 2.0 and higher.

3.2.12.1.7. Texture Gather
Texture gather is a special texture fetch that is available for two-dimensional textures only. It
is performed by the tex2Dgather() function, which has the same parameters as tex2D(),
plus an additional comp parameter equal to 0, 1, 2, or 3 (see tex2Dgather() and tex2Dgather()).
It returns four 32-bit numbers that correspond to the value of the component comp of each of
the four texels that would have been used for bilinear filtering during a regular texture fetch.
For example, if these texels are of values (253, 20, 31, 255), (250, 25, 29, 254), (249, 16, 37, 253),
(251, 22, 30, 250), and comp is 2, tex2Dgather() returns (31, 29, 37, 30).

Note that texture coordinates are computed with only 8 bits of fractional precision.
tex2Dgather() may therefore return unexpected results for cases where tex2D() would
use 1.0 for one of its weights (α or β, see Linear Filtering). For example, with an x texture
coordinate of 2.49805: xB=x-0.5=1.99805, however the fractional part of xB is stored in an 8-
bit fixed-point format. Since 0.99805 is closer to 256.f/256.f than it is to 255.f/256.f, xB has the
value 2. A tex2Dgather() in this case would therefore return indices 2 and 3 in x, instead of
indices 1 and 2.
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Texture gather is only supported for CUDA arrays created with the cudaArrayTextureGather
flag and of width and height less than the maximum specified in Table 15 for texture gather,
which is smaller than for regular texture fetch.

Texture gather is only supported on devices of compute capability 2.0 and higher.

3.2.12.2.  Surface Memory
For devices of compute capability 2.0 and higher, a CUDA array (described in Cubemap
Surfaces), created with the cudaArraySurfaceLoadStore flag, can be read and written via a
surface object or surface reference using the functions described in Surface Functions.

Table 15 lists the maximum surface width, height, and depth depending on the compute
capability of the device.

3.2.12.2.1. Surface Object API
A surface object is created using cudaCreateSurfaceObject() from a resource description
of type struct cudaResourceDesc.

The following code sample applies some simple transformation kernel to a texture.

// Simple copy kernel
__global__ void copyKernel(cudaSurfaceObject_t inputSurfObj,
                           cudaSurfaceObject_t outputSurfObj,
                           int width, int height) 
{
    // Calculate surface coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
    if (x < width && y < height) {
        uchar4 data;
        // Read from input surface
        surf2Dread(&data,  inputSurfObj, x * 4, y);
        // Write to output surface
        surf2Dwrite(data, outputSurfObj, x * 4, y);
    }
}

// Host code
int main()
{
    const int height = 1024;
    const int width = 1024;

    // Allocate and set some host data
    unsigned char *h_data =
        (unsigned char *)std::malloc(sizeof(unsigned char) * width * height * 4);
    for (int i = 0; i < height * width * 4; ++i)
        h_data[i] = i;

    // Allocate CUDA arrays in device memory
    cudaChannelFormatDesc channelDesc =
        cudaCreateChannelDesc(8, 8, 8, 8, cudaChannelFormatKindUnsigned);
    cudaArray_t cuInputArray;
    cudaMallocArray(&cuInputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);
    cudaArray_t cuOutputArray;
    cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);

    // Set pitch of the source (the width in memory in bytes of the 2D array
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    // pointed to by src, including padding), we dont have any padding
    const size_t spitch = 4 * width * sizeof(unsigned char);
    // Copy data located at address h_data in host memory to device memory
    cudaMemcpy2DToArray(cuInputArray, 0, 0, h_data, spitch,
                        4 * width * sizeof(unsigned char), height,
                        cudaMemcpyHostToDevice);

    // Specify surface
    struct cudaResourceDesc resDesc;
    memset(&resDesc, 0, sizeof(resDesc));
    resDesc.resType = cudaResourceTypeArray;

    // Create the surface objects
    resDesc.res.array.array = cuInputArray;
    cudaSurfaceObject_t inputSurfObj = 0;
    cudaCreateSurfaceObject(&inputSurfObj, &resDesc);
    resDesc.res.array.array = cuOutputArray;
    cudaSurfaceObject_t outputSurfObj = 0;
    cudaCreateSurfaceObject(&outputSurfObj, &resDesc);

    // Invoke kernel
    dim3 threadsperBlock(16, 16);
    dim3 numBlocks((width + threadsperBlock.x - 1) / threadsperBlock.x,
                    (height + threadsperBlock.y - 1) / threadsperBlock.y);
    copyKernel<<<numBlocks, threadsperBlock>>>(inputSurfObj, outputSurfObj, width,
                                                height);

    // Copy data from device back to host
    cudaMemcpy2DFromArray(h_data, spitch, cuOutputArray, 0, 0,
                            4 * width * sizeof(unsigned char), height,
                            cudaMemcpyDeviceToHost);

    // Destroy surface objects
    cudaDestroySurfaceObject(inputSurfObj);
    cudaDestroySurfaceObject(outputSurfObj);

    // Free device memory
    cudaFreeArray(cuInputArray);
    cudaFreeArray(cuOutputArray);

    // Free host memory
    free(h_data);

  return 0;
}

3.2.12.2.2. [[DEPRECATED]] Surface Reference API
Surface Reference API is deprecated.

A surface reference is declared at file scope as a variable of type surface:

surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal
to cudaSurfaceType1D, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceType1DLayered, cudaSurfaceType2DLayered,
or cudaSurfaceTypeCubemapLayered; Type is an optional argument which defaults to
cudaSurfaceType1D. A surface reference can only be declared as a static global variable and
cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray().
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The following code samples bind a surface reference to a CUDA array cuArray:

‣ Using the low-level API:

surface<void, cudaSurfaceType2D> surfRef;
surfaceReference* surfRefPtr;
cudaGetSurfaceReference(&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, cuArray);
cudaBindSurfaceToArray(surfRef, cuArray, &channelDesc);

‣ Using the high-level API:

surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray(surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching dimensionality
and type and via a surface reference of matching dimensionality; otherwise, the results of
reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that the x-
coordinate used to access a texture element via texture functions needs to be multiplied by
the byte size of the element to access the same element via a surface function. For example,
the element at texture coordinate x of a one-dimensional floating-point CUDA array bound to
a texture reference texRef and a surface reference surfRef is read using tex1d(texRef,
x) via texRef, but surf1Dread(surfRef, 4*x) via surfRef. Similarly, the element at
texture coordinate x and y of a two-dimensional floating-point CUDA array bound to a texture
reference texRef and a surface reference surfRef is accessed using tex2d(texRef, x,
y) via texRef, but surf2Dread(surfRef, 4*x, y) via surfRef (the byte offset of the y-
coordinate is internally calculated from the underlying line pitch of the CUDA array).

The following code sample applies some simple transformation kernel to a texture.

// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;
            
// Simple copy kernel
__global__ void copyKernel(int width, int height) 
{
    // Calculate surface coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
    if (x < width && y < height) {
        uchar4 data;
        // Read from input surface
        surf2Dread(&data,  inputSurfRef, x * 4, y);
        // Write to output surface
        surf2Dwrite(data, outputSurfRef, x * 4, y);
    }
}

// Host code
int main()
{
    // Allocate CUDA arrays in device memory
    cudaChannelFormatDesc channelDesc =
             cudaCreateChannelDesc(8, 8, 8, 8,
                                   cudaChannelFormatKindUnsigned);
    cudaArray* cuInputArray;
    cudaMallocArray(&cuInputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);
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    cudaArray* cuOutputArray;
    cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Bind the arrays to the surface references
    cudaBindSurfaceToArray(inputSurfRef, cuInputArray);
    cudaBindSurfaceToArray(outputSurfRef, cuOutputArray);

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    copyKernel<<<dimGrid, dimBlock>>>(width, height);

    // Free device memory
    cudaFreeArray(cuInputArray);
    cudaFreeArray(cuOutputArray);

    return 0;
}

3.2.12.2.3. Cubemap Surfaces
Cubemap surfaces are accessed usingsurfCubemapread() and surfCubemapwrite()
(surfCubemapread and surfCubemapwrite) as a two-dimensional layered surface, i.e., using
an integer index denoting a face and two floating-point texture coordinates addressing a texel
within the layer corresponding to this face. Faces are ordered as indicated in Table 2.

3.2.12.2.4. Cubemap Layered Surfaces
Cubemap layered surfaces are accessed using surfCubemapLayeredread() and
surfCubemapLayeredwrite() (surfCubemapLayeredread() and surfCubemapLayeredwrite())
as a two-dimensional layered surface, i.e., using an integer index denoting a face of one of
the cubemaps and two floating-point texture coordinates addressing a texel within the layer
corresponding to this face. Faces are ordered as indicated in Table 2, so index ((2 * 6) + 3), for
example, accesses the fourth face of the third cubemap.

3.2.12.3.  CUDA Arrays
CUDA arrays are opaque memory layouts optimized for texture fetching. They are one
dimensional, two dimensional, or three-dimensional and composed of elements, each of
which has 1, 2 or 4 components that may be signed or unsigned 8-, 16-, or 32-bit integers, 16-
bit floats, or 32-bit floats. CUDA arrays are only accessible by kernels through texture fetching
as described in Texture Memory or surface reading and writing as described in Surface
Memory.

3.2.12.4.  Read/Write Coherency
The texture and surface memory is cached (see Device Memory Accesses) and within the same
kernel call, the cache is not kept coherent with respect to global memory writes and surface
memory writes, so any texture fetch or surface read to an address that has been written to
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via a global write or a surface write in the same kernel call returns undefined data. In other
words, a thread can safely read some texture or surface memory location only if this memory
location has been updated by a previous kernel call or memory copy, but not if it has been
previously updated by the same thread or another thread from the same kernel call.

3.2.13.  Graphics Interoperability
Some resources from OpenGL and Direct3D may be mapped into the address space of CUDA,
either to enable CUDA to read data written by OpenGL or Direct3D, or to enable CUDA to write
data for consumption by OpenGL or Direct3D.

A resource must be registered to CUDA before it can be mapped using the functions
mentioned in OpenGL Interoperability and Direct3D Interoperability. These functions return a
pointer to a CUDA graphics resource of type struct cudaGraphicsResource. Registering a
resource is potentially high-overhead and therefore typically called only once per resource. A
CUDA graphics resource is unregistered using cudaGraphicsUnregisterResource(). Each
CUDA context which intends to use the resource is required to register it separately.

Once a resource is registered to CUDA, it can be mapped and unmapped as many times as
necessary using cudaGraphicsMapResources() and cudaGraphicsUnmapResources().
cudaGraphicsResourceSetMapFlags() can be called to specify usage hints (write-only,
read-only) that the CUDA driver can use to optimize resource management.

A mapped resource can be read from or written to by kernels using the device memory
address returned by cudaGraphicsResourceGetMappedPointer() for buffers and
cudaGraphicsSubResourceGetMappedArray() for CUDA arrays.

Accessing a resource through OpenGL, Direct3D, or another CUDA context while it is mapped
produces undefined results. OpenGL Interoperability and Direct3D Interoperability give
specifics for each graphics API and some code samples. SLI Interoperability gives specifics for
when the system is in SLI mode.

3.2.13.1.  OpenGL Interoperability
The OpenGL resources that may be mapped into the address space of CUDA are OpenGL
buffer, texture, and renderbuffer objects.

A buffer object is registered using cudaGraphicsGLRegisterBuffer(). In CUDA, it appears
as a device pointer and can therefore be read and written by kernels or via cudaMemcpy()
calls.

A texture or renderbuffer object is registered using cudaGraphicsGLRegisterImage().
In CUDA, it appears as a CUDA array. Kernels can read from the array by binding it to a
texture or surface reference. They can also write to it via the surface write functions if the
resource has been registered with the cudaGraphicsRegisterFlagsSurfaceLoadStore
flag. The array can also be read and written via cudaMemcpy2D() calls.
cudaGraphicsGLRegisterImage() supports all texture formats with 1, 2, or 4 components
and an internal type of float (e.g., GL_RGBA_FLOAT32), normalized integer (e.g., GL_RGBA8,
GL_INTENSITY16), and unnormalized integer (e.g., GL_RGBA8UI) (please note that since
unnormalized integer formats require OpenGL 3.0, they can only be written by shaders, not the
fixed function pipeline).
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The OpenGL context whose resources are being shared has to be current to the host thread
making any OpenGL interoperability API calls.

Please note: When an OpenGL texture is made bindless (say for example by requesting an
image or texture handle using the glGetTextureHandle*/glGetImageHandle* APIs) it cannot
be registered with CUDA. The application needs to register the texture for interop before
requesting an image or texture handle.

The following code sample uses a kernel to dynamically modify a 2D width x height grid of
vertices stored in a vertex buffer object:

GLuint positionsVBO;
struct cudaGraphicsResource* positionsVBO_CUDA;

int main()
{
    // Initialize OpenGL and GLUT for device 0
    // and make the OpenGL context current
    ...
    glutDisplayFunc(display);

    // Explicitly set device 0
    cudaSetDevice(0);

    // Create buffer object and register it with CUDA
    glGenBuffers(1, &positionsVBO);
    glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
    unsigned int size = width * height * 4 * sizeof(float);
    glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA,
                                 positionsVBO,
                                 cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    glutMainLoop();

    ...
}

void display()
{
    // Map buffer object for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVBO_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap buffer object
    cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

    // Render from buffer object
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
    glVertexPointer(4, GL_FLOAT, 0, 0);
    glEnableClientState(GL_VERTEX_ARRAY);
    glDrawArrays(GL_POINTS, 0, width * height);
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    glDisableClientState(GL_VERTEX_ARRAY);

    // Swap buffers
    glutSwapBuffers();
    glutPostRedisplay();
}

void deleteVBO()
{
    cudaGraphicsUnregisterResource(positionsVBO_CUDA);
    glDeleteBuffers(1, &positionsVBO);
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] = make_float4(u, w, v, 1.0f);
}

On Windows and for Quadro GPUs, cudaWGLGetDevice() can be used to retrieve the
CUDA device associated to the handle returned by wglEnumGpusNV(). Quadro GPUs offer
higher performance OpenGL interoperability than GeForce and Tesla GPUs in a multi-
GPU configuration where OpenGL rendering is performed on the Quadro GPU and CUDA
computations are performed on other GPUs in the system.

3.2.13.2.  Direct3D Interoperability
Direct3D interoperability is supported for Direct3D 9Ex, Direct3D 10, and Direct3D 11.

A CUDA context may interoperate only with Direct3D devices that fulfill the following criteria:
Direct3D 9Ex devices must be created with DeviceType set to D3DDEVTYPE_HAL and
BehaviorFlags with the D3DCREATE_HARDWARE_VERTEXPROCESSING flag; Direct3D 10 and
Direct3D 11 devices must be created with DriverType set to D3D_DRIVER_TYPE_HARDWARE.

The Direct3D resources that may be mapped into the address space of CUDA are
Direct3D buffers, textures, and surfaces. These resources are registered using
cudaGraphicsD3D9RegisterResource(), cudaGraphicsD3D10RegisterResource(), and
cudaGraphicsD3D11RegisterResource().

The following code sample uses a kernel to dynamically modify a 2D width x height grid of
vertices stored in a vertex buffer object.
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3.2.13.2.1. Direct3D 9 Version
IDirect3D9* D3D;
IDirect3DDevice9* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
IDirect3DVertexBuffer9* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
    int dev;
    // Initialize Direct3D
    D3D = Direct3DCreate9Ex(D3D_SDK_VERSION);

    // Get a CUDA-enabled adapter
    unsigned int adapter = 0;
    for (; adapter < g_pD3D->GetAdapterCount(); adapter++) {
        D3DADAPTER_IDENTIFIER9 adapterId;
        g_pD3D->GetAdapterIdentifier(adapter, 0, &adapterId);
        if (cudaD3D9GetDevice(&dev, adapterId.DeviceName)
            == cudaSuccess)
            break;
    }

     // Create device
    ...
    D3D->CreateDeviceEx(adapter, D3DDEVTYPE_HAL, hWnd,
                        D3DCREATE_HARDWARE_VERTEXPROCESSING,
                        &params, NULL, &device);

    // Use the same device
    cudaSetDevice(dev);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    device->CreateVertexBuffer(size, 0, D3DFVF_CUSTOMVERTEX,
                               D3DPOOL_DEFAULT, &positionsVB, 0);
    cudaGraphicsD3D9RegisterResource(&positionsVB_CUDA,
                                     positionsVB,
                                     cudaGraphicsRegisterFlagsNone);
    cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                    cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));
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    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
    positionsVB->Release();
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}

3.2.13.2.2. Direct3D 10 Version
ID3D10Device* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
ID3D10Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;
            
int main()
{
    int dev;
    // Get a CUDA-enabled adapter
    IDXGIFactory* factory;
    CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
    IDXGIAdapter* adapter = 0;
    for (unsigned int i = 0; !adapter; ++i) {
        if (FAILED(factory->EnumAdapters(i, &adapter))
            break;
        if (cudaD3D10GetDevice(&dev, adapter) == cudaSuccess)
            break;
        adapter->Release();
    }
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    factory->Release();
            
    // Create swap chain and device
    ...
    D3D10CreateDeviceAndSwapChain(adapter, 
                                  D3D10_DRIVER_TYPE_HARDWARE, 0, 
                                  D3D10_CREATE_DEVICE_DEBUG,
                                  D3D10_SDK_VERSION, 
                                  &swapChainDesc, &swapChain,
                                  &device);
    adapter->Release();

    // Use the same device
    cudaSetDevice(dev);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    D3D10_BUFFER_DESC bufferDesc;
    bufferDesc.Usage          = D3D10_USAGE_DEFAULT;
    bufferDesc.ByteWidth      = size;
    bufferDesc.BindFlags      = D3D10_BIND_VERTEX_BUFFER;
    bufferDesc.CPUAccessFlags = 0;
    bufferDesc.MiscFlags      = 0;
    device->CreateBuffer(&bufferDesc, 0, &positionsVB);
    cudaGraphicsD3D10RegisterResource(&positionsVB_CUDA,
                                      positionsVB,
                                      cudaGraphicsRegisterFlagsNone);
                                     
 cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                      cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
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    positionsVB->Release();
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;
            
    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}

3.2.13.2.3. Direct3D 11 Version
ID3D11Device* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
ID3D11Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
    int dev;
    // Get a CUDA-enabled adapter
    IDXGIFactory* factory;
    CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
    IDXGIAdapter* adapter = 0;
    for (unsigned int i = 0; !adapter; ++i) {
        if (FAILED(factory->EnumAdapters(i, &adapter))
            break;
        if (cudaD3D11GetDevice(&dev, adapter) == cudaSuccess)
            break;
        adapter->Release();
    }
    factory->Release();

    // Create swap chain and device
    ...
    sFnPtr_D3D11CreateDeviceAndSwapChain(adapter, 
                                         D3D11_DRIVER_TYPE_HARDWARE,
                                         0, 
                                         D3D11_CREATE_DEVICE_DEBUG,
                                         featureLevels, 3,
                                         D3D11_SDK_VERSION, 
                                         &swapChainDesc, &swapChain,
                                         &device,
                                         &featureLevel,
                                         &deviceContext);
    adapter->Release();

    // Use the same device
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    cudaSetDevice(dev);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    D3D11_BUFFER_DESC bufferDesc;
    bufferDesc.Usage          = D3D11_USAGE_DEFAULT;
    bufferDesc.ByteWidth      = size;
    bufferDesc.BindFlags      = D3D11_BIND_VERTEX_BUFFER;
    bufferDesc.CPUAccessFlags = 0;
    bufferDesc.MiscFlags      = 0;
    device->CreateBuffer(&bufferDesc, 0, &positionsVB);
    cudaGraphicsD3D11RegisterResource(&positionsVB_CUDA,
                                      positionsVB,
                                      cudaGraphicsRegisterFlagsNone);
    cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                    cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
    positionsVB->Release();
}

    __global__ void createVertices(float4* positions, float time,
                          unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;
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    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}

3.2.13.3.  SLI Interoperability
In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA driver
and runtime as separate devices. There are however special considerations as described
below when the system is in SLI mode.

First, an allocation in one CUDA device on one GPU will consume memory on other GPUs that
are part of the SLI configuration of the Direct3D or OpenGL device. Because of this, allocations
may fail earlier than otherwise expected.

Second, applications should create multiple CUDA contexts, one for each GPU in the SLI
configuration. While this is not a strict requirement, it avoids unnecessary data transfers
between devices. The application can use the cudaD3D[9|10|11]GetDevices() for Direct3D
and cudaGLGetDevices() for OpenGL set of calls to identify the CUDA device handle(s) for
the device(s) that are performing the rendering in the current and next frame. Given this
information the application will typically choose the appropriate device and map Direct3D
or OpenGL resources to the CUDA device returned by cudaD3D[9|10|11]GetDevices()
or cudaGLGetDevices() when the deviceList parameter is set to cudaD3D[9|10|
11]DeviceListCurrentFrame or cudaGLDeviceListCurrentFrame.

Please note that resource returned from cudaGraphicsD9D[9|10|11]RegisterResource
and cudaGraphicsGLRegister[Buffer|Image] must be only used on device the registration
happened. Therefore on SLI configurations when data for different frames is computed on
different CUDA devices it is necessary to register the resources for each separatly.

See Direct3D Interoperability and OpenGL Interoperability for details on how the CUDA
runtime interoperate with Direct3D and OpenGL, respectively.

3.2.14.  External Resource Interoperability
External resource interoperability allows CUDA to import certain resources that are explicitly
exported by other APIs. These objects are typically exported by other APIs using handles
native to the Operating System, like file descriptors on Linux or NT handles on Windows.
They could also be exported using other unified interfaces such as the NVIDIA Software
Communication Interface. There are two types of resources that can be imported: memory
objects and synchronization objects.

Memory objects can be imported into CUDA using cudaImportExternalMemory(). An
imported memory object can be accessed from within kernels using device pointers mapped
onto the memory object via cudaExternalMemoryGetMappedBuffer()or CUDA mipmapped
arrays mapped via cudaExternalMemoryGetMappedMipmappedArray(). Depending on
the type of memory object, it may be possible for more than one mapping to be setup on a
single memory object. The mappings must match the mappings setup in the exporting API.



Programming Interface

CUDA C++ Programming Guide PG-02829-001_v11.5   |   79

Any mismatched mappings result in undefined behavior. Imported memory objects must be
freed using cudaDestroyExternalMemory(). Freeing a memory object does not free any
mappings to that object. Therefore, any device pointers mapped onto that object must be
explicitly freed using cudaFree() and any CUDA mipmapped arrays mapped onto that object
must be explicitly freed using cudaFreeMipmappedArray(). It is illegal to access mappings to
an object after it has been destroyed.

Synchronization objects can be imported into CUDA using
cudaImportExternalSemaphore(). An imported synchronization object can then
be signaled using cudaSignalExternalSemaphoresAsync() and waited on using
cudaWaitExternalSemaphoresAsync(). It is illegal to issue a wait before the corresponding
signal has been issued. Also, depending on the type of the imported synchronization object,
there may be additional constraints imposed on how they can be signaled and waited on,
as described in subsequent sections. Imported semaphore objects must be freed using
cudaDestroyExternalSemaphore(). All outstanding signals and waits must have completed
before the semaphore object is destroyed.

3.2.14.1.  Vulkan Interoperability

3.2.14.1.1. Matching device UUIDs
When importing memory and synchronization objects exported by Vulkan, they must be
imported and mapped on the same device as they were created on. The CUDA device
that corresponds to the Vulkan physical device on which the objects were created can be
determined by comparing the UUID of a CUDA device with that of the Vulkan physical device,
as shown in the following code sample. Note that the Vulkan physical device should not be
part of a device group that contains more than one Vulkan physical device. The device group as
returned by vkEnumeratePhysicalDeviceGroups that contains the given Vulkan physical device
must have a physical device count of 1.

int getCudaDeviceForVulkanPhysicalDevice(VkPhysicalDevice vkPhysicalDevice) {
    VkPhysicalDeviceIDProperties vkPhysicalDeviceIDProperties = {};
    vkPhysicalDeviceIDProperties.sType =
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_ID_PROPERTIES;
    vkPhysicalDeviceIDProperties.pNext = NULL;

    VkPhysicalDeviceProperties2 vkPhysicalDeviceProperties2 = {};
    vkPhysicalDeviceProperties2.sType =
 VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
    vkPhysicalDeviceProperties2.pNext = &vkPhysicalDeviceIDProperties;

    vkGetPhysicalDeviceProperties2(vkPhysicalDevice, &vkPhysicalDeviceProperties2);

    int cudaDeviceCount;
    cudaGetDeviceCount(&cudaDeviceCount);

    for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
        cudaDeviceProp deviceProp;
        cudaGetDeviceProperties(&deviceProp, cudaDevice);
        if (!memcmp(&deviceProp.uuid, vkPhysicalDeviceIDProperties.deviceUUID,
 VK_UUID_SIZE)) {
            return cudaDevice;
        }
    }
    return cudaInvalidDeviceId;
}
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3.2.14.1.2. Importing memory objects
On Linux and Windows 10, both dedicated and non-dedicated memory objects
exported by Vulkan can be imported into CUDA. On Windows 7, only dedicated memory
objects can be imported. When importing a Vulkan dedicated memory object, the flag
cudaExternalMemoryDedicated must be set.

A Vulkan memory object exported using
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_FD_BIT can be imported into CUDA using
the file descriptor associated with that object as shown below. Note that CUDA assumes
ownership of the file descriptor once it is imported. Using the file descriptor after a successful
import results in undefined behavior.

cudaExternalMemory_t importVulkanMemoryObjectFromFileDescriptor(int
 fd, unsigned long long size, bool isDedicated) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeOpaqueFd;
    desc.handle.fd = fd;
    desc.size = size;
    if (isDedicated) {
        desc.flags |= cudaExternalMemoryDedicated;
    }

    cudaImportExternalMemory(&extMem, &desc);

    // Input parameter 'fd' should not be used beyond this point as CUDA has assumed
 ownership of it

    return extMem;
}

A Vulkan memory object exported using
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT can be imported into CUDA using
the NT handle associated with that object as shown below. Note that CUDA does not assume
ownership of the NT handle and it is the application’s responsibility to close the handle when
it is not required anymore. The NT handle holds a reference to the resource, so it must be
explicitly freed before the underlying memory can be freed.

cudaExternalMemory_t importVulkanMemoryObjectFromNTHandle(HANDLE
 handle, unsigned long long size, bool isDedicated) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
    desc.handle.win32.handle = handle;
    desc.size = size;
    if (isDedicated) {
        desc.flags |= cudaExternalMemoryDedicated;
    }

    cudaImportExternalMemory(&extMem, &desc);
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    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extMem;
}

A Vulkan memory object exported using
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_BIT can also be imported using a
named handle if one exists as shown below.

cudaExternalMemory_t importVulkanMemoryObjectFromNamedNTHandle(LPCWSTR
 name, unsigned long long size, bool isDedicated) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeOpaqueWin32;
    desc.handle.win32.name = (void *)name;
    desc.size = size;
    if (isDedicated) {
        desc.flags |= cudaExternalMemoryDedicated;
    }

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}

A Vulkan memory object exported using
VK_EXTERNAL_MEMORY_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT can be imported into
CUDA using the globally shared D3DKMT handle associated with that object as shown below.
Since a globally shared D3DKMT handle does not hold a reference to the underlying memory it
is automatically destroyed when all other references to the resource are destroyed.

cudaExternalMemory_t importVulkanMemoryObjectFromKMTHandle(HANDLE
 handle, unsigned long long size, bool isDedicated) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeOpaqueWin32Kmt;
    desc.handle.win32.handle = (void *)handle;
    desc.size = size;
    if (isDedicated) {
        desc.flags |= cudaExternalMemoryDedicated;
    }

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}
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3.2.14.1.3. Mapping buffers onto imported memory objects
A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Vulkan API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
 offset, unsigned long long size) {

    void *ptr = NULL;

    cudaExternalMemoryBufferDesc desc = {};

 

    memset(&desc, 0, sizeof(desc));

 

    desc.offset = offset;

    desc.size = size;

 

    cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

 

    // Note: ‘ptr’ must eventually be freed using cudaFree()
        
    return ptr;

}

3.2.14.1.4. Mapping mipmapped arrays onto imported memory
objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown below.
The offset, dimensions, format and number of mip levels must match that specified when
creating the mapping using the corresponding Vulkan API. Additionally, if the mipmapped
array is bound as a color target in Vulkan, the flag cudaArrayColorAttachment must be
set. All mapped mipmapped arrays must be freed using cudaFreeMipmappedArray(). The
following code sample shows how to convert Vulkan parameters into the corresponding CUDA
parameters when mapping mipmapped arrays onto imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t
 extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
 *extent, unsigned int flags, unsigned int numLevels) {
    cudaMipmappedArray_t mipmap = NULL;
    cudaExternalMemoryMipmappedArrayDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.formatDesc = *formatDesc;
    desc.extent = *extent;
    desc.flags = flags;
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    desc.numLevels = numLevels;

    // Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray()
    cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

    return mipmap;
}

cudaChannelFormatDesc getCudaChannelFormatDescForVulkanFormat(VkFormat format)
{
    cudaChannelFormatDesc d;

    memset(&d, 0, sizeof(d));

    switch (format) {
    case VK_FORMAT_R8_UINT:             d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R8_SINT:             d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R8G8_UINT:           d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R8G8_SINT:           d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R8G8B8A8_UINT:       d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R8G8B8A8_SINT:       d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R16_UINT:            d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R16_SINT:            d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R16G16_UINT:         d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R16G16_SINT:         d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R16G16B16A16_UINT:   d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R16G16B16A16_SINT:   d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R32_UINT:            d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R32_SINT:            d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R32_SFLOAT:          d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case VK_FORMAT_R32G32_UINT:         d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R32G32_SINT:         d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R32G32_SFLOAT:       d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case VK_FORMAT_R32G32B32A32_UINT:   d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindUnsigned; break;
    case VK_FORMAT_R32G32B32A32_SINT:   d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindSigned;   break;
    case VK_FORMAT_R32G32B32A32_SFLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindFloat;    break;
    default: assert(0);
    }

    return d;
}
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cudaExtent getCudaExtentForVulkanExtent(VkExtent3D vkExt, uint32_t arrayLayers,
 VkImageViewType vkImageViewType) {
    cudaExtent e = { 0, 0, 0 };
 
    switch (vkImageViewType) {
    case VK_IMAGE_VIEW_TYPE_1D:         e.width = vkExt.width; e.height = 0;        
    e.depth = 0;           break;
    case VK_IMAGE_VIEW_TYPE_2D:         e.width = vkExt.width; e.height =
 vkExt.height; e.depth = 0;           break;
    case VK_IMAGE_VIEW_TYPE_3D:         e.width = vkExt.width; e.height =
 vkExt.height; e.depth = vkExt.depth; break;
    case VK_IMAGE_VIEW_TYPE_CUBE:       e.width = vkExt.width; e.height =
 vkExt.height; e.depth = arrayLayers; break;
    case VK_IMAGE_VIEW_TYPE_1D_ARRAY:   e.width = vkExt.width; e.height = 0;        
    e.depth = arrayLayers; break;
    case VK_IMAGE_VIEW_TYPE_2D_ARRAY:   e.width = vkExt.width; e.height =
 vkExt.height; e.depth = arrayLayers; break;
    case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: e.width = vkExt.width; e.height =
 vkExt.height; e.depth = arrayLayers; break;
    default: assert(0);
    }

    return e;
}

unsigned int getCudaMipmappedArrayFlagsForVulkanImage(VkImageViewType
 vkImageViewType, VkImageUsageFlags vkImageUsageFlags, bool allowSurfaceLoadStore) {
    unsigned int flags = 0;

    switch (vkImageViewType) {
    case VK_IMAGE_VIEW_TYPE_CUBE:       flags |= cudaArrayCubemap;                  
  break;
    case VK_IMAGE_VIEW_TYPE_CUBE_ARRAY: flags |= cudaArrayCubemap |
 cudaArrayLayered; break;
    case VK_IMAGE_VIEW_TYPE_1D_ARRAY:   flags |= cudaArrayLayered;                  
  break;
    case VK_IMAGE_VIEW_TYPE_2D_ARRAY:   flags |= cudaArrayLayered;                  
  break;
    default: break;
    }

    if (vkImageUsageFlags & VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT) {
        flags |= cudaArrayColorAttachment;
    }

    if (allowSurfaceLoadStore) {
        flags |= cudaArraySurfaceLoadStore;
    }
    return flags;
}

3.2.14.1.5. Importing synchronization objects
A Vulkan semaphore object exported using
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_FD_BITcan be imported into CUDA using
the file descriptor associated with that object as shown below. Note that CUDA assumes
ownership of the file descriptor once it is imported. Using the file descriptor after a successful
import results in undefined behavior.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromFileDescriptor(int fd) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};
    
    memset(&desc, 0, sizeof(desc));
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    desc.type = cudaExternalSemaphoreHandleTypeOpaqueFd;
    desc.handle.fd = fd;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'fd' should not be used beyond this point as CUDA has assumed
 ownership of it

    return extSem;
}

A Vulkan semaphore object exported using
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT can be imported into CUDA
using the NT handle associated with that object as shown below. Note that CUDA does not
assume ownership of the NT handle and it is the application’s responsibility to close the
handle when it is not required anymore. The NT handle holds a reference to the resource, so it
must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromNTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
    desc.handle.win32.handle = handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extSem;
}

A Vulkan semaphore object exported using
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_BIT can also be imported using a
named handle if one exists as shown below.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromNamedNTHandle(LPCWSTR name) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32;
    desc.handle.win32.name = (void *)name;

    cudaImportExternalSemaphore(&extSem, &desc);

    return extSem;
}

A Vulkan semaphore object exported using
VK_EXTERNAL_SEMAPHORE_HANDLE_TYPE_OPAQUE_WIN32_KMT_BIT can be imported into
CUDA using the globally shared D3DKMT handle associated with that object as shown
below. Since a globally shared D3DKMT handle does not hold a reference to the underlying
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semaphore it is automatically destroyed when all other references to the resource are
destroyed.

cudaExternalSemaphore_t importVulkanSemaphoreObjectFromKMTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt;
    desc.handle.win32.handle = (void *)handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    return extSem;
}

3.2.14.1.6. Signaling/waiting on imported synchronization objects
An imported Vulkan semaphore object can be signaled as shown below. Signaling such a
semaphore object sets it to the signaled state. The corresponding wait that waits on this signal
must be issued in Vulkan. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream) {
    cudaExternalSemaphoreSignalParams params = {};

    memset(&params, 0, sizeof(params));

    cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

An imported Vulkan semaphore object can be waited on as shown below. Waiting on such
a semaphore object waits until it reaches the signaled state and then resets it back to the
unsignaled state. The corresponding signal that this wait is waiting on must be issued in
Vulkan. Additionally, the signal must be issued before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream) {
    cudaExternalSemaphoreWaitParams params = {};

    memset(&params, 0, sizeof(params));

    cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

3.2.14.2.  OpenGL Interoperability
Traditional OpenGL-CUDA interop as outlined in section 3.2.12.1 works by CUDA directly
consuming handles created in OpenGL. However, since OpenGL can also consume memory
and synchronization objects created in Vulkan, there exists an alternative approach to doing
OpenGL-CUDA interop. Essentially, memory and synchronization objects exported by Vulkan
could be imported into both, OpenGL and CUDA, and then used to coordinate memory
accesses between OpenGL and CUDA. Please refer to the following OpenGL extensions for
further details on how to import memory and synchronization objects exported by Vulkan:

GL_EXT_memory_object
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GL_EXT_memory_object_fd

GL_EXT_memory_object_win32

GL_EXT_semaphore

GL_EXT_semaphore_fd

GL_EXT_semaphore_win32

3.2.14.3.  Direct3D 12 Interoperability

3.2.14.3.1. Matching device LUIDs
When importing memory and synchronization objects exported by Direct3D 12, they must be
imported and mapped on the same device as they were created on. The CUDA device that
corresponds to the Direct3D 12 device on which the objects were created can be determined
by comparing the LUID of a CUDA device with that of the Direct3D 12 device, as shown in the
following code sample. Note that the Direct3D 12 device must not be created on a linked node
adapter. I.e. the node count as returned by ID3D12Device::GetNodeCount must be 1.

int getCudaDeviceForD3D12Device(ID3D12Device *d3d12Device) {
    LUID d3d12Luid = d3d12Device->GetAdapterLuid();

    int cudaDeviceCount;
    cudaGetDeviceCount(&cudaDeviceCount);

    for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
        cudaDeviceProp deviceProp;
        cudaGetDeviceProperties(&deviceProp, cudaDevice);
        char *cudaLuid = deviceProp.luid;

        if (!memcmp(&d3d12Luid.LowPart, cudaLuid, sizeof(d3d12Luid.LowPart)) &&
            !memcmp(&d3d12Luid.HighPart, cudaLuid
 + sizeof(d3d12Luid.LowPart), sizeof(d3d12Luid.HighPart))) {
            return cudaDevice;
        }
    }
    return cudaInvalidDeviceId;
}

3.2.14.3.2. Importing memory objects
A shareable Direct3D 12 heap memory object, created by setting the flag
D3D12_HEAP_FLAG_SHARED in the call to ID3D12Device::CreateHeap, can be imported into
CUDA using the NT handle associated with that object as shown below. Note that it is the
application’s responsibility to close the NT handle when it is not required anymore. The NT
handle holds a reference to the resource, so it must be explicitly freed before the underlying
memory can be freed.

cudaExternalMemory_t importD3D12HeapFromNTHandle(HANDLE handle, unsigned long long
 size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));
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    desc.type = cudaExternalMemoryHandleTypeD3D12Heap;
    desc.handle.win32.handle = (void *)handle;
    desc.size = size;

    cudaImportExternalMemory(&extMem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extMem;
}

A shareable Direct3D 12 heap memory object can also be imported using a named handle if
one exists as shown below.

cudaExternalMemory_t importD3D12HeapFromNamedNTHandle(LPCWSTR
 name, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D12Heap;
    desc.handle.win32.name = (void *)name;
    desc.size = size;

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}

A shareable Direct3D 12 committed resource, created by setting the flag
D3D12_HEAP_FLAG_SHARED in the call to D3D12Device::CreateCommittedResource, can be
imported into CUDA using the NT handle associated with that object as shown below. When
importing a Direct3D 12 committed resource, the flag cudaExternalMemoryDedicated must
be set. Note that it is the application’s responsibility to close the NT handle when it is not
required anymore. The NT handle holds a reference to the resource, so it must be explicitly
freed before the underlying memory can be freed.

cudaExternalMemory_t importD3D12CommittedResourceFromNTHandle(HANDLE
 handle, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D12Resource;
    desc.handle.win32.handle = (void *)handle;
    desc.size = size;
    desc.flags |= cudaExternalMemoryDedicated;

    cudaImportExternalMemory(&extMem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extMem;
}
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A shareable Direct3D 12 committed resource can also be imported using a named handle if
one exists as shown below.

cudaExternalMemory_t importD3D12CommittedResourceFromNamedNTHandle(LPCWSTR
 name, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D12Resource;
    desc.handle.win32.name = (void *)name;
    desc.size = size;
    desc.flags |= cudaExternalMemoryDedicated;

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}

3.2.14.3.3. Mapping buffers onto imported memory objects
A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Direct3D 12 API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
 offset, unsigned long long size) {
    void *ptr = NULL;
    cudaExternalMemoryBufferDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.size = size;

    cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

    // Note: ‘ptr’ must eventually be freed using cudaFree()
    return ptr;
}

3.2.14.3.4. Mapping mipmapped arrays onto imported memory
objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown
below. The offset, dimensions, format and number of mip levels must match that specified
when creating the mapping using the corresponding Direct3D 12 API. Additionally,
if the mipmapped array can be bound as a render target in Direct3D 12, the flag
cudaArrayColorAttachment must be set. All mapped mipmapped arrays must be freed
using cudaFreeMipmappedArray(). The following code sample shows how to convert Vulkan
parameters into the corresponding CUDA parameters when mapping mipmapped arrays onto
imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t
 extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
 *extent, unsigned int flags, unsigned int numLevels) {
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    cudaMipmappedArray_t mipmap = NULL;
    cudaExternalMemoryMipmappedArrayDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.formatDesc = *formatDesc;
    desc.extent = *extent;
    desc.flags = flags;
    desc.numLevels = numLevels;

    // Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray()
    cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

    return mipmap;
}

cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat(DXGI_FORMAT dxgiFormat)
{
    cudaChannelFormatDesc d;

    memset(&d, 0, sizeof(d));

    switch (dxgiFormat) {
    case DXGI_FORMAT_R8_UINT:            d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8_SINT:            d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R8G8_UINT:          d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8G8_SINT:          d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R8G8B8A8_UINT:      d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8G8B8A8_SINT:      d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16_UINT:           d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16_SINT:           d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16G16_UINT:        d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16G16_SINT:        d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16G16B16A16_UINT:  d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16G16B16A16_SINT:  d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32_UINT:           d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32_SINT:           d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32_FLOAT:          d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case DXGI_FORMAT_R32G32_UINT:        d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32G32_SINT:        d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32G32_FLOAT:       d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case DXGI_FORMAT_R32G32B32A32_UINT:  d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32G32B32A32_SINT:  d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32G32B32A32_FLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindFloat;    break;
    default: assert(0);
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    }

    return d;
}

cudaExtent getCudaExtentForD3D12Extent(UINT64 width, UINT height, UINT16
 depthOrArraySize, D3D12_SRV_DIMENSION d3d12SRVDimension) {
    cudaExtent e = { 0, 0, 0 };

    switch (d3d12SRVDimension) {
    case D3D12_SRV_DIMENSION_TEXTURE1D:        e.width = width; e.height = 0;     
 e.depth = 0;                break;
    case D3D12_SRV_DIMENSION_TEXTURE2D:        e.width = width; e.height = height;
 e.depth = 0;                break;
    case D3D12_SRV_DIMENSION_TEXTURE3D:        e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D12_SRV_DIMENSION_TEXTURECUBE:      e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D12_SRV_DIMENSION_TEXTURE1DARRAY:   e.width = width; e.height = 0;     
 e.depth = depthOrArraySize; break;
    case D3D12_SRV_DIMENSION_TEXTURE2DARRAY:   e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D12_SRV_DIMENSION_TEXTURECUBEARRAY: e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    default: assert(0);
    }

    return e;
}

unsigned int getCudaMipmappedArrayFlagsForD3D12Resource(D3D12_SRV_DIMENSION
 d3d12SRVDimension, D3D12_RESOURCE_FLAGS d3d12ResourceFlags, bool
 allowSurfaceLoadStore) {
    unsigned int flags = 0;

    switch (d3d12SRVDimension) {
    case D3D12_SRV_DIMENSION_TEXTURECUBE:      flags |= cudaArrayCubemap;           
         break;
    case D3D12_SRV_DIMENSION_TEXTURECUBEARRAY: flags |= cudaArrayCubemap |
 cudaArrayLayered; break;
    case D3D12_SRV_DIMENSION_TEXTURE1DARRAY:   flags |= cudaArrayLayered;           
         break;
    case D3D12_SRV_DIMENSION_TEXTURE2DARRAY:   flags |= cudaArrayLayered;           
         break;
    default: break;
    }

    if (d3d12ResourceFlags & D3D12_RESOURCE_FLAG_ALLOW_RENDER_TARGET) {
        flags |= cudaArrayColorAttachment;
    }
    if (allowSurfaceLoadStore) {
        flags |= cudaArraySurfaceLoadStore;
    }

    return flags;
}

3.2.14.3.5. Importing synchronization objects
A shareable Direct3D 12 fence object, created by setting the flag D3D12_FENCE_FLAG_SHARED
in the call to ID3D12Device::CreateFence, can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
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close the handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore_t importD3D12FenceFromNTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
    desc.handle.win32.handle = handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extSem;
}

A shareable Direct3D 12 fence object can also be imported using a named handle if one exists
as shown below.

cudaExternalSemaphore_t importD3D12FenceFromNamedNTHandle(LPCWSTR name) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};
 
    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeD3D12Fence;
    desc.handle.win32.name = (void *)name;

    cudaImportExternalSemaphore(&extSem, &desc);

    return extSem;
}

3.2.14.3.6. Signaling/waiting on imported synchronization objects
An imported Direct3D 12 fence object can be signaled as shown below. Signaling such a fence
object sets its value to the one specified. The corresponding wait that waits on this signal must
be issued in Direct3D 12. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long
 value, cudaStream_t stream) {
    cudaExternalSemaphoreSignalParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.fence.value = value;

    cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

An imported Direct3D 12 fence object can be waited on as shown below. Waiting on such a
fence object waits until its value becomes greater than or equal to the specified value. The
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corresponding signal that this wait is waiting on must be issued in Direct3D 12. Additionally,
the signal must be issued before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
 cudaStream_t stream) {
    cudaExternalSemaphoreWaitParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.fence.value = value;

    cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

3.2.14.4.  Direct3D 11 Interoperability

3.2.14.4.1. Matching device LUIDs
When importing memory and synchronization objects exported by Direct3D 11, they must be
imported and mapped on the same device as they were created on. The CUDA device that
corresponds to the Direct3D 11 device on which the objects were created can be determined
by comparing the LUID of a CUDA device with that of the Direct3D 11 device, as shown in the
following code sample.

int getCudaDeviceForD3D11Device(ID3D11Device *d3d11Device) {
    IDXGIDevice *dxgiDevice;
    d3d11Device->QueryInterface(__uuidof(IDXGIDevice), (void **)&dxgiDevice);

    IDXGIAdapter *dxgiAdapter;
    dxgiDevice->GetAdapter(&dxgiAdapter);

    DXGI_ADAPTER_DESC dxgiAdapterDesc;
    dxgiAdapter->GetDesc(&dxgiAdapterDesc);

    LUID d3d11Luid = dxgiAdapterDesc.AdapterLuid;

    int cudaDeviceCount;
    cudaGetDeviceCount(&cudaDeviceCount);

    for (int cudaDevice = 0; cudaDevice < cudaDeviceCount; cudaDevice++) {
        cudaDeviceProp deviceProp;
        cudaGetDeviceProperties(&deviceProp, cudaDevice);
        char *cudaLuid = deviceProp.luid;

        if (!memcmp(&d3d11Luid.LowPart, cudaLuid, sizeof(d3d11Luid.LowPart)) &&
            !memcmp(&d3d11Luid.HighPart, cudaLuid
 + sizeof(d3d11Luid.LowPart), sizeof(d3d11Luid.HighPart))) {
            return cudaDevice;
        }
    }
    return cudaInvalidDeviceId;
}

3.2.14.4.2. Importing memory objects
A shareable Direct3D 11 texture resource, viz, ID3D11Texture1D, ID3D11Texture2D or
ID3D11Texture3D, can be created by setting either the D3D11_RESOURCE_MISC_SHARED
or D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX (on Windows 7) or
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D3D11_RESOURCE_MISC_SHARED_NTHANDLE (on Windows 10) when calling
ID3D11Device:CreateTexture1D, ID3D11Device:CreateTexture2D or
ID3D11Device:CreateTexture3D respectively. A shareable Direct3D 11 buffer resource,
ID3D11Buffer, can be created by specifying either of the above flags when calling
ID3D11Device::CreateBuffer. A shareable resource created by specifying the
D3D11_RESOURCE_MISC_SHARED_NTHANDLE can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
close the NT handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying memory can be freed. When
importing a Direct3D 11 resource, the flag cudaExternalMemoryDedicated must be set.

cudaExternalMemory_t importD3D11ResourceFromNTHandle(HANDLE
 handle, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D11Resource;
    desc.handle.win32.handle = (void *)handle;
    desc.size = size;
    desc.flags |= cudaExternalMemoryDedicated;

    cudaImportExternalMemory(&extMem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extMem;
}

A shareable Direct3D 11 resource can also be imported using a named handle if one exists as
shown below.

cudaExternalMemory_t importD3D11ResourceFromNamedNTHandle(LPCWSTR
 name, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D11Resource;
    desc.handle.win32.name = (void *)name;
    desc.size = size;
    desc.flags |= cudaExternalMemoryDedicated;

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}

A shareable Direct3D 11 resource, created by specifying the D3D11_RESOURCE_MISC_SHARED
or D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX, can be imported into CUDA using the
globally shared D3DKMT handle associated with that object as shown below. Since a globally
shared D3DKMT handle does not hold a reference to the underlying memory it is automatically
destroyed when all other references to the resource are destroyed.
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cudaExternalMemory_t importD3D11ResourceFromKMTHandle(HANDLE
 handle, unsigned long long size) {
    cudaExternalMemory_t extMem = NULL;
    cudaExternalMemoryHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalMemoryHandleTypeD3D11ResourceKmt;
    desc.handle.win32.handle = (void *)handle;
    desc.size = size;
    desc.flags |= cudaExternalMemoryDedicated;

    cudaImportExternalMemory(&extMem, &desc);

    return extMem;
}

3.2.14.4.3. Mapping buffers onto imported memory objects
A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping must match that specified when creating the mapping using the
corresponding Direct3D 11 API. All mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
 offset, unsigned long long size) {
    void *ptr = NULL;
    cudaExternalMemoryBufferDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.size = size;

    cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

    // Note: ‘ptr’ must eventually be freed using cudaFree()
    return ptr;
}

3.2.14.4.4. Mapping mipmapped arrays onto imported memory
objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown
below. The offset, dimensions, format and number of mip levels must match that specified
when creating the mapping using the corresponding Direct3D 11 API. Additionally,
if the mipmapped array can be bound as a render target in Direct3D 12, the flag
cudaArrayColorAttachment must be set. All mapped mipmapped arrays must be freed
using cudaFreeMipmappedArray(). The following code sample shows how to convert
Direct3D 11 parameters into the corresponding CUDA parameters when mapping mipmapped
arrays onto imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t
 extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
 *extent, unsigned int flags, unsigned int numLevels) {
    cudaMipmappedArray_t mipmap = NULL;
    cudaExternalMemoryMipmappedArrayDesc desc = {};

    memset(&desc, 0, sizeof(desc));
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    desc.offset = offset;
    desc.formatDesc = *formatDesc;
    desc.extent = *extent;
    desc.flags = flags;
    desc.numLevels = numLevels;

    // Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray()
    cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

    return mipmap;
}

cudaChannelFormatDesc getCudaChannelFormatDescForDxgiFormat(DXGI_FORMAT dxgiFormat)
{
    cudaChannelFormatDesc d;
    memset(&d, 0, sizeof(d));
    switch (dxgiFormat) {
    case DXGI_FORMAT_R8_UINT:            d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8_SINT:            d.x = 8;  d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R8G8_UINT:          d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8G8_SINT:          d.x = 8;  d.y = 8;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R8G8B8A8_UINT:      d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R8G8B8A8_SINT:      d.x = 8;  d.y = 8;  d.z = 8;  d.w = 8;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16_UINT:           d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16_SINT:           d.x = 16; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16G16_UINT:        d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16G16_SINT:        d.x = 16; d.y = 16; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R16G16B16A16_UINT:  d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R16G16B16A16_SINT:  d.x = 16; d.y = 16; d.z = 16; d.w = 16; d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32_UINT:           d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32_SINT:           d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32_FLOAT:          d.x = 32; d.y = 0;  d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case DXGI_FORMAT_R32G32_UINT:        d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32G32_SINT:        d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32G32_FLOAT:       d.x = 32; d.y = 32; d.z = 0;  d.w = 0;  d.f
 = cudaChannelFormatKindFloat;    break;
    case DXGI_FORMAT_R32G32B32A32_UINT:  d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindUnsigned; break;
    case DXGI_FORMAT_R32G32B32A32_SINT:  d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindSigned;   break;
    case DXGI_FORMAT_R32G32B32A32_FLOAT: d.x = 32; d.y = 32; d.z = 32; d.w = 32; d.f
 = cudaChannelFormatKindFloat;    break;
    default: assert(0);
    }

    return d;
}
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cudaExtent getCudaExtentForD3D11Extent(UINT64 width, UINT height, UINT16
 depthOrArraySize, D3D12_SRV_DIMENSION d3d11SRVDimension) {
    cudaExtent e = { 0, 0, 0 };

    switch (d3d11SRVDimension) {
    case D3D11_SRV_DIMENSION_TEXTURE1D:        e.width = width; e.height = 0;     
 e.depth = 0;                break;
    case D3D11_SRV_DIMENSION_TEXTURE2D:        e.width = width; e.height = height;
 e.depth = 0;                break;
    case D3D11_SRV_DIMENSION_TEXTURE3D:        e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D11_SRV_DIMENSION_TEXTURECUBE:      e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D11_SRV_DIMENSION_TEXTURE1DARRAY:   e.width = width; e.height = 0;     
 e.depth = depthOrArraySize; break;
    case D3D11_SRV_DIMENSION_TEXTURE2DARRAY:   e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    case D3D11_SRV_DIMENSION_TEXTURECUBEARRAY: e.width = width; e.height = height;
 e.depth = depthOrArraySize; break;
    default: assert(0);
    }
    return e;
}

unsigned int getCudaMipmappedArrayFlagsForD3D12Resource(D3D11_SRV_DIMENSION
 d3d11SRVDimension, D3D11_BIND_FLAG d3d11BindFlags, bool allowSurfaceLoadStore) {
    unsigned int flags = 0;

    switch (d3d11SRVDimension) {
    case D3D11_SRV_DIMENSION_TEXTURECUBE:      flags |= cudaArrayCubemap;           
         break;
    case D3D11_SRV_DIMENSION_TEXTURECUBEARRAY: flags |= cudaArrayCubemap |
 cudaArrayLayered; break;
    case D3D11_SRV_DIMENSION_TEXTURE1DARRAY:   flags |= cudaArrayLayered;           
         break;
    case D3D11_SRV_DIMENSION_TEXTURE2DARRAY:   flags |= cudaArrayLayered;           
         break;
    default: break;
    }

    if (d3d11BindFlags & D3D11_BIND_RENDER_TARGET) {
        flags |= cudaArrayColorAttachment;
    }

    if (allowSurfaceLoadStore) {
        flags |= cudaArraySurfaceLoadStore;
    }

    return flags;
}

3.2.14.4.5. Importing synchronization objects
A shareable Direct3D 11 fence object, created by setting the flag D3D11_FENCE_FLAG_SHARED
in the call to ID3D11Device5::CreateFence, can be imported into CUDA using the NT handle
associated with that object as shown below. Note that it is the application’s responsibility to
close the handle when it is not required anymore. The NT handle holds a reference to the
resource, so it must be explicitly freed before the underlying semaphore can be freed.

cudaExternalSemaphore_t importD3D11FenceFromNTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};
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    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeD3D11Fence;
    desc.handle.win32.handle = handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extSem;
}

A shareable Direct3D 11 fence object can also be imported using a named handle if one exists
as shown below.

cudaExternalSemaphore_t importD3D11FenceFromNamedNTHandle(LPCWSTR name) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeD3D11Fence;
    desc.handle.win32.name = (void *)name;

    cudaImportExternalSemaphore(&extSem, &desc);

    return extSem;
}

A shareable Direct3D 11 keyed mutex object associated with a shareable
Direct3D 11 resource, viz, IDXGIKeyedMutex, created by setting the flag
D3D11_RESOURCE_MISC_SHARED_KEYEDMUTEX, can be imported into CUDA using the
NT handle associated with that object as shown below. Note that it is the application’s
responsibility to close the handle when it is not required anymore. The NT handle holds a
reference to the resource, so it must be explicitly freed before the underlying semaphore can
be freed.

cudaExternalSemaphore_t importD3D11KeyedMutexFromNTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
    desc.handle.win32.handle = handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extSem;
}

A shareable Direct3D 11 keyed mutex object can also be imported using a named handle if one
exists as shown below.

cudaExternalSemaphore_t importD3D11KeyedMutexFromNamedNTHandle(LPCWSTR name) {
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    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeKeyedMutex;
    desc.handle.win32.name = (void *)name;

    cudaImportExternalSemaphore(&extSem, &desc);

    return extSem;
}

A shareable Direct3D 11 keyed mutex object can be imported into CUDA using the globally
shared D3DKMT handle associated with that object as shown below. Since a globally shared
D3DKMT handle does not hold a reference to the underlying memory it is automatically
destroyed when all other references to the resource are destroyed.

cudaExternalSemaphore_t importD3D11FenceFromKMTHandle(HANDLE handle) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeKeyedMutexKmt;
    desc.handle.win32.handle = handle;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Input parameter 'handle' should be closed if it's not needed anymore
    CloseHandle(handle);

    return extSem;
}

3.2.14.4.6. Signaling/waiting on imported synchronization objects
An imported Direct3D 11 fence object can be signaled as shown below. Signaling such a fence
object sets its value to the one specified. The corresponding wait that waits on this signal must
be issued in Direct3D 11. Additionally, the wait that waits on this signal must be issued after
this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long
 value, cudaStream_t stream) {
    cudaExternalSemaphoreSignalParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.fence.value = value;

    cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

An imported Direct3D 11 fence object can be waited on as shown below. Waiting on such a
fence object waits until its value becomes greater than or equal to the specified value. The
corresponding signal that this wait is waiting on must be issued in Direct3D 11. Additionally,
the signal must be issued before this wait can be issued.
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void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long value,
 cudaStream_t stream) {
    cudaExternalSemaphoreWaitParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.fence.value = value;

    cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

An imported Direct3D 11 keyed mutex object can be signaled as shown below. Signaling such
a keyed mutex object by specifying a key value releases the keyed mutex for that value. The
corresponding wait that waits on this signal must be issued in Direct3D 11 with the same key
value. Additionally, the Direct3D 11 wait must be issued after this signal has been issued.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long key,
 cudaStream_t stream) {
    cudaExternalSemaphoreSignalParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.keyedmutex.key = key;

    cudaSignalExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

An imported Direct3D 11 keyed mutex object can be waited on as shown below. A timeout
value in milliseconds is needed when waiting on such a keyed mutex. The wait operation
waits until the keyed mutex value is equal to the specified key value or until the timeout has
elapsed. The timeout interval can also be an infinite value. In case an infinite value is specified
the timeout never elapses. The windows INFINITE macro must be used to specify an infinite
timeout. The corresponding signal that this wait is waiting on must be issued in Direct3D 11.
Additionally, the Direct3D 11 signal must be issued before this wait can be issued.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, unsigned long long
 key, unsigned int timeoutMs, cudaStream_t stream) {
    cudaExternalSemaphoreWaitParams params = {};

    memset(&params, 0, sizeof(params));

    params.params.keyedmutex.key = key;
    params.params.keyedmutex.timeoutMs = timeoutMs;

    cudaWaitExternalSemaphoresAsync(&extSem, &params, 1, stream);
}

3.2.14.5.  NVIDIA Software Communication Interface
Interoperability (NVSCI)

NvSciBuf and NvSciSync are interfaces developed for serving the following purposes:

‣ NvSciBuf: Allows applications to allocate and exchange buffers in memory

‣ NvSciSync: Allows applications manage synchronization objects at operation boundaries

More details on these interfaces are available at: https://docs.nvidia.com/drive.

https://docs.nvidia.com/drive
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3.2.14.5.1. Importing memory objects
For allocating an NvSciBuf object compatible with a given CUDA device, the corresponding
GPU id must be set with NvSciBufGeneralAttrKey_GpuId in the NvSciBuf attribute list as
shown below. For more details on how to allocate and maintain NvSciBuf objects refer to
NvSciBuf API Documentation.

NvSciBufObj createNvSciBufObject() {
   // Raw Buffer Attributes for CUDA
    NvSciBufType bufType = NvSciBufType_RawBuffer;
    uint64_t rawsize = SIZE;
    uint64_t align = 0;
    bool cpuaccess_flag = true;
    NvSciBufAttrValAccessPerm perm = NvSciBufAccessPerm_ReadWrite; 

    NvSciRmGpuId gpuid[] ={};
    CUuuid uuid;
    cuDeviceGetUuid(&uuid, dev));

    memcpy(&gpuid[0].bytes, &uuid.bytes, sizeof(uuid.bytes));
    // Disable cache on dev
    NvSciBufAttrValGpuCache gpuCache[] = {{gpuid[0], false}};   
    // Fill in values
    NvSciBufAttrKeyValuePair rawbuffattrs[] = {                              
         { NvSciBufGeneralAttrKey_Types, &bufType, sizeof(bufType) },        
         { NvSciBufRawBufferAttrKey_Size, &rawsize, sizeof(rawsize) },       
         { NvSciBufRawBufferAttrKey_Align, &align, sizeof(align) },          
         { NvSciBufGeneralAttrKey_NeedCpuAccess, &cpuaccess_flag,            
                sizeof(cpuaccess_flag) },
         { NvSciBufGeneralAttrKey_RequiredPerm, &perm, sizeof(perm) },
         { NvSciBufGeneralAttrKey_GpuId, &gpuid, sizeof(gpuid) },
         { NvSciBufGeneralAttrKey_EnableGpuCache &gpuCache, sizeof(gpuCache) }
    };                                                                       

    // Create list by setting attributes
    err = NvSciBufAttrListSetAttrs(attrListBuffer, rawbuffattrs,               
            sizeof(rawbuffattrs)/sizeof(NvSciBufAttrKeyValuePair)); 
                    
    NvSciBufAttrListCreate(NvSciBufModule, &attrListBuffer);

    // Reconcile And Allocate
    NvSciBufAttrListReconcile(&attrListBuffer, 1, &attrListReconciledBuffer,    
                       &attrListConflictBuffer)
    NvSciBufObjAlloc(attrListReconciledBuffer, &bufferObjRaw);
    return bufferObjRaw;
}

    NvSciBufObj bufferObjRo; // Readonly NvSciBuf memory obj 
    // Create a duplicate handle to the same memory buffer with reduced permissions
    NvSciBufObjDupWithReducePerm(bufferObjRaw, NvSciBufAccessPerm_Readonly,
 &bufferObjRo);
    return bufferObjRo;

The allocated NvSciBuf memory object can be imported in CUDA using the NvSciBufObj
handle as shown below. Optionally, applications can configure different access permissions
for different UMDs per NvSciBuf memory object instance. For example, to provide read-
only access permissions to GPU, application should pass NvSciBufAccessPerm_Readonly
to NvSciBufObjDupWithReducePerm() as shown. Then import this newly created duplicate
NvSciBuf memory object with reduced permission into CUDA. Additionally, it can also control
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GPU L2 cacheability using NvSciBufGeneralAttrKey_EnableGpuCache as shown. For
more details, refer to NvSciBuf documentation. Application should query the allocated
NvSciBufObj for attributes required for filling CUDA External Memory Descriptor. Note
that the attribute list and NvSciBuf objects should be maintained by the application. If
the NvSciBuf object imported into CUDA is also mapped by other drivers, then based on
NvSciBufGeneralAttrKey_GpuSwNeedCacheCoherency output attribute value the application
must use NvSciSync objects (Refer Importing synchronization objects) as appropriate barriers
to maintain coherence between CUDA and the other drivers.

cudaExternalMemory_t importNvSciBufObject (NvSciBufObj bufferObjRaw) {

    /*************** Query NvSciBuf Object **************/
    NvSciBufAttrKeyValuePair bufattrs[] = {
                { NvSciBufRawBufferAttrKey_Size, NULL, 0 },
                { NvSciBufGeneralAttrKey_GpuSwNeedCacheCoherency, NULL, 0 }
    };
    NvSciBufAttrListGetAttrs(retList, bufattrs, 
        sizeof(bufattrs)/sizeof(NvSciBufAttrKeyValuePair)));
    ret_size = *(static_cast<const uint64_t*>(bufattrs[0].value));
    NvSciBufAttrValGpuCache cacheVal = (NvSciBufAttrValGpuCache *)bufattrs[1].value;
    bool ret_cacheVal = cacheVal[0].cacheability);

    /*************** NvSciBuf Registration With CUDA **************/

    // Fill up CUDA_EXTERNAL_MEMORY_HANDLE_DESC
    cudaExternalMemoryHandleDesc memHandleDesc;
    memset(&memHandleDesc, 0, sizeof(memHandleDesc));
    memHandleDesc.type = cudaExternalMemoryHandleTypeNvSciBuf;
    memHandleDesc.handle.nvSciBufObject = bufferObjRaw;
    memHandleDesc.size = ret_size;
    cudaImportExternalMemory(&extMemBuffer, &memHandleDesc);
    return extMemBuffer;
 }

3.2.14.5.2. Mapping buffers onto imported memory objects
A device pointer can be mapped onto an imported memory object as shown below. The offset
and size of the mapping can be filled as per the attributes of the allocated NvSciBufObj. All
mapped device pointers must be freed using cudaFree().

void * mapBufferOntoExternalMemory(cudaExternalMemory_t extMem, unsigned long long
 offset, unsigned long long size) {
    void *ptr = NULL;
    cudaExternalMemoryBufferDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.size = size;

    cudaExternalMemoryGetMappedBuffer(&ptr, extMem, &desc);

    // Note: ‘ptr’ must eventually be freed using cudaFree()
    return ptr;
}
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3.2.14.5.3. Mapping mipmapped arrays onto imported memory
objects

A CUDA mipmapped array can be mapped onto an imported memory object as shown
below. The offset, dimensions and format can be filled as per the attributes of the allocated
NvSciBufObj. The number of mip levels must be 1. All mapped mipmapped arrays must be
freed using cudaFreeMipmappedArray(). The following code sample shows how to convert
NvSciBuf attributes into the corresponding CUDA parameters when mapping mipmapped
arrays onto imported memory objects.

cudaMipmappedArray_t mapMipmappedArrayOntoExternalMemory(cudaExternalMemory_t
 extMem, unsigned long long offset, cudaChannelFormatDesc *formatDesc, cudaExtent
 *extent, unsigned int flags, unsigned int numLevels) {
    cudaMipmappedArray_t mipmap = NULL;
    cudaExternalMemoryMipmappedArrayDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.offset = offset;
    desc.formatDesc = *formatDesc;
    desc.extent = *extent;
    desc.flags = flags;
    desc.numLevels = numLevels;

    // Note: ‘mipmap’ must eventually be freed using cudaFreeMipmappedArray()
    cudaExternalMemoryGetMappedMipmappedArray(&mipmap, extMem, &desc);

    return mipmap;
}

3.2.14.5.4. Importing synchronization objects
NvSciSync attributes that are compatible with a given CUDA device can be generated using
cudaDeviceGetNvSciSyncAttributes(). The returned attribute list can be used to create a
NvSciSyncObj that is guaranteed compatibility with a given CUDA device.

NvSciSyncObj createNvSciSyncObject() {
    NvSciSyncObj nvSciSyncObj
    int cudaDev0 = 0;
    int cudaDev1 = 1;
    NvSciSyncAttrList signalerAttrList = NULL;
    NvSciSyncAttrList waiterAttrList = NULL;
    NvSciSyncAttrList reconciledList = NULL;
    NvSciSyncAttrList newConflictList = NULL;

    NvSciSyncAttrListCreate(module, &signalerAttrList);
    NvSciSyncAttrListCreate(module, &waiterAttrList);
    NvSciSyncAttrList unreconciledList[2] = {NULL, NULL};
    unreconciledList[0] = signalerAttrList;
    unreconciledList[1] = waiterAttrList;

    cudaDeviceGetNvSciSyncAttributes(signalerAttrList, cudaDev0,
 CUDA_NVSCISYNC_ATTR_SIGNAL);
    cudaDeviceGetNvSciSyncAttributes(waiterAttrList, cudaDev1,
 CUDA_NVSCISYNC_ATTR_WAIT);
        
    NvSciSyncAttrListReconcile(unreconciledList, 2, &reconciledList,
 &newConflictList);
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    NvSciSyncObjAlloc(reconciledList, &nvSciSyncObj);

    return nvSciSyncObj;
}

An NvSciSync object (created as above) can be imported into CUDA using the NvSciSyncObj
handle as shown below. Note that ownership of the NvSciSyncObj handle continues to lie with
the application even after it is imported.

cudaExternalSemaphore_t importNvSciSyncObject(void* nvSciSyncObj) {
    cudaExternalSemaphore_t extSem = NULL;
    cudaExternalSemaphoreHandleDesc desc = {};

    memset(&desc, 0, sizeof(desc));

    desc.type = cudaExternalSemaphoreHandleTypeNvSciSync;
    desc.handle.nvSciSyncObj = nvSciSyncObj;

    cudaImportExternalSemaphore(&extSem, &desc);

    // Deleting/Freeing the nvSciSyncObj beyond this point will lead to undefined
 behavior in CUDA
        
    return extSem;
}

3.2.14.5.5. Signaling/waiting on imported synchronization objects
An imported NvSciSyncObj object can be signaled as outlined below. Signaling NvSciSync
backed semaphore object initializes the fence parameter passed as input. This fence
parameter is waited upon by a wait operation that corresponds to the aforementioned signal.
Additionally, the wait that waits on this signal must be issued after this signal has been
issued. If the flags are set to cudaExternalSemaphoreSignalSkipNvSciBufMemSync
then memory synchronization operations (over all the imported NvSciBuf in this
process) that are executed as a part of the signal operation by default are skipped. When
NvsciBufGeneralAttrKey_GpuSwNeedCacheCoherency is FALSE, this flag should be set.

void signalExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t
 stream, void *fence) {
    cudaExternalSemaphoreSignalParams signalParams = {};

    memset(&signalParams, 0, sizeof(signalParams));

    signalParams.params.nvSciSync.fence = (void*)fence;
    signalParams.flags = 0; //OR cudaExternalSemaphoreSignalSkipNvSciBufMemSync

    cudaSignalExternalSemaphoresAsync(&extSem, &signalParams, 1, stream);

}

An imported NvSciSyncObj object can be waited upon as outlined below. Waiting on
NvSciSync backed semaphore object waits until the input fence parameter is signaled by
the corresponding signaler. Additionally, the signal must be issued before the wait can
be issued. If the flags are set to cudaExternalSemaphoreWaitSkipNvSciBufMemSync
then memory synchronization operations (over all the imported NvSciBuf in this
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process) that are executed as a part of the signal operation by default are skipped. When
NvsciBufGeneralAttrKey_GpuSwNeedCacheCoherency is FALSE, this flag should be set.

void waitExternalSemaphore(cudaExternalSemaphore_t extSem, cudaStream_t stream, void
 *fence) {
     cudaExternalSemaphoreWaitParams waitParams = {};

    memset(&waitParams, 0, sizeof(waitParams));

    waitParams.params.nvSciSync.fence = (void*)fence;
    waitParams.flags = 0; //OR cudaExternalSemaphoreWaitSkipNvSciBufMemSync

    cudaWaitExternalSemaphoresAsync(&extSem, &waitParams, 1, stream);
}

3.2.15.  CUDA User Objects
CUDA User Objects can be used to help manage the lifetime of resources used by
asynchronous work in CUDA. In particular, this feature is useful for CUDA Graphs and stream
capture.

Various resource management schemes are not compatible with CUDA graphs. Consider for
example an event-based pool or a synchronous-create, asynchronous-destroy scheme.

// Library API with pool allocation
void libraryWork(cudaStream_t stream) {
    auto &resource = pool.claimTemporaryResource();
    resource.waitOnReadyEventInStream(stream);
    launchWork(stream, resource);
    resource.recordReadyEvent(stream);
}

// Library API with asynchronous resource deletion
void libraryWork(cudaStream_t stream) {
    Resource *resource = new Resource(...);
    launchWork(stream, resource);
    cudaStreamAddCallback(
        stream,
        [](cudaStream_t, cudaError_t, void *resource) {
            delete static_cast<Resource *>(resource);
        },
        resource,
        0);
    // Error handling considerations not shown
}

These schemes are difficult with CUDA graphs because of the non-fixed pointer or handle
for the resource which requires indirection or graph update, and the synchronous CPU code
needed each time the work is submitted. They also do not work with stream capture if these
considerations are hidden from the caller of the library, and because of use of disallowed APIs
during capture. Various solutions exist such as exposing the resource to the caller. CUDA user
objects present another approach.

A CUDA user object associates a user-specified destructor callback with an internal refcount,
similar to C++ shared_ptr. References may be owned by user code on the CPU and by CUDA
graphs. Note that for user-owned references, unlike C++ smart pointers, there is no object
representing the reference; users must track user-owned references manually. A typical use
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case would be to immediately move the sole user-owned reference to a CUDA graph after the
user object is created.

When a reference is associated to a CUDA graph, CUDA will manage the graph operations
automatically. A cloned cudaGraph_t retains a copy of every reference owned by the source
cudaGraph_t, with the same multiplicity. An instantiated cudaGraphExec_t retains a copy of
every reference in the source cudaGraph_t. When a cudaGraphExec_t is destroyed without
being synchronized, the references are retained until the execution is completed.

Here is an example use.

cudaGraph_t graph;  // Preexisting graph

Object *object = new Object;  // C++ object with possibly nontrivial destructor
cudaUserObject_t cuObject;
cudaUserObjectCreate(
    &cuObject,
    object,  // Here we use a CUDA-provided template wrapper for this API,
             // which supplies a callback to delete the C++ object pointer
    1,  // Initial refcount
    cudaUserObjectNoDestructorSync  // Acknowledge that the callback cannot be
                                    // waited on via CUDA
);
cudaGraphRetainUserObject(
    graph,
    cuObject,
    1,  // Number of references
    cudaGraphUserObjectMove  // Transfer a reference owned by the caller (do
                             // not modify the total reference count)
);
// No more references owned by this thread; no need to call release API
cudaGraphExec_t graphExec;
cudaGraphInstantiate(&graphExec, graph, nullptr, nullptr, 0);  // Will retain a
                                                               // new reference
cudaGraphDestroy(graph);  // graphExec still owns a reference
cudaGraphLaunch(graphExec, 0);  // Async launch has access to the user objects
cudaGraphExecDestroy(graphExec);  // Launch is not synchronized; the release
                                  // will be deferred if needed
cudaStreamSynchronize(0);  // After the launch is synchronized, the remaining
                           // reference is released and the destructor will
                           // execute. Note this happens asynchronously.
// If the destructor callback had signaled a synchronization object, it would
// be safe to wait on it at this point.

References owned by graphs in child graph nodes are associated to the child graphs, not
the parents. If a child graph is updated or deleted, the references change accordingly.
If an executable graph or child graph is updated with cudaGraphExecUpdate or
cudaGraphExecChildGraphNodeSetParams, the references in the new source graph are
cloned and replace the references in the target graph. In either case, if previous launches are
not synchronized, any references which would be released are held until the launches have
finished executing.

There is not currently a mechanism to wait on user object destructors via a CUDA
API. Users may signal a synchronization object manually from the destructor code. In
addition, it is not legal to call CUDA APIs from the destructor, similar to the restriction on
cudaLaunchHostFunc. This is to avoid blocking a CUDA internal shared thread and preventing
forward progress. It is legal to signal another thread to perform an API call, if the dependency
is one way and the thread doing the call cannot block forward progress of CUDA work.
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User objects are created with cudaUserObjectCreate, which is a good starting point to
browse related APIs.

3.3.  Versioning and Compatibility
There are two version numbers that developers should care about when developing a CUDA
application: The compute capability that describes the general specifications and features
of the compute device (see Compute Capability) and the version of the CUDA driver API that
describes the features supported by the driver API and runtime.

The version of the driver API is defined in the driver header file as CUDA_VERSION. It allows
developers to check whether their application requires a newer device driver than the one
currently installed. This is important, because the driver API is backward compatible, meaning
that applications, plug-ins, and libraries (including the CUDA runtime) compiled against
a particular version of the driver API will continue to work on subsequent device driver
releases as illustrated in Figure 11. The driver API is not forward compatible, which means
that applications, plug-ins, and libraries (including the CUDA runtime) compiled against a
particular version of the driver API will not work on previous versions of the device driver.

It is important to note that there are limitations on the mixing and matching of versions that is
supported:

‣ Since only one version of the CUDA Driver can be installed at a time on a system, the
installed driver must be of the same or higher version than the maximum Driver API
version against which any application, plug-ins, or libraries that must run on that system
were built.

‣ All plug-ins and libraries used by an application must use the same version of the CUDA
Runtime unless they statically link to the Runtime, in which case multiple versions of
the runtime can coexist in the same process space. Note that if nvcc is used to link the
application, the static version of the CUDA Runtime library will be used by default, and all
CUDA Toolkit libraries are statically linked against the CUDA Runtime.

‣ All plug-ins and libraries used by an application must use the same version of any
libraries that use the runtime (such as cuFFT, cuBLAS, ...) unless statically linking to those
libraries.



Programming Interface

CUDA C++ Programming Guide PG-02829-001_v11.5   |   108

Figure 11. The Driver API Is Backward but Not Forward Compatible
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For Tesla GPU products, CUDA 10 introduced a new forward-compatible upgrade path for the
user-mode components of the CUDA Driver. This feature is described in CUDA Compatibility.
The requirements on the CUDA Driver version described here apply to the version of the user-
mode components.

3.4.  Compute Modes
On Tesla solutions running Windows Server 2008 and later or Linux, one can set any device in
a system in one of the three following modes using NVIDIA's System Management Interface
(nvidia-smi), which is a tool distributed as part of the driver:

‣ Default compute mode: Multiple host threads can use the device (by calling
cudaSetDevice() on this device, when using the runtime API, or by making current a
context associated to the device, when using the driver API) at the same time.

‣ Exclusive-process compute mode: Only one CUDA context may be created on the device
across all processes in the system. The context may be current to as many threads as
desired within the process that created that context.

‣ Prohibited compute mode: No CUDA context can be created on the device.

This means, in particular, that a host thread using the runtime API without explicitly calling
cudaSetDevice() might be associated with a device other than device 0 if device 0 turns

https://docs.nvidia.com/deploy/cuda-compatibility/index.html
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out to be in prohibited mode or in exclusive-process mode and used by another process.
cudaSetValidDevices() can be used to set a device from a prioritized list of devices.

Note also that, for devices featuring the Pascal architecture onwards (compute capability
with major revision number 6 and higher), there exists support for Compute Preemption.
This allows compute tasks to be preempted at instruction-level granularity, rather than
thread block granularity as in prior Maxwell and Kepler GPU architecture, with the benefit
that applications with long-running kernels can be prevented from either monopolizing
the system or timing out. However, there will be context switch overheads associated with
Compute Preemption, which is automatically enabled on those devices for which support
exists. The individual attribute query function cudaDeviceGetAttribute() with the attribute
cudaDevAttrComputePreemptionSupported can be used to determine if the device in use
supports Compute Preemption. Users wishing to avoid context switch overheads associated
with different processes can ensure that only one process is active on the GPU by selecting
exclusive-process mode.

Applications may query the compute mode of a device by checking the computeMode device
property (see Device Enumeration).

3.5.  Mode Switches
GPUs that have a display output dedicate some DRAM memory to the so-called primary
surface, which is used to refresh the display device whose output is viewed by the user. When
users initiate a mode switch of the display by changing the resolution or bit depth of the
display (using NVIDIA control panel or the Display control panel on Windows), the amount of
memory needed for the primary surface changes. For example, if the user changes the display
resolution from 1280x1024x32-bit to 1600x1200x32-bit, the system must dedicate 7.68 MB
to the primary surface rather than 5.24 MB. (Full-screen graphics applications running with
anti-aliasing enabled may require much more display memory for the primary surface.) On
Windows, other events that may initiate display mode switches include launching a full-screen
DirectX application, hitting Alt+Tab to task switch away from a full-screen DirectX application,
or hitting Ctrl+Alt+Del to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface, the system
may have to cannibalize memory allocations dedicated to CUDA applications. Therefore, a
mode switch results in any call to the CUDA runtime to fail and return an invalid context error.

3.6.  Tesla Compute Cluster Mode for
Windows

Using NVIDIA's System Management Interface (nvidia-smi), the Windows device driver can
be put in TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro Series of
compute capability 2.0 and higher.

This mode has the following primary benefits:

‣ It makes it possible to use these GPUs in cluster nodes with non-NVIDIA integrated
graphics;
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‣ It makes these GPUs available via Remote Desktop, both directly and via cluster
management systems that rely on Remote Desktop;

‣ It makes these GPUs available to applications running as a Windows service (i.e., in
Session 0).

