NVIDIA.

CUDA Runtime API

APl Reference Manual

vRelease Version April 2021

Table of Contents

Chapter 1. Difference between the driver and runtime APIs.........ooooiiiiii, 1
Chapter 2. API synchronization behavior..........coei e 3
Chapter 3. Stream synchronization behavior.............. 5
Chapter 4. Graph object thread safety....... e 7
Chapter 5. Rules for version mMiXing.......oooooiiiiiiiiiii e, 8
Chapter 6. MOAULES.... et e e e e e e e e e e e eeeeeeeens 9
6.7. DeVvIiCe Management. ... o 10
CUAACN00SEDBVICE .. it 10
cudaDeviceFlushGPUDIFre CtRDMAWTIITES .. .ottt 1
cudaDeviceGetAtIIIDULE. .. .oo 12
cudaDeviceGetByPCIBUSIA. ... 18
cudaDeviceGetCachelonfig. .. i i 19
cudaDeviceGetDefaultMemPOOL........oiiii e 20
CUAADVICEGRLIMIT . e 21
cudaDeviceGetMEmMPOOL. i 22
cudaDeviceGetNVSCISYNCAHIIDULES. ...ooi i 23
cudaDeviceGetP2PAIIIDULE. 24
cudaDeviceGetPCIBUSIA.oiiii e 25
cudaDeviceGetSharedMemCoNTig.o 26
cudaDeviceGetStreamPriorityRaNGe. ... oo 27
cudaDeviceGetTextureTDLinearMaxWidth.........oooiiiiii e 28
CUAADEVICERESEE ... 29
cudaDeviceSetCacheCoN ig. .. oo i 30
CUAADVICESEELIMIT. ..ot 31
cudaDeviceSetMEMPOOo 33
cudaDeviceSetSharedMemCoNTig.. ... oot 34
CUAADVICESYNCRIONIZE ..o 35
CUAAGEEDEVICE .. 36
CUAAGETDEVICEC OUNT. ... 36
CUAAGEIDEVICEFLAGS. .. et 37
CUAAGEtDEVICEP TOPEITIES. . i 38
cudalpcCloseMemHaNALE.o L4
cudalpcGetEventHaNdLe.o 45
cudalpcGetMemMHANALE.o 46

CUDA Runtime API vRelease Version | i

cudalpcOpenEVentHaNALE 47

cudalpcOpenMemHaNALE. ... 48
CUAASEEDBVICE .. 49
CUAASEtDOVICEFLAGS. .. it o1
CUAASEEVAlIADEVICES. .. 52
6.2. Thread Management [DEPRECATED]. ..ot 53
CUAATRTEAAEXIT. ..o 53
cudaThreadGetCacheConfig. ..o i e, 54
CUAATRrEad Gt LMt . e 55
cudaThreadSetCacheCONfig. ..o i i, 56
CUAATRTEAASETLIMIT. .ot o8
CUATRrEAdSYNCNIONIZE i 59
0.3, ErTOr HanAUiNg . o 60
CUAAGETEITOINGIMIE . .o 60
CUAAGEEE IO NG et 60
CUAAGETLAS BT O . e 61
CUAAPEEKATLASTE IO .o 62
0.4, SIream ManagemMENt. . e 63
cUdaStream Callback b . L 63
cudaCtxResetPersistingL2Cache.o 63
cudaStreamAddCallbacK.oii 63
cudaStreamAttaChMEMASYNC. .. oo 65
cUdaStreamBeginCapiUre i e 67
cUdaStreamCoPY AT I IDULES. .. oo 68
CUAASETEAM C T RATE ot 69
cudaStreamlCreateWithFLlags. . ..o 70
cudaStreamCreateWithPriority. . .oc.oo e, 71
CUAASETEAMDESEIOY ... 72
cUdaStreamENACaPIUIE. .. o i 73
CUdaStream G etATI I IDULE. ... 74
cudaStreamGetCapturelnfo. .. oo 74
cudaStreamGetCapturelNfO_VZ2. . ..o 75
CUAASErEaM G EEFLAgS .. o 77
CUAASErEaM Gt P IONIEY .. o 78
CUAASTreamMISCaPlUIING ... i 79
CUAASTTEAMQIUETY . .o 80
cUdaStream SetAtIIDULE. ..ot 81
CUAAStrEAM Y NCNIONIZE e 81

CUDA Runtime API vRelease Version i

cudaStreamUpdateCaptureDependenCies.ot 82

cUdaStreamWaitEVENT. ..o i 83
cudaThreadExchangeStreamCaptureMode.o 84
6.9, Event Management. ... 85
CUAAEVENTCTEATE. .o 86
cudaEventCreateWIthFLags.ooi i 86
CUAAEVENED SOV o e 88
cudaEventELaPSeadTIME. ... 89
CUAAEVENTQUBTY ..o 90
CUAAEVENTRECOIT. ..o 91
cudaEventRecordWItNFLags.ooii 92
CUdAEVENESYNCRIONIZE oo 93
6.6. External Resource Interoperability........cccooiiiiii 94
cudaDestroyEXtErNalMeEmMOIY. . .o 94
cudaDestroyExternalSemaphoreo 95
cudakExternalMemoryGetMappedBuffer.......o.coi 96
cudakExternalMemoryGetMappedMipmappedArray. ..o 97
cudalmportExternalMemOory ... 99
cudalmportEXternalSemaphore. .. o 102
cudaSignalExternalSemaphoreSASYNC. .. .ooiiii e 105
cudaWaltExternalSemaphoreSASYNC.ii i 107
0.7, EXECULION CONTIOL. ..ttt 109
CUAAFUNCGETATIIIDULES. ..o 109
CUAAFUNCS O ATIIIDULE ... 110
cUdaFuNCSetCacheConTig. ... i i 111
cudaFuncSetSharedMemCoONTig... ..o 113
cudaBGetParameterBuifer. ... o 114
cudaGetParameterBufferV2. ... 115
cudalaunchCooperativeKerNel. . ..o i 116
cudalaunchCooperativeKernelMUltiDeVviCe........cocciiiiiiii e, 118
CUdalaunChHOSTFUNC. ... 120
CUdalaunChKEINE L. i 122
CUdASEtDOUBLEFOrDEVICE ...t 123
cUdaSetDoUBLEFOrHOSE ..o 124
6.8 DCCUPANCY ittt 125
cudaOccupancyAvailableDynamicSMemPerBlocK. ... 125
cudaOccupancyMaxActiveBlocksPerMultiprocessor........ooovviiiiiiiiiii e 126
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags. ..., 127

CUDA Runtime API vRelease Version v

6.9, MemMOry ManagemMENt. ... e 129

CUAAAITAY G NTO. o 129
CUAAAITAYGEIPLANE ... 130
CUdaATTayGetSParsePrOPertiEs. ..o i e 131
CUAAF T e 132
CUAAFTEEATTAY .o 133
CUAAFTEEHOST e 133
CUdaFreeMIpMapPPEAATTAY ... 134
cudaGetMipmappedArrayLevel.......c.ooiii 135
CUAGEtSYMBOIAAAIESS. ..o 136
CUAAGEESYMDOLSIZE o 137
CUAAHOSTALLOC .. 138
CUdaHOStGEtDEVICEPOINTET .. o i 139
CUAAHOSEGEtFLAGS. . e 141
CUAAHOSEREGISTOT .. 142
CUAAHOSTUNT QIS 144
CUAAMALLOC e 145
CUAAMALLOCSD e 146
CUAAMALLOCIDATTAY . ..o 147
CUAAMALLOCATTAY ..o 150
CUAAMALLOCHOSE e 151
CUAAMAlOCMANAGEA. ..o i 152
cudaMallocMipmMapPRedATTAY....... i 195
CUAAMALLOCPIECR ..o 158
CUAAMEIMAGVISE .. 159
CUAAM BIMICPY .ot 162
CUABMEMICPYZD e 163
CUdAMEMCPYZDAMTAY TOATTAY ..ottt 165
CUAAMEMCPYZDASYNC. e 167
CUAAMEMCPYZD FFOMATITAY . ..ot 169
cudaMemcpyZDFrOMAITAYASYNC ..o i 170
CUAAMEMCPYZD T OATTAY ..ot 172
cUdaMeEmMCPYZDTOATTAYASYNC. ... oot 174
CUAAMEMCPY3D . e 175
CUAAMEMCPYBDASYNC. oo 178
CUAAMEMICPYBD P RO . ..o 180
CUAAMEMCPY3DPEEIASYNC. ..ot 181
CUAAMEIMCPYASYNC et 182

CUDA Runtime API vRelease Version v

cudaMemcpYFromMSYMbBOL ..o 184

cudaMemcpyFromSYMbBOLASYNC. ..oiiiiie e, 185
CUAAMEMCPY P T ... e 186
CUAAMEMCPYPEEIASYNC. .. 188
CUAAMEMCPYTOSYMDOL. . i 189
cudaMemcpYTOSYMBOLASYNC. . .ot 190
CUAAMEMGETINTO. .t 192
CUdAMeEMPrEfEECRASYNC. ... 193
cudaMemRangeGetALIIIDULEo 195
cudaMemRaNgeGetATIIIDULES.ooi 197
CUAAMEBIMISEE e 198
CUAAMEMSEEZD . 199
CUAAMEMSEEZDASYNC. i 200
CUAAMEMSEEBD e 201
CUAAMEMSEESDASYNC. ..o 203
CUAAMEMISEIASYNC . it 204
cudaMipmappedArrayGetSparseProperties. ..o 205
Make cUdaEXtent 206
MaKe CUAAP I N EA P e e 207
MNAKE CUAAP O e 207
6.10. Memory Management [DEPRECATEDI.......cocooiiiiiiiiiii et 208
CUAAM M CPYATTAY TOATTAY .. ittt 208
CUAAMEMCPYFFOMAITAY ..o e 210
CUdaMeEMCPYFTOMATITAYASYNC. ..o 211
CUAAMEMCPY T OATTAY ...t 213
CUAAMEMCPY TOATTAYASYNC. .. ittt 214
6.11. Stream Ordered Memory ALLOCAtON. . .o.ii i 215
CUAAFTEEASY M. e 216
CUAAMALLOCASYNC .o 217
cudaMalloCFromMPOOLASYNC. ..o, 218
CUAAMEMPOOLCTEATE L. i 219
CUAAMEMPOOID ESTIOY ... e 220
cudaMemPOOLEXPOrtPOINTEI. .o e 221
cudaMemPoolExportToShareableHandle. ... 221
CUAAMEMPOOLGEIACCESS. ..o 222
cudaMemPOOlGEtATIIIDULE. .. .o 223
cudaMemPoollmportFromShareableHandle. ... 224
cudaMemPoollMpPortPoINte . ..o 225

CUDA Runtime API vRelease Version vi

CUAAM M P OO S B A C S S . it 225

cudaMemPoolSetAtIIIDULEoi i 226
CUAAMEMPOOLT FIMIT 0 et 227
0. 12, UNIfIed AQAreSSING .. it 228
CUdaPOINTErGetAIIIDULES. ..o 229
6.13. Peer Device MemMOrY ACCESS.uiiiiiii e 231
CUdaDeVIiCeCanACCESS PO ... o i 231
cudaDeviceDisablePeerACCesSs. . ..o, 232
cudaDeviceENablePeerACCESS. i 233
6.14. OpenGL INteroperability....c..o i 234
CUAAG LD EVICELIST. .t 234
CUAAGLGEEDEVICES. ..t 234
cudaGraphicsGLRegISterBUfer.... .o 235
cudaBGraphicsGLREegISTErIMAGE. .. o ittt 236
CUAAW G L GEEDEVICE ... 238
6.15. OpenGL Interoperability [DEPRECATED] ..o 238
CUAAGLMAPFLAGS. . e 239
CUdaGLMapBUffErOD e ... it 239
cudaGLMapBUfferObjeCtASYNC. . .o it 240
cudaGLRegisterBufferODJeCt. . ..o i 241
cudaGLSetBufferObjectMapFlags.o 247
CUABG LS GLDEVICE. ..t 242
cudaGLUnNmapBufferOBJeCt.o 243
cudaGLUNmMapBufferObjeCtASYNC. ..o i 244
cudaGLUnregisterBufferObject... ... i 245
6.16. Direct3D 9 Interoperability.......ooooiii e 245
CUAAD DI D VICELIST ..o 245
CUAAD DG GEEDOVICE ..ot 246
CUAAD 3D G GEIDOVICES. ..t 247
CUdaD3D9GetDIreCt3DDEVICE. ... ittt 248
CUdaD3D 7S etDIreCtEDDOVICE .. it 248
cudaGraphicsD3DIREgISTErRESOUNCE. . .iui it 249
6.17. Direct3D 9 Interoperability [DEPRECATED]. ..ot 252
CUAAD 3D IMaAPFLAGS. . 252
cUdaD3DIREGISTEIFLAgS. .. i 252
CUAADEDIMAPRESOUICES. .. 252
CUAaD3DIREGISTErRESOUICE .. ittt 253
cudaD3D9ResourceGetMapPedAITAY.ciii it 255

CUDA Runtime API vRelease Version vii

cudaD3D9ResourceGetMappedPitCh. ..., 256

cudaD3D9ResourceGetMappedPointer. ..o, 257
cudaD3DIResourceGetMapPedSizZe. .. cociiii it 259
cudaD3D9ResourceGetSurfaceDimensSioNS. . ..o 260
cudaD3D9ResourceSetMapFlags.oo i 261
cudaD3DUNMaPRESOUINCES. ...t 262
cUdaD3DUNTegiSterRESOUICE i 263
6.18. Direct3D 10 INteroperability.......coiiiiii e 263
CUAAD3D TODEVICELISE .ottt 263
CUAAD3D TOGEEDEVICE .. 264
CUAAD3D TOGEEDEVICES i 265
cudaGraphicsD3DT0REgISTErRESOUICEttt 266
6.19. Direct3D 10 Interoperability [DEPRECATEDI.......cooiiiiiiiii i 268
CUAAD 3D T OMAPFLAGS. . et 268
cUdaD3DTOREGISTEIFLAgS. ..ot 268
cUdaD3D T0GEetDIreCt3DDOVICE. .. ittt 269
CUAAD3D T TOMAPRESOUICES. ..o 269
cUdaD3D T0REGISTEIRESOUICE. ... it 270
cudaD3D10ResourceGetMappedArTaYo..i it 272
cudaD3D10ResourceGetMappedPitCh. ..o 273
cudaD3D10ResourceGetMappedPointer. ... 274
cudaD3D10Res0oUrceGetMapPedSIZe. . .oo.iiiiiiiiiee e 275
cudaD3D10ResourceGetSurfaceDimenSIONS.coovi it 276
cudaD3DT0Res0oUrceSetMapFLags. . .o..oiiiiiiii e 277
cudaD3DT0SetDIreCt3DDEVICE.iiiiiiiiii et 278
CUdaD3D T T0UNMAPRESOUINCES. ...t 279
cUdaD3D T0UNIEgiStErRESOUNCE. . ittt 280
6.20. Direct3D 171 INteroperability.......coiiiiiiiii e 281
CUAAD 3D T TDEVICELISE. .ottt 281
CUAAD 3D T TGEEDEVICE ...t 281
CUAAD 3D T TGEEDEVICES ... it 282
cudaGraphicsD3D1TRegIStErRESOUICE ... ittt 283
6.21. Direct3D 11 Interoperability [DEPRECATED]......oooovoiicoooeeeeeeeeeeeeeeee 285
cUdaD3D T 1GetDIreCt3DDOVICE .. ittt 285
cudaD3DT1SetDIreCt3DDEVICEuiiiiiiiii e 286
6.22. VDPAU Interoperability.......oo i 286
cudaGraphicsVDPAURegisterOutputSUrface. ..o 287
cudaGraphicsVDPAURegisterVideoSurfaCe.oooiiiiiiiiii e 288

CUDA Runtime API vRelease Version vili

CUAAY D P AU G Ot D OV IC . e 289

CUdaVDPAUSEtVDPAUDEVICE. ...t 289
6.23. EGL INteroperability.. ..o 290
cudaEGLStreamConsumerACqUIreFTame. ..o i 290
cudaEGLStreamConsumerCoNNE i 291
cudaEGLStreamConsumerConnectWithFLlags. ..o, 292
cudaEGLStreamConsumerDISCONNECT.ciiiiiii e 293
cudaEGLStreamConsumerReleaseFrame. 293
cudaEGLStreamProducerConNECt.o i 294
cudaEGLStreamProducerDiSCONNECE. . .iuiiiiiiiie e 295
cudaEGLStreamProducerPresentFrame. 295
cudaEGLStreamProducerReturnFrame. 296
cudaEventCreateFromMEGLSYNC. ..ot 297
cudaGraphicsEGLREGISTErImMage. ..o 298
cudaGraphicsResourceGetMappedEglFrame. ... 299
6.24. Graphics INteroperability... ..o 300
CUdaGraphiCSMaPRESOUICES. ... it 300
cudaGraphicsResourceGetMappedMipmappedArTay.......ccooiiiiiiiiii i 301
cudaGraphicsResourceGetMappedPointer.. ..o 302
cudaGraphicsResourceSetMapFlags.o 303
cudaGraphicsSubResourceGetMappedArTaY.........oiiiiiii e 305
cUdaBraphiCSUNMapRESOUICES. ... it 306
cudaGraphicsUnregisterRESOUICE. ... iiiiiiii i 307
6.25. Texture Reference Management [DEPRECATED].........ocoiiiiiiiiiiiii 308
CUAABINAT EXTUT ..t 308
CUAABINATEXTUTEZD ... i 309
CUdABINATEXTUETOATTAY ..o it 311
cudaBindTextureToMipmMapPedATTAY.......ooiiii e 312
cudaGetTextureAlgNmMentOffSet. .. i 313
CUdaGetTeXtUrERE B NCE. .. it 314
CUAAUNDINA T EXEUIE et 315
6.26. Surface Reference Management [DEPRECATED].ococoooiiiiiiiieee e, 316
CUdaBINASUMTACETOATTAY ..o 316
cudaGetSurfaceREfEIrENCE. .. i i 317
6.27. Texture Object Management. ... 318
cudaCreateChannelDesC . . i 318
cudaCreateTextuUreODJECT. .o i 319
cuUdaDestroy TexXtUrEOD et ... it 324