However, the TCC mode removes support for any graphics functionality.
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Chapter 4. Hardware Implementation

The NVIDIA GPU architecture is built around a scalable array of multithreaded Streaming
Multiprocessors (SMs). When a CUDA program on the host CPU invokes a kernel grid, the
blocks of the grid are enumerated and distributed to multiprocessors with available execution
capacity. The threads of a thread block execute concurrently on one multiprocessor, and
multiple thread blocks can execute concurrently on one multiprocessor. As thread blocks
terminate, new blocks are launched on the vacated multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage such
a large amount of threads, it employs a unique architecture called SIMT (Single-Instruction,
Multiple-Thread) that is described in SIMT Architecture. The instructions are pipelined,
leveraging instruction-level parallelism within a single thread, as well as extensive thread-
level parallelism through simultaneous hardware multithreading as detailed in Hardware
Multithreading. Unlike CPU cores, they are issued in order and there is no branch prediction
or speculative execution.

SIMT Architecture and Hardware Multithreading describe the architecture features of the
streaming multiprocessor that are common to all devices. Compute Capability 3.x, Compute
Capability 5.x, Compute Capability 6.x, and Compute Capability 7.x provide the specifics for
devices of compute capabilities 3.x, 5.x, 6.x, and 7.x respectively.

The NVIDIA GPU architecture uses a little-endian representation.

4.1.  SIMT Architecture
The multiprocessor creates, manages, schedules, and executes threads in groups of 32
parallel threads called warps. Individual threads composing a warp start together at the same
program address, but they have their own instruction address counter and register state
and are therefore free to branch and execute independently. The term warp originates from
weaving, the first parallel thread technology. A half-warp is either the first or second half of a
warp. A quarter-warp is either the first, second, third, or fourth quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions them
into warps and each warp gets scheduled by a warp scheduler for execution. The way a block
is partitioned into warps is always the same; each warp contains threads of consecutive,
increasing thread IDs with the first warp containing thread 0. Thread Hierarchy describes how
thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized when all
32 threads of a warp agree on their execution path. If threads of a warp diverge via a data-
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dependent conditional branch, the warp executes each branch path taken, disabling threads
that are not on that path. Branch divergence occurs only within a warp; different warps
execute independently regardless of whether they are executing common or disjoint code
paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector organizations
in that a single instruction controls multiple processing elements. A key difference is that
SIMD vector organizations expose the SIMD width to the software, whereas SIMT instructions
specify the execution and branching behavior of a single thread. In contrast with SIMD vector
machines, SIMT enables programmers to write thread-level parallel code for independent,
scalar threads, as well as data-parallel code for coordinated threads. For the purposes of
correctness, the programmer can essentially ignore the SIMT behavior; however, substantial
performance improvements can be realized by taking care that the code seldom requires
threads in a warp to diverge. In practice, this is analogous to the role of cache lines in
traditional code: Cache line size can be safely ignored when designing for correctness but
must be considered in the code structure when designing for peak performance. Vector
architectures, on the other hand, require the software to coalesce loads into vectors and
manage divergence manually.

Prior to Volta, warps used a single program counter shared amongst all 32 threads in the
warp together with an active mask specifying the active threads of the warp. As a result,
threads from the same warp in divergent regions or different states of execution cannot signal
each other or exchange data, and algorithms requiring fine-grained sharing of data guarded
by locks or mutexes can easily lead to deadlock, depending on which warp the contending
threads come from.

Starting with the Volta architecture, Independent Thread Scheduling allows full concurrency
between threads, regardless of warp. With Independent Thread Scheduling, the GPU
maintains execution state per thread, including a program counter and call stack, and can
yield execution at a per-thread granularity, either to make better use of execution resources
or to allow one thread to wait for data to be produced by another. A schedule optimizer
determines how to group active threads from the same warp together into SIMT units. This
retains the high throughput of SIMT execution as in prior NVIDIA GPUs, but with much more
flexibility: threads can now diverge and reconverge at sub-warp granularity.

Independent Thread Scheduling can lead to a rather different set of threads participating
in the executed code than intended if the developer made assumptions about warp-
synchronicity2 of previous hardware architectures. In particular, any warp-synchronous
code (such as synchronization-free, intra-warp reductions) should be revisited to ensure
compatibility with Volta and beyond. See Compute Capability 7.x for further details.

Notes

The threads of a warp that are participating in the current instruction are called the active
threads, whereas threads not on the current instruction are inactive (disabled). Threads can
be inactive for a variety of reasons including having exited earlier than other threads of their
warp, having taken a different branch path than the branch path currently executed by the

2 The term warp-synchronous refers to code that implicitly assumes threads in the same warp are synchronized at every
instruction.
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warp, or being the last threads of a block whose number of threads is not a multiple of the
warp size.

If a non-atomic instruction executed by a warp writes to the same location in global or shared
memory for more than one of the threads of the warp, the number of serialized writes that
occur to that location varies depending on the compute capability of the device (see Compute
Capability 3.x, Compute Capability 5.x, Compute Capability 6.x, and Compute Capability 7.x),
and which thread performs the final write is undefined.

If an atomic instruction executed by a warp reads, modifies, and writes to the same location in
global memory for more than one of the threads of the warp, each read/modify/write to that
location occurs and they are all serialized, but the order in which they occur is undefined.

4.2.  Hardware Multithreading
The execution context (program counters, registers, etc.) for each warp processed by a
multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore,
switching from one execution context to another has no cost, and at every instruction issue
time, a warp scheduler selects a warp that has threads ready to execute its next instruction
(the active threads of the warp) and issues the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned among the
warps, and a parallel data cache or shared memory that is partitioned among the thread blocks.

The number of blocks and warps that can reside and be processed together on the
multiprocessor for a given kernel depends on the amount of registers and shared memory
used by the kernel and the amount of registers and shared memory available on the
multiprocessor. There are also a maximum number of resident blocks and a maximum
number of resident warps per multiprocessor. These limits as well the amount of registers
and shared memory available on the multiprocessor are a function of the compute capability
of the device and are given in Appendix Compute Capabilities. If there are not enough registers
or shared memory available per multiprocessor to process at least one block, the kernel will
fail to launch.

The total number of warps in a block is as follows:

‣ T is the number of threads per block,

‣ Wsize is the warp size, which is equal to 32,

‣ ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers and total amount of shared memory allocated for a block are
documented in the CUDA Occupancy Calculator provided in the CUDA Toolkit.
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Chapter 5. Performance Guidelines

5.1.  Overall Performance Optimization
Strategies

Performance optimization revolves around four basic strategies:

‣ Maximize parallel execution to achieve maximum utilization;

‣ Optimize memory usage to achieve maximum memory throughput;

‣ Optimize instruction usage to achieve maximum instruction throughput;

‣ Minimize memory thrashing.

Which strategies will yield the best performance gain for a particular portion of an application
depends on the performance limiters for that portion; optimizing instruction usage of a kernel
that is mostly limited by memory accesses will not yield any significant performance gain,
for example. Optimization efforts should therefore be constantly directed by measuring and
monitoring the performance limiters, for example using the CUDA profiler. Also, comparing
the floating-point operation throughput or memory throughput - whichever makes more
sense - of a particular kernel to the corresponding peak theoretical throughput of the device
indicates how much room for improvement there is for the kernel.

5.2.  Maximize Utilization
To maximize utilization the application should be structured in a way that it exposes as much
parallelism as possible and efficiently maps this parallelism to the various components of the
system to keep them busy most of the time.

5.2.1.  Application Level
At a high level, the application should maximize parallel execution between the host, the
devices, and the bus connecting the host to the devices, by using asynchronous functions calls
and streams as described in Asynchronous Concurrent Execution. It should assign to each
processor the type of work it does best: serial workloads to the host; parallel workloads to the
devices.
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For the parallel workloads, at points in the algorithm where parallelism is broken because
some threads need to synchronize in order to share data with each other, there are two
cases: Either these threads belong to the same block, in which case they should use
__syncthreads() and share data through shared memory within the same kernel invocation,
or they belong to different blocks, in which case they must share data through global memory
using two separate kernel invocations, one for writing to and one for reading from global
memory. The second case is much less optimal since it adds the overhead of extra kernel
invocations and global memory traffic. Its occurrence should therefore be minimized by
mapping the algorithm to the CUDA programming model in such a way that the computations
that require inter-thread communication are performed within a single thread block as much
as possible.

5.2.2.  Device Level
At a lower level, the application should maximize parallel execution between the
multiprocessors of a device.

Multiple kernels can execute concurrently on a device, so maximum utilization can also be
achieved by using streams to enable enough kernels to execute concurrently as described in
Asynchronous Concurrent Execution.

5.2.3.  Multiprocessor Level
At an even lower level, the application should maximize parallel execution between the various
functional units within a multiprocessor.

As described in Hardware Multithreading, a GPU multiprocessor primarily relies on thread-
level parallelism to maximize utilization of its functional units. Utilization is therefore directly
linked to the number of resident warps. At every instruction issue time, a warp scheduler
selects an instruction that is ready to execute. This instruction can be another independent
instruction of the same warp, exploiting instruction-level parallelism, or more commonly
an instruction of another warp, exploiting thread-level parallelism. If a ready to execute
instruction is selected it is issued to the active threads of the warp. The number of clock cycles
it takes for a warp to be ready to execute its next instruction is called the latency, and full
utilization is achieved when all warp schedulers always have some instruction to issue for
some warp at every clock cycle during that latency period, or in other words, when latency is
completely "hidden". The number of instructions required to hide a latency of L clock cycles
depends on the respective throughputs of these instructions (see Arithmetic Instructions for
the throughputs of various arithmetic instructions). If we assume instructions with maximum
throughput, it is equal to:

‣ 4L for devices of compute capability 5.x, 6.1, 6.2, 7.x and 8.x since for these devices, a
multiprocessor issues one instruction per warp over one clock cycle for four warps at a
time, as mentioned in Compute Capabilities.

‣ 2L for devices of compute capability 6.0 since for these devices, the two instructions issued
every cycle are one instruction for two different warps.

‣ 8L for devices of compute capability 3.x since for these devices, the eight instructions
issued every cycle are four pairs for four different warps, each pair being for the same
warp.
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The most common reason a warp is not ready to execute its next instruction is that the
instruction's input operands are not available yet.

If all input operands are registers, latency is caused by register dependencies, i.e., some of the
input operands are written by some previous instruction(s) whose execution has not completed
yet. In this case, the latency is equal to the execution time of the previous instruction and
the warp schedulers must schedule instructions of other warps during that time. Execution
time varies depending on the instruction. On devices of compute capability 7.x, for most
arithmetic instructions, it is typically 4 clock cycles. This means that 16 active warps per
multiprocessor (4 cycles, 4 warp schedulers) are required to hide arithmetic instruction
latencies (assuming that warps execute instructions with maximum throughput, otherwise
fewer warps are needed). If the individual warps exhibit instruction-level parallelism, i.e.
have multiple independent instructions in their instruction stream, fewer warps are needed
because multiple independent instructions from a single warp can be issued back to back.

If some input operand resides in off-chip memory, the latency is much higher: typically
hundreds of clock cycles. The number of warps required to keep the warp schedulers
busy during such high latency periods depends on the kernel code and its degree of
instruction-level parallelism. In general, more warps are required if the ratio of the number of
instructions with no off-chip memory operands (i.e., arithmetic instructions most of the time)
to the number of instructions with off-chip memory operands is low (this ratio is commonly
called the arithmetic intensity of the program).

Another reason a warp is not ready to execute its next instruction is that it is waiting at
some memory fence (Memory Fence Functions) or synchronization point (Memory Fence
Functions). A synchronization point can force the multiprocessor to idle as more and more
warps wait for other warps in the same block to complete execution of instructions prior
to the synchronization point. Having multiple resident blocks per multiprocessor can help
reduce idling in this case, as warps from different blocks do not need to wait for each other at
synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel call
depends on the execution configuration of the call (Execution Configuration), the memory
resources of the multiprocessor, and the resource requirements of the kernel as described in
Hardware Multithreading. Register and shared memory usage are reported by the compiler
when compiling with the -ptxas-options=-v option.

The total amount of shared memory required for a block is equal to the sum of the amount of
statically allocated shared memory and the amount of dynamically allocated shared memory.

The number of registers used by a kernel can have a significant impact on the number
of resident warps. For example, for devices of compute capability 6.x, if a kernel uses 64
registers and each block has 512 threads and requires very little shared memory, then two
blocks (i.e., 32 warps) can reside on the multiprocessor since they require 2x512x64 registers,
which exactly matches the number of registers available on the multiprocessor. But as soon
as the kernel uses one more register, only one block (i.e., 16 warps) can be resident since two
blocks would require 2x512x65 registers, which are more registers than are available on the
multiprocessor. Therefore, the compiler attempts to minimize register usage while keeping
register spilling (see Device Memory Accesses) and the number of instructions to a minimum.
Register usage can be controlled using the maxrregcount compiler option or launch bounds
as described in Launch Bounds.
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The register file is organized as 32-bit registers. So, each variable stored in a register needs at
least one 32-bit register, e.g. a double variable uses two 32-bit registers.

The effect of execution configuration on performance for a given kernel call generally
depends on the kernel code. Experimentation is therefore recommended. Applications can
also parameterize execution configurations based on register file size and shared memory
size, which depends on the compute capability of the device, as well as on the number of
multiprocessors and memory bandwidth of the device, all of which can be queried using the
runtime (see reference manual).

The number of threads per block should be chosen as a multiple of the warp size to avoid
wasting computing resources with under-populated warps as much as possible.

5.2.3.1.  Occupancy Calculator
Several API functions exist to assist programmers in choosing thread block size based on
register and shared memory requirements.

‣ The occupancy calculator API, cudaOccupancyMaxActiveBlocksPerMultiprocessor,
can provide an occupancy prediction based on the block size and shared memory usage
of a kernel. This function reports occupancy in terms of the number of concurrent thread
blocks per multiprocessor.

‣ Note that this value can be converted to other metrics. Multiplying by the number of
warps per block yields the number of concurrent warps per multiprocessor; further
dividing concurrent warps by max warps per multiprocessor gives the occupancy as a
percentage.

‣ The occupancy-based launch configurator APIs, cudaOccupancyMaxPotentialBlockSize
and cudaOccupancyMaxPotentialBlockSizeVariableSMem, heuristically calculate an
execution configuration that achieves the maximum multiprocessor-level occupancy.

The following code sample calculates the occupancy of MyKernel. It then reports the
occupancy level with the ratio between concurrent warps versus maximum warps per
multiprocessor.

// Device code
__global__ void MyKernel(int *d, int *a, int *b)
{
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    d[idx] = a[idx] * b[idx];
}

// Host code
int main()
{
    int numBlocks;        // Occupancy in terms of active blocks
    int blockSize = 32;

    // These variables are used to convert occupancy to warps
    int device;
    cudaDeviceProp prop;
    int activeWarps;
    int maxWarps;

    cudaGetDevice(&device);
    cudaGetDeviceProperties(&prop, device);
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    cudaOccupancyMaxActiveBlocksPerMultiprocessor(
        &numBlocks,
        MyKernel,
        blockSize,
        0);

    activeWarps = numBlocks * blockSize / prop.warpSize;
    maxWarps = prop.maxThreadsPerMultiProcessor / prop.warpSize;

    std::cout << "Occupancy: " << (double)activeWarps / maxWarps * 100 << "%" <<
 std::endl;
    
    return 0;
}

The following code sample configures an occupancy-based kernel launch of MyKernel
according to the user input.

// Device code
__global__ void MyKernel(int *array, int arrayCount)
{
    int idx = threadIdx.x + blockIdx.x * blockDim.x;
    if (idx < arrayCount) {
        array[idx] *= array[idx];
    }
}

// Host code
int launchMyKernel(int *array, int arrayCount)
{
    int blockSize;      // The launch configurator returned block size
    int minGridSize;    // The minimum grid size needed to achieve the
                        // maximum occupancy for a full device
                        // launch
    int gridSize;       // The actual grid size needed, based on input
                        // size

    cudaOccupancyMaxPotentialBlockSize(
        &minGridSize,
        &blockSize,
        (void*)MyKernel,
        0,
        arrayCount);

    // Round up according to array size
    gridSize = (arrayCount + blockSize - 1) / blockSize;

    MyKernel<<<gridSize, blockSize>>>(array, arrayCount);
    cudaDeviceSynchronize();

    // If interested, the occupancy can be calculated with
    // cudaOccupancyMaxActiveBlocksPerMultiprocessor

    return 0;
}

The CUDA Toolkit also provides a self-documenting, standalone occupancy calculator and
launch configurator implementation in <CUDA_Toolkit_Path>/include/cuda_occupancy.h
for any use cases that cannot depend on the CUDA software stack. A spreadsheet version of
the occupancy calculator is also provided. The spreadsheet version is particularly useful as
a learning tool that visualizes the impact of changes to the parameters that affect occupancy
(block size, registers per thread, and shared memory per thread).
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5.3.  Maximize Memory Throughput
The first step in maximizing overall memory throughput for the application is to minimize data
transfers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed in Data
Transfer between Host and Device, since these have much lower bandwidth than data
transfers between global memory and the device.

That also means minimizing data transfers between global memory and the device by
maximizing use of on-chip memory: shared memory and caches (i.e., L1 cache and L2 cache
available on devices of compute capability 2.x and higher, texture cache and constant cache
available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly allocates
and accesses it. As illustrated in CUDA Runtime, a typical programming pattern is to stage
data coming from device memory into shared memory; in other words, to have each thread of
a block:

‣ Load data from device memory to shared memory,

‣ Synchronize with all the other threads of the block so that each thread can safely read
shared memory locations that were populated by different threads,

‣ Process the data in shared memory,

‣ Synchronize again if necessary to make sure that shared memory has been updated with
the results,

‣ Write the results back to device memory.

For some applications (e.g., for which global memory access patterns are data-dependent),
a traditional hardware-managed cache is more appropriate to exploit data locality. As
mentioned in Compute Capability 3.x, Compute Capability 7.x and Compute Capability 8.x,
for devices of compute capability 3.x, 7.x and 8.x, the same on-chip memory is used for both
L1 and shared memory, and how much of it is dedicated to L1 versus shared memory is
configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude depending
on access pattern for each type of memory. The next step in maximizing memory throughput
is therefore to organize memory accesses as optimally as possible based on the optimal
memory access patterns described in Device Memory Accesses. This optimization is especially
important for global memory accesses as global memory bandwidth is low compared to
available on-chip bandwidths and arithmetic instruction throughput, so non-optimal global
memory accesses generally have a high impact on performance.

5.3.1.  Data Transfer between Host and Device
Applications should strive to minimize data transfer between the host and the device. One
way to accomplish this is to move more code from the host to the device, even if that means
running kernels that do not expose enough parallelism to execute on the device with full
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efficiency. Intermediate data structures may be created in device memory, operated on by the
device, and destroyed without ever being mapped by the host or copied to host memory.

Also, because of the overhead associated with each transfer, batching many small transfers
into a single large transfer always performs better than making each transfer separately.

On systems with a front-side bus, higher performance for data transfers between host and
device is achieved by using page-locked host memory as described in Page-Locked Host
Memory.

In addition, when using mapped page-locked memory (Mapped Memory), there is no need to
allocate any device memory and explicitly copy data between device and host memory. Data
transfers are implicitly performed each time the kernel accesses the mapped memory. For
maximum performance, these memory accesses must be coalesced as with accesses to
global memory (see Device Memory Accesses). Assuming that they are and that the mapped
memory is read or written only once, using mapped page-locked memory instead of explicit
copies between device and host memory can be a win for performance.

On integrated systems where device memory and host memory are physically the same, any
copy between host and device memory is superfluous and mapped page-locked memory
should be used instead. Applications may query a device is integrated by checking that the
integrated device property (see Device Enumeration) is equal to 1.

5.3.2.  Device Memory Accesses
An instruction that accesses addressable memory (i.e., global, local, shared, constant, or
texture memory) might need to be re-issued multiple times depending on the distribution
of the memory addresses across the threads within the warp. How the distribution affects
the instruction throughput this way is specific to each type of memory and described in the
following sections. For example, for global memory, as a general rule, the more scattered the
addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-, or 128-
byte memory transactions. These memory transactions must be naturally aligned: Only the
32-, 64-, or 128-byte segments of device memory that are aligned to their size (i.e., whose first
address is a multiple of their size) can be read or written by memory transactions.

When a warp executes an instruction that accesses global memory, it coalesces the memory
accesses of the threads within the warp into one or more of these memory transactions
depending on the size of the word accessed by each thread and the distribution of the memory
addresses across the threads. In general, the more transactions are necessary, the more
unused words are transferred in addition to the words accessed by the threads, reducing the
instruction throughput accordingly. For example, if a 32-byte memory transaction is generated
for each thread's 4-byte access, throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected varies
with the compute capability of the device. Compute Capability 3.x, Compute Capability 5.x,
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Compute Capability 6.x, Compute Capability 7.x and Compute Capability 8.x give more details
on how global memory accesses are handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize coalescing by:

‣ Following the most optimal access patterns based on Compute Capability 3.x, Compute
Capability 5.x, Compute Capability 6.x, Compute Capability 7.x and Compute Capability 8.x

‣ Using data types that meet the size and alignment requirement detailed in the section Size
and Alignment Requirement below,

‣ Padding data in some cases, for example, when accessing a two-dimensional array as
described in the section Two-Dimensional Arrays below.

Size and Alignment Requirement

Global memory instructions support reading or writing words of size equal to 1, 2, 4, 8, or 16
bytes. Any access (via a variable or a pointer) to data residing in global memory compiles to a
single global memory instruction if and only if the size of the data type is 1, 2, 4, 8, or 16 bytes
and the data is naturally aligned (i.e., its address is a multiple of that size).

If this size and alignment requirement is not fulfilled, the access compiles to multiple
instructions with interleaved access patterns that prevent these instructions from fully
coalescing. It is therefore recommended to use types that meet this requirement for data that
resides in global memory.

The alignment requirement is automatically fulfilled for the Built-in Vector Types.

For structures, the size and alignment requirements can be enforced by the compiler using
the alignment specifiers __align__(8) or __align__(16), such as

struct __align__(8) {
    float x;
    float y;
};

or

struct __align__(16) {
    float x;
    float y;
    float z;
};

Any address of a variable residing in global memory or returned by one of the memory
allocation routines from the driver or runtime API is always aligned to at least 256 bytes.

Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by a few
words), so special care must be taken to maintain alignment of the starting address of any
value or array of values of these types. A typical case where this might be easily overlooked
is when using some custom global memory allocation scheme, whereby the allocations of
multiple arrays (with multiple calls to cudaMalloc() or cuMemAlloc()) is replaced by the
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allocation of a single large block of memory partitioned into multiple arrays, in which case the
starting address of each array is offset from the block's starting address.

Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx,ty) uses the
following address to access one element of a 2D array of width width, located at address
BaseAddress of type type* (where type meets the requirement described in Maximize
Utilization):

BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the width of
the array must be a multiple of the warp size.

In particular, this means that an array whose width is not a multiple of this size will be
accessed much more efficiently if it is actually allocated with a width rounded up to the
closest multiple of this size and its rows padded accordingly. The cudaMallocPitch() and
cuMemAllocPitch() functions and associated memory copy functions described in the
reference manual enable programmers to write non-hardware-dependent code to allocate
arrays that conform to these constraints.

Local Memory

Local memory accesses only occur for some automatic variables as mentioned in Variable
Memory Space Specifiers. Automatic variables that the compiler is likely to place in local
memory are:

‣ Arrays for which it cannot determine that they are indexed with constant quantities,

‣ Large structures or arrays that would consume too much register space,

‣ Any variable if the kernel uses more registers than available (this is also known as register
spilling).

Inspection of the PTX assembly code (obtained by compiling with the -ptx or-keep option) will
tell if a variable has been placed in local memory during the first compilation phases as it will
be declared using the .local mnemonic and accessed using the ld.local and st.local
mnemonics. Even if it has not, subsequent compilation phases might still decide otherwise
though if they find it consumes too much register space for the targeted architecture:
Inspection of the cubin object using cuobjdump will tell if this is the case. Also, the compiler
reports total local memory usage per kernel (lmem) when compiling with the --ptxas-
options=-v option. Note that some mathematical functions have implementation paths that
might access local memory.

The local memory space resides in device memory, so local memory accesses have the same
high latency and low bandwidth as global memory accesses and are subject to the same
requirements for memory coalescing as described in Device Memory Accesses. Local memory
is however organized such that consecutive 32-bit words are accessed by consecutive thread
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IDs. Accesses are therefore fully coalesced as long as all threads in a warp access the same
relative address (e.g., same index in an array variable, same member in a structure variable).

On some devices of compute capability 3.x local memory accesses are always cached in L1
and L2 in the same way as global memory accesses (see Compute Capability 3.x).

On devices of compute capability 5.x and 6.x, local memory accesses are always cached in
L2 in the same way as global memory accesses (see Compute Capability 5.x and Compute
Capability 6.x).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower latency
than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory modules,
called banks, which can be accessed simultaneously. Any memory read or write request made
of n addresses that fall in n distinct memory banks can therefore be serviced simultaneously,
yielding an overall bandwidth that is n times as high as the bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a bank
conflict and the access has to be serialized. The hardware splits a memory request with bank
conflicts into as many separate conflict-free requests as necessary, decreasing throughput by
a factor equal to the number of separate memory requests. If the number of separate memory
requests is n, the initial memory request is said to cause n-way bank conflicts.

To get maximum performance, it is therefore important to understand how memory addresses
map to memory banks in order to schedule the memory requests so as to minimize bank
conflicts. This is described in Compute Capability 3.x, Compute Capability 5.x, Compute
Capability 6.x, Compute Capability 7.x, and Compute Capability 8.x for devices of compute
capability 3.x, 5.x, 6.x, 7.x and 8.x, respectively.

Constant Memory

The constant memory space resides in device memory and is cached in the constant cache.

A request is then split into as many separate requests as there are different memory
addresses in the initial request, decreasing throughput by a factor equal to the number of
separate requests.

The resulting requests are then serviced at the throughput of the constant cache in case of a
cache hit, or at the throughput of device memory otherwise.

Texture and Surface Memory

The texture and surface memory spaces reside in device memory and are cached in texture
cache, so a texture fetch or surface read costs one memory read from device memory only
on a cache miss, otherwise it just costs one read from texture cache. The texture cache is
optimized for 2D spatial locality, so threads of the same warp that read texture or surface
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addresses that are close together in 2D will achieve best performance. Also, it is designed for
streaming fetches with a constant latency; a cache hit reduces DRAM bandwidth demand but
not fetch latency.

Reading device memory through texture or surface fetching present some benefits that
can make it an advantageous alternative to reading device memory from global or constant
memory:

‣ If the memory reads do not follow the access patterns that global or constant memory
reads must follow to get good performance, higher bandwidth can be achieved providing
that there is locality in the texture fetches or surface reads;

‣ Addressing calculations are performed outside the kernel by dedicated units;

‣ Packed data may be broadcast to separate variables in a single operation;

‣ 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-point
values in the range [0.0, 1.0] or [-1.0, 1.0] (see Texture Memory).

5.4.  Maximize Instruction Throughput
To maximize instruction throughput the application should:

‣ Minimize the use of arithmetic instructions with low throughput; this includes trading
precision for speed when it does not affect the end result, such as using intrinsic instead
of regular functions (intrinsic functions are listed in Intrinsic Functions), single-precision
instead of double-precision, or flushing denormalized numbers to zero;

‣ Minimize divergent warps caused by control flow instructions as detailed in Control Flow
Instructions

‣ Reduce the number of instructions, for example, by optimizing out synchronization points
whenever possible as described in Synchronization Instruction or by using restricted
pointers as described in __restrict__.

In this section, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, one instruction corresponds to 32 operations, so if N is
the number of operations per clock cycle, the instruction throughput is N/32 instructions per
clock cycle.

All throughputs are for one multiprocessor. They must be multiplied by the number of
multiprocessors in the device to get throughput for the whole device.

5.4.1.  Arithmetic Instructions
Table 3 gives the throughputs of the arithmetic instructions that are natively supported in
hardware for devices of various compute capabilities.
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Table 3. Throughput of Native Arithmetic Instructions

(Number of Results per Clock Cycle per Multiprocessor)

Compute Capability

3.5, 3.7 5.0, 5.2 5.3 6.0 6.1 6.2 7.x 8.0 8.6
16-bit

floating-
point
add,

multiply,
multiply-

add

N/A 256 128 2 256 128 2563

32-bit
floating-

point
add,

multiply,
multiply-

add

192 128 64 128 64 128

64-bit
floating-

point
add,

multiply,
multiply-

add

644 4 32 4 325 32 2

32-bit
floating-

point
reciprocal,
reciprocal

square
root,

base-2
logarithm
(__log2f),

base 2
exponential

(exp2f),
sine

(__sinf),
cosine

(__cosf)

32 16 32 16

32-bit
integer

add,
extended-

160 128 64 128 64

3 128 for __nv_bfloat16
4 8 for GeForce GPUs, except for Titan GPUs
5 2 for compute capability 7.5 GPUs
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Compute Capability

3.5, 3.7 5.0, 5.2 5.3 6.0 6.1 6.2 7.x 8.0 8.6
precision

add,
subtract,

extended-
precision
subtract

32-bit
integer

multiply,
multiply-

add,
extended-
precision
multiply-

add

32 Multiple instruct. 646

24-bit
integer
multiply

(__[u]mul24)

Multiple instruct.

32-bit
integer

shift
647 64 32 64

compare,
minimum,
maximum

160 64 32 64

32-bit
integer

bit
reverse

32 64 32 64 16

Bit field
extract/

insert
32 64 32 64 Multiple Instruct.

32-bit
bitwise
AND,

OR, XOR

160 128 64 128 64

count of
leading
zeros,
most

significant
non-

sign bit

32 16 32 16

6 32 for extended-precision
7 32 for GeForce GPUs, except for Titan GPUs
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Compute Capability

3.5, 3.7 5.0, 5.2 5.3 6.0 6.1 6.2 7.x 8.0 8.6
population

count 32 16 32 16

warp
shuffle 32 328 32

warp
reduce Multiple instruct. 16

sum of
absolute

difference
32 64 32 64

SIMD
video

instructions
vabsdiff2

160 Multiple instruct.

SIMD
video

instructions
vabsdiff4

160 Multiple instruct. 64

All other
SIMD
video

instructions

32 Multiple instruct.

Type
conversions

from 8-
bit and
16-bit

integer
to 32-bit
integer
types

128 32 16 32 64

Type
conversions

from
and to
64-bit
types

329 4 16 4 1610 16 2

All other
type

conversions
32 16 32 16

Other instructions and functions are implemented on top of the native instructions. The
implementation may be different for devices of different compute capabilities, and the
number of native instructions after compilation may fluctuate with every compiler version. For

8 16 for compute capabilities 7.5 GPUs
9 8 for GeForce GPUs, except for Titan GPUs

10 2 for compute capabilities 7.5 GPUs
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complicated functions, there can be multiple code paths depending on input. cuobjdump can
be used to inspect a particular implementation in a cubin object.

The implementation of some functions are readily available on the CUDA header files
(math_functions.h, device_functions.h, ...).

In general, code compiled with -ftz=true (denormalized numbers are flushed to zero) tends
to have higher performance than code compiled with -ftz=false. Similarly, code compiled
with -prec div=false (less precise division) tends to have higher performance code than
code compiled with -prec div=true, and code compiled with -prec-sqrt=false (less
precise square root) tends to have higher performance than code compiled with -prec-
sqrt=true. The nvcc user manual describes these compilation flags in more details.

Single-Precision Floating-Point Division

__fdividef(x, y) (see Intrinsic Functions) provides faster single-precision floating-point
division than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler can optimize 1.0/sqrtf() into rsqrtf() only
when both reciprocal and square root are approximate, (i.e., with -prec-div=false and -
prec-sqrt=false). It is therefore recommended to invoke rsqrtf() directly where desired.

Single-Precision Floating-Point Square Root

Single-precision floating-point square root is implemented as a reciprocal square root
followed by a reciprocal instead of a reciprocal square root followed by a multiplication so that
it gives correct results for 0 and infinity.

Sine and Cosine

sinf(x), cosf(x), tanf(x), sincosf(x), and corresponding double-precision instructions
are much more expensive and even more so if the argument x is large in magnitude.

More precisely, the argument reduction code (see Mathematical Functions for
implementation) comprises two code paths referred to as the fast path and the slow path,
respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially consists
of a few multiply-add operations. The slow path is used for arguments large in magnitude and
consists of lengthy computations required to achieve correct results over the entire argument
range.

At present, the argument reduction code for the trigonometric functions selects the fast path
for arguments whose magnitude is less than 105615.0f for the single-precision functions,
and less than 2147483648.0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been made to
reduce register pressure in the slow path by storing some intermediate variables in local
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memory, which may affect performance because of local memory high latency and bandwidth
(see Device Memory Accesses). At present, 28 bytes of local memory are used by single-
precision functions, and 44 bytes are used by double-precision functions. However, the exact
amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the throughput
of these trigonometric functions is lower by one order of magnitude when the slow path
reduction is required as opposed to the fast path reduction.

Integer Arithmetic

Integer division and modulo operation are costly as they compile to up to 20 instructions. They
can be replaced with bitwise operations in some cases: If n is a power of 2, (i/n) is equivalent
to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1)); the compiler will perform these
conversions if n is literal.

__brev and __popc map to a single instruction and __brevll and __popcll to a few
instructions.

__[u]mul24 are legacy intrinsic functions that no longer have any reason to be used.

Half Precision Arithmetic

In order to achieve good performance for 16-bit precision floating-point add, multiply or
multiply-add, it is recommended that the half2 datatype is used for half precision and
__nv_bfloat162 be used for __nv_bfloat16 precision. Vector intrinsics (eg. __hadd2,
__hsub2, __hmul2, __hfma2) can then be used to do two operations in a single instruction.
Using half2 or __nv_bfloat162 in place of two calls using half or __nv_bfloat16 may also
help performance of other intrinsics, such as warp shuffles.

The intrinsic __halves2half2 is provided to convert two half precision values to the half2
datatype.

The intrinsic __halves2bfloat162 is provided to convert two __nv_bfloat precision values
to the __nv_bfloat162 datatype.

Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional execution
cycles. This is the case for:

‣ Functions operating on variables of type char or short whose operands generally need to
be converted to int,

‣ Double-precision floating-point constants (i.e., those constants defined without any type
suffix) used as input to single-precision floating-point computations (as mandated by C/C+
+ standards).

This last case can be avoided by using single-precision floating-point constants, defined with
an f suffix such as 3.141592653589793f, 1.0f, 0.5f.
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5.4.2.  Control Flow Instructions
Any flow control instruction (if, switch, do, for, while) can significantly impact the effective
instruction throughput by causing threads of the same warp to diverge (i.e., to follow different
execution paths). If this happens, the different executions paths have to be serialized,
increasing the total number of instructions executed for this warp.

To obtain best performance in cases where the control flow depends on the thread ID, the
controlling condition should be written so as to minimize the number of divergent warps.
This is possible because the distribution of the warps across the block is deterministic as
mentioned in SIMT Architecture. A trivial example is when the controlling condition only
depends on (threadIdx / warpSize) where warpSize is the warp size. In this case, no warp
diverges since the controlling condition is perfectly aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out short if or switch blocks by
using branch predication instead, as detailed below. In these cases, no warp can ever diverge.
The programmer can also control loop unrolling using the #pragma unroll directive (see
#pragma unroll).

When using branch predication none of the instructions whose execution depends on the
controlling condition gets skipped. Instead, each of them is associated with a per-thread
condition code or predicate that is set to true or false based on the controlling condition and
although each of these instructions gets scheduled for execution, only the instructions with a
true predicate are actually executed. Instructions with a false predicate do not write results,
and also do not evaluate addresses or read operands.

5.4.3.  Synchronization Instruction
Throughput for __syncthreads() is 128 operations per clock cycle for devices of compute
capability 3.x, 32 operations per clock cycle for devices of compute capability 6.0, 16 operations
per clock cycle for devices of compute capability 7.x as well as 8.x and 64 operations per clock
cycle for devices of compute capability 5.x, 6.1 and 6.2.

Note that __syncthreads() can impact performance by forcing the multiprocessor to idle as
detailed in Device Memory Accesses.

5.5.  Minimize Memory Thrashing
Applications that constantly allocate and free memory too often may find that the allocation
calls tend to get slower over time up to a limit. This is typically expected due to the nature of
releasing memory back to the operating system for its own use. For best performance in this
regard, we recommend the following:

‣ Try to size your allocation to the problem at hand. Don't try to allocate all available
memory with cudaMalloc / cudaMallocHost / cuMemCreate, as this forces memory
to be resident immediately and prevents other applications from being able to use that
memory. This can put more pressure on operating system schedulers, or just prevent
other applications using the same GPU from running entirely.
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‣ Try to allocate memory in appropriately sized allocations early in the application and
allocations only when the application does not have any use for it. Reduce the number of
cudaMalloc+cudaFree calls in the application, especially in performance-critical regions.

‣ If an application cannot allocate enough device memory, consider falling back on other
memory types such as cudaMallocHost or cudaMallocManaged, which may not be as
performant, but will enable the application to make progress.

‣ For platforms that support the feature, cudaMallocManaged allows for oversubscription,
and with the correct cudaMemAdvise policies enabled, will allow the application to retain
most if not all the performance of cudaMalloc. cudaMallocManaged also won't force an
allocation to be resident until it is needed or prefetched, reducing the overall pressure on
the operating system schedulers and better enabling multi-tenet use cases.
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Appendix A. CUDA-Enabled GPUs

http://developer.nvidia.com/cuda-gpus lists all CUDA-enabled devices with their compute
capability.

The compute capability, number of multiprocessors, clock frequency, total amount of device
memory, and other properties can be queried using the runtime (see reference manual).

http://developer.nvidia.com/cuda-gpus
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Appendix B. C++ Language Extensions

B.1.  Function Execution Space Specifiers
Function execution space specifiers denote whether a function executes on the host or on the
device and whether it is callable from the host or from the device.

B.1.1.  __global__
The __global__ execution space specifier declares a function as being a kernel. Such a
function is:

‣ Executed on the device,

‣ Callable from the host,

‣ Callable from the device for devices of compute capability 3.2 or higher (see CUDA
Dynamic Parallelism for more details).

A __global__ function must have void return type, and cannot be a member of a class.

Any call to a __global__ function must specify its execution configuration as described in
Execution Configuration.

A call to a __global__ function is asynchronous, meaning it returns before the device has
completed its execution.

B.1.2.  __device__
The __device__ execution space specifier declares a function that is:

‣ Executed on the device,

‣ Callable from the device only.

The __global__ and __device__ execution space specifiers cannot be used together.

B.1.3.  __host__
The __host__ execution space specifier declares a function that is:
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‣ Executed on the host,

‣ Callable from the host only.

It is equivalent to declare a function with only the __host__ execution space specifier or to
declare it without any of the __host__, __device__, or __global__ execution space specifier;
in either case the function is compiled for the host only.

The __global__ and __host__ execution space specifiers cannot be used together.

The __device__ and __host__ execution space specifiers can be used together however,
in which case the function is compiled for both the host and the device. The __CUDA_ARCH__
macro introduced in Application Compatibility can be used to differentiate code paths between
host and device:

__host__ __device__ func()
{
#if __CUDA_ARCH__ >= 800
   // Device code path for compute capability 8.x
#elif __CUDA_ARCH__ >= 700
   // Device code path for compute capability 7.x
#elif __CUDA_ARCH__ >= 600
   // Device code path for compute capability 6.x
#elif __CUDA_ARCH__ >= 500
   // Device code path for compute capability 5.x
#elif __CUDA_ARCH__ >= 300
   // Device code path for compute capability 3.x
#elif !defined(__CUDA_ARCH__) 
   // Host code path
#endif
}

B.1.4.  Undefined behavior
A 'cross-execution space' call has undefined behavior when:

‣ __CUDA_ARCH__ is defined, a call from within a __global__, __device__ or __host__
__device__ function to a __host__ function.

‣ __CUDA_ARCH__ is undefined, a call from within a __host__ function to a __device__
function. 11

B.1.5.  __noinline__ and __forceinline__
The compiler inlines any __device__ function when deemed appropriate.

The __noinline__ function qualifier can be used as a hint for the compiler not to inline the
function if possible.

The __forceinline__ function qualifier can be used to force the compiler to inline the
function.

11 When the enclosing __host__ function is a template, nvcc may currently fail to issue a diagnostic message in some cases; this
behavior may change in the future.
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The __noinline__ and __forceinline__ function qualifiers cannot be used together, and
neither function qualifier can be applied to an inline function.

B.2.  Variable Memory Space Specifiers
Variable memory space specifiers denote the memory location on the device of a variable.

An automatic variable declared in device code without any of the __device__, __shared__
and __constant__ memory space specifiers described in this section generally resides in a
register. However in some cases the compiler might choose to place it in local memory, which
can have adverse performance consequences as detailed in Device Memory Accesses.

B.2.1.  __device__
The __device__ memory space specifier declares a variable that resides on the device.

At most one of the other memory space specifiers defined in the next three sections may be
used together with __device__ to further denote which memory space the variable belongs
to. If none of them is present, the variable:

‣ Resides in global memory space,

‣ Has the lifetime of the CUDA context in which it is created,

‣ Has a distinct object per device,

‣ Is accessible from all the threads within the grid and from the host through the runtime
library (cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() /
cudaMemcpyFromSymbol()).

B.2.2.  __constant__
The __constant__ memory space specifier, optionally used together with __device__,
declares a variable that:

‣ Resides in constant memory space,

‣ Has the lifetime of the CUDA context in which it is created,

‣ Has a distinct object per device,

‣ Is accessible from all the threads within the grid and from the host through the runtime
library (cudaGetSymbolAddress() / cudaGetSymbolSize() / cudaMemcpyToSymbol() /
cudaMemcpyFromSymbol()).

B.2.3.  __shared__
The __shared__ memory space specifier, optionally used together with __device__, declares
a variable that:
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‣ Resides in the shared memory space of a thread block,

‣ Has the lifetime of the block,

‣ Has a distinct object per block,

‣ Is only accessible from all the threads within the block,

‣ Does not have a constant address.

When declaring a variable in shared memory as an external array such as

extern __shared__ float shared[];

the size of the array is determined at launch time (see Execution Configuration). All variables
declared in this fashion, start at the same address in memory, so that the layout of the
variables in the array must be explicitly managed through offsets. For example, if one wants
the equivalent of

short array0[128];
float array1[64];
int   array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays the
following way:

extern __shared__ float array[];
__device__ void func()      // __device__ or __global__ function
{
    short* array0 = (short*)array; 
    float* array1 = (float*)&array0[128];
    int*   array2 =   (int*)&array1[64];
}

Note that pointers need to be aligned to the type they point to, so the following code, for
example, does not work since array1 is not aligned to 4 bytes.

extern __shared__ float array[];
__device__ void func()      // __device__ or __global__ function
{
    short* array0 = (short*)array; 
    float* array1 = (float*)&array0[127];
}

Alignment requirements for the built-in vector types are listed in Table 4.

B.2.4.  __managed__
The __managed__ memory space specifier, optionally used together with __device__,
declares a variable that:

‣ Can be referenced from both device and host code, e.g., its address can be taken or it can
be read or written directly from a device or host function.

‣ Has the lifetime of an application.
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See __managed__ Memory Space Specifier for more details.

B.2.5.  __restrict__
nvcc supports restricted pointers via the __restrict__ keyword.

Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in C-
type languages, and which inhibits all kind of optimization from code re-ordering to common
sub-expression elimination.

Here is an example subject to the aliasing issue, where use of restricted pointer can help the
compiler to reduce the number of instructions:

void foo(const float* a,
         const float* b,
         float* c)
{
    c[0] = a[0] * b[0];
    c[1] = a[0] * b[0];
    c[2] = a[0] * b[0] * a[1];
    c[3] = a[0] * a[1];
    c[4] = a[0] * b[0];
    c[5] = b[0];
    ...
}

In C-type languages, the pointers a, b, and c may be aliased, so any write through c could
modify elements of a or b. This means that to guarantee functional correctness, the compiler
cannot load a[0] and b[0] into registers, multiply them, and store the result to both c[0]
and c[1], because the results would differ from the abstract execution model if, say, a[0]
is really the same location as c[0]. So the compiler cannot take advantage of the common
sub-expression. Likewise, the compiler cannot just reorder the computation of c[4] into the
proximity of the computation of c[0] and c[1] because the preceding write to c[3] could
change the inputs to the computation of c[4].

By making a, b, and c restricted pointers, the programmer asserts to the compiler that
the pointers are in fact not aliased, which in this case means writes through c would never
overwrite elements of a or b. This changes the function prototype as follows:

void foo(const float* __restrict__ a,
         const float* __restrict__ b,
         float* __restrict__ c);

Note that all pointer arguments need to be made restricted for the compiler optimizer to
derive any benefit. With the __restrict__ keywords added, the compiler can now reorder and
do common sub-expression elimination at will, while retaining functionality identical with the
abstract execution model:

void foo(const float* __restrict__ a,
         const float* __restrict__ b,
         float* __restrict__ c)
{
    float t0 = a[0];
    float t1 = b[0];
    float t2 = t0 * t1;
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    float t3 = a[1];
    c[0] = t2;
    c[1] = t2;
    c[4] = t2;
    c[2] = t2 * t3;
    c[3] = t0 * t3;
    c[5] = t1;
    ...
}

The effects here are a reduced number of memory accesses and reduced number of
computations. This is balanced by an increase in register pressure due to "cached" loads and
common sub-expressions.

Since register pressure is a critical issue in many CUDA codes, use of restricted pointers can
have negative performance impact on CUDA code, due to reduced occupancy.

B.3.  Built-in Vector Types

B.3.1.  char, short, int, long, longlong, float, double
These are vector types derived from the basic integer and floating-point types. They are
structures and the 1st, 2nd, 3rd, and 4th components are accessible through the fields x, y, z,
and w, respectively. They all come with a constructor function of the form make_<type name>;
for example,

int2 make_int2(int x, int y);

which creates a vector of type int2 with value(x, y).

The alignment requirements of the vector types are detailed in Table 4.

Table 4. Alignment Requirements

Type Alignment

char1, uchar1 1

char2, uchar2 2

char3, uchar3 1

char4, uchar4 4

short1, ushort1 2

short2, ushort2 4

short3, ushort3 2

short4, ushort4 8

int1, uint1 4
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Type Alignment

int2, uint2 8

int3, uint3 4

int4, uint4 16

long1, ulong1 4 if sizeof(long) is equal to sizeof(int) 8, otherwise

long2, ulong2 8 if sizeof(long) is equal to sizeof(int), 16, otherwise

long3, ulong3 4 if sizeof(long) is equal to sizeof(int), 8, otherwise

long4, ulong4 16

longlong1, ulonglong1 8

longlong2, ulonglong2 16

longlong3, ulonglong3 8

longlong4, ulonglong4 16

float1 4

float2 8

float3 4

float4 16

double1 8

double2 16

double3 8

double4 16

B.3.2.  dim3
This type is an integer vector type based on uint3 that is used to specify dimensions. When
defining a variable of type dim3, any component left unspecified is initialized to 1.

B.4.  Built-in Variables
Built-in variables specify the grid and block dimensions and the block and thread indices. They
are only valid within functions that are executed on the device.

B.4.1.  gridDim
This variable is of type dim3 (see dim3) and contains the dimensions of the grid.
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B.4.2.  blockIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double) and contains
the block index within the grid.

B.4.3.  blockDim
This variable is of type dim3 (see dim3) and contains the dimensions of the block.

B.4.4.  threadIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double ) and contains
the thread index within the block.

B.4.5.  warpSize
This variable is of type int and contains the warp size in threads (see SIMT Architecture for
the definition of a warp).

B.5.  Memory Fence Functions
The CUDA programming model assumes a device with a weakly-ordered memory model, that
is the order in which a CUDA thread writes data to shared memory, global memory, page-
locked host memory, or the memory of a peer device is not necessarily the order in which the
data is observed being written by another CUDA or host thread. It is undefined behaviour for
two threads read from or write to the same memory location without synchronization.

In the following example, thread 1 executes writeXY(), while thread 2 executes readXY().

__device__ int X = 1, Y = 2;

__device__ void writeXY()
{
    X = 10;
    Y = 20;
}

__device__ void readXY()
{
    int B = Y;
    int A = X;
}

The two threads read and write from the same memory locations X and Y simultaneously. Any
data-race is undefined behaviour, and has no defined semantics. The resulting values for A
and B can be anything.
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Memory fence functions can be used to enforce some ordering on memory accesses. The
memory fence functions differ in the scope in which the orderings are enforced but they are
independent of the accessed memory space (shared memory, global memory, page-locked
host memory, and the memory of a peer device).

void __threadfence_block();

ensures that:

‣ All writes to all memory made by the calling thread before the call to
__threadfence_block() are observed by all threads in the block of the calling thread
as occurring before all writes to all memory made by the calling thread after the call to
__threadfence_block();

‣ All reads from all memory made by the calling thread before the call to
__threadfence_block() are ordered before all reads from all memory made by the
calling thread after the call to __threadfence_block().

void __threadfence();

acts as __threadfence_block() for all threads in the block of the calling thread and
also ensures that no writes to all memory made by the calling thread after the call to
__threadfence() are observed by any thread in the device as occurring before any write to
all memory made by the calling thread before the call to __threadfence(). Note that for this
ordering guarantee to be true, the observing threads must truly observe the memory and not
cached versions of it; this is ensured by using the volatile keyword as detailed in Volatile
Qualifier.

void __threadfence_system();

acts as __threadfence_block() for all threads in the block of the calling thread and
also ensures that all writes to all memory made by the calling thread before the call to
__threadfence_system() are observed by all threads in the device, host threads, and all
threads in peer devices as occurring before all writes to all memory made by the calling
thread after the call to __threadfence_system().

__threadfence_system() is only supported by devices of compute capability 2.x and higher.

In the previous code sample, we can insert fences in the codes as follows:

__device__ int X = 1, Y = 2;

__device__ void writeXY()
{
    X = 10;
    __threadfence();
    Y = 20;
}

__device__ void readXY()
{
    int B = Y;
    __threadfence();
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    int A = X;
}

For this code, the following outcomes can be observed:

‣ A equal to 1 and B equal to 2,

‣ A equal to 10 and B equal to 2,

‣ A equal to 10 and B equal to 20.

The fourth outcome is not possible, because the frist write must be visible before
the second write. If thread 1 and 2 belong to the same block, it is enough to use
__threadfence_block(). If thread 1 and 2 do not belong to the same block,
__threadfence() must be used if they are CUDA threads from the same device and
__threadfence_system() must be used if they are CUDA threads from two different devices.

A common use case is when threads consume some data produced by other threads as
illustrated by the following code sample of a kernel that computes the sum of an array of N
numbers in one call. Each block first sums a subset of the array and stores the result in global
memory. When all blocks are done, the last block done reads each of these partial sums
from global memory and sums them to obtain the final result. In order to determine which
block is finished last, each block atomically increments a counter to signal that it is done with
computing and storing its partial sum (see Atomic Functions about atomic functions). The last
block is the one that receives the counter value equal to gridDim.x-1. If no fence is placed
between storing the partial sum and incrementing the counter, the counter might increment
before the partial sum is stored and therefore, might reach gridDim.x-1 and let the last
block start reading partial sums before they have been actually updated in memory.

Memory fence functions only affect the ordering of memory operations by a thread; they do
not ensure that these memory operations are visible to other threads (like __syncthreads()
does for threads within a block (see Synchronization Functions)). In the code sample below,
the visibility of memory operations on the result variable is ensured by declaring it as volatile
(see Volatile Qualifier).

__device__ unsigned int count = 0;
__shared__ bool isLastBlockDone;
__global__ void sum(const float* array, unsigned int N,
                    volatile float* result)
{
    // Each block sums a subset of the input array.
    float partialSum = calculatePartialSum(array, N);

    if (threadIdx.x == 0) {

        // Thread 0 of each block stores the partial sum
        // to global memory. The compiler will use 
        // a store operation that bypasses the L1 cache
        // since the "result" variable is declared as
        // volatile. This ensures that the threads of
        // the last block will read the correct partial
        // sums computed by all other blocks.
        result[blockIdx.x] = partialSum;
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        // Thread 0 makes sure that the incrementation
        // of the "count" variable is only performed after
        // the partial sum has been written to global memory.
        __threadfence();

        // Thread 0 signals that it is done.
        unsigned int value = atomicInc(&count, gridDim.x);

        // Thread 0 determines if its block is the last
        // block to be done.
        isLastBlockDone = (value == (gridDim.x - 1));
    }

    // Synchronize to make sure that each thread reads
    // the correct value of isLastBlockDone.
    __syncthreads();

    if (isLastBlockDone) {

        // The last block sums the partial sums
        // stored in result[0 .. gridDim.x-1]
        float totalSum = calculateTotalSum(result);

        if (threadIdx.x == 0) {

            // Thread 0 of last block stores the total sum
            // to global memory and resets the count
            // varialble, so that the next kernel call
            // works properly.
            result[0] = totalSum;
            count = 0;
        }
    }
}

B.6.  Synchronization Functions
void __syncthreads();

waits until all threads in the thread block have reached this point and all global and shared
memory accesses made by these threads prior to __syncthreads() are visible to all threads
in the block.

__syncthreads() is used to coordinate communication between the threads of the same
block. When some threads within a block access the same addresses in shared or global
memory, there are potential read-after-write, write-after-read, or write-after-write hazards
for some of these memory accesses. These data hazards can be avoided by synchronizing
threads in-between these accesses.

__syncthreads() is allowed in conditional code but only if the conditional evaluates
identically across the entire thread block, otherwise the code execution is likely to hang or
produce unintended side effects.

Devices of compute capability 2.x and higher support three variations of __syncthreads()
described below.

int __syncthreads_count(int predicate);
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is identical to __syncthreads() with the additional feature that it evaluates predicate for all
threads of the block and returns the number of threads for which predicate evaluates to non-
zero.

int __syncthreads_and(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate for all
threads of the block and returns non-zero if and only if predicate evaluates to non-zero for all
of them.

int __syncthreads_or(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate for all
threads of the block and returns non-zero if and only if predicate evaluates to non-zero for any
of them.

 void __syncwarp(unsigned mask=0xffffffff);

will cause the executing thread to wait until all warp lanes named in mask have executed
a __syncwarp() (with the same mask) before resuming execution. All non-exited threads
named in mask must execute a corresponding __syncwarp() with the same mask, or the
result is undefined.

Executing __syncwarp() guarantees memory ordering among threads participating in the
barrier. Thus, threads within a warp that wish to communicate via memory can store to
memory, execute __syncwarp(), and then safely read values stored by other threads in the
warp.

Note: For .target sm_6x or below, all threads in mask must execute the same __syncwarp() in
convergence, and the union of all values in mask must be equal to the active mask. Otherwise,
the behavior is undefined.

B.7.  Mathematical Functions
The reference manual lists all C/C++ standard library mathematical functions that are
supported in device code and all intrinsic functions that are only supported in device code.

Mathematical Functions provides accuracy information for some of these functions when
relevant.

B.8.  Texture Functions
Texture objects are described in Texture Object API

Texture references are described in [[DEPRECATED]] Texture Reference API

Texture fetching is described in Texture Fetching.
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B.8.1.  Texture Object API

B.8.1.1.  tex1Dfetch()
template<class T>
T tex1Dfetch(cudaTextureObject_t texObj, int x);

fetches from the region of linear memory specified by the one-dimensional texture object
texObj using integer texture coordinate x. tex1Dfetch() only works with non-normalized
coordinates, so only the border and clamp addressing modes are supported. It does not
perform any texture filtering. For integer types, it may optionally promote the integer to single-
precision floating point.

B.8.1.2.  tex1D()
template<class T>
T tex1D(cudaTextureObject_t texObj, float x);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x.

B.8.1.3.  tex1DLod()
template<class T>
T tex1DLod(cudaTextureObject_t texObj, float x, float level);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x at the level-of-detail level.

B.8.1.4.  tex1DGrad()
template<class T>
T tex1DGrad(cudaTextureObject_t texObj, float x, float dx, float dy);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x. The level-of-detail is derived from the X-gradient dx and Y-gradient dy.

B.8.1.5.  tex2D()
template<class T>
T tex2D(cudaTextureObject_t texObj, float x, float y);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional
texture object texObj using texture coordinate (x,y).

B.8.1.6.  tex2DLod()
template<class T>
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tex2DLod(cudaTextureObject_t texObj, float x, float y, float level);

fetches from the CUDA array or the region of linear memory specified by the two-dimensional
texture object texObj using texture coordinate (x,y) at level-of-detail level.

B.8.1.7.  tex2DGrad()
template<class T>
T tex2DGrad(cudaTextureObject_t texObj, float x, float y,
            float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional texture object texObj using
texture coordinate (x,y). The level-of-detail is derived from the dx and dy gradients.

B.8.1.8.  tex3D()
template<class T>
T tex3D(cudaTextureObject_t texObj, float x, float y, float z);

fetches from the CUDA array specified by the three-dimensional texture object texObj using
texture coordinate (x,y,z).

B.8.1.9.  tex3DLod()
template<class T>
T tex3DLod(cudaTextureObject_t texObj, float x, float y, float z, float level);

fetches from the CUDA array or the region of linear memory specified by the three-
dimensional texture object texObj using texture coordinate (x,y,z) at level-of-detail level.

B.8.1.10.  tex3DGrad()
template<class T>
T tex3DGrad(cudaTextureObject_t texObj, float x, float y, float z,
            float4 dx, float4 dy);

fetches from the CUDA array specified by the three-dimensional texture object texObj using
texture coordinate (x,y,z) at a level-of-detail derived from the X and Y gradients dx and dy.

B.8.1.11.  tex1DLayered()
template<class T>
T tex1DLayered(cudaTextureObject_t texObj, float x, int layer);

fetches from the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x and index layer, as described in Layered Textures

B.8.1.12.  tex1DLayeredLod()
template<class T>
T tex1DLayeredLod(cudaTextureObject_t texObj, float x, int layer, float level);



C++ Language Extensions

CUDA C++ Programming Guide PG-02829-001_v11.5   |   147

fetches from the CUDA array specified by the one-dimensional layered texture at layer layer
using texture coordinate x and level-of-detail level.

B.8.1.13.  tex1DLayeredGrad()
template<class T>
T tex1DLayeredGrad(cudaTextureObject_t texObj, float x, int layer,
                   float dx, float dy);

fetches from the CUDA array specified by the one-dimensional layered texture at layer layer
using texture coordinate x and a level-of-detail derived from the dx and dy gradients.

B.8.1.14.  tex2DLayered()
template<class T>
T tex2DLayered(cudaTextureObject_t texObj,
               float x, float y, int layer);

fetches from the CUDA array specified by the two-dimensional texture object texObj using
texture coordinate (x,y) and index layer, as described in Layered Textures.

B.8.1.15.  tex2DLayeredLod()
template<class T>
T tex2DLayeredLod(cudaTextureObject_t texObj, float x, float y, int layer,
                  float level);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer
using texture coordinate (x,y).

B.8.1.16.  tex2DLayeredGrad()
template<class T>
T tex2DLayeredGrad(cudaTextureObject_t texObj, float x, float y, int layer,
                   float2 dx, float2 dy);

fetches from the CUDA array specified by the two-dimensional layered texture at layer layer
using texture coordinate (x,y) and a level-of-detail derived from the dx and dy X and Y
gradients.

B.8.1.17.  texCubemap()
template<class T>
T texCubemap(cudaTextureObject_t texObj, float x, float y, float z);

fetches the CUDA array specified by the cubemap texture object texObj using texture
coordinate (x,y,z), as described in Cubemap Textures.

B.8.1.18.  texCubemapLod()
template<class T>
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T texCubemapLod(cudaTextureObject_t texObj, float x, float, y, float z,
                float level);

fetches from the CUDA array specified by the cubemap texture object texObj using texture
coordinate (x,y,z) as described in Cubemap Textures. The level-of-detail used is given by
level.

B.8.1.19.  texCubemapLayered()
template<class T>
T texCubemapLayered(cudaTextureObject_t texObj,
                    float x, float y, float z, int layer);

fetches from the CUDA array specified by the cubemap layered texture object texObj using
texture coordinates (x,y,z), and index layer, as described in Cubemap Layered Textures.

B.8.1.20.  texCubemapLayeredLod()
template<class T>
T texCubemapLayeredLod(cudaTextureObject_t texObj, float x, float y, float z,
                       int layer, float level);

fetches from the CUDA array specified by the cubemap layered texture object texObj using
texture coordinate (x,y,z) and index layer, as described in Cubemap Layered Textures, at
level-of-detail level level.

B.8.1.21.  tex2Dgather()
template<class T>
T tex2Dgather(cudaTextureObject_t texObj,
              float x, float y, int comp = 0);

fetches from the CUDA array specified by the 2D texture object texObj using texture
coordinates x and y and the comp parameter as described in Texture Gather.

B.8.2.  Texture Reference API

B.8.2.1.  tex1Dfetch()
template<class DataType>
Type tex1Dfetch(
   texture<DataType, cudaTextureType1D,
           cudaReadModeElementType> texRef,
   int x);

float tex1Dfetch(
   texture<unsigned char, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

float tex1Dfetch(
   texture<signed char, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);



C++ Language Extensions

CUDA C++ Programming Guide PG-02829-001_v11.5   |   149

float tex1Dfetch(
   texture<unsigned short, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

float tex1Dfetch(
   texture<signed short, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

fetches from the region of linear memory bound to the one-dimensional texture reference
texRef using integer texture coordinate x. tex1Dfetch() only works with non-normalized
coordinates, so only the border and clamp addressing modes are supported. It does not
perform any texture filtering. For integer types, it may optionally promote the integer to single-
precision floating point.

Besides the functions shown above, 2-, and 4-tuples are supported; for example:

float4 tex1Dfetch(
   texture<uchar4, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

fetches from the region of linear memory bound to texture reference texRef using texture
coordinate x.

B.8.2.2.  tex1D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1D(texture<DataType, cudaTextureType1D, readMode> texRef,
           float x);

fetches from the CUDA array bound to the one-dimensional texture reference texRef
using texture coordinate x. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is equal to the matching floating-point type.

B.8.2.3.  tex1DLod()
template<class DataType, enum
cudaTextureReadMode readMode>
Type tex1DLod(texture<DataType, cudaTextureType1D, readMode> texRef, float x,
              float level);

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x. The level-of-detail is given by level. Type is the same as DataType
except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.4.  tex1DGrad()
template<class DataType, enum
cudaTextureReadMode readMode>
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Type tex1DGrad(texture<DataType, cudaTextureType1D, readMode> texRef, float x,
       float dx, float dy);

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x. The level-of-detail is derived from the dx and dy X- and Y-gradients.
Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat
(see [[DEPRECATED]] Texture Reference API), in which case Type is the corresponding
floating-point type.

B.8.2.5.  tex2D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2D(texture<DataType, cudaTextureType2D, readMode> texRef,
           float x, float y);

fetches from the CUDA array or the region of linear memory bound to the two-dimensional
texture reference texRef using texture coordinates x and y. Type is equal to DataType except
when readMode is equal to cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.6.  tex2DLod()
template<class DataType, enum
cudaTextureReadMode readMode>
Type tex2DLod(texture<DataType, cudaTextureType2D, readMode> texRef,
              float x, float y, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y). The level-of-detail is given by level. Type is the same as DataType
except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.7.  tex2DGrad()
template<class DataType, enum
cudaTextureReadMode readMode>
Type tex2DGrad(texture<DataType, cudaTextureType2D, readMode> texRef,
               float x, float y, float2 dx, float2 dy);

fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y). The level-of-detail is derived from the dx and dy X- and Y-gradients.
Type is the same as DataType except when readMode is cudaReadModeNormalizedFloat
(see [[DEPRECATED]] Texture Reference API), in which case Type is the corresponding
floating-point type.

B.8.2.8.  tex3D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef,
           float x, float y, float z);
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fetches from the CUDA array bound to the three-dimensional texture reference texRef using
texture coordinates x, y, and z. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is equal to the matching floating-point type.

B.8.2.9.  tex3DLod()
template<class DataType, enum
cudaTextureReadMode readMode>
Type tex3DLod(texture<DataType, cudaTextureType3D, readMode> texRef,
              float x, float y, float z, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y,z). The level-of-detail is given by level. Type is the same as
DataType except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]]
Texture Reference API), in which case Type is the corresponding floating-point type.

B.8.2.10.  tex3DGrad()
template<class DataType, enum
cudaTextureReadMode readMode>
Type tex3DGrad(texture<DataType, cudaTextureType3D, readMode> texRef,
               float x, float y, float z, float4 dx, float4 dy);

fetches from the CUDA array bound to the two-dimensional texture reference texRef
using texture coordinate (x,y,z). The level-of-detail is derived from the dx and
dy X- and Y-gradients. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is the corresponding floating-point type.

B.8.2.11.  tex1DLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1DLayered(
     texture<DataType, cudaTextureType1DLayered, readMode> texRef,
     float x, int layer);

fetches from the CUDA array bound to the one-dimensional layered texture reference texRef
using texture coordinate x and index layer, as described in Layered Textures. Type is equal
to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see
[[DEPRECATED]] Texture Reference API), in which case Type is equal to the matching floating-
point type.

B.8.2.12.  tex1DLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1DLayeredLod(texture<DataType, cudaTextureType1D, readMode> texRef,
                     float x, int layer, float level);
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fetches from the CUDA array bound to the one-dimensional texture reference texRef
using texture coordinate x and index layer as described in Layered Textures. The level-
of-detail is given by level. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is the corresponding floating-point type.

B.8.2.13.  tex1DLayeredGrad()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1DLayeredGrad(texture<DataType, cudaTextureType1D, readMode> texRef,
                      float x, int layer, float dx, float dy);

fetches from the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x and index layer as described in Layered Textures. The level-of-detail is
derived from the dx and dy X- and Y-gradients. Type is the same as DataType except when
readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API),
in which case Type is the corresponding floating-point type.

B.8.2.14.  tex2DLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayered(
     texture<DataType, cudaTextureType2DLayered, readMode> texRef,
     float x, float y, int layer);

fetches from the CUDA array bound to the two-dimensional layered texture reference texRef
using texture coordinates x and y, and index layer, as described in Texture Memory. Type is
equal to DataType except when readMode is equal to cudaReadModeNormalizedFloat (see
[[DEPRECATED]] Texture Reference API), in which case Type is equal to the matching floating-
point type.

B.8.2.15.  tex2DLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayeredLod(texture<DataType, cudaTextureType2D, readMode> texRef,
                     float x, float y, int layer, float level);

fetches from the CUDA array bound to the two-dimensional texture reference texRef
using texture coordinate (x,y) and index layer as described in Layered Textures. The
level-of-detail is given by level. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is the corresponding floating-point type.

B.8.2.16.  tex2DLayeredGrad()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayeredGrad(texture<DataType, cudaTextureType2D, readMode> texRef,
                      float x, float y, int layer, float2 dx, float2 dy);
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fetches from the CUDA array bound to the two-dimensional texture reference texRef using
texture coordinate (x,y) and index layer as described in Layered Textures. The level-of-
detail is derived from the dx and dy X- and Y-gradients. Type is the same as DataType except
when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference
API), in which case Type is the corresponding floating-point type.

B.8.2.17.  texCubemap()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemap(
     texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
     float x, float y, float z);

fetches from the CUDA array bound to the cubemap texture reference texRef using texture
coordinates x, y, and z, as described in Cubemap Textures. Type is equal to DataType except
when readMode is equal to cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.18.  texCubemapLod()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemapLod(texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
                   float x, float y, float z, float level);

fetches from the CUDA array bound to the cubemap texture reference texRef using texture
coordinate (x,y,z). The level-of-detail is given by level. Type is the same as DataType
except when readMode is cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture
Reference API), in which case Type is the corresponding floating-point type.

B.8.2.19.  texCubemapLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemapLayered(
texture<DataType, cudaTextureTypeCubemapLayered, readMode> texRef,
float x, float y, float z, int layer);

fetches from the CUDA array bound to the cubemap layered texture reference texRef
using texture coordinates x, y, and z, and index layer, as described in Cubemap
Layered Textures. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is equal to the matching floating-point type.

B.8.2.20.  texCubemapLayeredLod()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemapLayeredLod(texture<DataType, cudaTextureTypeCubemapLayered, readMode>
 texRef, float x, float y, float z, int layer, float level);

fetches from the CUDA array bound to the cubemap layered texture reference texRef
using texture coordinate (x,y,z) and index layer as described in Layered Textures. The
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level-of-detail is given by level. Type is the same as DataType except when readMode is
cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in which case
Type is the corresponding floating-point type.

B.8.2.21.  tex2Dgather()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2Dgather(
     texture<DataType, cudaTextureType2D, readMode> texRef,
     float x, float y, int comp = 0);

fetches from the CUDA array bound to the 2D texture reference texRef using texture
coordinates x and y and the comp parameter as described in Texture Gather. Type is a 4-
component vector type. It is based on the base type of DataType except when readMode is
equal to cudaReadModeNormalizedFloat (see [[DEPRECATED]] Texture Reference API), in
which case it is always float4.

B.9.  Surface Functions
Surface functions are only supported by devices of compute capability 2.0 and higher.

Surface objects are described in described in Surface Object API

Surface references are described in Surface Reference API.

In the sections below, boundaryMode specifies the boundary mode, that is how out-of-range
surface coordinates are handled; it is equal to either cudaBoundaryModeClamp, in which
case out-of-range coordinates are clamped to the valid range, or cudaBoundaryModeZero,
in which case out-of-range reads return zero and out-of-range writes are ignored, or
cudaBoundaryModeTrap, in which case out-of-range accesses cause the kernel execution to
fail.

B.9.1.  Surface Object API

B.9.1.1.  surf1Dread()
template<class T>
T surf1Dread(cudaSurfaceObject_t surfObj, int x,
               boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional surface object surfObj using
coordinate x.

B.9.1.2.  surf1Dwrite
template<class T>
void surf1Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x,
                  boundaryMode = cudaBoundaryModeTrap);
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writes value data to the CUDA array specified by the one-dimensional surface object surfObj
at coordinate x.

B.9.1.3.  surf2Dread()
template<class T>
T surf2Dread(cudaSurfaceObject_t surfObj,
              int x, int y,
              boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2Dread(T* data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional surface object surfObj using
coordinates x and y.

B.9.1.4.  surf2Dwrite()
template<class T>
void surf2Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x, int y,
                  boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional surface object surfObj
at coordinate x and y.

B.9.1.5.  surf3Dread()
template<class T>
T surf3Dread(cudaSurfaceObject_t surfObj,
              int x, int y, int z,
              boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf3Dread(T* data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the three-dimensional surface object surfObj using
coordinates x, y, and z.

B.9.1.6.  surf3Dwrite()
template<class T>
void surf3Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x, int y, int z,
                  boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the three-dimensional object surfObj at
coordinate x, y, and z.
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B.9.1.7.  surf1DLayeredread()
template<class T>
T surf1DLayeredread(
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf1DLayeredread(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional layered surface object surfObj using
coordinate x and index layer.

B.9.1.8.  surf1DLayeredwrite()
template<class Type>
void surf1DLayeredwrite(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional layered surface object
surfObj at coordinate x and index layer.

B.9.1.9.  surf2DLayeredread()
template<class T>
T surf2DLayeredread(
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int layer,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2DLayeredread(T data,
                         cudaSurfaceObject_t surfObj,
                         int x, int y, int layer, 
                         boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional layered surface object surfObj using
coordinate x and y, and index layer.

B.9.1.10.  surf2DLayeredwrite()
template<class T>
void surf2DLayeredwrite(T data,
                          cudaSurfaceObject_t surfObj,
                          int x, int y, int layer,
                          boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the one-dimensional layered surface object
surfObj at coordinate x and y, and index layer.
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B.9.1.11.  surfCubemapread()
template<class T>
T surfCubemapread(
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemapread(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the cubemap surface object surfObj using coordinate x
and y, and face index face.

B.9.1.12.  surfCubemapwrite()
template<class T>
void surfCubemapwrite(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap object surfObj at coordinate x
and y, and face index face.

B.9.1.13.  surfCubemapLayeredread()
template<class T>
T surfCubemapLayeredread(
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemapLayeredread(T data,
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the cubemap layered surface object surfObj using
coordinate x and y, and index layerFace.

B.9.1.14.  surfCubemapLayeredwrite()
template<class T>
void surfCubemapLayeredwrite(T data,
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap layered object surfObj at
coordinate x and y, and index layerFace.
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B.9.2.  Surface Reference API

B.9.2.1.  surf1Dread()
template<class Type>
Type surf1Dread(surface<void, cudaSurfaceType1D> surfRef,
                int x,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf1Dread(Type data,
                surface<void, cudaSurfaceType1D> surfRef,
                int x,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the one-dimensional surface reference surfRef using
coordinate x.

B.9.2.2.  surf1Dwrite
template<class Type>
void surf1Dwrite(Type data,
                 surface<void, cudaSurfaceType1D> surfRef,
                 int x,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the one-dimensional surface reference surfRef
at coordinate x.

B.9.2.3.  surf2Dread()
template<class Type>
Type surf2Dread(surface<void, cudaSurfaceType2D> surfRef,
                int x, int y,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf2Dread(Type* data,
                surface<void, cudaSurfaceType2D> surfRef,
                int x, int y,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the two-dimensional surface reference surfRef using
coordinates x and y.

B.9.2.4.  surf2Dwrite()
template<class Type>
void surf3Dwrite(Type data,
                 surface<void, cudaSurfaceType3D> surfRef,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the two-dimensional surface reference surfRef
at coordinate x and y.
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B.9.2.5.  surf3Dread()
template<class Type>
Type surf3Dread(surface<void, cudaSurfaceType3D> surfRef,
                int x, int y, int z,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf3Dread(Type* data,
                surface<void, cudaSurfaceType3D> surfRef,
                int x, int y, int z,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the three-dimensional surface reference surfRef using
coordinates x, y, and z.

B.9.2.6.  surf3Dwrite()
template<class Type>
void surf3Dwrite(Type data,
                 surface<void, cudaSurfaceType3D> surfRef,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the three-dimensional surface reference
surfRef at coordinate x, y, and z.

B.9.2.7.  surf1DLayeredread()
template<class Type>
Type surf1DLayeredread(
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf1DLayeredread(Type data,
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the one-dimensional layered surface reference surfRef using
coordinate x and index layer.

B.9.2.8.  surf1DLayeredwrite()
template<class Type>
void surf1DLayeredwrite(Type data,
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the two-dimensional layered surface reference
surfRef at coordinate x and index layer.
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B.9.2.9.  surf2DLayeredread()
template<class Type>
Type surf2DLayeredread(
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf2DLayeredread(Type data,
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the two-dimensional layered surface reference surfRef using
coordinate x and y, and index layer.

B.9.2.10.  surf2DLayeredwrite()
template<class Type>
void surf2DLayeredwrite(Type data,
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the one-dimensional layered surface reference
surfRef at coordinate x and y, and index layer.

B.9.2.11.  surfCubemapread()
template<class Type>
Type surfCubemapread(
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surfCubemapread(Type data,
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the cubemap surface reference surfRef using coordinate x
and y, and face index face.

B.9.2.12.  surfCubemapwrite()
template<class Type>
void surfCubemapwrite(Type data,
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the cubemap reference surfRef at coordinate x
and y, and face index face.
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B.9.2.13.  surfCubemapLayeredread()
template<class Type>
Type surfCubemapLayeredread(
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surfCubemapLayeredread(Type data,
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the cubemap layered surface reference surfRef using
coordinate x and y, and index layerFace.

B.9.2.14.  surfCubemapLayeredwrite()
template<class Type>
void surfCubemapLayeredwrite(Type data,
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the cubemap layered reference surfRef at
coordinate x and y, and index layerFace.

B.10.  Read-Only Data Cache Load Function
The read-only data cache load function is only supported by devices of compute capability 3.5
and higher.

T __ldg(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long long unsigned char, unsigned short, unsigned int, unsigned long,
unsigned long long, char2, char4, short2, short4, int2, int4, longlong2 uchar2,
uchar4, ushort2, ushort4, uint2, uint4, ulonglong2 float, float2, float4, double, or
double2. With the cuda_fp16.h header included, T can be __half or __half2. Similarly, with
the cuda_bf16.h header included, T can also be __nv_bfloat16 or __nv_bfloat162. The
operation is cached in the read-only data cache (see Global Memory).

B.11.  Load Functions Using Cache Hints
These load functions are only supported by devices of compute capability 3.5 and higher.

T __ldcg(const T* address);
T __ldca(const T* address);
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T __ldcs(const T* address);
T __ldlu(const T* address);
T __ldcv(const T* address);

returns the data of type T located at address address, where T is char, signed char, short,
int, long, long long unsigned char, unsigned short, unsigned int, unsigned long,
unsigned long long, char2, char4, short2, short4, int2, int4, longlong2 uchar2,
uchar4, ushort2, ushort4, uint2, uint4, ulonglong2 float, float2, float4, double, or
double2. With the cuda_fp16.h header included, T can be __half or __half2. Similarly, with
the cuda_bf16.h header included, T can also be __nv_bfloat16 or __nv_bfloat162. The
operation is using the corresponding cache operator (see PTX ISA)

B.12.  Store Functions Using Cache Hints
These store functions are only supported by devices of compute capability 3.5 and higher.

void __stwb(T* address, T value);
void __stcg(T* address, T value);
void __stcs(T* address, T value);
void __stwt(T* address, T value);

stores the value argument of type T to the location at address address, where T is char,
signed char, short, int, long, long long unsigned char, unsigned short, unsigned
int, unsigned long, unsigned long long, char2, char4, short2, short4, int2, int4,
longlong2 uchar2, uchar4, ushort2, ushort4, uint2, uint4, ulonglong2 float, float2,
float4, double, or double2. With the cuda_fp16.h header included, T can be __half or
__half2. Similarly, with the cuda_bf16.h header included, T can also be __nv_bfloat16 or
__nv_bfloat162. The operation is using the corresponding cache operator (see PTX ISA )

B.13.  Time Function
clock_t clock();
long long int clock64();

when executed in device code, returns the value of a per-multiprocessor counter that is
incremented every clock cycle. Sampling this counter at the beginning and at the end of a
kernel, taking the difference of the two samples, and recording the result per thread provides
a measure for each thread of the number of clock cycles taken by the device to completely
execute the thread, but not of the number of clock cycles the device actually spent executing
thread instructions. The former number is greater than the latter since threads are time
sliced.

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#cache-operators
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B.14.  Atomic Functions
An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-bit
word residing in global or shared memory. For example, atomicAdd() reads a word at some
address in global or shared memory, adds a number to it, and writes the result back to the
same address. The operation is atomic in the sense that it is guaranteed to be performed
without interference from other threads. In other words, no other thread can access this
address until the operation is complete. Atomic functions do not act as memory fences and do
not imply synchronization or ordering constraints for memory operations (see Memory Fence
Functions for more details on memory fences). Atomic functions can only be used in device
functions.

Atomic functions are only atomic with respect to other operations performed by threads of a
particular set:

‣ System-wide atomics: atomic for all threads in the current program including other CPUs
and GPUs in the system. These are suffixed with _system, e.g., atomicAdd_system.

‣ Device-wide atomics: atomic for all CUDA threads in the current program executing in the
same compute device as the current thread. These are not suffixed and just named after
the operation instead, e.g., atomicAdd.

‣ Block-wide atomics: atomic for all CUDA threads in the current program executing
in the same thread block as the current thread. These are suffixed with _block, e.g.,
atomicAdd_block.

In the following example both the CPU and the GPU atomically update an integer value at
address addr:

__global__ void mykernel(int *addr) {
  atomicAdd_system(addr, 10);       // only available on devices with compute
 capability 6.x
}

void foo() {
  int *addr;
  cudaMallocManaged(&addr, 4);
  *addr = 0;

   mykernel<<<...>>>(addr);
   __sync_fetch_and_add(addr, 10);  // CPU atomic operation
}

Note that any atomic operation can be implemented based on atomicCAS() (Compare
And Swap). For example, atomicAdd() for double-precision floating-point numbers is not
available on devices with compute capability lower than 6.0 but it can be implemented as
follows:

#if __CUDA_ARCH__ < 600
__device__ double atomicAdd(double* address, double val)
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{
    unsigned long long int* address_as_ull =
                              (unsigned long long int*)address;
    unsigned long long int old = *address_as_ull, assumed;

    do {
        assumed = old;
        old = atomicCAS(address_as_ull, assumed,
                        __double_as_longlong(val +
                               __longlong_as_double(assumed)));

    // Note: uses integer comparison to avoid hang in case of NaN (since NaN != NaN)
    } while (assumed != old);

    return __longlong_as_double(old);
}
#endif

There are system-wide and block-wide variants of the following device-wide atomic APIs, with
the following exceptions:

‣ Devices with compute capability less than 6.0 only support device-wide atomic operations,

‣ Tegra devices with compute capability less than 7.2 do not support system-wide atomic
operations.

B.14.1.  Arithmetic Functions

B.14.1.1.  atomicAdd()
int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,
                                 unsigned long long int val);
float atomicAdd(float* address, float val);
double atomicAdd(double* address, double val);
__half2 atomicAdd(__half2 *address, __half2 val);
__half atomicAdd(__half *address, __half val);
__nv_bfloat162 atomicAdd(__nv_bfloat162 *address, __nv_bfloat162 val);
__nv_bfloat16 atomicAdd(__nv_bfloat16 *address, __nv_bfloat16 val);

reads the 16-bit, 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old + val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 32-bit floating-point version of atomicAdd() is only supported by devices of compute
capability 2.x and higher.

The 64-bit floating-point version of atomicAdd() is only supported by devices of compute
capability 6.x and higher.

The 32-bit __half2 floating-point version of atomicAdd() is only supported by devices of
compute capability 6.x and higher. The atomicity of the __half2 or __nv_bfloat162 add
operation is guaranteed separately for each of the two __half or __nv_bfloat16 elements;
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the entire __half2 or __nv_bfloat162 is not guaranteed to be atomic as a single 32-bit
access.

The 16-bit __half floating-point version of atomicAdd() is only supported by devices of
compute capability 7.x and higher.

The 16-bit __nv_bfloat16 floating-point version of atomicAdd() is only supported by devices
of compute capability 8.x and higher.

B.14.1.2.  atomicSub()
int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes (old - val), and stores the result back to memory at the same address. These
three operations are performed in one atomic transaction. The function returns old.

B.14.1.3.  atomicExch()
int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,
                        unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,
                                  unsigned long long int val);
float atomicExch(float* address, float val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory and stores val back to memory at the same address. These two operations are
performed in one atomic transaction. The function returns old.

B.14.1.4.  atomicMin()
int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMin(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes the minimum of old and val, and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicMin() is only supported by devices of compute capability 3.5 and
higher.

B.14.1.5.  atomicMax()
int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,
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                       unsigned int val);
unsigned long long int atomicMax(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes the maximum of old and val, and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicMax() is only supported by devices of compute capability 3.5 and
higher.

B.14.1.6.  atomicInc()
unsigned int atomicInc(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes ((old >= val) ? 0 : (old+1)), and stores the result back to memory at the
same address. These three operations are performed in one atomic transaction. The function
returns old.

B.14.1.7.  atomicDec()
unsigned int atomicDec(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes (((old == 0) || (old > val)) ? val : (old-1)  ), and stores the result
back to memory at the same address. These three operations are performed in one atomic
transaction. The function returns old.

B.14.1.8.  atomicCAS()
int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
                       unsigned int compare,
                       unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
                                 unsigned long long int compare,
                                 unsigned long long int val);
unsigned short int atomicCAS(unsigned short int *address, 
                             unsigned short int compare, 
                             unsigned short int val);

reads the 16-bit, 32-bit or 64-bit word old located at the address address in global or
shared memory, computes (old == compare ? val : old) , and stores the result
back to memory at the same address. These three operations are performed in one atomic
transaction. The function returns old (Compare And Swap).
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B.14.2.  Bitwise Functions

B.14.2.1.  atomicAnd()
int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAnd(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old & val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicAnd() is only supported by devices of compute capability 3.5 and
higher.

B.14.2.2.  atomicOr()
int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,
                      unsigned int val);
unsigned long long int atomicOr(unsigned long long int* address,
                                unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old | val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicOr() is only supported by devices of compute capability 3.5 and
higher.

B.14.2.3.  atomicXor()
int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicXor(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old ^ val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns old.

The 64-bit version of atomicXor() is only supported by devices of compute capability 3.5 and
higher.
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B.15.  Address Space Predicate Functions
The functions described in this section have unspecified behavior if the argument is a null
pointer.

B.15.1.  __isGlobal()
__device__ unsigned int __isGlobal(const void *ptr);

Returns 1 if ptr contains the generic address of an object in global memory space, otherwise
returns 0.

B.15.2.  __isShared()
__device__ unsigned int __isShared(const void *ptr);

Returns 1 if ptr contains the generic address of an object in shared memory space, otherwise
returns 0.

B.15.3.  __isConstant()
__device__ unsigned int __isConstant(const void *ptr);

Returns 1 if ptr contains the generic address of an object in constant memory space,
otherwise returns 0.

B.15.4.  __isLocal()
__device__ unsigned int __isLocal(const void *ptr);

Returns 1 if ptr contains the generic address of an object in local memory space, otherwise
returns 0.

B.16.  Address Space Conversion Functions

B.16.1.  __cvta_generic_to_global()
__device__ size_t __cvta_generic_to_global(const void *ptr);

Returns the result of executing the PTX cvta.to.global instruction on the generic address
denoted by ptr.
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B.16.2.  __cvta_generic_to_shared()
__device__ size_t __cvta_generic_to_shared(const void *ptr);

Returns the result of executing the PTX cvta.to.shared instruction on the generic address
denoted by ptr.

B.16.3.  __cvta_generic_to_constant()
__device__ size_t __cvta_generic_to_constant(const void *ptr);

Returns the result of executing the PTX cvta.to.const instruction on the generic address
denoted by ptr.

B.16.4.  __cvta_generic_to_local()
__device__ size_t __cvta_generic_to_local(const void *ptr);

Returns the result of executing the PTX cvta.to.local instruction on the generic address
denoted by ptr.

B.16.5.  __cvta_global_to_generic()
__device__ void * __cvta_global_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.global instruction on the
value provided by rawbits.

B.16.6.  __cvta_shared_to_generic()
__device__ void * __cvta_shared_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.shared instruction on the
value provided by rawbits.

B.16.7.  __cvta_constant_to_generic()
__device__ void * __cvta_constant_to_generic(size_t rawbits);

Returns the generic pointer obtained by executing the PTX cvta.const instruction on the
value provided by rawbits.

B.16.8.  __cvta_local_to_generic()
__device__ void * __cvta_local_to_generic(size_t rawbits);
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Returns the generic pointer obtained by executing the PTX cvta.local instruction on the
value provided by rawbits.

B.17.  Alloca Function

B.17.1.  Synopsis

              __host__ __device__ void * alloca(size_t size);

B.17.2.  Description
The alloca() function allocates size bytes of memory in the stack frame of the caller.
The retured value is a pointer to allocated memory, the beginning of the memory is 16 bytes
aligned when the function is invoked from device code. The allocated memory is automatically
freed when the caller to alloca() is returned.

Note: on Windowns platform, <malloc.h> must be included before using alloca(). Using
alloca() may cause the stack to overflow, user needs to adjust stack size accordingly.

It is supported with compute capability 5.2 or higher.

B.17.3.  Example

__device__ void foo(unsigned int num) {
 int4 *ptr = (int4 *)alloca(num * sizeof(int4));
 // use of ptr
 ...
}

B.18.  Compiler Optimization Hint Functions
The functions described in this section can be used to provide additional information to the
compiler optimizer.

B.18.1.  __builtin_assume_aligned()
void * __builtin_assume_aligned (const void *exp, size_t align)

Allows the compiler to assume that the argument pointer is aligned to at least align bytes,
and returns the argument pointer.

Example:

void *res = __builtin_assume_aligned(ptr, 32); // compiler can assume 'res' is
                                               // at least 32-byte aligned
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Three parameter version:

      void * __builtin_assume_aligned (const void *exp, size_t align, 
                                       <integral type> offset)

Allows the compiler to assume that (char *)exp - offset is aligned to at least align
bytes, and returns the argument pointer.

Example:

void *res = __builtin_assume_aligned(ptr, 32, 8); // compiler can assume 
                                                  // '(char *)res - 8' is
                                                  // at least 32-byte aligned.

B.18.2.  __builtin_assume()
void __builtin_assume(bool exp)

Allows the compiler to assume that the boolean argument is true. If the argument is not true
at run time, then the behavior is undefined. The argument is not evaluated, so any side-effects
will be discarded.

Example:

     __device__ int get(int *ptr, int idx) {
       __builtin_assume(idx <= 2);
       return ptr[idx];
    }

B.18.3.  __assume()
void __assume(bool exp)

Allows the compiler to assume that the boolean argument is true. If the argument is not true
at run time, then the behavior is undefined. The argument is not evaluated, so any side-effects
will be discarded.

Example:

     __device__ int get(int *ptr, int idx) {
       __assume(idx <= 2);
       return ptr[idx];
    }

B.18.4.  __builtin_expect()
long __builtin_expect (long exp, long c)

Indicates to the compiler that it is expected that exp == c, and returns the value of exp.
Typically used to indicate branch prediction information to the compiler.
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Example:

    // indicate to the compiler that likely "var == 0", 
    // so the body of the if-block is unlikely to be
    // executed at run time.
    if (__builtin_expect (var, 0))
      doit ();
    

B.18.5.  __builtin_unreachable()
void __builtin_unreachable(void)

Indicates to the compiler that control flow never reaches the point where this function is being
called from. The program has undefined behavior if the control flow does actually reach this
point at run time.

Example:

    // indicates to the compiler that the default case label is never reached.
    switch (in) {
    case 1: return 4;
    case 2: return 10;
    default: __builtin_unreachable();
    }

B.18.6.  Restrictions
__assume() is only supported when using cl.exe host compiler. The other functions are
supported on all platforms, subject to the following restrictions:

‣ If the host compiler supports the function, the function can be invoked from anywhere in
translation unit.

‣ Otherwise, the function must be invoked from within the body of a __device__/
__global__function, or only when the __CUDA_ARCH__ macro is defined12.

B.19.  Warp Vote Functions
        int __all_sync(unsigned mask, int predicate);
        int __any_sync(unsigned mask, int predicate);
        unsigned __ballot_sync(unsigned mask, int predicate);
        unsigned __activemask();
        

Deprecation notice: __any, __all, and __ballot have been deprecated in CUDA 9.0 for all
devices.

12 The intent is to prevent the host compiler from encountering the call to the function if the host compiler does not support it.
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Removal notice: When targeting devices with compute capability 7.x or higher, __any, __all,
and __ballot are no longer available and their sync variants should be used instead.

The warp vote functions allow the threads of a given warp to perform a reduction-and-
broadcast operation. These functions take as input an integer predicate from each thread in
the warp and compare those values with zero. The results of the comparisons are combined
(reduced) across the active threads of the warp in one of the following ways, broadcasting a
single return value to each participating thread:
__all_sync(unsigned mask, predicate):

Evaluate predicate for all non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for all of them.

__any_sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return non-zero if and only if
predicate evaluates to non-zero for any of them.

__ballot_sync(unsigned mask, predicate):
Evaluate predicate for all non-exited threads in mask and return an integer whose Nth bit
is set if and only if predicate evaluates to non-zero for the Nth thread of the warp and the
Nth thread is active.

__activemask():
Returns a 32-bit integer mask of all currently active threads in the calling warp. The Nth
bit is set if the Nth lane in the warp is active when __activemask() is called. Inactive
threads are represented by 0 bits in the returned mask. Threads which have exited the
program are always marked as inactive. Note that threads that are convergent at an
__activemask() call are not guaranteed to be convergent at subsequent instructions
unless those instructions are synchronizing warp-builtin functions.

Notes

For __all_sync, __any_sync, and __ballot_sync, a mask must be passed that specifies the
threads participating in the call. A bit, representing the thread's lane ID, must be set for each
participating thread to ensure they are properly converged before the intrinsic is executed
by the hardware. All active threads named in mask must execute the same intrinsic with the
same mask, or the result is undefined.

B.20.  Warp Match Functions
__match_any_sync and __match_all_sync perform a broadcast-and-compare operation of a
variable between threads within a warp.

Supported by devices of compute capability 7.x or higher.

B.20.1.  Synopsys

        
unsigned int __match_any_sync(unsigned mask, T value);
unsigned int __match_all_sync(unsigned mask, T value, int *pred);
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T can be int, unsigned int, long, unsigned long, long long, unsigned long long,
float or double.

B.20.2.  Description
The __match_sync() intrinsics permit a broadcast-and-compare of a value value across
threads in a warp after synchronizing threads named in mask.

__match_any_sync
Returns mask of threads that have same value of value in mask

__match_all_sync
Returns mask if all threads in mask have the same value for value; otherwise 0 is returned.
Predicate pred is set to true if all threads in mask have the same value of value; otherwise
the predicate is set to false.

The new *_sync match intrinsics take in a mask indicating the threads participating in the
call. A bit, representing the thread's lane id, must be set for each participating thread to
ensure they are properly converged before the intrinsic is executed by the hardware. All non-
exited threads named in mask must execute the same intrinsic with the same mask, or the
result is undefined.

B.21.  Warp Reduce Functions
The __reduce_sync(unsigned mask, T value) intrinsics perform a reduction operation on
the data provided in value after synchronizing threads named in mask. T can be unsigned or
signed for {add, min, max} and unsigned only for {and, or, xor} operations.

Supported by devices of compute capability 8.x or higher.

B.21.1.  Synopsys

      
// add/min/max
unsigned __reduce_add_sync(unsigned mask, unsigned value);
unsigned __reduce_min_sync(unsigned mask, unsigned value);
unsigned __reduce_max_sync(unsigned mask, unsigned value);
int __reduce_add_sync(unsigned mask, int value);
int __reduce_min_sync(unsigned mask, int value);
int __reduce_max_sync(unsigned mask, int value);

// and/or/xor
unsigned __reduce_and_sync(unsigned mask, unsigned value);
unsigned __reduce_or_sync(unsigned mask, unsigned value);
unsigned __reduce_xor_sync(unsigned mask, unsigned value);
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B.21.2.  Description
__reduce_add_sync, __reduce_min_sync, __reduce_max_sync

Returns the result of applying an arithmetic add, min, or max reduction operation on the
values provided in value by each thread named in mask.

__reduce_and_sync, __reduce_or_sync, __reduce_xor_sync
Returns the result of applying a logical AND, OR, or XOR reduction operation on the values
provided in value by each thread named in mask.

The mask indicates the threads participating in the call. A bit, representing the thread's lane
id, must be set for each participating thread to ensure they are properly converged before the
intrinsic is executed by the hardware. All non-exited threads named in mask must execute the
same intrinsic with the same mask, or the result is undefined.

B.22.  Warp Shuffle Functions
__shfl_sync, __shfl_up_sync, __shfl_down_sync, and __shfl_xor_sync exchange a
variable between threads within a warp.

Supported by devices of compute capability 3.x or higher.

Deprecation Notice: __shfl, __shfl_up, __shfl_down, and __shfl_xor have been
deprecated in CUDA 9.0 for all devices.

Removal Notice: When targeting devices with compute capability 7.x or higher, __shfl,
__shfl_up, __shfl_down, and __shfl_xor are no longer available and their sync variants
should be used instead.

B.22.1.  Synopsis

              
T __shfl_sync(unsigned mask, T var, int srcLane, int width=warpSize);
T __shfl_up_sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
T __shfl_down_sync(unsigned mask, T var, unsigned int delta, int width=warpSize);
T __shfl_xor_sync(unsigned mask, T var, int laneMask, int width=warpSize);
              

T can be int, unsigned int, long, unsigned long, long long, unsigned long long,
float or double. With the cuda_fp16.h header included, T can also be __half or __half2.
Similarly, with the cuda_bf16.h header included, T can also be __nv_bfloat16 or
__nv_bfloat162.

B.22.2.  Description
The __shfl_sync() intrinsics permit exchanging of a variable between threads within a warp
without use of shared memory. The exchange occurs simultaneously for all active threads
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within the warp (and named in mask), moving 4 or 8 bytes of data per thread depending on the
type.

Threads within a warp are referred to as lanes, and may have an index between 0 and
warpSize-1 (inclusive). Four source-lane addressing modes are supported:

__shfl_sync()
Direct copy from indexed lane

__shfl_up_sync()
Copy from a lane with lower ID relative to caller

__shfl_down_sync()
Copy from a lane with higher ID relative to caller

__shfl_xor_sync()
Copy from a lane based on bitwise XOR of own lane ID

Threads may only read data from another thread which is actively participating in the
__shfl_sync() command. If the target thread is inactive, the retrieved value is undefined.

All of the __shfl_sync() intrinsics take an optional width parameter which alters the
behavior of the intrinsic. width must have a value which is a power of 2; results are undefined
if width is not a power of 2, or is a number greater than warpSize.

__shfl_sync() returns the value of var held by the thread whose ID is given by srcLane. If
width is less than warpSize then each subsection of the warp behaves as a separate entity
with a starting logical lane ID of 0. If srcLane is outside the range [0:width-1], the value
returned corresponds to the value of var held by the srcLane modulo width (i.e. within the
same subsection).

__shfl_up_sync() calculates a source lane ID by subtracting delta from the caller's lane ID.
The value of var held by the resulting lane ID is returned: in effect, var is shifted up the warp
by delta lanes. If width is less than warpSize then each subsection of the warp behaves as a
separate entity with a starting logical lane ID of 0. The source lane index will not wrap around
the value of width, so effectively the lower delta lanes will be unchanged.

__shfl_down_sync() calculates a source lane ID by adding delta to the caller's lane ID. The
value of var held by the resulting lane ID is returned: this has the effect of shifting var down
the warp by delta lanes. If width is less than warpSize then each subsection of the warp
behaves as a separate entity with a starting logical lane ID of 0. As for __shfl_up_sync(), the
ID number of the source lane will not wrap around the value of width and so the upper delta
lanes will remain unchanged.

__shfl_xor_sync() calculates a source line ID by performing a bitwise XOR of the caller's
lane ID with laneMask: the value of var held by the resulting lane ID is returned. If width
is less than warpSize then each group of width consecutive threads are able to access
elements from earlier groups of threads, however if they attempt to access elements from
later groups of threads their own value of var will be returned. This mode implements a
butterfly addressing pattern such as is used in tree reduction and broadcast.
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The new *_sync shfl intrinsics take in a mask indicating the threads participating in the call.
A bit, representing the thread's lane id, must be set for each participating thread to ensure
they are properly converged before the intrinsic is executed by the hardware. All non-exited
threads named in mask must execute the same intrinsic with the same mask, or the result is
undefined.

B.22.3.  Notes
Threads may only read data from another thread which is actively participating in the
__shfl_sync() command. If the target thread is inactive, the retrieved value is undefined.

width must be a power-of-2 (i.e., 2, 4, 8, 16 or 32). Results are unspecified for other values.

B.22.4.  Examples

B.22.4.1.  Broadcast of a single value across a warp
#include <stdio.h>

__global__ void bcast(int arg) {
    int laneId = threadIdx.x & 0x1f;
    int value;
    if (laneId == 0)        // Note unused variable for
        value = arg;        // all threads except lane 0
    value = __shfl_sync(0xffffffff, value, 0);   // Synchronize all threads in warp,
 and get "value" from lane 0
    if (value != arg)
        printf("Thread %d failed.\n", threadIdx.x);
}

int main() {
    bcast<<< 1, 32 >>>(1234);
    cudaDeviceSynchronize();

    return 0;
}

B.22.4.2.  Inclusive plus-scan across sub-partitions of 8
threads

#include <stdio.h>

__global__ void scan4() {
    int laneId = threadIdx.x & 0x1f;
    // Seed sample starting value (inverse of lane ID)
    int value = 31 - laneId;

    // Loop to accumulate scan within my partition.
    // Scan requires log2(n) == 3 steps for 8 threads
    // It works by an accumulated sum up the warp
    // by 1, 2, 4, 8 etc. steps.
    for (int i=1; i<=4; i*=2) {
        // We do the __shfl_sync unconditionally so that we
        // can read even from threads which won't do a
        // sum, and then conditionally assign the result.
        int n = __shfl_up_sync(0xffffffff, value, i, 8);
        if ((laneId & 7) >= i)
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            value += n;
    }

    printf("Thread %d final value = %d\n", threadIdx.x, value);
}

int main() {
    scan4<<< 1, 32 >>>();
    cudaDeviceSynchronize();

    return 0;
}

B.22.4.3.  Reduction across a warp
#include <stdio.h>

__global__ void warpReduce() {
    int laneId = threadIdx.x & 0x1f;
    // Seed starting value as inverse lane ID
    int value = 31 - laneId;

    // Use XOR mode to perform butterfly reduction
    for (int i=16; i>=1; i/=2)
        value += __shfl_xor_sync(0xffffffff, value, i, 32);

    // "value" now contains the sum across all threads
    printf("Thread %d final value = %d\n", threadIdx.x, value);
}

int main() {
    warpReduce<<< 1, 32 >>>();
    cudaDeviceSynchronize();

    return 0;
}

B.23.  Nanosleep Function

B.23.1.  Synopsis

              
T __nanosleep(unsigned ns);
              

B.23.2.  Description
__nanosleep(ns) suspends the thread for a sleep duration approximately close to the delay
ns, specified in nanoseconds.

It is supported with compute capability 7.0 or higher.
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B.23.3.  Example
The following code implements a mutex with exponential back-off.

__device__ void mutex_lock(unsigned int *mutex) {
    unsigned int ns = 8;
    while (atomicCAS(mutex, 0, 1) == 1) {
        __nanosleep(ns);
        if (ns < 256) {
            ns *= 2;
        }
    }
}

__device__ void mutex_unlock(unsigned int *mutex) {
    atomicExch(mutex, 0);
}

B.24.  Warp matrix functions
C++ warp matrix operations leverage Tensor Cores to accelerate matrix problems of the form
D=A*B+C. These operations are supported on mixed-precision floating point data for devices
of compute capability 7.0 or higher. This requires co-operation from all threads in a warp.
In addition, these operations are allowed in conditional code only if the condition evaluates
identically across the entire warp, otherwise the code execution is likely to hang.

B.24.1.  Description
All following functions and types are defined in the namespace nvcuda::wmma. Sub-byte
operations are considered preview, i.e. the data structures and APIs for them are subject to
change and may not be compatible with future releases. This extra functionality is defined in
the nvcuda::wmma::experimental namespace.

template<typename Use, int m, int n, int k, typename T, typename Layout=void> class
 fragment;

void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm);
void load_matrix_sync(fragment<...> &a, const T* mptr, unsigned ldm, layout_t
 layout);
void store_matrix_sync(T* mptr, const fragment<...> &a, unsigned ldm, layout_t
 layout);
void fill_fragment(fragment<...> &a, const T& v);
void mma_sync(fragment<...> &d, const fragment<...> &a, const fragment<...>
 &b, const fragment<...> &c, bool satf=false);              

fragment

An overloaded class containing a section of a matrix distributed across all threads in the
warp. The mapping of matrix elements into fragment internal storage is unspecified and
subject to change in future architectures.
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Only certain combinations of template arguments are allowed. The first template
parameter specifies how the fragment will participate in the matrix operation. Acceptable
values for Use are:

‣ matrix_a when the fragment is used as the first multiplicand, A,

‣ matrix_b when the fragment is used as the second multiplicand, B, or

‣ accumulator when the fragment is used as the source or destination accumulators (C
or D, respectively).

The m, n and k sizes describe the shape of the warp-wide matrix tiles participating in
the multiply-accumulate operation. The dimension of each tile depends on its role. For
matrix_a the tile takes dimension m x k; for matrix_b the dimension is k x n, and
accumulator tiles are m x n.

The data type, T, may be double, float, __half, __nv_bfloat16, char, or unsigned char
for multiplicands and double, float, int, or __half for accumulators. As documented
in Element Types & Matrix Sizes, limited combinations of accumulator and multiplicand
types are supported. The Layout parameter must be specified for matrix_a and matrix_b
fragments. row_major or col_major indicate that elements within a matrix row or column
are contiguous in memory, respectively. The Layout parameter for an accumulator matrix
should retain the default value of void. A row or column layout is specified only when the
accumulator is loaded or stored as described below.

load_matrix_sync

Waits until all warp lanes have arrived at load_matrix_sync and then loads the matrix
fragment a from memory. mptr must be a 256-bit aligned pointer pointing to the
first element of the matrix in memory. ldm describes the stride in elements between
consecutive rows (for row major layout) or columns (for column major layout) and must
be a multiple of 8 for __half element type or multiple of 4 for float element type.
(i.e., multiple of 16 bytes in both cases). If the fragment is an accumulator, the layout
argument must be specified as either mem_row_major or mem_col_major. For matrix_a
and matrix_b fragments, the layout is inferred from the fragment's layout parameter.
The values of mptr, ldm, layout and all template parameters for a must be the same for
all threads in the warp. This function must be called by all threads in the warp, or the result
is undefined.

store_matrix_sync

Waits until all warp lanes have arrived at store_matrix_sync and then stores the matrix
fragment a to memory. mptr must be a 256-bit aligned pointer pointing to the first element
of the matrix in memory. ldm describes the stride in elements between consecutive rows
(for row major layout) or columns (for column major layout) and must be a multiple of 8 for
__half element type or multiple of 4 for float element type. (i.e., multiple of 16 bytes in
both cases). The layout of the output matrix must be specified as either mem_row_major or
mem_col_major. The values of mptr, ldm, layout and all template parameters for a must
be the same for all threads in the warp.
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fill_fragment

Fill a matrix fragment with a constant value v. Because the mapping of matrix elements
to each fragment is unspecified, this function is ordinarily called by all threads in the warp
with a common value for v.

mma_sync

Waits until all warp lanes have arrived at mma_sync, and then performs the warp-
synchronous matrix multiply-accumulate operation D=A*B+C. The in-place operation,
C=A*B+C, is also supported. The value of satf and template parameters for each matrix
fragment must be the same for all threads in the warp. Also, the template parameters m,
n and k must match between fragments A, B, C and D. This function must be called by all
threads in the warp, or the result is undefined.

If satf (saturate to finite value) mode is true, the following additional numerical properties
apply for the destination accumulator:

‣ If an element result is +Infinity, the corresponding accumulator will contain +MAX_NORM

‣ If an element result is -Infinity, the corresponding accumulator will contain -MAX_NORM

‣ If an element result is NaN, the corresponding accumulator will contain +0

Because the map of matrix elements into each thread's fragment is unspecified,
individual matrix elements must be accessed from memory (shared or global) after calling
store_matrix_sync. In the special case where all threads in the warp will apply an element-
wise operation uniformly to all fragment elements, direct element access can be implemented
using the following fragment class members.

enum fragment<Use, m, n, k, T, Layout>::num_elements;
T fragment<Use, m, n, k, T, Layout>::x[num_elements];

As an example, the following code scales an accumulator matrix tile by half.

wmma::fragment<wmma::accumulator, 16, 16, 16, float> frag;
float alpha = 0.5f; // Same value for all threads in warp
/*...*/
for(int t=0; t<frag.num_elements; t++)
frag.x[t] *= alpha;      

B.24.2.  Alternate Floating Point
Tensor Cores support alternate types of floating point operations on devices with compute
capability 8.0 and higher.

__nv_bfloat16

This data format is an alternate fp16 format that has the same range as f32 but reduced
precision (7 bits). You can use this data format directly with the __nv_bfloat16 type
available in cuda_bf16.h. Matrix fragments with __nv_bfloat16 data types are required
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to be composed with accumulators of float type. The shapes and operations supported are
the same as with __half.

tf32

This data format is a special floating point format supported by Tensor Cores, with the
same range as f32 and reduced precision (>=10 bits). The internal layout of this format is
implementation defined. In order to use this floating point format with WMMA operations,
the input matrices must be manually converted to tf32 precision.

To facilitate conversion, a new intrinsic __float_to_tf32 is provided. While the input and
output arguments to the intrinsic are of float type, the output will be tf32 numerically.
This new precision is intended to be used with Tensor Cores only, and if mixed with other
floattype operations, the precision and range of the result will be undefined.

Once an input matrix (matrix_a or matrix_b) is converted to tf32 precision, the
combination of a fragment with precision::tf32 precision, and a data type of float
to load_matrix_sync will take advantage of this new capability. Both the accumulator
fragments must have float data types. The only supported matrix size is 16x16x8 (m-n-k).

The elements of the fragment are represented as float, hence the mapping from
element_type<T> to storage_element_type<T> is:

precision::tf32 -> float

B.24.3.  Double Precision
Tensor Cores support double-precision floating point operations on devices with compute
capability 8.0 and higher. To use this new functionality, a fragment with the double type must
be used. The mma_sync operation will be performed with the .rn (rounds to nearest even)
rounding modifier.

B.24.4.  Sub-byte Operations
Sub-byte WMMA operations provide a way to access the low-precision capabilities of Tensor
Cores. They are considered a preview feature i.e. the data structures and APIs for them
are subject to change and may not be compatible with future releases. This functionality is
available via the nvcuda::wmma::experimental namespace:

namespace experimental { 
    namespace precision { 
        struct u4; // 4-bit unsigned 
        struct s4; // 4-bit signed 
        struct b1; // 1-bit 
   } 
    enum bmmaBitOp {
        bmmaBitOpXOR = 1, // compute_75 minimum
        bmmaBitOpAND = 2  // compute_80 minimum
    };
    enum bmmaAccumulateOp { bmmaAccumulateOpPOPC = 1 }; 
}      
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For 4 bit precision, the APIs available remain the same, but you must specify
experimental::precision::u4 or experimental::precision::s4 as the fragment data
type. Since the elements of the fragment are packed together, num_storage_elements will
be smaller than num_elements for that fragment. The num_elements variable for a sub-byte
fragment, hence returns the number of elements of sub-byte type element_type<T>. This
is true for single bit precision as well, in which case, the mapping from element_type<T> to
storage_element_type<T> is as follows:

experimental::precision::u4 -> unsigned (8 elements in 1 storage element) 
experimental::precision::s4 -> int (8 elements in 1 storage element) 
experimental::precision::b1 -> unsigned (32 elements in 1 storage element) 
T -> T  //all other types

The allowed layouts for sub-byte fragments is always row_major for matrix_a and
col_major for matrix_b.

For sub-byte operations the value of ldm in load_matrix_sync should be a multiple of 32 for
element type experimental::precision::u4 and experimental::precision::s4 or a
multiple of 128 for element type experimental::precision::b1 (i.e., multiple of 16 bytes in
both cases).

bmma_sync
Waits until all warp lanes have executed bmma_sync, and then performs the warp-
synchronous bit matrix multiply-accumulate operation D = (A op B) + C, where
op consists of a logical operation bmmaBitOp followed by the accumulation defined by
bmmaAccumulateOp. The available operations are:

bmmaBitOpXOR, a 128-bit XOR of a row in matrix_a with the 128-bit column of matrix_b

bmmaBitOpAND, a 128-bit AND of a row in matrix_a with the 128-bit column of matrix_b,
available on devices with compute capability 8.0 and higher.

The accumulate op is always bmmaAccumulateOpPOPC which counts the number of set bits.

B.24.5.  Restrictions
The special format required by tensor cores may be different for each major and minor
device architecture. This is further complicated by threads holding only a fragment (opaque
architecture-specific ABI data structure) of the overall matrix, with the developer not
allowed to make assumptions on how the individual parameters are mapped to the registers
participating in the matrix multiply-accumulate.

Since fragments are architecture-specific, it is unsafe to pass them from function A to
function B if the functions have been compiled for different link-compatible architectures
and linked together into the same device executable. In this case, the size and layout of the
fragment will be specific to one architecture and using WMMA APIs in the other will lead to
incorrect results or potentially, corruption.
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An example of two link-compatible architectures, where the layout of the fragment differs, is
sm_70 and sm_75.

fragA.cu: void foo() { wmma::fragment<...> mat_a; bar(&mat_a); }
fragB.cu: void bar(wmma::fragment<...> *mat_a) { // operate on mat_a }              

// sm_70 fragment layout
$> nvcc -dc -arch=compute_70 -code=sm_70 fragA.cu -o fragA.o
// sm_75 fragment layout
$> nvcc -dc -arch=compute_75 -code=sm_75 fragB.cu -o fragB.o
// Linking the two together
$> nvcc -dlink -arch=sm_75 fragA.o fragB.o -o frag.o              

This undefined behavior might also be undetectable at compilation time and by tools at
runtime, so extra care is needed to make sure the layout of the fragments is consistent. This
linking hazard is most likely to appear when linking with a legacy library that is both built for a
different link-compatible architecture and expecting to be passed a WMMA fragment.

Note that in the case of weak linkages (for example, a CUDA C++ inline function), the linker
may choose any available function definition which may result in implicit passes between
compilation units.

To avoid these sorts of problems, the matrix should always be stored out to memory for transit
through external interfaces (e.g. wmma::store_matrix_sync(dst, …);) and then it can be
safely passed to bar() as a pointer type [e.g. float *dst].

Note that since sm_70 can run on sm_75, the above example sm_75 code can be changed to
sm_70 and correctly work on sm_75. However, it is recommended to have sm_75 native code
in your application when linking with other sm_75 separately compiled binaries.

B.24.6.  Element Types & Matrix Sizes
Tensor Cores support a variety of element types and matrix sizes. The following table presents
the various combinations of matrix_a, matrix_b and accumulator matrix supported:

Matrix A Matrix B Accumulator Matrix Size (m-n-k)

__half __half float 16x16x16

__half __half float 32x8x16

__half __half float 8x32x16

__half __half __half 16x16x16

__half __half __half 32x8x16

__half __half __half 8x32x16

unsigned char unsigned char int 16x16x16

unsigned char unsigned char int 32x8x16

unsigned char unsigned char int 8x32x16
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Matrix A Matrix B Accumulator Matrix Size (m-n-k)

signed char signed char int 16x16x16

signed char signed char int 32x8x16

signed char signed char int 8x32x16

Alternate Floating Point support:

Matrix A Matrix B Accumulator Matrix Size (m-n-k)

__nv_bfloat16 __nv_bfloat16 float 16x16x16

__nv_bfloat16 __nv_bfloat16 float 32x8x16

__nv_bfloat16 __nv_bfloat16 float 8x32x16

precision::tf32 precision::tf32 float 16x16x8

Double Precision Support:

Matrix A Matrix B Accumulator Matrix Size (m-n-k)

double double double 8x8x4

Experimental support for sub-byte operations:

Matrix A Matrix B Accumulator Matrix Size (m-n-k)

precision::u4 precision::u4 int 8x8x32

precision::s4 precision::s4 int 8x8x32

precision::b1 precision::b1 int 8x8x128

B.24.7.  Example
The following code implements a 16x16x16 matrix multiplication in a single warp.

#include <mma.h>
using namespace nvcuda;
      
__global__ void wmma_ker(half *a, half *b, float *c) {
   // Declare the fragments
   wmma::fragment<wmma::matrix_a, 16, 16, 16, half, wmma::col_major> a_frag;
   wmma::fragment<wmma::matrix_b, 16, 16, 16, half, wmma::row_major> b_frag;
   wmma::fragment<wmma::accumulator, 16, 16, 16, float> c_frag;

   // Initialize the output to zero
   wmma::fill_fragment(c_frag, 0.0f);

   // Load the inputs
   wmma::load_matrix_sync(a_frag, a, 16);
   wmma::load_matrix_sync(b_frag, b, 16);

   // Perform the matrix multiplication
   wmma::mma_sync(c_frag, a_frag, b_frag, c_frag);

   // Store the output
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   wmma::store_matrix_sync(c, c_frag, 16, wmma::mem_row_major);
}      

B.25.  Asynchronous Barrier
The NVIDIA C++ standard library introduces a GPU implementation of std::barrier. Along
with the implementation of std::barrier the library provides extensions that allow users
to specify the scope of barrier objects. The barrier API scopes are documented under Thread
Scopes. Devices of compute capability 8.0 or higher provide hardware acceleration for barrier
operations and integration of these barriers with the memcpy_async feature. On devices with
compute capability below 8.0 but starting 7.0, these barriers are available without hardware
acceleration.

nvcuda::experimental::awbarrier is deprecated in favor of cuda::barrier.

B.25.1.  Simple Synchronization Pattern
Without the arrive/wait barrier, synchronization is achieved using __syncthreads() (to
synchronize all threads in a block) or group.sync() when using Cooperative Groups.

#include <cooperative_groups.h>

__global__ void simple_sync(int iteration_count) {
    auto block = cooperative_groups::this_thread_block();

    for (int i = 0; i < iteration_count; ++i) {
        /* code before arrive */
        block.sync(); /* wait for all threads to arrive here */
        /* code after wait */
    }
}

Threads are blocked at the synchronization point (block.sync()) until all threads have
reached the synchronization point. In addition, memory updates that happened before
the synchronization point are guaranteed to be visible to all threads in the block after the
synchronization point, i.e., equivalent to __threadfence_block() as well as the sync.

This pattern has three stages:

‣ Code before sync performs memory updates that will be read after the sync.

‣ Synchronization point

‣ Code after sync point with visibility of memory updates that happened before sync point.

https://nvidia.github.io/libcudacxx/extended_api/synchronization_primitives/barrier.html
https://nvidia.github.io/libcudacxx/extended_api/thread_scopes.html
https://nvidia.github.io/libcudacxx/extended_api/thread_scopes.html
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B.25.2.  Temporal Splitting and Five Stages of
Synchronization

The temporally-split synchronization pattern with the std::barrier is as follows.

#include <cuda/barrier>
#include <cooperative_groups.h>

__device__ void compute(float* data, int curr_iteration);

__global__ void split_arrive_wait(int iteration_count, float *data) {
    using barrier = cuda::barrier<cuda::thread_scope_block>;
    __shared__  barrier bar;
    auto block = cooperative_groups::this_thread_block();

    if (block.thread_rank() == 0) {
        init(&bar, block.size()); // Initialize the barrier with expected arrival
 count
    }
    block.sync();

    for (int curr_iter = 0; curr_iter < iteration_count; ++curr_iter) {
        /* code before arrive */
       barrier::arrival_token token = bar.arrive(); /* this thread arrives. Arrival
 does not block a thread */
       compute(data, curr_iter); 
       bar.wait(std::move(token)); /* wait for all threads participating in the
 barrier to complete bar.arrive()*/
        /* code after wait */
    }
}         

In this pattern, the synchronization point (block.sync()) is split into an arrive point
(bar.arrive()) and a wait point (bar.wait(std::move(token))). A thread begins
participating in a cuda::barrier with its first call to bar.arrive(). When a thread calls
bar.wait(std::move(token)) it will be blocked until participating threads have completed
bar.arrive() the expected number of times as specified by the expected arrival count
argument passed to init(). Memory updates that happen before participating threads'
call to bar.arrive() are guaranteed to be visible to participating threads after their call to
bar.wait(std::move(token)). Note that the call to bar.arrive() does not block a thread,
it can proceed with other work that does not depend upon memory updates that happen before
other participating threads' call to bar.arrive().

The arrive and then wait pattern has five stages which may be iteratively repeated:

‣ Code before arrive performs memory updates that will be read after the wait.

‣ Arrive point with implicit memory fence (i.e., equivalent to __threadfence_block()).

‣ Code between arrive and wait.

‣ Wait point.

‣ Code after the wait, with visibility of updates that were performed before the arrive.
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B.25.3.  Bootstrap Initialization, Expected Arrival
Count, and Participation

Initialization must happen before any thread begins participating in a cuda::barrier.

#include <cuda/barrier>
#include <cooperative_groups.h>

__global__ void init_barrier() { 
    __shared__ cuda::barrier<cuda::thread_scope_block> bar;
    auto block = cooperative_groups::this_thread_block();

    if (block.thread_rank() == 0) {
        init(&bar, block.size()); // Single thread initializes the total expected
 arrival count.
    }
    block.sync();         
}

Before any thread can participate in cuda::barrier, the barrier must be initialized using
init() with an expected arrival count, block.size() in this example. Initialization must
happen before any thread calls bar.arrive(). This poses a bootstrapping challenge in that
threads must synchronize before participating in the cuda::barrier, but threads are creating
a cuda::barrier in order to synchronize. In this example, threads that will participate are
part of a cooperative group and use block.sync() to bootstrap initialization. In this example
a whole thread block is participating in initialization, hence __syncthreads() could also be
used.

The second parameter of init() is the expected arrival count, i.e., the number of
times bar.arrive() will be called by participating threads before a participating thread
is unblocked from its call to bar.wait(std::move(token)). In the prior example
the cuda::barrier is initialized with the number of threads in the thread block i.e.,
cooperative_groups::this_thread_block().size(), and all threads within the thread
block participate in the barrier.

A cuda::barrier is flexible in specifying how threads participate (split arrive/wait) and which
threads participate. In contrast this_thread_block.sync() from cooperative groups or
__syncthreads() is applicable to whole-thread-block and __syncwarp(mask) is a specified
subset of a warp. If the intention of the user is to synchronize a full thread block or a full
warp we recommend using __syncthreads() and __syncwarp(mask) respectively for
performance reasons.

B.25.4.  A Barrier's Phase: Arrival, Countdown,
Completion, and Reset

A cuda::barrier counts down from the expected arrival count to zero as participating
threads call bar.arrive(). When the countdown reaches zero, a cuda::barrier is complete
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for the current phase. When the last call to bar.arrive() causes the countdown to reach
zero, the countdown is automatically and atomically reset. The reset assigns the countdown to
the expected arrival count, and moves the cuda::barrier to the next phase.

A token object of class cuda::barrier::arrival_token, as returned from
token=bar.arrive(), is associated with the current phase of the barrier. A call to
bar.wait(std::move(token)) blocks the calling thread while the cuda::barrier is in
the current phase, i.e., while the phase associated with the token matches the phase of the
cuda::barrier. If the phase is advanced (because the countdown reaches zero) before
the call to bar.wait(std::move(token)) then the thread does not block; if the phase
is advanced while the thread is blocked in bar.wait(std::move(token)), the thread is
unblocked.

It is essential to know when a reset could or could not occur, especially in non-trivial arrive/
wait synchronization patterns.

‣ A thread's calls to token=bar.arrive() and bar.wait(std::move(token)) must be
sequenced such that token=bar.arrive() occurs during the cuda::barrier's current
phase, and bar.wait(std::move(token)) occurs during the same or next phase.

‣ A thread's call to bar.arrive() must occur when the barrier's counter is non-zero. After
barrier initialization, if a thread's call to bar.arrive() causes the countdown to reach
zero then a call to bar.wait(std::move(token)) must happen before the barrier can be
reused for a subsequent call to bar.arrive().

‣ bar.wait() must only be called using a token object of the current phase or the
immediately preceding phase. For any other values of the token object, the behavior is
undefined.

For simple arrive/wait synchronization patterns, compliance with these usage rules is
straightforward.

B.25.5.  Spatial Partitioning (also known as Warp
Specialization)

A thread block can be spatially partitioned such that warps are specialized to perform
independent computations. Spatial partitioning is used in a producer or consumer pattern,
where one subset of threads produces data that is concurrently consumed by the other
(disjoint) subset of threads.

A producer/consumer spatial partitioning pattern requires two one sided synchronizations to
manage a data buffer between the producer and consumer.

Producer Consumer

wait for buffer to be ready to be filled signal buffer is ready to be filled

produce data and fill the buffer
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Producer Consumer

signal buffer is filled wait for buffer to be filled

consume data in filled buffer

Producer threads wait for consumer threads to signal that the buffer is ready to be filled;
however, consumer threads do not wait for this signal. Consumer threads wait for producer
threads to signal that the buffer is filled; however, producer threads do not wait for this signal.
For full producer/consumer concurrency this pattern has (at least) double buffering where
each buffer requires two cuda::barriers.

#include <cuda/barrier>
#include <cooperative_groups.h>

using barrier = cuda::barrier<cuda::thread_scope_block>;

__device__ void producer(barrier ready[], barrier filled[], float* buffer, float*
 in, int N, int buffer_len)
{
    for (int i = 0; i < (N/buffer_len); ++i) {
        ready[i%2].arrive_and_wait(); /* wait for buffer_(i%2) to be ready to be
 filled */
        /* produce, i.e., fill in, buffer_(i%2)  */
        barrier::arrival_token token = filled[i%2].arrive(); /* buffer_(i%2) is
 filled */
    }
}

__device__ void consumer(barrier ready[], barrier filled[], float* buffer, float*
 out, int N, int buffer_len)
{
    barrier::arrival_token token1 = ready[0].arrive(); /* buffer_0 is ready for
 initial fill */
    barrier::arrival_token token2 = ready[1].arrive(); /* buffer_1 is ready for
 initial fill */
    for (int i = 0; i < (N/buffer_len); ++i) {
        filled[i%2].arrive_and_wait(); /* wait for buffer_(i%2) to be filled */
        /* consume buffer_(i%2) */
        barrier::arrival_token token = ready[i%2].arrive(); /* buffer_(i%2) is ready
 to be re-filled */
    }
}

//N is the total number of float elements in arrays in and out
__global__ void producer_consumer_pattern(int N, int buffer_len, float* in, float*
 out) {

    // Shared memory buffer declared below is of size 2 * buffer_len
    // so that we can alternatively work between two buffers. 
    // buffer_0 = buffer and buffer_1 = buffer + buffer_len
    __shared__ extern float buffer[];
    
    // bar[0] and bar[1] track if buffers buffer_0 and buffer_1 are ready to be
 filled, 
    // while bar[2] and bar[3] track if buffers buffer_0 and buffer_1 are filled-in
 respectively
    __shared__ barrier bar[4];
   

    auto block = cooperative_groups::this_thread_block();
    if (block.thread_rank() < 4)
        init(bar + block.thread_rank(), block.size());
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    block.sync();

    if (block.thread_rank() < warpSize)
        producer(bar, bar+2, buffer, in, N, buffer_len);
    else
        consumer(bar, bar+2, buffer, out, N, buffer_len);
}

In this example the first warp is specialized as the producer and the remaining warps
are specialized as the consumer. All producer and consumer threads participate (call
bar.arrive() or bar.arrive_and_wait()) in each of the four cuda::barriers so the
expected arrival counts are equal to block.size().

A producer thread waits for the consumer threads to signal that the shared memory buffer
can be filled. In order to wait for a cuda::barrier a producer thread must first arrive on that
ready[i%2].arrive() to get a token and then ready[i%2].wait(token) with that token.
For simplicity ready[i%2].arrive_and_wait() combines these operations.

bar.arrive_and_wait();
/* is equivalent to */
bar.wait(bar.arrive());

Producer threads compute and fill the ready buffer, they then signal that the buffer is filled by
arriving on the filled barrier, filled[i%2].arrive(). A producer thread does not wait at this
point, instead it waits until the next iteration's buffer (double buffering) is ready to be filled.

A consumer thread begins by signaling that both buffers are ready to be filled. A consumer
thread does not wait at this point, instead it waits for this iteration's buffer to be filled,
filled[i%2].arrive_and_wait(). After the consumer threads consume the buffer they
signal that the buffer is ready to be filled again, ready[i%2].arrive(), and then wait for the
next iteration's buffer to be filled.

B.25.6.  Early Exit (Dropping out of Participation)
When a thread that is participating in a sequence of synchronizations must exit early from that
sequence, that thread must explicitly drop out of participation before exiting. The remaining
participating threads can proceed normally with subsequent cuda::barrier arrive and wait
operations.

#include <cuda/barrier>
#include <cooperative_groups.h>

__device__ bool condition_check();

__global__ void early_exit_kernel(int N) {
    using barrier = cuda::barrier<cuda::thread_scope_block>;
    __shared__ barrier bar;
    auto block = cooperative_groups::this_thread_block();

    if (block.thread_rank() == 0)
        init(&bar , block.size());
    block.sync();
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    for (int i = 0; i < N; ++i) {
        if (condition_check()) {
          bar.arrive_and_drop();
          return;
        }
        /* other threads can proceed normally */
        barrier::arrival_token token = bar.arrive();
        /* code between arrive and wait */
        bar.wait(std::move(token)); /* wait for all threads to arrive */
        /* code after wait */
    }
}          

This operation arrives on the cuda::barrier to fulfill the participating thread's obligation
to arrive in the current phase, and then decrements the expected arrival count for the next
phase so that this thread is no longer expected to arrive on the barrier.

B.25.7.  Memory Barrier Primitives Interface
Memory barrier primitives are C-like interfaces to cuda::barrier functionality. These
primitives are available through including the <cuda_awbarrier_primitives.h> header.

B.25.7.1.  Data Types

typedef /* implementation defined */ __mbarrier_t;
typedef /* implementation defined */ __mbarrier_token_t;     

B.25.7.2.  Memory Barrier Primitives API

uint32_t __mbarrier_maximum_count();
void __mbarrier_init(__mbarrier_t* bar, uint32_t expected_count); 

‣ bar must be a pointer to __shared__ memory.

‣ expected_count <= __mbarrier_maximum_count()

‣ Initialize *bar expected arrival count for the current and next phase to expected_count.

void __mbarrier_inval(__mbarrier_t* bar); 

‣ bar must be a pointer to the mbarrier object residing in shared memory.

‣ Invalidation of *bar is required before the corresponding shared memory can be
repurposed.

__mbarrier_token_t __mbarrier_arrive(__mbarrier_t* bar);    

‣ Initialization of *bar must happen before this call.

‣ Pending count must not be zero.

‣ Atomically decrement the pending count for the current phase of the barrier.
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‣ Return an arrival token associated with the barrier state immediately prior to the
decrement.

__mbarrier_token_t __mbarrier_arrive_and_drop(__mbarrier_t* bar);   

‣ Initialization of *bar must happen before this call.

‣ Pending count must not be zero.

‣ Atomically decrement the pending count for the current phase and expected count for the
next phase of the barrier.

‣ Return an arrival token associated with the barrier state immediately prior to the
decrement.

bool __mbarrier_test_wait(__mbarrier_t* bar, __mbarrier_token_t token);  

‣ token must be associated with the immediately preceding phase or current phase of
*this.

‣ Returns true if token is associated with the immediately preceding phase of *bar,
otherwise returns false.

//Note: This API has been deprecated in CUDA 11.1
uint32_t __mbarrier_pending_count(__mbarrier_token_t token);      

B.26.  Asynchronous Data Copies
CUDA 11 introduces Asynchronous Data operations with memcpy_async API to allow device
code to explicitly manage the asynchronous copying of data. The memcpy_async feature
enables CUDA kernels to overlap computation with data movement.

B.26.1.  memcpy_async API
The memcpy_async APIs are provided in the cuda/barrier, cuda/pipeline, and
cooperative_groups/memcpy_async.h header files.

The cuda::memcpy_async APIs work with cuda::barrier and cuda::pipeline
synchronization primitives, while the cooperative_groups::memcpy_async synchronizes
using coopertive_groups::wait.

These APIs have very similar semantics: copy objects from src to dst as-if performed
by another thread which, on completion of the copy, can be synchronized through
cuda::pipeline, cuda::barrier, or cooperative_groups::wait.

The complete API documentation of the cuda::memcpy_async overloads for cuda::barrier
and cuda::pipeline is provided in the libcudacxx API documentation along with some
examples.

https://nvidia.github.io/libcudacxx
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The API documentation of memcpy_async is provided in the cooperative groups Section of the
documentation.

The memcpy_async APIs that use Asynchronous Barrier and cuda::pipeline require
compute capability 7.0 or higher. On devices with compute capability 8.0 or higher,
memcpy_async operations from global to shared memory can benefit from hardware
acceleration.

B.26.2.  Copy and Compute Pattern - Staging Data
Through Shared Memory

CUDA applications often employ a copy and compute pattern that:

‣ fetches data from global memory,

‣ stores data to shared memory, and

‣ performs computations on shared memory data, and potentially writes results back to
global memory.

The following sections illustrate how this pattern can be expressed without and with the
memcpy_async feature:

‣ The section Without  introduces an example that does not overlap computation with data
movement and uses an intermediate register to copy data.

‣ The section With  improves the previous example by introducing the memcpy_async and
the cuda::memcpy_async APIs to directly copy data from global to shared memory without
using intermediate registers.

‣ Section Asynchronous Data Copies using cuda::barrier shows memcpy with cooperative
groups and barrier

‣ Section Single-Stage Asynchronous Data Copies using cuda::pipeline show memcpy with
single stage pipeline

‣ Section Multi-Stage Asynchronous Data Copies using cuda::pipeline show memcpy with
multi stage pipeline

B.26.3.  Without memcpy_async
Without memcpy_async, the copy phase of the copy and compute pattern is expressed as
shared[local_idx] = global[global_idx]. This global to shared memory copy is
expanded to a read from global memory into a register, followed by a write to shared memory
from the register.

When this pattern occurs within an iterative algorithm, each thread block needs to synchronize
after the shared[local_idx] = global[global_idx] assignment, to ensure all writes
to shared memory have completed before the compute phase can begin. The thread block
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also needs to synchronize again after the compute phase, to prevent overwriting shared
memory before all threads have completed their computations. This pattern is illustrated in
the following code snippet.

#include <cooperative_groups.h>
__device__ void compute(int* global_out, int const* shared_in) {
    // Computes using all values of current batch from shared memory.
    // Stores this thread's result back to global memory.
}

__global__ void without_memcpy_async(int* global_out, int const* global_in, size_t
 size, size_t batch_sz) {
  auto grid = cooperative_groups::this_grid();
  auto block = cooperative_groups::this_thread_block();
  assert(size == batch_sz * grid.size()); // Exposition: input size fits batch_sz *
 grid_size

  extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

  size_t local_idx = block.thread_rank();

  for (size_t batch = 0; batch < batch_sz; ++batch) {
    // Compute the index of the current batch for this block in global memory:
    size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
 batch;
    size_t global_idx = block_batch_idx + threadIdx.x;
    shared[local_idx] = global_in[global_idx];

    block.sync(); // Wait for all copies to complete

    compute(global_out + block_batch_idx, shared); // Compute and write result to
 global memory

    block.sync(); // Wait for compute using shared memory to finish
  }
}      

B.26.4.  With memcpy_async
With memcpy_async, the assignment of shared memory from global memory

shared[local_idx] = global_in[global_idx];

is replaced with an asynchronous copy operation from cooperative groups

      cooperative_groups::memcpy_async(group, shared, global_in +
 batch_idx, sizeof(int) * block.size());
      

The memcpy_async API copies sizeof(int) * block.size() bytes from global memory
starting at global_in + batch_idx to the shared data. This operation happens as-if
performed by another thread, which synchronizes with the current thread's call to wait after
the copy has completed. Until the copy operation completes, modifying the global data or
reading or writing the shared data introduces a data race.
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On devices with compute capability 8.0 or higher, memcpy_async transfers from global to
shared memory can benefit from hardware acceleration, which avoids transfering the data
through an intermediate register.

#include <cooperative_groups.h>
#include <cooperative_groups/memcpy_async.h>

__device__ void compute(int* global_out, int const* shared_in);

__global__ void with_memcpy_async(int* global_out, int const* global_in, size_t
 size, size_t batch_sz) {
  auto grid = cooperative_groups::this_grid();
  auto block = cooperative_groups::this_thread_block();
  assert(size == batch_sz * grid.size()); // Exposition: input size fits batch_sz *
 grid_size

  extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

  for (size_t batch = 0; batch < batch_sz; ++batch) {
    size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
 batch;
    // Whole thread-group cooperatively copies whole batch to shared memory:
    cooperative_groups::memcpy_async(block, shared, global_in +
 block_batch_idx, sizeof(int) * block.size());

    cooperative_groups::wait(block); // Joins all threads, waits for all copies to
 complete

    compute(global_out + block_batch_idx, shared);

    block.sync();
  }
}}      

B.26.5.  Asynchronous Data Copies using
cuda::barrier

The cuda::memcpy_async overload for Asynchronous Barrier enables synchronizing
asynchronous data transfers using a barrier. This overloads executes the copy operation as-
if performed by another thread bound to the barrier by: incrementing the expected count of the
current phase on creation, and decrementing it on completion of the copy operation, such that
the phase of the barrier will only advance when all threads participating in the barrier have
arrived, and all memcpy_async bound to the current phase of the barrier have completed. The
following example uses a block-wide barrier, where all block threads participate, and swaps
the wait operation with a barrier arrive_and_wait, while providing the same functionality as
the previous example:

#include <cooperative_groups.h>
#include <cuda/barrier>
__device__ void compute(int* global_out, int const* shared_in);

__global__ void with_barrier(int* global_out, int const* global_in, size_t size,
 size_t batch_sz) {
  auto grid = cooperative_groups::this_grid();
  auto block = cooperative_groups::this_thread_block();
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  assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz *
 grid_size

  extern __shared__ int shared[]; // block.size() * sizeof(int) bytes

  // Create a synchronization object (C++20 barrier)
  __shared__ cuda::barrier<cuda::thread_scope::thread_scope_block> barrier;
  if (block.thread_rank() == 0) {
    init(&barrier, block.size()); // Friend function initializes barrier
  }
  block.sync();

  for (size_t batch = 0; batch < batch_sz; ++batch) {
    size_t block_batch_idx = block.group_index().x * block.size() + grid.size() *
 batch;
    cuda::memcpy_async(block, shared, global_in + block_batch_idx, sizeof(int) *
 block.size(), barrier);

    barrier.arrive_and_wait(); // Waits for all copies to complete

    compute(global_out + block_batch_idx, shared);

    block.sync();
  }
}      

B.26.6.  Performance Guidance for memcpy_async
For compute capability 8.x, the pipeline mechanism is shared among CUDA threads in the
same CUDA warp. This sharing causes batches of memcpy_async to be entangled within a
warp, which can impact performance under certain circumstances.

This section highlights the warp-entanglement effect on commit, wait, and arrive operations.
Please refer to the Pipeline Interface and the Pipeline Primitives Interface for an overview of
the individual operations.

B.26.6.1.  Alignment
On devices with compute capability 8.0, the cp.async family of instructions allows copying
data from global to shared memory asynchronously. These instructions support copying 4, 8,
and 16 bytes at a time. If the size provided to memcpy_async is a multiple of 4, 8, or 16, and
both pointers passed to memcpy_async are aligned to a 4, 8, or 16 alignment boundary, then
memcpy_async can be implemented using exclusively asynchronous memory operations.

Additionally for achieving best performance when using memcpy_async API, an alignment of
128 Bytes for both shared memory and global memory is required.

For pointers to values of types with an alignment requirement of 1 or 2, it is often not possible
to prove that the pointers are always aligned to a higher alignment boundary. Determining
whether the cp.async instructions can or cannot be used must be delayed until run-time.
Performing such a runtime alignment check increases code-size and adds runtime overhead.

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async
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The cuda::aligned_size_t<size_t Align>(size_t size) Shape can be used to supply
a proof that both pointers passed to memcpy_async are aligned to an Align alignment
boundary, by passing it as an argument where the memcpy_async APIs expect a Shape:

  cuda::memcpy_async(group, dst, src, cuda::aligned_size_t<16>(N * block.size()),
 pipeline);
  

If the proof is incorrect, the behavior is undefined.

B.26.6.2.  Trivially copyable
On devices with compute capability 8.0, the cp.async family of instructions allows
copying data from global to shared memory asynchronously. If the pointer types passed
to memcpy_async do not point to TriviallyCopyable types, the copy constructor of each
output element needs to be invoked, and these instructions cannot be used to accelerate
memcpy_async.

B.26.6.3.  Warp Entanglement - Commit
The sequence of memcpy_async batches is shared across the warp. The commit operation is
coalesced such that the sequence is incremented once for all converged threads that invoke
the commit operation. If the warp is fully converged, the sequence is incremented by one; if
the warp is fully diverged, the sequence is incremented by 32.

‣ Let PB be the warp-shared pipeline's actual sequence of batches.

PB = {BP0, BP1, BP2, …, BPL}

‣ Let TB be a thread's perceived sequence of batches, as if the sequence were only
incremented by this thread's invocation of the commit operation.

TB = {BT0, BT1, BT2, …, BTL}

The pipeline::producer_commit() return value is from the thread's perceived batch
sequence.

‣ An index in a thread's perceived sequence always aligns to an equal or larger index in the
actual warp-shared sequence. The sequences are equal only when all commit operations
are invoked from converged threads.

BTn ≡ BPm where n <= m

For example, when a warp is fully diverged:

‣ The warp-shared pipeline's actual sequence would be: PB = {0, 1, 2, 3, ..., 31}
(PL=31).

‣ The perceived sequence for each thread of this warp would be:

‣ Thread 0: TB = {0} (TL=0)

https://nvidia.github.io/libcudacxx
https://nvidia.github.io/libcudacxx
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#data-movement-and-conversion-instructions-cp-async
https://en.cppreference.com/w/cpp/named_req/TriviallyCopyable
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‣ Thread 1: TB = {0} (TL=0)

‣ …

‣ Thread 31: TB = {0} (TL=0)

B.26.6.4.  Warp Entanglement - Wait
A CUDA thread invokes either pipeline_consumer_wait_prior<N>() or
pipeline::consumer_wait() to wait for batches in the perceived sequence
TB to complete. Note that pipeline::consumer_wait() is equivalent to
pipeline_consumer_wait_prior<N>(), where N = PL.

The pipeline_consumer_wait_prior<N>() function waits for batches in the actual sequence
at least up to and including PL-N. Since TL <= PL, waiting for batch up to and including PL-N
includes waiting for batch TL-N. Thus, when TL < PL, the thread will unintentionally wait for
additional, more recent batches.

In the extreme fully-diverged warp example above, each thread could wait for all 32 batches.

B.26.6.5.  Warp Entanglement - Arrive-On
Warp-divergence affects the number of times an arrive_on(bar) operation updates the
barrier. If the invoking warp is fully converged, then the barrier is updated once. If the invoking
warp is fully diverged, then 32 individual updates are applied to the barrier.

B.26.6.6.  Keep Commit and Arrive-On Operations Converged
It is recommended that commit and arrive-on invocations are by converged threads:

‣ to not over-wait, by keeping threads' perceived sequence of batches aligned with the actual
sequence, and

‣ to minimize updates to the barrier object.

When code preceding these operations diverges threads, then the warp should be re-
converged, via __syncwarp before invoking commit or arrive-on operations.

B.27.  Asynchronous Data Copies using
cuda::pipeline

CUDA provides the cuda::pipeline synchronization object to manage and overlap
asynchronous data movement with computation.

The API documentation for cuda::pipeline is provided in the libcudacxx API. A pipeline
object is a double-ended N stage queue with a head and a tail, and is used to process work in

https://nvidia.github.io/libcudacxx
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a first-in first-out (FIFO) order. The pipeline object has following member functions to manage
the stages of the pipeline.

Pipeline Class Member Function Description

producer_acquire
Acquires an available stage in the pipeline
internal queue.

producer_commit

Commits the asynchronous operations issued
after the producer_acquire call on the currently
acquired stage of the pipeline.

consumer_wait
Wait for completion of all asynchronous
operations on the oldest stage of the pipeline.

consumer_release

Release the oldest stage of the pipeline to the
pipeline object for reuse. The released stage can
be then acquired by the producer.

B.27.1.  Single-Stage Asynchronous Data Copies
using cuda::pipeline

In previous examples we showed how to use wait and Asynchronous Barrier to do
asynchronous data transfers. In this section, we will use the cuda::pipeline API with a
single stage to schedule asynchronous copies. And later we will expand this example to show
multi staged overlapped compute and copy.

#include <cooperative_groups/memcpy_async.h>
#include <cuda/pipeline>
        
__device__ void compute(int* global_out, int const* shared_in);
__global__ void with_single_stage(int* global_out, int const* global_in, size_t
 size, size_t batch_sz) {
    auto grid = cooperative_groups::this_grid();
    auto block = cooperative_groups::this_thread_block();
    assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz *
 grid_size

    constexpr size_t stages_count = 1; // Pipeline with one stage
    // One batch must fit in shared memory:
    extern __shared__ int shared[];  // block.size() * sizeof(int) bytes
    
    // Allocate shared storage for a two-stage cuda::pipeline:
    __shared__ cuda::pipeline_shared_state<
        cuda::thread_scope::thread_scope_block,
        stages_count
    > shared_state;
    auto pipeline = cuda::make_pipeline(block, &shared_state);

    // Each thread processes `batch_sz` elements.
    // Compute offset of the batch `batch` of this thread block in global memory:
    auto block_batch = [&](size_t batch) -> int {
      return block.group_index().x * block.size() + grid.size() * batch;
    };

    for (size_t batch = 0; batch < batch_sz; ++batch) {
        size_t global_idx = block_batch(batch);
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        // Collectively acquire the pipeline head stage from all producer threads:
        pipeline.producer_acquire();

        // Submit async copies to the pipeline's head stage to be
        // computed in the next loop iteration
        cuda::memcpy_async(block, shared, global_in + global_idx, sizeof(int) *
 block.size(), pipeline);
        // Collectively commit (advance) the pipeline's head stage
        pipeline.producer_commit();

        // Collectively wait for the operations committed to the
        // previous `compute` stage to complete:
        pipeline.consumer_wait();

        // Computation overlapped with the memcpy_async of the "copy" stage:
        compute(global_out + global_idx, shared);

        // Collectively release the stage resources
        pipeline.consumer_release();
    }
}

B.27.2.  Multi-Stage Asynchronous Data Copies using
cuda::pipeline

In the previous examples with wait and Asynchronous Barrier, the kernel threads immediately
wait for the data transfer to shared memory to complete. This avoids data transfers from
global memory into registers, but does not hide the latency of the memcpy_async operation by
overlapping computation.

For that we use the CUDA Pipeline Interface feature in the following example. It provides a
mechanism for managing a sequence of memcpy_async batches, enabling CUDA kernels to
overlap memory transfers with computation. The following example implements a two-stage
pipeline that overlaps data-transfer with computation. It:

‣ Initializes the pipeline shared state (more below)

‣ Kickstarts the pipeline by scheduling a memcpy_async for the first batch.

‣ Loops over all the batches: it schedules memcpy_async for the next batch, blocks all
threads on the completion of the memcpy_async for the previous batch, and then overlaps
the computation on the previous batch with the asynchronous copy of the memory for the
next batch.

‣ Finally, it drains the pipeline by performing the computation on the last batch.

Note that, for interoperability with cuda::pipeline, cuda::memcpy_async from the cuda/
pipeline header is used here.

#include <cooperative_groups/memcpy_async.h>
#include <cuda/pipeline>

__device__ void compute(int* global_out, int const* shared_in);
__global__ void with_staging(int* global_out, int const* global_in, size_t size,
 size_t batch_sz) {
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    auto grid = cooperative_groups::this_grid();
    auto block = cooperative_groups::this_thread_block();
    assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz *
 grid_size

    constexpr size_t stages_count = 2; // Pipeline with two stages
    // Two batches must fit in shared memory:
    extern __shared__ int shared[];  // stages_count * block.size() * sizeof(int)
 bytes
    size_t shared_offset[stages_count] = { 0, block.size() }; // Offsets to each
 batch

    // Allocate shared storage for a two-stage cuda::pipeline:
    __shared__ cuda::pipeline_shared_state<
        cuda::thread_scope::thread_scope_block,
        stages_count
    > shared_state;
    auto pipeline = cuda::make_pipeline(block, &shared_state);

    // Each thread processes `batch_sz` elements.
    // Compute offset of the batch `batch` of this thread block in global memory:
    auto block_batch = [&](size_t batch) -> int {
      return block.group_index().x * block.size() + grid.size() * batch;
    };

    // Initialize first pipeline stage by submitting a `memcpy_async` to fetch a
 whole batch for the block:
    if (batch_sz == 0) return;
    pipeline.producer_acquire();
    cuda::memcpy_async(block, shared + shared_offset[0], global_in +
 block_batch(0), sizeof(int) * block.size(), pipeline);
    pipeline.producer_commit();

    // Pipelined copy/compute:
    for (size_t batch = 1; batch < batch_sz; ++batch) {
        // Stage indices for the compute and copy stages:
        size_t compute_stage_idx = (batch - 1) % 2;
        size_t copy_stage_idx = batch % 2;

        size_t global_idx = block_batch(batch);

        // Collectively acquire the pipeline head stage from all producer threads:
        pipeline.producer_acquire();

        // Submit async copies to the pipeline's head stage to be
        // computed in the next loop iteration
        cuda::memcpy_async(block, shared + shared_offset[copy_stage_idx], global_in
 + global_idx, sizeof(int) * block.size(), pipeline);
        // Collectively commit (advance) the pipeline's head stage
        pipeline.producer_commit();

        // Collectively wait for the operations commited to the
        // previous `compute` stage to complete:
        pipeline.consumer_wait();

        // Computation overlapped with the memcpy_async of the "copy" stage:
        compute(global_out + global_idx, shared + shared_offset[compute_stage_idx]);

        // Collectively release the stage resources
        pipeline.consumer_release();
    }

    // Compute the data fetch by the last iteration
    pipeline.consumer_wait();
    compute(global_out + block_batch(batch_sz-1), shared + shared_offset[(batch_sz -
 1) % 2]);
    pipeline.consumer_release();
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}

A  object is a double-ended queue with a head and a tail, and is used to process work in a
first-in first-out (FIFO) order. Producer threads commit work to the pipeline's head, while
consumer threads pull work from the pipeline's tail. In the example above, all threads are both
producer and consumer threads. The threads first commit memcpy_async operations to fetch
the next batch while they wait on the previous batch of memcpy_async operations to complete.

‣ Committing work to a pipeline stage involves:

‣ Collectively acquiring the pipeline head from a set of producer threads using
pipeline.producer_acquire().

‣ Submitting memcpy_async operations to the pipeline head.

‣ Collectively commiting (advancing) the pipeline head using
pipeline.producer_commit().

‣ Using a previously commited stage involves:

‣ Collectively waiting for the stage to complete, e.g., using pipeline.consumer_wait()
to wait on the tail (oldest) stage.

‣ Collectively releasing the stage using pipeline.consumer_release().

cuda::pipeline_shared_state<scope, count> encapsulates the finite resources that
allow a pipeline to process up to count concurrent stages. If all resources are in use,
pipeline.producer_acquire() blocks producer threads until the resources of the next
pipeline stage are released by consumer threads.

This example can be written in a more concise manner by merging the prolog and epilog of the
loop with the loop itself as follows:

template <size_t stages_count = 2 /* Pipeline with stages_count stages */>
__global__ void with_staging_unified(int* global_out, int const* global_in, size_t
 size, size_t batch_sz) {
    auto grid = cooperative_groups::this_grid();
    auto block = cooperative_groups::this_thread_block();
    assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz *
 grid_size

    extern __shared__ int shared[]; // stages_count * block.size() * sizeof(int)
 bytes
    size_t shared_offset[stages_count];
    for (int s = 0; s < stages_count; ++s) shared_offset[s] = s * block.size();

    __shared__ cuda::pipeline_shared_state<
        cuda::thread_scope::thread_scope_block,
        stages_count
    > shared_state;
    auto pipeline = cuda::make_pipeline(block, &shared_state);

    auto block_batch = [&](size_t batch) -> int {
        return block.group_index().x * block.size() + grid.size() * batch;
    };

    // compute_batch: next batch to process
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    // fetch_batch:  next batch to fetch from global memory
    for (size_t compute_batch = 0, fetch_batch = 0; compute_batch < batch_sz; +
+compute_batch) {
        // The outer loop iterates over the computation of the batches
        for (; fetch_batch < batch_sz && fetch_batch < (compute_batch +
 stages_count); ++fetch_batch) {
            // This inner loop iterates over the memory transfers, making sure that
 the pipeline is always full
            pipeline.producer_acquire();
            size_t shared_idx = fetch_batch % stages_count;
            size_t batch_idx = fetch_batch;
            size_t block_batch_idx = block_batch(batch_idx);
            cuda::memcpy_async(block, shared + shared_offset[shared_idx], global_in
 + block_batch_idx, sizeof(int) * block.size(), pipeline);
            pipeline.producer_commit();
        }
        pipeline.consumer_wait();
        int shared_idx = compute_batch % stages_count;
        int batch_idx = compute_batch;
        compute(global_out + block_batch(batch_idx), shared +
 shared_offset[shared_idx]);
        pipeline.consumer_release();
    }
}

The pipeline<thread_scope_block> primitive used above is very flexible, and supports two
features that our examples above are not using: any arbitrary subset of threads in the block
can participate in the pipeline, and from the threads that participate, any subsets can be
producers, consumers, or both. In the following example, threads with an "even" thread rank
are producers, while other threads are consumers:

__device__ void compute(int* global_out, int shared_in); 

template <size_t stages_count = 2>
__global__ void with_specialized_staging_unified(int* global_out, int const*
 global_in, size_t size, size_t batch_sz) {
    auto grid = cooperative_groups::this_grid();
    auto block = cooperative_groups::this_thread_block();

    // In this example, threads with "even" thread rank are producers, while threads
 with "odd" thread rank are consumers:
    const cuda::pipeline_role thread_role 
      = block.thread_rank() % 2 == 0? cuda::pipeline_role::producer :
 cuda::pipeline_role::consumer;

    // Each thread block only has half of its threads as producers:
    auto producer_threads = block.size() / 2;

    // Map adjacent even and odd threads to the same id:
    const int thread_idx = block.thread_rank() / 2;

    auto elements_per_batch = size / batch_sz;
    auto elements_per_batch_per_block = elements_per_batch / grid.group_dim().x;

    extern __shared__ int shared[]; // stages_count * elements_per_batch_per_block *
 sizeof(int) bytes
    size_t shared_offset[stages_count];
    for (int s = 0; s < stages_count; ++s) shared_offset[s] = s *
 elements_per_batch_per_block;

    __shared__ cuda::pipeline_shared_state<
        cuda::thread_scope::thread_scope_block,
        stages_count
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    > shared_state;
    cuda::pipeline pipeline = cuda::make_pipeline(block, &shared_state,
 thread_role);

    // Each thread block processes `batch_sz` batches.
    // Compute offset of the batch `batch` of this thread block in global memory:
    auto block_batch = [&](size_t batch) -> int {
      return elements_per_batch * batch + elements_per_batch_per_block * blockIdx.x;
    };

    for (size_t compute_batch = 0, fetch_batch = 0; compute_batch < batch_sz; +
+compute_batch) {
        // The outer loop iterates over the computation of the batches
        for (; fetch_batch < batch_sz && fetch_batch < (compute_batch +
 stages_count); ++fetch_batch) {
            // This inner loop iterates over the memory transfers, making sure that
 the pipeline is always full
            if (thread_role == cuda::pipeline_role::producer) {
                // Only the producer threads schedule asynchronous memcpys:
                pipeline.producer_acquire();
                size_t shared_idx = fetch_batch % stages_count;
                size_t batch_idx = fetch_batch;
                size_t global_batch_idx = block_batch(batch_idx) + thread_idx;
                size_t shared_batch_idx = shared_offset[shared_idx] + thread_idx;
                cuda::memcpy_async(shared + shared_batch_idx, global_in +
 global_batch_idx, sizeof(int), pipeline);
                pipeline.producer_commit();
            }
        }
        if (thread_role == cuda::pipeline_role::consumer) {
            // Only the consumer threads compute:
            pipeline.consumer_wait();
            size_t shared_idx = compute_batch % stages_count;
            size_t global_batch_idx = block_batch(compute_batch) + thread_idx;
            size_t shared_batch_idx = shared_offset[shared_idx] + thread_idx;
            compute(global_out + global_batch_idx, *(shared + shared_batch_idx));
            pipeline.consumer_release();
        }
    }
}
    

There are some optimizations that pipeline performs, for example, when all threads are both
producers and consumers, but in general, the cost of supporting all these features cannot be
fully eliminated. For example, pipeline stores and uses a set of barriers in shared memory
for synchronization, which is not really necessary if all threads in the block participate in the
pipeline.

For the particular case in which all threads in the block participate in the pipeline, we can do
better than pipeline<thread_scope_block> by using a pipeline<thread_scope_thread>
combined with __syncthreads():

template<size_t stages_count>
__global__ void with_staging_scope_thread(int* global_out, int const* global_in,
 size_t size, size_t batch_sz) {
    auto grid = cooperative_groups::this_grid();
    auto block = cooperative_groups::this_thread_block();
    auto thread = cooperative_groups::this_thread();
    assert(size == batch_sz * grid.size()); // Assume input size fits batch_sz *
 grid_size
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    extern __shared__ int shared[]; // stages_count * block.size() * sizeof(int)
 bytes
    size_t shared_offset[stages_count];
    for (int s = 0; s < stages_count; ++s) shared_offset[s] = s * block.size();

    // No pipeline::shared_state needed
    cuda::pipeline<cuda::thread_scope_thread> pipeline = cuda::make_pipeline();

    auto block_batch = [&](size_t batch) -> int {
        return block.group_index().x * block.size() + grid.size() * batch;
    };

    for (size_t compute_batch = 0, fetch_batch = 0; compute_batch < batch_sz; +
+compute_batch) {
        for (; fetch_batch < batch_sz && fetch_batch < (compute_batch +
 stages_count); ++fetch_batch) {
            pipeline.producer_acquire();
            size_t shared_idx = fetch_batch % stages_count;
            size_t batch_idx = fetch_batch;
            // Each thread fetches its own data:
            size_t thread_batch_idx = block_batch(batch_idx) + threadIdx.x;
            // The copy is performed by a single `thread` and the size of the batch
 is now that of a single element:
            cuda::memcpy_async(thread, shared + shared_offset[shared_idx]
 + threadIdx.x, global_in + thread_batch_idx, sizeof(int), pipeline);
            pipeline.producer_commit();
        }
        pipeline.consumer_wait();
        block.sync(); // __syncthreads: All memcpy_async of all threads in the block
 for this stage have completed here
        int shared_idx = compute_batch % stages_count;
        int batch_idx = compute_batch;
        compute(global_out + block_batch(batch_idx), shared +
 shared_offset[shared_idx]);
        pipeline.consumer_release();
    }
}

If the compute operation only reads shared memory written to by other threads in the same
warp as the current thread, __syncwarp() suffices.

B.27.3.  Pipeline Interface
The complete API documentation for cuda::memcpy_async is provided in the libcudacxx API
documentation along with some examples.

The pipeline interface requires

‣ at least CUDA 11.0,

‣ at least ISO C++ 2011 compatibility, e.g., to be compiled with -std=c++11, and

‣ #include <cuda/pipeline>.

For a C-like interface, when compiling without ISO C++ 2011 compatibility, see Pipeline
Primitives Interface.

https://nvidia.github.io/libcudacxx
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B.27.4.  Pipeline Primitives Interface
Pipeline primitives are a C-like interface for memcpy_async functionality. The pipeline
primitives interface is available by including the <cuda_pipeline.h> header. When compiling
without ISO C++ 2011 compatibility, include the <cuda_pipeline_primitives.h> header.

B.27.4.1. memcpy_async Primitive

void __pipeline_memcpy_async(void* __restrict__ dst_shared,
                             const void* __restrict__ src_global,
                             size_t size_and_align,
                             size_t zfill=0);

‣ Request that the following operation be submitted for asynchronous evaluation:

  size_t i = 0;
  for (; i < size_and_align - zfill; ++i) ((char*)dst_shared)[i] =
 ((char*)src_shared)[i]; /* copy */
  for (; i < size_and_align; ++i) ((char*)dst_shared)[i] = 0; /* zero-fill */

‣ Requirements:

‣ dst_shared must be a pointer to the shared memory destination for the
memcpy_async.

‣ src_global must be a pointer to the global memory source for the memcpy_async.

‣ size_and_align must be 4, 8, or 16.

‣ zfill <= size_and_align.

‣ size_and_align must be the alignment of dst_shared and src_global.

‣ It is a race condition for any thread to modify the source memory or observe the
destination memory prior to waiting for the memcpy_async operation to complete. Between
submitting a memcpy_async operation and waiting for its completion, any of the following
actions introduces a race condition:

‣ Loading from dst_shared.

‣ Storing to dst_shared or src_global.

‣ Applying an atomic update to dst_shared or src_global.

B.27.4.2.  Commit Primitive

void __pipeline_commit();

‣ Commit submitted memcpy_async to the pipeline as the current batch.
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B.27.4.3.  Wait Primitive

void __pipeline_wait_prior(size_t N);

‣ Let {0, 1, 2, ..., L} be the sequence of indices associated with invocations of
__pipeline_commit() by a given thread.

‣ Wait for completion of batches at least up to and including L-N.

B.27.4.4.  Arrive On Barrier Primitive

void __pipeline_arrive_on(__mbarrier_t* bar);

‣ bar points to a barrier in shared memory.

‣ Increments the barrier arrival count by one, when all memcpy_async operations
sequenced before this call have completed, the arrival count is decremented by one and
hence the net effect on the arrival count is zero. It is user's responsibility to make sure that
the increment on the arrival count does not exceed __mbarrier_maximum_count().

B.28.  Profiler Counter Function
Each multiprocessor has a set of sixteen hardware counters that an application can increment
with a single instruction by calling the __prof_trigger() function.

void __prof_trigger(int counter);

increments by one per warp the per-multiprocessor hardware counter of index counter.
Counters 8 to 15 are reserved and should not be used by applications.