CUDA Runtime API vRelease Version iX

CUAAG R AN D S . e 325

cudaGetTextureObjectResSOUrCEDESC. . iiuii it 326
cudaGetTextureObjectResourceVieWDESC. . ..ioiiiiiiie e 327
cudaGetTextureObjectTeXtUrEDeSC. . i it 328
6.28. Surface Object Management.. o i 328
cudalCreateSurfacelb]eCT. ... i 329
cudaDestroySurfacelbh et . 330
cudaGetSurfaceObjectResoUrCEDESC. .. .iiiiiiiii i 331
6.29. Version Managemient.o 331
CUAADTIVEIG OV EISION . e 332
CUdARUNTIMEGEEVEISION. ... 332
6.30. Graph Management. .. e 333
cudaDeviceGetGraphMemAIIBULE.oii i 333
cudaDeviceGraphMemM T IIM ..o o e 335
cudaDeviceSetGraphMemArIBULE.ooiiii 336
cudaGraphAddChildGraphNOGe.ooiiiiii e 337
cUdaGraphAddDEPENdENCIES. ..o it 338
cudaGraphAddEMPLYNOGE. . ..ot 339
cudaGraphAddEVentRECOrANOGE. .. .c..iiiii i 340
cudaGraphAddEventWaitNOe.ooo e 342
cudaGraphAddExternalSemaphoresSignalNode. ... 343
cudaGraphAddExternalSemaphoresWaitNode..........oooiiiiiiiiii e, 345
cudaBGraphAddHOSINOGE. . ..ot 346
cudaGraphAddKerNElNOGE.oiii i 348
cudaGraphAddMemALOCNOGEo, 350
cudaGraphAddMemMCPYNOGE.t 352
cudaGraphAddMemepYNOETD ... i 353
cudaGraphAddMemcpyNodeFromSymbol.......coooiiiiii 355
cudaGraphAddMemcpyNodeToSymMboLl. ..o 357
cudaGraphAddMemFreeNOTe. ... o i 359
cudaGraphAddMemSEtNOGE.o 360
cudaGraphChildGraphNodeGetGraph. ..o 361
CUAAGIAPNCLONE. ... 362
CUAAGTAPN IR .t 363
cudaGraphDebugDotPrint. ... 364
CUAAGTAPNDESIIOY. oo 365
CUAaGraphDestrOYNOGE. ... it 366
cudaGraphEventRecordNodeGetEvent. ..o 367

CUDA Runtime API vRelease Version X

cudaGraphEventRecordNodeSetEvent. ... 368

cudaGraphEventWaitNodeGetEVent. ..o 369
cudaGraphEventWaitNodeSetEvent.o 370
cudaGraphExecChildGraphNodeSetParams.........ooiiiiiiiiiiii e 371
CUAAGraphEXECDESTIOY ... i 372
cudaGraphExecEventRecordNodeSetEvent. ..o 373
cudaGraphExecEventWaitNodeSetEvent. ..., 374
cudaGraphExecExternalSemaphoresSignalNodeSetParams. ... 375
cudaGraphExecExternalSemaphoresWaitNodeSetParams...........occooiiiiiiiiiiii 377
cudaGraphExecHostNodeSetParams.o 378
cudaGraphExecKernelNodeSetParams. ... 379
cudaGraphExecMemcpyNodeSetParams. ... 381
cudaGraphExecMemcpyNodeSetParams D ... 382
cudaGraphExecMemcpyNodeSetParamsFromSymbol.........ccoooiiiiii, 384
cudaGraphExecMemcpyNodeSetParamsToSymbol.. ... 385
cudaGraphExecMemsetNodeSetParams. . ..o 387
CUdaGraphEXECUDPAate. . oo i 388
cudaGraphExternalSemaphoresSignalNodeGetParams. ... 391
cudaGraphExternalSemaphoresSignalNodeSetParams.........cocooiiiiiiiiiii 392
cudaGraphExternalSemaphoresWaitNodeGetParams. ..o 393
cudaGraphExternalSemaphoresWaitNodeSetParams.........ccccoiviiiiii 394
CUAAGTAPN GO EAGES . i 395
CUAAGrapPhGEtNOGES. ..o 396
cudaBGraphGetROOINOGES. oo 397
cudaGraphHostNOdeGEetParamS.oi i 398
cudaGraphHostNOdEeSEtParamIS. . .o i 399
CUAaGraphINStANtIAte. . o 400
cudaGraphinstantiateWithFLlags.......c.ooiiii 401
cudaGraphKernelNodeCopyAtIrIDULES.o..iiiiii e 402
cudaGraphKernelNodeGetAtrIDULE.o 403
cudaGraphKernelNodeGetParams. ..o 403
cudaGraphKernelNodeSetAtrIBULE.o i 404
cudaGraphKernelNodeSetParams.........coiiiiii e 405
CUAAGTaPNLaUNCR. .o 406
cudaGraphMemALlocNOdeGetParams.o 407
cudaGraphMemcpyNodeGetParams. 408
cudaGraphMemcpyNodeSetParams.o i 409
cudaGraphMemcpyNodeSetParamsTD ..o, 410

CUDA Runtime API vRelease Version Xi

cudaGraphMemcpyNodeSetParamsFromSymbol........coccoiiiiiiiiii 411

cudaGraphMemcpyNodeSetParamsToSymbol... ..o 412
cudaGraphMemFreeNodeGetParams.o 414
cudaGraphMemsetNodeGetParams........oiiiiiiii e 415
cudaGraphMemsetNodeSetParams.ot 416
cudaGraphNodeFiNAINCLONE. ..o i 417
cudaGraphNodeGetDependenCIBS. . ..o it 418
cudaGraphNodeGetDependentNOGES.oiiiiiiiii e 419
CUAAGIraphNOGEGEITYPE . .. i 420
cudaBGraphReleaseUserOD]eCt.o 421
cudaGraphRemoveDepeNdENCIES. . .ouiiiiiii e 42?2
cudaGraphRetainUserOD et .. oo 423
CUAAGraPRUPLOGA. ... i 424
CUAAUSEIOD]ECECTEALE. ..ottt 424
CUdAUSerObjeCtRELEASE ... o 425
CUAUSErODJECREEAIN. ... i 426
6.371. Driver ENtry Point ACCESS .. i 427
cudaGetDriVerENtryPoOINt. ... 427
6.32. Ct AP ROULINES . 428
_cudalccupanCyB2DHEIPE N ..o 428
CUdaBINASUITACETOATTAY ..o 429
CUdaBINASUMTACETOATTAY ..ot 430
CUAABINA T EXTUME . 431
CUAABINAT EXTUT .. 432
CUAABINATEXTUTEZD ..o 433
CUAABINATEXTUTEZD ... i 435
CUdABINATEXTUETOATTAY ..o it 436
CUdABINATEXTUIETOATTAY ... i 437
cudaBindTexXtureToMIpmMapPEAATTAYttt 438
cudaBindTexture ToMIpmMapPeAATTAYoiiiiii i 440
cUdaCreateChannelDESC. . i 447
CUAAEVENTCTEATE. ..o 447
CUAAFUNCGETATIIIDULES ..o e 443
CUAAFUNCS AT IIDULE 4Lb4
cudaFunNCcSetCacheConTig. ... i i 445
CUAGEtSYMBDOIAAAIESS. . i 446
CUAAGEESYMDOLSIZE o oo 447
cudaGetTexture AligNmMentOffSet. . i 448

CUDA Runtime API vRelease Version Xii

cudaGraphAddMemcpyNodeFromSymbol.........oooiiiii 449

cudaGraphAddMemcpyNodeToSyMbBOL. . ..o 451
cudaGraphExecMemcpyNodeSetParamsFromSymbol.........coocooiiiiiiiii 453
cudaGraphExecMemcpyNodeSetParamsToSymbol.......oocooiiiiiiiii 454
cudaGraphMemcpyNodeSetParamsFromSymbol...........oooiiii 456
cudaGraphMemcpyNodeSetParamsToSymbol.......coooiiiiiiii e 457
cudalaunchCooperatiVeKErNeL. . ..o i 458
CUdalaunChKEINEL .. i e 460
CUAAMALLOCASYNC .o 461
CUAAMALLOCHOSE e 461
CUdAMallOCMaANAGEA. ... i 463
cudaMemcpyFromSYMbBOLo 466
cudaMemcpYFromMSYMbBOLASYNC. ..ot 467
CUAAMEMCPY TOSYMDOL. .t 468
cudaMemCpPyY TOSYMBDOLASYNC. ..o 470
cudaOccupancyAvailableDynamicSMemPerBlocK. ... 471
cudaOccupancyMaxActiveBlocksPerMultiprocessor. ..o 4772
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags..........cocooiiiiiiiiiii 473
cudaOccupancyMaxPotentialBloCKSIZE.oiiiiiii 475
cudaOccupancyMaxPotentialBlockSizeVariableSMem, 476
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags.........occooiiiiiii 478
cudaOccupancyMaxPotentialBlockSizeWithFLlags......ccoooiiiiiiii e, 479
cudaStreamAttaChMEMASYNC.....oii i 481
CUAAUNDINA T EXEUIE . 483
6.33. Interactions with the CUDA Driver APl .. .o 484
cudaGetFuncBYSYMBOL . .o 487
6.34. Profiler Control [DEPRECATED].......ovioiiiit oo, 487
CUAAPrOTILErINITIALIZE . 487
6.35. Profiler COoNTrOL .. oo 488
CUAAPTOTILEISTAIT .. e 488
CUAAP IO ILEI S O et 489
6.36. Data types used by CUDA RUNTIMIE.....oiiiiiii i 489
CUdAACCESSPOLICYWINAOW. ... 490
CUAAAITAYSPArSEPrOPEITIES. ..o it 490
cudaChannelFormatDesC . . i 490
CUAADEVICEPTOD . .. e 490
CUAAEGLFramMe. . 490
CUAAEGIPLANEDESC .o 490

CUDA Runtime API vRelease Version Xiii

CUAAE X N e e 490

cudakExternalMemoryBufferDes ... oo i 490
cudaExternalMemoryHandleDesC. .o v i 490
cudaExternalMemoryMipmappedArrayDesc.......cooiiiiiiiiii 490
cudaExternalSemaphoreHandleDesC. . .oouiiiiiiiiii 490
cudaExternalSemaphoreSignalNodeParams. ..o 490
cudaExternalSemaphoreSignalParams. ..o 490
cudaExternalSemaphoreSignalParams_ V1. ... 490
cudaExternalSemaphoreWaitNodeParams. ... 490
cudaExternalSemaphoreWaitParams.o 490
cudakExternalSemaphoreWaitParams_ V... 490
CUAAFUN CATIIIDULES .. 491
CUdaHOSINOAEPAramMIS. ... 491
cudalpCEveNtHANALE b . 491
cUdalpCMeEmMHANALE T . i 491
cudaKernelNOAEATITVALUE.o i e 491
cudaKernelNOdeParamS.o e 491
CUdalaunChParamIs. ... 491
CUAAMEMACCESSDESC oo 491
cudaMemALLOCNOAEPAraMIS. ..o 491
CUAAMEMCPYBD PAIINS ..o 491
cudaMemCpPY3DPEEIPArMS ..o 491
CUAAMEMILOCATION et 491
CUAAMEMPOOIPTOPS ..o 491
cudaMemPoolPIrEXPOrtDAta. ..o 491
CUAAMEMSEEPAraMIS. .. 491
CUAAP I CNE AP . e 491
CUdAPOINTEr A TIDUTES . 491
CUAAPOS e 497
CUAARESOUNCEDESC o 492
CUAARESOUNCEVIEWDIESC. ..o i 492
CUAASErEamMALIIVAlUE. ..o 497
CUAATEXEUNEDIESC .o 497
U U St e e 4972
SUMTACEREIEIENCE e 492
LEXTUNEREIEIENCE. .ot 492
CUAAACCESSPIOPEITY ..o 492
CUAAC GBS COPE. e 492

CUDA Runtime API vRelease Version Xiv

CUAACNANNE L O M At I e e 493

CUAACOMPUEEMOTE ..o 494
CUAA D EVICEATIT e 495
CUAADEVICEP 2P AT . .. 500
CUAAEGLCOLOMFOrMIAt. oo 501
CUAAE G A Ty P e 507
cudaEglResourcelocationFlags. .. .o 508
CUAAE IO . e 508
cudaExternalMemoryHandle Ty Pe. ..o i 518
cudaExternalSemaphoreHandleType.ooiiiiii 519
cudaFlushGPUDIrectRDMAWIItESOPIIONS ..ooiiiiiiiiiiii e 519
cudaFlushGPUDIreCtRDMAWIEESSCOPE. ..ocviiiiiii i 520
cudaFlushGPUDIrectRDMAWTItESTarget.ocvi i, 520
CUAAFUN CATE I IDULE. .o 520
CUAAFUNCCACRE e 520
cudaGetDriverEntryPointFlags.oooiii 521
cudaGPUDIrectRDMAWITESOrAeriNG .. .ci i iii it 521
cudaBraphDebugDotFlags. . oo 521
cudaGraphExecUpdateResult. . ..o 522
cUdaBraphicsCUBEFACE. .. .o e 522
CUdaGraphiCSMapFLlags. ..o 523
cudaBGraphicsRegiIStErFLagS. ... i 523
cudaBraphinstantiateFlags.o 523
cudaBGraphMem A IIDULE TYPE ... oo 524
CUAAGTAPNNOAETYPE. .o 524
CUdaKernelNOGEATIIID e 525
oW Te =1 T oV PP P TP P UPPROPP 525
CUdaMEMACCESSFLAgS. ..o 526
cudaMemALllocatioNHaNALE TYPE. ... i 526
CUAAMEMALLOCAIONTYPE. . o 526
CUAAMEMCPYKING ..o 526
CUdaMeEMLOCAtIONTY PO ..o 527
CUAAMEMOTYATVISE .. 527
CUAAM BN O Y Ty Pttt 528
CUAAMEMPOOLATET ... 528
cUdaMemMRANGEATIIIDULE i e 529
CUAOULPULMOTE ... 529
CUAARESOUNCETY P .ot 529

CUDA Runtime API vRelease Version XV

CUAARESOUICEY I W O T INAt e e 530

CUAASNArEdCarVEOUL. ..ot 531
CUdaSharedMemMCONTIg. ... i i 532
CUAASETEAMALITID .o 532
CUdaStreamCaptureMOde. ... i e 532
CUdaStreamCaptureStatus. ... i 532
cudaStreamUpdateCaptureDependenciesFlags. ..o 533
cudaSurfaceBoundaryMOde.ooiiiiii e 533
cudaSurfaceFormMatMOode.o 533
cudaTextureAddresSMOde. . .c...iiii e 533
CUdaTeXtUrEFIEErMOTE. .. o 534
cudaTextureReadMOde. i 034
CUAAUSEIOD]ECEFLAGS. . vt 534
cudaUserObjectRetainFlags.o 534
CUAAATTAY CONSE bt 535
CUABATTAY L e 535
cudaEglStreamCoNNECTION. . oo i 535
CUAAE O e, 535
CUAA B Nt b e 535
CUdAEXtErNalMEmMOrY o e 535
cudaExternalSemaphore . . 535
CUAAFUN C O e 535
CUAA G AP e 535
CUAAGTaPNEXEC T 535
CUAGraphiCSRESOUITE it 536
CUAAGTAPNNOGE bt 536
CUAAH OGN b 536
CUAaMEMPOOL b 536
cudaMipmappPedArTay_CONSE T i 536
CUAaMIPMAPPEAATTAY boiiiiiiii e 536
CUAAOUTPUIMOAE teoiii e 536
CUAAS TN A e 536
CUAaSUMTACEODJECT b 536
CUAATEXEUNEOD ECE bttt 537
CUAAUSEIOD BTt e 537
CUDA_EGL_MAX _PLANES ... e 537
CUDA _IPC_HANDLE _SIZE ... 537
cUdaArrayColorAttaChMENT. ... o e 537

CUDA Runtime API vRelease Version Xvi

CUAAAITAY CUD EMAD . oo 537

CUAAATAYDEfAULL. ..o 537
CUAAATAY LAY . oo 537
CUABATTAY S PAISE ettt 537
cudaArraySparsePropertiesSingleMipTail. ..o 537
cUdaArraySurfaceloadStore. .o o, 538
CUdAATaY TeXtUrEGatNe . oo 538
cudaCooperativeLaunchMultiDeviceNoPOStSYNC.......cooiiiiiiiiii 538
cudaCooperativeLaunchMultiDeviceNoPreSyncC........ccooiiiiiiiii 538
CUAACPUDBVICEIA. . 538
cudaDeviceBloCKINGSYNC. ..o 538
cudaDevicelLmemRESIZETOMEAX.iiiiiiiii i 538
CUdaDeVICEMaPHOST ... 538
CUAADEVICEMASK ... 539
cudaDevicePropDoNtCare. i e 539
cudaDeviceSCREAULEAULO. ...t 539
cudaDeviceScheduleBloCKiNgSYNC . oo 539
cudaDeviceSChedULEMASK.iiiiii e 539
cuUdaDeviceSCRedULESPIN .. .o 539
cudaDeviceSChedUuleYield.ioiii e 539
CUdaEVENtBLOCKINGSYNC .. i 539
CUAAEVENTDEAULL. ..o 539
cudaBEventDisable TIMING. ... 539
CUAAEVENINTEIPIOCESS .o 539
cudaEventRecordDefaull. .. .o 540
cudaEventRecordEXTErNal . ..o i 540
cudaBEventWaitDefaull. ... 540
cudaBEventWaltEXternal. ..o 540
cudakExternalMemoryDedicated.o 540
cudaExternalSemaphoreSignalSkipNvSciBufMemSync. ... 540
cudakExternalSemaphoreWaitSkipNvSciBufMemSync......oooiii 540
cUdaHOSTALLOCDETAULL. ... 541
CUdaHOSTALLOCMAPPEA. ... e 541
CUdAHOSEALLOCPOMTADLE. ..o i 541
cudaHOoStALLOCWIITECOMBINE. ... 541
cudaHostRegisterDefaull. ... 541
cudaHoStReGISTErTOMEMIOIY......i i 541
cudaHOStREGISTErMAPPEA. ... i 541

CUDA Runtime API vRelease Version XVii

cudaHostREeGISTErPOrtable. .. o i 541

cudaHostRegisterReadONLY.ooeiiii e 541
CUdalNValidDEVICEIT . o 541
cudalpcMemLazyEnablePeerACCess.o 541
cudaMemAttachGLODALl ... 542
CUAAMEMATEACHHOST. ... 542
CUdaMEMAIACNSINGLE. . i 542
CUAaNVSCISYNCAIISIGNAL. . it 542
CUdANVSCISYNCATEIIWAIL. ..o 542
cUda0cCUPANCYDEfaULL ..ot 542
cudaOccupancyDisableCachingOVerride. ..o, 542
cudaPeerAccessDefaull. . .o 942
CUAASErEaMDEfAULL ... oo 542
CUAASETEAMLEGACY it 542
cudaStreamNONBLOCKINGoi e 543
CUdaStreamPerTRr A ... i 543
Chapter 7. Data STrUCTUIES. i ettt eeeeeeees 544
_cudalccupanCYBZDHEIPO ... i 545
CUdAACCESSPOLICYWINGOW. ... 545
DS P e 545