The value of counters 0, 1, ..., 7 can be obtained via nvprof by nvprof --events
prof_trigger_0x where x is 0, 1, ..., 7. All counters are reset before each kernel launch (note
that when collecting counters, kernel launches are synchronous as mentioned in Concurrent
Execution between Host and Device).

B.29.  Assertion
Assertion is only supported by devices of compute capability 2.x and higher.

void assert(int expression);

stops the kernel execution if expression is equal to zero. If the program is run within a
debugger, this triggers a breakpoint and the debugger can be used to inspect the current
state of the device. Otherwise, each thread for which expression is equal to zero prints
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a message to stderr after synchronization with the host via cudaDeviceSynchronize(),
cudaStreamSynchronize(), or cudaEventSynchronize(). The format of this message is as
follows:

<filename>:<line number>:<function>:
block: [blockId.x,blockId.x,blockIdx.z],
thread: [threadIdx.x,threadIdx.y,threadIdx.z]
Assertion `<expression>` failed.

Any subsequent host-side synchronization calls made for the same device will return
cudaErrorAssert. No more commands can be sent to this device until cudaDeviceReset()
is called to reinitialize the device.

If expression is different from zero, the kernel execution is unaffected.

For example, the following program from source file test.cu

#include <assert.h>

__global__ void testAssert(void)
{
    int is_one = 1;
    int should_be_one = 0;

    // This will have no effect
    assert(is_one);

    // This will halt kernel execution
    assert(should_be_one);
}

int main(int argc, char* argv[])
{
    testAssert<<<1,1>>>();
    cudaDeviceSynchronize();

    return 0;
}

will output:

test.cu:19: void testAssert(): block: [0,0,0], thread: [0,0,0] Assertion
 `should_be_one` failed.

Assertions are for debugging purposes. They can affect performance and it is therefore
recommended to disable them in production code. They can be disabled at compile time by
defining the NDEBUG preprocessor macro before including assert.h. Note that expression
should not be an expression with side effects (something like (++i > 0), for example),
otherwise disabling the assertion will affect the functionality of the code.

B.30.  Trap function
A trap operation can be initiated by calling the __trap() function from any device thread.

void __trap();
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The execution of the kernel is aborted and an interrupt is raised in the host program.

B.31.  Breakpoint Function
Execution of a kernel function can be suspended by calling the __brkpt() function from any
device thread.

void __brkpt();

B.32.  Formatted Output
Formatted output is only supported by devices of compute capability 2.x and higher.

int printf(const char *format[, arg, ...]);

prints formatted output from a kernel to a host-side output stream.

The in-kernel printf() function behaves in a similar way to the standard C-library printf()
function, and the user is referred to the host system's manual pages for a complete
description of printf() behavior. In essence, the string passed in as format is output to
a stream on the host, with substitutions made from the argument list wherever a format
specifier is encountered. Supported format specifiers are listed below.

The printf() command is executed as any other device-side function: per-thread, and in the
context of the calling thread. From a multi-threaded kernel, this means that a straightforward
call to printf() will be executed by every thread, using that thread's data as specified.
Multiple versions of the output string will then appear at the host stream, once for each thread
which encountered the printf().

It is up to the programmer to limit the output to a single thread if only a single output string is
desired (see Examples for an illustrative example).

Unlike the C-standard printf(), which returns the number of characters printed, CUDA's
printf() returns the number of arguments parsed. If no arguments follow the format string,
0 is returned. If the format string is NULL, -1 is returned. If an internal error occurs, -2 is
returned.

B.32.1.  Format Specifiers
As for standard printf(), format specifiers take the form: %[flags][width][.precision]
[size]type

The following fields are supported (see widely-available documentation for a complete
description of all behaviors):

‣ Flags: '#' ' ' '0' '+' '-'

‣ Width: '*' '0-9'
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‣ Precision: '0-9'

‣ Size: 'h' 'l' 'll'

‣ Type: "%cdiouxXpeEfgGaAs"

Note that CUDA's printf()will accept any combination of flag, width, precision, size and
type, whether or not overall they form a valid format specifier. In other words, "%hd" will be
accepted and printf will expect a double-precision variable in the corresponding location in the
argument list.

B.32.2.  Limitations
Final formatting of the printf() output takes place on the host system. This means that the
format string must be understood by the host-system's compiler and C library. Every effort
has been made to ensure that the format specifiers supported by CUDA's printf function form
a universal subset from the most common host compilers, but exact behavior will be host-OS-
dependent.

As described in Format Specifiers, printf() will accept all combinations of valid flags and
types. This is because it cannot determine what will and will not be valid on the host system
where the final output is formatted. The effect of this is that output may be undefined if the
program emits a format string which contains invalid combinations.

The printf() command can accept at most 32 arguments in addition to the format string.
Additional arguments beyond this will be ignored, and the format specifier output as-is.

Owing to the differing size of the long type on 64-bit Windows platforms (four bytes on 64-
bit Windows platforms, eight bytes on other 64-bit platforms), a kernel which is compiled on
a non-Windows 64-bit machine but then run on a win64 machine will see corrupted output
for all format strings which include "%ld". It is recommended that the compilation platform
matches the execution platform to ensure safety.

The output buffer for printf() is set to a fixed size before kernel launch (see Associated
Host-Side API). It is circular and if more output is produced during kernel execution than can
fit in the buffer, older output is overwritten. It is flushed only when one of these actions is
performed:

‣ Kernel launch via <<<>>> or cuLaunchKernel() (at the start of the launch, and if the
CUDA_LAUNCH_BLOCKING environment variable is set to 1, at the end of the launch as
well),

‣ Synchronization via cudaDeviceSynchronize(), cuCtxSynchronize(),
cudaStreamSynchronize(), cuStreamSynchronize(), cudaEventSynchronize(), or
cuEventSynchronize(),

‣ Memory copies via any blocking version of cudaMemcpy*() or cuMemcpy*(),

‣ Module loading/unloading via cuModuleLoad() or cuModuleUnload(),
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‣ Context destruction via cudaDeviceReset() or cuCtxDestroy().

‣ Prior to executing a stream callback added by cudaStreamAddCallback or
cuStreamAddCallback.

Note that the buffer is not flushed automatically when the program exits. The user must call
cudaDeviceReset() or cuCtxDestroy() explicitly, as shown in the examples below.

Internally printf() uses a shared data structure and so it is possible that calling printf()
might change the order of execution of threads. In particular, a thread which calls printf()
might take a longer execution path than one which does not call printf(), and that path
length is dependent upon the parameters of the printf(). Note, however, that CUDA makes
no guarantees of thread execution order except at explicit __syncthreads() barriers, so
it is impossible to tell whether execution order has been modified by printf() or by other
scheduling behaviour in the hardware.

B.32.3.  Associated Host-Side API
The following API functions get and set the size of the buffer used to transfer the printf()
arguments and internal metadata to the host (default is 1 megabyte):

‣ cudaDeviceGetLimit(size_t* size,cudaLimitPrintfFifoSize)

‣ cudaDeviceSetLimit(cudaLimitPrintfFifoSize, size_t size)

B.32.4.  Examples
The following code sample:

#include <stdio.h>

__global__ void helloCUDA(float f)
{
    printf("Hello thread %d, f=%f\n", threadIdx.x, f);
}

int main()
{
    helloCUDA<<<1, 5>>>(1.2345f);
    cudaDeviceSynchronize();
    return 0;
}

will output:

Hello thread 2, f=1.2345
Hello thread 1, f=1.2345
Hello thread 4, f=1.2345
Hello thread 0, f=1.2345
Hello thread 3, f=1.2345

Notice how each thread encounters the printf() command, so there are as many lines of
output as there were threads launched in the grid. As expected, global values (i.e., float f)
are common between all threads, and local values (i.e., threadIdx.x) are distinct per-thread.
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The following code sample:

#include <stdio.h>

__global__ void helloCUDA(float f)
{
    if (threadIdx.x == 0)
        printf("Hello thread %d, f=%f\n", threadIdx.x, f) ;
}

int main()
{
    helloCUDA<<<1, 5>>>(1.2345f);
    cudaDeviceSynchronize();
    return 0;
}

will output:

Hello thread 0, f=1.2345

Self-evidently, the if() statement limits which threads will call printf, so that only a single
line of output is seen.

B.33.  Dynamic Global Memory Allocation
and Operations

Dynamic global memory allocation and operations are only supported by devices of compute
capability 2.x and higher.

__host__ __device__ void* malloc(size_t size);
__device__ void *__nv_aligned_device_malloc(size_t size, size_t align);
__host__ __device__  void free(void* ptr);

allocate and free memory dynamically from a fixed-size heap in global memory.

__host__ __device__ void* memcpy(void* dest, const void* src, size_t size);

copy size bytes from the memory location pointed by src to the memory location pointed by
dest.

__host__ __device__ void* memset(void* ptr, int value, size_t size);

set size bytes of memory block pointed by ptr to value (interpreted as an unsigned char).

The CUDA in-kernel malloc() function allocates at least size bytes from the device heap
and returns a pointer to the allocated memory or NULL if insufficient memory exists to fulfill
the request. The returned pointer is guaranteed to be aligned to a 16-byte boundary.

The CUDA in-kernel __nv_aligned_device_malloc() function allocates at least size bytes
from the device heap and returns a pointer to the allocated memory or NULL if insufficient
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memory exists to fulfill the requested size or alignment. The address of the allocated memory
will be a multiple of align. align must be a non-zero power of 2.

The CUDA in-kernel free() function deallocates the memory pointed to by ptr, which must
have been returned by a previous call to malloc() or __nv_aligned_device_malloc(). If
ptr is NULL, the call to free() is ignored. Repeated calls to free() with the same ptr has
undefined behavior.

The memory allocated by a given CUDA thread via malloc() or
__nv_aligned_device_malloc() remains allocated for the lifetime of the CUDA context, or
until it is explicitly released by a call to free(). It can be used by any other CUDA threads even
from subsequent kernel launches. Any CUDA thread may free memory allocated by another
thread, but care should be taken to ensure that the same pointer is not freed more than once.

B.33.1.  Heap Memory Allocation
The device memory heap has a fixed size that must be specified before any program
using malloc(), __nv_aligned_device_malloc() or free() is loaded into the
context. A default heap of eight megabytes is allocated if any program uses malloc() or
__nv_aligned_device_malloc() without explicitly specifying the heap size.

The following API functions get and set the heap size:

‣ cudaDeviceGetLimit(size_t* size, cudaLimitMallocHeapSize)

‣ cudaDeviceSetLimit(cudaLimitMallocHeapSize, size_t size)

The heap size granted will be at least size bytes. cuCtxGetLimit()and
cudaDeviceGetLimit() return the currently requested heap size.

The actual memory allocation for the heap occurs when a module is loaded into the context,
either explicitly via the CUDA driver API (see Module), or implicitly via the CUDA runtime
API (see CUDA Runtime). If the memory allocation fails, the module load will generate a
CUDA_ERROR_SHARED_OBJECT_INIT_FAILED error.

Heap size cannot be changed once a module load has occurred and it does not resize
dynamically according to need.

Memory reserved for the device heap is in addition to memory allocated through host-side
CUDA API calls such as cudaMalloc().

B.33.2.  Interoperability with Host Memory API
Memory allocated via device malloc() or __nv_aligned_device_malloc() cannot be freed
using the runtime (i.e., by calling any of the free memory functions from Device Memory).

Similarly, memory allocated via the runtime (i.e., by calling any of the memory allocation
functions from Device Memory) cannot be freed via free().
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In addition, memory allocated by a call to malloc() or __nv_aligned_device_malloc() in
device code cannot be used in any runtime or driver API calls (i.e. cudaMemcpy, cudaMemset,
etc).

B.33.3.  Examples

B.33.3.1.  Per Thread Allocation
The following code sample:

#include <stdlib.h>
#include <stdio.h>

__global__ void mallocTest()
{
    size_t size = 123;
    char* ptr = (char*)malloc(size);
    memset(ptr, 0, size);
    printf("Thread %d got pointer: %p\n", threadIdx.x, ptr);
    free(ptr);
}

int main()
{
    // Set a heap size of 128 megabytes. Note that this must
    // be done before any kernel is launched.
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);
    mallocTest<<<1, 5>>>();
    cudaDeviceSynchronize();
    return 0;
}

will output:

Thread 0 got pointer: 00057020
Thread 1 got pointer: 0005708c
Thread 2 got pointer: 000570f8
Thread 3 got pointer: 00057164
Thread 4 got pointer: 000571d0

Notice how each thread encounters the malloc() and memset() commands and so receives
and initializes its own allocation. (Exact pointer values will vary: these are illustrative.)

B.33.3.2.  Per Thread Block Allocation

#include <stdlib.h>

__global__ void mallocTest()
{
    __shared__ int* data;

    // The first thread in the block does the allocation and then
    // shares the pointer with all other threads through shared memory,
    // so that access can easily be coalesced.
    // 64 bytes per thread are allocated.
    if (threadIdx.x == 0) {
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        size_t size = blockDim.x * 64;
        data = (int*)malloc(size);
    }
    __syncthreads();

    // Check for failure
    if (data == NULL)
        return;

    // Threads index into the memory, ensuring coalescence
    int* ptr = data;
    for (int i = 0; i < 64; ++i)
        ptr[i * blockDim.x + threadIdx.x] = threadIdx.x;

    // Ensure all threads complete before freeing 
    __syncthreads();

    // Only one thread may free the memory!
    if (threadIdx.x == 0)
        free(data);
}

int main()
{
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);
    mallocTest<<<10, 128>>>();
    cudaDeviceSynchronize();
    return 0;
}

B.33.3.3.  Allocation Persisting Between Kernel Launches
#include <stdlib.h>
#include <stdio.h>

#define NUM_BLOCKS 20

__device__ int* dataptr[NUM_BLOCKS]; // Per-block pointer

__global__ void allocmem()
{
    // Only the first thread in the block does the allocation
    // since we want only one allocation per block.
    if (threadIdx.x == 0)
        dataptr[blockIdx.x] = (int*)malloc(blockDim.x * 4);
    __syncthreads();

    // Check for failure
    if (dataptr[blockIdx.x] == NULL)
        return;

    // Zero the data with all threads in parallel
    dataptr[blockIdx.x][threadIdx.x] = 0;
}

// Simple example: store thread ID into each element
__global__ void usemem()
{
    int* ptr = dataptr[blockIdx.x];
    if (ptr != NULL)
        ptr[threadIdx.x] += threadIdx.x;
}

// Print the content of the buffer before freeing it
__global__ void freemem()
{
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    int* ptr = dataptr[blockIdx.x];
    if (ptr != NULL)
        printf("Block %d, Thread %d: final value = %d\n",
                      blockIdx.x, threadIdx.x, ptr[threadIdx.x]);

    // Only free from one thread!
    if (threadIdx.x == 0)
        free(ptr);
}

int main()
{
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);

    // Allocate memory
    allocmem<<< NUM_BLOCKS, 10 >>>();

    // Use memory
    usemem<<< NUM_BLOCKS, 10 >>>();
    usemem<<< NUM_BLOCKS, 10 >>>();
    usemem<<< NUM_BLOCKS, 10 >>>();

    // Free memory
    freemem<<< NUM_BLOCKS, 10 >>>();

    cudaDeviceSynchronize();

    return 0;
}

B.34.  Execution Configuration
Any call to a __global__ function must specify the execution configuration for that call. The
execution configuration defines the dimension of the grid and blocks that will be used to
execute the function on the device, as well as the associated stream (see CUDA Runtime for a
description of streams).

The execution configuration is specified by inserting an expression of the form <<< Dg, Db,
Ns, S >>> between the function name and the parenthesized argument list, where:

‣ Dg is of type dim3 (see dim3) and specifies the dimension and size of the grid, such that
Dg.x * Dg.y * Dg.z equals the number of blocks being launched;

‣ Db is of type dim3 (see dim3) and specifies the dimension and size of each block, such that
Db.x * Db.y * Db.z equals the number of threads per block;

‣ Ns is of type size_t and specifies the number of bytes in shared memory that is
dynamically allocated per block for this call in addition to the statically allocated memory;
this dynamically allocated memory is used by any of the variables declared as an external
array as mentioned in __shared__; Ns is an optional argument which defaults to 0;

‣ S is of type cudaStream_t and specifies the associated stream; S is an optional argument
which defaults to 0.

As an example, a function declared as

__global__ void Func(float* parameter);
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must be called like this:

Func<<< Dg, Db, Ns >>>(parameter);

The arguments to the execution configuration are evaluated before the actual function
arguments.

The function call will fail if Dg or Db are greater than the maximum sizes allowed for the device
as specified in Compute Capabilities, or if Ns is greater than the maximum amount of shared
memory available on the device, minus the amount of shared memory required for static
allocation.

B.35.  Launch Bounds
As discussed in detail in Multiprocessor Level, the fewer registers a kernel uses, the more
threads and thread blocks are likely to reside on a multiprocessor, which can improve
performance.

Therefore, the compiler uses heuristics to minimize register usage while keeping register
spilling (see Device Memory Accesses) and instruction count to a minimum. An application can
optionally aid these heuristics by providing additional information to the compiler in the form
of launch bounds that are specified using the __launch_bounds__() qualifier in the definition
of a __global__ function:

__global__ void
__launch_bounds__(maxThreadsPerBlock, minBlocksPerMultiprocessor)
MyKernel(...)
{
    ...
}

‣ maxThreadsPerBlock specifies the maximum number of threads per block with which the
application will ever launch MyKernel(); it compiles to the .maxntid PTX directive;

‣ minBlocksPerMultiprocessor is optional and specifies the desired minimum number of
resident blocks per multiprocessor; it compiles to the .minnctapersm PTX directive.

If launch bounds are specified, the compiler first derives from them the upper limit L on the
number of registers the kernel should use to ensure that minBlocksPerMultiprocessor
blocks (or a single block if minBlocksPerMultiprocessor is not specified) of
maxThreadsPerBlock threads can reside on the multiprocessor (see Hardware
Multithreading for the relationship between the number of registers used by a kernel and the
number of registers allocated per block). The compiler then optimizes register usage in the
following way:

‣ If the initial register usage is higher than L, the compiler reduces it further until it
becomes less or equal to L, usually at the expense of more local memory usage and/or
higher number of instructions;
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‣ If the initial register usage is lower than L

‣ If maxThreadsPerBlock is specified and minBlocksPerMultiprocessor is not, the
compiler uses maxThreadsPerBlock to determine the register usage thresholds for
the transitions between n and n+1 resident blocks (i.e., when using one less register
makes room for an additional resident block as in the example of Multiprocessor Level)
and then applies similar heuristics as when no launch bounds are specified;

‣ If both minBlocksPerMultiprocessor and maxThreadsPerBlock are specified,
the compiler may increase register usage as high as L to reduce the number of
instructions and better hide single thread instruction latency.

A kernel will fail to launch if it is executed with more threads per block than its launch bound
maxThreadsPerBlock.

Per thread resources required by a CUDA kernel might limit the maximum block size
in an unwanted way. In order to maintain forward compatibility to future hardware and
toolkits and to ensure that at least one thread block can run on an SM, developers should
include the single argument __launch_bounds__(maxThreadsPerBlock) which specifies
the largest block size that the kernel will be launched with. Failure to do so could lead to
"too many resources requested for launch" errors. Providing the two argument version of
__launch_bounds__(maxThreadsPerBlock,minBlocksPerMultiprocessor) can improve
performance in some cases. The right value for minBlocksPerMultiprocessor should be
determined using a detailed per kernel analysis.

Optimal launch bounds for a given kernel will usually differ across major architecture
revisions. The sample code below shows how this is typically handled in device code using the
__CUDA_ARCH__ macro introduced in Application Compatibility

#define THREADS_PER_BLOCK          256
#if __CUDA_ARCH__ >= 200
    #define MY_KERNEL_MAX_THREADS  (2 * THREADS_PER_BLOCK)
    #define MY_KERNEL_MIN_BLOCKS   3
#else
    #define MY_KERNEL_MAX_THREADS  THREADS_PER_BLOCK
    #define MY_KERNEL_MIN_BLOCKS   2
#endif

// Device code
__global__ void
__launch_bounds__(MY_KERNEL_MAX_THREADS, MY_KERNEL_MIN_BLOCKS)
MyKernel(...)
{
    ...
}

In the common case where MyKernel is invoked with the maximum number of threads
per block (specified as the first parameter of __launch_bounds__()), it is tempting to use
MY_KERNEL_MAX_THREADS as the number of threads per block in the execution configuration:

// Host code
MyKernel<<<blocksPerGrid, MY_KERNEL_MAX_THREADS>>>(...);
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This will not work however since __CUDA_ARCH__ is undefined in host code as mentioned
in Application Compatibility, so MyKernel will launch with 256 threads per block even when
__CUDA_ARCH__ is greater or equal to 200. Instead the number of threads per block should be
determined:

‣ Either at compile time using a macro that does not depend on __CUDA_ARCH__, for
example

// Host code
MyKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(...);

‣ Or at runtime based on the compute capability

// Host code
cudaGetDeviceProperties(&deviceProp, device);
int threadsPerBlock =
          (deviceProp.major >= 2 ?
                    2 * THREADS_PER_BLOCK : THREADS_PER_BLOCK);
MyKernel<<<blocksPerGrid, threadsPerBlock>>>(...);

Register usage is reported by the --ptxas options=-v compiler option. The number of
resident blocks can be derived from the occupancy reported by the CUDA profiler (see Device
Memory Accessesfor a definition of occupancy).

Register usage can also be controlled for all __global__ functions in a file using the
maxrregcount compiler option. The value of maxrregcount is ignored for functions with
launch bounds.

B.36.  #pragma unroll
By default, the compiler unrolls small loops with a known trip count. The #pragma unroll
directive however can be used to control unrolling of any given loop. It must be placed
immediately before the loop and only applies to that loop. It is optionally followed by an
integral constant expression (ICE)13. If the ICE is absent, the loop will be completely unrolled
if its trip count is constant. If the ICE evaluates to 1, the compiler will not unroll the loop. The
pragma will be ignored if the ICE evaluates to a non-positive integer or to an integer greater
than the maximum value representable by the int data type.

Examples:

struct S1_t { static const int value = 4; };
template <int X, typename T2>
__device__ void foo(int *p1, int *p2) {

// no argument specified, loop will be completely unrolled
#pragma unroll
for (int i = 0; i < 12; ++i) 
  p1[i] += p2[i]*2;
  
// unroll value = 8
#pragma unroll (X+1)
for (int i = 0; i < 12; ++i) 

13 See the C++ Standard for definition of integral constant expression.
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  p1[i] += p2[i]*4;

// unroll value = 1, loop unrolling disabled
#pragma unroll 1
for (int i = 0; i < 12; ++i) 
  p1[i] += p2[i]*8;

// unroll value = 4
#pragma unroll (T2::value)
for (int i = 0; i < 12; ++i) 
  p1[i] += p2[i]*16;
}

__global__ void bar(int *p1, int *p2) {
foo<7, S1_t>(p1, p2);
}

B.37.  SIMD Video Instructions
PTX ISA version 3.0 includes SIMD (Single Instruction, Multiple Data) video instructions which
operate on pairs of 16-bit values and quads of 8-bit values. These are available on devices of
compute capability 3.0.

The SIMD video instructions are:

‣ vadd2, vadd4

‣ vsub2, vsub4

‣ vavrg2, vavrg4

‣ vabsdiff2, vabsdiff4

‣ vmin2, vmin4

‣ vmax2, vmax4

‣ vset2, vset4

PTX instructions, such as the SIMD video instructions, can be included in CUDA programs by
way of the assembler, asm(), statement.

The basic syntax of an asm() statement is:

asm("template-string" : "constraint"(output) : "constraint"(input)"));

An example of using the vabsdiff4 PTX instruction is:

asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r" (result):"r" (A), "r"
 (B), "r" (C));

This uses the vabsdiff4 instruction to compute an integer quad byte SIMD sum of absolute
differences. The absolute difference value is computed for each byte of the unsigned integers
A and B in SIMD fashion. The optional accumulate operation (.add) is specified to sum these
differences.
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Refer to the document "Using Inline PTX Assembly in CUDA" for details on using the assembly
statement in your code. Refer to the PTX ISA documentation ("Parallel Thread Execution ISA
Version 3.0" for example) for details on the PTX instructions for the version of PTX that you are
using.

B.38.  Diagnostic Pragmas
The following pragmas may be used to control the error severity used when a given diagnostic
message is issued.

#pragma nv_diag_suppress
#pragma nv_diag_warning
#pragma nv_diag_error
#pragma nv_diag_default
#pragma nv_diag_once

Uses of these pragmas have the following form:

#pragma nv_diag_xxx error_number, error_number ...

The diagnostic affected is specified using an error number showed in a warning message.
Any diagnostic may be overridden to be an error, but only warnings may have their
severity suppressed or be restored to a warning after being promoted to an error. The
nv_diag_default pragma is used to return the severity of a diagnostic to the one that was in
effect before any pragmas were issued (i.e., the normal severity of the message as modified
by any command-line options). The following example suppresses the "declared but never
referenced" warning on the declaration of foo:

#pragma nv_diag_suppress 177
void foo()
{
  int i=0;
}
#pragma nv_diag_default 177
void bar()
{
  int i=0;
}

The following pragmas may be used to save and restore the current diagnostic pragma state:

#pragma nv_diagnostic push
#pragma nv_diagnostic pop

Examples:

#pragma nv_diagnostic push
#pragma nv_diag_suppress 177
void foo()
{
  int i=0;
}
#pragma nv_diagnostic pop
void bar()
{
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  int i=0;
}

Note that the pragmas only affect the nvcc CUDA frontend compiler; they have no effect on the
host compiler.

Note: NVCC also implements diagnostic pragmas without nv_ prefix, e.g. #pragma
diag_suppress, but they are deprecated and will be removed from future releases, using
these diagnostic pragmas will be warned with messages like this:

pragma "diag_suppress" is deprecated, use "nv_diag_suppress" instead 
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Appendix C. Cooperative Groups

C.1.  Introduction
Cooperative Groups is an extension to the CUDA programming model, introduced in CUDA 9,
for organizing groups of communicating threads. Cooperative Groups allows developers to
express the granularity at which threads are communicating, helping them to express richer,
more efficient parallel decompositions.

Historically, the CUDA programming model has provided a single, simple construct for
synchronizing cooperating threads: a barrier across all threads of a thread block, as
implemented with the __syncthreads() intrinsic function. However, programmers would
like to define and synchronize groups of threads at other granularities to enable greater
performance, design flexibility, and software reuse in the form of “collective” group-wide
function interfaces. In an effort to express broader patterns of parallel interaction, many
performance-oriented programmers have resorted to writing their own ad hoc and unsafe
primitives for synchronizing threads within a single warp, or across sets of thread blocks
running on a single GPU. Whilst the performance improvements achieved have often been
valuable, this has resulted in an ever-growing collection of brittle code that is expensive
to write, tune, and maintain over time and across GPU generations. Cooperative Groups
addresses this by providing a safe and future-proof mechanism to enable performant code.

C.2.  What's New in CUDA 11.0
‣ Separate compilation is no longer required to use the grid-scoped group and

synchronizing this group is now up to 30% faster. Additionally we've enabled cooperative
launches on latest Windows platforms, and added support for them when running under
MPS.

‣ grid_group is now convertible to thread_group.

‣ New collectives for thread block tiles and coalesced groups: reduce and memcpy_async.

‣ New partition operations for thread block tiles and coalesced groups: labeled_partition
and binary_partition.

‣ New APIs, meta_group_rank and meta_group_size which provide information about the
partitioning that led to the creation of this group.
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‣ Thread block tiles can now have their parent encoded in the type, which allows for better
compile-time optimization of emitted code.

‣ Interface change: grid_group must be constructed with this_grid() at declaration time.
The default constructor is removed.

Notice: In this release, we are moving towards requiring C++11 for the new features. This will
be required for all existing APIs in a future release.

C.3.  Programming Model Concept
The Cooperative Groups programming model describes synchronization patterns both within
and across CUDA thread blocks. It provides both the means for applications to define their
own groups of threads, and the interfaces to synchronize them. It also provides new launch
APIs that enforce certain restrictions and therefore can guarantee the synchronization will
work. These primitives enable new patterns of cooperative parallelism within CUDA, including
producer-consumer parallelism, opportunistic parallelism, and global synchronization across
the entire Grid.

The Cooperative Groups programming model consists of the following elements:

‣ Data types for representing groups of cooperating threads;

‣ Operations to obtain implicit groups defined by the CUDA launch API (e.g., thread blocks);

‣ Collectives for partitioning existing groups into new groups;

‣ Collective Algorithms for data movement and manipulation (e.g. memcpy_async, reduce,
scan);

‣ An operation to synchronize all threads within the group;

‣ Operations to inspect the group properties;

‣ Collectives that expose low-level, group-specific and often HW accelerated, operations.

The main concept in Cooperative Groups is that of objects naming the set of threads that
are part of it. This expression of groups as first-class program objects improves software
composition, since collective functions can receive an explicit object representing the group
of participating threads. This object also makes programmer intent explicit, which eliminates
unsound architectural assumptions that result in brittle code, undesirable restrictions upon
compiler optimizations, and better compatibility with new GPU generations.

To write efficient code, its best to use specialized groups (going generic loses a lot of compile
time optimizations), and pass these group objects by reference to functions that intend to use
these threads in some cooperative fashion.

Cooperative Groups requires CUDA 9.0 or later. To use Cooperative Groups, include the
header file:

// Primary header is compatible with pre-C++11, collective algorithm headers require
 C++11
#include <cooperative_groups.h>
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// Optionally include for memcpy_async() collective
#include <cooperative_groups/memcpy_async.h>
// Optionally include for reduce() collective
#include <cooperative_groups/reduce.h>
// Optionally include for inclusive_scan() and exclusive_scan() collectives
#include <cooperative_groups/scan.h>

and use the Cooperative Groups namespace:

using namespace cooperative_groups;
// Alternatively use an alias to avoid polluting the namespace with collective
 algorithms
namespace cg = cooperative_groups;

The code can be compiled in a normal way using nvcc, however if you wish to use
memcpy_async, reduce or scan functionality and your host compiler's default dialect is not C+
+11 or higher, then you must add --std=c++11 to the command line.

C.3.1.  Composition Example
To illustrate the concept of groups, this example attempts to perform a block-wide sum
reduction. Previously, there were hidden constraints on the implementation when writing this
code:

__device__ int sum(int *x, int n) {
    // ...
    __syncthreads();
    return total;
}

__global__ void parallel_kernel(float *x) {
    // ...
    // Entire thread block must call sum
    sum(x, n);
}

All threads in the thread block must arrive at the __syncthreads() barrier, however, this
constraint is hidden from the developer who might want to use sum(…). With Cooperative
Groups, a better way of writing this would be:

__device__ int sum(const thread_block& g, int *x, int n) {
    // ...
    g.sync()
    return total;
}

__global__ void parallel_kernel(...) {
    // ...
    // Entire thread block must call sum
    thread_block tb = this_thread_block();
    sum(tb, x, n);
    // ...
}
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C.4.  Group Types

C.4.1.  Implicit Groups
Implicit groups represent the launch configuration of the kernel. Regardless of how your
kernel is written, it always has a set number of threads, blocks and block dimensions, a single
grid and grid dimensions. In addition, if the multi-device cooperative launch API is used, it
can have multiple grids (single grid per device). These groups provide a starting point for
decomposition into finer grained groups which are typically HW accelerated and are more
specialzied for the problem the developer is solving.

Although you can create an implicit group anywhere in the code, it is dangerous to do so.
Creating a handle for an implicit group is a collective operation - all threads in the group must
participate. If the group was created in a conditional branch that not all threads reach, this
can lead to deadlocks or data corruption. For this reason, it is recommended that you create a
handle for the implicit group upfront (as early as possible, before any branching has occured)
and use that handle throughout the kernel. Group handles must be initialized at declaration
time (there is no default constructor) for the same reason and copy-constructing them is
discouraged.

C.4.1.1.  Thread Block Group
Any CUDA programmer is already familiar with a certain group of threads: the thread block.
The Cooperative Groups extension introduces a new datatype, thread_block, to explicitly
represent this concept within the kernel.

class thread_block;

Constructed via:

thread_block g = this_thread_block();

Public Member Functions:

static void sync(): Synchronize the threads named in the group

static unsigned long long size(): Total number of threads in the group

static unsigned long long thread_rank(): Rank of the calling thread within [0, size]

static dim3 group_index(): 3-Dimensional index of the block within the launched grid

static dim3 thread_index(): 3-Dimensional index of the thread within the launched block

static dim3 group_dim(): Dimensions of the launched block

Example:

/// Loading an integer from global into shared memory
__global__ void kernel(int *globalInput) {
    __shared__ int x;
    thread_block g = this_thread_block();
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    // Choose a leader in the thread block
    if (g.thread_rank() == 0) {
        // load from global into shared for all threads to work with
        x = (*globalInput);
    }
    // After loading data into shared memory, you want to synchronize
    // if all threads in your thread block need to see it
    g.sync(); // equivalent to __syncthreads();
}

Note: that all threads in the group must participate in collective operations, or the behavior is
undefined.

Related: The thread_block datatype is derived from the more generic thread_group
datatype, which can be used to represent a wider class of groups.

C.4.1.2.  Grid Group
This group object represents all the threads launched in a single grid. APIs other than sync()
are available at all times, but to be able to synchronize across the grid, you need to use the
cooperative launch API.

class grid_group;

Constructed via:

grid_group g = this_grid();

Public Member Functions:

bool is_valid() const: Returns whether the grid_group can synchronize

void sync() const: Synchronize the threads named in the group

unsigned long long size() const: Total number of threads in the group

unsigned long long thread_rank() const: Rank of the calling thread within [0, size]

dim3 group_dim() const: Dimensions of the launched grid

C.4.1.3.  Multi Grid Group
This group object represents all the threads launched across all devices of a multi-device
cooperative launch. Unlike the grid.group, all the APIs require that you have used the
appropriate launch API.

class multi_grid_group;

Constructed via:

// Kernel must be launched with the cooperative multi-device API
multi_grid_group g = this_multi_grid();

Public Member Functions:

bool is_valid() const: Returns whether the multi_grid_group can be used

void sync() const: Synchronize the threads named in the group
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unsigned long long size() const: Total number of threads in the group

unsigned long long thread_rank() const: Rank of the calling thread within [0, size]

unsigned int grid_rank() const: Rank of the grid within [0,num_grids]

unsigned int num_grids() const: Total number of grids launched

C.4.2.  Explicit Groups

C.4.2.1.  Thread Block Tile
An templated version of a tiled group, where a template parameter is used to specify the size
of the tile - with this known at compile time there is the potential for more optimal execution.

template <unsigned int Size, typename ParentT = void>
class thread_block_tile;

Constructed via:

template <unsigned int Size, typename ParentT>
_CG_QUALIFIER thread_block_tile<Size, ParentT> tiled_partition(const ParentT& g)

Size must be a power of 2 and less than or equal to 32.

ParentT is the parent-type from which this group was partitioned. It is automatically inferred,
but a value of void will store this information in the group handle rather than in the type.

Public Member Functions:

void sync() const: Synchronize the threads named in the group

unsigned long long size() const: Total number of threads in the group

unsigned long long thread_rank() const: Rank of the calling thread within [0, size]

unsigned long long meta_group_size() const: Returns the number of groups created
when the parent group was partitioned.

unsigned long long meta_group_rank() const: Linear rank of the group within the set of
tiles partitioned from a parent group (bounded by meta_group_size)

T shfl(T var, unsigned int src_rank) const: Refer to Warp Shuffle Functions

T shfl_up(T var, int delta) const: Refer to Warp Shuffle Functions

T shfl_down(T var, int delta) const: Refer to Warp Shuffle Functions

T shfl_xor(T var, int delta) const: Refer to Warp Shuffle Functions

T any(int predicate) const: Refer to Warp Vote Functions

T all(int predicate) const: Refer to Warp Vote Functions

T ballot(int predicate) const: Refer to Warp Vote Functions

T match_any(T val) const: Refer to Warp Match Functions

T match_all(T val, int &pred) const: Refer to Warp Match Functions
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Notes:

shfl, shfl_up, shfl_down, and shfl_xor functions accept objects of any type when
compiled with C++11 or later. This means it's possible to shuffle non-integral types as long as
they satisfy the below constraints:

‣ Qualifies as trivially copyable i.e., is_trivially_copyable<T>::value == true

‣ sizeof(T) <= 32

Example:

/// The following code will create two sets of tiled groups, of size 32 and 4
 respectively:
/// The latter has the provenance encoded in the type, while the first stores it in
 the handle
thread_block block = this_thread_block();
thread_block_tile<32> tile32 = tiled_partition<32>(block);
thread_block_tile<4, thread_block> tile4 = tiled_partition<4>(block);

Note: that the thread_block_tile templated data structure is being used here, and that the
size of the group is passed to the tiled_partition call as a template parameter rather than
an argument.

C.4.2.1.1.  Warp-Synchronous Code Pattern
Developers might have had warp-synchronous codes that they previously made implicit
assumptions about the warp size and would code around that number. Now this needs to be
specified explicitly.

__global__ void cooperative_kernel(...) {
    // obtain default "current thread block" group
    thread_block my_block = this_thread_block();

    // subdivide into 32-thread, tiled subgroups
    // Tiled subgroups evenly partition a parent group into
    // adjacent sets of threads - in this case each one warp in size
    auto my_tile = tiled_partition<32>(my_block);

    // This operation will be performed by only the
    // first 32-thread tile of each block
    if (my_tile.meta_group_rank() == 0) {
        // ...
        my_tile.sync();
    }
}

C.4.2.1.2.  Single thread group
Group representing the current thread can be obtained from this_thread function:

thread_block_tile<1> this_thread();

The following memcpy_async API uses a thread_group, to copy an int element from source to
destination:
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#include <cooperative_groups.h>
#include <cooperative_groups/memcpy_async.h>

cooperative_groups::memcpy_async(cooperative_groups::this_thread(), dest,
 src, sizeof(int));

More detailed examples of using this_thread to perform asynchronous copies can be
found in the Single-Stage Asynchronous Data Copies using cuda::pipeline and Multi-Stage
Asynchronous Data Copies using cuda::pipeline sections.

C.4.2.1.3.  Thread Block Tile of size larger than 32
It is possible to obtain thread_block_tile of size 64, 128, 256 or 512 using new
API present in cooperative_groups::experimental namespace. To use it,
_CG_ABI_EXPERIMENTAL has to be defined in the source code. Before partitioning, a small
amount of memory has to be reserved for thread_block_tile usage. This can be done using
cooperative_groups::experimental::block_tile_memory struct template that has to
reside in either shared or global memory.

template <unsigned int TileCommunicationSize = 8, unsigned int MaxBlockSize = 1024>
struct block_tile_memory;

TileCommunicationSize Determines how much memory is reserved for collective
operations. If such operation is performed on type of size larger than specified communication
size, the collective may involve multiple transfers and take longer to complete.

MaxBlockSize Specifies the maximal number of threads in the current thread block. This
parameter can be used to minimize the shared memory usage of block_tile_memory in
kernels launched only with smaller thread counts.

This block_tile_memory needs be then passed into
cooperative_groups::experimental::this_thread_block, allowing the
resulting thread_block to be partitioned into tiles of sizes larger than 32. Overload of
this_thread_block accepting block_tile_memory argument is a collective operation
and has to be called with all threads in the thread_block. Returned thread_block can be
partitioned using experimental::tiled_partition function template, which accepts the
same arguments as the regular tiled_partition.

#define _CG_ABI_EXPERIMENTAL // enable experimental API

__global__ void cooperative_kernel(...) {
    // reserve shared memory for thread_block_tile usage.
    __shared__ experimental::block_tile_memory<4, 256> shared;
    thread_block thb = experimental::this_thread_block(shared);

    auto tile = experimental::tiled_partition<128>(thb);

    // ...
}

Public Member Functions:

void sync() const: Synchronize the threads named in the group

unsigned long long size() const: Total number of threads in the group
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unsigned long long thread_rank() const: Rank of the calling thread within [0, size]

unsigned long long meta_group_size() const: Returns the number of groups created
when the parent group was partitioned.

unsigned long long meta_group_rank() const: Linear rank of the group within the set of
tiles partitioned from a parent group (bounded by meta_group_size)

T shfl(T var, unsigned int src_rank) const: Refer to Warp Shuffle Functions, Note:
All threads in the group have to specify the same src_rank, otherwise the behavior is
undefined.

T any(int predicate) const: Refer to Warp Vote Functions

T all(int predicate) const: Refer to Warp Vote Functions

C.4.2.2.  Coalesced Groups
In CUDA’s SIMT architecture, at the hardware level the multiprocessor executes threads
in groups of 32 called warps. If there exists a data-dependent conditional branch in the
application code such that threads within a warp diverge, then the warp serially executes each
branch disabling threads not on that path. The threads that remain active on the path are
referred to as coalesced. Cooperative Groups has functionality to discover, and create, a group
containing all coalesced threads.

Constructing the group handle via coalesced_threads() is opportunistic. It returns the set of
active threads at that point in time, and makes no guarantee about which threads are returned
(as long as they are active) or that they will stay coalesced throughout execution (they will be
brought back together for the execution of a collective but can diverge again afterwards).

class coalesced_group;

Constructed via:

coalesced_group active = coalesced_threads();

Public Member Functions:

void sync() const: Synchronize the threads named in the group

unsigned long long size() const: Total number of threads in the group

unsigned long long thread_rank() const: Rank of the calling thread within [0, size]

unsigned long long meta_group_size() const: Returns the number of groups created
when the parent group was partitioned. If this group was created by querying the set of active
threads, e.g. coalesced_threads() the value of meta_group_size() will be 1.

unsigned long long meta_group_rank() const: Linear rank of the group within the
set of tiles partitioned from a parent group (bounded by meta_group_size). If this group
was created by querying the set of active threads, e.g. coalesced_threads() the value of
meta_group_rank() will always be 0.

T shfl(T var, unsigned int src_rank) const: Refer to Warp Shuffle Functions

T shfl_up(T var, int delta) const: Refer to Warp Shuffle Functions
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T shfl_down(T var, int delta) const: Refer to Warp Shuffle Functions

T any(int predicate) const: Refer to Warp Vote Functions

T all(int predicate) const: Refer to Warp Vote Functions

T ballot(int predicate) const: Refer to Warp Vote Functions

T match_any(T val) const: Refer to Warp Match Functions

T match_all(T val, int &pred) const: Refer to Warp Match Functions

Notes:

shfl, shfl_up, and shfl_down functions accept objects of any type when compiled with C
++11 or later. This means it's possible to shuffle non-integral types as long as they satisfy the
below constraints:

‣ Qualifies as trivially copyable i.e. is_trivially_copyable<T>::value == true

‣ sizeof(T) <= 32

Example:

/// Consider a situation whereby there is a branch in the
/// code in which only the 2nd, 4th and 8th threads in each warp are
/// active. The coalesced_threads() call, placed in that branch, will create (for
 each
/// warp) a group, active, that has three threads (with
/// ranks 0-2 inclusive).
__global__ void kernel(int *globalInput) {
    // Lets say globalInput says that threads 2, 4, 8 should handle the data
    if (threadIdx.x == *globalInput) {
        coalesced_group active = coalesced_threads();
        // active contains 0-2 inclusive
        active.sync();
    }
}

C.4.2.2.1.  Discovery Pattern
Commonly developers need to work with the current active set of threads. No assumption
is made about the threads that are present, and instead developers work with the threads
that happen to be there. This is seen in the following “aggregating atomic increment across
threads in a warp” example (written using the correct CUDA 9.0 set of intrinsics):

{
    unsigned int writemask = __activemask();
    unsigned int total = __popc(writemask);
    unsigned int prefix = __popc(writemask & __lanemask_lt());
    // Find the lowest-numbered active lane
    int elected_lane = __ffs(writemask) - 1;
    int base_offset = 0;
    if (prefix == 0) {
        base_offset = atomicAdd(p, total);
    }
    base_offset = __shfl_sync(writemask, base_offset, elected_lane);
    int thread_offset = prefix + base_offset;
    return thread_offset;
}
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This can be re-written with Cooperative Groups as follows:

{
    cg::coalesced_group g = cg::coalesced_threads();
    int prev;
    if (g.thread_rank() == 0) {
        prev = atomicAdd(p, g.size());
    }
    prev = g.thread_rank() + g.shfl(prev, 0);
    return prev;
}

C.5.  Group Partitioning

C.5.1.  tiled_partition

template <unsigned int Size, typename ParentT>
thread_block_tile<Size, ParentT> tiled_partition(const ParentT& g);

thread_group tiled_partition(const thread_group& parent, unsigned int tilesz);

The tiled_partition method is a collective operation that partitions the parent group into a
one-dimensional, row-major, tiling of subgroups. A total of ((size(parent)/tilesz) subgroups will
be created, therefore the parent group size must be evenly divisible by the Size. The allowed
parent groups are thread_block or thread_block_tile.

The implementation may cause the calling thread to wait until all the members of the parent
group have invoked the operation before resuming execution. Functionality is limited to
native hardware sizes, 1/2/4/8/16/32 and the cg::size(parent) must be greater than the
Size parameter. The experimental version in cooperative_groups::experimental namespace
supports 64/128/256/512 sizes.

Codegen Requirements: Compute Capability 3.5 minimum, C++11 for sizes larger than 32

Example:

/// The following code will create a 32-thread tile
thread_block block = this_thread_block();
thread_block_tile<32> tile32 = tiled_partition<32>(block);

We can partition each of these groups into even smaller groups, each of size 4 threads:

auto tile4 = tiled_partition<4>(tile32);
// or using a general group
// thread_group tile4 = tiled_partition(tile32, 4);

If, for instance, if we were to then include the following line of code:

if (tile4.thread_rank()==0) printf(“Hello from tile4 rank 0\n”);
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then the statement would be printed by every fourth thread in the block: the threads of rank 0
in each tile4 group, which correspond to those threads with ranks 0,4,8,12,etc. in the block
group.

C.5.2.  labeled_partition

coalesced_group labeled_partition(const coalesced_group& g, int label);
template <unsigned int Size>

coalesced_group labeled_partition(const thread_block_tile<Size>& g, int label);

The labeled_partition method is a collective operation that partitions the parent group into
one-dimensional subgroups within which the threads are coalesced. The implementation will
evaluate a condition label and assign threads that have the same value for label into the same
group.

The implementation may cause the calling thread to wait until all the members of the parent
group have invoked the operation before resuming execution.

Note: This functionality is still being evaluated and may slightly change in the future.

Codegen Requirements: Compute Capability 7.0 minimum, C++11

C.5.3.  binary_partition

coalesced_group binary_partition(const coalesced_group& g, bool pred);
template <unsigned int Size>

coalesced_group binary_partition(const thread_block_tile<Size>& g, bool pred);

The binary_partition() method is a collective operation that partitions the parent group
into one-dimensional subgroups within which the threads are coalesced. The implementation
will evaluate a predicate and assign threads that have the same value into the same group.
This is a specialized form of labeled_partition(), where the label can only be 0 or 1.

The implementation may cause the calling thread to wait until all the members of the parent
group have invoked the operation before resuming execution.

Note: This functionality is still being evaluated and may slightly change in the future.

Codegen Requirements: Compute Capability 7.0 minimum, C++11

Example:

/// This example divides a 32-sized tile into a group with odd
/// numbers and a group with even numbers
_global__ void oddEven(int *inputArr) {
    cg::thread_block cta = cg::this_thread_block();
    cg::thread_block_tile<32> tile32 = cg::tiled_partition<32>(cta);

    // inputArr contains random integers
    int elem = inputArr[cta.thread_rank()];
    // after this, tile32 is split into 2 groups,
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    // a subtile where elem&1 is true and one where its false
    auto subtile = cg::binary_partition(tile32, (elem & 1));
}

C.6.  Group Collectives

C.6.1.  Synchronization

C.6.1.1.  sync

cooperative_groups::sync(T& group);

sync synchronizes the threads named in the group. T can be any of the existing group types,
as all of them support synchronization. If the group is a grid_group or a multi_grid_group
the kernel must have been launched using the appropriate cooperative launch APIs.

C.6.2.  Data Transfer

C.6.2.1.  memcpy_async
memcpy_async is a group-wide collective memcpy that utilizes hardware accelerated support
for non-blocking memory transactions from global to shared memory. Given a set of threads
named in the group, memcpy_async will move min(srcCount, dstCount) of elements of the
input types through a single pipeline stage. To achieve best performance, the source and
destination inputs should be 16 byte aligned types. It is important to note that while this is a
memcpy in the general case, it is only asynchronous if the source is global memory and the
destination is shared memory and both can be addressed with 16, 8, or 4 byte alignments.
Asynchronously copied data should only be read following a call to wait which signals that the
corresponding stage has completed moving data to shared memory.

Having to wait on all outstanding requests can lose some flexibility (but gain simplicity). In
order to efficiently overlap data transfer and execution, its important to be able to kick off an N
+1 memcpy_async request while waiting on and operating on request N. This is accomplished
by relinquishing control over the async request to the pipeline object. To do so, pass the 
cuda::pipeline object to memcpy_async and wait on it using the collective stage-based wait
API. See wait for more details.

Usage 1:

template <class TyGroup, typename TyElem, typename TySizeT>
void memcpy_async(
  const TyGroup &group,
  TyElem *__restrict__ _dst,
  const TyElem *__restrict__ _src,
  const TySizeT &count
);
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memcpy_async(group, destination, source, copy_shape) performs a copy of N bytes.
If copy_shape is of type cuda::aligned_size_t<N>, alignment will be guaranteed to be at
least min(16, N)

Usage 2:

template <class TyGroup, class TyElem, typename DstLayout, typename SrcLayout>
void memcpy_async(
  const TyGroup &group,
  TyElem *__restrict__ dst,
  const DstLayout &dstLayout,
  const TyElem *__restrict__ src,
  const SrcLayout &srcLayout
);

memcpy_async(group, destination, copy_shape, source, copy_shape) performs a
copy of N elements. If copy_shape is of type cuda::aligned_size_t<N>, alignment will be
guaranteed to be at least min(16, N). Input shapes must share the same alignment. A user
must include cooperative_groups/memcpy_async.h header.

Codegen Requirements: Compute Capability 3.5 minimum, Compute Capability 8.0 for
asynchronicity, C++11

Example:

/// This example streams elementsPerThreadBlock worth of data from global memory
/// into a limited sized shared memory (elementsInShared) block to operate on.
cg::thread_block tb = cg::this_thread_block();
size_t index = 0;
while (index < elementsPerThreadBlock) {
    size_t copyCount = cg::memcpy_async(tb, local_smem, elementsInShared,
 global_data + index, elementsPerThreadBlock - index);
    cg::wait(tb);
    // Work with local_smem
    index += copyCount;
}

C.6.2.2.  wait

template <class TyGroup>
void wait(TyGroup & group);

The waitcollective synchronizes the named group of threads and blocks until all outstanding
memcpy_async requests have completed.

Codegen Requirements: Compute Capability 3.5 minimum, Compute Capability 8.0 for
asynchronicity, C++11

Example:

/// This example streams elementsPerThreadBlock worth of data from global memory
/// into a limited sized shared memory (elementsInShared) block to operate on in
/// multiple (two) stages. As stage N is kicked off, we can wait on and operate on
 stage N-1.
cg::thread_block tb = cg::this_thread_block();
int stage = 0;
// First kick off an extra request
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size_t index = cg::memcpy_async(tb, smem_ptr[stage], elementsInShared, global_data,
 elementsPerThreadBlock - index);
while (index < elementsPerThreadBlock) {
    // Now we kick off the next request...
    size_t copyCount = cg::memcpy_async(tb, smem_ptr[stage ^ 1], elementsInShared,
 global_data + index, elementsPerThreadBlock - index);
    // ... but we wait on the one before it
    cg::wait_prior<1>(tb);
    // Its now available and we can work with smem_ptr[stage] here
    index += copyCount;
    // A cg::sync(tb) might be needed here depending on whether
    // the work done with smem_ptr[stage] can release threads to race ahead or not
    // Wrap to the next stage
    stage ^= 1;
}
cg::wait(tb);
// The last smem_ptr[stage] can be handled here

C.6.3.  Data manipulation

C.6.3.1.  reduce

template <typename TyArg, typename TyOp, typename TyGroup>
auto reduce(const TyGroup& group, TyArg&& val, TyOp&& op) -> decltype(op(val, val));

reduce performs a reduction operation on the data provided by each thread named in the
group passed in. This takes advantage of hardware acceleration (on compute 80 and higher
devices) for the arithmetic add, min, or max operations and the logical AND, OR, or XOR,
as well as providing a software fallback on older generation hardware. Only 4B types are
accelerated by hardware.

group: Valid group types are coalesced_group and thread_block_tile.

val: Any type that satisfies the below requirements:

‣ Qualifies as trivially copyable i.e. is_trivially_copyable<TyArg>::value == true

‣ sizeof(TyArg) <= 32

‣ Has suitable arithmetic or comparative operators for the given function object.

op: Valid function objects that will provide hardware acceleration with integral types are
plus(), less(), greater(), bit_and(), bit_xor(), bit_or(). These must be
constructed, hence the TyVal template argument is required, i.e. plus<int>(). Reduce also
supports lambdas and other function objects that can be invoked using operator()

Codegen Requirements: Compute Capability 3.5 minimum, Compute Capability 8.0 for HW
acceleration, C++11.

Example:

#include <cooperative_groups.h>
#include <cooperative_groups/reduce.h>
namespace cg=cooperative_groups;

/// The following example accepts input in *A and outputs a result into *sum
/// It spreads the data within the block, one element per thread
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#define blocksz 256
__global__ void block_reduce(const int *A, int *sum) {
    __shared__ int reduction_s[blocksz];

    cg::thread_block cta = cg::this_thread_block();
    cg::thread_block_tile<32> tile = cg::tiled_partition<32>(cta);

    const int tid = cta.thread_rank();
    int beta = A[tid];
    // reduce across the tile
    // cg::plus<int> allows cg::reduce() to know it can use hardware acceleration
 for addition
    reduction_s[tid] = cg::reduce(tile, beta, cg::plus<int>());
    // synchronize the block so all data is ready
    cg::sync(cta);
    // single leader accumulates the result
    if (cta.thread_rank() == 0) {
        beta = 0;
        for (int i = 0; i < blocksz; i += tile.size()) {
            beta += reduction_s[i];
        }
    }
    sum[blockIdx.x] = beta;
}

C.6.3.2.  Reduce Operators
Below are the prototypes of function objects for some of the basic operations that can be done
with reduce

namespace cooperative_groups {
  template <typename Ty>
  struct cg::plus;

  template <typename Ty>
  struct cg::less;

  template <typename Ty>
  struct cg::greater;

  template <typename Ty>
  struct cg::bit_and;

  template <typename Ty>
  struct cg::bit_xor;

  template <typename Ty>
  struct cg::bit_or;
}

Reduce is limited to the information available to the implementation at compile time. Thus
in order to make use of intrinsics introduced in CC 8.0, the cg:: namespace exposes several
functional objects that mirror the hardware. These objects appear similar to those presented
in the C++ STL, with the exception of less/greater. The reason for any difference from
the STL is that these function objects are designed to actually mirror the operation of the
hardware intrinsics.

Functional description:

‣ cg::plus: Accepts two values and returns the sum of both using operator+.
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‣ cg::less: Accepts two values and returns the lesser using operator<. This differs in that
the lower value is returned rather than a boolean.

‣ cg::greater: Accepts two values and returns the greater using operator<. This differs in
that the greater value is returned rather than a boolean.

‣ cg::bit_and: Accepts two values and returns the result of operator&.

‣ cg::bit_xor: Accepts two values and returns the result of operator^.

‣ cg::bit_or: Accepts two values and returns the result of operator|.

Example:

{
    // cg::plus<int> is specialized within cg::reduce and calls
 __reduce_add_sync(...) on CC 8.0+
    cg::reduce(tile, (int)val, cg::plus<int>());

    // cg::plus<float> fails to match with an accelerator and instead performs a
 standard shuffle based reduction
    cg::reduce(tile, (float)val, cg::plus<float>());

    // While individual components of a vector are supported, reduce will not use
 hardware intrinsics for the following
    // It will also be necessary to define a corresponding operator for vector and
 any custom types that may be used
    int4 vec = {...};
    cg::reduce(tile, vec, cg::plus<int4>())

    // Finally lambdas and other function objects cannot be inspected for dispatch
    // and will instead perform shuffle based reductions using the provided function
 object.
    cg::reduce(tile, (int)val, [](int l, int r) -> int {return l + r;});
}

C.6.3.3.  inclusive_scan and exclusive_scan

template <typename TyGroup, typename TyVal, typename TyFn>
auto inclusive_scan(const TyGroup& group, TyVal&& val, TyFn&& op) ->
 decltype(op(val, val));

template <typename TyGroup, typename TyVal>
TyVal inclusive_scan(const TyGroup& group, TyVal&& val);

template <typename TyGroup, typename TyVal, typename TyFn>
auto exclusive_scan(const TyGroup& group, TyVal&& val, TyFn&& op) ->
 decltype(op(val, val));

template <typename TyGroup, typename TyVal>
TyVal exclusive_scan(const TyGroup& group, TyVal&& val);

exclusive_scan and inclusive_scan performs a scan operation on the data provided
by each thread named in the group passed in. Result for each thread is a reduction of
data from threads with lower thread_rank than that thread in case of exclusive_scan.
inclusive_scan result also includes the calling thread data in the reduction.

group: Valid group types are coalesced_group and thread_block_tile.

val: Any type that satisfies the below requirements:
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‣ Qualifies as trivially copyable i.e. is_trivially_copyable<TyArg>::value == true

‣ sizeof(TyArg) <= 32

‣ Has suitable arithmetic or comparative operators for the given function object.

op: Function objects defined for convinience are plus(), less(), greater(), bit_and(),
bit_xor(), bit_or() described in Reduce Operators. These must be constructed,
hence the TyVal template argument is required, i.e. plus<int>(). inclusive_scan and
exclusive_scan also supports lambdas and other function objects that can be invoked using
operator()

Codegen Requirements: Compute Capability 3.5 minimum, C++11.

Example:

#include <stdio.h>
#include <cooperative_groups.h>
#include <cooperative_groups/scan.h>
namespace cg = cooperative_groups;

__global__ void kernel() {
    auto thread_block = cg::this_thread_block();
    auto tile = cg::tiled_partition<8>(thread_block);
    unsigned int val = inclusive_scan(tile, tile.thread_rank());
    printf("%u: %u\n", tile.thread_rank(), val);
}

/*  prints for each group:
    0: 0
    1: 1
    2: 3
    3: 6
    4: 10
    5: 15
    6: 21
    7: 28
*/

Example of dynamic buffer space allocation using exclusive_scan:

#include <cooperative_groups.h>
#include <cooperative_groups/scan.h>
namespace cg = cooperative_groups;

__device__ int calculate_buffer_space_needed(cg::thread_block_tile<32>& tile) {
    return tile.thread_rank() % 2 + 1;
}

__device__ int my_thread_data(int i) {
    return i;
}

__global__ void kernel() {
    __shared__ int buffer_used;
    extern __shared__ int buffer[];
    auto thread_block = cg::this_thread_block();
    auto tile = cg::tiled_partition<32>(thread_block);

    buffer_used = 0;
    thread_block.sync();
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    // each thread calculates buffer size it needs and its offset within the
 allocation
    int buf_needed = calculate_buffer_space_needed(tile);
    int buf_offset = exclusive_scan(tile, buf_needed);

    // last thread in the tile allocates buffer space with an atomic operation
    int alloc_offset = 0;
    if (tile.thread_rank() == tile.size() - 1) {
        alloc_offset = atomicAdd(&buffer_used, buf_offset + buf_needed);
    }
    // that thread shares the allocation start with other threads in the tile
    alloc_offset = tile.shfl(alloc_offset, tile.size() - 1);
    buf_offset += alloc_offset;

    // each thread fill its part of the buffer with thread specific data
    for (int i = 0 ; i < buf_needed ; ++i) {
        buffer[buf_offset + i] = my_thread_data(i);
    }

    // buffer is {0, 0, 1, 0, 0, 1 ...};
}

C.7.  Grid Synchronization
Prior to the introduction of Cooperative Groups, the CUDA programming model only allowed
synchronization between thread blocks at a kernel completion boundary. The kernel boundary
carries with it an implicit invalidation of state, and with it, potential performance implications.

For example, in certain use cases, applications have a large number of small kernels, with
each kernel representing a stage in a processing pipeline. The presence of these kernels is
required by the current CUDA programming model to ensure that the thread blocks operating
on one pipeline stage have produced data before the thread block operating on the next
pipeline stage is ready to consume it. In such cases, the ability to provide global inter thread
block synchronization would allow the application to be restructured to have persistent thread
blocks, which are able to synchronize on the device when a given stage is complete.

To synchronize across the grid, from within a kernel, you would simply use the grid.sync()
functionality:

grid_group grid = this_grid();
grid.sync();

And when launching the kernel it is necessary to use, instead of the <<<...>>> execution
configuration syntax, the cudaLaunchCooperativeKernel CUDA runtime launch API or the
CUDA driver equivalent.

Example:

To guarantee co-residency of the thread blocks on the GPU, the number of blocks launched
needs to be carefully considered. For example, as many blocks as there are SMs can be
launched as follows:

int device = 0;
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
// initialize, then launch

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g504b94170f83285c71031be6d5d15f73
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EXEC.html#group__CUDA__EXEC_1g06d753134145c4584c0c62525c1894cb
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cudaLaunchCooperativeKernel((void*)my_kernel, deviceProp.multiProcessorCount,
 numThreads, args);

Alternatively, you can maximize the exposed parallelism by calculating how many blocks can
fit simultaneously per-SM using the occupancy calculator as follows:

/// This will launch a grid that can maximally fill the GPU, on the default stream
 with kernel arguments
int numBlocksPerSm = 0;
 // Number of threads my_kernel will be launched with
int numThreads = 128;
cudaDeviceProp deviceProp;
cudaGetDeviceProperties(&deviceProp, dev);
cudaOccupancyMaxActiveBlocksPerMultiprocessor(&numBlocksPerSm, my_kernel,
 numThreads, 0);
// launch
void *kernelArgs[] = { /* add kernel args */ };
dim3 dimBlock(numThreads, 1, 1);
dim3 dimGrid(deviceProp.multiProcessorCount*numBlocksPerSm, 1, 1);
cudaLaunchCooperativeKernel((void*)my_kernel, dimGrid, dimBlock, kernelArgs);

It is good practice to first ensure the device supports cooperative launches by querying the
device attribute cudaDevAttrCooperativeLaunch:

int dev = 0;
int supportsCoopLaunch = 0;
cudaDeviceGetAttribute(&supportsCoopLaunch, cudaDevAttrCooperativeLaunch, dev);

which will set supportsCoopLaunch to 1 if the property is supported on device 0. Only devices
with compute capability of 6.0 and higher are supported. In addition, you need to be running on
either of these:

‣ The Linux platform without MPS

‣ The Linux platform with MPS and on a device with compute capability 7.0 or higher

‣ The latest Windows platform

C.8.  Multi-Device Synchronization
In order to enable synchronization across multiple devices with Cooperative Groups,
use of the cudaLaunchCooperativeKernelMultiDevice CUDA API is required. This, a
significant departure from existing CUDA APIs, will allow a single host thread to launch
a kernel across multiple devices. In addition to the constraints and guarantees made by
cudaLaunchCooperativeKernel, this API has additional semantics:

‣ This API will ensure that a launch is atomic, i.e. if the API call succeeds, then the provided
number of thread blocks will launch on all specified devices.

‣ The functions launched via this API must be identical. No explicit checks are done by the
driver in this regard because it is largely not feasible. It is up to the application to ensure
this.

‣ No two entries in the provided cudaLaunchParams may map to the same device.
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‣ All devices being targeted by this launch must be of the same compute capability - major
and minor versions.

‣ The block size, grid size and amount of shared memory per grid must be the same across
all devices. Note that this means the maximum number of blocks that can be launched per
device will be limited by the device with the least number of SMs.

‣ Any user defined __device__, __constant__ or __managed__ device global variables
present in the module that owns the CUfunction being launched are independently
instantiated on every device. The user is responsible for initializing such device global
variables appropriately.

Deprecation Notice: cudaLaunchCooperativeKernelMultiDevice has been deprecated in
CUDA 11.3 for all devices. Example of an alternative approach can be found in the multi device
conjugate gradient sample.

Optimal performance in multi-device synchronization is achieved by enabling peer access via
cuCtxEnablePeerAccess or cudaDeviceEnablePeerAccess for all participating devices.

The launch parameters should be defined using an array of structs (one per device), and
launched with cudaLaunchCooperativeKernelMultiDevice

Example:

cudaDeviceProp deviceProp;
cudaGetDeviceCount(&numGpus);

// Per device launch parameters
cudaLaunchParams *launchParams = (cudaLaunchParams*)malloc(sizeof(cudaLaunchParams)
 * numGpus);
cudaStream_t *streams = (cudaStream_t*)malloc(sizeof(cudaStream_t) * numGpus);

// The kernel arguments are copied over during launch
// Its also possible to have individual copies of kernel arguments per device, but
// the signature and name of the function/kernel must be the same.
void *kernelArgs[] = { /* Add kernel arguments */ };

for (int i = 0; i < numGpus; i++) {
    cudaSetDevice(i);
    // Per device stream, but its also possible to use the default NULL stream of
 each device
    cudaStreamCreate(&streams[i]);
    // Loop over other devices and cudaDeviceEnablePeerAccess to get a faster
 barrier implementation
}
// Since all devices must be of the same compute capability and have the same launch
 configuration
// it is sufficient to query device 0 here
cudaGetDeviceProperties(&deviceProp[i], 0);
dim3 dimBlock(numThreads, 1, 1);
dim3 dimGrid(deviceProp.multiProcessorCount, 1, 1);
for (int i = 0; i < numGpus; i++) {
    launchParamsList[i].func = (void*)my_kernel;
    launchParamsList[i].gridDim = dimGrid;
    launchParamsList[i].blockDim = dimBlock;
    launchParamsList[i].sharedMem = 0;
    launchParamsList[i].stream = streams[i];
    launchParamsList[i].args = kernelArgs;
}
cudaLaunchCooperativeKernelMultiDevice(launchParams, numGpus);
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Also, as with grid-wide synchronization, the resulting device code looks very similar:

multi_grid_group multi_grid = this_multi_grid();
multi_grid.sync();

However, the code needs to be compiled in separate compilation by passing -rdc=true to nvcc.

It is good practice to first ensure the device supports multi-device cooperative launches by
querying the device attribute cudaDevAttrCooperativeMultiDeviceLaunch:

int dev = 0;
int supportsMdCoopLaunch = 0;
cudaDeviceGetAttribute(&supportsMdCoopLaunch,
 cudaDevAttrCooperativeMultiDeviceLaunch, dev);

which will set supportsMdCoopLaunch to 1 if the property is supported on device 0. Only
devices with compute capability of 6.0 and higher are supported. In addition, you need to be
running on the Linux platform (without MPS) or on current versions of Windows with the device
in TCC mode.

See the cudaLaunchCooperativeKernelMultiDevice API documentation for more
information.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EXECUTION.html#group__CUDART__EXECUTION_1g20f8d75d8786c54cc168c47fde66ee52
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Appendix D. CUDA Dynamic Parallelism

D.1.  Introduction

D.1.1.  Overview
Dynamic Parallelism is an extension to the CUDA programming model enabling a CUDA kernel
to create and synchronize with new work directly on the GPU. The creation of parallelism
dynamically at whichever point in a program that it is needed offers exciting new capabilities.

The ability to create work directly from the GPU can reduce the need to transfer execution
control and data between host and device, as launch configuration decisions can now be
made at runtime by threads executing on the device. Additionally, data-dependent parallel
work can be generated inline within a kernel at run-time, taking advantage of the GPU's
hardware schedulers and load balancers dynamically and adapting in response to data-driven
decisions or workloads. Algorithms and programming patterns that had previously required
modifications to eliminate recursion, irregular loop structure, or other constructs that do not
fit a flat, single-level of parallelism may more transparently be expressed.

This document describes the extended capabilities of CUDA which enable Dynamic
Parallelism, including the modifications and additions to the CUDA programming model
necessary to take advantage of these, as well as guidelines and best practices for exploiting
this added capacity.

Dynamic Parallelism is only supported by devices of compute capability 3.5 and higher.

D.1.2.  Glossary
Definitions for terms used in this guide.

Grid
A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are divided
into Thread Blocks.

Thread Block
A Thread Block is a group of threads which execute on the same multiprocessor (SM).
Threads within a Thread Block have access to shared memory and can be explicitly
synchronized.
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Kernel Function
A Kernel Function is an implicitly parallel subroutine that executes under the CUDA
execution and memory model for every Thread in a Grid.

Host
The Host refers to the execution environment that initially invoked CUDA. Typically the
thread running on a system's CPU processor.

Parent
A Parent Thread, Thread Block, or Grid is one that has launched new grid(s), the Child
Grid(s). The Parent is not considered completed until all of its launched Child Grids have
also completed.

Child
A Child thread, block, or grid is one that has been launched by a Parent grid. A Child grid
must complete before the Parent Thread, Thread Block, or Grid are considered complete.

Thread Block Scope
Objects with Thread Block Scope have the lifetime of a single Thread Block. They only have
defined behavior when operated on by Threads in the Thread Block that created the object
and are destroyed when the Thread Block that created them is complete.

Device Runtime
The Device Runtime refers to the runtime system and APIs available to enable Kernel
Functions to use Dynamic Parallelism.

D.2.  Execution Environment and Memory
Model

D.2.1.  Execution Environment
The CUDA execution model is based on primitives of threads, thread blocks, and grids, with
kernel functions defining the program executed by individual threads within a thread block
and grid. When a kernel function is invoked the grid's properties are described by an execution
configuration, which has a special syntax in CUDA. Support for dynamic parallelism in CUDA
extends the ability to configure, launch, and synchronize upon new grids to threads that are
running on the device.

D.2.1.1.  Parent and Child Grids
A device thread that configures and launches a new grid belongs to the parent grid, and the
grid created by the invocation is a child grid.

The invocation and completion of child grids is properly nested, meaning that the parent grid
is not considered complete until all child grids created by its threads have completed. Even
if the invoking threads do not explicitly synchronize on the child grids launched, the runtime
guarantees an implicit synchronization between the parent and child.
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Figure 12. Parent-Child Launch Nesting
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D.2.1.2.  Scope of CUDA Primitives
On both host and device, the CUDA runtime offers an API for launching kernels, for waiting
for launched work to complete, and for tracking dependencies between launches via streams
and events. On the host system, the state of launches and the CUDA primitives referencing
streams and events are shared by all threads within a process; however processes execute
independently and may not share CUDA objects.

A similar hierarchy exists on the device: launched kernels and CUDA objects are visible to
all threads in a thread block, but are independent between thread blocks. This means for
example that a stream may be created by one thread and used by any other thread in the same
thread block, but may not be shared with threads in any other thread block.

D.2.1.3.  Synchronization
CUDA runtime operations from any thread, including kernel launches, are visible across
a thread block. This means that an invoking thread in the parent grid may perform
synchronization on the grids launched by that thread, by other threads in the thread block,
or on streams created within the same thread block. Execution of a thread block is not
considered complete until all launches by all threads in the block have completed. If all
threads in a block exit before all child launches have completed, a synchronization operation
will automatically be triggered.

D.2.1.4.  Streams and Events
CUDA Streams and Events allow control over dependencies between grid launches: grids
launched into the same stream execute in-order, and events may be used to create
dependencies between streams. Streams and events created on the device serve this exact
same purpose.



CUDA Dynamic Parallelism

CUDA C++ Programming Guide PG-02829-001_v11.5   |   249

Streams and events created within a grid exist within thread block scope but have undefined
behavior when used outside of the thread block where they were created. As described above,
all work launched by a thread block is implicitly synchronized when the block exits; work
launched into streams is included in this, with all dependencies resolved appropriately. The
behavior of operations on a stream that has been modified outside of thread block scope is
undefined.

Streams and events created on the host have undefined behavior when used within any kernel,
just as streams and events created by a parent grid have undefined behavior if used within a
child grid.

D.2.1.5.  Ordering and Concurrency
The ordering of kernel launches from the device runtime follows CUDA Stream ordering
semantics. Within a thread block, all kernel launches into the same stream are executed in-
order. With multiple threads in the same thread block launching into the same stream, the
ordering within the stream is dependent on the thread scheduling within the block, which may
be controlled with synchronization primitives such as __syncthreads().

Note that because streams are shared by all threads within a thread block, the implicit NULL
stream is also shared. If multiple threads in a thread block launch into the implicit stream,
then these launches will be executed in-order. If concurrency is desired, explicit named
streams should be used.

Dynamic Parallelism enables concurrency to be expressed more easily within a program;
however, the device runtime introduces no new concurrency guarantees within the CUDA
execution model. There is no guarantee of concurrent execution between any number of
different thread blocks on a device.

The lack of concurrency guarantee extends to parent thread blocks and their child grids.
When a parent thread block launches a child grid, the child is not guaranteed to begin
execution until the parent thread block reaches an explicit synchronization point (e.g.
cudaDeviceSynchronize()).

While concurrency will often easily be achieved, it may vary as a function of
deviceconfiguration, application workload, and runtime scheduling. It is therefore unsafe to
depend upon any concurrency between different thread blocks.

D.2.1.6.  Device Management
There is no multi-GPU support from the device runtime; the device runtime is only capable of
operating on the device upon which it is currently executing. It is permitted, however, to query
properties for any CUDA capable device in the system.

D.2.2.  Memory Model
Parent and child grids share the same global and constant memory storage, but have distinct
local and shared memory.
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D.2.2.1.  Coherence and Consistency

D.2.2.1.1.  Global Memory
Parent and child grids have coherent access to global memory, with weak consistency
guarantees between child and parent. There are two points in the execution of a child grid
when its view of memory is fully consistent with the parent thread: when the child grid is
invoked by the parent, and when the child grid completes as signaled by a synchronization API
invocation in the parent thread.

All global memory operations in the parent thread prior to the child grid's invocation are
visible to the child grid. All memory operations of the child grid are visible to the parent after
the parent has synchronized on the child grid's completion.

In the following example, the child grid executing child_launch is only guaranteed to see the
modifications to data made before the child grid was launched. Since thread 0 of the parent
is performing the launch, the child will be consistent with the memory seen by thread 0 of the
parent. Due to the first __syncthreads() call, the child will see data[0]=0, data[1]=1, ...,
data[255]=255 (without the __syncthreads() call, only data[0] would be guaranteed to
be seen by the child). When the child grid returns, thread 0 is guaranteed to see modifications
made by the threads in its child grid. Those modifications become available to the other
threads of the parent grid only after the second __syncthreads() call:

__global__ void child_launch(int *data) {
   data[threadIdx.x] = data[threadIdx.x]+1;
}

__global__ void parent_launch(int *data) {
   data[threadIdx.x] = threadIdx.x;

   __syncthreads();

   if (threadIdx.x == 0) {
       child_launch<<< 1, 256 >>>(data);
       cudaDeviceSynchronize();
   }

   __syncthreads();
}

void host_launch(int *data) {
    parent_launch<<< 1, 256 >>>(data);
}

D.2.2.1.2.  Zero Copy Memory
Zero-copy system memory has identical coherence and consistency guarantees to global
memory, and follows the semantics detailed above. A kernel may not allocate or free zero-
copy memory, but may use pointers to zero-copy passed in from the host program.

D.2.2.1.3.  Constant Memory
Constants are immutable and may not be modified from the device, even between parent and
child launches. That is to say, the value of all __constant__ variables must be set from the
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host prior to launch. Constant memory is inherited automatically by all child kernels from
their respective parents.

Taking the address of a constant memory object from within a kernel thread has the same
semantics as for all CUDA programs, and passing that pointer from parent to child or from a
child to parent is naturally supported.

D.2.2.1.4.  Shared and Local Memory
Shared and Local memory is private to a thread block or thread, respectively, and is not visible
or coherent between parent and child. Behavior is undefined when an object in one of these
locations is referenced outside of the scope within which it belongs, and may cause an error.

The NVIDIA compiler will attempt to warn if it can detect that a pointer to local or shared
memory is being passed as an argument to a kernel launch. At runtime, the programmer may
use the __isGlobal() intrinsic to determine whether a pointer references global memory and
so may safely be passed to a child launch.

Note that calls to cudaMemcpy*Async() or cudaMemset*Async() may invoke new child
kernels on the device in order to preserve stream semantics. As such, passing shared or local
memory pointers to these APIs is illegal and will return an error.

D.2.2.1.5.  Local Memory
Local memory is private storage for an executing thread, and is not visible outside of that
thread. It is illegal to pass a pointer to local memory as a launch argument when launching
a child kernel. The result of dereferencing such a local memory pointer from a child will be
undefined.

For example the following is illegal, with undefined behavior if x_array is accessed by
child_launch:

int x_array[10];       // Creates x_array in parent's local memory 
child_launch<<< 1, 1 >>>(x_array);

It is sometimes difficult for a programmer to be aware of when a variable is placed into local
memory by the compiler. As a general rule, all storage passed to a child kernel should be
allocated explicitly from the global-memory heap, either with cudaMalloc(), new() or by
declaring __device__ storage at global scope. For example:

// Correct - "value" is global storage
__device__ int value; 
__device__ void x() { 
    value = 5; 
    child<<< 1, 1 >>>(&value); 
}

// Invalid - "value" is local storage
__device__ void y() { 
    int value = 5; 
    child<<< 1, 1 >>>(&value); 
}
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D.2.2.1.6.  Texture Memory
Writes to the global memory region over which a texture is mapped are incoherent with
respect to texture accesses. Coherence for texture memory is enforced at the invocation of
a child grid and when a child grid completes. This means that writes to memory prior to a
child kernel launch are reflected in texture memory accesses of the child. Similarly, writes to
memory by a child will be reflected in the texture memory accesses by a parent, but only after
the parent synchronizes on the child's completion. Concurrent accesses by parent and child
may result in inconsistent data.

D.3.  Programming Interface

D.3.1.  CUDA C++ Reference
This section describes changes and additions to the CUDA C++ language extensions for
supporting Dynamic Parallelism.

The language interface and API available to CUDA kernels using CUDA C++ for Dynamic
Parallelism, referred to as the Device Runtime, is substantially like that of the CUDA Runtime
API available on the host. Where possible the syntax and semantics of the CUDA Runtime API
have been retained in order to facilitate ease of code reuse for routines that may run in either
the host or device environments.

As with all code in CUDA C++, the APIs and code outlined here is per-thread code. This
enables each thread to make unique, dynamic decisions regarding what kernel or operation
to execute next. There are no synchronization requirements between threads within a block
to execute any of the provided device runtime APIs, which enables the device runtime API
functions to be called in arbitrarily divergent kernel code without deadlock.

D.3.1.1.  Device-Side Kernel Launch
Kernels may be launched from the device using the standard CUDA <<< >>> syntax:

kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments]);

‣ Dg is of type dim3 and specifies the dimensions and size of the grid

‣ Db is of type dim3 and specifies the dimensions and size of each thread block

‣ Ns is of type size_t and specifies the number of bytes of shared memory that is
dynamically allocated per thread block for this call and addition to statically allocated
memory. Ns is an optional argument that defaults to 0.

‣ S is of type cudaStream_t and specifies the stream associated with this call. The stream
must have been allocated in the same thread block where the call is being made. S is an
optional argument that defaults to 0.
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D.3.1.1.1.  Launches are Asynchronous
Identical to host-side launches, all device-side kernel launches are asynchronous with
respect to the launching thread. That is to say, the <<<>>> launch command will return
immediately and the launching thread will continue to execute until it hits an explicit launch-
synchronization point such as cudaDeviceSynchronize(). The grid launch is posted to the
device and will execute independently of the parent thread. The child grid may begin execution
at any time after launch, but is not guaranteed to begin execution until the launching thread
reaches an explicit launch-synchronization point.

D.3.1.1.2.  Launch Environment Configuration
All global device configuration settings (e.g., shared memory and L1 cache size as
returned from cudaDeviceGetCacheConfig(), and device limits returned from
cudaDeviceGetLimit()) will be inherited from the parent. Likewise, device limits such as
stack size will remain as-configured.

For host-launched kernels, per-kernel configurations set from the host will take precedence
over the global setting. These configurations will be used when the kernel is launched from
the device as well. It is not possible to reconfigure a kernel's environment from the device.

D.3.1.2.  Streams
Both named and unnamed (NULL) streams are available from the device runtime. Named
streams may be used by any thread within a thread-block, but stream handles may not be
passed to other blocks or child/parent kernels. In other words, a stream should be treated
as private to the block in which it is created. Stream handles are not guaranteed to be unique
between blocks, so using a stream handle within a block that did not allocate it will result in
undefined behavior.

Similar to host-side launch, work launched into separate streams may run concurrently, but
actual concurrency is not guaranteed. Programs that depend upon concurrency between child
kernels are not supported by the CUDA programming model and will have undefined behavior.

The host-side NULL stream's cross-stream barrier semantic is not supported on the device
(see below for details). In order to retain semantic compatibility with the host runtime, all
device streams must be created using the cudaStreamCreateWithFlags() API, passing the
cudaStreamNonBlocking flag. The cudaStreamCreate() call is a host-runtime- only API and
will fail to compile for the device.

As cudaStreamSynchronize() and cudaStreamQuery() are unsupported by the device
runtime, cudaDeviceSynchronize() should be used instead when the application needs to
know that stream-launched child kernels have completed.

D.3.1.2.1.  The Implicit (NULL) Stream
Within a host program, the unnamed (NULL) stream has additional barrier synchronization
semantics with other streams (see Default Stream for details). The device runtime offers
a single implicit, unnamed stream shared between all threads in a block, but as all named
streams must be created with the cudaStreamNonBlocking flag, work launched into the
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NULL stream will not insert an implicit dependency on pending work in any other streams
(including NULL streams of other thread blocks).

D.3.1.3.  Events
Only the inter-stream synchronization capabilities of CUDA events are supported. This
means that cudaStreamWaitEvent() is supported, but cudaEventSynchronize(),
cudaEventElapsedTime(), and cudaEventQuery() are not. As cudaEventElapsedTime() is
not supported, cudaEvents must be created via cudaEventCreateWithFlags(), passing the
cudaEventDisableTiming flag.

As for all device runtime objects, event objects may be shared between all threads withinthe
thread-block which created them but are local to that block and may not be passed to other
kernels, or between blocks within the same kernel. Event handles are not guaranteed to be
unique between blocks, so using an event handle within a block that did not create it will result
in undefined behavior.

D.3.1.4.  Synchronization
The cudaDeviceSynchronize() function will synchronize on all work launched by any
thread in the thread-block up to the point where cudaDeviceSynchronize() was called. Note
that cudaDeviceSynchronize() may be called from within divergent code (see Block Wide
Synchronization).

It is up to the program to perform sufficient additional inter-thread synchronization, for
example via a call to __syncthreads(), if the calling thread is intended to synchronize with
child grids invoked from other threads.

D.3.1.4.1.  Block Wide Synchronization
The cudaDeviceSynchronize() function does not imply intra-block synchronization. In
particular, without explicit synchronization via a __syncthreads() directive the calling thread
can make no assumptions about what work has been launched by any thread other than itself.
For example if multiple threads within a block are each launching work and synchronization
is desired for all this work at once (perhaps because of event-based dependencies), it is
up to the program to guarantee that this work is submitted by all threads before calling
cudaDeviceSynchronize().

Because the implementation is permitted to synchronize on launches from any thread in the
block, it is quite possible that simultaneous calls to cudaDeviceSynchronize() by multiple
threads will drain all work in the first call and then have no effect for the later calls.

D.3.1.5.  Device Management
Only the device on which a kernel is running will be controllable from that kernel. This means
that device APIs such as cudaSetDevice() are not supported by the device runtime. The
active device as seen from the GPU (returned from cudaGetDevice()) will have the same
device number as seen from the host system. The cudaDeviceGetAttribute() call may
request information about another device as this API allows specification of a device ID as a
parameter of the call. Note that the catch-all cudaGetDeviceProperties() API is not offered
by the device runtime - properties must be queried individually.



CUDA Dynamic Parallelism

CUDA C++ Programming Guide PG-02829-001_v11.5   |   255

D.3.1.6.  Memory Declarations

D.3.1.6.1.  Device and Constant Memory
Memory declared at file scope with __device__ or __constant__ memory space specifiers
behaves identically when using the device runtime. All kernels may read or write device
variables, whether the kernel was initially launched by the host or device runtime.
Equivalently, all kernels will have the same view of __constant__s as declared at the module
scope.

D.3.1.6.2.  Textures & Surfaces
CUDA supports dynamically created texture and surface objects1, where a texture reference
may be created on the host, passed to a kernel, used by that kernel, and then destroyed from
the host. The device runtime does not allow creation or destruction of texture or surface
objects from within device code, but texture and surface objects created from the host may
be used and passed around freely on the device. Regardless of where they are created,
dynamically created texture objects are always valid and may be passed to child kernels from
a parent.

Note: The device runtime does not support legacy module-scope (i.e., Fermi-style) textures
and surfaces within a kernel launched from the device. Module-scope (legacy) textures may be
created from the host and used in device code as for any kernel, but may only be used by a top-
level kernel (i.e., the one which is launched from the host).

D.3.1.6.3.  Shared Memory Variable Declarations
In CUDA C++ shared memory can be declared either as a statically sized file-scope or
function-scoped variable, or as an extern variable with the size determined at runtime by the
kernel's caller via a launch configuration argument. Both types of declarations are valid under
the device runtime.

__global__ void permute(int n, int *data) {
   extern __shared__ int smem[];
   if (n <= 1)
       return;

   smem[threadIdx.x] = data[threadIdx.x];
   __syncthreads();

   permute_data(smem, n);
   __syncthreads();

   // Write back to GMEM since we can't pass SMEM to children.
   data[threadIdx.x] = smem[threadIdx.x];
   __syncthreads();

   if (threadIdx.x == 0) {
       permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data);

1 Dynamically created texture and surface objects are an addition to the CUDA memory model introduced with CUDA 5.0. Please
see the CUDA Programming Guide for details.
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       permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data+n/2);
   }
}

void host_launch(int *data) {
    permute<<< 1, 256, 256*sizeof(int) >>>(256, data);
}

D.3.1.6.4.  Symbol Addresses
Device-side symbols (i.e., those marked __device__) may be referenced from within a kernel
simply via the & operator, as all global-scope device variables are in the kernel's visible
address space. This also applies to __constant__ symbols, although in this case the pointer
will reference read-only data.

Given that device-side symbols can be referenced directly, those CUDA runtime APIs which
reference symbols (e.g., cudaMemcpyToSymbol() or cudaGetSymbolAddress()) are
redundant and hence not supported by the device runtime. Note this implies that constant
data cannot be altered from within a running kernel, even ahead of a child kernel launch, as
references to __constant__ space are read-only.

D.3.1.7.  API Errors and Launch Failures
As usual for the CUDA runtime, any function may return an error code. The last error code
returned is recorded and may be retrieved via the cudaGetLastError() call. Errors are
recorded per-thread, so that each thread can identify the most recent error that it has
generated. The error code is of type cudaError_t.

Similar to a host-side launch, device-side launches may fail for many reasons (invalid
arguments, etc). The user must call cudaGetLastError() to determine if a launch generated
an error, however lack of an error after launch does not imply the child kernel completed
successfully.

For device-side exceptions, e.g., access to an invalid address, an error in a child
grid will be returned to the host instead of being returned by the parent's call to
cudaDeviceSynchronize().

D.3.1.7.1.  Launch Setup APIs
Kernel launch is a system-level mechanism exposed through the device runtime library,
and as such is available directly from PTX via the underlying cudaGetParameterBuffer()
and cudaLaunchDevice() APIs. It is permitted for a CUDA application to call these APIs
itself, with the same requirements as for PTX. In both cases, the user is then responsible
for correctly populating all necessary data structures in the correct format according to
specification. Backwards compatibility is guaranteed in these data structures.

As with host-side launch, the device-side operator <<<>>> maps to underlying kernel launch
APIs. This is so that users targeting PTX will be able to enact a launch, and so that the
compiler front-end can translate <<<>>> into these calls.
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Table 5. New Device-only Launch Implementation Functions

Runtime API Launch Functions

Description of Difference From Host
Runtime Behaviour (behaviour is identical if
no description)

cudaGetParameterBuffer Generated automatically from <<<>>>. Note
different API to host equivalent.

cudaLaunchDevice Generated automatically from <<<>>>. Note
different API to host equivalent.

The APIs for these launch functions are different to those of the CUDA Runtime API, and are
defined as follows:

extern   device   cudaError_t cudaGetParameterBuffer(void **params);
extern __device__ cudaError_t cudaLaunchDevice(void *kernel,
                                        void *params, dim3 gridDim,
                                        dim3 blockDim,
                                        unsigned int sharedMemSize = 0,
                                        cudaStream_t stream = 0);

D.3.1.8.  API Reference
The portions of the CUDA Runtime API supported in the device runtime are detailed here.
Host and device runtime APIs have identical syntax; semantics are the same except where
indicated. The table below provides an overview of the API relative to the version available from
the host.

Table 6. Supported API Functions

Runtime API Functions Details
cudaDeviceSynchronize Synchronizes on work launched from thread's

own block only

cudaDeviceGetCacheConfig

cudaDeviceGetLimit

cudaGetLastError Last error is per-thread state, not per-block state

cudaPeekAtLastError

cudaGetErrorString

cudaGetDeviceCount

cudaDeviceGetAttribute Will return attributes for any device

cudaGetDevice Always returns current device ID as would be
seen from host

cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag

cudaStreamDestroy

cudaStreamWaitEvent

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag

cudaEventRecord
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Runtime API Functions Details
cudaEventDestroy

cudaFuncGetAttributes

cudaMemcpyAsync

cudaMemcpy2DAsync

cudaMemcpy3DAsync

cudaMemsetAsync

Notes about all memcpy/memset functions:

‣ Only async memcpy/set functions are
supported

‣ Only device-to-device memcpy is permitted

‣ May not pass in local or shared memory
pointers

cudaMemset2DAsync

cudaMemset3DAsync

cudaRuntimeGetVersion

cudaMalloc

cudaFree

May not call cudaFree on the device on a pointer
created on the host, and vice-versa

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxPotentialBlockSizeVariableSMem

D.3.2.  Device-side Launch from PTX
This section is for the programming language and compiler implementers who target Parallel
Thread Execution (PTX) and plan to support Dynamic Parallelism in their language. It provides
the low-level details related to supporting kernel launches at the PTX level.

D.3.2.1.  Kernel Launch APIs
Device-side kernel launches can be implemented using the following two APIs accessible
from PTX: cudaLaunchDevice() and cudaGetParameterBuffer(). cudaLaunchDevice()
launches the specified kernel with the parameter buffer that is obtained by calling
cudaGetParameterBuffer() and filled with the parameters to the launched kernel. The
parameter buffer can be NULL, i.e., no need to invoke cudaGetParameterBuffer(), if the
launched kernel does not take any parameters.

D.3.2.1.1.  cudaLaunchDevice
At the PTX level, cudaLaunchDevice()needs to be declared in one of the two forms shown
below before it is used.

// PTX-level Declaration of cudaLaunchDevice() when .address_size is 64
.extern .func(.param .b32 func_retval0) cudaLaunchDevice 
( 
  .param .b64 func, 
  .param .b64 parameterBuffer, 
  .param .align 4 .b8 gridDimension[12], 
  .param .align 4 .b8 blockDimension[12], 
  .param .b32 sharedMemSize, 
  .param .b64 stream 
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) 
;

// PTX-level Declaration of cudaLaunchDevice() when .address_size is 32
.extern .func(.param .b32 func_retval0) cudaLaunchDevice
(
  .param .b32 func,
  .param .b32 parameterBuffer,
  .param .align 4 .b8 gridDimension[12],
  .param .align 4 .b8 blockDimension[12],
  .param .b32 sharedMemSize,
  .param .b32 stream
)
;

The CUDA-level declaration below is mapped to one of the aforementioned PTX-level
declarations and is found in the system header file cuda_device_runtime_api.h. The
function is defined in the cudadevrt system library, which must be linked with a program in
order to use device-side kernel launch functionality.

// CUDA-level declaration of cudaLaunchDevice()
extern "C" __device__ 
cudaError_t cudaLaunchDevice(void *func, void *parameterBuffer, 
                             dim3 gridDimension, dim3 blockDimension, 
                             unsigned int sharedMemSize, 
                             cudaStream_t stream);

The first parameter is a pointer to the kernel to be is launched, and the second parameter
is the parameter buffer that holds the actual parameters to the launched kernel. The layout
of the parameter buffer is explained in Parameter Buffer Layout, below. Other parameters
specify the launch configuration, i.e., as grid dimension, block dimension, shared memory size,
and the stream associated with the launch (please refer to Execution Configuration for the
detailed description of launch configuration.

D.3.2.1.2.  cudaGetParameterBuffer
cudaGetParameterBuffer() needs to be declared at the PTX level before it's used. The PTX-
level declaration must be in one of the two forms given below, depending on address size:

// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 64
// When .address_size is 64
.extern .func(.param .b64 func_retval0) cudaGetParameterBuffer
(
  .param .b64 alignment,
  .param .b64 size
)
;

// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 32
.extern .func(.param .b32 func_retval0) cudaGetParameterBuffer
(
  .param .b32 alignment,
  .param .b32 size
)
;

The following CUDA-level declaration of cudaGetParameterBuffer() is mapped to the
aforementioned PTX-level declaration:

// CUDA-level Declaration of cudaGetParameterBuffer()
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extern "C" __device__
void *cudaGetParameterBuffer(size_t alignment, size_t size);

The first parameter specifies the alignment requirement of the parameter buffer and
the second parameter the size requirement in bytes. In the current implementation,
the parameter buffer returned by cudaGetParameterBuffer() is always guaranteed
to be 64- byte aligned, and the alignment requirement parameter is ignored. However,
it is recommended to pass the correct alignment requirement value - which is
the largest alignment of any parameter to be placed in the parameter buffer - to
cudaGetParameterBuffer() to ensure portability in the future.

D.3.2.2.  Parameter Buffer Layout
Parameter reordering in the parameter buffer is prohibited, and each individual parameter
placed in the parameter buffer is required to be aligned. That is, each parameter must
be placed at the nth byte in the parameter buffer, where n is the smallest multiple of
the parameter size that is greater than the offset of the last byte taken by the preceding
parameter. The maximum size of the parameter buffer is 4KB.

For a more detailed description of PTX code generated by the CUDA compiler, please refer to
the PTX-3.5 specification.

D.3.3.  Toolkit Support for Dynamic Parallelism

D.3.3.1.  Including Device Runtime API in CUDA Code
Similar to the host-side runtime API, prototypes for the CUDA device runtime API
are included automatically during program compilation. There is no need to include
cuda_device_runtime_api.h explicitly.

D.3.3.2.  Compiling and Linking
When compiling and linking CUDA programs using dynamic parallelism with nvcc, the
program will automatically link against the static device runtime library libcudadevrt.

The device runtime is offered as a static library (cudadevrt.lib on Windows,
libcudadevrt.a under Linux), against which a GPU application that uses the device runtime
must be linked. Linking of device libraries can be accomplished through nvcc and/or nvlink.
Two simple examples are shown below.

A device runtime program may be compiled and linked in a single step, if all required source
files can be specified from the command line:

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

It is also possible to compile CUDA .cu source files first to object files, and then link these
together in a two-stage process:

$ nvcc -arch=sm_35 -dc hello_world.cu -o hello_world.o
$ nvcc -arch=sm_35 -rdc=true hello_world.o -o hello -lcudadevrt
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Please see the Using Separate Compilation section of The CUDA Driver Compiler NVCC guide for
more details.

D.4.  Programming Guidelines

D.4.1.  Basics
The device runtime is a functional subset of the host runtime. API level device management,
kernel launching, device memcpy, stream management, and event management are exposed
from the device runtime.

Programming for the device runtime should be familiar to someone who already has
experience with CUDA. Device runtime syntax and semantics are largely the same as that of
the host API, with any exceptions detailed earlier in this document.

The following example shows a simple Hello World program incorporating dynamic
parallelism:

#include <stdio.h> 

__global__ void childKernel() 
{ 
    printf("Hello "); 
} 

__global__ void parentKernel() 
{ 
    // launch child 
    childKernel<<<1,1>>>(); 
    if (cudaSuccess != cudaGetLastError()) { 
        return; 
    }

    // wait for child to complete 
    if (cudaSuccess != cudaDeviceSynchronize()) { 
        return; 
    } 

    printf("World!\n"); 
} 

int main(int argc, char *argv[]) 
{ 
    // launch parent 
    parentKernel<<<1,1>>>(); 
    if (cudaSuccess != cudaGetLastError()) { 
        return 1; 
    } 

    // wait for parent to complete 
    if (cudaSuccess != cudaDeviceSynchronize()) { 
        return 2; 
    } 

    return 0; 
}

This program may be built in a single step from the command line as follows:
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$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

D.4.2.  Performance

D.4.2.1.  Synchronization
Synchronization by one thread may impact the performance of other threads in the same
Thread Block, even when those other threads do not call cudaDeviceSynchronize()
themselves. This impact will depend upon the underlying implementation. In general the
implicit synchronization of child kernels done when a thread block ends is more efficient
compared to calling cudaDeviceSynchronize() explicitly. It is therefore recommended to only
call cudaDeviceSynchronize() if it is needed to synchronize with a child kernel before a thread
block ends.

D.4.2.2.  Dynamic-parallelism-enabled Kernel Overhead
System software which is active when controlling dynamic launches may impose an overhead
on any kernel which is running at the time, whether or not it invokes kernel launches of its
own. This overhead arises from the device runtime's execution tracking and management
software and may result in decreased performance for e.g., library calls when made from the
device compared to from the host side. This overhead is, in general, incurred for applications
that link against the device runtime library.

D.4.3.  Implementation Restrictions and Limitations
Dynamic Parallelism guarantees all semantics described in this document, however, certain
hardware and software resources are implementation-dependent and limit the scale,
performance and other properties of a program which uses the device runtime.

D.4.3.1.  Runtime

D.4.3.1.1.  Memory Footprint
The device runtime system software reserves memory for various management purposes, in
particular one reservation which is used for saving parent-grid state during synchronization,
and a second reservation for tracking pending grid launches. Configuration controls are
available to reduce the size of these reservations in exchange for certain launch limitations.
See Configuration Options, below, for details.

The majority of reserved memory is allocated as backing-store for parent kernel state, for
use when synchronizing on a child launch. Conservatively, this memory must support storing
of state for the maximum number of live threads possible on the device. This means that
each parent generation at which cudaDeviceSynchronize() is callable may require up to
860MB of device memory, depending on the device configuration, which will be unavailable for
program use even if it is not all consumed.
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D.4.3.1.2.  Nesting and Synchronization Depth
Using the device runtime, one kernel may launch another kernel, and that kernel may launch
another, and so on. Each subordinate launch is considered a new nesting level, and the total
number of levels is the nesting depth of the program. The synchronization depth is defined as
the deepest level at which the program will explicitly synchronize on a child launch. Typically
this is one less than the nesting depth of the program, but if the program does not need
to call cudaDeviceSynchronize() at all levels then the synchronization depth might be
substantially different to the nesting depth.

The overall maximum nesting depth is limited to 24, but practically speaking the real limit will
be the amount of memory required by the system for each new level (see Memory Footprint
above). Any launch which would result in a kernel at a deeper level than the maximum will fail.
Note that this may also apply to cudaMemcpyAsync(), which might itself generate a kernel
launch. See Configuration Options for details.

By default, sufficient storage is reserved for two levels of synchronization. This maximum
synchronization depth (and hence reserved storage) may be controlled by calling
cudaDeviceSetLimit() and specifying cudaLimitDevRuntimeSyncDepth. The number
of levels to be supported must be configured before the top-level kernel is launched
from the host, in order to guarantee successful execution of a nested program. Calling
cudaDeviceSynchronize() at a depth greater than the specified maximum synchronization
depth will return an error.

An optimization is permitted where the system detects that it need not reserve space for the
parent's state in cases where the parent kernel never calls cudaDeviceSynchronize(). In
this case, because explicit parent/child synchronization never occurs, the memory footprint
required for a program will be much less than the conservative maximum. Such a program
could specify a shallower maximum synchronization depth to avoid over-allocation of backing
store.

D.4.3.1.3.  Pending Kernel Launches
When a kernel is launched, all associated configuration and parameter data is tracked until
the kernel completes. This data is stored within a system-managed launch pool.

The launch pool is divided into a fixed-size pool and a virtualized pool with lower performance.
The device runtime system software will try to track launch data in the fixed-size pool first.
The virtualized pool will be used to track new launches when the fixed-size pool is full.

The size of the fixed-size launch pool is configurable by calling cudaDeviceSetLimit() from
the host and specifying cudaLimitDevRuntimePendingLaunchCount.

D.4.3.1.4.  Configuration Options
Resource allocation for the device runtime system software is controlled via the
cudaDeviceSetLimit() API from the host program. Limits must be set before any kernel is
launched, and may not be changed while the GPU is actively running programs.

The following named limits may be set:
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Limit Behavior
cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which

cudaDeviceSynchronize() may be
called. Launches may be performed deeper
than this, but explicit synchronization
deeper than this limit will return the
cudaErrorLaunchMaxDepthExceeded. The
default maximum sync depth is 2.

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set
aside for buffering kernel launches
which have not yet begun to execute, due
either to unresolved dependencies or
lack of execution resources. When the
buffer is full, the device runtime system
software will attempt to track new pending
launches in a lower performance virtualized
buffer. If the virtualized buffer is also
full, i.e. when all available heap space
is consumed, launches will not occur,
and the thread's last error will be set to
cudaErrorLaunchPendingCountExceeded.
The default pending launch count is 2048
launches.

cudaLimitStackSize Controls the stack size in bytes of each
GPU thread. The CUDA driver automatically
increases the per-thread stack size for each
kernel launch as needed. This size isn't
reset back to the original value after each
launch. To set the per-thread stack size to
a different value, cudaDeviceSetLimit()
can be called to set this limit. The stack
will be immediately resized, and if
necessary, the device will block until all
preceding requested tasks are complete.
cudaDeviceGetLimit() can be called to
get the current per-thread stack size.

D.4.3.1.5.  Memory Allocation and Lifetime
cudaMalloc() and cudaFree() have distinct semantics between the host and device
environments. When invoked from the host, cudaMalloc() allocates a new region from
unused device memory. When invoked from the device runtime these functions map to
device-side malloc() and free(). This implies that within the device environment the total
allocatable memory is limited to the device malloc() heap size, which may be smaller than
the available unused device memory. Also, it is an error to invoke cudaFree() from the host
program on a pointer which was allocated by cudaMalloc() on the device or vice-versa.

cudaMalloc() on Host cudaMalloc() on Device
cudaFree() on Host Supported Not Supported

cudaFree() on Device Not Supported Supported
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cudaMalloc() on Host cudaMalloc() on Device
Allocation limit Free device memory cudaLimitMallocHeapSize

D.4.3.1.6.  SM Id and Warp Id
Note that in PTX %smid and %warpid are defined as volatile values. The device runtime may
reschedule thread blocks onto different SMs in order to more efficiently manage resources. As
such, it is unsafe to rely upon %smid or %warpid remaining unchanged across the lifetime of a
thread or thread block.

D.4.3.1.7.  ECC Errors
No notification of ECC errors is available to code within a CUDA kernel. ECC errors are
reported at the host side once the entire launch tree has completed. Any ECC errors which
arise during execution of a nested program will either generate an exception or continue
execution (depending upon error and configuration).
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Appendix E. Virtual Memory
Management

E.1.  Introduction
The Virtual Memory Management APIs provide a way for the application to directly manage
the unified virtual address space that CUDA provides to map physical memory to virtual
addresses accessible by the GPU. Introduced in CUDA 10.2, these APIs additionally provide a
new way to interop with other processes and graphics APIs like OpenGL and Vulkan, as well as
provide newer memory attributes that a user can tune to fit their applications.

Historically, memory allocation calls (eg. cudaMalloc) in the CUDA programming model have
returned a memory address that points to the GPU memory. The address thus obtained could
be used with any CUDA API or inside a device kernel. However, the memory allocated could
not be resized depending on the user's memory needs. In order to increase an allocation's
size, the user had to explicitly allocate a larger buffer, copy data from the initial allocation,
free it and then continue to keep track of the newer allocation's address. This often lead to
lower performance and higher peak memory utilization for applications. Essentially, users had
a malloc-like interface for allocating GPU memory, but did not have a corresponding realloc
to compliment it. The Virtual Memory Management APIs decouple the idea of an address and
memory and allow the application to handle them separately. The APIs allow applications to
map and unmap memory from a virtual address range as they see fit.

In the case of enabling peer device access to memory allocations via cudaEnablePeerAccess,
all past and future user allocations are mapped to the target peer device. This lead to users
unwittingly paying runtime cost of mapping all cudaMalloc allocations to peer devices.
However, in most situations applications communicate by sharing only a few allocations
with another device and not all allocations are required to be mapped to all the devices. With
Virtual Memory Management applications can specifically choose certain allocations to be
accessible from target devices.

The CUDA Virtual Memory Management APIs expose fine grained control to the user for
managing the GPU memory in applications. It provides APIs that lets users:

‣ Place memory allocated on different devices into a contiguous VA range.

‣ Perform interprocess communication for memory sharing using platform specific
mechanisms.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__VA.html
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‣ Opt into newer memory types on the devices that support them.

In order to allocate memory, the Virtual Memory Management programming model exposes
the following functionality:

‣ Allocating physical memory.

‣ Reserving a VA range.

‣ Mapping allocated memory to the VA range.

‣ Controlling access rights on the mapped range.

Note that the suite of APIs described in this section require a system that supports UVA.

E.2.  Query for support
Before attempting to use Virtual Memory Management APIs, applications must ensure that
the device(s) they wish to use support CUDA Virtual Memory Management. The following code
sample shows querying for Virtual Memory Management support:

int deviceSupportsVmm;
CUresult result = cuDeviceGetAttribute(&deviceSupportsVmm,
 CU_DEVICE_ATTRIBUTE_VIRTUAL_MEMORY_MANAGEMENT_SUPPORTED, device);
if (deviceSupportsVmm != 0) {
    // `device` supports Virtual Memory Management 
}
      

E.3.  Allocating Physical Memory
The first step in memory allocation via Virtual Memory Management APIs is to create a
physical memory chunk that will provide a backing for the allocation. In order to allocate
physical memory, applications must use the cuMemCreate API. The allocation created
by this function does not have any device or host mappings. The function argument
CUmemGenericAllocationHandle describes the properties of the memory to allocate such
as the location of the allocation, if the allocation is going to be shared to another process
(or other Graphics APIs), or the physical attributes of the memory to be allocated. Users
must ensure the requested allocation's size must be aligned to appropriate granularity.
Information regarding an allocation's granulariy requirements can be queried using
cuMemGetAllocationGranularity. The following code snippet shows allocating physical
memory with cuMemCreate:

CUmemGenericAllocationHandle allocatePhysicalMemory(int device, size_t size) {
    CUmemAllocationProp prop = {};
    prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
    prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
    prop.location.id = device;
    cuMemGetAllocationGranularity(&granularity, &prop,
 CU_MEM_ALLOC_GRANULARITY_MINIMUM);
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    // Ensure size matches granularity requirements for the allocation
    size_t padded_size = ROUND_UP(size, granularity);

    // Allocate physical memory
    CUmemGenericAllocationHandle allocHandle;
    cuMemCreate(&allocHandle, padded_size, &prop, 0);

    return allocHandle;
}
      

The memory allocated by cuMemCreate is referenced by the
CUmemGenericAllocationHandle it returns. This is a departure from the cudaMalloc-style of
allocation which returns a pointer to the GPU memory which was directly accessible by CUDA
kernel executing on the device. The memory allocated cannot be used for any operations other
than querying properties using cuMemGetAllocationPropertiesFromHandle. In order to
make this memory accessible, applications must map this memory into a VA range reserved
by cuMemAddressReserve and provide suitable access rights to it. Applications must free the
allocated memory using the cuMemRelease API.

E.3.1.  Shareable Memory Allocations
With cuMemCreate users now have the facility to indicate to CUDA, at allocation
time, that they have earmarked a particular allocation for Inter process
communication and/or graphics interop purposes. Applications can do this by setting
CUmemAllocationProp::requestedHandleTypes to a platform specific field.
On Windows, when CUmemAllocationProp::requestedHandleTypes is set to
CU_MEM_HANDLE_TYPE_WIN32 applications must also specify a LPSECURITYATTRIBUTES
attribute in CUmemAllocationProp::win32HandleMetaData. This security attribute defines
the scope of which exported allocations may be tranferred to other processes.

The CUDA Virtual Memory Management API functions do not support the legacy
interprocess communication functions with their memory. Instead, they expose a new
mechanism for interprocess communication that utilizes operating system specific handles.
Applications can obtain these OS specific handles corresponding to the allocations by using
cuMemExportToShareableHandle. The handles thus obtained can be transferred by using the
usual OS native mecahnisms for inter process communication. The recepient process should
import the allocation by using cuMemImportFromShareableHandle.

Users must ensure they query for support of the requested handle type before attempting to
export memory allocated with cuMemCreate. The following code snippet illustrates query for
handle type support in a platform specific way.

int deviceSupportsIpcHandle;
#if defined(__linux__)
    cuDeviceGetAttribute(&deviceSupportsIpcHandle,
 CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED, device));
#else
    cuDeviceGetAttribute(&deviceSupportsIpcHandle,
 CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED, device));
#endif
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Users should set the CUmemAllocationProp::requestedHandleTypes appropriately as
shown below:

#if defined(__linux__)
    prop.requestedHandleTypes = CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR;
#else
    prop.requestedHandleTypes = CU_MEM_HANDLE_TYPE_WIN32;
    prop.win32HandleMetaData = // Windows specific LPSECURITYATTRIBUTES attribute.
#endif
      

The memMapIpcDrv sample can be used as an example for using IPC with Virtual Memory
Management allocations.

E.3.2.  Memory Type
Before CUDA 10.2, applications had no user controlled way of allocating any special type of
memory that certain devices may support. With cuMemCreate applications can additionally
specify memory type requirements using the CUmemAllocationProp::allocFlags to opt into
any specific memory features. Applications must also ensure that the requested memory type
is supported on the device of allocation.

E.3.2.1.  Compressible Memory
Compressible memory can be used to accelerate accesses to data with unstructured sparsity
and other compressible data patterns. Compression can save DRAM bandwidth, L2 read
bandwidth and L2 capacity depending on the data being operated on. Applications that want
to allocate compressible memory on devices that support Compute Data Compression
can do so by setting CUmemAllocationProp::allocFlags::compressionType to
CU_MEM_ALLOCATION_COMP_GENERIC. Users must query if device supports Compute Data
Compression by using CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED.
The following code snippet illustrates querying compressible memory support
cuDeviceGetAttribute.

int compressionSupported = 0;
cuDeviceGetAttribute(&compressionSupported,
 CU_DEVICE_ATTRIBUTE_GENERIC_COMPRESSION_SUPPORTED, device);
      

On devices that support Compute Data Compression, users need to opt in at allocation time as
shown below:

prop.allocFlags.compressionType = CU_MEM_ALLOCATION_COMP_GENERIC;
      

Due to various reasons such as limited HW resources, the allocation may not have
compression attributes, the user is expected to query back the properties of the allocated
memory using cuMemGetAllocationPropertiesFromHandle and check for compression
attribute.

CUmemAllocationPropPrivate allocationProp = {};

https://github.com/NVIDIA/cuda-samples/tree/master/Samples/memMapIPCDrv
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cuMemGetAllocationPropertiesFromHandle(&allocationProp, allocationHandle);

if (allocationProp.allocFlags.compressionType == CU_MEM_ALLOCATION_COMP_GENERIC)
{
    // Obtained compressible memory allocation
}
      

E.4.  Reserving a Virtual Address Range
Since with Virtual Memory Management the notions of address and memory are distinct,
applications must carve out an address range that can hold the memory allocations made by
cuMemCreate. The address range reserved must be atleast as large as the sum of the sizes of
all the physical memory allocations the user plans to place in them.

Applications can reserve a virtual address range by passing appropriate parameters to
cuMemAddressReserve. The address range obtained will not have any device or host physical
memory associated with it. The reserved virtual address range can be mapped to memory
chunks belonging to any device in the system, thus provding the application a continuous
VA range backed and mapped by memory belonging to different devices. Applications are
expected to return the virtual address range back to CUDA using cuMemAddressFree. Users
must ensure that the entire VA range is unmapped before calling cuMemAddressFree. These
functions are conceptually similar to mmap/munmap(on Linux) or VirtualAlloc/VirtualFree(on
Windows) functions. The following code snippet illustrates the usage for the function:

CUdeviceptr ptr;
// `ptr` holds the returned start of virtual address range reserved.
CUresult result = cuMemAddressReserve(&ptr, size, 0, 0, 0); // alignment = 0 for
 default alignment
      

E.5.  Virtual Aliasing Support
The Virtual Memory Management APIs provide a way to create multiple virtual memory
mappings or “views” to the same allocation using multiple calls to cuMemMap with different
virtual addresses, so-called virtual aliasing. Unless otherwise noted in the PTX ISA, writes
to one view of the allocation are considered inconsistent and incoherent with any other view
of the same memory until the writing device operation (grid launch, memcpy, memset, etc.)
completes. Grids present on the GPU prior to a writing device operation but reading after the
writing device operation completes are also considered to have inconsistent and incoherent
views.

For example, the following snippet is considered undefined, assuming device pointers A and B
are virtual aliases of the same memory allocation:

__global__ void foo(char *A, char *B) {
  *A = 0x1;
  printf(“%d\n”, *B);    // Undefined behavior!  *B can take on either
// the previous value or some value in-between.
}



Virtual Memory Management

CUDA C++ Programming Guide PG-02829-001_v11.5   |   271

The following is defined behavior, assuming these two kernels are ordered monotonically (via
streams or events).

__global__ void foo1(char *A) {
  *A = 0x1;
}

__global__ void foo2(char *B) {
  printf(“%d\n”, *B);    // *B == *A == 0x1 assuming foo2 waits for foo1
// to complete before launching
}

cudaMemcpyAsync(B, input, size, stream1);    // Aliases are allowed at
// operation boundaries
foo1<<<1,1,0,stream1>>>(A);                  // allowing foo1 to access A.
cudaEventRecord(event, stream1);
cudaStreamWaitEvent(stream2, event);
foo2<<<1,1,0,stream2>>>(B);
cudaStreamWaitEvent(stream3, event);
cudaMemcpyAsync(output, B, size, stream3);  // Both launches of foo2 and
                                            // cudaMemcpy (which both
                                            // read) wait for foo1 (which writes)
                                            // to complete before proceeding

E.6.  Mapping Memory
The allocated physical memory and the carved out virtual address space from the previous
two sections represent the memory and address distinction introduced by the Virtual Memory
Management APIs. For the allocated memory to be useable, the user must first place the
memory in the address space. The address range obtained from cuMemAddressReserve and
the physical allocation obtained from cuMemCreate or cuMemImportFromShareableHandle
must be associated with each other by using cuMemMap.

Users can associate allocations from multiple devices to reside in contiguous virtual address
ranges as long as they have carved out enough address space. In order to decouple the
physical allocation and the address range users must unmap the address of the mapping by
uisng cuMemUnmap. Users can map and unmap memory to the same address range as many
times as they want, as long as they ensure they don't attempt to create mappings on a VA
range reservations that are already mapped. The following code snippet illustrates the usage
for the function:

CUdeviceptr ptr;
// `ptr`: address in the address range previously reserved by cuMemAddressReserve.
// `allocHandle`: CUmemGenericAllocationHandle obtained by a previous call to
 cuMemCreate. 
CUresult result = cuMemMap(ptr, size, 0, allocHandle, 0);
      

E.7.  Control Access Rights
The Virtual Memory Management APIs enable applications to explicitly protect their VA
ranges with access control mechanisms. Mapping the allocation to a region of the address
range using cuMemMap does not make the address accessible, and would result in a program
crash if accessed by a CUDA kernel. Users must specifically select access control using the



Virtual Memory Management

CUDA C++ Programming Guide PG-02829-001_v11.5   |   272

cuMemSetAccess function, which allows or restricts access for specific devices to a mapped
address range. The following code snippet illustrates the usage for the function:

void setAccessOnDevice(int device, CUdeviceptr ptr, size_t size) {
    CUmemAccessDesc accessDesc = {};
    accessDesc.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
    accessDesc.location.id = device;
    accessDesc.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;

    // Make the address accessible
    cuMemSetAccess(ptr, size, &accessDesc, 1);
}
      

The access control mechanism exposed with Virtual Memory Management allows users to be
explicit about which allocations they wish to share with other peer devices on the system. As
specified earlier, cudaEnablePeerAccess forces all prior and future cudaMalloc'd allocations
to be mapped to the target peer device. This can be convenient in many cases as user doesn't
have to worry about tracking the mapping state of every allocation to every device in the
system. But for users concerned with performance of their applications this approach has
performance implications. With access control at allocation granularity Virtual Memory
Mangement exposes a mechanism to have peer mappings with minimal overhead.

The vectorAddMMAP sample can be used as an example for using the Virtual Memory
Management APIs.

https://devblogs.nvidia.com/introducing-low-level-gpu-virtual-memory-management/
https://devblogs.nvidia.com/introducing-low-level-gpu-virtual-memory-management/
https://github.com/NVIDIA/cuda-samples/tree/master/Samples/vectorAddMMAP
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Appendix F. Stream Ordered Memory
Allocator

F.1.  Introduction
Managing memory allocations using cudaMalloc and cudaFree causes GPU to synchronize
across all executing CUDA streams. The Stream Order Memory Allocator enables applications
to order memory allocation and deallocation with other work launched into a CUDA stream
such as kernel launches and asynchronous copies. This improves application memory use by
taking advantage of stream-ordering semantics to reuse memory allocations. The allocator
also allows applications to control the allocator’s memory caching behavior. When set up
with an appropriate release threshold, the caching behavior allows the allocator to avoid
expensive calls into the OS when the application indicates it is willing to accept a bigger
memory footprint. The allocator also supports the easy and secure sharing of allocations
between processes.

For many applications, the Stream Ordered Memory Allocator reduces the need for custom
memory management abstractions, and makes it easier to create high-performance custom
memory management for applications that need it. For applications and libraries that already
have custom memory allocators, adopting the Stream Ordered Memory Allocator enables
multiple libraries to share a common pool of memory managed by the driver, thus reducing
excess memory consumption. Additionally, the driver can perform optimizations based on
its awareness of the allocator and other stream management apis. Finally, Nsight Compute
and the Next-Gen CUDA debugger is aware of the allocator as part of their CUDA 11.3 toolkit
support.

F.2.  Query for Support
The user can determine whether or not a device supports the stream ordered
memory allocator by calling cudaDeviceGetAttribute() with the device attribute
cudaDevAttrMemoryPoolsSupported.

Starting with CUDA 11.3, IPC memory pool support can be queried with the
cudaDevAttrMemoryPoolSupportedHandleTypes device attribute. Previous drivers will
return cudaErrorInvalidValue as those drivers are unaware of the attribute enum.
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int driverVersion = 0;
int deviceSupportsMemoryPools = 0;
int poolSupportedHandleTypes = 0;
cudaDriverGetVersion(&driverVersion);
if (driverVersion >= 11020) {
    cudaDeviceGetAttribute(&deviceSupportsMemoryPools,
                           cudaDevAttrMemoryPoolsSupported, device);
}
if (deviceSupportsMemoryPools != 0) {
    // `device` supports the Stream Ordered Memory Allocator
}

if (driverVersion >= 11030) {
    cudaDeviceGetAttribute(&poolSupportedHandleTypes,
              cudaDevAttrMemoryPoolSupportedHandleTypes, device);
}
if (poolSupportedHandleTypes & cudaMemHandleTypePosixFileDescriptor) {
   // Pools on the specified device can be created with posix file descriptor-based
 IPC
}

Performing the driver version check before the query avoids hitting a
cudaErrorInvalidValue error on drivers where the attribute was not yet defined. One can
use cudaGetLastError to clear the error instead of avoiding it.

F.3.  API Fundamentals (cudaMallocAsync
and cudaFreeAsync)

The APIs cudaMallocAsync and cudaFreeAsync form the core of the allocator.
cudaMallocAsync returns an allocation and cudaFreeAsync frees an allocation. Both APIs
accept stream arguments to define when the allocation will become and stop being available
for use. The pointer value returned by cudaMallocAsync is determined synchronously and
is available for constructing future work. It is important to note that cudaMallocAsync
ignores the current device/context when determining where the allocation will reside. Instead,
cudaMallocAsync determines the resident device based on the specified memory pool or the
supplied stream. The simplest use pattern is when the memory is allocated, used, and freed
back into the same stream.

void *ptr;
size_t size = 512;
cudaMallocAsync(&ptr, size, cudaStreamPerThread);
// do work using the allocation
kernel<<<..., cudaStreamPerThread>>>(ptr, ...);
// An asynchronous free can be specified without synchronizing the cpu and GPU
cudaFreeAsync(ptr, cudaStreamPerThread);

When using an allocation in a stream other than the allocating stream, the user must
guarantee that the access will happen after the allocation operation, otherwise the behavior is
undefined. The user may make this guarantee either by synchronizing the allocating stream,
or by using cuda events to synchronize the producing and consuming streams.

cudaFreeAsync() inserts a free operation into the stream. The user must guarantee that the
free operation happens after the allocation operation and any use of the allocation. Also, any
use of the allocation after the free operation starts results in undefined behavior. Events and/
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or stream synchronizing operations should be used to guarantee any access to the allocation
on other streams is complete before the freeing stream begins the free operation.

cudaMallocAsync(&ptr, size, stream1);
cudaEventRecord(event1, stream1);
//stream2 must wait for the allocation to be ready before accessing
cudaStreamWaitEvent(stream2, event1);
kernel<<<..., stream2>>>(ptr, ...);
cudaEventRecord(event2, stream2);
// stream3 must wait for stream2 to finish accessing the allocation before
// freeing the allocation
cudaStreamWaitEvent(stream3, event2);
cudaFreeAsync(ptr, stream3);

The user can free allocations allocated with cudaMalloc() with cudaFreeAsync(). The user
must make the same guarantees about accesses being complete before the free operation
begins.

cudaMalloc(&ptr, size);
kernel<<<..., stream>>>(ptr, ...);
cudaFreeAsync(ptr, stream);

The user can free memory allocated with cudaMallocAsync with cudaFree(). When freeing
such allocations through the cudaFree() API, the driver assumes that all accesses to
the allocation are complete and performs no further synchronization. The user can use
cudaStreamQuery / cudaStreamSynchronize / cudaEventQuery / cudaEventSynchronize
/ cudaDeviceSynchronize to guarantee that the appropriate asynchronous work is complete
and that the GPU will not try to access the allocation.

cudaMallocAsync(&ptr, size,stream);
kernel<<<..., stream>>>(ptr, ...);
// synchronize is needed to avoid prematurely freeing the memory
cudaStreamSynchronize(stream);
cudaFree(ptr);

F.4.  Memory Pools and the
cudaMemPool_t

Memory pools encapsulate virtual address and physical memory resources that are allocated
and managed according to the pools attributes and properties. The primary aspect of a
memory pool is the kind and location of memory it manages.

All calls to cudaMallocAsync use the resources of a memory pool. In the absence
of a specified memory pool, cudaMallocAsync api uses the current memory pool of
the supplied stream's device. The current memory pool for a device may be set with
cudaDeviceSetMempool and queried with cudaDeviceGetMempool. By default (in the absence
of a cudaDeviceSetMempool call), the current memory pool is the default memory pool of
a device. The API cudaMallocFromPoolAsync and c++ overloads of cudaMallocAsync allow
a user to specify the pool to be used for an allocation without setting it as the current pool.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__HIGHLEVEL.html#group__CUDART__HIGHLEVEL_1ga31efcffc48981621feddd98d71a0feb
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The APIs cudaDeviceGetDefaultMempool and cudaMemPoolCreate give users handles to
memory pools.

Note: The mempool current to a device will be local to that device. So allocating without
specifying a memory pool will always yield an allocation local to the stream’s device.

Note: cudaMemPoolSetAttribute and cudaMemPoolGetAttribute control the attributes of
the memory pools.

F.5.  Default/Impicit Pools
The default memory pool of a device may be retrieved with the
cudaDeviceGetDefaultMempool API. Allocations from the default memory pool of a device
are non-migratable device allocation located on that device. These allocations will always be
accessible from that device. The accessibility of the default memory pool may be modified with
cudaMemPoolSetAccess and queried by cudaMemPoolGetAccess. Since the default pools do
not need to be explicitly created, they are sometimes referred to as implicit pools. The default
memory pool of a device does not support IPC.

F.6.  Explicit Pools
The API cudaMemPoolCreate creates an explicit pool. Currently memory pools can only
allocate device allocations. The device the allocations will be resident on must be designated
in the properties structure. The primary use case for explicit pools is IPC capability.

// create a pool similar to the implicit pool on device 0
int device = 0;
cudaMemPoolProps poolProps = { };
poolProps.allocType = cudaMemAllocationTypePinned;
poolProps.location.id = device;
poolProps.location.type = cudaMemLocationTypeDevice;

cudaMemPoolCreate(&memPool, &poolProps));

F.7.  Physical Page Caching Behavior
By default, the allocator tries to minimize the physical memory owned by a pool. To minimize
the OS calls to allocate and free physical memory, applications must configure a memory
footprint for each pool. Applications can do this with the release threshold attribute
(cudaMemPoolAttrReleaseThreshold).

The release threshold is the amount of memory in bytes a pool should hold onto before trying
to release memory back to the OS. When more than the release threshold bytes of memory
are held by the memory pool, the allocator will try to release memory back to the OS on the
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next call to stream, event or device synchronize. Setting the release threshold to UINT64_MAX
will prevent the driver from attempting to shrink the pool after every synchronization.

Cuuint64_t setVal = UINT64_MAX;
cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrReleaseThreshold, &setVal);

Applications that set cudaMemPoolAttrReleaseThreshold high enough to effectively disable
memory pool shrinking may wish to explicitly shrink a memory pool's memory footprint.
cudaMemPoolTrimTo allows such applications to do so. When trimming a memory pool’s
footprint, the minBytesToKeep parameter allows an application to hold onto an amount of
memory it expects to need in a subsequent phase of execution.

Cuuint64_t setVal = UINT64_MAX;
cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrReleaseThreshold, &setVal);

// application phase needing a lot of memory from the stream ordered allocator
for (i=0; i<10; i++) {
    for (j=0; j<10; j++) {
        cudaMallocAsync(&ptrs[j],size[j], stream);
    }
    kernel<<<...,stream>>>(ptrs,...);
    for (j=0; j<10; j++) {
        cudaFreeAsync(ptrs[j], stream);
    }
}

// Process does not need as much memory for the next phase.
// Synchronize so that the trim operation will know that the allocations are no 
// longer in use.
cudaStreamSynchronize(stream);
cudaMemPoolTrimTo(mempool, 0);

// Some other process/allocation mechanism can now use the physical memory 
// released by the trimming operation.

F.8.  Resource Usage Statistics
In CUDA 11.3, the pool attributes cudaMemPoolAttrReservedMemCurrent,
cudaMemPoolAttrReservedMemHigh, cudaMemPoolAttrUsedMemCurrent, and
cudaMemPoolAttrUsedMemHigh were added to query the memory usage of a pool.

Querying the cudaMemPoolAttrReservedMemCurrent attribute of a pool reports
the current total physical GPU memory consumed by the pool. Querying the
cudaMemPoolAttrUsedMemCurrent of a pool returns the total size of all of the memory
allocated from the pool and not available for reuse.

The cudaMemPoolAttr*MemHigh attributes are watermarks recording the max value achieved
by the respective cudaMemPoolAttr*MemCurrent attribute since last reset. They can be reset
to the current value by using the cudaMemPoolSetAttribute API.

// sample helper functions for getting the usage statistics in bulk
struct usageStatistics {
    cuuint64_t reserved;
    cuuint64_t reservedHigh;
    cuuint64_t used;
    cuuint64_t usedHigh;
};
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void getUsageStatistics(cudaMemoryPool_t memPool, struct usageStatistics
 *statistics)
{
    cudaMemPoolGetAttribute(memPool, cudaMemPoolAttrReservedMemCurrent, statistics-
>reserved);
    cudaMemPoolGetAttribute(memPool, cudaMemPoolAttrReservedMemHigh, statistics-
>reservedHigh);
    cudaMemPoolGetAttribute(memPool, cudaMemPoolAttrUsedMemCurrent, statistics-
>used);
    cudaMemPoolGetAttribute(memPool, cudaMemPoolAttrUsedMemHigh, statistics-
>usedHigh);
}

// resetting the watermarks will make them take on the current value.
void resetStatistics(cudaMemoryPool_t memPool)
{
    cuuint64_t value = 0;
    cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrReservedMemHigh, &value);
    cudaMemPoolSetAttribute(memPool, cudaMemPoolAttrUsedMemHigh, &value);
}

F.9.  Memory Reuse Policies
In order to service an allocation request, the driver attempts to reuse memory that was
previously freed via cudaFreeAsync() before attempting to allocate more memory from the
OS. For example, memory freed in a stream can immediately be reused for a subsequent
allocation request in the same stream. Similarly, when a stream is synchronized with the
CPU, the memory that was previously freed in that stream becomes available for reuse for an
allocation in any stream.

The stream ordered allocator has a few controllable allocation policies. The pool attributes
cudaMemPoolReuseFollowEventDependencies, cudaMemPoolReuseAllowOpportunistic,
and cudaMemPoolReuseAllowInternalDependencies control these policies. Upgrading to a
newer CUDA driver may change, enhance, augment and/or reorder the reuse policies.

F.9.1.  cudaMemPoolReuseFollowEventDependencies
Before allocating more physical GPU memory, the allocator examines dependency information
established by CUDA events and tries to allocate from memory freed in another stream.

cudaMallocAsync(&ptr, size, originalStream);
kernel<<<..., originalStream>>>(ptr, ...);
cudaFreeAsync(ptr, originalStream);
cudaEventRecord(event,originalStream);

// waiting on the event that captures the free in another stream 
// allows the allocator to reuse the memory to satisfy 
// a new allocation request in the other stream when
// cudaMemPoolReuseFollowEventDependencies is enabled.
cudaStreamWaitEvent(otherStream, event);
cudaMallocAsync(&ptr2, size, otherStream);

F.9.2.  cudaMemPoolReuseAllowOpportunistic
According to the cudaMemPoolReuseAllowOpportunistic policy, the allocator examines freed
allocations to see if the free’s stream order semantic has been met (ie. the stream has passed
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the point of execution indicated by the free). When this is disabled, the allocator will still reuse
memory made available when a stream is synchronized with the cpu. Disabling this policy
does not stop the cudaMemPoolReuseFollowEventDependencies from applying.

cudaMallocAsync(&ptr, size, originalStream);
kernel<<<..., originalStream>>>(ptr, ...);
cudaFreeAsync(ptr, originalStream);

// after some time, the kernel finishes running
wait(10);

// When cudaMemPoolReuseAllowOpportunistic is enabled this allocation request
// can be fulfilled with the prior allocation based on the progress of
 originalStream.
cudaMallocAsync(&ptr2, size, otherStream);

F.9.3.  cudaMemPoolReuseAllowInternalDependencies
Failing to allocate and map more physical memory from the OS, the driver will look for
memory whose availability depends on another stream's pending progress. If such memory is
found, the driver will insert the required dependency into the allocating stream and reuse the
memory.

cudaMallocAsync(&ptr, size, originalStream);
kernel<<<..., originalStream>>>(ptr, ...);
cudaFreeAsync(ptr, originalStream);

// When cudaMemPoolReuseAllowInternalDependencies is enabled
// and the driver fails to allocate more physical memory, the driver may
// effectively perform a cudaStreamWaitEvent in the allocating stream
// to make sure that future work in ‘otherStream’ happens after the work
// in the original stream that would be allowed to access the original allocation. 
cudaMallocAsync(&ptr2, size, otherStream);

F.9.4.  Disabling Reuse Policies
While the controllable reuse policies improve memory reuse, users may want to disable them.
Allowing opportunistic reuse (i.e. cudaMemPoolReuseAllowOpportunistic) introduces run
to run variance in allocation patterns based on the interleaving of cpu and GPU execution.
Internal dependency insertion (i.e. cudaMemPoolReuseAllowInternalDependencies) can
serialize work in unexpected and potentially non-deterministic ways when the user would
rather explicitly synchronize an event or stream on allocation failure.

F.10.  Device Accessibility for Multi-GPU
Support

Just like allocation accessibility controlled through the virtual memory management APIs,
memory pool allocation accessibility does not follow cudaDeviceEnablePeerAccess or
cuCtxEnablePeerAccess. Instead, the api cudaMemPoolSetAccess modifies what devices
can access allocations from a pool. By default, allocations are accessible from the device
where the allocations are located. This access cannot be revoked. To enable access from
other devices, the accessing device must be peer capable with the memory pool's device;
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check with cudaDeviceCanAccessPeer. If the peer capability is not checked, the set access
may fail with cudaErrorInvalidDevice. If no allocations had been made from the pool, the
cudaMemPoolSetAccess call may succeed even when the devices are not peer capable; in this
case, the next allocation from the pool will fail.

It is worth noting that cudaMemPoolSetAccess affects all allocations from the memory pool,
not just future ones. Also the accessibility reported by cudaMemPoolGetAccess applies to
all allocations from the pool, not just future ones. It is recommended that the accessibility
settings of a pool for a given GPU not be changed frequently; once a pool is made accessible
from a given GPU, it should remain accessible from that GPU for the lifetime of the pool.

// snippet showing usage of cudaMemPoolSetAccess:
cudaError_t setAccessOnDevice(cudaMemPool_t memPool, int residentDevice,
              int accessingDevice) {
    cudaMemAccessDesc accessDesc = {};
    accessDesc.location.type = cudaMemLocationTypeDevice;
    accessDesc.location.id = accessingDevice;
    accessDesc.flags = cudaMemAccessFlagsProtReadWrite;

    int canAccess = 0;
    cudaError_t error = cudaDeviceCanAccessPeer(&canAccess, accessingDevice,
              residentDevice);
    if (error != cudaSuccess) {
        return error;
    } else if (canAccess == 0) {
        return cudaErrorPeerAccessUnsupported;
    }

    // Make the address accessible
    return cudaMemPoolSetAccess(memPool, &accessDesc, 1);
}

F.11.  IPC Memory Pools
IPC capable memory pools allow easy, efficient and secure sharing of GPU memory between
processes. CUDA's IPC memory pools provide the same security benefits as CUDA's virtual
memory management APIs.

There are two phases to sharing memory between processes with memory pools. The
processes first need to share access to the pool, then share specific allocations from that
pool. The first phase establishes and enforces security. The second phase coordinates
what virtual addresses are used in each process and when mappings need to be valid in the
importing process.

F.11.1.  Creating and Sharing IPC Memory Pools
Sharing access to a pool involves retrieving an OS native handle to the pool (with
the cudaMemPoolExportToShareableHandle() API), transferring the handle to
the importing process using the usual OS native IPC mechanisms, and creating an
imported memory pool (with the cudaMemPoolImportFromShareableHandle() API). For
cudaMemPoolExportToShareableHandle to succeed, the memory pool had to be created
with the requested handle type specified in the pool properties structure. Please reference
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samples for the appropriate IPC mechanisms to transfer the OS native handle between
processes. The rest of the procedure can be found in the following code snippets.

// in exporting process
// create an exportable IPC capable pool on device 0
cudaMemPoolProps poolProps = { };
poolProps.allocType = cudaMemAllocationTypePinned;
poolProps.location.id = 0;
poolProps.location.type = cudaMemLocationTypeDevice;

// Setting handleTypes to a non zero value will make the pool exportable (IPC
 capable)
poolProps.handleTypes = CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR;

cudaMemPoolCreate(&memPool, &poolProps));

// FD based handles are integer types
int fdHandle = 0;

// Retrieve an OS native handle to the pool.
// Note that a pointer to the handle memory is passed in here.
cudaMemPoolExportToShareableHandle(&fdHandle,
             memPool,
             CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR,
             0);

// The handle must be sent to the importing process with the appropriate
// OS specific APIs.

// in importing process
 int fdHandle;
// The handle needs to be retrieved from the exporting process with the
// appropriate OS specific APIs.
// Create an imported pool from the shareable handle.
// Note that the handle is passed by value here. 
cudaMemPoolImportFromShareableHandle(&importedMemPool,
          (void*)fdHandle,
          CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR,
          0);

F.11.2.  Set Access in the Importing Process
Imported memory pools are initially only accessible from their resident device. The imported
memory pool does not inherit any accessibility set by the exporting process. The importing
process needs to enable access (with cudaMemPoolSetAccess) from any GPU it plans to
access the memory from.

If the imported memory pool belongs to a non-visible device in the importing process, the user
must use the cudaMemPoolSetAccess API to enable access from the GPUs the allocations will
be used on.

F.11.3.  Creating and Sharing Allocations from an
Exported Pool

Once the pool has been shared, allocations made with cudaMallocAsync() from the pool
in the exporting process can be shared with other processes that have imported the pool.
Since the pool's security policy is established and verified at the pool level, the OS does not
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need extra bookkeeping to provide security for specific pool allocations; In other words, the
opaque cudaMemPoolPtrExportData required to import a pool allocation may be sent to the
importing process using any mechanism.

While allocations may be exported and even imported without synchronizing with the
allocating stream in any way, the importing process must follow the same rules as
the exporting process when accessing the allocation. Namely, access to the allocation
must happen after the stream ordering of the allocation operation in the allocating
stream. The two following code snippets show cudaMemPoolExportPointer() and
cudaMemPoolImportPointer() sharing the allocation with an ipc event used to guarantee
that the allocation isn’t accessed in the importing process before the allocation is ready.

// preparing an allocation in the exporting process
cudaMemPoolPtrExportData exportData;
cudaEvent_t readyIpcEvent;
cudaIpcEventHandle_t readyIpcEventHandle;

// ipc event for coordinating between processes
// cudaEventInterprocess flag makes the event an ipc event
// cudaEventDisableTiming  is set for performance reasons

cudaEventCreate(
        &readyIpcEvent, cudaEventDisableTiming | cudaEventInterprocess)

// allocate from the exporting mem pool
cudaMallocAsync(&ptr, size,exportMemPool, stream);

// event for sharing when the allocation is ready.
cudaEventRecord(readyIpcEvent, stream);
cudaMemPoolExportPointer(&exportData, ptr);
cudaIpcGetEventHandle(&readyIpcEventHandle, readyIpcEvent);

// Share IPC event and pointer export data with the importing process using
//  any mechanism. Here we copy the data into shared memory
shmem->ptrData = exportData;
shmem->readyIpcEventHandle = readyIpcEventHandle;
// signal consumers data is ready

// Importing an allocation
cudaMemPoolPtrExportData *importData = &shmem->prtData;
cudaEvent_t readyIpcEvent;
cudaIpcEventHandle_t *readyIpcEventHandle = &shmem->readyIpcEventHandle;

// Need to retrieve the ipc event handle and the export data from the
// exporting process using any mechanism.  Here we are using shmem and just
// need synchronization to make sure the shared memory is filled in.

cudaIpcOpenEventHandle(&readyIpcEvent, readyIpcEventHandle);

// import the allocation. The operation does not block on the allocation being
 ready.
cudaMemPoolImportPointer(&ptr, importedMemPool, importData);

// Wait for the prior stream operations in the allocating stream to complete before
// using the allocation in the importing process.
cudaStreamWaitEvent(stream, readyIpcEvent);
kernel<<<..., stream>>>(ptr, ...);

When freeing the allocation, the allocation needs to be freed in the importing process before
it is freed in the exporting process. The following code snippet demonstrates the use of CUDA
IPC events to provide the required synchronization between the cudaFreeAsync operations in
both processes. Access to the allocation from the importing process is obviously restricted by
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the free operation in the importing process side. It is worth noting that cudaFree can be used
to free the allocation in both processes and that other stream synchronization APIs may be
used instead of CUDA IPC events.

// The free must happen in importing process before the exporting process
kernel<<<..., stream>>>(ptr, ...); 

// Last access in importing process
cudaFreeAsync(ptr, stream); 

// Access not allowed in the importing process after the free
cudaIpcEventRecord(finishedIpcEvent, stream);

// Exporting process
// The exporting process needs to coordinate its free with the stream order 
// of the importing process’s free.
cudaStreamWaitEvent(stream, finishedIpcEvent);
kernel<<<..., stream>>>(ptrInExportingProcess, ...); 

// The free in the importing process doesn’t stop the exporting process 
// from using the allocation.
cudFreeAsync(ptrInExportingProcess,stream);

F.11.4.  IPC Export Pool Limitations
IPC pools currently do not support releasing physical blocks back to the OS. As a result the
cudaMemPoolTrimTo API acts as a no-op and the cudaMemPoolAttrReleaseThreshold
effectively gets ignored. This behavior is controlled by the driver, not the runtime and may
change in a future driver update.

F.11.5.  IPC Import Pool Limitations
Allocating from an import pool is not allowed; specifically, import pools cannot be set current
and cannot be used in the cudaMallocFromPoolAsync API. As such, the allocation reuse
policy attributes are meaningless for these pools.

IPC pools currently do not support releasing physical blocks back to the OS. As a result the
cudaMemPoolTrimTo API acts as a no-op and the cudaMemPoolAttrReleaseThreshold
effectively gets ignored.

The resource usage stat attribute queries only reflect the allocations imported into the
process and the associated physical memory.

F.12.  Synchronization API Actions
One of the optimizations that comes with the allocator being part of the cuda driver is
integration with the synchronize APIs. When the user requests that the CUDA driver
synchronize, the driver waits for asynchronous work to complete. Before returning, the driver
will determine what frees the synchronization guaranteed to be completed. These allocations
are made available for allocation regardless of specified stream or disabled allocation
policies. The driver also checks cudaMemPoolAttrReleaseThreshold here and releases any
excess physical memory that it can.
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F.13.  Addendums

F.13.1.  cudaMemcpyAsync Current Context/Device
Sensitivity

In the current CUDA driver, any async memcpy involving memory from cudaMallocAsync
should be done using the specified stream’s context as the calling thread’s current context.
This is not necessary for cudaMemcpyPeerAsync, as the device primary contexts specified in
the API are referenced instead of the current context.

F.13.2.  cuPointerGetAttribute Query
Invoking cuPointerGetAttribute on an allocation after invoking cudaFreeAsync on it
results in undefined behavior. Specifically, it does not matter if an allocation is still accessible
from a given stream: the behavior is still undefined.

F.13.3.  cuGraphAddMemsetNode
cuGraphAddMemsetNode does not work with memory allocated via the stream ordered
allocator. However, memsets of the allocations can be stream captured.

F.13.4.  Pointer Attributes
The cuPointerGetAttributes query works on stream ordered allocations.
Since stream ordered allocations are not context associated, querying
CU_POINTER_ATTRIBUTE_CONTEXT will succeed but return NULL in *data. The attribute
CU_POINTER_ATTRIBUTE_DEVICE_ORDINAL can be used to determine the location of the
allocation: this can be useful when selecting a context for making p2h2p copies using
cudaMemcpyPeerAsync. The attribute CU_POINTER_ATTRIBUTE_MEMPOOL_HANDLE was added
in CUDA 11.3 and can be useful for debugging and for confirming which pool an allocation
comes from before doing IPC.



CUDA C++ Programming Guide PG-02829-001_v11.5   |   285

Appendix G. Graph Memory Nodes

G.1.  Introduction
Graph memory nodes allow graphs to create and own memory allocations. Graph memory
nodes have GPU ordered lifetime semantics, which dictate when memory is allowed to be
accessed on the device. These GPU ordered lifetime semantics enable driver managed
memory reuse, and match those of the stream ordered allocation apis cudaMallocAsync and
cudaFreeAsync, which may be captured when creating a graph.

Graph allocations have fixed addresses over the life of a graph including repeated
instantiations and launches. This allows the memory to be directly referenced by other
operations within the graph without the need of a graph update, even when CUDA changes the
backing physical memory. Within a graph, allocations whose graph ordered lifetimes do not
overlap may use the same underlying physical memory.

CUDA may reuse the same physical memory for allocations across multiple graphs, aliasing
virtual address mappings according to the GPU ordered lifetime semantics. For example
when different graphs are launched into the same stream, CUDA may virtually alias the same
physical memory to satisfy the needs of allocations which have single-graph lifetimes.

G.2.  Support and Compatibility
Graph memory nodes require an 11.4 capable CUDA driver and support for the stream ordered
allocator on the GPU. The following snippet shows how to check for support on a given device.

int driverVersion = 0;
int deviceSupportsMemoryPools = 0;
int deviceSupportsMemoryNodes = 0;
cudaDriverGetVersion(&driverVersion);
if (driverVersion >= 11020) { // avoid invalid value error in cudaDeviceGetAttribute
    cudaDeviceGetAttribute(&deviceSupportsMemoryPools,
 cudaDevAttrMemoryPoolsSupported, device);
}
deviceSupportsMemoryNodes = (driverVersion >= 11040) && (deviceSupportsMemoryPools !
= 0);

Doing the attribute query inside the driver version check avoids an invalid value return code
on 11.0 and 11.1 drivers. Be aware that the compute sanitizer emits warnings when it detects
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CUDA returning error codes, and a version check prior to reading the attribute will avoid this.
Graph memory nodes are only supported on driver versions 11.4 and newer.

G.3.  API Fundamentals
Graph memory nodes are graph nodes representing either memory allocation or free actions.
As a shorthand, nodes that allocate memory are called allocation nodes. Likewise, nodes that
free memory are called free nodes. Allocations created by allocation nodes are called graph
allocations. CUDA assigns virtual addresses for the graph allocation at node creation time.
While these virtual addresses are fixed for the lifetime of the allocation node, the allocation
contents are not persistent past the freeing operation and may be overwritten by accesses
referring to a different allocation.

Graph allocations are considered recreated every time a graph runs. A graph allocation's
lifetime, which differs from the node's lifetime, begins when GPU execution reaches the
allocating graph node and ends when one of the following occurs:

‣ GPU execution reaches the freeing graph node

‣ GPU execution reaches the freeing cudaFreeAsync() stream call

‣ immediately upon the freeing call to cudaFree()

Note: Graph destruction does not automatically free any live graph-allocated memory, even
though it ends the lifetime of the allocation node. The allocation must subsequently be freed in
another graph, or using cudaFreeAsync()/cudaFree().

Just like other graph nodes, graph memory nodes are ordered within a graph by dependency
edges. A program must guarantee that operations accessing graph memory:

‣ are ordered after the allocation node.

‣ are ordered before the operation freeing the memory

Graph allocation lifetimes begin and usually end according to GPU execution (as opposed to
API invocation). GPU ordering is the order that work runs on the GPU as opposed to the order
that the work is enqueued or described. Thus, graph allocations are considered ‘GPU ordered.’

G.3.1.  Graph Node APIs
Graph memory nodes may be explicitly created with the memory node creation APIs,
cudaGraphAddMemAllocNode and cudaGraphAddMemFreeNode. The address allocated
by cudaGraphAddMemAllocNode is returned to the user in the dptr field of the passed
CUDA_MEM_ALLOC_NODE_PARAMS structure. All operations using graph allocations inside the
allocating graph must be ordered after the allocating node. Similarly, any free nodes must be
ordered after all uses of the allocation within the graph. cudaGraphAddMemFreeNode creates
free nodes.

In the following figure, there is an example graph with an alloc and a free node. Kernel nodes
a, b and c are ordered after the allocation node and before the free node such that the kernels
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can access the allocation. Kernel node e is not ordered after the alloc node and therefore
cannot safely access the memory. Kernel node d is not ordered before the free node, therefore
it cannot safely access the memory.

Figure 13. Kernel nodes

The following code snippet establishes the graph in this figure:

// Create the graph - it starts out empty
cudaGraphCreate(&graph, 0);

// parameters for a basic allocation
cudaMemAllocNodeParams params = {};
params.poolProps.allocType = cudaMemAllocationTypePinned;
params.poolProps.location.type = cudaMemLocationTypeDevice;
// specify device 0 as the resident device
params.poolProps.location.id = 0;
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params.bytesize = size;

cudaGraphAddMemAllocNode(&allocNode, graph, NULL, 0, &allocParams);
nodeParams->kernelParams[0] = allocParams.dptr;
cudaGraphAddKernelNode(&a, graph, &allocNode, 1, &nodeParams);
cudaGraphAddKernelNode(&b, graph, &a, 1, &nodeParams);
cudaGraphAddKernelNode(&c, graph, &a, 1, &nodeParams);
cudaGraphNode_t dependencies[2];
// kernel nodes b and c are using the graph allocation, so the freeing node must
 depend on them.  Since the dependency of node b on node a establishes an indirect
 dependency, the free node does not need to explicitly depend on node a.
dependencies[0] = b;
dependencies[1] = c;
cudaGraphAddMemFreeNode(&freeNode, graph, dependencies, 2, allocParams.dptr);
// free node does not depend on kernel node d, so it must not access the freed graph
 allocation.
cudaGraphAddKernelNode(&d, graph, &c, 1, &nodeParams);

// node e does not depend on the allocation node, so it must not access the
 allocation.  This would be true even if the freeNode depended on kernel node e.
cudaGraphAddKernelNode(&e, graph, NULL, 0, &nodeParams);

G.3.2.  Stream Capture
Graph memory nodes can be created by capturing the corresponding stream ordered
allocation and free calls cudaMallocAsync and cudaFreeAsync. In this case, the virtual
addresses returned by the captured allocation API can be used by other operations inside the
graph. Since the stream ordered dependencies will be captured into the graph, the ordering
requirements of the stream ordered allocation APIs guarantee that the graph memory nodes
will be properly ordered with respect to the captured stream operations (for correctly written
stream code).

Ignoring kernel nodes d and e, for clarity, the following code snippet shows how to use stream
capture to create the graph from the previous figure:

cudaMallocAsync(&dptr, size, stream1);
kernel_A<<< ..., stream1 >>>(dptr, ...);

// Fork into stream2
cudaEventRecord(event1, stream1);
cudaStreamWaitEvent(stream2, event1);

kernel_B<<< ..., stream1 >>>(dptr, ...);
// event dependencies translated into graph dependencies, so the kernel node created
 by the capture of kernel C will depend on the allocation node created by capturing
 the cudaMallocAsync call. 
kernel_C<<< ..., stream2 >>>(dptr, ...);

// Join stream2 back to origin stream (stream1)
cudaEventRecord(event2, stream2);
cudaStreamWaitEvent(stream1, event2);

// Free depends on all work accessing the memory.
cudaFreeAsync(dptr, stream1);

// End capture in the origin stream
cudaStreamEndCapture(stream1, &graph);
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G.3.3.  Accessing and Freeing Graph Memory
Outside of the Allocating Graph

Graph allocations do not have to be freed by the allocating graph. When a graph does not
free an allocation, that allocation persists beyond the execution of the graph and can be
accessed by subsequent CUDA operations. These allocations may be accessed in another
graph or directly via a stream operation as long as the accessing operation is ordered after
the allocation through CUDA events and other stream ordering mechanisms. An allocation
may subsequently be freed by regular calls to cudaFree, cudaFreeAsync, or by the launch
of another graph with a corresponding free node, or a subsequent launch of the allocating
graph (if it was instantiated with the cudaGraphInstantiateFlagAutoFreeOnLaunch flag). It is
illegal to access memory after it has been freed - the free operation must be ordered after all
operations accessing the memory using graph dependencies, cuda events and other stream
ordering mechanisms.

Note: Because graph allocations may share underlying physical memory with each other, the
Virtual Aliasing Support rules relating to consistency and coherency must be considered.
Simply put, the free operation must be ordered after the full device operation (for example,
compute kernel / memcpy) completes. Specifically, out of band synchronization - for example
a handshake through memory as part of a compute kernel that accesses the graph-allocated
memory - is not sufficient for providing ordering guarantees between the memory writes to
graph memory and the free operation of that graph memory.

The following code snippets demonstrate accessing graph allocations outside of the allocating
graph with ordering properly established by: using a single stream, using events between
streams, and using events baked into the allocating and freeing graph.

Ordering established by using a single stream:

void *dptr;
cudaGraphAddMemAllocNode(&allocNode, allocGraph, NULL, 0, &allocParams);
dptr = allocParams.dptr;

cudaGraphInstantiate(&allocGraphExec, allocGraph, NULL, NULL, 0);

cudaGraphLaunch(allocGraphExec, stream);
kernel<<< …, stream >>>(dptr, …);
cudaFreeAsync(dptr, stream);

Ordering established by recording and waiting on CUDA events:

void *dptr;

// Contents of allocating graph
cudaGraphAddMemAllocNode(&allocNode, allocGraph, NULL, 0, &allocParams);
dptr = allocParams.dptr;

// contents of consuming/freeing graph
nodeParams->kernelParams[0] = allocParams.dptr;
cudaGraphAddKernelNode(&a, graph, NULL, 0, &nodeParams);
cudaGraphAddMemFreeNode(&freeNode, freeGraph, &a, 1, dptr);

cudaGraphInstantiate(&allocGraphExec, allocGraph, NULL, NULL, 0);
cudaGraphInstantiate(&freeGraphExec, freeGraph, NULL, NULL, 0);

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#virtual-aliasing-support
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cudaGraphLaunch(allocGraphExec, allocStream);

// establish the dependency of stream2 on the allocation node
// note: the dependency could also have been established with a stream synchronize
 operation
cudaEventRecord(allocEvent, allocStream)
cudaStreamWaitEvent(stream2, allocEvent);

kernel<<< …, stream2 >>> (dptr, …);

// establish the dependency between the stream 3 and the allocation use
cudaStreamRecordEvent(streamUseDoneEvent, stream2);
cudaStreamWaitEvent(stream3, streamUseDoneEvent);

// it is now safe to launch the freeing graph, which may also access the memory
cudaGraphLaunch(freeGraphExec, stream3);

Ordering established by using graph external event nodes:

void *dptr;
cudaEvent_t allocEvent; // event indicating when the allocation will be ready for
 use.
cudaEvent_t streamUseDoneEvent; // event indicating when the stream operations are
 done with the allocation.

// Contents of allocating graph with event record node
cudaGraphAddMemAllocNode(&allocNode, allocGraph, NULL, 0, &allocParams);
dptr = allocParams.dptr;
// note: this event record node depends on the alloc node
cudaGraphAddEventRecordNode(&recordNode, allocGraph, &allocNode, 1, allocEvent);
cudaGraphInstantiate(&allocGraphExec, allocGraph, NULL, NULL, 0);

// contents of consuming/freeing graph with event wait nodes
cudaGraphAddEventWaitNode(&streamUseDoneEventNode, waitAndFreeGraph, NULL, 0,
 streamUseDoneEvent);
cudaGraphAddEventWaitNode(&allocReadyEventNode, waitAndFreeGraph, NULL, 0,
 allocEvent);
nodeParams->kernelParams[0] = allocParams.dptr;

// The allocReadyEventNode provides ordering with the alloc node for use in a
 consuming graph.
cudaGraphAddKernelNode(&kernelNode, waitAndFreeGraph, &allocReadyEventNode, 1,
 &nodeParams);

// The free node has to be ordered after both external and internal users.
// Thus the node must depend on both the kernelNode and the 
// streamUseDoneEventNode.
dependencies[0] = kernelNode;
dependencies[1] = streamUseDoneEventNode;
cudaGraphAddMemFreeNode(&freeNode, waitAndFreeGraph, &dependencies, 2, dptr);
cudaGraphInstantiate(&waitAndFreeGraphExec, waitAndFreeGraph, NULL, NULL, 0);

cudaGraphLaunch(allocGraphExec, allocStream);

// establish the dependency of stream2 on the event node satisfies the ordering
 requirement
cudaStreamWaitEvent(stream2, allocEvent);
kernel<<< …, stream2 >>> (dptr, …);
cudaStreamRecordEvent(streamUseDoneEvent, stream2);

// the event wait node in the waitAndFreeGraphExec establishes the dependency on the
 “readyForFreeEvent” that is needed to prevent the kernel running in stream two from
 accessing the allocation after the free node in execution order.
cudaGraphLaunch(waitAndFreeGraphExec, stream3);
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G.3.4.  cudaGraphInstantiateFlagAutoFreeOnLaunch
Under normal circumstances CUDA will prevent a graph from being relaunched if it has
unfreed memory allocations because multiple allocations at the same address will leak
memory. Instantiating a graph with the cudaGraphInstantiateFlagAutoFreeOnLaunch flag
allows the graph to be relaunched while it still has unfreed allocations. In this case, the launch
automatically inserts an asynchronous free of the unfreed allocations.

Auto free on launch is useful for single-producer multiple-consumer algorithms. At each
iteration, a producer graph creates several allocations, and, depending on runtime conditions,
a varying set of consumers accesses those allocations. This type of variable execution
sequence means that consumers cannot free the allocations because a subsequent consumer
may require access. Auto free on launch means the launch loop does not need to track the
producer's allocations - instead, that information remains isolated to the producer's creation
and destruction logic. In general, auto free on launch simplifies an algorithm which would
otherwise need to free all the allocations owned by a graph before each relaunch.

Note: The cudaGraphInstantiateFlagAutoFreeOnLaunch flag does not change the behavior
of graph destruction. The application must explicitly free the unfreed memory in order to avoid
memory leaks, even for graphs instantiated with the flag.

The following code shows the use of cudaGraphInstantiateFlagAutoFreeOnLaunch to
simplify a single-producer / multiple-consumer algorithm:

// Create producer graph which allocates memory and populates it with data
cudaStreamBeginCapture(cudaStreamPerThread, cudaStreamCaptureModeGlobal);
cudaMallocAsync(&data1, blocks * threads, cudaStreamPerThread);
cudaMallocAsync(&data2, blocks * threads, cudaStreamPerThread);
produce<<<blocks, threads, 0, cudaStreamPerThread>>>(data1, data2);
...
cudaStreamEndCapture(cudaStreamPerThread, &graph);
cudaGraphInstantiateWithFlags(&producer,
                              graph,
                              cudaGraphInstantiateFlagAutoFreeOnLaunch);
cudaGraphDestroy(graph);

// Create first consumer graph by capturing an asynchronous library call
cudaStreamBeginCapture(cudaStreamPerThread, cudaStreamCaptureModeGlobal);
consumerFromLibrary(data1, cudaStreamPerThread);
cudaStreamEndCapture(cudaStreamPerThread, &graph);
cudaGraphInstantiateWithFlags(&consumer1, graph, 0); //regular instantiation
cudaGraphDestroy(graph);

// Create second consumer graph
cudaStreamBeginCapture(cudaStreamPerThread, cudaStreamCaptureModeGlobal);
consume2<<<blocks, threads, 0, cudaStreamPerThread>>>(data2);
...
cudaStreamEndCapture(cudaStreamPerThread, &graph);
cudaGraphInstantiateWithFlags(&consumer2, graph, 0);
cudaGraphDestroy(graph);

// Launch in a loop
bool launchConsumer2 = false;
do {
    cudaGraphLaunch(producer, myStream);
    cudaGraphLaunch(consumer1, myStream);
    if (launchConsumer2) {
        cudaGraphLaunch(consumer2, myStream);
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    }
} while (determineAction(&launchConsumer2));

cudaFreeAsync(data1, myStream);
cudaFreeAsync(data2, myStream);

cudaGraphExecDestroy(producer);
cudaGraphExecDestroy(consumer1);
cudaGraphExecDestroy(consumer2);

G.4.  Optimized Memory Reuse
CUDA reuses memory in two ways:

‣ Virtual and physical memory reuse within a graph is based on virtual address assignment,
like in the stream ordered allocator.

‣ Physical memory reuse between graphs is done with virtual aliasing: different graphs can
map the same physical memory to their unique virtual addresses.

G.4.1.  Address Reuse within a Graph
CUDA may reuse memory within a graph by assigning the same virtual address ranges to
different allocations whose lifetimes do not overlap. Since virtual addresses may be reused,
pointers to different allocations with disjoint lifetimes are not guaranteed to be unique.

The following figure shows adding a new allocation node (2) that can reuse the address freed
by a dependent node (1).
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Figure 14. Adding new alloc node 2

The following figure shows adding a new alloc node (4). The new alloc node is not dependent
on the free node (2) so cannot reuse the address from the associated alloc node (2). If the
alloc node (2) used the address freed by free node (1), the new alloc node 3 would need a new
address.