P P T O e 945
PIERATIO e 545
TN S S P O D e 546
0T8T AT o] (=TT T PSP U OO PRSPPSO 546
CUAAATAY S PArSE P T OPE IS . 546
0153 o1 DO OSSP U PSPPSR UPUPUPRRURRRPP 046
LGS e 546

P G N 546
MUPEAILFITSTLEVEL oo 546
T PEAILSIZE e 546
LYo 4 o TP UPPRUPPSP 046
cudaChannelFormMatDesC . . i 547
LE T TP P RSP PP 547
N e 547
Xt 547

Y et 547

Z e 547
CUAADBVICEPTOD. .o e 547

CUDA Runtime API vRelease Version XVviil

accessPolicyMaxWINAOWSIZE ..., 547

ASYNCENGINECOUNT. ..o e 547
CANMAPHOSTIMEMOTY ..o, 548
canUseHostPointerForRegisteredMem. ... 548
ClOCK R A e e 548
COMPUEEMOB. ..o 548
ComMPpUtePreemMptioNSUPPOITEd. .. .oiiiiii e 548
COMCUITENTKEINELS . ettt 548
CONCUITENTMANAGEAACCESS. ...t 548
COOPEratiVELAUNCR ..o 548
cooperativeMultiDeviceLaunCh. o, 548
EVICEOVETLAP et 548
directManagedMemACCesSFromMHOST.ot 549
EC CENADLEA. 549
globallL1CacheSUPPOITEA. .. oo i 549
hostNativeAtoMICSUPPOTTEA. ... i e 549
L ETo T =L €To PSP PP UPPRTUPPRO 549
ISMULIGPUBOGIA. .., 549
kernelExecTimeoUtENabled.o 549
L2 aCNESIZE e 549
LocalLTCacheSUPPOITEA. ... i 549
L OSSPSR PP 549
LUIADEVICENOAEMAESK. ... 550
AT T PSP PP PPT PP 550
MANAGEAMEIMIOIY ...ttt 550
MaxXBloCKSPerMULLIPIrOCESSOT. .. it 550
MNAXGIIASIZE .ot 550
MIAXSUMTACETD e 550
MaAXSUNTACETDLAYErEA. ... oo 550
MAXSUMTACEZD . 550
MAXSUNTACEZ2DLAYErEA. ... oo 550
MIAXSUMTACE3D . e 550
MaXSUITACECUDEM@P. . it 550
mMaxSurfaceCubemaplayered.o 551
MIAXTEXEUTE T D et 551
MAX T eXtUrE TDLAYEIEd. . e 551
MAX T EXEUIE T D MBI . et 551
MAXTEXEUTE TDMIPINAD . ittt 551

CUDA Runtime API vRelease Version Xix

TNAX T X U 2D e e 551

MaXTeXtUrEZ2D Gatier. .o e 591
MAXTEXTUNEZDLAYEIEA. .. oot 551
MIAX T EXEUTEZ D LINMBAT . .o 051
MAXTEXEUFEZDMIPIN@D ¢ ettt 551
MIAXTEXEUTED ..t 552
MAXTEXTUTESDALL. ..ot 552
MaXTeXTUNECUDEMEP ... i 552
maxTextureCubemaplayered. ..o 552
MAXTRTEAAS DM ... 552
MaXxThreadSPerBLOCK.ot 552
MaxThreadsPerMultiProCeSSOr. . .o i 552
MEMOTYBUSWIATN ... 552
MEMOTYCLOCKRAE .. o 552
eI P I C N e 552
a1 oL PSPPSR PR OUSPPRPPRPS 552
MUUIGPUBOArdGrOUPID . ..o 553
MULTPIOCESSOTCOUNT. .. 553
AF=10 2T T PRSP PPRPPPRPPR 553
PAGEADLIEMEMOIYACCESS. ... i 553
pageableMemoryAccessUsesHostPageTables. ... 553
PCIBUSID ... 553
PCIDEVICEID .. 553
PCIDOMAINTD .o 553
PersistingL2CacheMaxSIZe. ... oo 553
FEGSPEIBLOCK. .. 553
FEGSPErMULIPIOCESSO .. e 554
reservedSharedMemPerBLoCK.ooiiiiii 054
SharedMemMPErBLOCK.c i 554
sharedMemPerBlockOptin. ..o 554
sharedMemPerMuUltiPrOCESSO i e, 554
singleToDoublePrecisionPerfRatio.o 554
StreamPriorItieSSUPPOITEA. ... oo 554
SUTTACEALIGNIMIENT .. e 554
L(e101 B 1= PSPPSR PPR 054
LeXtUTEALIGNIMIENT . e 554
texturePItChALIGNMENT ... e 995
E0TALCONSIMEIM . 555

CUDA Runtime API vRelease Version XX

UNHIEAATATESSING ...ttt 555
SO P PP P PR PPRTUPPRTTRTI 555
WATPSIZE oo 0395
CUAAE G A e 555
EGLCOLOTFOIMAT 555
A I Ty DB e e 556
DATTAY e 996
PLANECOUNT. ..t 556
PLANE D S C e 556
PP N e 556
CUAAEGIPLANEDESC ..o 556
CRANNELDESC e 556
PN 556
P G 556
NUM CRENNELS et 556
01141 T T T PP PP U P PP TUPPRRPPTR 557
R TT =T T F PSP PRSPPSO 557
WD 557
CUAAEXE BN e 557
(0T o] 4o O T T T T U PSP PR UUOPRRRUPPR 557
P G e 557
LYo 4 o TP UPPRUPPSP 057
cudakExternalMemoryBufferDeSC. ..o 557
LB S et 557
O] EST=] PSPPI UPS PRSPPI 558
Sz ettt 558
cudakExternalMemoryHandleDesC . oo i 558
B e 558
LB S e e 558
P ANALE e 558
AT LT PO PP P PR UPPPRUOTPP 558
NVSCIBUTODJECT. ... e 558
Sz et 559
1877 01T T TP O PO U PRSP 559
WINIBZ. e 559
cudaExternalMemoryMipmappedArrayDesC.......oooiiiiiii 559
B X I 559

CUDA Runtime API vRelease Version XXI

OIS C e 560
UM L VLS. et 560
0] LET= S PP P PR PPRR PR 560
cudaExternalSemaphoreHandleDesC. . oo 560
Lo P PSSP P RSP PP 560
LGS et 560
P AN AL e 561
0T LT PSPPSR PPPRPPP 561
NVS CISYNCOD e 561
1877 01T U U PO PO UUPSR RPN 561
WINIBZ. e 561
cudaExternalSemaphoreSignalNodeParams. ..ot 562
EX S B MNATTAY .o 562
MU EX S OIS e 562
DATAMISATTAY ..ttt 562
cudaExternalSemaphoreSignalParams. ... 562
B L e 562
M e 562
LGS e 563
KEYEAMULEX. .. 563
VLU e 563
cudaExternalSemaphoreSignalParams_ V1. 563
M e 563
M e 563
LGS e 564
KEYEAMUTEX e 564
VAU s 064
cudaExternalSemaphoreWaitNodeParams. ... 564
EXE S MY ..o 564
MU EX S OIS e 564
PATAMISATTAY .ottt 965
cudaExternalSemaphoreWaitParams.........ooooiiiiii 565
M e 565
B e 565
LGS e 565
K Y et 565
KEYEAMULEX. ..o e 566

CUDA Runtime API vRelease Version XXii

VLU B e 566
cudaExternalSemaphoreWaitParams V1. ..o 566
O e e 566
O 566
LB S e 566
K Y e e 567
KEYEAMUTEX e 567
LB OULM S e 567
VLU e 567
CUAAFUN CATIIIDULES .o 567
DN VY EISION e 567
CAChEMOAECA . e 567
CONSESIZEBY S . e 567
L0CALSIZEBYEES . e 568
MaxDynamicSharedSIiZeBytes. ... 568
MaxThreadsPerBLOCK.o 568
MUIMIR GG - eeeeeeeeeeeeeeeeeeeeeeeeeeeeees 568
preferredShmMEmMCarVEOUL.oii e 568
DEXV BISION e 568
SNATEASIZEBY S . e 568
CUAAHOSINOAEPAraMIS. ... 568
L PSPPSR PR TS PRPPR 569
USEIDATA. oo 569
cudalpCEVentHANALE b . 569
cudalpeMemHANALE t. i e 569
cudaKernelNOdeA VA UE. e 569
ACCESSPOUCYWINAOW. ... i 569
cudakernelNOdeParamS.o e 569
DLOCK DI e 570
S (= TSP PSSP SPRURPS 570
U G e 570
G D I 570
KEINMELIPAIAMIS . e 570
SharedMeEmMBYLES ..o 570
cUdalaunChParamis. ... 570
] L= TP PP P TP PP PPRPPRRPPRRPPN 570
DLOCK DI e 570

CUDA Runtime API vRelease Version XXiii

G D e 571
SNATEAM M 571
L =T 10 0 T 571
CUAAMEMNACCESSD S ..o 571
LB S e 571
(oot LU 1o Yo TSR 571
cudaMemALLOCNOAEPAramMS. .. oo 571
ACCESSDESC L OUNT .. e 571
ACCESS DS CS . i 572
DY S IZ e 572
o o1 4 T T PP PSP RUPRPP 572
POOLPTOPS .. e 572
CUAAMEMCPYDPAINS. . 572
S AT Y e 572
St PO ceeee 572
OOt e e 572
X O N 572
KN O e 573
ST CATTAY ..o 573
ST P 0., 573
L] el TP 573
CUdaMemMCPY3DPEEIPAIMS. ... ot 573
S AT Y e 573
St D OVIC . e 573
St P O ee 573
O P 573
X O N 573
ST CATTAY ..o 574
STC D VI e, 574
ST P 0. e, 574
ST O P 574
CUAAM M L OCATION . . e 574
L0 e, 574
1877 01T T TP O PO U PRSP 574
CUAAMEMPOOIPIODS ..o 574
AL O T Ty P e 574
P AN AL Ty P S e 575

CUDA Runtime API vRelease Version XXIV

O At O et 575

YTy Y=Y USRS 575
WIN32SECUNTEYATIDULES ..o 575
cudaMemPoolPtrEXPOrtData. 575
CUAAM M S BT PArAMIS . e, 575
o1 SRRSO 575
Bl M N S ZE e, 575
P g 576
DI C e 576
VAU B e 576
WD e 576
CUAAP I CNEA P . e 576
DI C N e 576
O L TSP U PP PPRTOPRPP 576
XS IZ et 576
S ZB e e 576
CUAAP OINT eI A T DULES . e 577
QOVIC e e 577
EVICE P O N O . e 577
PO P O N B . e 577
1477 01T U TS PP PSP PO U PPRRTRPRN 577
(oo F=Y o1 TS 577
X e e e 578
Y e e 578
PSR 578
CUAARESOUICEDESC . e 578
BT @Y ettt ettt e e 578
B e e 578
OV P T 578
P G 578
aaTl o] a a1 o O PP PP TP PP UPPPRRPO 578
DI CRIN BYEES e 578
T Y] oSSR P RSP PPPRRPRPP 579
SIZE N BY S 579
WD 579
CUAARESOUICEVIBWDESC ..o 579
0157 o1 o DO PSPPSR PPRPUPRRURR PP 579
IS LAY T e 579

CUDA Runtime API vRelease Version XXV

FIPSTMIDMIAPLEVEL .o, 579

L0 L A1 S P PSP PP PRSP 579
P G e 579
Lo =T PSPPSR UPPPPPR 580
L@SEMIPMIAPLEVEL. ... 580
WD e 580
CUAASTrE@aMATIIVAlUE. 580
CUAAT EXEUNE D ESC e 580
AAATESSMOTE ..o 580
DOTAEICOLO . 580
disableTrilinearOptimiZatioN. . ..o i 580
FILEEIMOAE e 581
NIAXANISOTIOPY ...t 581
MaXMIPMaPLeVelCLaMIP . i 581
MINMIPMAPLEVELCIAMIP .. o 581
MIPMEPFIEEIMOTE e 581
MIPMEPLEVELBIAS . 581
NOTMNALZEACOOTAS ..ot 581
FEAAMOAR. ..o 581
SR G B 581
UG STt 582
DY LS e 582
SUMTACE RO OB CE . e 582
CRANNEIDESC e 582
LEXTUNE R EIEIENCE .. e 582
AAATESSMOTE. ... 582
CRANNELDESC e 582
disableTrilinearOptimIZation......c.i i 582
FILEEIMOAE . e 583
MNAXANTS OTTOPY e 583
MAXMIPINAPLEVELC IAMIP. i 583
MINMIPMAPLEVELCLAMIP. .o 583
MIPMAPFIEErMOTE. ... e 583
MIPMAPLEVELBIAS .. i 583
NOTINALIZEA ..o 583
SR G B 583
Chapter 8. Data Fields. ... 584
Chapter 9. Deprecated LISt 597

CUDA Runtime API vRelease Version XXVi

Chapter 1. Difference between the
driver and runtime APIs

The driver and runtime APls are very similar and can for the most part be used
interchangeably. However, there are some key differences worth noting between the two.

Complexity vs. control

The runtime API eases device code management by providing implicit initialization, context
management, and module management. This leads to simpler code, but it also lacks the level
of control that the driver API has.

In comparison, the driver APl offers more fine-grained control, especially over contexts and
module loading. Kernel launches are much more complex to implement, as the execution
configuration and kernel parameters must be specified with explicit function calls. However,
unlike the runtime, where all the kernels are automatically loaded during initialization and
stay loaded for as long as the program runs, with the driver APl it is possible to only keep the
modules that are currently needed loaded, or even dynamically reload modules. The driver AP
is also language-independent as it only deals with cubin objects.

Context management

Context management can be done through the driver API, but is not exposed in the runtime
API. Instead, the runtime API decides itself which context to use for a thread: if a context has
been made current to the calling thread through the driver API, the runtime will use that, but if
there is no such context, it uses a "primary context.” Primary contexts are created as needed,
one per device per process, are reference-counted, and are then destroyed when there are

no more references to them. Within one process, all users of the runtime APl will share the
primary context, unless a context has been made current to each thread. The context that

the runtime uses, i.e, either the current context or primary context, can be synchronized with
cudaDeviceSynchronize (), and destroyed with cudaDeviceReset ().

Using the runtime APl with primary contexts has its tradeoffs, however. It can cause trouble
for users writing plug-ins for larger software packages, for example, because if all plug-

ins run in the same process, they will all share a context but will likely have no way to
communicate with each other. So, if one of them calls cudaDeviceReset () after finishing all
its CUDA work, the other plug-ins will fail because the context they were using was destroyed

CUDA Runtime API vRelease Version | 1

Difference between the driver and runtime APIs

without their knowledge. To avoid this issue, CUDA clients can use the driver API to create and
set the current context, and then use the runtime API to work with it. However, contexts may
consume significant resources, such as device memory, extra host threads, and performance
costs of context switching on the device. This runtime-driver context sharing is important

when using the driver APl in conjunction with libraries built on the runtime API, such as
cuBLAS or cuFFT.

CUDA Runtime API vRelease Version | 2

Chapter 2. APl synchronization
behavior

The API provides memcpy/memset functions in both synchronous and asynchronous
forms, the latter having an "Async” suffix. This is a misnomer as each function may exhibit
synchronous or asynchronous behavior depending on the arguments passed to the function.

Memcpy

In the reference documentation, each memcpy function is categorized as synchronous or
asynchronous, corresponding to the definitions below.

Synchronous

1. All transfers involving Unified Memory regions are fully synchronous with respect to the
host.

2. Fortransfers from pageable host memory to device memory, a stream sync is performed
before the copy is initiated. The function will return once the pageable buffer has been
copied to the staging memory for DMA transfer to device memory, but the DMA to final
destination may not have completed.

3. Fortransfers from pinned host memory to device memory, the function is synchronous
with respect to the host.

4. For transfers from device to either pageable or pinned host memory, the function returns
only once the copy has completed.

5. Fortransfers from device memory to device memory, no host-side synchronization is
performed.

6. Fortransfers from any host memory to any host memory, the function is fully synchronous
with respect to the host.

Asynchronous

1. For transfers from device memory to pageable host memory, the function will return only
once the copy has completed.

CUDA Runtime API vRelease Version | 3

APl synchronization behavior

2. Fortransfers from any host memory to any host memory, the function is fully synchronous
with respect to the host.

3. Forall other transfers, the function is fully asynchronous. If pageable memory must first
be staged to pinned memory, this will be handled asynchronously with a worker thread.

Memset

The synchronous memset functions are asynchronous with respect to the host except when
the target is pinned host memory or a Unified Memory region, in which case they are fully
synchronous. The Async versions are always asynchronous with respect to the host.

Kernel Launches

Kernel launches are asynchronous with respect to the host. Details of concurrent kernel
execution and data transfers can be found in the CUDA Programmers Guide.

CUDA Runtime API vRelease Version | 4

Chapter 3. Stream synchronization
behavior

Default stream

The default stream, used when 0 is passed as a cudaStream t or by APls that operate on
a stream implicitly, can be configured to have either legacy or per-thread synchronization
behavior as described below.

The behavior can be controlled per compilation unit with the --default-stream

nvcc option. Alternatively, per-thread behavior can be enabled by defining the

CUDA API PER THREAD DEFAULT STREAM macro before including any CUDA headers. Either
way, the CUDA_ API PER THREAD DEFAULT STREAM macro will be defined in compilation units
using per-thread synchronization behavior.

Legacy default stream

The legacy default stream is an implicit stream which synchronizes with all other streams
in the same cUcontext except for non-blocking streams, described below. (For applications
using the runtime APIs only, there will be one context per device.] When an action is taken in
the legacy stream such as a kernel launch or cudastreamwaitEvent (), the legacy stream
first waits on all blocking streams, the action is queued in the legacy stream, and then all
blocking streams wait on the legacy stream.

For example, the following code launches a kernel k_1 in stream s, then k_2 in the legacy
stream, then k_3in stream s:

k 1<<<1, 1, 0, s>>>();
k_2<<<1, 1>>>();
k_3<<<1, 1, 0, s>>>();

The resulting behavior is that k_2 will block on k1 and k_3 will block on k_2.

Non-blocking streams which do not synchronize with the legacy stream can be created using
the cudaStreamNonBlocking flag with the stream creation APls.

The legacy default stream can be used explicitly with the CUstream (cudaStream t) handle
CU_STREAM LEGACY (cudaStreamLegacy).

CUDA Runtime API vRelease Version | 5

Stream synchronization behavior

Per-thread default stream

The per-thread default stream is an implicit stream local to both the thread and the
CUcontext, and which does not synchronize with other streams (just like explcitly created
streams). The per-thread default stream is not a non-blocking stream and will synchronize
with the legacy default stream if both are used in a program.