Figure 15. Adding new alloc node 4
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G.4.2.  Physical Memory Management and Sharing
CUDA is responsible for mapping physical memory to the virtual address before the allocating
node is reached in GPU order. As an optimization for memory footprint and mapping overhead,
multiple graphs may use the same physical memory for distinct allocations if they will not run
simultaneously, however physical pages can not be reused if they are bound to more than one
executing graph at the same time, or to a graph allocation which remains un-freed.

CUDA may update physical memory mappings at any time during graph instantiation, launch
or execution. CUDA may also introduce synchronization between future graph launches in
order to prevent live graph allocations from referring to the same physical memory. As for
any allocate-free-allocate pattern, if a program accesses a pointer outside of an allocation’s
lifetime, the erroneous access may silently read or write live data owned by another allocation
(even if the virtual address of the allocation is unique). Use of compute sanitizer tools can
catch this error.

The following figure shows graphs sequentially launched in the same stream. In this example,
each graph frees all the memory it allocates. Since the graphs in the same stream never
run concurrently, CUDA can and should use the same physical memory to satisfy all the
allocations.
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Figure 16. Sequentially launched graphs

G.5.  Peformance Considerations
When multiple graphs are launched into the same stream, CUDA attempts to allocate the
same physical memory to them because the execution of these graphs cannot overlap.
Physical mappings for a graph are retained between launches as an optimization to avoid the
cost of remapping. If, at a later time, one of the graphs is launched such that its execution may
overlap with the others (for example if it is launched into a different stream) then CUDA must
perform some remapping because concurrent graphs require distinct memory to avoid data
corruption.

In general, remapping of graph memory in CUDA is likely caused by these operations:

‣ Changing the stream into which a graph is launched
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‣ A trim operation on the graph memory pool, which explicitly frees unused memory
(discussed in Physical Memory Footprint)

‣ Relaunching a graph while an unfreed allocation from another graph is mapped to the
same memory will cause a remap of memory before relaunch

Remapping must happen in execution order, but after any previous execution of that graph
is complete (otherwise memory that is still in use could be unmapped). Due to this ordering
dependency, as well as because mapping operations are OS calls, mapping operations can be
relatively expensive. Applications can avoid this cost by launching graphs containing allocation
memory nodes consistently into the same stream.

G.5.1.  First Launch / cudaGraphUpload
Physical memory can not be allocated or mapped during graph instantiation because the
stream in which the graph will execute is unknown. Mapping is done instead during graph
launch. Calling cudaGraphUpload can separate out the cost of allocation from the launchby
performing all mappings for that graph immediately and associating the graph with the
upload stream. If the graph is then launched into the same stream it will launch without any
additional remapping.

Using different streams for graph upload and graph launch behaves similarly to switching
streams, likely resulting in remap operations. In addition, unrelated memory pool
management is permitted to pull memory from an idle stream, which could negate the impact
of the uploads.

G.6.  Physical Memory Footprint
The pool-management behaviour of asynchronous allocation means that destroying a graph
which contains memory nodes (even if their allocations are free) will not immediately return
physical memory to the OS for use by other processes. To explicitly release memory back to
the OS, an application should use the cudaDeviceGraphMemTrim API.

cudaDeviceGraphMemTrim will unmap and release any physical memory reserved by graph
memory nodes that is not actively in use. Allocations that have not been freed and graphs that
are scheduled or running are considered to be actively using the physical memory and will
not be impacted. Use of the trim API will make physical memory available to other allocation
APIs and other applications or processes, but will cause CUDA to reallocate and remap
memory when the trimmed graphs are next launched. Note that cudaDeviceGraphMemTrim
operates on a different pool from cudaMemPoolTrimTo(). The graph memory pool is not
exposed to the steam ordered memory allocator. Cuda allows applications to query their
graph memory footprint through the cudaDeviceGetGraphMemAttribute API. Querying
the attribute cudaGraphMemAttrReservedMemCurrent returns the amount of physical
memory reserved by the driver for graph allocations in the current process. Querying
cudaGraphMemAttrUsedMemCurrent returns the amount of physical memory currently
mapped by at least one graph. Either of these attributes can be used to track when new
physical memory is acquired by CUDA for the sake of an allocating graph. Both of these
attributes are useful for examining how much memory is saved by the sharing mechanism.
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G.7.  Peer Access
Graph allocations can be configured for access from multiple GPUs, in which case CUDA will
map the allocations onto the peer GPUs as required. CUDA allows graph allocations requiring
different mappings to reuse the same virtual address. When this occurs, the address range
is mapped onto all GPUs required by the different allocations. This means an allocation may
sometimes allow more peer access than was requested during its creation; however, relying
on these extra mappings is still an error.

G.7.1.  Peer Access with Graph Node APIs
The cudaGraphAddMemAllocNode API accepts mapping requests in the accessDescs array
field of the node parameters structures. The poolProps.location embedded structure
specifies the resident device for the allocation. Access from the allocating gpu is assumed to
be needed, thus the application does not need to specify an entry for the resident device in the
accessDescs array.

cudaMemAllocNodeParams params = {};
params.poolProps.allocType = cudaMemAllocationTypePinned;
params.poolProps.location.type = cudaMemLocationTypeDevice;
// specify device 1 as the resident device
params.poolProps.location.id = 1;
params.bytesize = size;

// allocate an allocation resident on device 1 accessible from device 1
cudaGraphAddMemAllocNode(&allocNode, graph, NULL, 0, &params);

accessDescs[2];
// boilerplate for the access descs (only ReadWrite and Device access supported by
 the add node api)
accessDescs[0].flags = cudaMemAccessFlagsProtReadWrite;
accessDescs[0].location.type = cudaMemLocationTypeDevice;
accessDescs[1].flags = cudaMemAccessFlagsProtReadWrite;
accessDescs[1].location.type = cudaMemLocationTypeDevice;

// access being requested for device 0 & 2.  Device 1 access requirement left
 implicit.
accessDescs[0].location.id = 0;
accessDescs[1].location.id = 2;

// access request array has 2 entries.
params.accessDescCount = 2;
params.accessDescs = accessDescs;

// allocate an allocation resident on device 1 accessible from devices 0, 1 and 2.
 (0 & 2 from the descriptors, 1 from it being the resident device).
cudaGraphAddMemAllocNode(&allocNode, graph, NULL, 0, &params);

G.7.2.  Peer Access with Stream Capture
For stream capture, the allocation node records the peer accessibility of the allocating
pool at the time of the capture. Altering the peer accessibility of the allocating pool after a
cudaMallocFromPoolAsync call is captured does not affect the mappings that the graph will
make for the allocation.
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// boilerplate for the access descs (only ReadWrite and Device access supported by
 the add node api)
accessDesc.flags = cudaMemAccessFlagsProtReadWrite;
accessDesc.location.type = cudaMemLocationTypeDevice;
accessDesc.location.id = 1;

// let memPool be resident and accessible on device 0

cudaStreamBeginCapture(stream);
cudaMallocAsync(&dptr1, size, memPool, stream);
cudaStreamEndCapture(stream, &graph1);

cudaMemPoolSetAccess(memPool, &accessDesc, 1);

cudaStreamBeginCapture(stream);
cudaMallocAsync(&dptr2, size, memPool, stream);
cudaStreamEndCapture(stream, &graph2);

//The graph node allocating dptr1 would only have the device 0 accessibility even
 though memPool now has device 1 accessibility.
//The graph node allocating dptr2 will have device 0 and device 1 accessibility,
 since that was the pool accessibility at the time of the cudaMallocAsync call.
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Appendix H. Mathematical Functions

The reference manual lists, along with their description, all the functions of the C/C++
standard library mathematical functions that are supported in device code, as well as all
intrinsic functions (that are only supported in device code).

This appendix provides accuracy information for some of these functions when applicable. It
uses ULP for quantification. For further information on the definition of the Unit in the Last
Place (ULP), please see Jean-Michel Muller's paper On the definition of ulp(x), RR-5504, LIP
RR-2005-09, INRIA, LIP. 2005, pp.16 at https://hal.inria.fr/inria-00070503/document.

Mathematical functions supported in device code do not set the global errno variable, nor
report any floating-point exceptions to indicate errors; thus, if error diagnostic mechanisms
are required, the user should implement additional screening for inputs and outputs of
the functions. The user is responsible for the validity of pointer arguments. The user must
not pass uninitialized parameters to the Mathematical functions as this may result in
undefined behavior: functions are inlined in the user program and thus are subject to compiler
optimizations.

H.1.  Standard Functions
The functions from this section can be used in both host and device code.

This section specifies the error bounds of each function when executed on the device and also
when executed on the host in the case where the host does not supply the function.

The error bounds are generated from extensive but not exhaustive tests, so they are not
guaranteed bounds.

Single-Precision Floating-Point Functions

Addition and multiplication are IEEE-compliant, so have a maximum error of 0.5 ulp.

The recommended way to round a single-precision floating-point operand to an integer, with
the result being a single-precision floating-point number is rintf(), not roundf(). The
reason is that roundf() maps to a 4-instruction sequence on the device, whereas rintf()
maps to a single instruction. truncf(), ceilf(), and floorf() each map to a single
instruction as well.

https://hal.inria.fr/inria-00070503/document
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Table 7. Single-Precision Mathematical Standard Library Functions with
Maximum ULP Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded single-precision result and the result returned by the CUDA library function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

x*y 0 (IEEE-754 round-to-nearest-even)

x/y 0 for compute capability ≥ 2 when compiled with -prec-
div=true

2 (full range), otherwise

1/x 0 for compute capability ≥ 2 when compiled with -prec-
div=true

1 (full range), otherwise

rsqrtf(x)

1/sqrtf(x)

2 (full range)

Applies to 1/sqrtf(x) only when it is converted to
rsqrtf(x) by the compiler.

sqrtf(x) 0 when compiled with -prec-sqrt=true

Otherwise 1 for compute capability ≥ 5.2

and 3 for older architectures

cbrtf(x) 1 (full range)

rcbrtf(x) 1 (full range)

hypotf(x,y) 3 (full range)

rhypotf(x,y) 2 (full range)

norm3df(x,y,z) 3 (full range)

rnorm3df(x,y,z) 2 (full range)

norm4df(x,y,z,t) 3 (full range)

rnorm4df(x,y,z,t) 2 (full range)

normf(dim,arr) An error bound can't be provided because a fast algorithm is
used with accuracy loss due to round-off

rnormf(dim,arr) An error bound can't be provided because a fast algorithm is
used with accuracy loss due to round-off

expf(x) 2 (full range)

exp2f(x) 2 (full range)
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Function Maximum ulp error

exp10f(x) 2 (full range)

expm1f(x) 1 (full range)

logf(x) 1 (full range)

log2f(x) 1 (full range)

log10f(x) 2 (full range)

log1pf(x) 1 (full range)

sinf(x) 2 (full range)

cosf(x) 2 (full range)

tanf(x) 4 (full range)

sincosf(x,sptr,cptr) 2 (full range)

sinpif(x) 2 (full range)

cospif(x) 2 (full range)

sincospif(x,sptr,cptr) 2 (full range)

asinf(x) 4 (full range)

acosf(x) 3 (full range)

atanf(x) 2 (full range)

atan2f(y,x) 3 (full range)

sinhf(x) 3 (full range)

coshf(x) 2 (full range)

tanhf(x) 2 (full range)

asinhf(x) 3 (full range)

acoshf(x) 4 (full range)

atanhf(x) 3 (full range)

powf(x,y) 9 (full range)

erff(x) 2 (full range)

erfcf(x) 4 (full range)

erfinvf(x) 2 (full range)

erfcinvf(x) 4 (full range)

erfcxf(x) 4 (full range)

normcdff(x) 5 (full range)

normcdfinvf(x) 5 (full range)

lgammaf(x) 6 (outside interval -10.001 ... -2.264; larger inside)
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Function Maximum ulp error

tgammaf(x) 11 (full range)

fmaf(x,y,z) 0 (full range)

frexpf(x,exp) 0 (full range)

ldexpf(x,exp) 0 (full range)

scalbnf(x,n) 0 (full range)

scalblnf(x,l) 0 (full range)

logbf(x) 0 (full range)

ilogbf(x) 0 (full range)

j0f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

j1f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

jnf(n,x) For n = 128, the maximum absolute error is 2.2 x 10-6

y0f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

y1f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

ynf(n,x) ceil(2 + 2.5n) for |x| < n

otherwise, the maximum absolute error is 2.2 x 10-6

cyl_bessel_i0f(x) 6 (full range)

cyl_bessel_i1f(x) 6 (full range)

fmodf(x,y) 0 (full range)

remainderf(x,y) 0 (full range)

remquof(x,y,iptr) 0 (full range)

modff(x,iptr) 0 (full range)

fdimf(x,y) 0 (full range)

truncf(x) 0 (full range)

roundf(x) 0 (full range)

rintf(x) 0 (full range)

nearbyintf(x) 0 (full range)
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Function Maximum ulp error

ceilf(x) 0 (full range)

floorf(x) 0 (full range)

lrintf(x) 0 (full range)

lroundf(x) 0 (full range)

llrintf(x) 0 (full range)

llroundf(x) 0 (full range)

Double-Precision Floating-Point Functions

The recommended way to round a double-precision floating-point operand to an integer, with
the result being a double-precision floating-point number is rint(), not round(). The reason
is that round() maps to a 5-instruction sequence on the device, whereas rint() maps to a
single instruction. trunc(), ceil(), and floor() each map to a single instruction as well.

Table 8. Double-Precision Mathematical Standard Library Functions
with Maximum ULP Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded double-precision result and the result returned by the CUDA library
function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

x*y 0 (IEEE-754 round-to-nearest-even)

x/y 0 (IEEE-754 round-to-nearest-even)

1/x 0 (IEEE-754 round-to-nearest-even)

sqrt(x) 0 (IEEE-754 round-to-nearest-even)

rsqrt(x) 1 (full range)

cbrt(x) 1 (full range)

rcbrt(x) 1 (full range)

hypot(x,y) 2 (full range)

rhypot(x,y) 1 (full range)

norm3d(x,y,z) 2 (full range)

rnorm3d(x,y,z) 1 (full range)

norm4d(x,y,z,t) 2 (full range)
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Function Maximum ulp error

rnorm4d(x,y,z,t) 1 (full range)

norm(dim,arr) An error bound can't be provided because a
fast algorithm is used with accuracy loss due to
round-off

rnorm(dim,arr) An error bound can't be provided because a
fast algorithm is used with accuracy loss due to
round-off

exp(x) 1 (full range)

exp2(x) 1 (full range)

exp10(x) 1 (full range)

expm1(x) 1 (full range)

log(x) 1 (full range)

log2(x) 1 (full range)

log10(x) 1 (full range)

log1p(x) 1 (full range)

sin(x) 2 (full range)

cos(x) 2 (full range)

tan(x) 2 (full range)

sincos(x,sptr,cptr) 2 (full range)

sinpi(x) 2 (full range)

cospi(x) 2 (full range)

sincospi(x,sptr,cptr) 2 (full range)

asin(x) 2 (full range)

acos(x) 2 (full range)

atan(x) 2 (full range)

atan2(y,x) 2 (full range)

sinh(x) 2 (full range)

cosh(x) 1 (full range)

tanh(x) 1 (full range)

asinh(x) 2 (full range)

acosh(x) 2 (full range)

atanh(x) 2 (full range)

pow(x,y) 2 (full range)
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Function Maximum ulp error

erf(x) 2 (full range)

erfc(x) 5 (full range)

erfinv(x) 5 (full range)

erfcinv(x) 6 (full range)

erfcx(x) 4 (full range)

normcdf(x) 5 (full range)

normcdfinv(x) 8 (full range)

lgamma(x) 4 (outside interval -11.0001 ... -2.2637; larger
inside)

tgamma(x) 8 (full range)

fma(x,y,z) 0 (IEEE-754 round-to-nearest-even)

frexp(x,exp) 0 (full range)

ldexp(x,exp) 0 (full range)

scalbn(x,n) 0 (full range)

scalbln(x,l) 0 (full range)

logb(x) 0 (full range)

ilogb(x) 0 (full range)

j0(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x
10-12

j1(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x
10-12

jn(n,x) For n = 128, the maximum absolute error is 5 x
10-12

y0(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x
10-12

y1(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x
10-12
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Function Maximum ulp error

yn(n,x) For |x| > 1.5n, the maximum absolute error is 5
x 10-12

cyl_bessel_i0(x) 6 (full range)

cyl_bessel_i1(x) 6 (full range)

fmod(x,y) 0 (full range)

remainder(x,y) 0 (full range)

remquo(x,y,iptr) 0 (full range)

modf(x,iptr) 0 (full range)

fdim(x,y) 0 (full range)

trunc(x) 0 (full range)

round(x) 0 (full range)

rint(x) 0 (full range)

nearbyint(x) 0 (full range)

ceil(x) 0 (full range)

floor(x) 0 (full range)

lrint(x) 0 (full range)

lround(x) 0 (full range)

llrint(x) 0 (full range)

llround(x) 0 (full range)

H.2.  Intrinsic Functions
The functions from this section can only be used in device code.

Among these functions are the less accurate, but faster versions of some of the functions of
Standard Functions .They have the same name prefixed with __ (such as __sinf(x)). They are
faster as they map to fewer native instructions. The compiler has an option (-use_fast_math)
that forces each function in Table 9 to compile to its intrinsic counterpart. In addition to
reducing the accuracy of the affected functions, it may also cause some differences in special
case handling. A more robust approach is to selectively replace mathematical function calls
by calls to intrinsic functions only where it is merited by the performance gains and where
changed properties such as reduced accuracy and different special case handling can be
tolerated.



Mathematical Functions

CUDA C++ Programming Guide PG-02829-001_v11.5   |   307

Table 9. Functions Affected by -use_fast_math

Operator/Function Device Function
x/y __fdividef(x,y)

sinf(x) __sinf(x)

cosf(x) __cosf(x)

tanf(x) __tanf(x)

sincosf(x,sptr,cptr) __sincosf(x,sptr,cptr)

logf(x) __logf(x)

log2f(x) __log2f(x)

log10f(x) __log10f(x)

expf(x) __expf(x)

exp10f(x) __exp10f(x)

powf(x,y) __powf(x,y)

Single-Precision Floating-Point Functions

__fadd_[rn,rz,ru,rd]() and __fmul_[rn,rz,ru,rd]() map to addition and multiplication
operations that the compiler never merges into FMADs. By contrast, additions and
multiplications generated from the '*' and '+' operators will frequently be combined into
FMADs.

Functions suffixed with _rn operate using the round to nearest even rounding mode.

Functions suffixed with _rz operate using the round towards zero rounding mode.

Functions suffixed with _ru operate using the round up (to positive infinity) rounding mode.

Functions suffixed with _rd operate using the round down (to negative infinity) rounding mode.

The accuracy of floating-point division varies depending on whether the code is compiled with
-prec-div=false or -prec-div=true. When the code is compiled with -prec-div=false,
both the regular division / operator and __fdividef(x,y) have the same accuracy, but for
2126 < |y| < 2128, __fdividef(x,y) delivers a result of zero, whereas the / operator delivers
the correct result to within the accuracy stated in Table 10. Also, for 2126 < |y| < 2128, if x is
infinity, __fdividef(x,y) delivers a NaN (as a result of multiplying infinity by zero), while the /
operator returns infinity. On the other hand, the / operator is IEEE-compliant when the code is
compiled with -prec-div=true or without any -prec-div option at all since its default value
is true.

Table 10. Single-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)
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Function Error bounds

__fadd_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fsub_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fmul_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fmaf_[rn,rz,ru,rd](x,y,z) IEEE-compliant.

__frcp_[rn,rz,ru,rd](x) IEEE-compliant.

__fsqrt_[rn,rz,ru,rd](x) IEEE-compliant.

__frsqrt_rn(x) IEEE-compliant.

__fdiv_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fdividef(x,y) For |y| in [2-126, 2126], the maximum ulp error is
2.

__expf(x) The maximum ulp error is 2 + floor(abs(1.16
* x)).

__exp10f(x) The maximum ulp error is 2+ floor(abs(2.95 *
x)).

__logf(x) For x in [0.5, 2], the maximum absolute error is
2-21.41, otherwise, the maximum ulp error is 3.

__log2f(x) For x in [0.5, 2], the maximum absolute error is
2-22, otherwise, the maximum ulp error is 2.

__log10f(x) For x in [0.5, 2], the maximum absolute error is
2-24, otherwise, the maximum ulp error is 3.

__sinf(x) For x in [-π,π], the maximum absolute error is
2-21.41, and larger otherwise.

__cosf(x) For x in [-π,π], the maximum absolute error is
2-21.19, and larger otherwise.

__sincosf(x,sptr,cptr) Same as __sinf(x) and __cosf(x).

__tanf(x) Derived from its implementation as __sinf(x) *
(1/__cosf(x)).

__powf(x, y) Derived from its implementation as exp2f(y *
__log2f(x)).

Double-Precision Floating-Point Functions

__dadd_rn() and __dmul_rn() map to addition and multiplication operations that the
compiler never merges into FMADs. By contrast, additions and multiplications generated from
the '*' and '+' operators will frequently be combined into FMADs.
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Table 11. Double-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)

Function Error bounds

__dadd_[rn,rz,ru,rd](x,y) IEEE-compliant.

__dsub_[rn,rz,ru,rd](x,y) IEEE-compliant.

__dmul_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fma_[rn,rz,ru,rd](x,y,z) IEEE-compliant.

__ddiv_[rn,rz,ru,rd](x,y)(x,y) IEEE-compliant.

Requires compute capability > 2.

__drcp_[rn,rz,ru,rd](x) IEEE-compliant.

Requires compute capability > 2.

__dsqrt_[rn,rz,ru,rd](x) IEEE-compliant.

Requires compute capability > 2.
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Appendix I. C++ Language Support

As described in Compilation with NVCC, CUDA source files compiled with nvcc can include
a mix of host code and device code. The CUDA frontend compiler aims to emulate the host
compiler behavior with respect to C++ input code. The input source code is processed
according to the C++ ISO/IEC 14882:2003, C++ ISO/IEC 14882:2011, C++ ISO/IEC 14882:2014 or
C++ ISO/IEC 14882:2017 specifications, and the CUDA frontend compiler aims to emulate any
host compiler divergences from the ISO specification. In addition, the supported language is
extended with CUDA-specific constructs described in this document 14, and is subject to the
restrictions described below.

C++11 Language Features, C++14 Language Features and C++17 Language Features provide
support matrices for the C++11, C++14 and C++17 features, respectively. Restrictions lists
the language restrictions. Polymorphic Function Wrappers and Extended Lambdas describe
additional features. Code Samples gives code samples.

I.1.  C++11 Language Features
The following table lists new language features that have been accepted into the C++11
standard. The "Proposal" column provides a link to the ISO C++ committee proposal that
describes the feature, while the "Available in nvcc (device code)" column indicates the first
version of nvcc that contains an implementation of this feature (if it has been implemented) for
device code.

Table 12. C++11 Language Features

Language Feature C++11
Proposal

Available
in nvcc
(device
code)

Rvalue references N2118 7.0

    Rvalue references for *this N2439 7.0

Initialization of class objects by rvalues N1610 7.0

Non-static data member initializers N2756 7.0

Variadic templates N2242 7.0

14 e.g., the <<<...>>> syntax for launching kernels.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2118.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2439.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1610.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2008/n2756.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2242.pdf
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Language Feature C++11
Proposal

Available
in nvcc
(device
code)

    Extending variadic template template parameters N2555 7.0

Initializer lists N2672 7.0

Static assertions N1720 7.0

auto-typed variables N1984 7.0

    Multi-declarator auto N1737 7.0

    Removal of auto as a storage-class specifier N2546 7.0

    New function declarator syntax N2541 7.0

Lambda expressions N2927 7.0

Declared type of an expression N2343 7.0

    Incomplete return types N3276 7.0

Right angle brackets N1757 7.0

Default template arguments for function templates DR226 7.0

Solving the SFINAE problem for expressions DR339 7.0

Alias templates N2258 7.0

Extern templates N1987 7.0

Null pointer constant N2431 7.0

Strongly-typed enums N2347 7.0

Forward declarations for enums
N2764

 
DR1206

7.0

Standardized attribute syntax N2761 7.0

Generalized constant expressions N2235 7.0

Alignment support N2341 7.0

Conditionally-support behavior N1627 7.0

Changing undefined behavior into diagnosable errors N1727 7.0

Delegating constructors N1986 7.0

Inheriting constructors N2540 7.0

Explicit conversion operators N2437 7.0

New character types N2249 7.0

Unicode string literals N2442 7.0

Raw string literals N2442 7.0

Universal character names in literals N2170 7.0

User-defined literals N2765 7.0

Standard Layout Types N2342 7.0

Defaulted functions N2346 7.0

Deleted functions N2346 7.0

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2555.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2672.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1984.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1737.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2546.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2541.htm
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2927.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2343.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3276.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1757.html
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#226
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2634.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1987.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2431.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2347.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2764.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#1206
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2761.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2341.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1627.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1727.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1986.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2540.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2437.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2249.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2442.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2170.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2342.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2346.htm
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Language Feature C++11
Proposal

Available
in nvcc
(device
code)

Extended friend declarations N1791 7.0

Extending sizeof
N2253

 
DR850

7.0

Inline namespaces N2535 7.0

Unrestricted unions N2544 7.0

Local and unnamed types as template arguments N2657 7.0

Range-based for N2930 7.0

Explicit virtual overrides

N2928
 

N3206
 

N3272

7.0

Minimal support for garbage collection and reachability-based leak
detection N2670 N/A (see

Restrictions)

Allowing move constructors to throw [noexcept] N3050 7.0

Defining move special member functions N3053 7.0

Concurrency

Sequence points N2239  

Atomic operations N2427  

Strong Compare and Exchange N2748  

Bidirectional Fences N2752  

Memory model N2429  

Data-dependency ordering: atomics and memory model N2664  

Propagating exceptions N2179  

Allow atomics use in signal handlers N2547  

Thread-local storage N2659  

Dynamic initialization and destruction with concurrency N2660  

C99 Features in C++11

__func__ predefined identifier N2340 7.0

C99 preprocessor N1653 7.0

long long N1811 7.0

Extended integral types N1988

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1791.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2253.html
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#850
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2535.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2544.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2657.htm
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2930.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2009/n2928.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3206.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3272.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2670.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3050.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2010/n3053.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2239.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2427.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2748.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2752.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2664.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2179.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2547.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2659.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2660.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2340.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1653.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1811.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n1988.pdf
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I.2.  C++14 Language Features
The following table lists new language features that have been accepted into the C++14
standard.

Table 13. C++14 Language Features

Language Feature C++14
Proposal

Available
in nvcc
(device
code)

Tweak to certain C++ contextual conversions N3323 9.0

Binary literals N3472 9.0

Functions with deduced return type N3638 9.0

Generalized lambda capture (init-capture) N3648 9.0

Generic (polymorphic) lambda expressions N3649 9.0

Variable templates N3651 9.0

Relaxing requirements on constexpr functions N3652 9.0

Member initializers and aggregates N3653 9.0

Clarifying memory allocation N3664

Sized deallocation N3778

[[deprecated]] attribute N3760 9.0

Single-quotation-mark as a digit separator N3781 9.0

I.3.  C++17 Language Features
All C++17 language features are supported in nvcc version 11.0 and later, subject to
restrictions described  here.

I.4.  Restrictions

I.4.1.  Host Compiler Extensions
Host compiler specific language extensions are not supported in device code.

_Complex types are only supported in host code.

__int128 type is supported in device code when compiled in conjunction with a host compiler
that supports it.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3323.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3472.pdf
https://isocpp.org/files/papers/N3638.html
https://isocpp.org/files/papers/N3648.html
https://isocpp.org/files/papers/N3649.html
https://isocpp.org/files/papers/N3652.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3653.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3664.html
https://isocpp.org/files/papers/n3778.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3760.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3781.pdf
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__float128 type is only supported in host code on 64-bit x86 Linux platforms. A constant
expression of __float128 type may be processed by the compiler in a floating point
representation with lower precision.

I.4.2.  Preprocessor Symbols

I.4.2.1.  __CUDA_ARCH__
 1. The type signature of the following entities shall not depend on whether __CUDA_ARCH__ is

defined or not, or on a particular value of __CUDA_ARCH__:

‣ __global__ functions and function templates

‣ __device__ and __constant__ variables

‣ textures and surfaces

Example:

#if !defined(__CUDA_ARCH__)
typedef int mytype;
#else
typedef double mytype;
#endif

__device__ mytype xxx;         // error: xxx's type depends on __CUDA_ARCH__
__global__ void foo(mytype in, // error: foo's type depends on __CUDA_ARCH__
                    mytype *ptr)
{
  *ptr = in;
}

 2. If a __global__ function template is instantiated and launched from the host, then the
function template must be instantiated with the same template arguments irrespective of
whether __CUDA_ARCH__ is defined and regardless of the value of __CUDA_ARCH__.

Example:

__device__ int result;
template <typename T>
__global__ void kern(T in)
{
  result = in;
}

__host__ __device__ void foo(void)
{
#if !defined(__CUDA_ARCH__)
  kern<<<1,1>>>(1);      // error: "kern<int>" instantiation only
                         // when __CUDA_ARCH__ is undefined!
#endif
}

int main(void)
{
  foo();
  cudaDeviceSynchronize();
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  return 0;
}

 3. In separate compilation mode, the presence or absence of a definition of a function or
variable with external linkage shall not depend on whether __CUDA_ARCH__ is defined or
on a particular value of __CUDA_ARCH__ 15.

Example:

#if !defined(__CUDA_ARCH__)
void foo(void) { }                  // error: The definition of foo()
                                    // is only present when __CUDA_ARCH__
                                    // is undefined
#endif

 4. In separate compilation, __CUDA_ARCH__ must not be used in headers such that different
objects could contain different behavior. Or, it must be guaranteed that all objects will
compile for the same compute_arch. If a weak function or template function is defined in a
header and its behavior depends on __CUDA_ARCH__, then the instances of that function in
the objects could conflict if the objects are compiled for different compute arch.

For example, if an a.h contains:

template<typename T>
__device__ T* getptr(void)
{
#if __CUDA_ARCH__ == 200
  return NULL; /* no address */
#else
  __shared__ T arr[256];
  return arr;
#endif
}

Then if a.cu and b.cu both include a.h and instantiate getptr for the same type, and b.cu
expects a non-NULL address, and compile with:

nvcc –arch=compute_20 –dc a.cu
nvcc –arch=compute_30 –dc b.cu
nvcc –arch=sm_30 a.o b.o

At link time only one version of the getptr is used, so the behavior would depend on which
version is picked. To avoid this, either a.cu and b.cu must be compiled for the same
compute arch, or __CUDA_ARCH__ should not be used in the shared header function.

The compiler does not guarantee that a diagnostic will be generated for the unsupported uses
of __CUDA_ARCH__ described above.

15 This does not apply to entities that may be defined in more than one translation unit, such as compiler generated template
instantiations.
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I.4.3.  Qualifiers

I.4.3.1.  Device Memory Space Specifiers
The __device__, __shared__, __managed__ and __constant__ memory space specifiers are
not allowed on:

‣ class, struct, and union data members,

‣ formal parameters,

‣ non-extern variable declarations within a function that executes on the host.

The __device__, __constant__ and __managed__ memory space specifiers are not allowed
on variable declarations that are neither extern nor static within a function that executes on
the device.

A __device__, __constant__, __managed__ or __shared__ variable definition cannot have a
class type with a non-empty constructor or a non-empty destructor. A constructor for a class
type is considered empty at a point in the translation unit, if it is either a trivial constructor or it
satisfies all of the following conditions:

‣ The constructor function has been defined.

‣ The constructor function has no parameters, the initializer list is empty and the function
body is an empty compound statement.

‣ Its class has no virtual functions, no virtual base classes and no non-static data member
initializers.

‣ The default constructors of all base classes of its class can be considered empty.

‣ For all the nonstatic data members of its class that are of class type (or array thereof), the
default constructors can be considered empty.

A destructor for a class is considered empty at a point in the translation unit, if it is either a
trivial destructor or it satisfies all of the following conditions:

‣ The destructor function has been defined.

‣ The destructor function body is an empty compound statement.

‣ Its class has no virtual functions and no virtual base classes.

‣ The destructors of all base classes of its class can be considered empty.

‣ For all the nonstatic data members of its class that are of class type (or array thereof), the
destructor can be considered empty.

When compiling in the whole program compilation mode (see the nvcc user manual for
a description of this mode), __device__, __shared__, __managed__ and __constant__
variables cannot be defined as external using the extern keyword. The only exception is for
dynamically allocated __shared__ variables as described in __shared__.
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When compiling in the separate compilation mode (see the nvcc user manual for a description
of this mode), __device__, __shared__, __managed__ and __constant__ variables can be
defined as external using the extern keyword. nvlink will generate an error when it cannot
find a definition for an external variable (unless it is a dynamically allocated __shared__
variable).

I.4.3.2.  __managed__ Memory Space Specifier
Variables marked with the __managed__ memory space specifier ("managed" variables) have
the following restrictions:

‣ The address of a managed variable is not a constant expression.

‣ A managed variable shall not have a const qualified type.

‣ A managed variable shall not have a reference type.

‣ The address or value of a managed variable shall not be used when the CUDA runtime may
not be in a valid state, including the following cases:

‣ In static/dynamic initialization or destruction of an object with static or thread local
storage duration.

‣ In code that executes after exit() has been called (e.g., a function marked with gcc's
"__attribute__((destructor))").

‣ In code that executes when CUDA runtime may not be initialized (e.g., a function
marked with gcc's "__attribute__((constructor))").

‣ A managed variable cannot be used as an unparenthesized id-expression argument to a
decltype() expression.

‣ Managed variables have the same coherence and consistency behavior as specified for
dynamically allocated managed memory.

‣ When a CUDA program containing managed variables is run on an execution platform with
multiple GPUs, the variables are allocated only once, and not per GPU.

‣ A managed variable declaration without the extern linkage is not allowed within a function
that executes on the host.

‣ A managed variable declaration without the extern or static linkage is not allowed within a
function that executes on the device.

Here are examples of legal and illegal uses of managed variables:

__device__ __managed__ int xxx = 10;         // OK

int *ptr = &xxx;                             // error: use of managed variable 
                                             // (xxx) in static initialization
struct S1_t {
  int field;
  S1_t(void) : field(xxx) { };
};
struct S2_t {
  ~S2_t(void) { xxx = 10; }
};
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S1_t temp1;                                 // error: use of managed variable 
                                            // (xxx) in dynamic initialization

S2_t temp2;                                 // error: use of managed variable
                                            // (xxx) in the destructor of 
                                            // object with static storage 
                                            // duration

__device__ __managed__ const int yyy = 10;  // error: const qualified type

__device__ __managed__ int &zzz = xxx;      // error: reference type

template <int *addr> struct S3_t { };
S3_t<&xxx> temp;                            // error: address of managed 
                                            // variable(xxx) not a 
                                            // constant expression

__global__ void kern(int *ptr)
{
  assert(ptr == &xxx);                      // OK
  xxx = 20;                                 // OK
}
int main(void) 
{
  int *ptr = &xxx;                          // OK
  kern<<<1,1>>>(ptr);
  cudaDeviceSynchronize();
  xxx++;                                    // OK
  decltype(xxx) qqq;                        // error: managed variable(xxx) used
                                            // as unparenthized argument to
                                            // decltype
                                            
  decltype((xxx)) zzz = yyy;                // OK
}

I.4.3.3.  Volatile Qualifier
The compiler is free to optimize reads and writes to global or shared memory (for example, by
caching global reads into registers or L1 cache) as long as it respects the memory ordering
semantics of memory fence functions (Memory Fence Functions) and memory visibility
semantics of synchronization functions (Synchronization Functions).

These optimizations can be disabled using the volatile keyword: If a variable located in
global or shared memory is declared as volatile, the compiler assumes that its value can be
changed or used at any time by another thread and therefore any reference to this variable
compiles to an actual memory read or write instruction.

I.4.4.  Pointers
Dereferencing a pointer either to global or shared memory in code that is executed on
the host, or to host memory in code that is executed on the device results in an undefined
behavior, most often in a segmentation fault and application termination.

The address obtained by taking the address of a __device__, __shared__ or __constant__
variable can only be used in device code. The address of a __device__ or __constant__
variable obtained through cudaGetSymbolAddress() as described in Device Memory can only
be used in host code.
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I.4.5.  Operators

I.4.5.1.  Assignment Operator
__constant__ variables can only be assigned from the host code through runtime functions
(Device Memory); they cannot be assigned from the device code.

__shared__ variables cannot have an initialization as part of their declaration.

It is not allowed to assign values to any of the built-in variables defined in Built-in Variables.

I.4.5.2.  Address Operator
It is not allowed to take the address of any of the built-in variables defined in Built-in
Variables.

I.4.6.  Run Time Type Information (RTTI)
The following RTTI-related features are supported in host code, but not in device code.

‣ typeid operator

‣ std::type_info

‣ dynamic_cast operator

I.4.7.  Exception Handling
Exception handling is only supported in host code, but not in device code.

Exception specification is not supported for __global__ functions.

I.4.8.  Standard Library
Standard libraries are only supported in host code, but not in device code, unless specified
otherwise.

I.4.9.  Functions

I.4.9.1.  External Linkage
A call within some device code of a function declared with the extern qualifier is only allowed if
the function is defined within the same compilation unit as the device code, i.e., a single file or
several files linked together with relocatable device code and nvlink.
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I.4.9.2.  Implicitly-declared and explicitly-defaulted
functions

Let F denote a function that is either implicitly-declared or is explicitly-defaulted on its first
declaration The execution space specifiers (__host__, __device__) for F are the union of the
execution space specifiers of all the functions that invoke it (note that a __global__ caller will
be treated as a __device__  caller for this analysis). For example:

class Base {
  int x;
public:  
  __host__ __device__ Base(void) : x(10) {}
};

class Derived : public Base {
  int y;
};

class Other: public Base {
  int z;
};

__device__ void foo(void)
{
  Derived D1;
  Other D2;
}

__host__ void bar(void)
{
  Other D3;
}

Here, the implicitly-declared constructor function "Derived::Derived" will be treated as
a __device__ function, since it is invoked only from the __device__ function "foo". The
implicitly-declared constructor function "Other::Other" will be treated as a __host__
__device__ function, since it is invoked both from a __device__ function "foo" and a
__host__ function "bar".

In addition, if F is a virtual destructor, then the execution spaces of each virtual destructor
D overridden by F are added to the set of execution spaces for F, if D is either not implicitly
defined or is explicitly defaulted on a declaration other than its first declaration.

For example:

struct Base1 { virtual __host__ __device__ ~Base1() { } };
struct Derived1 : Base1 { }; // implicitly-declared virtual destructor
                             // ~Derived1 has __host__ __device__ 
                             // execution space specifiers

struct Base2 { virtual __device__ ~Base2(); };
__device__ Base2::~Base2() = default;
struct Derived2 : Base2 { }; // implicitly-declared virtual destructor
                             // ~Derived2 has __device__ execution 
                             // space specifiers 
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I.4.9.3.  Function Parameters
__global__ function parameters are passed to the device via constant memory and are
limited to 4 KB.

__global__ functions cannot have a variable number of arguments.

__global__ function parameters cannot be pass-by-reference.

I.4.9.3.1.  __global__ Function Argument Processing
When a __global__ function is launched from device code, each argument must be trivially
copyable and trivially destructible.

When a __global__ function is launched from host code, each argument type is allowed to be
non-trivially copyable or non-trivially-destructible, but the processing for such types does not
follow the standard C++ model, as described below. User code must ensure that this workflow
does not affect program correctness. The workflow diverges from standard C++ in two areas:

 1. Memcpy instead of copy constructor invocation

When lowering a __global__ function launch from host code, the compiler generates stub
functions that copy the parameters one or more times by value, before eventually using
memcpy to copy the arguments to the __global__ function's parameter memory on the
device. This occurs even if an argument was non-trivially-copyable, and therefore may
break programs where the copy constructor has side effects.

Example:

#include <cassert>
struct S {
 int x;
 int *ptr;
 __host__ __device__ S() { }
 __host__ __device__ S(const S &) { ptr = &x; }
};

__global__ void foo(S in) {
 // this assert may fail, because the compiler
 // generated code will memcpy the contents of "in"
 // from host to kernel parameter memory, so the
 // "in.ptr" is not initialized to "&in.x" because
 // the copy constructor is skipped.
 assert(in.ptr == &in.x);
}

int main() {
  S tmp;
  foo<<<1,1>>>(tmp);
  cudaDeviceSynchronize();
}

Example:

#include <cassert>

__managed__ int counter;
struct S1 {
S1() { }
S1(const S1 &) { ++counter; }
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};

__global__ void foo(S1) {

/* this assertion may fail, because
   the compiler generates stub
   functions on the host for a kernel
   launch, and they may copy the
   argument by value more than once.
*/
assert(counter == 1);
}

int main() {
S1 V;
foo<<<1,1>>>(V);
cudaDeviceSynchronize();
}

 2. Destructor may be invoked before the __global__ function has finished

Kernel launches are asynchronous with host execution. As a result, if a __global__
function argument has a non-trivial destructor, the destructor may execute in host code
even before the __global__ function has finished execution. This may break programs
where the destructor has side effects.

Example:

struct S {
 int *ptr;
 S() : ptr(nullptr) { }
 S(const S &) { cudaMallocManaged(&ptr, sizeof(int)); }
 ~S() { cudaFree(ptr); }
};

__global__ void foo(S in) {
 
  //error: This store may write to memory that has already been
  //       freed (see below).
  *(in.ptr) = 4;
 
}

int main() {
 S V;
 
 /* The object 'V' is first copied by value to a compiler-generated
  * stub function that does the kernel launch, and the stub function
  * bitwise copies the contents of the argument to kernel parameter
  * memory.
  * However, GPU kernel execution is asynchronous with host
  * execution. 
  * As a result, S::~S() will execute when the stub function   returns, releasing
 allocated memory, even though the kernel may not have finished execution.
  */
 foo<<<1,1>>>(V);
 cudaDeviceSynchronize();
}

I.4.9.4.  Static Variables within Function
Variable memory space specifiers are allowed in the declaration of a static variable V within
the immediate or nested block scope of a function F where:
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‣ F is a __global__ or __device__-only function.

‣ F is a __host__ __device__ function and __CUDA_ARCH__ is defined 16.

If no explicit memory space specifier is present in the declaration of V, an implicit __device__
specifier is assumed during device compilation.

V has the same initialization restrictions as a variable with the same memory space specifiers
declared in namespace scope e.g. a __device__ variable cannot have a 'non-empty'
constructor (see Device Memory Space Specifiers).

Examples of legal and illegal uses of function-scope static variables are shown below.

struct S1_t {
  int x;
};

struct S2_t {
  int x;
  __device__ S2_t(void) { x = 10; }
};

struct S3_t {
  int x;
  __device__ S3_t(int p) : x(p) { }
};

__device__ void f1() {
  static int i1;              // OK, implicit __device__ memory space specifier
  static int i2 = 11;         // OK, implicit __device__ memory space specifier
  static __managed__ int m1;  // OK
  static __device__ int d1;   // OK
  static __constant__ int c1; // OK
  
  static S1_t i3;             // OK, implicit __device__ memory space specifier
  static S1_t i4 = {22};      // OK, implicit __device__ memory space specifier

  static __shared__ int i5;   // OK

  int x = 33;
  static int i6 = x;          // error: dynamic initialization is not allowed
  static S1_t i7 = {x};       // error: dynamic initialization is not allowed

  static S2_t i8;             // error: dynamic initialization is not allowed
  static S3_t i9(44);         // error: dynamic initialization is not allowed
}

__host__ __device__ void f2() {
  static int i1;              // OK, implicit __device__ memory space specifier
                              // during device compilation.
#ifdef __CUDA_ARCH__
  static __device__ int d1;   // OK, declaration is only visible during device
                              // compilation  (__CUDA_ARCH__ is defined)
#else
  static int d0;              // OK, declaration is only visible during host
                              // compilation (__CUDA_ARCH__ is not defined)
#endif  

  static __device__ int d2;   // error: __device__ variable inside
                              // a host function during host compilation
                              // i.e. when __CUDA_ARCH__ is not defined

16 The intent is to allow variable memory space specifiers for static variables in a __host__ __device__ function during device
compilation, but disallow it during host compilation
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  static __shared__ int i2;  // error: __shared__ variable inside
                             // a host function during host compilation
                             // i.e. when __CUDA_ARCH__ is not defined
}

I.4.9.5.  Function Pointers
The address of a __global__ function taken in host code cannot be used in device code (e.g.
to launch the kernel). Similarly, the address of a __global__ function taken in device code 17

cannot be used in host code.

It is not allowed to take the address of a __device__ function in host code.

I.4.9.6.  Function Recursion
__global__ functions do not support recursion.

I.4.9.7.  Friend Functions
A __global__ function or function template cannot be defined in a friend declaration.

Example:

struct S1_t {
  friend __global__ 
  void foo1(void);  // OK: not a definition
  template<typename T>
  friend __global__ 
  void foo2(void); // OK: not a definition
  
  friend __global__ 
  void foo3(void) { } // error: definition in friend declaration
  
  template<typename T>
  friend __global__ 
  void foo4(void) { } // error: definition in friend declaration
};

I.4.9.8.  Operator Function
An operator function cannot be a __global__ function.

I.4.10.  Classes

I.4.10.1.  Data Members
Static data members are not supported except for those that are also const-qualified (see
Const-qualified variables).

I.4.10.2.  Function Members
Static member functions cannot be __global__ functions.

17 supported with architectures >= sm_35
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I.4.10.3.  Virtual Functions
When a function in a derived class overrides a virtual function in a base class, the execution
space specifiers (i.e., __host__, __device__) on the overridden and overriding functions must
match.

It is not allowed to pass as an argument to a __global__ function an object of a class with
virtual functions.

If an object is created in host code, invoking a virtual function for that object in device code has
undefined behavior.

If an object is created in device code, invoking a virtual function for that object in host code has
undefined behavior.

See Windows-Specific for additional constraints when using the Microsoft host compiler.

Example:

struct S1 { virtual __host__ __device__ void foo() { } };

__managed__ S1 *ptr1, *ptr2;

__managed__ __align__(16) char buf1[128];
__global__ void kern() { 
  ptr1->foo();     // error: virtual function call on a object
                   //        created in host code.
  ptr2 = new(buf1) S1();
}

int main(void) {
  void *buf;
  cudaMallocManaged(&buf, sizeof(S1), cudaMemAttachGlobal);
  ptr1 = new (buf) S1();
  kern<<<1,1>>>();
  cudaDeviceSynchronize();
  ptr2->foo();  // error: virtual function call on an object
                //        created in device code.
}

I.4.10.4.  Virtual Base Classes
It is not allowed to pass as an argument to a __global__ function an object of a class derived
from virtual base classes.

See Windows-Specific for additional constraints when using the Microsoft host compiler.

I.4.10.5.  Anonymous Unions
Member variables of a namespace scope anonymous union cannot be referenced in a
__global__ or __device__ function.

I.4.10.6.  Windows-Specific
The CUDA compiler follows the IA64 ABI for class layout, while the Microsoft host compiler
does not. Let T denote a pointer to member type, or a class type that satisfies any of the
following conditions:
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‣ T has virtual functions.

‣ T has a virtual base class.

‣ T has multiple inheritance with more than one direct or indirect empty base class.

‣ All direct and indirect base classes B of T are empty and the type of the first field F of T
uses B in its definition, such that B is laid out at offset 0 in the definition of F.

Let C denote T or a class type that has T as a field type or as a base class type. The CUDA
compiler may compute the class layout and size differently than the Microsoft host compiler
for the type C.

As long as the type C is used exclusively in host or device code, the program should work
correctly.

Passing an object of type C between host and device code has undefined behavior e.g., as an
argument to a __global__ function or through cudaMemcpy*() calls.

Accessing an object of type C or any subobject in device code, or invoking a member function in
device code, has undefined behavior if the object is created in host code.

Accessing an object of type C or any subobject in host code, or invoking a member function in
host code, has undefined behavior if the object is created in device code 18.

I.4.11.  Templates
A type or template cannot be used in the type, non-type or template template argument of
a __global__ function template instantiation or a __device__/__constant__ variable
instantiation if either:

‣ The type or template is defined within a __host__ or __host__ __device__.

‣ The type or template is a class member with private or protected access and its parent
class is not defined within a __device__ or __global__ function.

‣ The type is unnamed.

‣ The type is compounded from any of the types above.

Example:

template <typename T>
__global__ void myKernel(void) { }

class myClass {
private:
    struct inner_t { }; 
public:
    static void launch(void) 
    {
       // error: inner_t is used in template argument
       // but it is private
       myKernel<inner_t><<<1,1>>>();
    }

18 One way to debug suspected layout mismatch of a type C is to use printf to output the values of sizeof(C) and offsetof(C,
field) in host and device code.
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};

// C++14 only
template <typename T> __device__ T d1;

template <typename T1, typename T2> __device__ T1 d2;

void fn() {
  struct S1_t { };
  // error (C++14 only): S1_t is local to the function fn
  d1<S1_t> = {};

  auto lam1 = [] { };
  // error (C++14 only): a closure type cannot be used for
  // instantiating a variable template
  d2<int, decltype(lam1)> = 10;
}

I.4.12.  Trigraphs and Digraphs
Trigraphs are not supported on any platform. Digraphs are not supported on Windows.

I.4.13.  Const-qualified variables
Let 'V' denote a namespace scope variable or a class static member variable that has
const qualified type and does not have execution space annotations (e.g., __device__,
__constant__, __shared__). V is considered to be a host code variable.

The value of V may be directly used in device code, if

‣ V has been initialized with a constant expression before the point of use,

‣ the type of V is not volatile-qualified, and

‣ it has one of the following types:

‣ builtin floating point type except when the Microsoft compiler is used as the host
compiler,

‣ builtin integral type.

Device source code cannot contain a reference to V or take the address of V.

Example:

const int xxx = 10;
struct S1_t {  static const int yyy = 20; };
    
extern const int zzz;
const float www = 5.0;
__device__ void foo(void) {
  int local1[xxx];          // OK
  int local2[S1_t::yyy];    // OK
      
  int val1 = xxx;           // OK
         
  int val2 = S1_t::yyy;     // OK
         
  int val3 = zzz;           // error: zzz not initialized with constant 
                            // expression at the point of use.
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  const int &val3 = xxx;    // error: reference to host variable  
  const int *val4 = &xxx;   // error: address of host variable
  const float val5 = www;   // OK except when the Microsoft compiler is used as
                            // the host compiler.
}
const int zzz = 20;

I.4.14.  Long Double
The use of long double type is not supported in device code.

I.4.15.  Deprecation Annotation
nvcc supports the use of deprecated attribute when using gcc, clang, xlC, icc or pgcc
host compilers, and the use of deprecated declspec when using the cl.exe host compiler.
It also supports the [[deprecated]] standard attribute when the C++14 dialect has been
enabled. The CUDA frontend compiler will generate a deprecation diagnostic for a reference
to a deprecated entity from within the body of a __device__, __global__ or __host__
__device__ function when __CUDA_ARCH__ is defined (i.e., during device compilation phase).
Other references to deprecated entities will be handled by the host compiler, e.g., a reference
from within a __host__ function.

The CUDA frontend compiler does not support the #pragma gcc diagnostic or #pragma
warning mechanisms supported by various host compilers. Therefore, deprecation
diagnostics generated by the CUDA frontend compiler are not affected by these pragmas,
but diagnostics generated by the host compiler will be affected. To suppress the warning for
device-code, user can use Nvidia specific pragma #pragma nv_diag_suppress. The nvcc
flag -Wno-deprecated-declarations can be used to suppress all deprecation warnings, and
the flag -Werror=deprecated-declarations can be used to turn deprecation warnings into
errors.

I.4.16.  Noreturn Annotation
nvcc supports the use of noreturn attribute when using gcc, clang, xlC, icc or pgcc host
compilers, and the use of noreturn declspec when using the cl.exe host compiler. It also
supports the [[noreturn]] standard attribute when the C++11 dialect has been enabled.

The attribute/declspec can be used in both host and device code.

I.4.17.  [[likely]] / [[unlikely]] Standard Attributes
These attributes are accepted in all configurations that support the C++ standard attribute
syntax. The attributes can be used to hint to the device compiler optimizer whether a
statement is more or less likely to be executed compared to any alternative path that does not
include the statement.

Example:

__device__ int foo(int x) {

 if (i < 10) [[likely]] { // the 'if' block will likely be entered
  return 4; 
 }
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 if (i < 20) [[unlikely]] { // the 'if' block will not likely be entered
  return 1;
 }
 return 0;
}

If these attributes are used in host code when __CUDA_ARCH__ is undefined, then they will
be present in the code parsed by the host compiler, which may generate a warning if the
attributes are not supported. E.g., clang11 host compiler will generate an 'unknown attribute'
warning.

I.4.18.  const and pure GNU Attributes
These attributes are supported for both host and device functions, when using a language
dialect and host compiler that also supports these attributes e.g. with g++ host compiler.

For a device function annotated with the pure attribute, the device code optimizer assumes
that the function does not change any mutable state visible to caller functions (e.g. memory).

For a device function annotated with the const attribute, the device code optimizer assumes
that the function does not access or change any mutable state visible to caller functions (e.g.
memory).

Example:

__attribute__((const)) __device__ int get(int in);

__device__ int doit(int in) {
int sum = 0;

//because 'get' is marked with 'const' attribute
//device code optimizer can recognize that the
//second call to get() can be commoned out.
sum = get(in);
sum += get(in);

return sum;
}

I.4.19.  Intel Host Compiler Specific
The CUDA frontend compiler parser does not recognize some of the intrinsic functions
supported by the Intel compiler (e.g. icc). When using the Intel compiler as a host compiler,
nvcc will therefore enable the macro __INTEL_COMPILER_USE_INTRINSIC_PROTOTYPES
during preprocessing. This macro enables explicit declarations of the Intel compiler intrinsic
functions in the associated header files, allowing nvcc to support use of such functions in host
code19.

I.4.20.  C++11 Features
C++11 features that are enabled by default by the host compiler are also supported by nvcc,
subject to the restrictions described in this document. In addition, invoking nvcc with -std=c

19 Note that this may negatively impact compile time due to presence of extra declarations.
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++11 flag turns on all C++11 features and also invokes the host preprocessor, compiler and
linker with the corresponding C++11 dialect option 20.

I.4.20.1.  Lambda Expressions
The execution space specifiers for all member functions21 of the closure class associated
with a lambda expression are derived by the compiler as follows. As described in the C+
+11 standard, the compiler creates a closure type in the smallest block scope, class scope
or namespace scope that contains the lambda expression. The innermost function scope
enclosing the closure type is computed, and the corresponding function's execution space
specifiers are assigned to the closure class member functions. If there is no enclosing
function scope, the execution space specifier is __host__.

Examples of lambda expressions and computed execution space specifiers are shown below
(in comments).

auto globalVar = [] { return 0; }; // __host__ 
    
void f1(void) {
  auto l1 = [] { return 1; };      // __host__
}
    
__device__ void f2(void) {
  auto l2 = [] { return 2; };      // __device__
}
    
__host__ __device__ void f3(void) {
  auto l3 = [] { return 3; };      // __host__ __device__
}
    
__device__ void f4(int (*fp)() = [] { return 4; } /* __host__ */) {
}
    
__global__ void f5(void) {
  auto l5 = [] { return 5; };      // __device__
}
    
__device__ void f6(void) {
  struct S1_t {
    static void helper(int (*fp)() = [] {return 6; } /* __device__ */) {
    }
  };
}

The closure type of a lambda expression cannot be used in the type or non-type argument
of a __global__ function template instantiation, unless the lambda is defined within a
__device__ or __global__ function.

Example:

template <typename T>
__global__ void foo(T in) { };
    
template <typename T>
struct S1_t { };

20 At present, the -std=c++11 flag is supported only for the following host compilers : gcc version >= 4.7, clang, icc >= 15, and xlc
>= 13.1

21 including operator()
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void bar(void) {
  auto temp1 = [] { };
      
  foo<<<1,1>>>(temp1);                    // error: lambda closure type used in
                                          // template type argument
  foo<<<1,1>>>( S1_t<decltype(temp1)>()); // error: lambda closure type used in 
                                          // template type argument
}

I.4.20.2.  std::initializer_list
By default, the CUDA compiler will implicitly consider the member functions of
std::initializer_list to have __host__ __device__ execution space specifiers, and
therefore they can be invoked directly from device code. The nvcc flag --no-host-device-
initializer-list will disable this behavior; member functions of std::initializer_list
will then be considered as __host__ functions and will not be directly invokable from device
code.

Example:

#include <initializer_list>
    
__device__ int foo(std::initializer_list<int> in);
    
__device__ void bar(void)
  {
    foo({4,5,6});   // (a) initializer list containing only 
                    // constant expressions.
    
    int i = 4;
    foo({i,5,6});   // (b) initializer list with at least one 
                    // non-constant element.
                    // This form may have better performance than (a). 
  }

I.4.20.3.  Rvalue references
By default, the CUDA compiler will implicitly consider std::move and std::forward function
templates to have __host__ __device__ execution space specifiers, and therefore they can
be invoked directly from device code. The nvcc flag --no-host-device-move-forward will
disable this behavior; std::move and std::forward will then be considered as __host__
functions and will not be directly invokable from device code.

I.4.20.4.  Constexpr functions and function templates
By default, a constexpr function cannot be called from a function with incompatible execution
space 22. The experimental nvcc flag --expt-relaxed-constexpr removes this restriction
23. When this flag is specified, host code can invoke a __device__ constexpr function
and device code can invoke a __host__ constexpr function. nvcc will define the macro
__CUDACC_RELAXED_CONSTEXPR__ when --expt-relaxed-constexpr has been specified.
Note that a function template instantiation may not be a constexpr function even if the

22 The restrictions are the same as with a non-constexpr callee function.
23 Note that the behavior of experimental flags may change in future compiler releases.
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corresponding template is marked with the keyword constexpr (C++11 Standard Section
[dcl.constexpr.p6]).

I.4.20.5.  Constexpr variables
Let 'V' denote a namespace scope variable or a class static member variable that has been
marked constexpr and that does not have execution space annotations (e.g., __device__,
__constant__, __shared__). V is considered to be a host code variable.

If V is of scalar type 24 other than long double and the type is not volatile-qualified, the value
of V can be directly used in device code. In addition, if V is of a non-scalar type then scalar
elements of V can be used inside a constexpr __device__ or __host__ __device__ function,
if the call to the function is a constant expression 25. Device source code cannot contain a
reference to V or take the address of V.

Example:

constexpr int xxx = 10;
constexpr int yyy = xxx + 4;
struct S1_t { static constexpr int qqq = 100; };

constexpr int host_arr[] = { 1, 2, 3};
constexpr __device__ int get(int idx) { return host_arr[idx]; } 
  
__device__ int foo(int idx) {
  int v1 = xxx + yyy + S1_t::qqq;  // OK
  const int &v2 = xxx;             // error: reference to host constexpr 
                                   // variable
  const int *v3 = &xxx;            // error: address of host constexpr 
                                   // variable
  const int &v4 = S1_t::qqq;       // error: reference to host constexpr 
                                   // variable
  const int *v5 = &S1_t::qqq;      // error: address of host constexpr 
                                   // variable
                                   
  v1 += get(2);                    // OK: 'get(2)' is a constant 
                                   // expression.
  v1 += get(idx);                  // error: 'get(idx)' is not a constant 
                                   // expression
  v1 += host_arr[2];               // error: 'host_arr' does not have 
                                   // scalar type.
  return v1;
}

I.4.20.6.  Inline namespaces
For an input CUDA translation unit, the CUDA compiler may invoke the host compiler
for compiling the host code within the translation unit. In the code passed to the host
compiler, the CUDA compiler will inject additional compiler generated code, if the input CUDA
translation unit contained a definition of any of the following entities:

‣ __global__ function or function template instantiation

‣ __device__, __constant__

24 C++ Standard Section [basic.types]
25 C++ Standard Section [expr.const]
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‣ variables with surface or texture type

The compiler generated code contains a reference to the defined entity. If the entity is defined
within an inline namespace and another entity of the same name and type signature is defined
in an enclosing namespace, this reference may be considered ambiguous by the host compiler
and host compilation will fail.

This limitation can be avoided by using unique names for such entities defined within an inline
namespace.

Example:

__device__ int Gvar;
inline namespace N1 {
  __device__ int Gvar;  
}

// <-- CUDA compiler inserts a reference to "Gvar" at this point in the 
// translation unit. This reference will be considered ambiguous by the 
// host compiler and compilation will fail.

Example:

inline namespace N1 {
  namespace N2 {
    __device__ int Gvar;
  }
}

namespace N2 {
  __device__ int Gvar;
}

// <-- CUDA compiler inserts reference to "::N2::Gvar" at this point in 
// the translation unit. This reference will be considered ambiguous by 
// the host compiler and compilation will fail.

I.4.20.6.1.  Inline unnamed namespaces
The following entities cannot be declared in namespace scope within an inline unnamed
namespace:

‣ __managed__, __device__, __shared__ and __constant__ variables

‣ __global__ function and function templates

‣ variables with surface or texture type

Example:

inline namespace {
  namespace N2 {
    template <typename T>
    __global__ void foo(void);            // error
    
    __global__ void bar(void) { }         // error
    
    template <>



C++ Language Support

CUDA C++ Programming Guide PG-02829-001_v11.5   |   334

    __global__ void foo<int>(void) { }    // error
      
    __device__ int x1b;                   // error
    __constant__ int x2b;                 // error
    __shared__ int x3b;                   // error 
 
    texture<int> q2;                      // error
    surface<int> s2;                      // error
  }
};

I.4.20.7.  thread_local
The thread_local storage specifier is not allowed in device code.

I.4.20.8.  __global__ functions and function templates
If the closure type associated with a lambda expression is used in a template argument of a
__global__ function template instantiation, the lambda expression must either be defined in
the immediate or nested block scope of a __device__ or __global__ function, or must be an
extended lambda.

Example:

    
template <typename T>
__global__ void kernel(T in) { }

__device__ void foo_device(void)
{
  // All kernel instantiations in this function
  // are valid, since the lambdas are defined inside
  // a __device__ function.
  
  kernel<<<1,1>>>( [] __device__ { } );
  kernel<<<1,1>>>( [] __host__ __device__ { } );
  kernel<<<1,1>>>( []  { } );
}

auto lam1 = [] { };

auto lam2 = [] __host__ __device__ { };

void foo_host(void)
{
   // OK: instantiated with closure type of an extended __device__ lambda
   kernel<<<1,1>>>( [] __device__ { } );
   
   // OK: instantiated with closure type of an extended __host__ __device__ 
   // lambda
   kernel<<<1,1>>>( [] __host__ __device__ { } );
 
   // error: unsupported: instantiated with closure type of a lambda
   // that is not an extended lambda
   kernel<<<1,1>>>( []  { } );
   
   // error: unsupported: instantiated with closure type of a lambda
   // that is not an extended lambda
   kernel<<<1,1>>>( lam1);
   
   // error: unsupported: instantiated with closure type of a lambda
   // that is not an extended lambda
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   kernel<<<1,1>>>( lam2);
}

A __global__ function or function template cannot be declared as constexpr.

A __global__ function or function template cannot have a parameter of type
std::initializer_list or va_list.

A __global__ function cannot have a parameter of rvalue reference type.

A variadic __global__ function template has the following restrictions:

‣ Only a single pack parameter is allowed.

‣ The pack parameter must be listed last in the template parameter list.

Example:

// ok
template <template <typename...> class Wrapper, typename... Pack>
__global__ void foo1(Wrapper<Pack...>);
    
// error: pack parameter is not last in parameter list
template <typename... Pack, template <typename...> class Wrapper>
__global__ void foo2(Wrapper<Pack...>);

// error: multiple parameter packs
template <typename... Pack1, int...Pack2, template<typename...> class Wrapper1, 
          template<int...> class Wrapper2>
__global__ void foo3(Wrapper1<Pack1...>, Wrapper2<Pack2...>);

I.4.20.9.  __managed__ and __shared__ variables
__managed__ and __shared__ variables cannot be marked with the keyword constexpr.

I.4.20.10. Defaulted functions
Execution space specifiers on a function that is explicitly-defaulted on its first declaration
are ignored by the CUDA compiler. Instead, the CUDA compiler will infer the execution space
specifiers as described in Implicitly-declared and explicitly-defaulted functions.

Execution space specifiers are not ignored if the function is explicitly-defaulted, but not on its
first declaration.

Example:

struct S1 {
  // warning: __host__ annotation is ignored on a function that 
  //          is explicitly-defaulted on its first declaration
  __host__ S1() = default;
};

__device__ void foo1() { 
  //note: __device__ execution space is derived for S1::S1 
  //       based on implicit call from within __device__ function 
  //       foo1
  S1 s1;    
}
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struct S2 {
  __host__ S2();
};

//note: S2::S2 is not defaulted on its first declaration, and 
//      its execution space is fixed to __host__  based on its 
//      first declaration.
S2::S2() = default;  

__device__ void foo2() {
   // error: call from __device__ function 'foo2' to 
   //        __host__ function 'S2::S2'
   S2 s2;  
}

I.4.21.  C++14 Features
C++14 features enabled by default by the host compiler are also supported by nvcc. Passing
nvcc -std=c++14 flag turns on all C++14 features and also invokes the host preprocessor,
compiler and linker with the corresponding C++14 dialect option 26. This section describes the
restrictions on the supported C++14 features.

I.4.21.1.  Functions with deduced return type
A __global__ function cannot have a deduced return type.

If a __device__ function has deduced return type, the CUDA frontend compiler will change
the function declaration to have a void return type, before invoking the host compiler. This
may cause issues for introspecting the deduced return type of the __device__ function in
host code. Thus, the CUDA compiler will issue compile-time errors for referencing such
deduced return type outside device function bodies, except if the reference is absent when
__CUDA_ARCH__ is undefined.

Examples:

__device__ auto fn1(int x) {
  return x;
}

__device__ decltype(auto) fn2(int x) {
  return x;
}

__device__ void device_fn1() {
  // OK
  int (*p1)(int) = fn1;
}

// error: referenced outside device function bodies
decltype(fn1(10)) g1;

void host_fn1() {
  // error: referenced outside device function bodies
  int (*p1)(int) = fn1;

  struct S_local_t {
    // error: referenced outside device function bodies

26 At present, the -std=c++14 flag is supported only for the following host compilers : gcc version >= 5.1, clang version >= 3.7 and
icc version >= 17
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    decltype(fn2(10)) m1;

    S_local_t() : m1(10) { }
  };
}

// error: referenced outside device function bodies
template <typename T = decltype(fn2)>
void host_fn2() { }

template<typename T> struct S1_t { };

// error: referenced outside device function bodies
struct S1_derived_t : S1_t<decltype(fn1)> { };

I.4.21.2.  Variable templates
A __device__/__constant__ variable template cannot have a const qualified type when
using the Microsoft host compiler.

Examples:

// error: a __device__ variable template cannot
// have a const qualified type on Windows
template <typename T>
__device__ const T d1(2);

int *const x = nullptr;
// error: a __device__ variable template cannot
// have a const qualified type on Windows
template <typename T>
__device__ T *const d2(x);

// OK
template <typename T>
__device__ const T *d3;

__device__ void fn() {
  int t1 = d1<int>;

  int *const t2 = d2<int>;

  const int *t3 = d3<int>;
}

I.4.22.  C++17 Features
C++17 features enabled by default by the host compiler are also supported by nvcc. Passing
nvcc -std=c++17 flag turns on all C++17 features and also invokes the host preprocessor,
compiler and linker with the corresponding C++17 dialect option 27. This section describes the
restrictions on the supported C++17 features.

27 At present, the -std=c++17 flag is supported only for the following host compilers : gcc version >= 7.0, clang version >= 8.0,
Visual Studio version >= 2017, pgi compiler version >= 19.0, icc compiler version >= 19.0
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I.4.22.1.  Inline Variable
‣ A namespace scope inline variable declared with __device__ or __constant__ or

__managed__ memory space specifier must have internal linkage, if the code is compiled
with nvcc in whole program compilation mode.

Examples:

inline __device__ int xxx; //error when compiled with nvcc in
                                    //whole program compilation mode.
                                    //ok when compiled with nvcc in
                                    //separate compilation mode.

inline __shared__ int yyy0; // ok.

static inline __device__ int yyy; // ok: internal linkage
namespace {
inline __device__ int zzz; // ok: internal linkage
}

‣ When using g++ host compiler, an inline variable declared with __managed__ memory
space specifier may not be visible to the debugger.

I.4.22.2.  Structured Binding
A structured binding cannot be declared with a variable memory space specifier.

Example:

struct S { int x; int y; };
__device__ auto [a1, b1] = S{4,5}; // error

I.5.  Polymorphic Function Wrappers
A polymorphic function wrapper class template nvstd::function is provided in the
nvfunctional header. Instances of this class template can be used to store, copy and invoke
any callable target, e.g., lambda expressions. nvstd::function can be used in both host and
device code.

Example:

#include <nvfunctional>

__device__ int foo_d() { return 1; }
__host__ __device__ int foo_hd () { return 2; }
__host__ int foo_h() { return 3; }

__global__ void kernel(int *result) {
  nvstd::function<int()> fn1 = foo_d;  
  nvstd::function<int()> fn2 = foo_hd;
  nvstd::function<int()> fn3 =  []() { return 10; };

  *result = fn1() + fn2() + fn3();
}



C++ Language Support

CUDA C++ Programming Guide PG-02829-001_v11.5   |   339

__host__ __device__ void hostdevice_func(int *result) {
  nvstd::function<int()> fn1 = foo_hd;  
  nvstd::function<int()> fn2 =  []() { return 10; };

  *result = fn1() + fn2();
}

__host__ void host_func(int *result) {
  nvstd::function<int()> fn1 = foo_h;  
  nvstd::function<int()> fn2 = foo_hd;  
  nvstd::function<int()> fn3 =  []() { return 10; };

  *result = fn1() + fn2() + fn3();
}

Instances of nvstd::function in host code cannot be initialized with the address of a
__device__ function or with a functor whose operator() is a __device__ function.
Instances of nvstd::function in device code cannot be initialized with the address of a
__host__ function or with a functor whose operator() is a __host__ function.

nvstd::function instances cannot be passed from host code to device code (and vice
versa) at run time. nvstd::function cannot be used in the parameter type of a __global__
function, if the __global__ function is launched from host code.

Example:

#include <nvfunctional>

__device__ int foo_d() { return 1; }
__host__ int foo_h() { return 3; }
auto lam_h = [] { return 0; };

__global__ void k(void) {
  // error: initialized with address of __host__ function 
  nvstd::function<int()> fn1 = foo_h;  

  // error: initialized with address of functor with
  // __host__ operator() function 
  nvstd::function<int()> fn2 = lam_h;
}

__global__ void kern(nvstd::function<int()> f1) { }

void foo(void) {
  // error: initialized with address of __device__ function 
  nvstd::function<int()> fn1 = foo_d;  

  auto lam_d = [=] __device__ { return 1; };

  // error: initialized with address of functor with
  // __device__ operator() function 
  nvstd::function<int()> fn2 = lam_d;

  // error: passing nvstd::function from host to device
  kern<<<1,1>>>(fn2);
}

nvstd::function is defined in the nvfunctional header as follows:

namespace nvstd {
  template <class _RetType, class ..._ArgTypes>
  class function<_RetType(_ArgTypes...)> 
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  {
    public:
      // constructors
      __device__ __host__  function() noexcept;
      __device__ __host__  function(nullptr_t) noexcept;
      __device__ __host__  function(const function &);
      __device__ __host__  function(function &&);

      template<class _F>
      __device__ __host__  function(_F);

      // destructor
      __device__ __host__  ~function();

      // assignment operators
      __device__ __host__  function& operator=(const function&);
      __device__ __host__  function& operator=(function&&);
      __device__ __host__  function& operator=(nullptr_t);
      __device__ __host__  function& operator=(_F&&);

      // swap
      __device__ __host__  void swap(function&) noexcept;

      // function capacity
      __device__ __host__  explicit operator bool() const noexcept;

      // function invocation
      __device__ _RetType operator()(_ArgTypes...) const;
  };

  // null pointer comparisons
  template <class _R, class... _ArgTypes>
  __device__ __host__
  bool operator==(const function<_R(_ArgTypes...)>&, nullptr_t) noexcept;

  template <class _R, class... _ArgTypes>
  __device__ __host__
  bool operator==(nullptr_t, const function<_R(_ArgTypes...)>&) noexcept;

  template <class _R, class... _ArgTypes>
  __device__ __host__
  bool operator!=(const function<_R(_ArgTypes...)>&, nullptr_t) noexcept;

  template <class _R, class... _ArgTypes>
  __device__ __host__
  bool operator!=(nullptr_t, const function<_R(_ArgTypes...)>&) noexcept;

  // specialized algorithms
  template <class _R, class... _ArgTypes>
  __device__ __host__
  void swap(function<_R(_ArgTypes...)>&, function<_R(_ArgTypes...)>&);
}

I.6.  Extended Lambdas
The nvcc flag '--extended-lambda' allows explicit execution space annotations in
a lambda expression 28. The execution space annotations should be present after the
'lambda-introducer' and before the optional 'lambda-declarator'. nvcc will define the macro
__CUDACC_EXTENDED_LAMBDA__ when the '--extended-lambda' flag has been specified.

28 When using the icc host compiler, this flag is only supported for icc >= 1800.
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An 'extended __device__ lambda' is a lambda expression that is annotated explicitly with
'__device__', and is defined within the immediate or nested block scope of a __host__ or
__host__ __device__ function.

An 'extended __host__ __device__ lambda' is a lambda expression that is annotated
explicitly with both '__host__' and '__device__', and is defined within the immediate or
nested block scope of a __host__ or __host__ __device__ function.

An 'extended lambda' denotes either an extended __device__ lambda or an extended
__host__ __device__ lambda. Extended lambdas can be used in the type arguments of
__global__ function template instantiation.

If the execution space annotations are not explicitly specified, they are computed based on the
scopes enclosing the closure class associated with the lambda, as described in the section
on C++11 support. The execution space annotations are applied to all methods of the closure
class associated with the lambda.

Example:

void foo_host(void) {
  // not an extended lambda: no explicit execution space annotations
  auto lam1 = [] { };
  
  // extended __device__ lambda
  auto lam2 = [] __device__ { };
  
  // extended __host__ __device__ lambda
  auto lam3 = [] __host__ __device__ { };
  
  // not an extended lambda: explicitly annotated with only '__host__'
  auto lam4 = [] __host__ { };
}

__host__ __device__ void foo_host_device(void) {
  // not an extended lambda: no explicit execution space annotations
  auto lam1 = [] { };
  
  // extended __device__ lambda
  auto lam2 = [] __device__ { };
  
  // extended __host__ __device__ lambda
  auto lam3 = [] __host__ __device__ { };
  
  // not an extended lambda: explicitly annotated with only '__host__'
  auto lam4 = [] __host__ { };
}

__device__ void foo_device(void) {
  // none of the lambdas within this function are extended lambdas, 
  // because the enclosing function is not a __host__ or __host__ __device__
  // function.
  auto lam1 = [] { };
  auto lam2 = [] __device__ { };
  auto lam3 = [] __host__ __device__ { };
  auto lam4 = [] __host__ { };
}

// lam1 and lam2 are not extended lambdas because they are not defined
// within a __host__ or __host__ __device__ function.
auto lam1 = [] { };
auto lam2 = [] __host__ __device__ { };
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I.6.1.  Extended Lambda Type Traits
The compiler provides type traits to detect closure types for extended lambdas at compile
time:

__nv_is_extended_device_lambda_closure_type(type): If 'type' is the closure class
created for an extended __device__ lambda, then the trait is true, otherwise it is false.

__nv_is_extended_host_device_lambda_closure_type(type): If 'type' is the closure
class created for an extended __host__ __device__ lambda, then the trait is true, otherwise
it is false.

These traits can be used in all compilation modes, irrespective of whether lambdas or
extended lambdas are enabled29.

Example:

#define IS_D_LAMBDA(X) __nv_is_extended_device_lambda_closure_type(X)
#define IS_HD_LAMBDA(X) __nv_is_extended_host_device_lambda_closure_type(X)

auto lam0 = [] __host__ __device__ { };

void foo(void) {
  auto lam1 = [] { }; 
  auto lam2 = [] __device__ { };
  auto lam3 = [] __host__ __device__ { };

  // lam0 is not an extended lambda (since defined outside function scope)
  static_assert(!IS_D_LAMBDA(decltype(lam0)), "");
  static_assert(!IS_HD_LAMBDA(decltype(lam0)), "");

  // lam1 is not an extended lambda (since no execution space annotations)
  static_assert(!IS_D_LAMBDA(decltype(lam1)), "");
  static_assert(!IS_HD_LAMBDA(decltype(lam1)), "");

  // lam2 is an extended __device__ lambda
  static_assert(IS_D_LAMBDA(decltype(lam2)), "");
  static_assert(!IS_HD_LAMBDA(decltype(lam2)), "");

  // lam3 is an extended __host__ __device__ lambda
  static_assert(!IS_D_LAMBDA(decltype(lam3)), "");
  static_assert(IS_HD_LAMBDA(decltype(lam3)), "");
}

I.6.2.  Extended Lambda Restrictions
The CUDA compiler will replace an extended lambda expression with an instance of a
placeholder type defined in namespace scope, before invoking the host compiler. The template
argument of the placeholder type requires taking the address of a function enclosing the
original extended lambda expression. This is required for the correct execution of any
__global__  function template whose template argument involves the closure type of an
extended lambda. The enclosing function is computed as follows.

By definition, the extended lambda is present within the immediate or nested block scope
of a __host__ or __host__ __device__ function. If this function is not the operator() of

29 The traits will always return false if extended lambda mode is not active.
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a lambda expression, then it is considered the enclosing function for the extended lambda.
Otherwise, the extended lambda is defined within the immediate or nested block scope of the
operator() of one or more enclosing lambda expressions. If the outermost such lambda
expression is defined in the immediate or nested block scope of a function F, then F is the
computed enclosing function, else the enclosing function does not exist.

Example:

void foo(void) {
  // enclosing function for lam1 is "foo"
  auto lam1 = [] __device__ { };
  
  auto lam2 = [] {
     auto lam3 = [] {
        // enclosing function for lam4 is "foo"
        auto lam4 = [] __host__ __device__ { };
     };
  };
}

auto lam6 = [] {
  // enclosing function for lam7 does not exist
  auto lam7 = [] __host__ __device__ { };
};

Here are the restrictions on extended lambdas:

 1. An extended lambda cannot be defined inside another extended lambda expression.

Example:

void foo(void) {
  auto lam1 = [] __host__ __device__  {
    // error: extended lambda defined within another extended lambda
    auto lam2 = [] __host__ __device__ { };
  };
}

 2. An extended lambda cannot be defined inside a generic lambda expression.

Example:

void foo(void) {
  auto lam1 = [] (auto) {
    // error: extended lambda defined within a generic lambda
    auto lam2 = [] __host__ __device__ { };
  };
}

 3. If an extended lambda is defined within the immediate or nested block scope of one or
more nested lambda expression, the outermost such lambda expression must be defined
inside the immediate or nested block scope of a function.

Example:

auto lam1 = []  {
  // error: outer enclosing lambda is not defined within a
  // non-lambda-operator() function. 
  auto lam2 = [] __host__ __device__ { };
};
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 4. The enclosing function for the extended lambda must be named and its address can be
taken. If the enclosing function is a class member, then the following conditions must be
satisfied:

‣ All classes enclosing the member function must have a name.

‣ The member function must not have private or protected access within its parent class.

‣ All enclosing classes must not have private or protected access within their respective
parent classes.

Example:

void foo(void) {
  // OK
  auto lam1 = [] __device__ { return 0; };
  {
    // OK
    auto lam2 = [] __device__ { return 0; };
    // OK
    auto lam3 = [] __device__ __host__ { return 0; };
  }
}

struct S1_t {
  S1_t(void) {
    // Error: cannot take address of enclosing function
    auto lam4 = [] __device__ { return 0; }; 
  }
};

class C0_t {
  void foo(void) { 
    // Error: enclosing function has private access in parent class
    auto temp1 = [] __device__ { return 10; };
  }
  struct S2_t {
    void foo(void) {
      // Error: enclosing class S2_t has private access in its 
      // parent class
      auto temp1 = [] __device__ { return 10; };
    }
  };
};

 5. It must be possible to take the address of the enclosing routine unambigously, at the point
where the extended lambda has been defined. This may not be feasible in some cases e.g.
when a class typedef shadows a template type argument of the same name.

Example:

template <typename> struct A {
  typedef void Bar;
  void test();
};

template<> struct A<void> { };

template <typename Bar>
void A<Bar>::test() {
  /* In code sent to host compiler, nvcc will inject an
     address expression here, of the form: 
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     (void (A< Bar> ::*)(void))(&A::test))
 
     However, the class typedef 'Bar' (to void) shadows the
     template argument 'Bar', causing the address 
     expression in A<int>::test to actually refer to:
     (void (A< void> ::*)(void))(&A::test))
    
     ..which doesn't take the address of the enclosing
     routine 'A<int>::test' correctly.
  */
  auto lam1 = [] __host__ __device__ { return 4; };
}

int main() {
  A<int> xxx;
  xxx.test();
}

 6. An extended lambda cannot be defined in a class that is local to a function.

Example:

void foo(void) {
  struct S1_t {
    void bar(void) {
      // Error: bar is member of a class that is local to a function.
      auto lam4 = [] __host__ __device__ { return 0; }; 
    }
  };
}

 7. The enclosing function for an extended lambda cannot have deduced return type.

Example:

auto foo(void) {
  // Error: the return type of foo is deduced.
  auto lam1 = [] __host__ __device__ { return 0; }; 
}

 8. __host__ __device__ extended lambdas cannot be generic lambdas.

Example:

void foo(void) {
  // Error: __host__ __device__ extended lambdas cannot be
  // generic lambdas.
  auto lam1 = [] __host__ __device__ (auto i) { return i; };

  // Error: __host__ __device__ extended lambdas cannot be
  // generic lambdas.
  auto lam2 = [] __host__ __device__ (auto ...i) {
               return sizeof...(i);
              };
}

 9. If the enclosing function is an instantiation of a function template or a member function
template, and/or the function is a member of a class template, the template(s) must
satisfy the following constraints:

‣ The template must have at most one variadic parameter, and it must be listed last in
the template parameter list.
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‣ The template parameters must be named.

‣ The template instantiation argument types cannot involve types that are either local to
a function (except for closure types for extended lambdas), or are private or protected
class members.

Example:

template <typename T>
__global__ void kern(T in) { in(); }

template <typename... T>
struct foo {};

template < template <typename...> class T, typename... P1, 
          typename... P2>
void bar1(const T<P1...>, const T<P2...>) {
  // Error: enclosing function has multiple parameter packs
  auto lam1 =  [] __device__ { return 10; };
}

template < template <typename...> class T, typename... P1, 
          typename T2>
void bar2(const T<P1...>, T2) {
  // Error: for enclosing function, the
  // parameter pack is not last in the template parameter list.
  auto lam1 =  [] __device__ { return 10; };
}

template <typename T, T>
void bar3(void) {
  // Error: for enclosing function, the second template
  // parameter is not named.
  auto lam1 =  [] __device__ { return 10; };
}

int main() {
  foo<char, int, float> f1;
  foo<char, int> f2;
  bar1(f1, f2);
  bar2(f1, 10);
  bar3<int, 10>();
}

Example:

template <typename T>
__global__ void kern(T in) { in(); }

template <typename T>
void bar4(void) {
  auto lam1 =  [] __device__ { return 10; };
  kern<<<1,1>>>(lam1);
}

struct C1_t { struct S1_t { }; friend int main(void); };
int main() {
  struct S1_t { };
  // Error: enclosing function for device lambda in bar4
  // is instantiated with a type local to main.
  bar4<S1_t>();
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  // Error: enclosing function for device lambda in bar4
  // is instantiated with a type that is a private member
  // of a class.
  bar4<C1_t::S1_t>();
}

 10.With Visual Studio host compilers, the enclosing function must have external linkage.
The restriction is present because this host compiler does not support using the address
of non-extern linkage functions as template arguments, which is needed by the CUDA
compiler transformations to support extended lambdas.

 11.With Visual Studio host compilers, an extended lambda shall not be defined within the body
of an 'if-constexpr' block.

 12.An extended lambda has the following restrictions on captured variables:

‣ In the code sent to the host compiler, the variable may be passed by value to a
sequence of helper functions before being used to direct-initialize the field of the class
type used to represent the closure type for the extended lambda30.

‣ A variable can only be captured by value.

‣ A variable of array type cannot be captured if the number of array dimensions is
greater than 7.

‣ For a variable of array type, in the code sent to the host compiler, the closure type's
array field is first default-initialized, and then each element of the array field is copy-
assigned from the corresponding element of the captured array variable. Therefore,
the array element type must be default-constructible and copy-assignable in host
code.

‣ A function parameter that is an element of a variadic argument pack cannot be
captured.

‣ The type of the captured variable cannot involve types that are either local to a function
(except for closure types of extended lambdas), or are private or protected class
members.

‣ For a __host__ __device__ extended lambda, the types used in the return or parameter
types of the lambda expression's operator() cannot involve types that are either local
to a function (except for closure types of extended lambdas), or are private or protected
class members.

‣ Init-capture is not supported for __host__ __device__ extended lambdas. Init-capture
is supported for __device__ extended lambdas, except when the init-capture is of array
type or of type std::initializer_list.

‣ The function call operator for an extended lambda is not constexpr. The closure type
for an extended lambda is not a literal type. The constexpr specifier cannot be used in
the declaration of an extended lambda.

‣ A variable cannot be implicitly captured inside an if-constexpr block lexically nested
inside an extended lambda, unless it has already been implicitly captured earlier

30 In contrast, the C++ standard specifies that the captured variable is used to direct-initialize the field of the closure type.
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outside the if-constexpr block or appears in the explicit capture list for the extended
lambda (see example below).

Example

void foo(void) {
  // OK: an init-capture is allowed for an
  // extended __device__ lambda.
  auto lam1 = [x = 1] __device__ () { return x; };

  // Error: an init-capture is not allowed for
  // an extended __host__ __device__ lambda.
  auto lam2 = [x = 1] __host__ __device__ () { return x; };

  int a = 1;
  // Error: an extended __device__ lambda cannot capture
  // variables by reference.
  auto lam3 = [&a] __device__ () { return a; };

  // Error: by-reference capture is not allowed
  // for an extended __device__ lambda.
  auto lam4 = [&x = a] __device__ () { return x; };

  struct S1_t { };
  S1_t s1;
  // Error: a type local to a function cannot be used in the type
  // of a captured variable.
  auto lam6 = [s1] __device__ () { };

  // Error: an init-capture cannot be of type std::initializer_list.
  auto lam7 = [x = {11}] __device__ () { };

  std::initializer_list<int> b = {11,22,33};
  // Error: an init-capture cannot be of type std::initializer_list.
  auto lam8 = [x = b] __device__ () { }; 
 
  // Error scenario (lam9) and supported scenarios (lam10, lam11)
  // for capture within 'if-constexpr' block 
  int yyy = 4;
  auto lam9 = [=] __device__ {  
    int result = 0;
    if constexpr(false) {
      //Error: An extended __device__ lambda cannot first-capture 
      //      'yyy' in constexpr-if context
      result += yyy;
    }
    return result;
  };

  auto lam10 = [yyy] __device__ {  
    int result = 0;
    if constexpr(false) {
      //OK: 'yyy' already listed in explicit capture list for the extended lambda
      result += yyy;
    }
    return result;
  };

  auto lam11 = [=] __device__ {  
    int result = yyy;
    if constexpr(false) {
      //OK: 'yyy' already implicit captured outside the 'if-constexpr' block
      result += yyy;
    }
    return result;
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  };
}

 13.When parsing a function, the CUDA compiler assigns a counter value to each extended
lambda within that function. This counter value is used in the substituted named type
passed to the host compiler. Hence, whether or not an extended lambda is defined within a
function should not depend on a particular value of __CUDA_ARCH__, or on __CUDA_ARCH__
being undefined.

Example

template <typename T>
__global__ void kernel(T in) { in(); }

__host__ __device__ void foo(void) {
  // Error: the number and relative declaration
  // order of extended lambdas depends on
  // __CUDA_ARCH__
#if defined(__CUDA_ARCH__)
  auto lam1 = [] __device__ { return 0; };
  auto lam1b = [] __host___ __device__ { return 10; };
#endif
  auto lam2 = [] __device__ { return 4; };
  kernel<<<1,1>>>(lam2);
}

 14.As described above, the CUDA compiler replaces a __device__ extended lambda defined
in a host function with a placeholder type defined in namespace scope. This placeholder
type does not define a operator() function equivalent to the original lambda declaration.
An attempt to determine the return type or parameter types of the operator() function
may therefore work incorrectly in host code, as the code processed by the host compiler
will be semantically different than the input code processed by the CUDA compiler.
However, it is ok to introspect the return type or parameter types of the operator()
function within device code. Note that this restriction does not apply to  __host__
__device__  extended lambdas.

Example

#include <type_traits>

void foo(void) {
  auto lam1 = [] __device__ { return 10; };

  // Error: attempt to extract the return type
  // of a __device__ lambda in host code
  std::result_of<decltype(lam1)()>::type xx1 = 1;

  auto lam2 = [] __host__ __device__  { return 10; };

  // OK : lam2 represents a __host__ __device__ extended lambda
  std::result_of<decltype(lam2)()>::type xx2 = 1;
}

 15.If the functor object represented by an extended lambda is passed from host to device
code (e.g., as the argument of a __global__ function), then any expression in the body of
the lambda expression that captures variables must be remain unchanged irrespective of
whether the __CUDA_ARCH__ macro is defined, and whether the macro has a particular
value. This restriction arises because the lambda's closure class layout depends on the
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order in which captured variables are encountered when the compiler processes the
lambda expression; the program may execute incorrectly if the closure class layout differs
in device and host compilation.

Example

__device__ int result;
   
template <typename T>
__global__ void kernel(T in) { result = in(); }
   
void foo(void) {
  int x1 = 1;
  auto lam1 = [=] __host__ __device__ { 
    // Error: "x1" is only captured when __CUDA_ARCH__ is defined.
#ifdef __CUDA_ARCH__
    return x1 + 1;
#else 
    return 10; 
#endif       
  };
  kernel<<<1,1>>>(lam1);
}

 16.As described previously, the CUDA compiler replaces an extended  __device__ lambda
expression with an instance of a placeholder type in the code sent to the host compiler.
This placeholder type does not define a pointer-to-function conversion operator in host
code, however the conversion operator is provided in device code. Note that this restriction
does not apply to __host__ __device__ extended lambdas.

Example

template <typename T>
__global__ void kern(T in) {
  int (*fp)(double) = in;

  // OK: conversion in device code is supported
  fp(0);
  auto lam1 = [](double) { return 1; };

  // OK: conversion in device code is supported
  fp = lam1;
  fp(0);
}

void foo(void) {
  auto lam_d = [] __device__ (double) { return 1; };
  auto lam_hd = [] __host__ __device__ (double) { return 1; };
  kern<<<1,1>>>(lam_d);
  kern<<<1,1>>>(lam_hd);
  
  // OK : conversion for __host__ __device__ lambda is supported
  // in host code
  int (*fp)(double) = lam_hd;
  
  // Error: conversion for __device__ lambda is not supported in
  // host code.
  int (*fp2)(double) = lam_d;
}

 17.As described previously, the CUDA compiler replaces an extended __device__
or __host__ __device__ lambda expression with an instance of a placeholder
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type in the code sent to the host compiler. This placeholder type may define
C++ special member functions (e.g. constructor, destructor). As a result,
some standard C++ type traits may return different results for the closure
type of the extended lambda, in the CUDA frontend compiler versus the host
compiler. The following type traits are affected: std::is_trivially_copyable,
std::is_trivially_constructible, std::is_trivially_copy_constructible,
std::is_trivially_move_constructible, std::is_trivially_destructible.

Care must be taken that the results of these type traits are not used in __global__
function template instantiation or in __device__ / __constant__ / __managed__
variable template instantiation.

Example

template <bool b>
void __global__ foo() { printf("hi"); }

template <typename T>
void dolaunch() {

// ERROR: this kernel launch may fail, because CUDA frontend compiler
// and host compiler may disagree on the result of
// std::is_trivially_copyable() trait on the closure type of the 
// extended lambda
foo<std::is_trivially_copyable<T>::value><<<1,1>>>();
cudaDeviceSynchronize();
}

int main() {
int x = 0;
auto lam1 = [=] __host__ __device__ () { return x; };
dolaunch<decltype(lam1)>();
}

The CUDA compiler will generate compiler diagnostics for a subset of cases described in 1-12;
no diagnostic will be generated for cases 13-17, but the host compiler may fail to compile the
generated code.

I.6.3.  Notes on __host__ __device__  lambdas
Unlike __device__ lambdas, __host__ __device__ lambdas can be called from host code.
As described earlier, the CUDA compiler replaces an extended lambda expression defined in
host code with an instance of a named placeholder type. The placeholder type for an extended
__host__ __device__ lambda invokes the orignal lambda's operator() with an indirect
function call 31.

The presence of the indirect function call may cause an extended __host__ __device__
lambda to be less optimized by the host compiler than lambdas that are implicitly or explicitly
__host__ only. In the latter case, the host compiler can easily inline the body of the lambda
into the calling context. But in case of an extended __host__ __device__ lambda, the host
compiler encounters the indirect function call and may not be able to easily inline the original
__host__ __device__ lambda body.

31 The closure object is stored in a type-elided container similar to std::function.



C++ Language Support

CUDA C++ Programming Guide PG-02829-001_v11.5   |   352

I.6.4.  *this Capture By Value
When a lambda is defined within a non-static class member function, and the body of the
lambda refers to a class member variable, C++11/C++14 rules require that the this pointer
of the class is captured by value, instead of the referenced member variable. If the lambda is
an extended __device__ or __host__ __device__ lambda defined in a host function, and the
lambda is executed on the GPU, accessing the referenced member variable on the GPU will
cause a run time error if the this pointer points to host memory.

Example:

#include <cstdio>

template <typename T>
__global__ void foo(T in) { printf("\n value = %d", in()); }

struct S1_t { 
  int xxx;
  __host__ __device__ S1_t(void) : xxx(10) { };
  
  void doit(void) {
    
    auto lam1 = [=] __device__ { 
       // reference to "xxx" causes 
       // the 'this' pointer (S1_t*) to be captured by value
       return xxx + 1; 
      
    };
    
    // Kernel launch fails at run time because 'this->xxx'
    // is not accessible from the GPU
    foo<<<1,1>>>(lam1);
    cudaDeviceSynchronize();
  }
};

int main(void) {
  S1_t s1;
  s1.doit();
}

C++17 solves this problem by adding a new "*this" capture mode. In this mode, the compiler
makes a copy of the object denoted by "*this" instead of capturing the pointer this by value.
The "*this" capture mode is described in more detail here: http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2016/p0018r3.html  .

The CUDA compiler supports the "*this" capture mode for lambdas defined within
__device__ and __global__ functions and for extended __device__ lambdas defined in host
code, when the --extended-lambda nvcc flag is used.

Here's the above example modified to use "*this" capture mode:

#include <cstdio>

template <typename T>
__global__ void foo(T in) { printf("\n value = %d", in()); }

struct S1_t { 
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  int xxx;
  __host__ __device__ S1_t(void) : xxx(10) { };
  
  void doit(void) {
    
    // note the "*this" capture specification
    auto lam1 = [=, *this] __device__ { 
      
       // reference to "xxx" causes 
       // the object denoted by '*this' to be captured by
       // value, and the GPU code will access copy_of_star_this->xxx
       return xxx + 1; 
      
    };
    
    // Kernel launch succeeds
    foo<<<1,1>>>(lam1);
    cudaDeviceSynchronize();
  }
};

int main(void) {
  S1_t s1;
  s1.doit();
}

"*this" capture mode is not allowed for unannotated lambdas defined in host code, or for
extended __host__ __device__ lambdas. Examples of supported and unsupported usage:

struct S1_t { 
  int xxx;
  __host__ __device__ S1_t(void) : xxx(10) { };
  
  void host_func(void) {
    
    // OK: use in an extended __device__ lambda
    auto lam1 = [=, *this] __device__ { return xxx; };
    
    // Error: use in an extended __host__ __device__ lambda
    auto lam2 = [=, *this] __host__ __device__ { return xxx; };
    
    // Error: use in an unannotated lambda in host function
    auto lam3 = [=, *this]  { return xxx; };
  }
  
  __device__ void device_func(void) {
    
    // OK: use in a lambda defined in a __device__ function
    auto lam1 = [=, *this] __device__ { return xxx; };
    
    // OK: use in a lambda defined in a __device__ function
    auto lam2 = [=, *this] __host__ __device__ { return xxx; };
    
    // OK: use in a lambda defined in a __device__ function
    auto lam3 = [=, *this]  { return xxx; };
  }
  
   __host__ __device__ void host_device_func(void) {
    
    // OK: use in an extended __device__ lambda
    auto lam1 = [=, *this] __device__ { return xxx; };
    
    // Error: use in an extended __host__ __device__ lambda
    auto lam2 = [=, *this] __host__ __device__ { return xxx; };
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    // Error: use in an unannotated lambda in a __host__ __device__ function
    auto lam3 = [=, *this]  { return xxx; };
  }
};

I.6.5.  Additional Notes
 1. ADL Lookup: As described earlier, the CUDA compiler will replace an extended lambda

expression with an instance of a placeholder type, before invoking the host compiler. One
template argument of the placeholder type uses the address of the function enclosing
the original lambda expression. This may cause additional namespaces to participate in
argument dependent lookup (ADL), for any host function call whose argument types involve
the closure type of the extended lambda expression. This may cause an incorrect function
to be selected by the host compiler.

Example:

namespace N1 {
  struct S1_t { };
  template <typename T>  void foo(T);
};
 
namespace N2 {
  template <typename T> int foo(T);
 
  template <typename T>  void doit(T in) {     foo(in);  }
}
 
void bar(N1::S1_t in) {
  /* extended __device__ lambda. In the code sent to the host compiler, this 
     is replaced with the placeholder type instantiation expression
     ' __nv_dl_wrapper_t< __nv_dl_tag<void (*)(N1::S1_t in),(&bar),1> > { }'
   
     As a result, the namespace 'N1' participates in ADL lookup of the 
     call to "foo" in the body of N2::doit, causing ambiguity.
  */
  auto lam1 = [=] __device__ { };
  N2::doit(lam1);
}

In the example above, the CUDA compiler replaced the extended lambda with a
placeholder type that involves the N1 namespace. As a result, the namespace N1
participates in the ADL lookup for foo(in) in the body of N2::doit, and host compilation
fails because multiple overload candidates N1::foo and N2::foo are found.

I.7.  Code Samples

I.7.1.  Data Aggregation Class
class PixelRGBA {
public:
    __device__ PixelRGBA(): r_(0), g_(0), b_(0), a_(0) { }
    
    __device__ PixelRGBA(unsigned char r, unsigned char g,
                         unsigned char b, unsigned char a = 255):
                         r_(r), g_(g), b_(b), a_(a) { }
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private:
    unsigned char r_, g_, b_, a_;
    
    friend PixelRGBA operator+(const PixelRGBA&, const PixelRGBA&);
};

__device__ 
PixelRGBA operator+(const PixelRGBA& p1, const PixelRGBA& p2)
{
    return PixelRGBA(p1.r_ + p2.r_, p1.g_ + p2.g_, 
                     p1.b_ + p2.b_, p1.a_ + p2.a_);
}

__device__ void func(void)
{
    PixelRGBA p1, p2;
    // ...      // Initialization of p1 and p2 here
    PixelRGBA p3 = p1 + p2;
}

I.7.2.  Derived Class
__device__ void* operator new(size_t bytes, MemoryPool& p);
__device__ void operator delete(void*, MemoryPool& p);
class Shape {
public:
    __device__ Shape(void) { }
    __device__ void putThis(PrintBuffer *p) const;
    __device__ virtual void Draw(PrintBuffer *p) const {
         p->put("Shapeless"); 
    }
    __device__ virtual ~Shape() {}
};
class Point : public Shape {
public:
    __device__ Point() : x(0), y(0) {}
    __device__ Point(int ix, int iy) : x(ix), y(iy) { }
    __device__ void PutCoord(PrintBuffer *p) const;
    __device__ void Draw(PrintBuffer *p) const;
    __device__ ~Point() {}
private:
    int x, y;
};
__device__ Shape* GetPointObj(MemoryPool& pool)
{
    Shape* shape = new(pool) Point(rand(-20,10), rand(-100,-20));
    return shape;
}

I.7.3.  Class Template
template <class T>
class myValues {
    T values[MAX_VALUES];
public:
    __device__ myValues(T clear) { ... }
    __device__ void setValue(int Idx, T value) { ... }
    __device__ void putToMemory(T* valueLocation) { ... }
};

template <class T>
void __global__ useValues(T* memoryBuffer) {
    myValues<T> myLocation(0);
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    ...
}

__device__ void* buffer;

int main()
{
    ...
    useValues<int><<<blocks, threads>>>(buffer);
    ...
}

I.7.4.  Function Template
template <typename T> 
__device__ bool func(T x) 
{
   ...
   return (...);
}

template <> 
__device__ bool func<int>(T x) // Specialization
{
   return true;
}

// Explicit argument specification
bool result = func<double>(0.5);

// Implicit argument deduction
int x = 1;
bool result = func(x);

I.7.5.  Functor Class
class Add {
public:
    __device__  float operator() (float a, float b) const
    {
        return a + b;
    }
};

class Sub {
public:
    __device__  float operator() (float a, float b) const
    {
        return a - b;
    }
};

// Device code
template<class O> __global__ 
void VectorOperation(const float * A, const float * B, float * C,
                     unsigned int N, O op)
{
    unsigned int iElement = blockDim.x * blockIdx.x + threadIdx.x;
    if (iElement < N)
        C[iElement] = op(A[iElement], B[iElement]);
}

// Host code
int main()
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{
    ...
    VectorOperation<<<blocks, threads>>>(v1, v2, v3, N, Add());
    ...
}
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Appendix J. Texture Fetching

This appendix gives the formula used to compute the value returned by the texture functions
of Texture Functions depending on the various attributes of the texture reference (see Texture
and Surface Memory).

The texture bound to the texture reference is represented as an array T of

‣ N texels for a one-dimensional texture,

‣ N x M texels for a two-dimensional texture,

‣ N x M x L texels for a three-dimensional texture.

It is fetched using non-normalized texture coordinates x, y, and z, or the normalized
texture coordinates x/N, y/M, and z/L as described in Texture Memory. In this appendix, the
coordinates are assumed to be in the valid range. Texture Memory explained how out-of-range
coordinates are remapped to the valid range based on the addressing mode.

J.1.  Nearest-Point Sampling
In this filtering mode, the value returned by the texture fetch is

‣ tex(x)=T[i] for a one-dimensional texture,

‣ tex(x,y)=T[i,j] for a two-dimensional texture,

‣ tex(x,y,z)=T[i,j,k] for a three-dimensional texture,

where i=floor(x), j=floor(y), and k=floor(z).

Figure 17 illustrates nearest-point sampling for a one-dimensional texture with N=4.

For integer textures, the value returned by the texture fetch can be optionally remapped to
[0.0, 1.0] (see Texture Memory).
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Figure 17. Nearest-Point Sampling Filtering Mode
Nearest-point sampling of a one-dimensional texture of four texels.
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J.2.  Linear Filtering
In this filtering mode, which is only available for floating-point textures, the value returned by
the texture fetch is

‣ tex(x)=(1−α)T[i]+αT[i+1] for a one-dimensional texture,

‣ tex(x,y)=(1−α)(1−α)T[i,j]+α(1−α)T[i+1,j]+(1−α)αT[i,j+1]+ααT[i+1,j+1] for a two-dimensional
texture,

‣ tex(x,y,z) =

(1−α)(1−α)(1−α)T[i,j,k]+α(1−α)(1−α)T[i+1,j,k]+

(1−α)α(1−α)T[i,j+1,k]+αα(1−α)T[i+1,j+1,k]+

(1−α)(1−α)αT[i,j,k+1]+α(1−α)αT[i+1,j,k+1]+

(1−α)ααT[i,j+1,k+1]+αααT[i+1,j+1,k+1]

for a three-dimensional texture,

where:

‣ i=floor(xB), α=frac(xB), xB=x-0.5,

‣ j=floor(yB), α=frac(yB), yB=y-0.5,

‣ k=floor(zB), α=frac(zB), zB= z-0.5,

α, α, and α are stored in 9-bit fixed point format with 8 bits of fractional value (so 1.0 is exactly
represented).
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Figure 18 illustrates linear filtering of a one-dimensional texture with N=4.

Figure 18. Linear Filtering Mode
Linear filtering of a one-dimensional texture of four texels in clamp addressing mode.
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J.3.  Table Lookup
A table lookup TL(x) where x spans the interval [0,R] can be implemented as TL(x)=tex((N-1)/R)x
+0.5) in order to ensure that TL(0)=T[0] and TL(R)=T[N-1].

Figure 19 illustrates the use of texture filtering to implement a table lookup with R=4 or R=1
from a one-dimensional texture with N=4.
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Figure 19. One-Dimensional Table Lookup Using Linear Filtering
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Appendix K. Compute Capabilities

The general specifications and features of a compute device depend on its compute capability
(see Compute Capability).

Table 14 and Table 15 show the features and technical specifications associated with each
compute capability that is currently supported.

Floating-Point Standard reviews the compliance with the IEEE floating-point standard.

Sections Compute Capability 3.x, Compute Capability 5.x, Compute Capability 6.x, Compute
Capability 7.x and Compute Capability 8.x give more details on the architecture of devices of
compute capability 3.x, 5.x, 6.x, 7.x and 8.x respectively.

K.1.  Features and Technical
Specifications

Table 14. Feature Support per Compute Capability

Feature Support Compute Capability

(Unlisted features are supported for all
compute capabilities)

3.5, 3.7,
5.0, 5.2 5.3 6.x 7.x 8.x

Atomic functions operating on 32-bit integer
values in global memory (Atomic Functions) Yes

Atomic functions operating on 32-bit integer
values in shared memory (Atomic Functions) Yes

Atomic functions operating on 64-bit integer
values in global memory (Atomic Functions) Yes

Atomic functions operating on 64-bit integer
values in shared memory (Atomic Functions) Yes

Atomic addition operating on 32-bit floating point
values in global and shared memory (atomicAdd()) Yes

Atomic addition operating on 64-bit floating point
values in global memory and shared memory
(atomicAdd())

No Yes

Warp vote functions (Warp Vote Functions) Yes
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Feature Support Compute Capability

(Unlisted features are supported for all
compute capabilities)

3.5, 3.7,
5.0, 5.2 5.3 6.x 7.x 8.x

Memory fence functions (Memory Fence
Functions)

Synchronization functions (Synchronization
Functions)

Surface functions (Surface Functions)

Unified Memory Programming (Unified Memory
Programming)

Dynamic Parallelism (CUDA Dynamic Parallelism)

Half-precision floating-point operations: addition,
subtraction, multiplication, comparison, warp
shuffle functions, conversion

No Yes

Bfloat16-precision floating-point operations:
addition, subtraction, multiplication, comparison,
warp shuffle functions, conversion

No Yes

Tensor Cores No Yes

Mixed Precision Warp-Matrix Functions (Warp
matrix functions) No Yes

Hardware-accelerated memcpy_async
(Asynchronous Data Copies using cuda::pipeline) No Yes

Hardware-accelerated Split Arrive/Wait Barrier
(Asynchronous Barrier) No Yes

L2 Cache Residency Management (Device Memory
L2 Access Management) No Yes

Note that the KB and K units used in the following table correspond to 1024 bytes (i.e., a KiB)
and 1024 respectively.

Table 15. Technical Specifications per Compute Capability

Compute Capability

Technical Specifications 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6
Maximum number of
resident grids per device
(Concurrent Kernel
Execution)

32 16 128 32 16 128 16 128

Maximum dimensionality
of grid of thread blocks 3

Maximum x-dimension of a
grid of thread blocks 231-1

Maximum y- or z-
dimension of a grid of
thread blocks

65535
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Compute Capability

Technical Specifications 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6
Maximum dimensionality
of a thread block 3

Maximum x- or y-
dimension of a block 1024

Maximum z-dimension of a
block 64

Maximum number of
threads per block 1024

Warp size 32

Maximum number of
resident blocks per SM 16 32 16 32 16

Maximum number of
resident warps per SM 64 32 64 48

Maximum number of
resident threads per SM 2048 1024 2048 1536

Number of 32-bit registers
per SM

64
K

128
K 64 K

Maximum number of 32-
bit registers per thread
block

64 K 32
K 64 K 32

K 64 K

Maximum number of 32-
bit registers per thread 255

Maximum amount of
shared memory per SM

48
KB

112
KB

64
KB

96
KB 64 KB 96

KB
64
KB 96 KB 64

KB
164
KB

100
KB

Maximum amount of
shared memory per thread
block 32

48 KB 96
KB

96
KB

64
KB

163
KB

99
KB

Number of shared memory
banks 32

Maximum amount of local
memory per thread 512 KB

Constant memory size 64 KB

Cache working set per SM
for constant memory 8 KB 4

KB 8 KB

Cache working set per SM
for texture memory Between 12 KB and 48 KB Between 24

KB and 48 KB
32 ~

128 KB

32
or
64
KB

28KB
~

192
KB

28KB
~

128
KB

Maximum width for a 1D
texture reference bound to
a CUDA array

65536 131072

32 above 48 KB requires dynamic shared memory
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Compute Capability

Technical Specifications 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6
Maximum width for a 1D
texture reference bound to
linear memory

227 228 227 228 227 228

Maximum width and
number of layers for a 1D
layered texture reference

16384 x 2048 32768 x 2048

Maximum width and height
for a 2D texture reference
bound to a CUDA array

65536 x 65536 131072 x 65536

Maximum width and height
for a 2D texture reference
bound to linear memory

65000
x 65000 65536 x 65536 131072 x 65000

Maximum width and height
for a 2D texture reference
bound to a CUDA array
supporting texture gather

16384 x 16384 32768 x 32768

Maximum width, height,
and number of layers
for a 2D layered texture
reference

16384 x 16384 x 2048 32768 x 32768 x 2048

Maximum width, height,
and depth for a 3D texture
reference bound to a
CUDA array

4096 x 4096 x 4096 16384 x 16384 x 16384

Maximum width (and
height) for a cubemap
texture reference

16384 32768

Maximum width (and
height) and number of
layers for a cubemap
layered texture reference

16384 x 2046 32768 x 2046

Maximum number of
textures that can be bound
to a kernel

256

Maximum width for a 1D
surface reference bound to
a CUDA array

65536 16384 32768

Maximum width and
number of layers for a 1D
layered surface reference

65536
x 2048 16384 x 2048 32768 x 2048

Maximum width and height
for a 2D surface reference
bound to a CUDA array

65536
x 32768 65536 x 65536 131072 x 65536



Compute Capabilities

CUDA C++ Programming Guide PG-02829-001_v11.5   |   366

Compute Capability

Technical Specifications 3.5 3.7 5.0 5.2 5.3 6.0 6.1 6.2 7.0 7.2 7.5 8.0 8.6
Maximum width, height,
and number of layers
for a 2D layered surface
reference

65536
x 32768
x 2048

16384 x
16384 x 2048 32768 x 32768 x 2048

Maximum width, height,
and depth for a 3D surface
reference bound to a
CUDA array

65536
x 32768
x 2048

4096 x 4096
x 4096 16384 x 16384 x 16384

Maximum width (and
height) for a cubemap
surface reference bound to
a CUDA array

32768 16384 32768

Maximum width (and
height) and number of
layers for a cubemap
layered surface reference

32768
x 2046 16384 x 2046 32768 x 2046

Maximum number of
surfaces that can be bound
to a kernel

16 32

K.2.  Floating-Point Standard
All compute devices follow the IEEE 754-2008 standard for binary floating-point arithmetic
with the following deviations:

‣ There is no dynamically configurable rounding mode; however, most of the operations
support multiple IEEE rounding modes, exposed via device intrinsics.

‣ There is no mechanism for detecting that a floating-point exception has occurred and
all operations behave as if the IEEE-754 exceptions are always masked, and deliver the
masked response as defined by IEEE-754 if there is an exceptional event. For the same
reason, while SNaN encodings are supported, they are not signaling and are handled as
quiet.

‣ The result of a single-precision floating-point operation involving one or more input NaNs
is the quiet NaN of bit pattern 0x7fffffff.

‣ Double-precision floating-point absolute value and negation are not compliant with
IEEE-754 with respect to NaNs; these are passed through unchanged.

Code must be compiled with -ftz=false, -prec-div=true, and -prec-sqrt=true to ensure
IEEE compliance (this is the default setting; see the nvcc user manual for description of these
compilation flags).

Regardless of the setting of the compiler flag -ftz,

‣ atomic single-precision floating-point adds on global memory always operate in flush-to-
zero mode, i.e., behave equivalent to FADD.F32.FTZ.RN,
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‣ atomic single-precision floating-point adds on shared memory always operate with
denormal support, i.e., behave equivalent to FADD.F32.RN.

In accordance to the IEEE-754R standard, if one of the input parameters to fminf(), fmin(),
fmaxf(), or fmax() is NaN, but not the other, the result is the non-NaN parameter.

The conversion of a floating-point value to an integer value in the case where the floating-point
value falls outside the range of the integer format is left undefined by IEEE-754. For compute
devices, the behavior is to clamp to the end of the supported range. This is unlike the x86
architecture behavior.

The behavior of integer division by zero and integer overflow is left undefined by IEEE-754. For
compute devices, there is no mechanism for detecting that such integer operation exceptions
have occurred. Integer division by zero yields an unspecified, machine-specific value.

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-
compliance-nvidia-gpus includes more information on the floating point accuracy and
compliance of NVIDIA GPUs.

K.3.  Compute Capability 3.x

K.3.1.  Architecture
An SM consists of:

‣ 192 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of
arithmetic operations),

‣ 32 special function units for single-precision floating-point transcendental functions,

‣ 4 warp schedulers.

When an SM is given warps to execute, it first distributes them among the four schedulers.
Then, at every instruction issue time, each scheduler issues two independent instructions for
one of its assigned warps that is ready to execute, if any.

An SM has a read-only constant cache that is shared by all functional units and speeds up
reads from the constant memory space, which resides in device memory.

There is an L1 cache for each SM and an L2 cache shared by all SMs. The L1 cache is used
to cache accesses to local memory, including temporary register spills. The L2 cache is used
to cache accesses to local and global memory. The cache behavior (e.g., whether reads are
cached in both L1 and L2 or in L2 only) can be partially configured on a per-access basis
using modifiers to the load or store instruction. Some devices of compute capability 3.5 and
devices of compute capability 3.7 allow opt-in to caching of global memory in both L1 and L2
via compiler options.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
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and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using
cudaFuncSetCacheConfig()/cuFuncSetCacheConfig():

// Device code
__global__ void MyKernel()
{
    ...
}

// Host code

// Runtime API
// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferEqual: shared memory is 32 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference
cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)

The default cache configuration is "prefer none", meaning "no preference". If a kernel is
configured to have no preference, then it will default to the preference of the current thread/
context, which is set using cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() (see
the reference manual for details). If the current thread/context also has no preference (which
is again the default setting), then whichever cache configuration was most recently used for
any kernel will be the one that is used, unless a different cache configuration is required to
launch the kernel (e.g., due to shared memory requirements). The initial configuration is 48
KB of shared memory and 16 KB of L1 cache.

Note: Devices of compute capability 3.7 add an additional 64 KB of shared memory to each
of the above configurations, yielding 112 KB, 96 KB, and 80 KB shared memory per SM,
respectively. However, the maximum shared memory per thread block remains 48 KB.

Applications may query the L2 cache size by checking the l2CacheSize device property (see
Device Enumeration). The maximum L2 cache size is 1.5 MB.

Each SM has a read-only data cache of 48 KB to speed up reads from device memory. It
accesses this cache either directly (for devices of compute capability 3.5 or 3.7), or via a
texture unit that implements the various addressing modes and data filtering mentioned in
Texture and Surface Memory. When accessed via the texture unit, the read-only data cache is
also referred to as texture cache.

K.3.2.  Global Memory
Global memory accesses for devices of compute capability 3.x are cached in L2 and for devices
of compute capability 3.5 or 3.7, may also be cached in the read-only data cache described in
the previous section; they are normally not cached in L1. Some devices of compute capability
3.5 and devices of compute capability 3.7 allow opt-in to caching of global memory accesses in
L1 via the -Xptxas -dlcm=ca option to nvcc.

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory. Memory
accesses that are cached in both L1 and L2 are serviced with 128-byte memory transactions,
whereas memory accesses that are cached in L2 only are serviced with 32-byte memory
transactions. Caching in L2 only can therefore reduce over-fetch, for example, in the case of
scattered memory accesses.
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If the size of the words accessed by each thread is more than 4 bytes, a memory request by a
warp is first split into separate 128-byte memory requests that are issued independently:

‣ Two memory requests, one for each half-warp, if the size is 8 bytes,

‣ Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in case of a
cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global memory
for more than one of the threads of the warp, only one thread performs a write and which
thread does it is undefined.

Data that is read-only for the entire lifetime of the kernel can also be cached in the read-only
data cache described in the previous section by reading it using the __ldg() function (see
Read-Only Data Cache Load Function). When the compiler detects that the read-only condition
is satisfied for some data, it will use __ldg() to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and __restrict__ qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Figure 20 shows some examples of global memory accesses and corresponding memory
transactions.
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Figure 20. Examples of Global Memory Accesses
Examples of Global Memory Accesses by a Warp, 4-Byte Word per Thread, and Associated Memory
Transactions for Compute Capabilities 3.x and Beyond

K.3.3.  Shared Memory
Shared memory has 32 banks with two addressing modes that are described below.

The addressing mode can be queried using cudaDeviceGetSharedMemConfig() and set
using cudaDeviceSetSharedMemConfig() (see reference manual for more details). Each
bank has a bandwidth of 64 bits per clock cycle.

Figure 21 shows some examples of strided access.

Figure 22 shows some examples of memory read accesses that involve the broadcast
mechanism.

64-Bit Mode

Successive 64-bit words map to successive banks.
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A shared memory request for a warp does not generate a bank conflict between two threads
that access any sub-word within the same 64-bit word (even though the addresses of the two
sub-words fall in the same bank). In that case, for read accesses, the 64-bit word is broadcast
to the requesting threads and for write accesses, each sub-word is written by only one of the
threads (which thread performs the write is undefined).

32-Bit Mode

Successive 32-bit words map to successive banks.

A shared memory request for a warp does not generate a bank conflict between two threads
that access any sub-word within the same 32-bit word or within two 32-bit words whose
indices i and j are in the same 64-word aligned segment (i.e., a segment whose first index is a
multiple of 64) and such that j=i+32 (even though the addresses of the two sub-words fall in the
same bank). In that case, for read accesses, the 32-bit words are broadcast to the requesting
threads and for write accesses, each sub-word is written by only one of the threads (which
thread performs the write is undefined).

K.4.  Compute Capability 5.x

K.4.1.  Architecture
An SM consists of:

‣ 128 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs of
arithmetic operations),

‣ 32 special function units for single-precision floating-point transcendental functions,

‣ 4 warp schedulers.

When an SM is given warps to execute, it first distributes them among the four schedulers.
Then, at every instruction issue time, each scheduler issues one instruction for one of its
assigned warps that is ready to execute, if any.

An SM has:

‣ a read-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

‣ a unified L1/texture cache of 24 KB used to cache reads from global memory,

‣ 64 KB of shared memory for devices of compute capability 5.0 or 96 KB of shared memory
for devices of compute capability 5.2.

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.
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There is also an L2 cache shared by all SMs that is used to cache accesses to local or global
memory, including temporary register spills. Applications may query the L2 cache size by
checking the l2CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and
L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load
instruction.

K.4.2.  Global Memory
Global memory accesses are always cached in L2 and caching in L2 behaves in the same way
as for devices of compute capability 3.x (see Global Memory).

Data that is read-only for the entire lifetime of the kernel can also be cached in the unified L1/
texture cache described in the previous section by reading it using the __ldg() function (see
Read-Only Data Cache Load Function). When the compiler detects that the read-only condition
is satisfied for some data, it will use __ldg() to read it. The compiler might not always be able
to detect that the read-only condition is satisfied for some data. Marking pointers used for
loading such data with both the const and __restrict__ qualifiers increases the likelihood
that the compiler will detect the read-only condition.

Data that is not read-only for the entire lifetime of the kernel cannot be cached in the unified
L1/texture cache for devices of compute capability 5.0. For devices of compute capability 5.2, it
is, by default, not cached in the unified L1/texture cache, but caching may be enabled using the
following mechanisms:

‣ Perform the read using inline assembly with the appropriate modifier as described in the
PTX reference manual;

‣ Compile with the -Xptxas -dlcm=ca compilation flag, in which case all reads are cached,
except reads that are performed using inline assembly with a modifier that disables
caching;

‣ Compile with the -Xptxas -fscm=ca compilation flag, in which case all reads are cached,
including reads that are performed using inline assembly regardless of the modifier used.

When caching is enabled using one of the three mechanisms listed above, devices of compute
capability 5.2 will cache global memory reads in the unified L1/texture cache for all kernel
launches except for the kernel launches for which thread blocks consume too much of the
SM's register file. These exceptions are reported by the profiler.

K.4.3.  Shared Memory
Shared memory has 32 banks that are organized such that successive 32-bit words map to
successive banks. Each bank has a bandwidth of 32 bits per clock cycle.

A shared memory request for a warp does not generate a bank conflict between two threads
that access any address within the same 32-bit word (even though the two addresses fall
in the same bank). In that case, for read accesses, the word is broadcast to the requesting
threads and for write accesses, each address is written by only one of the threads (which
thread performs the write is undefined).

Figure 21 shows some examples of strided access.
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Figure 22 shows some examples of memory read accesses that involve the broadcast
mechanism.
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Figure 21. Strided Shared Memory Accesses
Examples for devices of compute capability 3.x (in 32-bit mode) or compute capability 5.x and 6.x
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Figure 22. Irregular Shared Memory Accesses
Examples for devices of compute capability 3.x, 5.x, or 6.x.
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K.5.  Compute Capability 6.x

K.5.1.  Architecture
An SM consists of:

‣ 64 (compute capability 6.0) or 128 (6.1 and 6.2) CUDA cores for arithmetic operations,

‣ 16 (6.0) or 32 (6.1 and 6.2) special function units for single-precision floating-point
transcendental functions,

‣ 2 (6.0) or 4 (6.1 and 6.2) warp schedulers.

When an SM is given warps to execute, it first distributes them among its schedulers. Then,
at every instruction issue time, each scheduler issues one instruction for one of its assigned
warps that is ready to execute, if any.

An SM has:

‣ a read-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

‣ a unified L1/texture cache for reads from global memory of size 24 KB (6.0 and 6.2) or 48
KB (6.1),

‣ a shared memory of size 64 KB (6.0 and 6.2) or 96 KB (6.1).

The unified L1/texture cache is also used by the texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

There is also an L2 cache shared by all SMs that is used to cache accesses to local or global
memory, including temporary register spills. Applications may query the L2 cache size by
checking the l2CacheSize device property (see Device Enumeration).

The cache behavior (e.g., whether reads are cached in both the unified L1/texture cache and
L2 or in L2 only) can be partially configured on a per-access basis using modifiers to the load
instruction.

K.5.2.  Global Memory
Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).

K.5.3.  Shared Memory
Shared memory behaves the same way as in devices of compute capability 5.x (See Shared
Memory).
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K.6.  Compute Capability 7.x

K.6.1.  Architecture
An SM consists of:

‣ 64 FP32 cores for single-precision arithmetic operations,

‣ 32 FP64 cores for double-precision arithmetic operations, 33

‣ 64 INT32 cores for integer math,

‣ 8 mixed-precision Tensor Cores for deep learning matrix arithmetic

‣ 16 special function units for single-precision floating-point transcendental functions,

‣ 4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue
time, each scheduler issues one instruction for one of its assigned warps that is ready to
execute, if any.

An SM has:

‣ a read-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

‣ a unified data cache and shared memory with a total size of 128 KB (Volta) or 96 KB
(Turing).

Shared memory is partitioned out of unified data cache, and can be configured to various sizes
(See Shared Memory.) The remaining data cache serves as an L1 cache and is also used by
the texture unit that implements the various addressing and data filtering modes mentioned in
Texture and Surface Memory.

K.6.2.  Independent Thread Scheduling
The Volta architecture introduces Independent Thread Scheduling among threads in a warp,
enabling intra-warp synchronization patterns previously unavailable and simplifying code
changes when porting CPU code. However, this can lead to a rather different set of threads
participating in the executed code than intended if the developer made assumptions about
warp-synchronicity of previous hardware architectures.

Below are code patterns of concern and suggested corrective actions for Volta-safe code.

 1. For applications using warp intrinsics (__shfl*, __any, __all, __ballot), it is necessary
that developers port their code to the new, safe, synchronizing counterpart, with the
*_sync suffix. The new warp intrinsics take in a mask of threads that explicitly define

33 2 FP64 cores for double-precision arithmetic operations for devices of compute capabilities 7.5
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which lanes (threads of a warp) must participate in the warp intrinsic. See Warp Vote
Functions and Warp Shuffle Functions for details.

Since the intrinsics are available with CUDA 9.0+, (if necessary) code can be executed
conditionally with the following preprocessor macro:

#if defined(CUDART_VERSION) && CUDART_VERSION >= 9000
// *_sync intrinsic
#endif
                

These intrinsics are available on all architectures, not just Volta or Turing, and in most
cases a single code-base will suffice for all architectures. Note, however, that for Pascal
and earlier architectures, all threads in mask must execute the same warp intrinsic
instruction in convergence, and the union of all values in mask must be equal to the warp's
active mask. The following code pattern is valid on Volta, but not on Pascal or earlier
architectures.

    if (tid % warpSize < 16) {
        ...
        float swapped = __shfl_xor_sync(0xffffffff, val, 16);
        ...
    } else {
        ...
        float swapped = __shfl_xor_sync(0xffffffff, val, 16);
        ...
    }

The replacement for __ballot(1) is  __activemask(). Note that threads within a
warp can diverge even within a single code path. As a result, __activemask()  and
__ballot(1) may return only a subset of the threads on the current code path. The
following invalid code example sets bit i of output to 1 when data[i] is greater than
threshold. __activemask() is used in an attempt to enable cases where dataLen is not
a multiple of 32.

// Sets bit in output[] to 1 if the correspond element in data[i]
// is greater than ‘threshold’, using 32 threads in a warp.

for (int i = warpLane; i < dataLen; i += warpSize) {
    unsigned active = __activemask();
    unsigned bitPack = __ballot_sync(active, data[i] > threshold);
    if (warpLane == 0) {
        output[i / 32] = bitPack;
    }
}

This code is invalid because CUDA does not guarantee that the warp will diverge ONLY at
the loop condition. When divergence happens for other reasons, conflicting results will be
computed for the same 32-bit output element by different subsets of threads in the warp.
A correct code might use a non-divergent loop condition together with __ballot_sync()
to safely enumerate the set of threads in the warp participating in the threshold calculation
as follows.

for (int i = warpLane; i - warpLane < dataLen; i += warpSize) {
    unsigned active = __ballot_sync(0xFFFFFFFF, i < dataLen);
    if (i < dataLen) {
        unsigned bitPack = __ballot_sync(active, data[i] > threshold);
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        if (warpLane == 0) {
            output[i / 32] = bitPack;
        }
    }
}

Discovery Pattern demonstrates a valid use case for __activemask().

 2. If applications have warp-synchronous codes, they will need to insert the new
__syncwarp() warp-wide barrier synchronization instruction between any steps where
data is exchanged between threads via global or shared memory. Assumptions that code is
executed in lockstep or that reads/writes from separate threads are visible across a warp
without synchronization are invalid.

    __shared__ float s_buff[BLOCK_SIZE];
    s_buff[tid] = val;
    __syncthreads();

    // Inter-warp reduction
    for (int i = BLOCK_SIZE / 2; i >= 32; i /= 2) {
        if (tid < i) {
            s_buff[tid] += s_buff[tid+i];
        }
        __syncthreads();
    }

    // Intra-warp reduction
    // Butterfly reduction simplifies syncwarp mask
    if (tid < 32) {
        float temp;
        temp = s_buff[tid ^ 16]; __syncwarp();
        s_buff[tid] += temp;     __syncwarp();
        temp = s_buff[tid ^ 8];  __syncwarp();
        s_buff[tid] += temp;     __syncwarp();
        temp = s_buff[tid ^ 4];  __syncwarp();
        s_buff[tid] += temp;     __syncwarp();
        temp = s_buff[tid ^ 2];  __syncwarp();
        s_buff[tid] += temp;     __syncwarp();
    }

    if (tid == 0) {
        *output = s_buff[0] + s_buff[1];
    }
    __syncthreads();

 3. Although __syncthreads() has been consistently documented as synchronizing
all threads in the thread block, Pascal and prior architectures could only enforce
synchronization at the warp level. In certain cases, this allowed a barrier to succeed
without being executed by every thread as long as at least some thread in every warp
reached the barrier. Starting with Volta, the CUDA built-in __syncthreads() and PTX
instruction bar.sync (and their derivatives) are enforced per thread and thus will not
succeed until reached by all non-exited threads in the block. Code exploiting the previous
behavior will likely deadlock and must be modified to ensure that all non-exited threads
reach the barrier.

The racecheck and synccheck tools provided by cuda-memcheck can aid in locating violations
of points 2 and 3.

To aid migration while implementing the above-mentioned corrective actions, developers can
opt-in to the Pascal scheduling model that does not support independent thread scheduling.
See Application Compatibility for details.
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K.6.3.  Global Memory
Global memory behaves the same way as in devices of compute capability 5.x (See Global
Memory).

K.6.4.  Shared Memory
Similar to the Kepler architecture, the amount of the unified data cache reserved for shared
memory is configurable on a per kernel basis. For the Volta architecture (compute capability
7.0), the unified data cache has a size of 128 KB, and the shared memory capacity can be set
to 0, 8, 16, 32, 64 or 96 KB. For the Turing architecture (compute capability 7.5), the unified
data cache has a size of 96 KB, and the shared memory capacity can be set to either 32 KB
or 64 KB. Unlike Kepler, the driver automatically configures the shared memory capacity for
each kernel to avoid shared memory occupancy bottlenecks while also allowing concurrent
execution with already launched kernels where possible. In most cases, the driver's default
behavior should provide optimal performance.

Because the driver is not always aware of the full workload, it is sometimes useful for
applications to provide additional hints regarding the desired shared memory configuration.
For example, a kernel with little or no shared memory use may request a larger carveout in
order to encourage concurrent execution with later kernels that require more shared memory.
The new cudaFuncSetAttribute() API allows applications to set a preferred shared memory
capacity, or carveout, as a percentage of the maximum supported shared memory capacity
(96 KB for Volta, and 64 KB for Turing).

cudaFuncSetAttribute() relaxes enforcement of the preferred shared capacity compared
to the legacy cudaFuncSetCacheConfig() API introduced with Kepler. The legacy API treated
shared memory capacities as hard requirements for kernel launch. As a result, interleaving
kernels with different shared memory configurations would needlessly serialize launches
behind shared memory reconfigurations. With the new API, the carveout is treated as a hint.
The driver may choose a different configuration if required to execute the function or to avoid
thrashing.

// Device code
__global__ void MyKernel(...)
{
    __shared__ float buffer[BLOCK_DIM];
    ...
}

// Host code
int carveout = 50; // prefer shared memory capacity 50% of maximum
// Named Carveout Values:
// carveout = cudaSharedmemCarveoutDefault;   //  (-1)
// carveout = cudaSharedmemCarveoutMaxL1;     //   (0)
// carveout = cudaSharedmemCarveoutMaxShared; // (100)
cudaFuncSetAttribute(MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout,
 carveout);
MyKernel <<<gridDim, BLOCK_DIM>>>(...);

In addition to an integer percentage, several convenience enums are provided as listed in
the code comments above. Where a chosen integer percentage does not map exactly to a
supported capacity (SM 7.0 devices support shared capacities of 0, 8, 16, 32, 64, or 96 KB), the
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next larger capacity is used. For instance, in the example above, 50% of the 96 KB maximum is
48 KB, which is not a supported shared memory capacity. Thus, the preference is rounded up
to 64 KB.

Compute capability 7.x devices allow a single thread block to address the full capacity
of shared memory: 96 KB on Volta, 64 KB on Turing. Kernels relying on shared memory
allocations over 48 KB per block are architecture-specific, as such they must use dynamic
shared memory (rather than statically sized arrays) and require an explicit opt-in using
cudaFuncSetAttribute() as follows.

// Device code
__global__ void MyKernel(...)
{
    ...
}

// Host code
int maxbytes = 98304; // 96 KB
cudaFuncSetAttribute(MyKernel, cudaFuncAttributeMaxDynamicSharedMemorySize,
 maxbytes);
MyKernel <<<gridDim, blockDim>>>(...);

Otherwise, shared memory behaves the same way as for devices of compute capability 5.x (See
Shared Memory).

K.7.  Compute Capability 8.x

K.7.1.  Architecture
A Streaming Multiprocessor (SM) consists of:

‣ 64 FP32 cores for single-precision arithmetic operations in devices of compute capability
8.0 and 128 FP32 cores in devices of compute capability 8.6,

‣ 32 FP64 cores for double-precision arithmetic operations in devices of compute capability
8.0 and 2 FP64 cores in devices of compute capability 8.6

‣ 64 INT32 cores for integer math,

‣ 4 mixed-precision Third Generation Tensor Cores supporting half-precision (fp16),
__nv_bfloat16, tf32, sub-byte and double precision (fp64) matrix arithmetic (see Warp
matrix functions for details),

‣ 16 special function units for single-precision floating-point transcendental functions,

‣ 4 warp schedulers.

An SM statically distributes its warps among its schedulers. Then, at every instruction issue
time, each scheduler issues one instruction for one of its assigned warps that is ready to
execute, if any.

An SM has:
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‣ a read-only constant cache that is shared by all functional units and speeds up reads from
the constant memory space, which resides in device memory,

‣ a unified data cache and shared memory with a total size of 192 KB for devices of compute
capability 8.0 (1.5x Volta's 128 KB capacity) and 128 KB for devices of compute capability
8.6.

Shared memory is partitioned out of the unified data cache, and can be configured to various
sizes (see Shared Memory section). The remaining data cache serves as an L1 cache and is
also used by the texture unit that implements the various addressing and data filtering modes
mentioned in Texture and Surface Memory.

K.7.2.  Global Memory
Global memory behaves the same way as for devices of compute capability 5.x (See Global
Memory).

K.7.3.  Shared Memory
Similar to the Volta architecture, the amount of the unified data cache reserved for shared
memory is configurable on a per kernel basis. For the NVIDIA Ampere GPU architecture, the
unified data cache has a size of 192 KB for devices of compute capability 8.0 and 128 KB for
devices of compute capability 8.6. The shared memory capacity can be set to 0, 8, 16, 32, 64,
100, 132 or 164 KB for devices of compute capability 8.0, and to 0, 8, 16, 32, 64 or 100 KB for
devices of compute capability 8.6.

An application can set the carveout, i.e., the preferred shared memory capacity, with the
cudaFuncSetAttribute().

cudaFuncSetAttribute(kernel_name, cudaFuncAttributePreferredSharedMemoryCarveout,
 carveout);

The API can specify the carveout either as an integer percentage of the maximum
supported shared memory capacity of 164 KB for devices of compute capability 8.0 and
100 KB for devices of compute capability 8.6 respectively, or as one of the following
values: {cudaSharedmemCarveoutDefault, cudaSharedmemCarveoutMaxL1, or
cudaSharedmemCarveoutMaxShared. When using a percentage, the carveout is rounded
up to the nearest supported shared memory capacity. For example, for devices of compute
capability 8.0, 50% will map to a 100 KB carveout instead of an 82 KB one. Setting the
cudaFuncAttributePreferredSharedMemoryCarveout is considered a hint by the driver;
the driver may choose a different configuration, if needed.

Devices of compute capability 8.0 allow a single thread block to address up to 163 KB of
shared memory, while devices of compute capability 8.6 allow up to 99 KB of shared memory.
Kernels relying on shared memory allocations over 48 KB per block are architecture-specific,
and must use dynamic shared memory rather than statically sized shared memory arrays.
These kernels require an explicit opt-in by using cudaFuncSetAttribute() to set the
cudaFuncAttributeMaxDynamicSharedMemorySize; see Shared Memory for the Volta
architecture.
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Note that the maximum amount of shared memory per thread block is smaller than the
maximum shared memory partition available per SM. The 1 KB of shared memory not made
available to a thread block is reserved for system use.



CUDA C++ Programming Guide PG-02829-001_v11.5   |   384

Appendix L. Driver API

This appendix assumes knowledge of the concepts described in CUDA Runtime.

The driver API is implemented in the cuda dynamic library (cuda.dll or cuda.so) which
is copied on the system during the installation of the device driver. All its entry points are
prefixed with cu.

It is a handle-based, imperative API: Most objects are referenced by opaque handles that may
be specified to functions to manipulate the objects.

The objects available in the driver API are summarized in Table 16.

Table 16. Objects Available in the CUDA Driver API

Object Handle Description
Device CUdevice CUDA-enabled device

Context CUcontext Roughly equivalent to a CPU process

Module CUmodule Roughly equivalent to a dynamic library

Function CUfunction Kernel

Heap memory CUdeviceptr Pointer to device memory

CUDA array CUarray Opaque container for one-dimensional or two-
dimensional data on the device, readable via
texture or surface references

Texture reference CUtexref Object that describes how to interpret texture
memory data

Surface reference CUsurfref Object that describes how to read or write CUDA
arrays

Stream CUstream Object that describes a CUDA stream

Event CUevent Object that describes a CUDA event

The driver API must be initialized with cuInit() before any function from the driver API is
called. A CUDA context must then be created that is attached to a specific device and made
current to the calling host thread as detailed in Context.

Within a CUDA context, kernels are explicitly loaded as PTX or binary objects by the host code
as described in Module. Kernels written in C++ must therefore be compiled separately into
PTX or binary objects. Kernels are launched using API entry points as described in Kernel
Execution.
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Any application that wants to run on future device architectures must load PTX, not binary
code. This is because binary code is architecture-specific and therefore incompatible with
future architectures, whereas PTX code is compiled to binary code at load time by the device
driver.

Here is the host code of the sample from Kernels written using the driver API:

int main()
{
    int N = ...;
    size_t size = N * sizeof(float);

    // Allocate input vectors h_A and h_B in host memory
    float* h_A = (float*)malloc(size);
    float* h_B = (float*)malloc(size);

    // Initialize input vectors
    ...

    // Initialize
    cuInit(0);

    // Get number of devices supporting CUDA
    int deviceCount = 0;
    cuDeviceGetCount(&deviceCount);
    if (deviceCount == 0) {
        printf("There is no device supporting CUDA.\n");
        exit (0);
    }

    // Get handle for device 0
    CUdevice cuDevice;
    cuDeviceGet(&cuDevice, 0);

    // Create context
    CUcontext cuContext;
    cuCtxCreate(&cuContext, 0, cuDevice);

    // Create module from binary file
    CUmodule cuModule;
    cuModuleLoad(&cuModule, "VecAdd.ptx");

    // Allocate vectors in device memory
    CUdeviceptr d_A;
    cuMemAlloc(&d_A, size);
    CUdeviceptr d_B;
    cuMemAlloc(&d_B, size);
    CUdeviceptr d_C;
    cuMemAlloc(&d_C, size);

    // Copy vectors from host memory to device memory
    cuMemcpyHtoD(d_A, h_A, size);
    cuMemcpyHtoD(d_B, h_B, size);

    // Get function handle from module
    CUfunction vecAdd;
    cuModuleGetFunction(&vecAdd, cuModule, "VecAdd");

    // Invoke kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =
            (N + threadsPerBlock - 1) / threadsPerBlock;
    void* args[] = { &d_A, &d_B, &d_C, &N };
    cuLaunchKernel(vecAdd,
                   blocksPerGrid, 1, 1, threadsPerBlock, 1, 1,
                   0, 0, args, 0);
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    ...
}

Full code can be found in the vectorAddDrv CUDA sample.

L.1.  Context
A CUDA context is analogous to a CPU process. All resources and actions performed within
the driver API are encapsulated inside a CUDA context, and the system automatically cleans
up these resources when the context is destroyed. Besides objects such as modules and
texture or surface references, each context has its own distinct address space. As a result,
CUdeviceptr values from different contexts reference different memory locations.

A host thread may have only one device context current at a time. When a context is created
with cuCtxCreate(), it is made current to the calling host thread. CUDA functions that
operate in a context (most functions that do not involve device enumeration or context
management) will return CUDA_ERROR_INVALID_CONTEXT if a valid context is not current to
the thread.

Each host thread has a stack of current contexts. cuCtxCreate() pushes the new context
onto the top of the stack. cuCtxPopCurrent() may be called to detach the context from the
host thread. The context is then "floating" and may be pushed as the current context for any
host thread. cuCtxPopCurrent() also restores the previous current context, if any.

A usage count is also maintained for each context. cuCtxCreate() creates a context with
a usage count of 1. cuCtxAttach() increments the usage count and cuCtxDetach()
decrements it. A context is destroyed when the usage count goes to 0 when calling
cuCtxDetach() or cuCtxDestroy().

The driver API is interoperable with the runtime and it is possible to access the
primary context (see Initialization) managed by the runtime from the driver API via
cuDevicePrimaryCtxRetain().

Usage count facilitates interoperability between third party authored code operating in the
same context. For example, if three libraries are loaded to use the same context, each library
would call cuCtxAttach() to increment the usage count and cuCtxDetach() to decrement
the usage count when the library is done using the context. For most libraries, it is expected
that the application will have created a context before loading or initializing the library; that
way, the application can create the context using its own heuristics, and the library simply
operates on the context handed to it. Libraries that wish to create their own contexts -
unbeknownst to their API clients who may or may not have created contexts of their own -
would use cuCtxPushCurrent() and cuCtxPopCurrent() as illustrated in Figure 23.
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Figure 23. Library Context Management
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L.2.  Module
Modules are dynamically loadable packages of device code and data, akin to DLLs in Windows,
that are output by nvcc (see Compilation with NVCC). The names for all symbols, including
functions, global variables, and texture or surface references, are maintained at module scope
so that modules written by independent third parties may interoperate in the same CUDA
context.

This code sample loads a module and retrieves a handle to some kernel:

CUmodule cuModule;
cuModuleLoad(&cuModule, "myModule.ptx");
CUfunction myKernel;
cuModuleGetFunction(&myKernel, cuModule, "MyKernel");

This code sample compiles and loads a new module from PTX code and parses compilation
errors:

  
#define BUFFER_SIZE 8192
CUmodule cuModule;
CUjit_option options[3];
void* values[3];
char* PTXCode = "some PTX code";
char error_log[BUFFER_SIZE];
int err;
options[0] = CU_JIT_ERROR_LOG_BUFFER;
values[0]  = (void*)error_log;
options[1] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
values[1]  = (void*)BUFFER_SIZE;
options[2] = CU_JIT_TARGET_FROM_CUCONTEXT;
values[2]  = 0;
err = cuModuleLoadDataEx(&cuModule, PTXCode, 3, options, values);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);

This code sample compiles, links, and loads a new module from multiple PTX codes and
parses link and compilation errors:
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#define BUFFER_SIZE 8192
CUmodule cuModule;
CUjit_option options[6];
void* values[6];
float walltime;
char error_log[BUFFER_SIZE], info_log[BUFFER_SIZE];
char* PTXCode0 = "some PTX code";
char* PTXCode1 = "some other PTX code";
CUlinkState linkState;
int err;
void* cubin;
size_t cubinSize;
options[0] = CU_JIT_WALL_TIME;
values[0] = (void*)&walltime;
options[1] = CU_JIT_INFO_LOG_BUFFER;
values[1] = (void*)info_log;
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
values[2] = (void*)BUFFER_SIZE;
options[3] = CU_JIT_ERROR_LOG_BUFFER;
values[3] = (void*)error_log;
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
values[4] = (void*)BUFFER_SIZE;
options[5] = CU_JIT_LOG_VERBOSE;
values[5] = (void*)1;
cuLinkCreate(6, options, values, &linkState);
err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX,
                    (void*)PTXCode0, strlen(PTXCode0) + 1, 0, 0, 0, 0);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);
err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX,
                    (void*)PTXCode1, strlen(PTXCode1) + 1, 0, 0, 0, 0);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);
cuLinkComplete(linkState, &cubin, &cubinSize);
printf("Link completed in %fms. Linker Output:\n%s\n", walltime, info_log);
cuModuleLoadData(cuModule, cubin);
cuLinkDestroy(linkState);

      

Full code can be found in the ptxjit CUDA sample.

L.3.  Kernel Execution
cuLaunchKernel() launches a kernel with a given execution configuration.

Parameters are passed either as an array of pointers (next to last parameter of
cuLaunchKernel()) where the nth pointer corresponds to the nth parameter and points to
a region of memory from which the parameter is copied, or as one of the extra options (last
parameter of cuLaunchKernel()).

When parameters are passed as an extra option (the CU_LAUNCH_PARAM_BUFFER_POINTER
option), they are passed as a pointer to a single buffer where parameters are assumed to be
properly offset with respect to each other by matching the alignment requirement for each
parameter type in device code.

Alignment requirements in device code for the built-in vector types are listed in Table 4.
For all other basic types, the alignment requirement in device code matches the alignment
requirement in host code and can therefore be obtained using __alignof(). The only
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exception is when the host compiler aligns double and long long (and long on a 64-bit
system) on a one-word boundary instead of a two-word boundary (for example, using gcc's
compilation flag -mno-align-double) since in device code these types are always aligned on
a two-word boundary.

CUdeviceptr is an integer, but represents a pointer, so its alignment requirement is
__alignof(void*).

The following code sample uses a macro (ALIGN_UP()) to adjust the offset of each parameter
to meet its alignment requirement and another macro (ADD_TO_PARAM_BUFFER()) to add each
parameter to the parameter buffer passed to the CU_LAUNCH_PARAM_BUFFER_POINTER option.

#define ALIGN_UP(offset, alignment) \
      (offset) = ((offset) + (alignment) - 1) & ~((alignment) - 1)

char paramBuffer[1024];
size_t paramBufferSize = 0;

#define ADD_TO_PARAM_BUFFER(value, alignment)                   \
    do {                                                        \
        paramBufferSize = ALIGN_UP(paramBufferSize, alignment); \
        memcpy(paramBuffer + paramBufferSize,                   \
               &(value), sizeof(value));                        \
        paramBufferSize += sizeof(value);                       \
    } while (0)

int i;
ADD_TO_PARAM_BUFFER(i, __alignof(i));
float4 f4;
ADD_TO_PARAM_BUFFER(f4, 16); // float4's alignment is 16
char c;
ADD_TO_PARAM_BUFFER(c, __alignof(c));
float f;
ADD_TO_PARAM_BUFFER(f, __alignof(f));
CUdeviceptr devPtr;
ADD_TO_PARAM_BUFFER(devPtr, __alignof(devPtr));
float2 f2;
ADD_TO_PARAM_BUFFER(f2, 8); // float2's alignment is 8

void* extra[] = {
    CU_LAUNCH_PARAM_BUFFER_POINTER, paramBuffer,
    CU_LAUNCH_PARAM_BUFFER_SIZE,    &paramBufferSize,
    CU_LAUNCH_PARAM_END
};
cuLaunchKernel(cuFunction,
               blockWidth, blockHeight, blockDepth,
               gridWidth, gridHeight, gridDepth,
               0, 0, 0, extra);

The alignment requirement of a structure is equal to the maximum of the alignment
requirements of its fields. The alignment requirement of a structure that contains built-in
vector types, CUdeviceptr, or non-aligned double and long long, might therefore differ
between device code and host code. Such a structure might also be padded differently. The
following structure, for example, is not padded at all in host code, but it is padded in device
code with 12 bytes after field f since the alignment requirement for field f4 is 16.

typedef struct {
    float  f;
    float4 f4;
} myStruct;
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L.4.  Interoperability between Runtime and
Driver APIs

An application can mix runtime API code with driver API code.

If a context is created and made current via the driver API, subsequent runtime calls will pick
up this context instead of creating a new one.

If the runtime is initialized (implicitly as mentioned in CUDA Runtime), cuCtxGetCurrent()
can be used to retrieve the context created during initialization. This context can be used by
subsequent driver API calls.

The implicitly created context from the runtime is called the primary context (see Initialization).
It can be managed from the driver API with the Primary Context Management functions.

Device memory can be allocated and freed using either API. CUdeviceptr can be cast to
regular pointers and vice-versa:

CUdeviceptr devPtr;
float* d_data;

// Allocation using driver API
cuMemAlloc(&devPtr, size);
d_data = (float*)devPtr;

// Allocation using runtime API
cudaMalloc(&d_data, size);
devPtr = (CUdeviceptr)d_data;

In particular, this means that applications written using the driver API can invoke libraries
written using the runtime API (such as cuFFT, cuBLAS, ...).

All functions from the device and version management sections of the reference manual can
be used interchangeably.

L.5.  Driver Entry Point Access

L.5.1.  Introduction
The Driver Entry Point Access APIs provide a way to retrieve the address of a CUDA
driver function. Starting from CUDA 11.3, users can call into available CUDA driver APIs using
function pointers obtained from these APIs.

These APIs provide functionality similar to their counterparts, dlsym on POSIX platforms and
GetProcAddress on Windows. The provided APIs will let users:

‣ Retrieve the address of a driver function using the CUDA Driver API.

‣ Retrieve the address of a driver function using the CUDA Runtime API.

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__PRIMARY__CTX.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DRIVER__ENTRY__POINT.html
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__DRIVER__ENTRY__POINT.html
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DRIVER__ENTRY__POINT.html
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‣ Request per-thread default stream version of a CUDA driver function. For more details, see
Retrieve per-thread default stream versions

‣ Access new CUDA features on older toolkits but with a newer driver.

L.5.2.  Driver Function Typedefs
To help retrieve the CUDA Driver API entry points, the CUDA Toolkit provides access to
headers containing the function pointer definitions for all CUDA driver APIs. These headers
are installed with the CUDA Toolkit and are made available in the toolkit's include/ directory.
The table below summarizes the header files containing the typedefs for each CUDA API
header file.

Table 17. Typedefs header files for CUDA driver APIs

API header file API Typedef header file
cuda.h cudaTypedefs.h

cudaGL.h cudaGLTypedefs.h

cudaProfiler.h cudaProfilerTypedefs.h

cudaVDPAU.h cudaVDPAUTypedefs.h

cudaEGL.h cudaEGLTypedefs.h

cudaD3D9.h cudaD3D9Typedefs.h

cudaD3D10.h cudaD3D10Typedefs.h

cudaD3D11.h cudaD3D11Typedefs.h

The above headers do not define actual function pointers themselves; they define the typedefs
for function pointers. For example, cudaTypedefs.h has the below typedefs for the driver API
cuMemAlloc:

    typedef CUresult (CUDAAPI *PFN_cuMemAlloc_v3020)(CUdeviceptr_v2 *dptr, size_t
 bytesize);
    typedef CUresult (CUDAAPI *PFN_cuMemAlloc_v2000)(CUdeviceptr_v1
 *dptr, unsigned int bytesize);
  

CUDA driver symbols have a version based naming scheme with a _v* extension in its name
except for the first version. When the signature or the semantics of a specific CUDA driver API
changes, we increment the version number of the corresponding driver symbol. In the case of
the cuMemAlloc driver API, the first driver symbol name is cuMemAlloc and the next symbol
name is cuMemAlloc_v2. The typedef for the first version which was introduced in CUDA 2.0
(2000) is PFN_cuMemAlloc_v2000. The typedef for the next version which was introduced in
CUDA 3.2 (3020) is PFN_cuMemAlloc_v3020.

The typedefs can be used to more easily define a function pointer of the appropriate type in
code:

    PFN_cuMemAlloc_v3020 pfn_cuMemAlloc_v2;
    PFN_cuMemAlloc_v2000 pfn_cuMemAlloc_v1;
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The above method is preferable if users are interested in a specific version of the API.
Additionally, the headers have predefined macros for the latest version of all driver symbols
that were available when the installed CUDA toolkit was released; these typedefs do not have
a _v* suffix. For CUDA 11.3 toolkit, cuMemAlloc_v2 was the latest version and so we can also
define its function pointer as below:

    PFN_cuMemAlloc pfn_cuMemAlloc;
  

L.5.3.  Driver Function Retrieval
Using the Driver Entry Point Access APIs and the appropriate typedef, we can get the function
pointer to any CUDA driver API.

L.5.3.1.  Using the driver API
The driver API requires CUDA version as an argument to get the ABI compatible version
for the requested driver symbol. CUDA Driver APIs have a per-function ABI denoted with
a _v* extension. For example, consider the versions of cuStreamBeginCapture and their
corresponding typedefs from cudaTypedefs.h:

    // cuda.h
    CUresult CUDAAPI cuStreamBeginCapture(CUstream hStream);
    CUresult CUDAAPI cuStreamBeginCapture_v2(CUstream hStream, CUstreamCaptureMode
 mode);
            
    // cudaTypedefs.h
    typedef CUresult (CUDAAPI *PFN_cuStreamBeginCapture_v10000)(CUstream hStream);
    typedef CUresult (CUDAAPI *PFN_cuStreamBeginCapture_v10010)(CUstream hStream,
 CUstreamCaptureMode mode);
  

From the above typedefs in the code snippet, version suffixes _v10000 and _v10010 indicate
that the above APIs were introduced in CUDA 10.0 and CUDA 10.1 respectively.

    #include <cudaTypedefs.h>
    
    // Declare the entry points for cuStreamBeginCapture
    PFN_cuStreamBeginCapture_v10000 pfn_cuStreamBeginCapture_v1;
    PFN_cuStreamBeginCapture_v10010 pfn_cuStreamBeginCapture_v2;
    
    // Get the function pointer to the cuStreamBeginCapture driver symbol
    cuGetProcAddress("cuStreamBeginCapture", &pfn_cuStreamBeginCapture_v1, 10000,
 CU_GET_PROC_ADDRESS_DEFAULT);
    // Get the function pointer to the cuStreamBeginCapture_v2 driver symbol
    cuGetProcAddress("cuStreamBeginCapture", &pfn_cuStreamBeginCapture_v2, 10010,
 CU_GET_PROC_ADDRESS_DEFAULT);
  

Referring to the code snippet above, to retrieve the address to the _v1 version of the driver
API cuStreamBeginCapture, the CUDA version argument should be exactly 10.0 (10000).
Similarly, the CUDA version for retrieving the address to the _v2 version of the API should
be 10.1 (10010). Specifying a higher CUDA version for retrieving a specific version of a driver
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API might not always be portable. For example, using 11030 here would still return the _v2
symbol, but if a hypothetical _v3 version is released in CUDA 11.3, the cuGetProcAddress
API would start returning the newer _v3 symbol instead when paired with a CUDA 11.3 driver.
Since the ABI and function signatures of the _v2 and _v3 symbols might differ, calling the
_v3 function using the _v10010 typedef intended for the _v2 symbol would exhibit undefined
behavior.

To retrieve the latest version of a driver API for a given CUDA Toolkit, we can also specify
CUDA_VERSION as the version argument and use the unversioned typedef to define the
function pointer. Since _v2 is the latest version of the driver API cuStreamBeginCapture in
CUDA 11.3, the below code snippet shows a different method to retrieve it.

    // Assuming we are using CUDA 11.3 Toolkit

    #include <cudaTypedefs.h>
    
    // Declare the entry point
    PFN_cuStreamBeginCapture pfn_cuStreamBeginCapture_latest;
    
    // Intialize the entry point. Specifying CUDA_VERSION will give the function
 pointer to the
    // cuStreamBeginCapture_v2 symbol since it is latest version on CUDA 11.3.
    cuGetProcAddress("cuStreamBeginCapture", &pfn_cuStreamBeginCapture_latest,
 CUDA_VERSION, CU_GET_PROC_ADDRESS_DEFAULT);
  

Note that requesting a driver API with an invalid CUDA version will return an error
CUDA_ERROR_NOT_FOUND. In the above code examples, passing in a version less than 10000
(CUDA 10.0) would be invalid.

L.5.3.2.  Using the runtime API
The runtime API uses the CUDA runtime version to get the ABI compatible version for the
requested driver symbol. In the below code snippet, the minimum CUDA runtime version
required would be CUDA 11.2 as cuMemAllocAsync was introduced then.

    #include <cudaTypedefs.h>
    
    // Declare the entry point
    PFN_cuMemAllocAsync pfn_cuMemAllocAsync;
    
    // Intialize the entry point. Assuming CUDA runtime version >= 11.2
    cudaGetDriverEntryPoint("cuMemAllocAsync", &pfn_cuMemAllocAsync,
 cudaEnableDefault);
    
    // Call the entry point
    pfn_cuMemAllocAsync(...);
  

L.5.3.3.  Retrieve per-thread default stream versions
Some CUDA driver APIs can be configured to have default stream or per-thread default stream
semantics. Driver APIs having per-thread default stream semantics are suffixed with _ptsz or
_ptds in their name. For example, cuLaunchKernel has a per-thread default stream variant
named cuLaunchKernel_ptsz. With the Driver Entry Point Access APIs, users can request for
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the per-thread default stream version of the driver API cuLaunchKernel instead of the default
stream version. Configuring the CUDA driver APIs for default stream or per-thread default
stream semantics affects the synchronization behavior. More details can be found here.

The default stream or per-thread default stream versions of a driver API can be obtained by one
of the following ways:

‣ Use the compilation flag --default-stream per-thread or define the marco
CUDA_API_PER_THREAD_DEFAULT_STREAM to get per-thread default stream behavior.

‣ Force default stream or per-thread default stream behavior using the flags
CU_GET_PROC_ADDRESS_LEGACY_STREAM/cudaEnableLegacyStream
or CU_GET_PROC_ADDRESS_PER_THREAD_DEFAULT_STREAM/
cudaEnablePerThreadDefaultStream respectively.

L.5.3.4.  Access new CUDA features
It is always recommended to install the latest CUDA toolkit to access new CUDA driver
features, but if for some reason, a user does not want to update or does not have access to the
latest toolkit, the API can be used to access new CUDA features with only an updated CUDA
driver. For discussion, let us assume the user is on CUDA 11.3 and wants to use a new driver
API cuFoo available in the CUDA 12.0 driver. The below code snippet illustrates this use-case:

    int main()
    {
        // Assuming we have CUDA 12.0 driver installed.

        // Manually define the prototype as cudaTypedefs.h in CUDA 11.3 does not
 have the cuFoo typedef
        typedef CUresult (CUDAAPI *PFN_cuFoo)(...);
        PFN_cuFoo pfn_cuFoo = NULL;
        
        // Get the address for cuFoo API using cuGetProcAddress. Specify CUDA
 version as
        // 12000 since cuFoo was introduced then or get the driver version
 dynamically
        // using cuDriverGetVersion 
        int driverVersion;
        cuDriverGetVersion(&driverVersion);
        cuGetProcAddress("cuFoo", &pfn_cuFoo, driverVersion,
 CU_GET_PROC_ADDRESS_DEFAULT);
        
        if (pfn_cuFoo) {
            pfn_cuFoo(...);
        }
        else {
            printf("Cannot retrieve the address to cuFoo. Check if the latest driver
 for CUDA 12.0 is installed.\n");
            assert(0);
        }
        
        // rest of code here
        
    }
  

https://docs.nvidia.com/cuda/cuda-driver-api/stream-sync-behavior.html#stream-sync-behavior__default-stream
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Appendix M. CUDA Environment
Variables

The following table lists the CUDA environment variables. Environment variables related to
the Multi-Process Service are documented in the Multi-Process Service section of the GPU
Deployment and Management guide.

Table 18. CUDA Environment Variables

Variable Values Description
Device Enumeration and Properties

CUDA_VISIBLE_DEVICES A comma-
separated
sequence of GPU
identifiers
 
MIG support: MIG-
<GPU-UUID>/
<GPU instance
ID>/<compute
instance ID>

GPU identifiers are given as integer indices or as
UUID strings. GPU UUID strings should follow
the same format as given by nvidia-smi, such as
GPU-8932f937-d72c-4106-c12f-20bd9faed9f6.
However, for convenience, abbreviated forms are
allowed; simply specify enough digits from the
beginning of the GPU UUID to uniquely identify
that GPU in the target system. For example,
CUDA_VISIBLE_DEVICES=GPU-8932f937 may
be a valid way to refer to the above GPU UUID,
assuming no other GPU in the system shares this
prefix.
 