The per-thread default stream can be used explicitly with the cUstream (cudaStream t)
handle CU_STREAM PER THREAD (cudaStreamPerThread).

CUDA Runtime API vRelease Version | 6

Chapter 4. Graph object thread safety

Graph objects (cudaGraph_t, CUgraph] are not internally synchronized and must not be
accessed concurrently from multiple threads. API calls accessing the same graph object must
be serialized externally.

Note that this includes APIs which may appear to be read-only, such as cudaGraphClone ()
(cuGraphClone ()] and cudaGraphInstantiate () (cuGraphInstantiate ()]. No APl or pair
of APIs is guaranteed to be safe to call on the same graph object from two different threads
without serialization.

CUDA Runtime API vRelease Version | 7

Chapter 5. Rules for version mixing

1. Starting with CUDA 11.0, the ABI version for the CUDA runtime is bumped every
major release. CUDA-defined types, whether opaque handles or structures like
cudaDeviceProp, have their ABl tied to the major release of the CUDA runtime. It is
unsafe to pass them from function A to function B if those functions have been compiled
with different major versions of the toolkit and linked together into the same device
executable.

2. The CUDA Driver API has a per-function ABIl denoted with a _v* extension. CUDA-defined
types (e.qg structs) should not be passed across different ABI versions. For example, an
application calling cuMemcpy2D v2 (const CUDA MEMCPY2D v2 *pCopy) and using the
older version of the struct cubA MEMCPY2D vl instead of CUDA MEMCPY2D v2.

3. Users should not arbitrarily mix different APl versions during the lifetime of a resource.
These resources include IPC handles, memory, streams, contexts, events, etc. For
example, a user who wants to allocate CUDA memory using cuMemAlloc v2 should free
the memory using cuMemFree v2 and not cuMemFree.

CUDA Runtime API vRelease Version | 8

Chapter 6.

Here is a list of all modules:

>

>

>

>

Device Management

Thread Management [DEPRECATED]

Error Handling

Stream Management

Event Management

External Resource Interoperability

Execution Control

Occupancy

Memory Management

Memory Management [DEPRECATED]

Stream Ordered Memory Allocator

Unified Addressing

Peer Device Memory Access

OpenGL Interoperability
OpenGL Interoperability [DEPRECATED]

Direct3D 9 Interoperability

Direct3D 9 Interoperability [DEPRECATED]

Direct3D 10 Interoperability

Direct3D 10 Interoperability [DEPRECATED]

Modules

Direct3D 11 Interoperability

Direct3D 11 Interoperability [DEPRECATED]

VDPAU Interoperability

CUDA Runtime AP!I

vRelease Version | 9

Modules

» EGL Interoperability

» Graphics Interoperability

» Texture Reference Management [DEPRECATED]

> Surface Reference Management [DEPRECATED]

> Texture Object Management

» Surface Object Management

» Version Management

» Graph Management

» Driver Entry Point Access

» C++ APl Routines

» |nteractions with the CUDA Driver API

» Profiler Control [DEPRECATED]

» Profiler Control

» Data types used by CUDA Runtime

6.1. Device Management

This section describes the device management functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaChooseDevice (int *device,
const cudaDeviceProp *prop)

Select compute-device which best matches criteria.

Parameters

device
- Device with best match

prop
- Desired device properties

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 10

Modules

Description

Returns in *device the device which has properties that best match *prop.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties

__host__cudaError_t
cudaDeviceFlushGPUDirectRDMAWTrites
(cudaFlushGPUDirectRDMAWTritesTarget target,
cudaFlushGPUDirectRDMAWTritesScope scope)

Blocks until remote writes are visible to the specified scope.

Parameters

target

- The target of the operation, see cudaFlushGPUDirectRDMAWritesTarget
scope

- The scope of the operation, see cudaFlushGPUDirectRDMAWritesScope

Returns

cudaSuccess, cudaErrorNotSupported,

Description

Blocks until remote writes to the target context via mappings created through GPUDirect
RDMA APIs, like nvidia_p2p_get_pages [see https://docs.nvidia.com/cuda/gpudirect-rdma for
more information), are visible to the specified scope.

CUDA Runtime API vRelease Version | 11

https://docs.nvidia.com/cuda/gpudirect-rdma

Modules

If the scope equals or lies within the scope indicated by
cudaDevAttrGPUDirectRDMAWritesOrdering, the call will be a no-op and can be safely omitted
for performance. This can be determined by comparing the numerical values between the two
enums, with smaller scopes having smaller values.

Users may query support for this APl via cudaDevAttrGPUDirectRDMAFlushWritesOptions.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuFlushGPUDirectRDMAWTites

__host_ _device cudaError_t
cudaDeviceGetAttribute (int *value, cudaDeviceAttr
attr, int device)

Returns information about the device.

Parameters

value

- Returned device attribute value
attr

- Device attribute to query
device

- Device number to query

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

Description

Returns in *value the integer value of the attribute attr on device device. The supported
attributes are:

CUDA Runtime API vRelease Version | 12

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g265e3c82ef0f0fe035f85c4c45a8fbdf

Modules

cudaDevAttrMaxThreadsPerBlock: Maximum number of threads per block

cudaDevAttrMaxBlockDimX: Maximum x-dimension of a block

cudaDevAttrMaxBlockDimY: Maximum y-dimension of a block

cudaDevAttrMaxBlockDimZ: Maximum z-dimension of a block

cudaDevAttrMaxGridDimX: Maximum x-dimension of a grid

cudaDevAttrMaxGridDimY: Maximum y-dimension of a grid

cudaDevAttrMaxGridDimZ: Maximum z-dimension of a grid

cudaDevAttrMaxSharedMemoryPerBlock: Maximum amount of shared memory available
to a thread block in bytes

cudaDevAttrTotalConstantMemory: Memory available on device for __constant__ variables
in a CUDA C kernel in bytes

cudaDevAttrWarpSize: Warp size in threads

cudaDevAttrMaxPitch: Maximum pitch in bytes allowed by the memory copy functions that
involve memory regions allocated through cudaMallocPitch(]

cudaDevAttrMaxTexture 1 DWidth: Maximum 1D texture width

cudaDevAttrMaxTexture1DLinearWidth: Maximum width for a 1D texture bound to linear
memory

cudaDevAttrMaxTexture1DMipmappedWidth: Maximum mipmapped 1D texture width

cudaDevAttrMaxTexture2DWidth: Maximum 2D texture width

cudaDevAttrMaxTexture2DHeight: Maximum 2D texture height

cudaDevAttrMaxTexture2DLinearWidth: Maximum width for a 2D texture bound to linear
memory

cudaDevAttrMaxTexture2DLinearHeight: Maximum height for a 2D texture bound to linear
memory

cudaDevAttrMaxTexture2DLinearPitch: Maximum pitch in bytes for a 2D texture bound to
linear memory

cudaDevAttrMaxTexture2DMipmappedWidth: Maximum mipmapped 2D texture width

cudaDevAttrMaxTexture2DMipmappedHeight: Maximum mipmapped 2D texture height

cudaDevAttrMaxTexture3DWidth: Maximum 3D texture width

cudaDevAttrMaxTexture3DHeight: Maximum 3D texture height

cudaDevAttrMaxTexture3DDepth: Maximum 3D texture depth

CUDA Runtime API vRelease Version | 13

Modules

cudaDevAttrMaxTexture3DWidthAlt: Alternate maximum 3D texture width, 0 if no alternate
maximum 3D texture size is supported

cudaDevAttrMaxTexture3DHeightAlt: Alternate maximum 3D texture height, 0 if no
alternate maximum 3D texture size is supported

cudaDevAttrMaxTexture3DDepthAlt: Alternate maximum 3D texture depth, O if no alternate
maximum 3D texture size is supported

cudaDevAttrMaxTextureCubemapWidth: Maximum cubemap texture width or height

cudaDevAttrMaxTexture1DLayeredWidth: Maximum 1D layered texture width

cudaDevAttrMaxTexture1DlLayeredl ayers: Maximum layers in a 1D layered texture

cudaDevAttrMaxTexture2DLayeredWidth: Maximum 2D layered texture width

cudaDevAttrMaxTexture2DLayeredHeight: Maximum 2D layered texture height

cudaDevAttrMaxTexture2DLayeredlLayers: Maximum layers in a 2D layered texture

cudaDevAttrMaxTextureCubemaplayeredWidth: Maximum cubemap layered texture width
or height

cudaDevAttrMaxTextureCubemaplayeredlLayers: Maximum layers in a cubemap layered
texture

cudaDevAttrMaxSurface1DWidth: Maximum 1D surface width

cudaDevAttrMaxSurface2DWidth: Maximum 2D surface width

cudaDevAttrMaxSurface2DHeight: Maximum 2D surface height

cudaDevAttrMaxSurface3DWidth: Maximum 3D surface width

cudaDevAttrMaxSurface3DHeight: Maximum 3D surface height

cudaDevAttrMaxSurface3DDepth: Maximum 3D surface depth

cudaDevAttrMaxSurfacelDLayeredWidth: Maximum 1D layered surface width

cudaDevAttrMaxSurfacelDlayeredl ayers: Maximum layers in a 1D layered surface

cudaDevAttrMaxSurface?DlayeredWidth: Maximum 2D layered surface width

cudaDevAttrMaxSurface?DlLayeredHeight: Maximum 2D layered surface height

cudaDevAttrMaxSurface?Dl ayeredl ayers: Maximum layers in a 2D layered surface

cudaDevAttrMaxSurfaceCubemapWidth: Maximum cubemap surface width

cudaDevAttrMaxSurfaceCubemaplayeredWidth: Maximum cubemap layered surface width

cudaDevAttrMaxSurfaceCubemaplayeredlLayers: Maximum layers in a cubemap layered
surface

CUDA Runtime API vRelease Version | 14

Modules

cudaDevAttrMaxRegistersPerBlock: Maximum number of 32-bit registers available to a
thread block

cudaDevAttrClockRate: Peak clock frequency in kilohertz

cudaDevAttrTextureAlignment: Alignment requirement; texture base addresses aligned to
textureAlign bytes do not need an offset applied to texture fetches

cudaDevAttrTexturePitchAlignment: Pitch alignment requirement for 2D texture
references bound to pitched memory

cudaDevAttrGpuOverlap: 1 if the device can concurrently copy memory between host and
device while executing a kernel, or 0 if not

cudaDevAttrMultiProcessorCount: Number of multiprocessors on the device

cudaDevAttrKernelExecTimeout: 1 if there is a run time limit for kernels executed on the
device, or 0 if not

cudaDevAttrintegrated: 1 if the device is integrated with the memory subsystem, or 0 if not

cudaDevAttrCanMapHostMemory: 1 if the device can map host memory into the CUDA
address space, or 0 if not

cudaDevAttrComputeMode: Compute mode is the compute mode that the device is
currently in. Available modes are as follows:

» cudaComputeModeDefault: Default mode - Device is not restricted and multiple
threads can use cudaSetDevice(] with this device.

» cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able
to use cudaSetDevice(] with this device.

» cudaComputeModeProhibited: Compute-prohibited mode - No threads can use
cudaSetDevice(] with this device.

» cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many
threads in one process will be able to use cudaSetDevice() with this device.

cudaDevAttrConcurrentKernels: 1 if the device supports executing multiple kernels within
the same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels
will be resident on the device concurrently so this feature should not be relied upon for
correctness.

cudaDevAttrEccEnabled: 1 if error correction is enabled on the device, 0 if error correction
is disabled or not supported by the device

cudaDevAttrPciBusld: PCl bus identifier of the device

cudaDevAttrPciDeviceld: PCl device (also known as slot) identifier of the device

cudaDevAttrTccDriver: 1 if the device is using a TCC driver. TCC is only available on Tesla
hardware running Windows Vista or later.

CUDA Runtime API vRelease Version | 15

Modules

cudaDevAttrMemoryClockRate: Peak memory clock frequency in kilohertz

cudaDevAttrGlobalMemoryBusWidth: Global memory bus width in bits

cudaDevAttrl 2CacheSize: Size of L2 cache in bytes. 0 if the device doesn't have L2 cache.

cudaDevAttrMaxThreadsPerMultiProcessor: Maximum resident threads per
multiprocessor

cudaDevAttrUnifiedAddressing: 1 if the device shares a unified address space with the
host, or 0 if not

cudaDevAttrComputeCapabilityMajor: Major compute capability version number

cudaDevAttrComputeCapabilityMinor: Minor compute capability version number

cudaDevAttrStreamPrioritiesSupported: 1 if the device supports stream priorities, or 0 if
not

cudaDevAttrGlobalL1CacheSupported: 1 if device supports caching globals in L1 cache, 0 if
not

cudaDevAttrLocallL1CacheSupported: 1 if device supports caching locals in L1 cache, O if
not

cudaDevAttrMaxSharedMemoryPerMultiprocessor: Maximum amount of shared memory
available to a multiprocessor in bytes; this amount is shared by all thread blocks
simultaneously resident on a multiprocessor

cudaDevAttrMaxRegistersPerMultiprocessor: Maximum number of 32-bit registers
available to a multiprocessor; this number is shared by all thread blocks simultaneously
resident on a multiprocessor

cudaDevAttrManagedMemory: 1 if device supports allocating managed memory, 0 if not

cudaDevAttrisMultiGpuBoard: 1 if device is on a multi-GPU board, 0 if not

cudaDevAttrMultiGpuBoardGrouplD: Unique identifier for a group of devices on the same
multi-GPU board

cudaDevAttrHostNativeAtomicSupported: 1 if the link between the device and the host
supports native atomic operations

cudaDevAttrSingleToDoublePrecisionPerfRatio: Ratio of single precision performance (in
floating-point operations per second) to double precision performance

cudaDevAttrPageableMemoryAccess: 1 if the device supports coherently accessing
pageable memory without calling cudaHostRegister on it, and 0 otherwise

cudaDevAttrConcurrentManagedAccess: 1 if the device can coherently access managed
memory concurrently with the CPU, and 0 otherwise

CUDA Runtime API vRelease Version | 16

Modules

cudaDevAttrComputePreemptionSupported: 1 if the device supports Compute Preemption,
0 if not

cudaDevAttrCanUseHostPointerForRegisteredMem: 1 if the device can access host

registered memory at the same virtual address as the CPU, and 0 otherwise

cudaDevAttrCooperativeLaunch: 1 if the device supports launching cooperative kernels via

cudalLaunchCooperativeKernel, and 0 otherwise

cudaDevAttrCooperativeMultiDeviceLaunch: 1 if the device supports launching cooperative

kernels via cudalLaunchCooperativeKernelMultiDevice, and 0 otherwise

cudaDevAttrCanFlushRemoteWrites: 1 if the device supports flushing of outstanding

remote writes, and 0 otherwise

cudaDevAttrHostRegisterSupported: 1 if the device supports host memory registration via

cudaHostRegister, and 0 otherwise

cudaDevAttrPageableMemoryAccessUsesHostPageTables: 1 if the device accesses
pageable memory via the host's page tables, and 0 otherwise

cudaDevAttrDirectManagedMemAccessFromHost: 1 if the host can directly access
managed memory on the device without migration, and 0 otherwise

cudaDevAttrMaxSharedMemoryPerBlockOptin: Maximum per block shared memory size
on the device. This value can be opted into when using cudafFuncSetAttribute

cudaDevAttrMaxBlocksPerMultiprocessor: Maximum number of thread blocks that can
reside on a multiprocessor

cudaDevAttrMaxPersistingL2CacheSize: Maximum L2 persisting lines capacity setting in
bytes

cudaDevAttrMaxAccessPolicyWindowSize: Maximum value of
cudaAccessPolicyWindow::num_bytes

cudaDevAttrReservedSharedMemoryPerBlock: Shared memory reserved by CUDA driver
per block in bytes

cudaDevAttrSparseCudaArraySupported: 1 if the device supports sparse CUDA arrays and
sparse CUDA mipmapped arrays.

cudaDevAttrHostRegisterReadOnlySupported: Device supports using the cudaHostRegister
flag cudaHostRegisterReadOnly to register memory that must be mapped as read-only to
the GPU

cudaDevAttrMemoryPoolsSupported: 1 if the device supports using the cudaMallocAsync
and cudaMemPool family of APIs, and 0 otherwise

cudaDevAttrGPUDirectRDMASupported: 1 if the device supports GPUDirect RDMA APls,
and 0 otherwise

CUDA Runtime API vRelease Version | 17

Modules

» cudaDevAttrGPUDirectRDMAFlushWritesOptions: bitmask to be interpreted according to
the cudaFlushGPUDirectRDMAWTritesOptions enum

» cudaDevAttrGPUDirectRDMAWTritesOrdering: see the cudaGPUDirectRDMAWTritesOrdering
enum for numerical values

» cudaDevAttrMemoryPoolSupportedHandleTypes: Bitmask of handle types supported with
mempool based IPC

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaGetDeviceProperties, cuDeviceGetAttribute

__host__cudaError_t cudaDeviceGetByPCIBusld (int
*device, const char *pciBusld]

Returns a handle to a compute device.

Parameters

device
- Returned device ordinal

pciBusld
- String in one of the following forms: [domain]:[bus]:[device].[function] [domain]:[bus]:
[device] [bus]:[device].[function] where domain, bus, device, and function are all
hexadecimal values

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Returns in *device a device ordinal given a PCl bus ID string.

CUDA Runtime API vRelease Version | 18

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceGetPClBusld, cuDeviceGetByPCIBusld

__host_ device cudaError_t
cudaDeviceGetCacheConfig (cudaFuncCache
*pCacheConfig]

Returns the preferred cache configuration for the current device.

Parameters

pCacheConfig
- Returned cache configuration

Returns

cudaSuccess

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
returns through pCacheConfig the preferred cache configuration for the current device. This
is only a preference. The runtime will use the requested configuration if possible, but it is free
to choose a different configuration if required to execute functions.

This will return a pCacheConfig of cudaFuncCachePreferNone on devices where the size of
the L1 cache and shared memory are fixed.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

CUDA Runtime API vRelease Version | 19

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga89cd3fa06334ba7853ed1232c5ebe2a

Modules

» cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig, cudaFuncSetCacheConfig [C API), cudaFuncSetCacheConfig [C+
+ API], cuCtxGetCacheConfig

__host__cudaError_t cudaDeviceGetDefaultMemPool
(cudaMemPool t *memPool, int device)

Returns the default mempool of a device.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue cudaErrorNotSupported

Description

The default mempool of a device contains device memory from that device.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 20

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g40b6b141698f76744dea6e39b9a25360

Modules

cuDeviceGetDefaultMemPool, cudaMallocAsync, cudaMemPoolTrimTo,
cudaMemPoolGetAttribute, cudaDeviceSetMemPool, cudaMemPoolSetAttribute,
cudaMemPoolSetAccess

__host _device cudaError_t cudaDeviceGetLimit
[size_t *pValue, cudaLimit limit)

Returns resource limits.

Parameters

pValue

- Returned size of the limit
limit

- Limit to query

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description
Returns in *pValue the current size of 1imit. The supported cudalLimit values are:

> cudalimitStackSize: stack size in bytes of each GPU thread;

» cudalimitPrintfFifoSize: size in bytes of the shared FIFO used by the printf() device system
call.

» cudalimitMallocHeapSize: size in bytes of the heap used by the malloc() and free() device
system calls;

» cudaLimitDevRuntimeSyncDepth: maximum grid depth at which a thread can isssue the
device runtime call cudaDeviceSynchronize(] to wait on child grid launches to complete.

» cudaLimitDevRuntimePendinglLaunchCount: maximum number of outstanding device
runtime launches.

» cudaLimitMaxL2FetchGranularity: L2 cache fetch granularity.

» cudaLimitPersistingL2CacheSize: Persisting L2 cache size in bytes

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 21

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gc8bca3c97a78816303b8aa5773b741f2

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetLimit, cuCtxGetLimit

__host_ _cudaError_t cudaDeviceGetMemPool
(cudaMemPool t *memPool, int device)

Gets the current mempool for a device.

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorNotSupported

Description

Returns the last pool provided to cudaDeviceSetMemPool for this device or the device's
default memory pool if cudaDeviceSetMemPool has never been called. By default the current
mempool is the default mempool for a device, otherwise the returned pool must have been set
with cuDeviceSetMemPool or cudaDeviceSetMemPool.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuDeviceGetMemPool, cudaDeviceGetDefaultMemPool, cudaDeviceSetMemPool

CUDA Runtime API vRelease Version | 22

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g9f2d47d1745752aa16da7ed0d111b6a8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g4f2f276b84d9c2eaefdc76d6274db4a0
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gdf186e9559d53a5eb18e572d48c1121b

Modules

__host__cudaError_t
cudaDeviceGetNvSciSyncAttributes (void
*nvSciSyncAttrList, int device, int flags)

Return NvSciSync attributes that this device can support.

Parameters

nvSciSyncAttrList

- Return NvSciSync attributes supported.
device

- Valid Cuda Device to get NvSciSync attributes for.
flags

- flags describing NvSciSync usage.

Description

Returns in nvSciSyncAttrList, the properties of NvSciSync that this CUDA device, dev
can support. The returned nvSciSyncAttrList can be used to create an NvSciSync that
matches this device's capabilities.

If NvSciSyncAttrKey_RequiredPerm field in nvSciSyncAttrList is already set this APl will
return cudaErrorinvalidValue.

The applications should set nvSciSyncAttrList to avalid NvSciSyncAttrList failing which
this APl will return cudaErrorinvalidHandle.

The flags controls how applications intends to use the NvSciSync created from the
nvSciSyncAttrList. The valid flags are:

» cudaNvSciSyncAttrSignal, specifies that the applications intends to signal an NvSciSync on
this CUDA device.

» cudaNvSciSyncAttrWait, specifies that the applications intends to wait on an NvSciSync on
this CUDA device.

At least one of these flags must be set, failing which the API returns cudaErrorinvalidValue.
Both the flags are orthogonal to one another: a developer may set both these flags that allows
to set both wait and signal specific attributes in the same nvSciSyncAttrList.

cudaSuccess, cudaErrorDeviceUninitialized, cudaErrorinvalidValue, cudaErrorinvalidHandle,
cudaErrorinvalidDevice, cudaErrorNotSupported, cudaErrorMemoryAllocation

See also:

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync

CUDA Runtime API vRelease Version | 23

Modules

__host__cudaError_t cudaDeviceGetP2PAttribute
(int *value, cudaDeviceP2PAttr attr, int srcDevice, int
dstDevice)

Queries attributes of the link between two devices.

Parameters

value

- Returned value of the requested attribute
attr
srcDevice

- The source device of the target link.
dstDevice

- The destination device of the target link.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

Description

Returns in *value the value of the requested attribute attrib of the link between
srcDevice and dstDevice. The supported attributes are:

» cudaDevP2PAttrPerformanceRank: A relative value indicating the performance of the link
between two devices. Lower value means better performance (0 being the value used for
most performant link).

» cudaDevP2PAttrAccessSupported: 1 if peer access is enabled.

» cudaDevP2PAttrNativeAtomicSupported: 1 if native atomic operations over the link are
supported.

» cudaDevP?2PAttrCudaArrayAccessSupported: 1 if accessing CUDA arrays over the link is
supported.

Returns cudaErrorinvalidDevice if srcDevice or dstDevice are notvalid or if they
represent the same device.

Returns cudaErrorinvalidValue if attrib is not valid or if value is a null pointer.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 24

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCtxEnablePeerAccess, cudaCtxDisablePeerAccess, cudaCtxCanAccessPeer,
cuDeviceGetP2PAttribute

__host__cudaError_t cudaDeviceGetPCIBusld (char
*pciBusld, int len, int device)

Returns a PCI Bus Id string for the device.

Parameters

pciBusld
- Returned identifier string for the device in the following format [domain]:[bus]:[device].
[function] where domain, bus, device, and function are all hexadecimal values.
pciBusld should be large enough to store 13 characters including the NULL-terminator.
len
- Maximum length of string to store in name
device
- Device to get identifier string for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Returns an ASCII string identifying the device dev in the NULL-terminated string pointed to by
pciBusId. len specifies the maximum length of the string that may be returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 25

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g4c55c60508f8eba4546b51f2ee545393

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetByPCIBusld, cuDeviceGetPCIBusld

__host_ device cudaError_t
cudaDeviceGetSharedMemConfig
(cudaSharedMemConfig *pConfig]

Returns the shared memory configuration for the current device.

Parameters

pConfig
- Returned cache configuration

Returns

cudaSuccess, cudaErrorinvalidValue

Description

This function will return in pConfig the current size of shared memory banks on the current
device. On devices with configurable shared memory banks, cudaDeviceSetSharedMemConfig
can be used to change this setting, so that all subsequent kernel launches will by default

use the new bank size. When cudaDeviceGetSharedMemConfig is called on devices without
configurable shared memory, it will return the fixed bank size of the hardware.

The returned bank configurations can be either:
» cudaSharedMemBankSizeFourByte - shared memory bank width is four bytes.

» cudaSharedMemBankSizeEightByte - shared memory bank width is eight bytes.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 26

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g85295e7d9745ab8f0aa80dd1e172acfc

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceSetSharedMemConfig,
cudaFuncSetCacheConfig, cuCtxGetSharedMemConfig

__host__cudaError_t
cudaDeviceGetStreamPriorityRange (int
*leastPriority, int *greatestPriority)

Returns numerical values that correspond to the least and greatest stream priorities.

Parameters

leastPriority

- Pointer to an int in which the numerical value for least stream priority is returned
greatestPriority

- Pointer to an int in which the numerical value for greatest stream priority is returned

Returns

cudaSuccess

Description

Returnsin *1leastPriority and *greatestPriority the numerical values that
correspond to the least and greatest stream priorities respectively. Stream priorities follow

a convention where lower numbers imply greater priorities. The range of meaningful stream
priorities is given by [*greatestPriority, *leastPriorityl. If the user attempts to
create a stream with a priority value that is outside the the meaningful range as specified

by this AP, the priority is automatically clamped down or up to either *leastPriority or
*greatestPriority respectively. See cudaStreamCreateWithPriority for details on creating
a priority stream. A NULL may be passed in for *1leastPriority or *greatestPriority
if the value is not desired.

This function will return '0" in both *1eastPriority and *greatestPriority if the
current context's device does not support stream priorities (see cudaDeviceGetAttribute).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 27

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g17153a1b8b8c756f7ab8505686a4ad74

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamGetPriority, cuCtxGetStreamPriorityRange

__host__cudaError_t
cudaDeviceGetTexture1DLinearMaxWidth
[size t *maxWidthInElements, const
cudaChannelFormatDesc *fmtDesc, int device])

Returns the maximum number of elements allocatable in a 1D linear texture for a given
element size.

Parameters

maxWidthInElements

- Returns maximum number of texture elements allocatable for given fmtDesc.
fmtDesc

- Texture format description.
device

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description

Returns in maxWidthInElements the maximum number of elements allocatable ina 1D
linear texture for given format descriptor fmtDesc.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 28

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g137920ab61a71be6ce67605b9f294091

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuDeviceGetMaxTexture1DLinear,

__host__cudaError_t cudaDeviceReset (void]

Destroy all allocations and reset all state on the current device in the current process.

Returns

cudaSuccess

Description

Explicitly destroys and cleans up all resources associated with the current device in

the current process. It is the caller’'s responsibility to ensure that the resources are

not accessed or passed in subsequent API calls and doing so will result in undefined
behavior. These resources include CUDA types such as cudaStream_t, cudaEvent_t,
cudaArray_t, cudaMipmappedArray_t, cudaTextureObject_t, cudaSurfaceObject_t,
textureReference, surfaceReference, cudaExternalMemory_t, cudaExternalSemaphore_t and
cudaGraphicsResource_t. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’'s responsibility to
ensure that the device is not being accessed by any other host threads from the process when
this function is called.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSynchronize

CUDA Runtime API vRelease Version | 29

Modules

__host__cudaError_t cudaDeviceSetCacheConfig
(cudaFuncCache cacheConfig)

Sets the preferred cache configuration for the current device.

Parameters

cacheConfig
- Requested cache configuration

Returns

cudaSuccess

Description

On devices where the L1 cache and shared memory use the same hardware resources,

this sets through cacheConfig the preferred cache configuration for the current device.

This is only a preference. The runtime will use the requested configuration if possible, but

itis free to choose a different configuration if required to execute the function. Any function
preference set via cudaFuncSetCacheConfig [C API] or cudaFuncSetCacheConfig [C++ API)
will be preferred over this device-wide setting. Setting the device-wide cache configuration to
cudaFuncCachePreferNone will cause subsequent kernel launches to prefer to not change the
cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default]

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 30

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetCacheConfig, cudaFuncSetCacheConfig [C API), cudaFuncSetCacheConfig [C+
+ API), cuCtxSetCacheConfig

__host__cudaError_t cudaDeviceSetLimit (cudaLimit
limit, size_t value])

Set resource limits.

Parameters
limit

- Limit to set
value

- Size of limit

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue,
cudaErrorMemoryAllocation

Description

Setting 1imit to value is a request by the application to update the current limit maintained
by the device. The driver is free to modify the requested value to meet h/w requirements (this

could be clamping to minimum or maximum values, rounding up to nearest element size, etc).
The application can use cudaDeviceGetLimit(] to find out exactly what the limit has been set to.

Setting each cudalimit has its own specific restrictions, so each is discussed here.

> cudalimitStackSize controls the stack size in bytes of each GPU thread.

» cudalimitPrintfFifoSize controls the size in bytes of the shared FIFO used by the printf()
device system call. Setting cudalLimitPrintfFifoSize must not be performed after launching
any kernel that uses the printf(] device system call - in such case cudaErrorinvalidValue
will be returned.

» cudalimitMallocHeapSize controls the size in bytes of the heap used by the malloc(] and
free() device system calls. Setting cudalimitMallocHeapSize must not be performed after
launching any kernel that uses the malloc() or free() device system calls - in such case
cudaErrorinvalidValue will be returned.

CUDA Runtime API vRelease Version | 31

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g54699acf7e2ef27279d013ca2095f4a3

| 2

Modules

cudaLimitDevRuntimeSyncDepth controls the maximum nesting depth of a grid

at which a thread can safely call cudaDeviceSynchronize(). Setting this limit must

be performed before any launch of a kernel that uses the device runtime and calls
cudaDeviceSynchronize() above the default sync depth, two levels of grids. Calls to
cudaDeviceSynchronize() will fail with error code cudaErrorSyncDepthExceeded if the
limitation is violated. This limit can be set smaller than the default or up the maximum
launch depth of 24. When setting this limit, keep in mind that additional levels of sync
depth require the runtime to reserve large amounts of device memory which can

no longer be used for user allocations. If these reservations of device memory fail,
cudaDeviceSetLimit will return cudaErrorMemoryAllocation, and the limit can be reset to
a lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the
error cudaErrorUnsupportedLimit being returned.

cudaLimitDevRuntimePendinglLaunchCount controls the maximum number of
outstanding device runtime launches that can be made from the current device. A

grid is outstanding from the point of launch up until the grid is known to have been
completed. Device runtime launches which violate this limitation fail and return
cudaErrorLaunchPendingCountExceeded when cudaGetlLastError() is called after launch.
If more pending launches than the default (2048 launches) are needed for a module using
the device runtime, this limit can be increased. Keep in mind that being able to sustain
additional pending launches will require the runtime to reserve larger amounts of device
memory upfront which can no longer be used for allocations. If these reservations fail,
cudaDeviceSetLimit will return cudaErrorMemoryAllocation, and the limit can be reset to
a lower value. This limit is only applicable to devices of compute capability 3.5 and higher.
Attempting to set this limit on devices of compute capability less than 3.5 will result in the
error cudaErrorUnsupportedLimit being returned.

cudaLimitMaxL?2FetchGranularity controls the L2 cache fetch granularity. Values can
range from OB to 128B. This is purely a performance hint and it can be ignored or clamped
depending on the platform.

cudalimitPersistingL2CacheSize controls size in bytes available for persisting L2 cache.
This is purely a performance hint and it can be ignored or clamped depending on the
platform.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 32

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetLimit, cuCtxSetLimit

__host__cudaError_t cudaDeviceSetMemPool (int
device, cudaMemPool t memPool]

Sets the current memory pool of a device.

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidDevice cudaErrorNotSupported

Description

The memory pool must be local to the specified device. Unless a mempool is specified in the
cudaMallocAsync call, cudaMallocAsync allocates from the current mempool of the provided
stream’s device. By default, a device's current memory pool is its default memory pool.

Note:

Use cudaMallocFromPoolAsync to specify asynchronous allocations from a device different

than the one the stream runs on.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuDeviceSetDefaultMemPool, cudaDeviceGetMemPool, cudaDeviceGetDefaultMemPool,
cudaMemPoolCreate, cudaMemPoolDestroy, cudaMallocFromPoolAsync

CUDA Runtime API vRelease Version | 33

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g0651954dfb9788173e60a9af7201e65a

Modules

__host__cudaError_t
cudaDeviceSetSharedMemConfig
(cudaSharedMemConfig config)

Sets the shared memory configuration for the current device.

Parameters

config
- Requested cache configuration

Returns

cudaSuccess, cudaErrorinvalidValue

Description

On devices with configurable shared memory banks, this function will set the shared memory
bank size which is used for all subsequent kernel launches. Any per-function setting of shared
memory set via cudaFuncSetSharedMemConfig will override the device wide setting.

Changing the shared memory configuration between launches may introduce a device side
synchronization point.

Changing the shared memory bank size will not increase shared memory usage or affect
occupancy of kernels, but may have major effects on performance. Larger bank sizes will
allow for greater potential bandwidth to shared memory, but will change what kinds of
accesses to shared memory will result in bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.
The supported bank configurations are:
» cudaSharedMemBankSizeDefault: set bank width the device default (currently, four bytes)

» cudaSharedMemBankSizeFourByte: set shared memory bank width to be four bytes
natively.

» cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight bytes
natively.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 34

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaDeviceGetSharedMemConfig,
cudaFuncSetCacheConfig, cuCtxSetSharedMemConfig

__host_ _device_ cudaError_t
cudaDeviceSynchronize (void)

Wait for compute device to finish.

Returns

cudaSuccess

Description

Blocks until the device has completed all preceding requested tasks.
cudaDeviceSynchronize() returns an error if one of the preceding tasks has failed. If the
cudaDeviceScheduleBlockingSync flag was set for this device, the host thread will block until
the device has finished its work.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceReset, cuCtxSynchronize

CUDA Runtime API vRelease Version | 35

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g2574235fa643f8f251bf7bc28fac3692
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g7a54725f28d34b8c6299f0c6ca579616

Modules

__host_ device_ cudaError_t cudaGetDevice (int
*device)

Returns which device is currently being used.

Parameters

device

- Returns the device on which the active host thread executes the device code.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *device the current device for the calling host thread.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuCtxGetCurrent

__host_ _device cudaError_t cudaGetDeviceCount
(int *count)

Returns the number of compute-capable devices.

Parameters

count
- Returns the number of devices with compute capability greater or equal to 2.0

CUDA Runtime API vRelease Version | 36

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g8f13165846b73750693640fb3e8380d0

Modules

Returns

cudaSuccess

Description

Returns in *count the number of devices with compute capability greater or equal to 2.0 that
are available for execution.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDevice, cudaSetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuDeviceGetCount

__host__cudaError_t cudaGetDeviceFlags (unsigned
int *flags)
Gets the flags for the current device.

Parameters

flags
- Pointer to store the device flags

Returns

cudaSuccess, cudaErrorinvalidDevice

Description

Returns in flags the flags for the current device. If there is a current device for the calling
thread, the flags for the device are returned. If there is no current device, the flags for

the first device are returned, which may be the default flags. Compare to the behavior of
cudaSetDeviceFlags.

CUDA Runtime API vRelease Version | 37

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g52b5ce05cb8c5fb6831b2c0ff2887c74

Modules

Typically, the flags returned should match the behavior that will be seen if the calling thread
uses a device after this call, without any change to the flags or current device inbetween by
this or another thread. Note that if the device is not initialized, it is possible for another thread
to change the flags for the current device before it is initialized. Additionally, when using
exclusive mode, if this thread has not requested a specific device, it may use a device other
than the first device, contrary to the assumption made by this function.

If a context has been created via the driver APl and is current to the calling thread, the flags
for that context are always returned.

Flags returned by this function may specifically include cudaDeviceMapHost even though it is

not accepted by cudaSetDeviceFlags because it is implicit in runtime API flags. The reason for
this is that the current context may have been created via the driver APl in which case the flag
is not implicit and may be unset.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDevice, cudaGetDeviceProperties, cudaSetDevice, cudaSetDeviceFlags,
cuCtxGetFlags, cuDevicePrimaryCtxGetState

__host__cudaError_t cudaGetDeviceProperties
(cudaDeviceProp *prop, int device)

Returns information about the compute-device.