Only the devices whose index is present in the
sequence are visible to CUDA applications and
they are enumerated in the order of the sequence.
If one of the indices is invalid, only the devices
whose index precedes the invalid index are visible
to CUDA applications. For example, setting
CUDA_VISIBLE_DEVICES to 2,1 causes device
0 to be invisible and device 2 to be enumerated
before device 1. Setting CUDA_VISIBLE_DEVICES
to 0,2,-1,1 causes devices 0 and 2 to be visible and
device 1 to be invisible.
 
MIG format starts with MIG keyword and GPU
UUID should follow the same format as given
by nvidia-smi. For example, MIG-GPU-8932f937-
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Variable Values Description
d72c-4106-c12f-20bd9faed9f6/1/2. Only single
MIG instance enumeration is supported.

CUDA_MANAGED_FORCE_DEVICE_ALLOC0 or 1 (default is 0) Forces the driver to place all managed allocations
in device memory.

CUDA_DEVICE_ORDER FASTEST_FIRST,
PCI_BUS_ID,
(default is
FASTEST_FIRST)

FASTEST_FIRST causes CUDA to enumerate the
available devices in fastest to slowest order using
a simple heuristic. PCI_BUS_ID orders devices by
PCI bus ID in ascending order.

Compilation

CUDA_CACHE_DISABLE 0 or 1 (default is 0) Disables caching (when set to 1) or enables
caching (when set to 0) for just-in-time-
compilation. When disabled, no binary code is
added to or retrieved from the cache.

CUDA_CACHE_PATH filepath Specifies the folder where the just-in-time
compiler caches binary codes; the default values
are:

‣ on Windows, %APPDATA%\NVIDIA
\ComputeCache

‣ on Linux, ~/.nv/ComputeCache

CUDA_CACHE_MAXSIZE integer (default
is 268435456
(256 MiB) and
maximum is
4294967296 (4
GiB))

Specifies the size in bytes of the cache used by
the just-in-time compiler. Binary codes whose
size exceeds the cache size are not cached. Older
binary codes are evicted from the cache to make
room for newer binary codes if needed.

CUDA_FORCE_PTX_JIT 0 or 1 (default is 0) When set to 1, forces the device driver to ignore
any binary code embedded in an application
(see Application Compatibility) and to just-in-
time compile embedded PTX code instead. If a
kernel does not have embedded PTX code, it will
fail to load. This environment variable can be
used to validate that PTX code is embedded in an
application and that its just-in-time compilation
works as expected to guarantee application
forward compatibility with future architectures
(see Just-in-Time Compilation).

CUDA_DISABLE_PTX_JIT 0 or 1 (default is 0) When set to 1, disables the just-in-time
compilation of embedded PTX code and use
the compatible binary code embedded in an
application (see Application Compatibility). If
a kernel does not have embedded binary code
or the embedded binary was compiled for an
incompatible architecture, then it will fail to
load. This environment variable can be used to
validate that an application has the compatible
SASS code generated for each kernel.(see Binary
Compatibility).
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Variable Values Description
Execution

CUDA_LAUNCH_BLOCKING 0 or 1 (default is 0) Disables (when set to 1) or enables (when set to 0)
asynchronous kernel launches.

CUDA_DEVICE_MAX_CONNECTIONS1 to 32 (default is
8)

Sets the number of compute and copy engine
concurrent connections (work queues) from the
host to each device of compute capability 3.5 and
above.

CUDA_AUTO_BOOST 0 or 1 Overrides the autoboost behavior set by the
--auto-boost-default option of nvidia-smi. If
an application requests via this environment
variable a behavior that is different from nvidia-
smi's, its request is honored if there is no other
application currently running on the same GPU
that successfully requested a different behavior,
otherwise it is ignored.

cuda-gdb (on Linux platform)

CUDA_DEVICE_WAITS_ON_EXCEPTION0 or 1 (default is 0) When set to 1, a CUDA application will halt when
a device exception occurs, allowing a debugger to
be attached for further debugging.

MPS service (on Linux platform)

CUDA_DEVICE_DEFAULT_PERSISTING_L2_CACHE_PERCENTAGE_LIMITPercentage value
(between 0 - 100,
default is 0)

Devices of compute capability 8.x allow, a portion
of L2 cache to be set-aside for persisting data
accesses to global memory. When using CUDA
MPS service, the set-aside size can only be
controlled using this environment variable,
before starting CUDA MPS control daemon. I.e.,
the environment variable should be set before
running the command nvidia-cuda-mps-
control -d.
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Appendix N. Unified Memory
Programming

N.1.  Unified Memory Introduction
Unified Memory is a component of the CUDA programming model, first introduced in CUDA
6.0, that defines a managed memory space in which all processors see a single coherent
memory image with a common address space.

Note: A processor refers to any independent execution unit with a dedicated MMU. This
includes both CPUs and GPUs of any type and architecture.

The underlying system manages data access and locality within a CUDA program without need
for explicit memory copy calls. This benefits GPU programming in two primary ways:

‣ GPU programming is simplified by unifying memory spaces coherently across all GPUs
and CPUs in the system and by providing tighter and more straightforward language
integration for CUDA programmers.

‣ Data access speed is maximized by transparently migrating data towards the processor
using it.

In simple terms, Unified Memory eliminates the need for explicit data movement via the
cudaMemcpy*() routines without the performance penalty incurred by placing all data into
zero-copy memory. Data movement, of course, still takes place, so a program’s run time
typically does not decrease; Unified Memory instead enables the writing of simpler and more
maintainable code.

Unified Memory offers a “single-pointer-to-data” model that is conceptually similar to CUDA’s
zero-copy memory. One key difference between the two is that with zero-copy allocations the
physical location of memory is pinned in CPU system memory such that a program may have
fast or slow access to it depending on where it is being accessed from. Unified Memory, on the
other hand, decouples memory and execution spaces so that all data accesses are fast.

The term Unified Memory describes a system that provides memory management services to a
wide range of programs, from those targeting the Runtime API down to those using the Virtual
ISA (PTX). Part of this system defines the managed memory space that opts in to Unified
Memory services.
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Managed memory is interoperable and interchangeable with device-specific allocations, such
as those created using the cudaMalloc() routine. All CUDA operations that are valid on
device memory are also valid on managed memory; the primary difference is that the host
portion of a program is able to reference and access the memory as well.

Note: Unified memory is not supported on discrete GPUs attached to Tegra.

N.1.1.  System Requirements
Unified Memory has two basic requirements:

‣ a GPU with SM architecture 3.0 or higher (Kepler class or newer)

‣ a 64-bit host application and non-embedded operating system (Linux or Windows)

GPUs with SM architecture 6.x or higher (Pascal class or newer) provide additional Unified
Memory features such as on-demand page migration and GPU memory oversubscription that
are outlined throughout this document. Note that currently these features are only supported
on Linux operating systems. Applications running on Windows (whether in TCC or WDDM
mode) will use the basic Unified Memory model as on pre-6.x architectures even when they
are running on hardware with compute capability 6.x or higher. See Data Migration and
Coherency for details.

N.1.2.  Simplifying GPU Programming
Unification of memory spaces means that there is no longer any need for explicit memory
transfers between host and device. Any allocation created in the managed memory space is
automatically migrated to where it is needed.

A program allocates managed memory in one of two ways: via the cudaMallocManaged()
routine, which is semantically similar to cudaMalloc(); or by defining a global __managed__
variable, which is semantically similar to a __device__ variable. Precise definitions of these
are found later in this document.

Note: On supporting platforms with devices of compute capability 6.x and higher, Unified
Memory will enable applications to allocate and share data using the default system allocator.
This allows the GPU to access the entire system virtual memory without using a special
allocator. See System Allocator for more detail.

The following code examples illustrate how the use of managed memory can change the way
in which host code is written. First, a simple program written without the benefit of Unified
Memory:

__global__ void AplusB(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}
int main() {
    int *ret;
    cudaMalloc(&ret, 1000 * sizeof(int));
    AplusB<<< 1, 1000 >>>(ret, 10, 100);
    int *host_ret = (int *)malloc(1000 * sizeof(int));
    cudaMemcpy(host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault);
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    for(int i = 0; i < 1000; i++)
        printf("%d: A+B = %d\n", i, host_ret[i]); 
    free(host_ret);
    cudaFree(ret); 
    return 0;
}

This first example combines two numbers together on the GPU with a per-thread ID and
returns the values in an array. Without managed memory, both host- and device-side storage
for the return values is required (host_ret and ret in the example), as is an explicit copy
between the two using cudaMemcpy().

Compare this with the Unified Memory version of the program, which allows direct access of
GPU data from the host. Notice the cudaMallocManaged() routine, which returns a pointer
valid from both host and device code. This allows ret to be used without a separate host_ret
copy, greatly simplifying and reducing the size of the program.

__global__ void AplusB(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}
int main() {
    int *ret;
    cudaMallocManaged(&ret, 1000 * sizeof(int));
    AplusB<<< 1, 1000 >>>(ret, 10, 100);
    cudaDeviceSynchronize();
    for(int i = 0; i < 1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);
    cudaFree(ret); 
    return 0;
}

Finally, language integration allows direct reference of a GPU-declared __managed__ variable
and simplifies a program further when global variables are used.

__device__ __managed__ int ret[1000];
__global__ void AplusB(int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}
int main() {
    AplusB<<< 1, 1000 >>>(10, 100);
    cudaDeviceSynchronize();
    for(int i = 0; i < 1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);
    return 0;
}

Note the absence of explicit cudaMemcpy() commands and the fact that the return array ret
is visible on both CPU and GPU.

It is worth a comment on the synchronization between host and device. Notice how in
the non-managed example, the synchronous cudaMemcpy() routine is used both to
synchronize the kernel (that is, to wait for it to finish running), and to transfer the data to
the host. The Unified Memory examples do not call cudaMemcpy() and so require an explicit
cudaDeviceSynchronize() before the host program can safely use the output from the GPU.

N.1.3.  Data Migration and Coherency
Unified Memory attempts to optimize memory performance by migrating data towards the
device where it is being accessed (that is, moving data to host memory if the CPU is accessing
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it and to device memory if the GPU will access it). Data migration is fundamental to Unified
Memory, but is transparent to a program. The system will try to place data in the location
where it can most efficiently be accessed without violating coherency.

The physical location of data is invisible to a program and may be changed at any time, but
accesses to the data’s virtual address will remain valid and coherent from any processor
regardless of locality. Note that maintaining coherence is the primary requirement, ahead of
performance; within the constraints of the host operating system, the system is permitted to
either fail accesses or move data in order to maintain global coherence between processors.

GPU architectures of compute capability lower than 6.x do not support fine-grained movement
of the managed data to GPU on-demand. Whenever a GPU kernel is launched all managed
memory generally has to be transfered to GPU memory to avoid faulting on memory access.
With compute capability 6.x a new GPU page faulting mechanism is introduced that provides
more seamless Unified Memory functionality. Combined with the system-wide virtual address
space, page faulting provides several benefits. First, page faulting means that the CUDA
system software doesn’t need to synchronize all managed memory allocations to the GPU
before each kernel launch. If a kernel running on the GPU accesses a page that is not resident
in its memory, it faults, allowing the page to be automatically migrated to the GPU memory
on-demand. Alternatively, the page may be mapped into the GPU address space for access
over the PCIe or NVLink interconnects (mapping on access can sometimes be faster than
migration). Note that Unified Memory is system-wide: GPUs (and CPUs) can fault on and
migrate memory pages either from CPU memory or from the memory of other GPUs in the
system.

N.1.4.  GPU Memory Oversubscription
Devices of compute capability lower than 6.x cannot allocate more managed memory than the
physical size of GPU memory.

Devices of compute capability 6.x extend addressing mode to support 49-bit virtual addressing.
This is large enough to cover the 48-bit virtual address spaces of modern CPUs, as well
as the GPU’s own memory. The large virtual address space and page faulting capability
enable applications to access the entire system virtual memory, not limited by the physical
memory size of any one processor. This means that applications can oversubscribe the
memory system: in other words they can allocate, access, and share arrays larger than the
total physical capacity of the system, enabling out-of-core processing of very large datasets.
cudaMallocManaged will not run out of memory as long as there is enough system memory
available for the allocation.

N.1.5.  Multi-GPU
For devices of compute capability lower than 6.x managed memory allocation behaves
identically to unmanaged memory allocated using cudaMalloc(): the current active device
is the home for the physical allocation, and all other GPUs receive peer mappings to the
memory. This means that other GPUs in the system will access the memory at reduced
bandwidth over the PCIe bus. Note that if peer mappings are not supported between the GPUs
in the system, then the managed memory pages are placed in CPU system memory (“zero-
copy” memory), and all GPUs will experience PCIe bandwidth restrictions. See Managed
Memory with Multi-GPU Programs on pre-6.x Architectures for details.
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Managed allocations on systems with devices of compute capability 6.x are visible to all
GPUs and can migrate to any processor on-demand. Unified Memory performance hints
(see Performance Tuning) allow developers to explore custom usage patterns, such as read
duplication of data across GPUs and direct access to peer GPU memory without migration.

N.1.6.  System Allocator
Devices of compute capability 7.0 support Address Translation Services (ATS) over NVLink.
If supported by the host CPU and operating system, ATS allows the GPU to directly access
the CPU’s page tables. A miss in the GPU MMU will result in an Address Translation Request
(ATR) to the CPU. The CPU looks in its page tables for the virtual-to-physical mapping
for that address and supplies the translation back to the GPU. ATS provides the GPU full
access to system memory, such as memory allocated with malloc, memory allocated
on stack, global variables and file-backed memory. An application can query whether
the device supports coherently accessing pageable memory via ATS by checking the new
pageableMemoryAccessUsesHostPageTables property.

Here is an example code that works on any system that satisfies the basic requirements for
Unified Memory (see System Requirements):

int *data;
cudaMallocManaged(&data, sizeof(int) * n);
kernel<<<grid, block>>>(data);

These new access patterns are supported on systems with pageableMemoryAccess property:

int *data = (int*)malloc(sizeof(int) * n);
kernel<<<grid, block>>>(data);

int data[1024];
kernel<<<grid, block>>>(data);

extern int *data;
kernel<<<grid, block>>>(data);

In the example above, data could be initialized by a third party CPU library, and then directly
accessed by the GPU kernel. On systems with pageableMemoryAccess, users may also
prefetch pageable memory to the GPU by using cudaMemPrefetchAsync. This could yield
performance benefits through optimized data locality.

Note: ATS over NVLink is currently supported only on IBM Power9 systems.

N.1.7.  Hardware Coherency
The second generation of NVLink allows direct load/store/atomic access from the CPU to each
GPU’s memory. Coupled with a new CPU mastering capability, NVLink supports coherency
operations allowing data reads from GPU memory to be stored in the CPU’s cache hierarchy.
The lower latency of access from the CPU’s cache is key for CPU performance. Devices of
compute capability 6.x support only peer GPU atomics. Devices of compute capability 7.x
can send GPU atomics across NVLink and have them completed at the target CPU, thus the
second generation of NVLink adds support for atomics initiated by either the GPU or the CPU.
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Note that cudaMalloc allocations are not accessible from the CPU. Therefore, to take
advantage of hardware coherency users must use Unified Memory allocators such as
cudaMallocManaged or system allocator with ATS support (see System Allocator). The
new property directManagedMemAccessFromHost indicates if the host can directly
access managed memory on the device without migration. By default, any CPU access of
cudaMallocManaged allocations resident in GPU memory will trigger page faults and data
migration. Applications can use cudaMemAdviseSetAccessedBy performance hint with
cudaCpuDeviceId to enable direct access of GPU memory on supported systems.

Consider an example code below:

__global__ void write(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}
__global__ void append(int *ret, int a, int b) {
    ret[threadIdx.x] += a + b + threadIdx.x;
}
int main() {
    int *ret;
    cudaMallocManaged(&ret, 1000 * sizeof(int));
    cudaMemAdvise(ret, 1000 * sizeof(int), cudaMemAdviseSetAccessedBy,
 cudaCpuDeviceId);  // set direct access hint

    write<<< 1, 1000 >>>(ret, 10, 100);            // pages populated in GPU memory
    cudaDeviceSynchronize();
    for(int i = 0; i < 1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);        //
 directManagedMemAccessFromHost=1: CPU accesses GPU memory directly without
 migrations
                                                    //
 directManagedMemAccessFromHost=0: CPU faults and triggers device-to-host migrations
    append<<< 1, 1000 >>>(ret, 10, 100);            //
 directManagedMemAccessFromHost=1: GPU accesses GPU memory without migrations
    cudaDeviceSynchronize();                        //
 directManagedMemAccessFromHost=0: GPU faults and triggers host-to-device migrations
    cudaFree(ret); 
    return 0;
}

After write kernel is completed, ret will be created and initialized in GPU memory. Next, the
CPU will access ret followed by append kernel using the same ret memory again. This code
will show different behavior depending on the system architecture and support of hardware
coherency:

‣ On systems with directManagedMemAccessFromHost=1: CPU accesses to the managed
buffer will not trigger any migrations; the data will remain resident in GPU memory and
any subsequent GPU kernels can continue to access it directly without inflicting faults or
migrations.

‣ On systems with directManagedMemAccessFromHost=0: CPU accesses to the managed
buffer will page fault and initiate data migration; any GPU kernel trying to access the same
data first time will page fault and migrate pages back to GPU memory.

N.1.8.  Access Counters
Devices of compute capability 7.0 introduce a new Access Counter feature that keeps track of
the frequency of access that a GPU makes to memory located on other processors. Access
Counters help ensure memory pages are moved to the physical memory of the processor that
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is accessing the pages most frequently. The Access Counters feature can guide migrations
between CPU and GPU, and between peer GPUs.

For cudaMallocManaged, Access Counters migration can be opt-in by using
cudaMemAdviseSetAccessedBy hint with the corresponding device id. The driver may also
use Access Counters for more efficient thrashing mitigation or memory oversubscription
scenarios.

Note: Access Counters are currently enabled only on IBM Power9 systems and only for the
cudaMallocManaged allocator.

N.2.  Programming Model

N.2.1.  Managed Memory Opt In
Most platforms require a program to opt in to automatic data management by either
annotating a __device__ variable with the __managed__ keyword (see the Language
Integration section) or by using a new cudaMallocManaged() call to allocate data.

Devices of compute capability lower than 6.x must always allocate managed memory on
the heap, either with an allocator or by declaring global storage. It is not possible either to
associate previously allocated memory with Unified Memory, or to have the Unified Memory
system manage a CPU or a GPU stack pointer.

Starting with CUDA 8.0 and on supporting systems with devices of compute capability 6.x,
memory allocated with the default OS allocator (e.g. malloc or new) can be accessed from
both GPU code and CPU code using the same pointer. On these systems, Unified Memory is
the default: there is no need to use a special allocator or the creation of a specially managed
memory pool.

N.2.1.1.  Explicit Allocation Using cudaMallocManaged()
Unified memory is most commonly created using an allocation function that is semantically
and syntactically similar to the standard CUDA allocator, cudaMalloc(). The function
description is as follows:

    cudaError_t cudaMallocManaged(void **devPtr,
                                  size_t size,
                                  unsigned int flags=0);

The cudaMallocManaged() function reserves size bytes of managed memory and returns
a pointer in devPtr. Note the difference in cudaMallocManaged() behavior between various
GPU architectures. By default, the devices of compute capability lower than 6.x allocate
managed memory directly on the GPU. However, the devices of compute capability 6.x and
greater do not allocate physical memory when calling cudaMallocManaged(): in this case
physical memory is populated on first touch and may be resident on the CPU or the GPU.
The managed pointer is valid on all GPUs and the CPU in the system, although program
accesses to this pointer must obey the concurrency rules of the Unified Memory programming
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model (see Coherency and Concurrency). Below is a simple example, showing the use of
cudaMallocManaged():

__global__ void printme(char *str) {
    printf(str);
}
int main() {
    // Allocate 100 bytes of memory, accessible to both Host and Device code
    char *s;
    cudaMallocManaged(&s, 100);
    // Note direct Host-code use of "s"
    strncpy(s, "Hello Unified Memory\n", 99);
    // Here we pass "s" to a kernel without explicitly copying
    printme<<< 1, 1 >>>(s);
    cudaDeviceSynchronize();
    // Free as for normal CUDA allocations
    cudaFree(s); 
    return  0;
}

A program’s behavior is functionally unchanged when cudaMalloc() is replaced with
cudaMallocManaged(); however, the program should go on to eliminate explicit memory
copies and take advantage of automatic migration. Additionally, dual pointers (one to host and
one to device memory) can be eliminated.

Device code is not able to call cudaMallocManaged(). All managed memory must be
allocated from the host or at global scope (see the next section). Allocations on the device
heap using malloc() in a kernel will not be created in the managed memory space, and so
will not be accessible to CPU code.

N.2.1.2.  Global-Scope Managed Variables Using
__managed__

File-scope and global-scope CUDA __device__ variables may also opt-in to Unified Memory
management by adding a new __managed__ annotation to the declaration. These may then be
referenced directly from either host or device code, as follows:

__device__ __managed__ int x[2];
__device__ __managed__ int y;
__global__ void kernel() {
    x[1] = x[0] + y;
}
int main() {
    x[0] = 3;
    y = 5;
    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();
    printf("result = %d\n", x[1]); 
    return  0;
}

All semantics of the original __device__ memory space, along with some additional unified-
memory-specific constraints, are inherited by the managed variable (see Compilation with
NVCC).

Note that variables marked __constant__ may not also be marked as __managed__; this
annotation is reserved for __device__ variables only. Constant memory must be set either
statically at compile time or by using cudaMemcpyToSymbol() as usual in CUDA.
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N.2.2.  Coherency and Concurrency
Simultaneous access to managed memory on devices of compute capability lower than 6.x
is not possible, because coherence could not be guaranteed if the CPU accessed a Unified
Memory allocation while a GPU kernel was active. However, devices of compute capability
6.x on supporting operating systems allow the CPUs and GPUs to access Unified Memory
allocations simultaneously via the new page faulting mechanism. A program can query
whether a device supports concurrent access to managed memory by checking a new
concurrentManagedAccess property. Note, as with any parallel application, developers need
to ensure correct synchronization to avoid data hazards between processors.

N.2.2.1.  GPU Exclusive Access To Managed Memory
To ensure coherency on pre-6.x GPU architectures, the Unified Memory programming model
puts constraints on data accesses while both the CPU and GPU are executing concurrently.
In effect, the GPU has exclusive access to all managed data while any kernel operation is
executing, regardless of whether the specific kernel is actively using the data. When managed
data is used with cudaMemcpy*() or cudaMemset*(), the system may choose to access the
source or destination from the host or the device, which will put constraints on concurrent
CPU access to that data while the cudaMemcpy*() or cudaMemset*() is executing. See
Memcpy()/Memset() Behavior With Managed Memory for further details.

It is not permitted for the CPU to access any managed allocations or variables while the GPU
is active for devices with concurrentManagedAccess property set to 0. On these systems
concurrent CPU/GPU accesses, even to different managed memory allocations, will cause a
segmentation fault because the page is considered inaccessible to the CPU.

__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}
int main() {
    kernel<<< 1, 1 >>>();
    y = 20;            // Error on GPUs not supporting concurrent access
                       
    cudaDeviceSynchronize();
    return  0;
}

In example above, the GPU program kernel is still active when the CPU touches y. (Note
how it occurs before cudaDeviceSynchronize().) The code runs successfully on devices
of compute capability 6.x due to the GPU page faulting capability which lifts all restrictions
on simultaneous access. However, such memory access is invalid on pre-6.x architectures
even though the CPU is accessing different data than the GPU. The program must explicitly
synchronize with the GPU before accessing y:

__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}
int main() {
    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();
    y = 20;            //  Success on GPUs not supporing concurrent access
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    return  0;
}

As this example shows, on systems with pre-6.x GPU architectures, a CPU thread may
not access any managed data in between performing a kernel launch and a subsequent
synchronization call, regardless of whether the GPU kernel actually touches that same data
(or any managed data at all). The mere potential for concurrent CPU and GPU access is
sufficient for a process-level exception to be raised.

Note that if memory is dynamically allocated with cudaMallocManaged() or
cuMemAllocManaged() while the GPU is active, the behavior of the memory is unspecified
until additional work is launched or the GPU is synchronized. Attempting to access the
memory on the CPU during this time may or may not cause a segmentation fault. This does
not apply to memory allocated using the flag cudaMemAttachHost or CU_MEM_ATTACH_HOST.

N.2.2.2.  Explicit Synchronization and Logical GPU Activity
Note that explicit synchronization is required even if kernel runs quickly and finishes before
the CPU touches y in the above example. Unified Memory uses logical activity to determine
whether the GPU is idle. This aligns with the CUDA programming model, which specifies that
a kernel can run at any time following a launch and is not guaranteed to have finished until the
host issues a synchronization call.

Any function call that logically guarantees the GPU completes its work is valid. This includes
cudaDeviceSynchronize(); cudaStreamSynchronize() and cudaStreamQuery() (provided
it returns cudaSuccess and not cudaErrorNotReady) where the specified stream is the
only stream still executing on the GPU; cudaEventSynchronize() and cudaEventQuery()
in cases where the specified event is not followed by any device work; as well as uses of
cudaMemcpy() and cudaMemset() that are documented as being fully synchronous with
respect to the host.

Dependencies created between streams will be followed to infer completion of other
streams by synchronizing on a stream or event. Dependencies can be created via
cudaStreamWaitEvent() or implicitly when using the default (NULL) stream.

It is legal for the CPU to access managed data from within a stream callback, provided no
other stream that could potentially be accessing managed data is active on the GPU. In
addition, a callback that is not followed by any device work can be used for synchronization: for
example, by signaling a condition variable from inside the callback; otherwise, CPU access is
valid only for the duration of the callback(s).

There are several important points of note:

‣ It is always permitted for the CPU to access non-managed zero-copy data while the GPU is
active.

‣ The GPU is considered active when it is running any kernel, even if that kernel does not
make use of managed data. If a kernel might use data, then access is forbidden, unless
device property concurrentManagedAccess is 1.

‣ There are no constraints on concurrent inter-GPU access of managed memory, other than
those that apply to multi-GPU access of non-managed memory.

‣ There are no constraints on concurrent GPU kernels accessing managed data.
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Note how the last point allows for races between GPU kernels, as is currently the case for
non-managed GPU memory. As mentioned previously, managed memory functions identically
to non-managed memory from the perspective of the GPU. The following code example
illustrates these points:

int main() {
    cudaStream_t stream1, stream2;
    cudaStreamCreate(&stream1);
    cudaStreamCreate(&stream2);
    int *non_managed, *managed, *also_managed;
    cudaMallocHost(&non_managed, 4);    // Non-managed, CPU-accessible memory
    cudaMallocManaged(&managed, 4);
    cudaMallocManaged(&also_managed, 4);
    // Point 1: CPU can access non-managed data.
    kernel<<< 1, 1, 0, stream1 >>>(managed);
    *non_managed = 1;
    // Point 2: CPU cannot access any managed data while GPU is busy,
    //          unless concurrentManagedAccess = 1
    // Note we have not yet synchronized, so "kernel" is still active.
    *also_managed = 2;      // Will issue segmentation fault
    // Point 3: Concurrent GPU kernels can access the same data.
    kernel<<< 1, 1, 0, stream2 >>>(managed);
    // Point 4: Multi-GPU concurrent access is also permitted.
    cudaSetDevice(1);
    kernel<<< 1, 1 >>>(managed);
    return  0;
}

N.2.2.3.  Managing Data Visibility and Concurrent CPU +
GPU Access with Streams

Until now it was assumed that for SM architectures before 6.x: 1) any active kernel may use
any managed memory, and 2) it was invalid to use managed memory from the CPU while
a kernel is active. Here we present a system for finer-grained control of managed memory
designed to work on all devices supporting managed memory, including older architectures
with concurrentManagedAccess equal to 0.

The CUDA programming model provides streams as a mechanism for programs to indicate
dependence and independence among kernel launches. Kernels launched into the same
stream are guaranteed to execute consecutively, while kernels launched into different
streams are permitted to execute concurrently. Streams describe independence between
work items and hence allow potentially greater efficiency through concurrency.

Unified Memory builds upon the stream-independence model by allowing a CUDA program
to explicitly associate managed allocations with a CUDA stream. In this way, the programmer
indicates the use of data by kernels based on whether they are launched into a specified
stream or not. This enables opportunities for concurrency based on program-specific data
access patterns. The function to control this behaviour is:

    cudaError_t cudaStreamAttachMemAsync(cudaStream_t stream,
                                         void *ptr,
                                         size_t length=0,
                                         unsigned int flags=0);

The cudaStreamAttachMemAsync() function associates length bytes of memory starting
from ptr with the specified stream. (Currently, length must always be 0 to indicate that the
entire region should be attached.) Because of this association, the Unified Memory system
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allows CPU access to this memory region so long as all operations in stream have completed,
regardless of whether other streams are active. In effect, this constrains exclusive ownership
of the managed memory region by an active GPU to per-stream activity instead of whole-GPU
activity.

Most importantly, if an allocation is not associated with a specific stream, it is visible
to all running kernels regardless of their stream. This is the default visibility for a
cudaMallocManaged() allocation or a __managed__ variable; hence, the simple-case rule
that the CPU may not touch the data while any kernel is running.

By associating an allocation with a specific stream, the program makes a guarantee that only
kernels launched into that stream will touch that data. No error checking is performed by
the Unified Memory system: it is the programmer’s responsibility to ensure that guarantee is
honored.

In addition to allowing greater concurrency, the use of cudaStreamAttachMemAsync() can
(and typically does) enable data transfer optimizations within the Unified Memory system that
may affect latencies and other overhead.

N.2.2.4.  Stream Association Examples
Associating data with a stream allows fine-grained control over CPU + GPU concurrency, but
what data is visible to which streams must be kept in mind when using devices of compute
capability lower than 6.x. Looking at the earlier synchronization example:

__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}
int main() {
    cudaStream_t stream1;
    cudaStreamCreate(&stream1);
    cudaStreamAttachMemAsync(stream1, &y, 0, cudaMemAttachHost);
    cudaDeviceSynchronize();          // Wait for Host attachment to occur.
    kernel<<< 1, 1, 0, stream1 >>>(); // Note: Launches into stream1.
    y = 20;                           // Success – a kernel is running but “y” 
                                      // has been associated with no stream.
    return  0;
}

Here we explicitly associate y with host accessibility, thus enabling access at all times from
the CPU. (As before, note the absence of cudaDeviceSynchronize() before the access.)
Accesses to y by the GPU running kernel will now produce undefined results.

Note that associating a variable with a stream does not change the associating of any other
variable. E.g. associating x with stream1 does not ensure that only x is accessed by kernels
launched in stream1, thus an error is caused by this code:

__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}
int main() {
    cudaStream_t stream1;
    cudaStreamCreate(&stream1);
    cudaStreamAttachMemAsync(stream1, &x);// Associate “x” with stream1.
    cudaDeviceSynchronize();              // Wait for “x” attachment to occur.
    kernel<<< 1, 1, 0, stream1 >>>();     // Note: Launches into stream1.
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    y = 20;                               // ERROR: “y” is still associated
 globally 
                                          // with all streams by default
    return  0;
}

Note how the access to y will cause an error because, even though x has been associated
with a stream, we have told the system nothing about who can see y. The system therefore
conservatively assumes that kernel might access it and prevents the CPU from doing so.

N.2.2.5.  Stream Attach With Multithreaded Host Programs
The primary use for cudaStreamAttachMemAsync() is to enable independent task parallelism
using CPU threads. Typically in such a program, a CPU thread creates its own stream for
all work that it generates because using CUDA’s NULL stream would cause dependencies
between threads.

The default global visibility of managed data to any GPU stream can make it difficult
to avoid interactions between CPU threads in a multi-threaded program. Function
cudaStreamAttachMemAsync() is therefore used to associate a thread’s managed allocations
with that thread’s own stream, and the association is typically not changed for the life of the
thread.

Such a program would simply add a single call to cudaStreamAttachMemAsync() to use
unified memory for its data accesses:

// This function performs some task, in its own private stream.
void run_task(int *in, int *out, int length) {
    // Create a stream for us to use.
    cudaStream_t stream;
    cudaStreamCreate(&stream);
    // Allocate some managed data and associate with our stream.
    // Note the use of the host-attach flag to cudaMallocManaged();
    // we then associate the allocation with our stream so that
    // our GPU kernel launches can access it.
    int *data;
    cudaMallocManaged((void **)&data, length, cudaMemAttachHost);
    cudaStreamAttachMemAsync(stream, data);
    cudaStreamSynchronize(stream);
    // Iterate on the data in some way, using both Host & Device.
    for(int i=0; i<N; i++) {
        transform<<< 100, 256, 0, stream >>>(in, data, length);
        cudaStreamSynchronize(stream);
        host_process(data, length);    // CPU uses managed data.
        convert<<< 100, 256, 0, stream >>>(out, data, length);
    }
    cudaStreamSynchronize(stream);
    cudaStreamDestroy(stream);
    cudaFree(data);
}

In this example, the allocation-stream association is established just once, and then data is
used repeatedly by both the host and device. The result is much simpler code than occurs with
explicitly copying data between host and device, although the result is the same.
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N.2.2.6.  Advanced Topic: Modular Programs and Data
Access Constraints

In the previous example cudaMallocManaged() specifies the cudaMemAttachHost flag, which
creates an allocation that is initially invisible to device-side execution. (The default allocation
would be visible to all GPU kernels on all streams.) This ensures that there is no accidental
interaction with another thread’s execution in the interval between the data allocation and
when the data is acquired for a specific stream.

Without this flag, a new allocation would be considered in-use on the GPU if a kernel launched
by another thread happens to be running. This might impact the thread’s ability to access the
newly allocated data from the CPU (for example, within a base-class constructor) before it is
able to explicitly attach it to a private stream. To enable safe independence between threads,
therefore, allocations should be made specifying this flag.

Note: An alternative would be to place a process-wide barrier across all threads after the
allocation has been attached to the stream. This would ensure that all threads complete their
data/stream associations before any kernels are launched, avoiding the hazard. A second
barrier would be needed before the stream is destroyed because stream destruction causes
allocations to revert to their default visibility. The cudaMemAttachHost flag exists both to
simplify this process, and because it is not always possible to insert global barriers where
required.

N.2.2.7.  Memcpy()/Memset() Behavior With Managed
Memory

Since managed memory can be accessed from either the host or the device, cudaMemcpy*()
relies on the type of transfer, specified using cudaMemcpyKind, to determine whether the data
should be accessed as a host pointer or a device pointer.

If cudaMemcpyHostTo* is specified and the source data is managed, then it will accessed from
the host if it is coherently accessible from the host in the copy stream (1); otherwise it will be
accessed from the device. Similar rules apply to the destination when cudaMemcpy*ToHost is
specified and the destination is managed memory.

If cudaMemcpyDeviceTo* is specified and the source data is managed, then it will be accessed
from the device. The source must be coherently accessible from the device in the copy
stream (2); otherwise, an error is returned. Similar rules apply to the destination when
cudaMemcpy*ToDevice is specified and the destination is managed memory.

If cudaMemcpyDefault is specified, then managed data will be accessed from the host either
if it cannot be coherently accessed from the device in the copy stream (2) or if the preferred
location for the data is cudaCpuDeviceId and it can be coherently accessed from the host in
the copy stream (1); otherwise, it will be accessed from the device.

When using cudaMemset*() with managed memory, the data is always accessed from the
device. The data must be coherently accessible from the device in the stream being used for
the cudaMemset() operation (2); otherwise, an error is returned.
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When data is accessed from the device either by cudaMemcpy* or cudaMemset*, the stream of
operation is considered to be active on the GPU. During this time, any CPU access of data that
is associated with that stream or data that has global visibility, will result in a segmentation
fault if the GPU has a zero value for the device attribute concurrentManagedAccess. The
program must synchronize appropriately to ensure the operation has completed before
accessing any associated data from the CPU.

(1) For managed memory to be coherently accessible from the host in a given stream, at least
one of the following conditions must be satisfied:

‣ The given stream is associated with a device that has a non-zero value for the device
attribute concurrentManagedAccess.

‣ The memory neither has global visibility nor is it associated with the given stream.

(2) For managed memory to be coherently accessible from the device in a given stream, at
least one of the following conditions must be satisfied:

‣ The device has a non-zero value for the device attribute concurrentManagedAccess.

‣ The memory either has global visibility or is associated with the given stream.

N.2.3.  Language Integration
Users of the CUDA Runtime API who compile their host code using nvcc have access to
additional language integration features, such as shared symbol names and inline kernel
launch via the <<<...>>> operator. Unified Memory adds one additional element to CUDA’s
language integration: variables annotated with the __managed__ keyword can be referenced
directly from both host and device code.

The following example, seen earlier in Simplifying GPU Programming, illustrates a simple use
of __managed__ global declarations:

// Managed variable declaration is an extra annotation with __device__
__device__ __managed__  int  x;
__global__  void  kernel() {
    // Reference "x" directly - it's a normal variable on the GPU.
    printf( "GPU sees: x = %d\n" , x);
} 
int  main() {
    // Set "x" from Host code. Note it's just a normal variable on the CPU.
    x = 1234;
 
    // Launch a kernel which uses "x" from the GPU.
    kernel<<< 1, 1 >>>(); 
    cudaDeviceSynchronize(); 
    return  0;
}

The capability available with __managed__ variables is that the symbol is available in both
device code and in host code without the need to dereference a pointer, and the data is shared
by all. This makes it particularly easy to exchange data between host and device programs
without the need for explicit allocations or copying.

Semantically, the behavior of __managed__ variables is identical to that of storage allocated
via cudaMallocManaged(). See Explicit Allocation Using cudaMallocManaged() for detailed
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explanation. Stream visibility defaults to cudaMemAttachGlobal, but may be constrained
using cudaStreamAttachMemAsync().

A valid CUDA context is necessary for the correct operation of __managed__ variables.
Accessing __managed__ variables can trigger CUDA context creation if a context for the
current device hasn’t already been created. In the example above, accessing x before the
kernel launch triggers context creation on device 0. In the absence of that access, the kernel
launch would have triggered context creation.

C++ objects declared as __managed__ are subject to certain specific constraints, particularly
where static initializers are concerned. Please refer to C++ Language Support in the CUDA C++
Programming Guide for a list of these constraints.

N.2.3.1.  Host Program Errors with __managed__ Variables
The use of __managed__ variables depends upon the underlying Unified Memory system
functioning correctly. Incorrect functioning can occur if, for example, the CUDA installation
failed or if the CUDA context creation was unsuccessful.

When CUDA-specific operations fail, typically an error is returned that indicates the source of
the failure. Using __managed__ variables introduces a new failure mode whereby a non-CUDA
operation (for example, CPU access to what should be a valid host memory address) can fail if
the Unified Memory system is not operating correctly. Such invalid memory accesses cannot
easily be attributed to the underlying CUDA subsystem, although a debugger such as cuda-
gdb will indicate that a managed memory address is the source of the failure.

N.2.4.  Querying Unified Memory Support

N.2.4.1.  Device Properties
Unified Memory is supported only on devices with compute capability 3.0 or higher.
A program may query whether a GPU device supports managed memory by using
cudaGetDeviceProperties() and checking the new managedMemory property.
The capability can also be determined using the individual attribute query function
cudaDeviceGetAttribute() with the attribute cudaDevAttrManagedMemory.

Either property will be set to 1 if managed memory allocations are permitted on the GPU and
under the current operating system. Note that Unified Memory is not supported for 32-bit
applications (unless on Android), even if a GPU is of sufficient capability.

Devices of compute capability 6.x on supporting platforms can access pageable memory
without calling cudaHostRegister on it. An application can query whether the device supports
coherently accessing pageable memory by checking the new pageableMemoryAccess
property.

With the new page fault mechanism, global data coherency is guaranteed with Unified
Memory. This means that the CPUs and GPUs can access Unified Memory allocations
simultaneously. This was illegal on devices of compute capability lower than 6.x, because
coherence could not be guaranteed if the CPU accessed a Unified Memory allocation while
a GPU kernel was active. A program can query concurrent access support by checking
concurrentManagedAccess property. See Coherency and Concurrency for details.
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N.2.4.2.  Pointer Attributes
To determine if a given pointer refers to managed memory, a program can call
cudaPointerGetAttributes() and check the value of the isManaged attribute. This attribute
is set to 1 if the pointer refers to managed memory and to 0 if not.

N.2.5.  Advanced Topics

N.2.5.1.  Managed Memory with Multi-GPU Programs on
pre-6.x Architectures

On systems with devices of compute capabilities lower than 6.x managed allocations are
automatically visible to all GPUs in a system via the peer-to-peer capabilities of the GPUs.

On Linux the managed memory is allocated in GPU memory as long as all GPUs that are
actively being used by a program have the peer-to-peer support. If at any time the application
starts using a GPU that doesn’t have peer-to-peer support with any of the other GPUs that
have managed allocations on them, then the driver will migrate all managed allocations to
system memory.

On Windows if peer mappings are not available (for example, between GPUs of different
architectures), then the system will automatically fall back to using zero-copy memory,
regardless of whether both GPUs are actually used by a program. If only one GPU is actually
going to be used, it is necessary to set the CUDA_VISIBLE_DEVICES environment variable
before launching the program. This constrains which GPUs are visible and allows managed
memory to be allocated in GPU memory.

Alternatively, on Windows users can also set CUDA_MANAGED_FORCE_DEVICE_ALLOC to
a non-zero value to force the driver to always use device memory for physical storage.
When this environment variable is set to a non-zero value, all devices used in that process
that support managed memory have to be peer-to-peer compatible with each other. The
error ::cudaErrorInvalidDevice will be returned if a device that supports managed memory is
used and it is not peer-to-peer compatible with any of the other managed memory supporting
devices that were previously used in that process, even if ::cudaDeviceReset has been called
on those devices. These environment variables are described in Appendix CUDA Environment
Variables. Note that starting from CUDA 8.0 CUDA_MANAGED_FORCE_DEVICE_ALLOC has no
effect on Linux operating systems.

N.2.5.2.  Using fork() with Managed Memory
The Unified Memory system does not allow sharing of managed memory pointers between
processes. It will not correctly manage memory handles that have been duplicated via a
fork() operation. Results will be undefined if either the child or parent accesses managed
data following a fork().

It is safe, however, to fork() a child process that then immediately exits via an exec() call,
because the child drops the memory handles and the parent becomes the sole owner once
again. It is not safe for the parent to exit and leave the child to access the handles.
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N.3.  Performance Tuning
In order to achieve good performance with Unified Memory, the following objectives must be
met:

‣ Faults should be avoided: While replayable faults are fundamental to enabling a simpler
programming model, they can be severely detrimental to application performance. Fault
handling can take tens of microseconds because it may involve TLB invalidates, data
migrations and page table updates. All the while, execution in certain portions of the
application will be halted, thereby potentially impacting overall performance.

‣ Data should be local to the accessing processor: As mentioned before, memory access
latencies and bandwidth are significantly better when the data is placed local to the
processor accessing it. Therefore, data should be suitably migrated to take advantage of
lower latencies and higher bandwidth.

‣ Memory thrashing should be prevented: If data is frequently accessed by multiple
processors and has to be constantly migrated around to achieve data locality, then the
overhead of migration may exceed the benefits of locality. Memory thrashing should
be prevented to the extent possible. If it cannot be prevented, it must be detected and
resolved appropriately.

To achieve the same level of performance as what's possible without using Unified Memory,
the application has to guide the Unified Memory driver subsystem into avoiding the
aforementioned pitfalls. It is worthy to note that the Unified Memory driver subsystem can
detect common data access patterns and achieve some of these objectives automatically
without application participation. But when the data access patterns are non-obvious, explicit
guidance from the application is crucial. CUDA 8.0 introduces useful APIs for providing
the runtime with memory usage hints (cudaMemAdvise()) and for explicit prefetching
(cudaMemPrefetchAsync()). These tools allow the same capabilities as explicit memory copy
and pinning APIs without reverting to the limitations of explicit GPU memory allocation.

Note: cudaMemPrefetchAsync() is not supported on Tegra devices.

N.3.1.  Data Prefetching
Data prefetching means migrating data to a processor’s memory and mapping it in that
processor’s page tables before the processor begins accessing that data. The intent of data
prefetching is to avoid faults while also establishing data locality. This is most valuable for
applications that access data primarily from a single processor at any given time. As the
accessing processor changes during the lifetime of the application, the data can be prefetched
accordingly to follow the execution flow of the application. Since work is launched in streams
in CUDA, it is expected of data prefetching to also be a streamed operation as shown in the
following API:

    cudaError_t cudaMemPrefetchAsync(const void *devPtr, 
                                     size_t count, 
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                                     int dstDevice, 
                                     cudaStream_t stream);

where the memory region specified by devPtr pointer and count number of bytes, with ptr
rounded down to the nearest page boundary and count rounded up to the nearest page
boundary, is migrated to the dstDevice by enqueueing a migration operation in stream.
Passing in cudaCpuDeviceId for dstDevice will cause data to be migrated to CPU memory.

Consider a simple code example below:

void foo(cudaStream_t s) {
  char *data;
  cudaMallocManaged(&data, N);
  init_data(data, N);                                   // execute on CPU
  cudaMemPrefetchAsync(data, N, myGpuId, s);            // prefetch to GPU
  mykernel<<<..., s>>>(data, N, 1, compare);            // execute on GPU
  cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s);    // prefetch to CPU
  cudaStreamSynchronize(s);
  use_data(data, N);
  cudaFree(data);
}

Without performance hints the kernel mykernel will fault on first access to data which
creates additional overhead of the fault processing and generally slows down the application.
By prefetching data in advance it is possible to avoid page faults and achieve better
performance.

This API follows stream ordering semantics, i.e. the migration does not begin until all prior
operations in the stream have completed, and any subsequent operation in the stream does
not begin until the migration has completed.

N.3.2.  Data Usage Hints
Data prefetching alone is insufficient when multiple processors need to simultaneously access
the same data. In such scenarios, it's useful for the application to provide hints on how the
data will actually be used. The following advisory API can be used to specify data usage:

    cudaError_t cudaMemAdvise(const void *devPtr, 
                              size_t count, 
                              enum cudaMemoryAdvise advice, 
                              int device);

where advice, specified for data contained in region starting from devPtr address and with
the length of count bytes, rounded to the nearest page boundary, can take the following
values:

‣ cudaMemAdviseSetReadMostly: This implies that the data is mostly going to be read
from and only occasionally written to. This allows the driver to create read-only copies
of the data in a processor's memory when that processor accesses it. Similarly, if
cudaMemPrefetchAsync is called on this region, it will create a read-only copy of the
data on the destination processor. When a processor writes to this data, all copies of the
corresponding page are invalidated except for the one where the write occurred. The
device argument is ignored for this advice. This advice allows multiple processors to
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simultaneously access the same data at maximal bandwidth as illustrated in the following
code snippet:

char *dataPtr;
size_t dataSize = 4096;
// Allocate memory using malloc or cudaMallocManaged
dataPtr = (char *)malloc(dataSize);
// Set the advice on the memory region
cudaMemAdvise(dataPtr, dataSize, cudaMemAdviseSetReadMostly, 0);
int outerLoopIter = 0;
while (outerLoopIter < maxOuterLoopIter) {
    // The data is written to in the outer loop on the CPU
    initializeData(dataPtr, dataSize);
    // The data is made available to all GPUs by prefetching.
    // Prefetching here causes read duplication of data instead
    // of data migration
    for (int device = 0; device < maxDevices; device++) {
        cudaMemPrefetchAsync(dataPtr, dataSize, device, stream);
    }
    // The kernel only reads this data in the inner loop
    int innerLoopIter = 0;
    while (innerLoopIter < maxInnerLoopIter) {
        kernel<<<32,32>>>((const char *)dataPtr);
        innerLoopIter++;
    }
    outerLoopIter++;
}

‣ cudaMemAdviseSetPreferredLocation: This advice sets the preferred location for the
data to be the memory belonging to device. Passing in a value of cudaCpuDeviceId for
device sets the preferred location as CPU memory. Setting the preferred location does
not cause data to migrate to that location immediately. Instead, it guides the migration
policy when a fault occurs on that memory region. If the data is already in its preferred
location and the faulting processor can establish a mapping without requiring the data to
be migrated, then the migration will be avoided. On the other hand, if the data is not in its
preferred location or if a direct mapping cannot be established, then it will be migrated to
the processor accessing it. It is important to note that setting the preferred location does
not prevent data prefetching done using cudaMemPrefetchAsync.

‣ cudaMemAdviseSetAccessedBy: This advice implies that the data will be accessed
by device. This does not cause data migration and has no impact on the location
of the data per se. Instead, it causes the data to always be mapped in the specified
processor’s page tables, as long as the location of the data permits a mapping to
be established. If the data gets migrated for any reason, the mappings are updated
accordingly. This advice is useful in scenarios where data locality is not important, but
avoiding faults is. Consider for example a system containing multiple GPUs with peer-
to-peer access enabled, where the data located on one GPU is occasionally accessed by
other GPUs. In such scenarios, migrating data over to the other GPUs is not as important
because the accesses are infrequent and the overhead of migration may be too high. But
preventing faults can still help improve performance, and so having a mapping set up in
advance is useful. Note that on CPU access of this data, the data may be migrated to CPU
memory because the CPU cannot access GPU memory directly. Any GPU that had the
cudaMemAdviceSetAccessedBy flag set for this data will now have its mapping updated to
point to the page in CPU memory.
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Each advice can be also unset by using one of the following values:
cudaMemAdviseUnsetReadMostly, cudaMemAdviseUnsetPreferredLocation and
cudaMemAdviseUnsetAccessedBy.

N.3.3.  Querying Usage Attributes
A program can query memory range attributes assigned through cudaMemAdvise or
cudaMemPrefetchAsync by using the following API:

    cudaMemRangeGetAttribute(void *data, 
                             size_t dataSize, 
                             enum cudaMemRangeAttribute attribute, 
                             const void *devPtr, 
                             size_t count);

This function queries an attribute of the memory range starting at devPtr with a size of count
bytes. The memory range must refer to managed memory allocated via cudaMallocManaged
or declared via __managed__ variables. It is possible to query the following attributes:

‣ cudaMemRangeAttributeReadMostly: the result returned will be 1 if all pages in the
given memory range have read-duplication enabled, or 0 otherwise.

‣ cudaMemRangeAttributePreferredLocation: the result returned will be a GPU device id
or cudaCpuDeviceId if all pages in the memory range have the corresponding processor
as their preferred location, otherwise cudaInvalidDeviceId will be returned. An
application can use this query API to make decision about staging data through CPU or
GPU depending on the preferred location attribute of the managed pointer. Note that the
actual location of the pages in the memory range at the time of the query may be different
from the preferred location.

‣ cudaMemRangeAttributeAccessedBy: will return the list of devices that have that advise
set for that memory range.

‣ cudaMemRangeAttributeLastPrefetchLocation: will return the last location to which
all pages in the memory range were prefetched explicitly using cudaMemPrefetchAsync.
Note that this simply returns the last location that the application requested to prefetch
the memory range to. It gives no indication as to whether the prefetch operation to that
location has completed or even begun.

Additionally, multiple attributes can be queried by using corresponding
cudaMemRangeGetAttributes function.



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	1.1. The Benefits of Using GPUs
	1.2. CUDA®: A General-Purpose Parallel Computing Platform and Programming Model
	1.3. A Scalable Programming Model
	1.4. Document Structure

	Programming Model
	2.1. Kernels
	2.2. Thread Hierarchy
	2.3. Memory Hierarchy
	2.4. Heterogeneous Programming
	2.5. Asynchronous SIMT Programming Model
	2.5.1. Asynchronous Operations

	2.6. Compute Capability

	Programming Interface
	3.1. Compilation with NVCC
	3.1.1. Compilation Workflow
	3.1.1.1. Offline Compilation
	3.1.1.2. Just-in-Time Compilation

	3.1.2. Binary Compatibility
	3.1.3. PTX Compatibility
	3.1.4. Application Compatibility
	3.1.5. C++ Compatibility
	3.1.6. 64-Bit Compatibility

	3.2. CUDA Runtime
	3.2.1. Initialization
	3.2.2. Device Memory
	3.2.3. Device Memory L2 Access Management
	3.2.3.1. L2 cache Set-Aside for Persisting Accesses
	3.2.3.2. L2 Policy for Persisting Accesses
	3.2.3.3. L2 Access Properties
	3.2.3.4. L2 Persistence Example
	3.2.3.5. Reset L2 Access to Normal
	3.2.3.6. Manage Utilization of L2 set-aside cache
	3.2.3.7. Query L2 cache Properties
	3.2.3.8. Control L2 Cache Set-Aside Size for Persisting Memory Access

	3.2.4. Shared Memory
	3.2.5. Page-Locked Host Memory
	3.2.5.1. Portable Memory
	3.2.5.2. Write-Combining Memory
	3.2.5.3. Mapped Memory

	3.2.6. Asynchronous Concurrent Execution
	3.2.6.1. Concurrent Execution between Host and Device
	3.2.6.2. Concurrent Kernel Execution
	3.2.6.3. Overlap of Data Transfer and Kernel Execution
	3.2.6.4. Concurrent Data Transfers
	3.2.6.5. Streams
	3.2.6.5.1. Creation and Destruction
	3.2.6.5.2. Default Stream
	3.2.6.5.3. Explicit Synchronization
	3.2.6.5.4. Implicit Synchronization
	3.2.6.5.5. Overlapping Behavior
	3.2.6.5.6. Host Functions (Callbacks)
	3.2.6.5.7. Stream Priorities

	3.2.6.6. CUDA Graphs
	3.2.6.6.1. Graph Structure
	3.2.6.6.1.1. Node Types

	3.2.6.6.2. Creating a Graph Using Graph APIs
	3.2.6.6.3. Creating a Graph Using Stream Capture
	3.2.6.6.3.1. Cross-stream Dependencies and Events
	3.2.6.6.3.2. Prohibited and Unhandled Operations
	3.2.6.6.3.3. Invalidation

	3.2.6.6.4. Updating Instantiated Graphs
	3.2.6.6.4.1. Graph Update Limitations
	3.2.6.6.4.2. Whole Graph Update
	3.2.6.6.4.3. Individual node update

	3.2.6.6.5. Using Graph APIs

	3.2.6.7. Events
	3.2.6.7.1. Creation and Destruction
	3.2.6.7.2. Elapsed Time

	3.2.6.8. Synchronous Calls

	3.2.7. Multi-Device System
	3.2.7.1. Device Enumeration
	3.2.7.2. Device Selection
	3.2.7.3. Stream and Event Behavior
	3.2.7.4. Peer-to-Peer Memory Access
	3.2.7.4.1. IOMMU on Linux

	3.2.7.5. Peer-to-Peer Memory Copy

	3.2.8. Unified Virtual Address Space
	3.2.9. Interprocess Communication
	3.2.10. Error Checking
	3.2.11. Call Stack
	3.2.12. Texture and Surface Memory
	3.2.12.1. Texture Memory
	3.2.12.1.1. Texture Object API
	3.2.12.1.2. [[DEPRECATED]] Texture Reference API
	3.2.12.1.3. 16-Bit Floating-Point Textures
	3.2.12.1.4. Layered Textures
	3.2.12.1.5. Cubemap Textures
	3.2.12.1.6. Cubemap Layered Textures
	3.2.12.1.7. Texture Gather

	3.2.12.2. Surface Memory
	3.2.12.2.1. Surface Object API
	3.2.12.2.2. [[DEPRECATED]] Surface Reference API
	3.2.12.2.3. Cubemap Surfaces
	3.2.12.2.4. Cubemap Layered Surfaces

	3.2.12.3. CUDA Arrays
	3.2.12.4. Read/Write Coherency

	3.2.13. Graphics Interoperability
	3.2.13.1. OpenGL Interoperability
	3.2.13.2. Direct3D Interoperability
	3.2.13.2.1. Direct3D 9 Version
	3.2.13.2.2. Direct3D 10 Version
	3.2.13.2.3. Direct3D 11 Version

	3.2.13.3. SLI Interoperability

	3.2.14. External Resource Interoperability
	3.2.14.1. Vulkan Interoperability
	3.2.14.1.1. Matching device UUIDs
	3.2.14.1.2. Importing memory objects
	3.2.14.1.3. Mapping buffers onto imported memory objects
	3.2.14.1.4. Mapping mipmapped arrays onto imported memory objects
	3.2.14.1.5. Importing synchronization objects
	3.2.14.1.6. Signaling/waiting on imported synchronization objects

	3.2.14.2. OpenGL Interoperability
	3.2.14.3. Direct3D 12 Interoperability
	3.2.14.3.1. Matching device LUIDs
	3.2.14.3.2. Importing memory objects
	3.2.14.3.3. Mapping buffers onto imported memory objects
	3.2.14.3.4. Mapping mipmapped arrays onto imported memory objects
	3.2.14.3.5. Importing synchronization objects
	3.2.14.3.6. Signaling/waiting on imported synchronization objects

	3.2.14.4. Direct3D 11 Interoperability
	3.2.14.4.1. Matching device LUIDs
	3.2.14.4.2. Importing memory objects
	3.2.14.4.3. Mapping buffers onto imported memory objects
	3.2.14.4.4. Mapping mipmapped arrays onto imported memory objects
	3.2.14.4.5. Importing synchronization objects
	3.2.14.4.6. Signaling/waiting on imported synchronization objects

	3.2.14.5. NVIDIA Software Communication Interface Interoperability (NVSCI)
	3.2.14.5.1. Importing memory objects
	3.2.14.5.2. Mapping buffers onto imported memory objects
	3.2.14.5.3. Mapping mipmapped arrays onto imported memory objects
	3.2.14.5.4. Importing synchronization objects
	3.2.14.5.5. Signaling/waiting on imported synchronization objects


	3.2.15. CUDA User Objects

	3.3. Versioning and Compatibility
	3.4. Compute Modes
	3.5. Mode Switches
	3.6. Tesla Compute Cluster Mode for Windows

	Hardware Implementation
	4.1. SIMT Architecture
	4.2. Hardware Multithreading

	Performance Guidelines
	5.1. Overall Performance Optimization Strategies
	5.2. Maximize Utilization
	5.2.1. Application Level
	5.2.2. Device Level
	5.2.3. Multiprocessor Level
	5.2.3.1. Occupancy Calculator


	5.3. Maximize Memory Throughput
	5.3.1. Data Transfer between Host and Device
	5.3.2. Device Memory Accesses

	5.4. Maximize Instruction Throughput
	5.4.1. Arithmetic Instructions
	5.4.2. Control Flow Instructions
	5.4.3. Synchronization Instruction

	5.5. Minimize Memory Thrashing

	CUDA-Enabled GPUs
	C++ Language Extensions
	B.1. Function Execution Space Specifiers
	B.1.1. __global__
	B.1.2. __device__
	B.1.3. __host__
	B.1.4. Undefined behavior
	B.1.5. __noinline__ and __forceinline__

	B.2. Variable Memory Space Specifiers
	B.2.1. __device__
	B.2.2. __constant__
	B.2.3. __shared__
	B.2.4. __managed__
	B.2.5. __restrict__

	B.3. Built-in Vector Types
	B.3.1. char, short, int, long, longlong, float, double
	B.3.2. dim3

	B.4. Built-in Variables
	B.4.1. gridDim
	B.4.2. blockIdx
	B.4.3. blockDim
	B.4.4. threadIdx
	B.4.5. warpSize

	B.5. Memory Fence Functions
	B.6. Synchronization Functions
	B.7. Mathematical Functions
	B.8. Texture Functions
	B.8.1. Texture Object API
	B.8.1.1. tex1Dfetch()
	B.8.1.2. tex1D()
	B.8.1.3. tex1DLod()
	B.8.1.4. tex1DGrad()
	B.8.1.5. tex2D()
	B.8.1.6. tex2DLod()
	B.8.1.7. tex2DGrad()
	B.8.1.8. tex3D()
	B.8.1.9. tex3DLod()
	B.8.1.10. tex3DGrad()
	B.8.1.11. tex1DLayered()
	B.8.1.12. tex1DLayeredLod()
	B.8.1.13. tex1DLayeredGrad()
	B.8.1.14. tex2DLayered()
	B.8.1.15. tex2DLayeredLod()
	B.8.1.16. tex2DLayeredGrad()
	B.8.1.17. texCubemap()
	B.8.1.18. texCubemapLod()
	B.8.1.19. texCubemapLayered()
	B.8.1.20. texCubemapLayeredLod()
	B.8.1.21. tex2Dgather()

	B.8.2. Texture Reference API
	B.8.2.1. tex1Dfetch()
	B.8.2.2. tex1D()
	B.8.2.3. tex1DLod()
	B.8.2.4. tex1DGrad()
	B.8.2.5. tex2D()
	B.8.2.6. tex2DLod()
	B.8.2.7. tex2DGrad()
	B.8.2.8. tex3D()
	B.8.2.9. tex3DLod()
	B.8.2.10. tex3DGrad()
	B.8.2.11. tex1DLayered()
	B.8.2.12. tex1DLayeredLod()
	B.8.2.13. tex1DLayeredGrad()
	B.8.2.14. tex2DLayered()
	B.8.2.15. tex2DLayeredLod()
	B.8.2.16. tex2DLayeredGrad()
	B.8.2.17. texCubemap()
	B.8.2.18. texCubemapLod()
	B.8.2.19. texCubemapLayered()
	B.8.2.20. texCubemapLayeredLod()
	B.8.2.21. tex2Dgather()


	B.9. Surface Functions
	B.9.1. Surface Object API
	B.9.1.1. surf1Dread()
	B.9.1.2. surf1Dwrite
	B.9.1.3. surf2Dread()
	B.9.1.4. surf2Dwrite()
	B.9.1.5. surf3Dread()
	B.9.1.6. surf3Dwrite()
	B.9.1.7. surf1DLayeredread()
	B.9.1.8. surf1DLayeredwrite()
	B.9.1.9. surf2DLayeredread()
	B.9.1.10. surf2DLayeredwrite()
	B.9.1.11. surfCubemapread()
	B.9.1.12. surfCubemapwrite()
	B.9.1.13. surfCubemapLayeredread()
	B.9.1.14. surfCubemapLayeredwrite()

	B.9.2. Surface Reference API
	B.9.2.1. surf1Dread()
	B.9.2.2. surf1Dwrite
	B.9.2.3. surf2Dread()
	B.9.2.4. surf2Dwrite()
	B.9.2.5. surf3Dread()
	B.9.2.6. surf3Dwrite()
	B.9.2.7. surf1DLayeredread()
	B.9.2.8. surf1DLayeredwrite()
	B.9.2.9. surf2DLayeredread()
	B.9.2.10. surf2DLayeredwrite()
	B.9.2.11. surfCubemapread()
	B.9.2.12. surfCubemapwrite()
	B.9.2.13. surfCubemapLayeredread()
	B.9.2.14. surfCubemapLayeredwrite()


	B.10. Read-Only Data Cache Load Function
	B.11. Load Functions Using Cache Hints
	B.12. Store Functions Using Cache Hints
	B.13. Time Function
	B.14. Atomic Functions
	B.14.1. Arithmetic Functions
	B.14.1.1. atomicAdd()
	B.14.1.2. atomicSub()
	B.14.1.3. atomicExch()
	B.14.1.4. atomicMin()
	B.14.1.5. atomicMax()
	B.14.1.6. atomicInc()
	B.14.1.7. atomicDec()
	B.14.1.8. atomicCAS()

	B.14.2. Bitwise Functions
	B.14.2.1. atomicAnd()
	B.14.2.2. atomicOr()
	B.14.2.3. atomicXor()


	B.15. Address Space Predicate Functions
	B.15.1. __isGlobal()
	B.15.2. __isShared()
	B.15.3. __isConstant()
	B.15.4. __isLocal()

	B.16. Address Space Conversion Functions
	B.16.1. __cvta_generic_to_global()
	B.16.2. __cvta_generic_to_shared()
	B.16.3. __cvta_generic_to_constant()
	B.16.4. __cvta_generic_to_local()
	B.16.5. __cvta_global_to_generic()
	B.16.6. __cvta_shared_to_generic()
	B.16.7. __cvta_constant_to_generic()
	B.16.8. __cvta_local_to_generic()

	B.17. Alloca Function
	B.17.1. Synopsis
	B.17.2. Description
	B.17.3. Example

	B.18. Compiler Optimization Hint Functions
	B.18.1. __builtin_assume_aligned()
	B.18.2. __builtin_assume()
	B.18.3. __assume()
	B.18.4. __builtin_expect()
	B.18.5. __builtin_unreachable()
	B.18.6. Restrictions

	B.19. Warp Vote Functions
	B.20. Warp Match Functions
	B.20.1. Synopsys
	B.20.2. Description

	B.21. Warp Reduce Functions
	B.21.1. Synopsys
	B.21.2. Description

	B.22. Warp Shuffle Functions
	B.22.1. Synopsis
	B.22.2. Description
	B.22.3. Notes
	B.22.4. Examples
	B.22.4.1. Broadcast of a single value across a warp
	B.22.4.2. Inclusive plus-scan across sub-partitions of 8 threads
	B.22.4.3. Reduction across a warp


	B.23. Nanosleep Function
	B.23.1. Synopsis
	B.23.2. Description
	B.23.3. Example

	B.24. Warp matrix functions
	B.24.1. Description
	B.24.2. Alternate Floating Point
	B.24.3. Double Precision
	B.24.4. Sub-byte Operations
	B.24.5. Restrictions
	B.24.6. Element Types & Matrix Sizes
	B.24.7. Example

	B.25. Asynchronous Barrier
	B.25.1. Simple Synchronization Pattern
	B.25.2. Temporal Splitting and Five Stages of Synchronization
	B.25.3. Bootstrap Initialization, Expected Arrival Count, and Participation
	B.25.4. A Barrier's Phase: Arrival, Countdown, Completion, and Reset
	B.25.5. Spatial Partitioning (also known as Warp Specialization)
	B.25.6. Early Exit (Dropping out of Participation)
	B.25.7. Memory Barrier Primitives Interface
	B.25.7.1. Data Types
	B.25.7.2. Memory Barrier Primitives API


	B.26. Asynchronous Data Copies
	B.26.1. memcpy_async API
	B.26.2. Copy and Compute Pattern - Staging Data Through Shared Memory
	B.26.3. Without memcpy_async
	B.26.4. With memcpy_async
	B.26.5. Asynchronous Data Copies using cuda::barrier
	B.26.6. Performance Guidance for memcpy_async
	B.26.6.1. Alignment
	B.26.6.2. Trivially copyable
	B.26.6.3. Warp Entanglement - Commit
	B.26.6.4. Warp Entanglement - Wait
	B.26.6.5. Warp Entanglement - Arrive-On
	B.26.6.6. Keep Commit and Arrive-On Operations Converged


	B.27. Asynchronous Data Copies using cuda::pipeline
	B.27.1. Single-Stage Asynchronous Data Copies using cuda::pipeline
	B.27.2. Multi-Stage Asynchronous Data Copies using cuda::pipeline
	B.27.3. Pipeline Interface
	B.27.4. Pipeline Primitives Interface
	B.27.4.1. memcpy_async Primitive
	B.27.4.2. Commit Primitive
	B.27.4.3. Wait Primitive
	B.27.4.4. Arrive On Barrier Primitive


	B.28. Profiler Counter Function
	B.29. Assertion
	B.30. Trap function
	B.31. Breakpoint Function
	B.32. Formatted Output
	B.32.1. Format Specifiers
	B.32.2. Limitations
	B.32.3. Associated Host-Side API
	B.32.4. Examples

	B.33. Dynamic Global Memory Allocation and Operations
	B.33.1. Heap Memory Allocation
	B.33.2. Interoperability with Host Memory API
	B.33.3. Examples
	B.33.3.1. Per Thread Allocation
	B.33.3.2. Per Thread Block Allocation
	B.33.3.3. Allocation Persisting Between Kernel Launches


	B.34. Execution Configuration
	B.35. Launch Bounds
	B.36. #pragma unroll
	B.37. SIMD Video Instructions
	B.38. Diagnostic Pragmas

	Cooperative Groups
	C.1. Introduction
	C.2. What's New in CUDA 11.0
	C.3. Programming Model Concept
	C.3.1. Composition Example

	C.4. Group Types
	C.4.1. Implicit Groups
	C.4.1.1. Thread Block Group
	C.4.1.2. Grid Group
	C.4.1.3. Multi Grid Group

	C.4.2. Explicit Groups
	C.4.2.1. Thread Block Tile
	C.4.2.1.1. Warp-Synchronous Code Pattern
	C.4.2.1.2. Single thread group
	C.4.2.1.3. Thread Block Tile of size larger than 32

	C.4.2.2. Coalesced Groups
	C.4.2.2.1. Discovery Pattern



	C.5. Group Partitioning
	C.5.1. tiled_partition
	C.5.2. labeled_partition
	C.5.3. binary_partition

	C.6. Group Collectives
	C.6.1. Synchronization
	C.6.1.1. sync

	C.6.2. Data Transfer
	C.6.2.1. memcpy_async
	C.6.2.2. wait

	C.6.3. Data manipulation
	C.6.3.1. reduce
	C.6.3.2. Reduce Operators
	C.6.3.3. inclusive_scan and exclusive_scan


	C.7. Grid Synchronization
	C.8. Multi-Device Synchronization

	CUDA Dynamic Parallelism
	D.1. Introduction
	D.1.1. Overview
	D.1.2. Glossary

	D.2. Execution Environment and Memory Model
	D.2.1. Execution Environment
	D.2.1.1. Parent and Child Grids
	D.2.1.2. Scope of CUDA Primitives
	D.2.1.3. Synchronization
	D.2.1.4. Streams and Events
	D.2.1.5. Ordering and Concurrency
	D.2.1.6. Device Management

	D.2.2. Memory Model
	D.2.2.1. Coherence and Consistency
	D.2.2.1.1. Global Memory
	D.2.2.1.2. Zero Copy Memory
	D.2.2.1.3. Constant Memory
	D.2.2.1.4. Shared and Local Memory
	D.2.2.1.5. Local Memory
	D.2.2.1.6. Texture Memory



	D.3. Programming Interface
	D.3.1. CUDA C++ Reference
	D.3.1.1. Device-Side Kernel Launch
	D.3.1.1.1. Launches are Asynchronous
	D.3.1.1.2. Launch Environment Configuration

	D.3.1.2. Streams
	D.3.1.2.1. The Implicit (NULL) Stream

	D.3.1.3. Events
	D.3.1.4. Synchronization
	D.3.1.4.1. Block Wide Synchronization

	D.3.1.5. Device Management
	D.3.1.6. Memory Declarations
	D.3.1.6.1. Device and Constant Memory
	D.3.1.6.2. Textures & Surfaces
	D.3.1.6.3. Shared Memory Variable Declarations
	D.3.1.6.4. Symbol Addresses

	D.3.1.7. API Errors and Launch Failures
	D.3.1.7.1. Launch Setup APIs

	D.3.1.8. API Reference

	D.3.2. Device-side Launch from PTX
	D.3.2.1. Kernel Launch APIs
	D.3.2.1.1. cudaLaunchDevice
	D.3.2.1.2. cudaGetParameterBuffer

	D.3.2.2. Parameter Buffer Layout

	D.3.3. Toolkit Support for Dynamic Parallelism
	D.3.3.1. Including Device Runtime API in CUDA Code
	D.3.3.2. Compiling and Linking


	D.4. Programming Guidelines
	D.4.1. Basics
	D.4.2. Performance
	D.4.2.1. Synchronization
	D.4.2.2. Dynamic-parallelism-enabled Kernel Overhead

	D.4.3. Implementation Restrictions and Limitations
	D.4.3.1. Runtime
	D.4.3.1.1. Memory Footprint
	D.4.3.1.2. Nesting and Synchronization Depth
	D.4.3.1.3. Pending Kernel Launches
	D.4.3.1.4. Configuration Options
	D.4.3.1.5. Memory Allocation and Lifetime
	D.4.3.1.6. SM Id and Warp Id
	D.4.3.1.7. ECC Errors




	Virtual Memory Management
	E.1. Introduction
	E.2. Query for support
	E.3. Allocating Physical Memory
	E.3.1. Shareable Memory Allocations
	E.3.2. Memory Type
	E.3.2.1. Compressible Memory


	E.4. Reserving a Virtual Address Range
	E.5. Virtual Aliasing Support
	E.6. Mapping Memory
	E.7. Control Access Rights

	Stream Ordered Memory Allocator
	F.1. Introduction
	F.2. Query for Support
	F.3. API Fundamentals (cudaMallocAsync and cudaFreeAsync)
	F.4. Memory Pools and the cudaMemPool_t
	F.5. Default/Impicit Pools
	F.6. Explicit Pools
	F.7. Physical Page Caching Behavior
	F.8. Resource Usage Statistics
	F.9. Memory Reuse Policies
	F.9.1. cudaMemPoolReuseFollowEventDependencies
	F.9.2. cudaMemPoolReuseAllowOpportunistic
	F.9.3. cudaMemPoolReuseAllowInternalDependencies
	F.9.4. Disabling Reuse Policies

	F.10. Device Accessibility for Multi-GPU Support
	F.11. IPC Memory Pools
	F.11.1. Creating and Sharing IPC Memory Pools
	F.11.2. Set Access in the Importing Process
	F.11.3. Creating and Sharing Allocations from an Exported Pool
	F.11.4. IPC Export Pool Limitations
	F.11.5. IPC Import Pool Limitations

	F.12. Synchronization API Actions
	F.13. Addendums
	F.13.1. cudaMemcpyAsync Current Context/Device Sensitivity
	F.13.2. cuPointerGetAttribute Query
	F.13.3. cuGraphAddMemsetNode
	F.13.4. Pointer Attributes


	Graph Memory Nodes
	G.1. Introduction
	G.2. Support and Compatibility
	G.3. API Fundamentals
	G.3.1. Graph Node APIs
	G.3.2. Stream Capture
	G.3.3. Accessing and Freeing Graph Memory Outside of the Allocating Graph
	G.3.4. cudaGraphInstantiateFlagAutoFreeOnLaunch

	G.4. Optimized Memory Reuse
	G.4.1. Address Reuse within a Graph
	G.4.2. Physical Memory Management and Sharing

	G.5. Peformance Considerations
	G.5.1. First Launch / cudaGraphUpload

	G.6. Physical Memory Footprint
	G.7. Peer Access
	G.7.1. Peer Access with Graph Node APIs
	G.7.2. Peer Access with Stream Capture


	Mathematical Functions
	H.1. Standard Functions
	H.2. Intrinsic Functions

	C++ Language Support
	I.1. C++11 Language Features
	I.2. C++14 Language Features
	I.3. C++17 Language Features
	I.4. Restrictions
	I.4.1. Host Compiler Extensions
	I.4.2. Preprocessor Symbols
	I.4.2.1. __CUDA_ARCH__

	I.4.3. Qualifiers
	I.4.3.1. Device Memory Space Specifiers
	I.4.3.2. __managed__ Memory Space Specifier
	I.4.3.3. Volatile Qualifier

	I.4.4. Pointers
	I.4.5. Operators
	I.4.5.1. Assignment Operator
	I.4.5.2. Address Operator

	I.4.6. Run Time Type Information (RTTI)
	I.4.7. Exception Handling
	I.4.8. Standard Library
	I.4.9. Functions
	I.4.9.1. External Linkage
	I.4.9.2. Implicitly-declared and explicitly-defaulted functions
	I.4.9.3. Function Parameters
	I.4.9.3.1. __global__ Function Argument Processing

	I.4.9.4. Static Variables within Function
	I.4.9.5. Function Pointers
	I.4.9.6. Function Recursion
	I.4.9.7. Friend Functions
	I.4.9.8. Operator Function

	I.4.10. Classes
	I.4.10.1. Data Members
	I.4.10.2. Function Members
	I.4.10.3. Virtual Functions
	I.4.10.4. Virtual Base Classes
	I.4.10.5. Anonymous Unions
	I.4.10.6. Windows-Specific

	I.4.11. Templates
	I.4.12. Trigraphs and Digraphs
	I.4.13. Const-qualified variables
	I.4.14. Long Double
	I.4.15. Deprecation Annotation
	I.4.16. Noreturn Annotation
	I.4.17. [[likely]] / [[unlikely]] Standard Attributes
	I.4.18. const and pure GNU Attributes
	I.4.19. Intel Host Compiler Specific
	I.4.20. C++11 Features
	I.4.20.1. Lambda Expressions
	I.4.20.2. std::initializer_list
	I.4.20.3. Rvalue references
	I.4.20.4. Constexpr functions and function templates
	I.4.20.5. Constexpr variables
	I.4.20.6. Inline namespaces
	I.4.20.6.1. Inline unnamed namespaces

	I.4.20.7. thread_local
	I.4.20.8. __global__ functions and function templates
	I.4.20.9. __managed__ and __shared__ variables
	I.4.20.10. Defaulted functions

	I.4.21. C++14 Features
	I.4.21.1. Functions with deduced return type
	I.4.21.2. Variable templates

	I.4.22. C++17 Features
	I.4.22.1. Inline Variable
	I.4.22.2. Structured Binding


	I.5. Polymorphic Function Wrappers
	I.6. Extended Lambdas
	I.6.1. Extended Lambda Type Traits
	I.6.2. Extended Lambda Restrictions
	I.6.3. Notes on __host__ __device__ lambdas
	I.6.4. *this Capture By Value
	I.6.5. Additional Notes

	I.7. Code Samples
	I.7.1. Data Aggregation Class
	I.7.2. Derived Class
	I.7.3. Class Template
	I.7.4. Function Template
	I.7.5. Functor Class


	Texture Fetching
	J.1. Nearest-Point Sampling
	J.2. Linear Filtering
	J.3. Table Lookup

	Compute Capabilities
	K.1. Features and Technical Specifications
	K.2. Floating-Point Standard
	K.3. Compute Capability 3.x
	K.3.1. Architecture
	K.3.2. Global Memory
	K.3.3. Shared Memory

	K.4. Compute Capability 5.x
	K.4.1. Architecture
	K.4.2. Global Memory
	K.4.3. Shared Memory

	K.5. Compute Capability 6.x
	K.5.1. Architecture
	K.5.2. Global Memory
	K.5.3. Shared Memory

	K.6. Compute Capability 7.x
	K.6.1. Architecture
	K.6.2. Independent Thread Scheduling
	K.6.3. Global Memory
	K.6.4. Shared Memory

	K.7. Compute Capability 8.x
	K.7.1. Architecture
	K.7.2. Global Memory
	K.7.3. Shared Memory


	Driver API
	L.1. Context
	L.2. Module
	L.3. Kernel Execution
	L.4. Interoperability between Runtime and Driver APIs
	L.5. Driver Entry Point Access
	L.5.1. Introduction
	L.5.2. Driver Function Typedefs
	L.5.3. Driver Function Retrieval
	L.5.3.1. Using the driver API
	L.5.3.2. Using the runtime API
	L.5.3.3. Retrieve per-thread default stream versions
	L.5.3.4. Access new CUDA features



	CUDA Environment Variables
	Unified Memory Programming
	N.1. Unified Memory Introduction
	N.1.1. System Requirements
	N.1.2. Simplifying GPU Programming
	N.1.3. Data Migration and Coherency
	N.1.4. GPU Memory Oversubscription
	N.1.5. Multi-GPU
	N.1.6. System Allocator
	N.1.7. Hardware Coherency
	N.1.8. Access Counters

	N.2. Programming Model
	N.2.1. Managed Memory Opt In
	N.2.1.1. Explicit Allocation Using cudaMallocManaged()
	N.2.1.2. Global-Scope Managed Variables Using __managed__

	N.2.2. Coherency and Concurrency
	N.2.2.1. GPU Exclusive Access To Managed Memory
	N.2.2.2. Explicit Synchronization and Logical GPU Activity
	N.2.2.3. Managing Data Visibility and Concurrent CPU + GPU Access with Streams
	N.2.2.4. Stream Association Examples
	N.2.2.5. Stream Attach With Multithreaded Host Programs
	N.2.2.6. Advanced Topic: Modular Programs and Data Access Constraints
	N.2.2.7. Memcpy()/Memset() Behavior With Managed Memory

	N.2.3. Language Integration
	N.2.3.1. Host Program Errors with __managed__ Variables

	N.2.4. Querying Unified Memory Support
	N.2.4.1. Device Properties
	N.2.4.2. Pointer Attributes

	N.2.5. Advanced Topics
	N.2.5.1. Managed Memory with Multi-GPU Programs on pre-6.x Architectures
	N.2.5.2. Using fork() with Managed Memory


	N.3. Performance Tuning
	N.3.1. Data Prefetching
	N.3.2. Data Usage Hints
	N.3.3. Querying Usage Attributes