Parameters

prop

- Properties for the specified device
device

- Device number to get properties for

Returns

cudaSuccess, cudaErrorinvalidDevice

CUDA Runtime API vRelease Version | 38

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1gf81eef983c1e3b2ef4f166d7a930c86d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1g65f3e018721b6d90aa05cfb56250f469

Description

Returns in *prop the properties of device dev. The cudaDeviceProp structure is defined as:

r struct cudaDeviceProp {

CUDA Runtime AP!I

char name[256];
cudaUUID t uuid;

size t totalGlobalMem;
size t sharedMemPerBlock;

int
int

regsPerBlock;
warpSize;

size t memPitch;

int
int
int
int

maxThreadsPerBlock;
maxThreadsDim[3];
maxGridSize[3];
clockRate;

size t totalConstMem;

int
int

major;
minor;

size t textureAlignment;
size t texturePitchAlignment;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

deviceOverlap;
multiProcessorCount;
kernelExecTimeoutEnabled;
integrated;
canMapHostMemory;
computeMode;
maxTexturelD;
maxTexturelDMipmap;
maxTexturelDLinear;
maxTexture2D[2];
maxTexture2DMipmap([2];
maxTexture2DLinear[3];
maxTexture2DGather([2];
maxTexture3D[3];
maxTexture3DA1t[3];
maxTextureCubemap;
maxTexturelDLayered[2];
maxTexturez2DLayered[3];
maxTextureCubemapLayered([2];
maxSurfacelD;
maxSurface2D[2];
maxSurface3D[3];
maxSurfacelDLayered[2];
maxSurface2DLayered[3];
maxSurfaceCubemap;
maxSurfaceCubemaplLayered[2];

size t surfaceAlignment;

int
int
int
int
int
int
int
int
int
int
int
int
int
int
int
int

size t sharedMemPerMultiprocessor;

concurrentKernels;
ECCEnabled;

pciBusID;

pciDevicelID;

pciDomainlID;

tccDriver;
asyncEngineCount;
unifiedAddressing;
memoryClockRate;
memoryBusWidth;
12CacheSize;
persistingl2CacheMaxSize;
maxThreadsPerMultiProcessor;
streamPrioritiesSupported;
globalLlCacheSupported;
localllCacheSupported;

Modules

vRelease Version

39

Modules

int regsPerMultiprocessor;

int managedMemory;

int isMultiGpuBoard;

int multiGpuBoardGrouplD;

int singleToDoublePrecisionPerfRatio;
int pageableMemorvyAccess;

int concurrentManagedAccess;

int computePreemptionSupported;

int canUseHostPointerForRegisteredMem;
int cooperativelaunch;

int cooperativeMultiDevicelLaunch;

int pageableMemoryAccessUsesHostPageTables;
int directManagedMemAccessFromHost;
int accessPolicyMaxWindowSize;

where:

» name(256] is an ASCII string identifying the device;

» uuid is a 16-byte unique identifier.

> totalGlobalMem is the total amount of global memory available on the device in bytes;

> sharedMemPerBlock is the maximum amount of shared memory available to a thread
block in bytes;

» regsPerBlock is the maximum number of 32-bit registers available to a thread block;

» warpSize is the warp size in threads;

» memPitch is the maximum pitch in bytes allowed by the memory copy functions that
involve memory regions allocated through cudaMallocPitch(J;

» maxThreadsPerBlock is the maximum number of threads per block;

» maxThreadsDim[3] contains the maximum size of each dimension of a block;

» maxGridSize[3] contains the maximum size of each dimension of a grid;

> clockRate is the clock frequency in kilohertz;

> totalConstMem is the total amount of constant memory available on the device in bytes;

» major, minor are the major and minor revision numbers defining the device's compute
capability;

> textureAlignment is the alignment requirement; texture base addresses that are aligned to
textureAlignment bytes do not need an offset applied to texture fetches;

» texturePitchAlignment is the pitch alignment requirement for 2D texture references that
are bound to pitched memory;

» deviceOverlap is 1 if the device can concurrently copy memory between host and device
while executing a kernel, or 0 if not. Deprecated, use instead asyncEngineCount.

> multiProcessorCount is the number of multiprocessors on the device;

CUDA Runtime API vRelease Version | 40

Modules

kernelExecTimeoutEnabled is 1 if there is a run time limit for kernels executed on the
device, or 0 if not.

integrated is 1 if the device is an integrated (motherboard) GPU and 0 if it is a discrete
(card) component.

canMapHostMemory is 1 if the device can map host memory into the CUDA address space
for use with cudaHostAlloc()/cudaHostGetDevicePointer(], or 0 if not;

computeMode is the compute mode that the device is currently in. Available modes are as
follows:

» cudaComputeModeDefault: Default mode - Device is not restricted and multiple
threads can use cudaSetDevice() with this device.

» cudaComputeModeExclusive: Compute-exclusive mode - Only one thread will be able
to use cudaSetDevice(] with this device.

» cudaComputeModeProhibited: Compute-prohibited mode - No threads can use
cudaSetDevice(] with this device.

» cudaComputeModeExclusiveProcess: Compute-exclusive-process mode - Many
threads in one process will be able to use cudaSetDevice(] with this device.

If cudaSetDevice(] is called on an already occupied device with computeMode
cudaComputeModeExclusive, cudaErrorDeviceAlreadylnUse will be immediately
returned indicating the device cannot be used. When an occupied exclusive mode
device is chosen with cudaSetDevice, all subsequent non-device management runtime
functions will return cudaErrorDevicesUnavailable.

maxTexturelD is the maximum 1D texture size.

maxTexture1DMipmap is the maximum 1D mipmapped texture texture size.

maxTexturelDLinear is the maximum 1D texture size for textures bound to linear memory.

maxTexture2D[2] contains the maximum 2D texture dimensions.

maxTexture2DMipmap[2] contains the maximum 2D mipmapped texture dimensions.

maxTexture2DLinear[3] contains the maximum 2D texture dimensions for 2D textures
bound to pitch linear memory.

maxTexture2DGather[2] contains the maximum 2D texture dimensions if texture gather
operations have to be performed.

maxTexture3D[3] contains the maximum 3D texture dimensions.

maxTexture3DALl[3] contains the maximum alternate 3D texture dimensions.

maxTextureCubemap is the maximum cubemap texture width or height.

maxTexturel1Dlayered[?] contains the maximum 1D layered texture dimensions.

CUDA Runtime API vRelease Version | 41

Modules

» maxTexture2DLayered[3] contains the maximum 2D layered texture dimensions.

» maxTextureCubemaplayered[2] contains the maximum cubemap layered texture
dimensions.

» maxSurfacelD is the maximum 1D surface size.

» maxSurface?2D[2] contains the maximum 2D surface dimensions.

» maxSurface3D[3] contains the maximum 3D surface dimensions.

» maxSurfacelDLayered[?] contains the maximum 1D layered surface dimensions.

» maxSurface?2DLayered[3] contains the maximum 2D layered surface dimensions.

» maxSurfaceCubemap is the maximum cubemap surface width or height.

» maxSurfaceCubemaplayered[2] contains the maximum cubemap layered surface
dimensions.

» surfaceAlignment specifies the alignment requirements for surfaces.

» concurrentKernels is 1 if the device supports executing multiple kernels within the
same context simultaneously, or 0 if not. It is not guaranteed that multiple kernels will
be resident on the device concurrently so this feature should not be relied upon for
correctness;

» ECCEnabled is 1 if the device has ECC support turned on, or O if not.

» pciBuslD is the PCl bus identifier of the device.

» pciDevicelD is the PCl device [sometimes called slot] identifier of the device.
» pciDomainlD is the PCI domain identifier of the device.

> tccDriveris 1if the device is using a TCC driver or 0 if not.

» asyncEngineCount is 1 when the device can concurrently copy memory between host and
device while executing a kernel. It is 2 when the device can concurrently copy memory
between host and device in both directions and execute a kernel at the same time. It is 0 if
neither of these is supported.

» unifiedAddressing is 1 if the device shares a unified address space with the host and 0
otherwise.

» memoryClockRate is the peak memory clock frequency in kilohertz.

> memoryBusWidth is the memory bus width in bits.

» [2CacheSize is L2 cache size in bytes.

» persistingL2CacheMaxSize is L2 cache’s maximum persisting lines size in bytes.

» maxThreadsPerMultiProcessor is the number of maximum resident threads per
multiprocessor.

CUDA Runtime API vRelease Version | 42

Modules

streamPrioritiesSupported is 1 if the device supports stream priorities, or Q if it is not
supported.

globalL1CacheSupported is 1 if the device supports caching of globals in L1 cache, or 0 if it
Is not supported.

locallL.1CacheSupported is 1 if the device supports caching of locals in L1 cache, or Qif it is
not supported.

sharedMemPerMultiprocessor is the maximum amount of shared memory available to
a multiprocessor in bytes; this amount is shared by all thread blocks simultaneously
resident on a multiprocessor;

regsPerMultiprocessor is the maximum number of 32-bit registers available to a
multiprocessor; this number is shared by all thread blocks simultaneously resident on a
multiprocessor;

managedMemory is 1 if the device supports allocating managed memory on this system, or
0 if it is not supported.

isMultiGpuBoard is 1 if the device is on a multi-GPU board (e.g. Gemini cards), and 0 if not;

multiGpuBoardGrouplD is a unique identifier for a group of devices associated with the
same board. Devices on the same multi-GPU board will share the same identifier;

singleToDoublePrecisionPerfRatio is the ratio of single precision performance [in floating-
point operations per second) to double precision performance.

pageableMemoryAccess is 1 if the device supports coherently accessing pageable memory
without calling cudaHostRegister on it, and O otherwise.

concurrentManagedAccess is 1 if the device can coherently access managed memory
concurrently with the CPU, and 0 otherwise.

computePreemptionSupported is 1 if the device supports Compute Preemption, and 0
otherwise.

canUseHostPointerForRegisteredMem is 1 if the device can access host registered
memory at the same virtual address as the CPU, and 0 otherwise.

cooperativeLaunch is T if the device supports launching cooperative kernels via
cudalaunchCooperativeKernel, and 0 otherwise.

cooperativeMultiDevicelLaunch is 1 if the device supports launching cooperative kernels via
cudal aunchCooperativeKernelMultiDevice, and 0 otherwise.

pageableMemoryAccessUsesHostPageTables is 1 if the device accesses pageable memory
via the host's page tables, and 0 otherwise.

directManagedMemAccessFromHost is 1 if the host can directly access managed memory
on the device without migration, and O otherwise.

CUDA Runtime API vRelease Version | 43

Modules

» maxBlocksPerMultiProcessor is the maximum number of thread blocks that can reside on
a multiprocessor.

> accessPolicyMaxWindowSize is the maximum value of
cudaAccessPolicyWindow::num bytes.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cudaDeviceGetAttribute, cuDeviceGetAttribute, cuDeviceGetName

__host__cudaError_t cudalpcCloseMemHandle (void
*devPtr)

Attempts to close memory mapped with cudalpcOpenMemHandle.

Parameters

devPtr
- Device pointer returned by cudalpcOpenMemHandle

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorNotSupported,
cudaErrorinvalidValue

Description

Decrements the reference count of the memory returnd by cudalpcOpenMemHandle by 1.
When the reference count reaches 0, this APl unmaps the memory. The original allocation in
the exporting process as well as imported mappings in other processes will be unaffected.

Any resources used to enable peer access will be freed if this is the last mapping using them.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

CUDA Runtime API vRelease Version | 44

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1g9c3e1414f0ad901d3278a4d6645fc266
../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gef75aa30df95446a845f2a7b9fffbb7f

Modules

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcGetMemHandle, cudalpcOpenMemHandle, culpcCloseMemHandle

__host__cudaError_t cudalpcGetEventHandle
(cudalpcEventHandle_t *handle, cudaEvent_t event]

Gets an interprocess handle for a previously allocated event.

Parameters

handle
- Pointer to a user allocated cudalpcEventHandle in which to return the opaque event
handle

event
- Event allocated with cudaEventInterprocess and cudaEventDisableTiming flags.

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorMemoryAllocation,
cudaErrorMapBufferObjectFailed, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Takes as input a previously allocated event. This event must have been created with the
cudaEventinterprocess and cudaEventDisableTiming flags set. This opaque handle may be
copied into other processes and opened with cudalpcOpenEventHandle to allow efficient
hardware synchronization between GPU work in different processes.

After the event has been been opened in the importing process, cudaEventRecord,
cudaEventSynchronize, cudaStreamWaitEvent and cudaEventQuery may be used in either
process. Performing operations on the imported event after the exported event has been freed
with cudaEventDestroy will result in undefined behavior.

CUDA Runtime API vRelease Version | 45

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gd6f5d5bcf6376c6853b64635b0157b9e

Modules

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudakventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudalpcOpenEventHandle, cudalpcGetMemHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcGetEventHandle

__host__cudaError_t cudalpcGetMemHandle
(cudalpcMemHandle_t *handle, void *devPtr)

Gets an interprocess memory handle for an existing device memory allocation.

Parameters

handle

- Pointer to user allocated cudalpcMemHandle to return the handle in.
devPtr

- Base pointer to previously allocated device memory

Returns

cudaSuccess, cudaErrorMemoryAllocation, cudaErrorMapBufferObjectFailed,
cudaErrorNotSupported, cudaErrorinvalidValue

Description

Takes a pointer to the base of an existing device memory allocation created with cudaMalloc
and exports it for use in another process. This is a lightweight operation and may be called
multiple times on an allocation without adverse effects.

If a region of memory is freed with cudaFree and a subsequent call to cudaMalloc returns
memory with the same device address, cudalpcGetMemHandle will return a unique handle for
the new memory.

CUDA Runtime API vRelease Version | 46

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gea02eadd12483de5305878b13288a86c

Modules

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcGetMemHandle

__host__cudaError_t cudalpcOpenEventHandle
(cudaEvent_t *event, cudalpcEventHandle_t handle)

Opens an interprocess event handle for use in the current process.

Parameters

event

- Returns the imported event
handle

- Interprocess handle to open

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorNotSupported,
cudaErrorinvalidValue, cudaErrorDeviceUninitialized

Description

Opens an interprocess event handle exported from another process with
cudalpcGetEventHandle. This function returns a cudakvent_t that behaves like a locally
created event with the cudaEventDisableTiming flag specified. This event must be freed with
cudaEventDestroy.

Performing operations on the imported event after the exported event has been freed with
cudaEventDestroy will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

CUDA Runtime API vRelease Version | 47

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g6f1b5be767b275f016523b2ac49ebec1

Modules

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudakEventCreate, cudaEventDestroy, cudaEventSynchronize, cudaEventQuery,
cudaStreamWaitEvent, cudalpcGetEventHandle, cudalpcGetMemHandle,
cudalpcOpenMemHandle, cudalpcCloseMemHandle, culpcOpenEventHandle

__host__cudaError_t cudalpcOpenMemHandle (void
**devPtr, cudalpcMemHandle_t handle, unsigned int
flags)

Opens an interprocess memory handle exported from another process and returns a device
pointer usable in the local process.

Parameters

devPtr
- Returned device pointer
handle
- cudalpcMemHandle to open
flags
- Flags for this operation. Must be specified as cudalpcMemLazyEnablePeerAccess

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed, cudaErrorinvalidResourceHandle,
cudaErrorDeviceUninitialized, cudaErrorTooManyPeers, cudaErrorNotSupported,
cudaErrorinvalidValue

Description

Maps memory exported from another process with cudalpcGetMemHandle into the current
device address space. For contexts on different devices cudalpcOpenMemHandle can attempt
to enable peer access between the devices as if the user called cudaDeviceEnablePeerAccess.
This behavior is controlled by the cudalpcMemLlazyEnablePeerAccess flag.
cudaDeviceCanAccessPeer can determine if a mapping is possible.

CUDA Runtime API vRelease Version | 48

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf1d525918b6c643b99ca8c8e42e36c2e

Modules

cudalpcOpenMemHandle can open handles to devices that may not be visible in the process
calling the API.

Contexts that may open cudalpcMemHandles are restricted in the following way.
cudalpcMemHandles from each device in a given process may only be opened by one context
per device per other process.

If the memory handle has already been opened by the current context, the reference count on
the handle is incremented by 1 and the existing device pointer is returned.

Memory returned from cudalpcOpenMemHandle must be freed with
cudalpcCloseMemHandle.

Calling cudaFree on an exported memory region before calling cudalpcCloseMemHandle in
the importing context will result in undefined behavior.

IPC functionality is restricted to devices with support for unified addressing on Linux operating
systems. IPC functionality is not supported on Tegra platforms.

Note:

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

> No guarantees are made about the address returned in *devPtr. In particular, multiple
processes may not receive the same address for the same handle.

See also:

cudaMalloc, cudaFree, cudalpcGetEventHandle, cudalpcOpenEventHandle,
cudalpcGetMemHandle, cudalpcCloseMemHandle, cudaDeviceEnablePeerAccess,
cudaDeviceCanAccessPeer, culpcOpenMemHandle

__host__cudaError_t cudaSetDevice (int device)

Set device to be used for GPU executions.

Parameters

device
- Device on which the active host thread should execute the device code.

CUDA Runtime API vRelease Version | 49

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga8bd126fcff919a0c996b7640f197b79

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorDeviceAlreadylnUse

Description

Sets device as the current device for the calling host thread. Valid device id's are O to
(cudaGetDeviceCount(] - 1).

Any device memory subsequently allocated from this host thread using cudaMalloc(],
cudaMallocPitch() or cudaMallocArray(] will be physically resident on device. Any host
memory allocated from this host thread using cudaMallocHost() or cudaHostAlloc(] or
cudaHostRegister(] will have its lifetime associated with device. Any streams or events
created from this host thread will be associated with device. Any kernels launched from this
host thread using the <<<>>> operator or cudaLaunchKernel(] will be executed on device.

This call may be made from any host thread, to any device, and at any time. This function will
do no synchronization with the previous or new device, and should be considered a very low
overhead call. If the current context bound to the calling thread is not the primary context,
this call will bind the primary context to the calling thread and all the subsequent memory
allocations, stream and event creations, and kernel launches will be associated with the
primary context.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties, cudaChooseDevice,
cuCtxSetCurrent

CUDA Runtime API vRelease Version | 50

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1gbe562ee6258b4fcc272ca6478ca2a2f7

Modules

__host__cudaError_t cudaSetDeviceFlags (unsigned
int flags)

Sets flags to be used for device executions.

Parameters

flags
- Parameters for device operation

Returns

cudaSuccess, cudaErrorlnvalidValue,

Description

Records flags as the flags for the current device. If the current device has been set and that

device has already been initialized, the previous flags are overwritten. If the current device has
not been initialized, it is initialized with the provided flags. If no device has been made current

to the calling thread, a default device is selected and initialized with the provided flags.

The two LSBs of the f1ags parameter can be used to control how the CPU thread interacts
with the OS scheduler when waiting for results from the device.

» cudaDeviceScheduleAuto: The default value if the f1ags parameter is zero, uses
a heuristic based on the number of active CUDA contexts in the process C and
the number of logical processors in the system P. If C > P, then CUDA will yield to
other OS threads when waiting for the device, otherwise CUDA will not yield while
waiting for results and actively spin on the processor. Additionally, on Tegra devices,
cudaDeviceScheduleAuto uses a heuristic based on the power profile of the platform and
may choose cudaDeviceScheduleBlockingSync for low-powered devices.

» cudaDeviceScheduleSpin: Instruct CUDA to actively spin when waiting for results from
the device. This can decrease latency when waiting for the device, but may lower the
performance of CPU threads if they are performing work in parallel with the CUDA thread.

» cudaDeviceScheduleYield: Instruct CUDA to yield its thread when waiting for results from
the device. This can increase latency when waiting for the device, but can increase the
performance of CPU threads performing work in parallel with the device.

» cudaDeviceScheduleBlockingSync: Instruct CUDA to block the CPU thread on a
synchronization primitive when waiting for the device to finish work.

» cudaDeviceBlockingSync: Instruct CUDA to block the CPU thread on a synchronization
primitive when waiting for the device to finish work.

Deprecated: This flag was deprecated as of CUDA 4.0 and replaced with
cudaDeviceScheduleBlockingSync.

CUDA Runtime API vRelease Version | 51

Modules

» cudaDeviceMapHost: This flag enables allocating pinned host memory that is accessible
to the device. It is implicit for the runtime but may be absent if a context is created using
the driver API. If this flag is not set, cudaHostGetDevicePointer(] will always return a failure
code.

» cudaDeviceLmemResizeToMax: Instruct CUDA to not reduce local memory after resizing
local memory for a kernel. This can prevent thrashing by local memory allocations when
launching many kernels with high local memory usage at the cost of potentially increased
memory usage.

Deprecated: This flag is deprecated and the behavior enabled by this flag is now the default
and cannot be disabled.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceFlags, cudaGetDeviceCount, cudaGetDevice, cudaGetDeviceProperties,
cudaSetDevice, cudaSetValidDevices, cudaChooseDevice, cuDevicePrimaryCtxSetFlags

__host__cudaError_t cudaSetValidDevices (int

*device arr, int len)
Set a list of devices that can be used for CUDA.

Parameters

device_arr
- List of devices to try
len
- Number of devices in specified list

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlinvalidDevice

CUDA Runtime API vRelease Version | 52

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PRIMARY__CTX.html#group__CUDA__PRIMARY__CTX_1gd779a84f17acdad0d9143d9fe719cfdf

Modules

Description

Sets a list of devices for CUDA execution in priority order using device arr. The parameter
len specifies the number of elements in the list. CUDA will try devices from the list
sequentially until it finds one that works. If this function is not called, or if it is called with a
len of 0, then CUDA will go back to its default behavior of trying devices sequentially from

a default list containing all of the available CUDA devices in the system. If a specified device
ID in the list does not exist, this function will return cudaErrorinvalidDevice. If 1en is not
Oand device arris NULL orif 1en exceeds the number of devices in the system, then
cudaErrorinvalidValue is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaSetDevice, cudaGetDeviceProperties, cudaSetDeviceFlags,
cudaChooseDevice

6.2. Thread Management [DEPRECATED]

This section describes deprecated thread management functions of the CUDA runtime
application programming interface.

__host__cudaError_t cudaThreadExit (void)

Exit and clean up from CUDA launches.

Returns

cudaSuccess

Description
Deprecated

CUDA Runtime API vRelease Version | 53

Modules

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceReset(), which should be
used instead.

Explicitly destroys all cleans up all resources associated with the current device in the current
process. Any subsequent API call to this device will reinitialize the device.

Note that this function will reset the device immediately. It is the caller’'s responsibility to
ensure that the device is not being accessed by any other host threads from the process when
this function is called.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceReset

__host__cudaError_t cudaThreadGetCacheConfig
(cudaFuncCache *pCacheConfig)

Returns the preferred cache configuration for the current device.

Parameters

pCacheConfig
- Returned cache configuration

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceGetCacheConfig(], which
should be used instead.

CUDA Runtime API vRelease Version | 54

Modules

On devices where the L1 cache and shared memory use the same hardware resources, this
returns through pCacheConfig the preferred cache configuration for the current device. This
is only a preference. The runtime will use the requested configuration if possible, but it is free
to choose a different configuration if required to execute functions.

This will return a pCacheConfig of cudaFuncCachePreferNone on devices where the size of
the L1 cache and shared memory are fixed.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default]

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferlL1: prefer larger L1 cache and smaller shared memory

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetCacheConfig

__host__cudaError_t cudaThreadGetLimit (size t
*pValue, cudaLimit limit)

Returns resource limits.

Parameters

pValue

- Returned size in bytes of limit
limit

- Limit to query

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 55

Modules

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceGetlLimit(], which should be
used instead.

Returns in *pvalue the current size of 1imit. The supported cudaLimit values are:

> cudalLimitStackSize: stack size of each GPU thread;

» cudalimitPrintfFifoSize: size of the shared FIFQ used by the printf(] device system call.

» cudalimitMallocHeapSize: size of the heap used by the malloc() and free(] device system
calls;

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetLimit

__host__cudaError_t cudaThreadSetCacheConfig
(cudaFuncCache cacheConfig)

Sets the preferred cache configuration for the current device.

Parameters

cacheConfig
- Requested cache configuration

Returns

cudaSuccess

CUDA Runtime API vRelease Version | 56

Modules

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceSetCacheConfig(), which
should be used instead.

On devices where the L1 cache and shared memory use the same hardware resources,

this sets through cacheConfig the preferred cache configuration for the current device.

This is only a preference. The runtime will use the requested configuration if possible, but

it is free to choose a different configuration if required to execute the function. Any function
preference set via cudaFuncSetCacheConfig [C API] or cudaFuncSetCacheConfig [C++ API)
will be preferred over this device-wide setting. Setting the device-wide cache configuration to
cudaFuncCachePreferNone will cause subsequent kernel launches to prefer to not change the
cache configuration unless required to launch the kernel.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default]

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetCacheConfig

CUDA Runtime API vRelease Version | 57

Modules

__host___cudaError_t cudaThreadSetLimit (cudaLimit
limit, size_t value)

Set resource limits.

Parameters
limit
- Limit to set
value
- Size in bytes of limit

Returns

cudaSuccess, cudaErrorUnsupportedLimit, cudaErrorinvalidValue

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is identical to the non-deprecated function cudaDeviceSetLimit(], which should be
used instead.

Setting 1imit to value is a request by the application to update the current limit maintained
by the device. The driver is free to modify the requested value to meet h/w requirements (this
could be clamping to minimum or maximum values, rounding up to nearest element size, etc).
The application can use cudaThreadGetLimit() to find out exactly what the limit has been set
to.

Setting each cudalimit has its own specific restrictions, so each is discussed here.

> cudalLimitStackSize controls the stack size of each GPU thread.

» cudalimitPrintfFifoSize controls the size of the shared FIFO used by the printf() device
system call. Setting cudaLimitPrintfFifoSize must be performed before launching any
kernel that uses the printf(] device system call, otherwise cudaErrorinvalidValue will be
returned.

» cudalimitMallocHeapSize controls the size of the heap used by the malloc() and freel()
device system calls. Setting cudaLimitMallocHeapSize must be performed before
launching any kernel that uses the malloc() or free() device system calls, otherwise
cudaErrorinvalidValue will be returned.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 58

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceSetLimit

__host__cudaError_t cudaThreadSynchronize (void]

Wait for compute device to finish.

Returns

cudaSuccess

Description
Deprecated

Note that this function is deprecated because its name does not reflect its behavior. Its
functionality is similar to the non-deprecated function cudaDeviceSynchronize(), which should
be used instead.

Blocks until the device has completed all preceding requested tasks.
cudaThreadSynchronize() returns an error if one of the preceding tasks has failed. If the
cudaDeviceScheduleBlockingSync flag was set for this device, the host thread will block until
the device has finished its work.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSynchronize

CUDA Runtime API vRelease Version | 59

Modules

6.3. Error Handling

This section describes the error handling functions of the CUDA runtime application
programming interface.

__host device const char *cudaGetErrorName
(cudaError_t error]

Returns the string representation of an error code enum name.

Parameters

error
- Error code to convert to string

Returns

char* pointer to a NULL-terminated string

Description

Returns a string containing the name of an error code in the enum. If the error code is not
recognized, “unrecognized error code” is returned.

See also:

cudaGetErrorString, cudaGetlLastError, cudaPeekAtlLastError, cudaError, cuGetErrorName

__host device__const char *cudaGetErrorString
(cudaError_t error)

Returns the description string for an error code.

Parameters

error
- Error code to convert to string

Returns

char* pointer to a NULL-terminated string

Description

Returns the description string for an error code. If the error code is not recognized,
“unrecognized error code” is returned.

CUDA Runtime API vRelease Version | 60

../cuda-driver-api/cuda-driver-api/content/group__CUDA__ERROR.html#group__CUDA__ERROR_1g2c4ac087113652bb3d1f95bf2513c468

Modules

See also:

cudaGetErrorName, cudaGetLastError, cudaPeekAtlLastError, cudaError, cuGetErrorString

__host device_ cudaError_t cudaGetLastError
(void)

Returns the last error from a runtime call.

Returns

cudaSuccess, cudaErrorMissingConfiguration, cudaErrorMemoryAllocation,
cudakrrorinitializationError, cudakErrorLaunchFailure, cudaErrorLaunchTimeout,
cudaErrorLaunchOutOfResources, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidConfiguration, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidPitchValue, cudaErrorinvalidSymbol, cudaErrorUnmapBufferObjectFailed,
cudaErrorinvalidDevicePointer, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding,
cudaErrorinvalidChannelDescriptor, cudaErrorinvalidMemcpyDirection,
cudaErrorinvalidFilterSetting, cudaErrorinvalidNormSetting, cudaErrorUnknown,
cudaErrorinvalidResourceHandle, cudaErrorinsufficientDriver, cudaErrorNoDevice,
cudaErrorSetOnActiveProcess, cudaErrorStartupFailure, cudaErrorinvalidPtx,
cudaErrorUnsupportedPtxVersion, cudaErrorNoKernellmageForDevice,
cudaErrorJitCompilerNotFound, cudaErrorJitCompilationDisabled

L
L
L
L

Description

Returns the last error that has been produced by any of the runtime calls in the same host
thread and resets it to cudaSuccess.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaPeekAtLastError, cudaGetErrorName, cudaGetErrorString, cudaError

CUDA Runtime API vRelease Version | 61

../cuda-driver-api/cuda-driver-api/content/group__CUDA__ERROR.html#group__CUDA__ERROR_1g72758fcaf05b5c7fac5c25ead9445ada

Modules

__host_ _device_ cudaError_t
cudaPeekAtLastError (void)

Returns the last error from a runtime call.

Returns

cudaSuccess, cudaErrorMissingConfiguration, cudaErrorMemoryAllocation,
cudaErrorinitializationError, cudakErrorLaunchFailure, cudaErrorLaunchTimeout,
cudaErrorLaunchOutOfResources, cudaErrorinvalidDeviceFunction,
cudakrrorinvalidConfiguration, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidPitchValue, cudaErrorinvalidSymbol, cudaErrorUnmapBufferObjectFailed,
cudakrrorinvalidDevicePointer, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding,
(
(

cudaErrorinvalidChannelDescriptor, cudaErrorinvalidMemcpyDirection,
cudaErrorinvalidFilterSetting, cudaErrorinvalidNormSetting, cudaErrorUnknown,
cudaErrorinvalidResourceHandle, cudaErrorinsufficientDriver, cudaErrorNoDevice,
cudaErrorSetOnActiveProcess, cudaErrorStartupFailure, cudaErrorinvalidPtx,
cudaErrorUnsupportedPtxVersion, cudaErrorNoKernellmageForDevice,
cudaErrorJitCompilerNotFound, cudaErrorJitCompilationDisabled

Description

Returns the last error that has been produced by any of the runtime calls in the same host
thread. Note that this call does not reset the error to cudaSuccess like cudaGetlLastError().

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetLastError, cudaGetErrorName, cudaGetErrorString, cudaError

CUDA Runtime API vRelease Version | 62

Modules

6.4. Stream Management

This section describes the stream management functions of the CUDA runtime application
programming interface.

typedef void (CUDART_CB *cudaStreamCallback_t]
(cudaStream t stream, cudaError_t status, void*
userData)

Type of stream callback functions.

__host__cudaError_t
cudaCtxResetPersistingL2Cache (void]

Resets all persisting lines in cache to normal status.

Returns

cudaSuccess,

Description

Resets all persisting lines in cache to normal status. Takes effect on function return.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host_ _cudaError_t cudaStreamAddCallback
(cudaStream_t stream, cudaStreamCallback t
callback, void *userData, unsigned int flags)

Add a callback to a compute stream.

Parameters

stream
- Stream to add callback to

CUDA Runtime API vRelease Version | 63

Modules

callback

- The function to call once preceding stream operations are complete
userData

- User specified data to be passed to the callback function
flags

- Reserved for future use, must be 0

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue,
cudaErrorNotSupported

Description

Note:

This function is slated for eventual deprecation and removal. If you do not require the callback

to execute in case of a device error, consider using cudalLaunchHostFunc. Additionally, this
function is not supported with cudaStreamBeginCapture and cudaStreamEndCapture, unlike

cudalaunchHostFunc.

Adds a callback to be called on the host after all currently enqueued items in the stream have
completed. For each cudaStreamAddCallback call, a callback will be executed exactly once.
The callback will block later work in the stream until it is finished.

The callback may be passed cudaSuccess or an error code. In the event of a device error, all
subsequently executed callbacks will receive an appropriate cudaError_t.

Callbacks must not make any CUDA API calls. Attempting to use CUDA APIs may result in
cudaErrorNotPermitted. Callbacks must not perform any synchronization that may depend
on outstanding device work or other callbacks that are not mandated to run earlier. Callbacks
without a mandated order (in independent streams) execute in undefined order and may be
serialized.

For the purposes of Unified Memory, callback execution makes a number of guarantees:

» The callback stream is considered idle for the duration of the callback. Thus, for example,
a callback may always use memory attached to the callback stream.

» The start of execution of a callback has the same effect as synchronizing an event
recorded in the same stream immediately prior to the callback. It thus synchronizes
streams which have been “joined” prior to the callback.

» Adding device work to any stream does not have the effect of making the stream active
until all preceding callbacks have executed. Thus, for example, a callback might use global
attached memory even if work has been added to another stream, if it has been properly
ordered with an event.

CUDA Runtime API vRelease Version | 64

Modules

» Completion of a callback does not cause a stream to become active except as described
above. The callback stream will remain idle if no device work follows the callback, and
will remain idle across consecutive callbacks without device work in between. Thus, for
example, stream synchronization can be done by signaling from a callback at the end of
the stream.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamDestroy, cudaMallocManaged,
cudaStreamAttachMemAsync, cudalaunchHostFunc, cuStreamAddCallback

__host__cudaError_t cudaStreamAttachMemAsync
(cudaStream_t stream, void *devPtr, size_t length,
unsigned int flags)

Attach memory to a stream asynchronously.

Parameters

stream
- Stream in which to enqueue the attach operation

devPtr
- Pointer to memory [must be a pointer to managed memory or to a valid host-accessible
region of system-allocated memory)

length
- Length of memory (defaults to zero)

flags
- Must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle
(defaults to cudaMemAttachSingle)

CUDA Runtime API vRelease Version | 65

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g613d97a277d7640f4cb1c03bd51c2483

Modules

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Enqueues an operation in stream to specify stream association of 1ength bytes of memory
starting from devPtr. This function is a stream-ordered operation, meaning that it is
dependent on, and will only take effect when, previous work in stream has completed. Any
previous association is automatically replaced.

devPtr must point to an one of the following types of memories:

» managed memory declared using the __managed__ keyword or allocated with
cudaMallocManaged.

» avalid host-accessible region of system-allocated pageable memory. This type of memory
may only be specified if the device associated with the stream reports a non-zero value for
the device attribute cudaDevAttrPageableMemoryAccess.

For managed allocations, 1length must be either zero or the entire allocation’s size. Both
indicate that the entire allocation’s stream association is being changed. Currently, it is not
possible to change stream association for a portion of a managed allocation.

For pageable allocations, 1ength must be non-zero.

The stream association is specified using f1ags which must be one of cudaMemAttachGlobal,
cudaMemAttachHost or cudaMemAttachSingle. The default value for flags is
cudaMemAttachSingle If the cudaMemAttachGlobal flag is specified, the memory

can be accessed by any stream on any device. If the cudaMemAttachHost flag is

specified, the program makes a guarantee that it won't access the memory on the

device from any stream on a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess. If the cudaMemAttachSingle flag is specified

and stream is associated with a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, the program makes a guarantee that it will only
access the memory on the device from stream. It is illegal to attach singly to the NULL
stream, because the NULL stream is a virtual global stream and not a specific stream. An
error will be returned in this case.

When memory is associated with a single stream, the Unified Memory system will allow

CPU access to this memory region so long as all operations in stream have completed,
regardless of whether other streams are active. In effect, this constrains exclusive ownership
of the managed memory region by an active GPU to per-stream activity instead of whole-GPU
activity.

Accessing memory on the device from streams that are not associated with it will produce
undefined results. No error checking is performed by the Unified Memory system to ensure
that kernels launched into other streams do not access this region.

CUDA Runtime API vRelease Version | 66

Modules

It is a program’s responsibility to order calls to cudaStreamAttachMemAsync via events,
synchronization or other means to ensure legal access to memory at all times. Data visibility
and coherency will be changed appropriately for all kernels which follow a stream-association
change.

If stream is destroyed while data is associated with it, the association is removed

and the association reverts to the default visibility of the allocation as specified at
cudaMallocManaged. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cudaMallocManaged,
cuStreamAttachMemAsync

__host__cudaError_t cudaStreamBeginCapture
(cudaStream_t stream, cudaStreamCaptureMode
mode])

Begins graph capture on a stream.

Parameters

stream
- Stream in which to initiate capture

mode
- Controls the interaction of this capture sequence with other APl calls that are potentially
unsafe. For more details see cudaThreadExchangeStreamCaptureMode.

CUDA Runtime API vRelease Version | 67

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6e468d680e263e7eba02a56643c50533

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Begin graph capture on stream. When a stream is in capture mode, all operations pushed
into the stream will not be executed, but will instead be captured into a graph, which

will be returned via cudaStreamEndCapture. Capture may not be initiated if stream is
cudaStreamLlegacy. Capture must be ended on the same stream in which it was initiated, and
it may only be initiated if the stream is not already in capture mode. The capture mode may be
queried via cudaStreamlsCapturing. A unique id representing the capture sequence may be
queried via cudaStreamGetCapturelnfo.

If mode is not cudaStreamCaptureModeRelaxed, cudaStreamEndCapture must be called on
this stream from the same thread.

Note:

Kernels captured using this APl must not use texture and surface references. Reading or
writing through any texture or surface reference is undefined behavior. This restriction does
not apply to texture and surface objects.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamlsCapturing, cudaStreamEndCapture,
cudaThreadExchangeStreamCaptureMode

__host__cudaError_t cudaStreamCopyAttributes
(cudaStream_t dst, cudaStream_t src)

Copies attributes from source stream to destination stream.

Parameters

dst
Destination stream
src
Source stream For attributes see cudaStreamAttriD

CUDA Runtime API vRelease Version | 68

Modules

Returns

cudaSuccess, cudaErrorNotSupported

Description

Copies attributes from source stream src to destination stream dst. Both streams must
have the same context.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamCreate
(cudaStream_t *pStream)

Create an asynchronous stream.

Parameters

pStream
- Pointer to new stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new asynchronous stream.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 69

Modules

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority,
cudaStreamGetFlags, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamCreate

__host _device cudaError_t
cudaStreamCreateWithFlags (cudaStream_t
*pStream, unsigned int flags]

Create an asynchronous stream.

Parameters

pStream

- Pointer to new stream identifier
flags

- Parameters for stream creation

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new asynchronous stream. The f1ags argument determines the behaviors of the
stream. Valid values for flags are

» cudaStreamDefault: Default stream creation flag.

» cudaStreamNonBlocking: Specifies that work running in the created stream may run
concurrently with work in stream 0 (the NULL stream), and that the created stream should
perform no implicit synchronization with stream 0.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 70

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1ga581f0c5833e21ded8b5a56594e243f4

Modules

See also:

cudaStreamCreate, cudaStreamCreateWithPriority, cudaStreamGetFlags, cudaStreamQuery,
cudaStreamSynchronize, cudaStreamWaitEvent, cudaStreamAddCallback,
cudaStreamDestroy, cuStreamCreate

__host__cudaError_t cudaStreamCreateWithPriority
(cudaStream_t *pStream, unsigned int flags, int
priority]

Create an asynchronous stream with the specified priority.

Parameters

pStream
- Pointer to new stream identifier

flags
- Flags for stream creation. See cudaStreamCreateWithFlags for a list of valid flags that
can be passed

priority
- Priority of the stream. Lower numbers represent higher priorities. See
cudaDeviceGetStreamPriorityRange for more information about the meaningful stream
priorities that can be passed.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a stream with the specified priority and returns a handle in pStream. This APl alters
the scheduler priority of work in the stream. Work in a higher priority stream may preempt
work already executing in a low priority stream.

priority follows a convention where lower numbers represent higher priorities. ‘0’
represents default priority. The range of meaningful numerical priorities can be queried using
cudaDeviceGetStreamPriorityRange. If the specified priority is outside the numerical range
returned by cudaDeviceGetStreamPriorityRange, it will automatically be clamped to the lowest
or the highest number in the range.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 71

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1ga581f0c5833e21ded8b5a56594e243f4

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

> Stream priorities are supported only on GPUs with compute capability 3.5 or higher.

> Inthe current implementation, only compute kernels launched in priority streams are
affected by the stream’s priority. Stream priorities have no effect on host-to-device and
device-to-host memory operations.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaDeviceGetStreamPriorityRange,
cudaStreamGetPriority, cudaStreamQuery, cudaStreamWaitEvent, cudaStreamAddCallback,
cudaStreamSynchronize, cudaStreamDestroy, cuStreamCreateWithPriority

__host_ device__cudaError_t cudaStreamDestroy
(cudaStream_t stream)

Destroys and cleans up an asynchronous stream.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Destroys and cleans up the asynchronous stream specified by stream.

In case the device is still doing work in the stream stream when cudaStreamDestroy() is
called, the function will return immediately and the resources associated with stream will be
released automatically once the device has completed all work in stream.

Note:
» This function uses standard default stream semantics.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 72

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g95c1a8c7c3dacb13091692dd9c7f7471

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cuStreamDestroy

__host__cudaError_t cudaStreamEndCapture
(cudaStream_t stream, cudaGraph_t *pGraph])

Ends capture on a stream, returning the captured graph.

Parameters

stream

- Stream to query
pGraph

- The captured graph

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCaptureWrongThread

Description

End capture on stream, returning the captured graph via pGraph. Capture must have been
initiated on streamvia a call to cudaStreamBeginCapture. If capture was invalidated, due to a
violation of the rules of stream capture, then a NULL graph will be returned.

If the mode argument to cudaStreamBeginCapture was not cudaStreamCaptureModeRelaxed,
this call must be from the same thread as cudaStreamBeginCapture.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeginCapture, cudaStreamlIsCapturing

CUDA Runtime API vRelease Version | 73

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g244c8833de4596bcd31a06cdf21ee758

Modules

__host_ _cudaError_t cudaStreamGetAttribute
(cudaStream_t hStream, cudaStreamAttrID attr,
cudaStreamAttrValue *value_out)

Queries stream attribute.

Parameters

hStream
attr
value_out

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Queries attribute attr from hStreamand stores it in corresponding member of value out.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t cudaStreamGetCapturelnfo
(cudaStream_t stream, cudaStreamCaptureStatus
*pCaptureStatus, unsigned long long *pld]

Query capture status of a stream.

Parameters

stream
- Stream to query
pCaptureStatus
- Returns the stream’s capture status
pld
- Returns the unique id of the capture sequence

CUDA Runtime API vRelease Version | 74

Modules

Returns

cudaSuccess, cudaErrorStreamCapturelmplicit

Description

Note there is a later version of this API, cudaStreamGetCapturelnfo_v2. It will supplant this
version in 12.0, which is retained for minor version compatibility.

Query the capture status of a stream and get a unique id representing the capture sequence
over the lifetime of the process.

If called on cudaStreamlegacy (the "null stream”) while a stream not created with
cudaStreamNonBlocking is capturing, returns cudaErrorStreamCapturelmplicit.

Avalid id is returned only if both of the following are true:
» the call returns cudaSuccess

> captureStatus is set to cudaStreamCaptureStatusActive

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamGetCapturelnfo v2, cudaStreamBeqginCapture, cudaStreamlsCapturing

__host__cudaError_t cudaStreamGetCapturelnfo_v2
(cudaStream_t stream, cudaStreamCaptureStatus
*captureStatus_out, unsigned long long *id_out,
cudaGraph_t *graph_out, const cudaGraphNode_t
**dependencies_out, size_t *numDependencies_out]

Query a stream's capture state (11.3+).

Parameters

stream
- The stream to query
captureStatus_out
- Location to return the capture status of the stream; required

CUDA Runtime API vRelease Version | 75

Modules

id_out
- Optional location to return an id for the capture sequence, which is unique over the
lifetime of the process

graph_out
- Optional location to return the graph being captured into. All operations other than
destroy and node removal are permitted on the graph while the capture sequence is
in progress. This APl does not transfer ownership of the graph, which is transferred or
destroyed at cudaStreamEndCapture. Note that the graph handle may be invalidated
before end of capture for certain errors. Nodes that are or become unreachable from the
original stream at cudaStreamEndCapture due to direct actions on the graph do not trigger
cudaErrorStreamCaptureUnjoined.

dependencies_out
- Optional location to store a pointer to an array of nodes. The next node to be captured in
the stream will depend on this set of nodes, absent operations such as event wait which
modify this set. The array pointer is valid until the next APl call which operates on the
stream or until end of capture. The node handles may be copied out and are valid until they
or the graph is destroyed. The driver-owned array may also be passed directly to APIs that
operate on the graph (not the stream] without copying.

numDependencies_out
- Optional location to store the size of the array returned in dependencies_out.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCapturelmplicit

Description
Query stream state related to stream capture.

If called on cudaStreamlegacy (the "null stream”) while a stream not created with
cudaStreamNonBlocking is capturing, returns cudaErrorStreamCapturelmplicit.

Valid data (other than capture status) is returned only if both of the following are true:
» the call returns cudaSuccess

> the returned capture status is cudaStreamCaptureStatusActive

This version of cudaStreamGetCapturelnfo is introduced in CUDA 11.3 and will supplant the
previous version cudaStreamGetCapturelnfo in 12.0. Developers requiring compatibility across
minor versions to CUDA 11.0 (driver version 445) can do one of the following:

> Use the older version of the API, cudaStreamGetCapturelnfo

» Passnull for all of graph out, dependencies out, and numDependencies out.

D Note:

CUDA Runtime API vRelease Version | 76

Modules

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamGetCapturelnfo, cudaStreamBeqginCapture, cudaStreamlsCapturing,
cudaStreamUpdateCaptureDependencies

__host__cudaError_t cudaStreamGetFlags
(cudaStream_t hStream, unsigned int *flags)

Query the flags of a stream.

Parameters

hStream
- Handle to the stream to be queried
flags
- Pointer to an unsigned integer in which the stream’s flags are returned

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Query the flags of a stream. The flags are returned in flags. See
cudaStreamCreateWithFlags for a list of valid flags.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaStreamCreateWithFlags, cudaStreamGetPriority,
cuStreamGetFlags

CUDA Runtime API vRelease Version | 77

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g4d39786855a6bed01215c1907fbbfbb7

Modules

__host__cudaError_t cudaStreamGetPriority
(cudaStream_t hStream, int *priority)

Query the priority of a stream.

Parameters

hStream
- Handle to the stream to be queried
priority
- Pointer to a signed integer in which the stream’s priority is returned

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Query the priority of a stream. The priority is returned in in priority. Note that if the
stream was created with a priority outside the meaningful numerical range returned
by cudaDeviceGetStreamPriorityRange, this function returns the clamped priority. See
cudaStreamCreateWithPriority for details about priority clamping.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreateWithPriority, cudaDeviceGetStreamPriorityRange, cudaStreamGetFlags,
cuStreamGetPriority

CUDA Runtime API vRelease Version | 78

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g5bd5cb26915a2ecf1921807339488484

Modules

__host__cudaError_t cudaStreamlsCapturing
(cudaStream_t stream, cudaStreamCaptureStatus
*pCaptureStatus)

Returns a stream’s capture status.

Parameters

stream
- Stream to query
pCaptureStatus
- Returns the stream’s capture status

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorStreamCapturelmplicit

Description

Return the capture status of streamvia pCaptureStatus. After a successful call,
*pCaptureStatus will contain one of the following:

» cudaStreamCaptureStatusNone: The stream is not capturing.

» cudaStreamCaptureStatusActive: The stream is capturing.

» cudaStreamCaptureStatusinvalidated: The stream was capturing but an error has
invalidated the capture sequence. The capture sequence must be terminated with
cudaStreamEndCapture on the stream where it was initiated in order to continue using
stream.

Note that, if this is called on cudaStreamlegacy (the "null stream") while a blocking
stream on the same device is capturing, it will return cudaErrorStreamCapturelmplicit
and *pCaptureStatus is unspecified after the call. The blocking stream capture is not
invalidated.

When a blocking stream is capturing, the legacy stream is in an unusable state until the
blocking stream capture is terminated. The legacy stream is not supported for stream
capture, but attempted use would have an implicit dependency on the capturing stream(s).

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamCreate, cudaStreamBeqginCapture, cudaStreamEndCapture

CUDA Runtime API vRelease Version | 79

Modules

__host__cudaError_t cudaStreamQuery
(cudaStream_t stream)

Queries an asynchronous stream for completion status.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidResourceHandle

Description

Returns cudaSuccess if all operations in stream have completed, or cudaErrorNotReady if
not.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having
called cudaStreamSynchronize(].

Note:
» This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cuStreamQuery

CUDA Runtime API vRelease Version | 80

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g1b0d24bbe97fa68e4bc511fb6adfeb0b

Modules

__host_ _cudaError_t cudaStreamSetAttribute
(cudaStream _t hStream, cudaStreamAttrID attr, const
cudaStreamAttrValue *value)

Sets stream attribute.

Parameters

hStream
attr
value

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Sets attribute attr on hStream from corresponding attribute of value. The updated
attribute will be applied to subsequent work submitted to the stream. It will not affect
previously submitted work.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host___cudaError_t cudaStreamSynchronize
(cudaStream_t stream)

Waits for stream tasks to complete.

Parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

CUDA Runtime API vRelease Version | 81

Modules

Description

Blocks until stream has completed all operations. If the cudaDeviceScheduleBlockingSync
flag was set for this device, the host thread will block until the stream is finished with all of its
tasks.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamWaitEvent,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamSynchronize

__host__cudaError_t
cudaStreamUpdateCaptureDependencies
(cudaStream_t stream, cudaGraphNode_t
*dependencies, size_t numDependencies, unsigned
int flags)

Update the set of dependencies in a capturing stream (11.3+).

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlllegalState

Description

Modifies the dependency set of a capturing stream. The dependency set is the set of nodes
that the next captured node in the stream will depend on.

Valid flags are cudaStreamAddCaptureDependencies and
cudaStreamSetCaptureDependencies. These control whether the set passed to

CUDA Runtime API vRelease Version | 82

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g15e49dd91ec15991eb7c0a741beb7dad

Modules

the APl is added to the existing set or replaces it. A flags value of 0 defaults to
cudaStreamAddCaptureDependencies.

Nodes that are removed from the dependency set via this APl do not result in
cudakrrorStreamCaptureUnjoined if they are unreachable from the stream at
cudaStreamEndCapture.

Returns cudaErrorlllegalState if the stream is not capturing.

This APl'is new in CUDA 11.3. Developers requiring compatibility across minor versions of the
CUDA driver to 11.0 should not use this APl or provide a fallback.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeqginCapture, cudaStreamGetCapturelnfo, cudaStreamGetCapturelnfo v2

__host _device cudaError_t
cudaStreamWaitEvent (cudaStream t stream,
cudaEvent_t event, unsigned int flags]

Make a compute stream wait on an event.

Parameters

stream
- Stream to wait
event
- Event to wait on
flags
- Parameters for the operation(See above]

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Makes all future work submitted to stream wait for all work captured in event. See
cudaEventRecord() for details on what is captured by an event. The synchronization will be
performed efficiently on the device when applicable. event may be from a different device

than stream.

flags include:

CUDA Runtime API vRelease Version | 83

Modules

» cudaEventWaitDefault: Default event creation flag.

» cudaEventWaitExternal: Event is captured in the graph as an external event node when
performing stream capture.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamQuery, cudaStreamSynchronize,
cudaStreamAddCallback, cudaStreamDestroy, cuStreamWaitEvent

__host__cudaError_t
cudaThreadExchangeStreamCaptureMode
(cudaStreamCaptureMode *mode])

Swaps the stream capture interaction mode for a thread.

Parameters

mode
- Pointer to mode value to swap with the current mode

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the calling thread's stream capture interaction mode to the value contained in *mode,
and overwrites *mode with the previous mode for the thread. To facilitate deterministic
behavior across function or module boundaries, callers are encouraged to use this APl in a
push-pop fashion:

r cudaStreamCaptureMode mode = desiredMode;
cudaThreadExchangeStreamCaptureMode (&mode) ;

CUDA Runtime API vRelease Version | 84

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g6a898b652dfc6aa1d5c8d97062618b2f

Modules

cudaThreadExchangeStreamCaptureMode (&mode) ; // restore previous mode

During stream capture (see cudaStreamBeginCapture], some actions, such as a call to
cudaMalloc, may be unsafe. In the case of cudaMalloc, the operation is not enqueued
asynchronously to a stream, and is not observed by stream capture. Therefore, if the sequence
of operations captured via cudaStreamBeginCapture depended on the allocation being
replayed whenever the graph is launched, the captured graph would be invalid.

Therefore, stream capture places restrictions on API calls that can be made within or
concurrently to a cudaStreamBeginCapture-cudaStreamEndCapture sequence. This behavior
can be controlled via this APl and flags to cudaStreamBeginCapture.

A thread’s mode is one of the following:

» cudaStreamCaptureModeGlobal: Thisis the default mode. If the
local thread has an ongoing capture sequence that was not initiated with
cudaStreamCaptureModeRelaxed at cuStreamBeginCapture, or if any other thread
has a concurrent capture sequence initiated with cudaStreamCaptureModeGlobal,
this thread is prohibited from potentially unsafe API calls.

» cudaStreamCaptureModeThreadLocal: If the local thread has an ongoing capture
sequence not initiated with cudaStreamCaptureModeRelaxed, it is prohibited from
potentially unsafe API calls. Concurrent capture sequences in other threads are ignored.

> cudaStreamCaptureModeRelaxed: The local thread is not prohibited from potentially
unsafe APl calls. Note that the thread is still prohibited from API calls which necessarily
conflict with stream capture, for example, attempting cudaEventQuery on an event that
was last recorded inside a capture sequence.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaStreamBeqginCapture

6.5. Event Management

This section describes the event management functions of the CUDA runtime application
programming interface.

CUDA Runtime API vRelease Version | 85

Modules

__host__cudaError_t cudaEventCreate (cudaEvent_t
*event]

Creates an event object.

Parameters

event
- Newly created event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description

Creates an event object for the current device using cudaEventDefault.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaEventCreate [C++ API), cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cuEventCreate

__host device cudaError_t
cudaEventCreateWithFlags (cudaEvent_t *event,
unsigned int flags)

Creates an event object with the specified flags.

Parameters

event
- Newly created event

CUDA Runtime API vRelease Version | 86

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g450687e75f3ff992fe01662a43d9d3db

Modules

flags
- Flags for new event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description
Creates an event object for the current device with the specified flags. Valid flags include:

» cudaEventDefault: Default event creation flag.

» cudaEventBlockingSync: Specifies that event should use blocking synchronization. A host
thread that uses cudaEventSynchronize() to wait on an event created with this flag will
block until the event actually completes.

» cudaEventDisableTiming: Specifies that the created event does not need to record timing
data. Events created with this flag specified and the cudaEventBlockingSync flag not
specified will provide the best performance when used with cudaStreamWaitEvent() and
cudaEventQuery(].

» cudaEventinterprocess: Specifies that the created event may be used as an interprocess
event by cudalpcGetEventHandle(). cudaEventInterprocess must be specified along with
cudakventDisableTiming.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime,
cudaStreamWaitEvent, cuEventCreate

CUDA Runtime API vRelease Version | 87

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g450687e75f3ff992fe01662a43d9d3db

Modules

__host device_ cudaEkrror_t cudaEventDestroy
(cudaEvent _t event)

Destroys an event object.

Parameters

event
- Event to destroy

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description
Destroys the event specified by event.

An event may be destroyed before it is complete (i.e., while cudaEventQuery(] would return
cudaErrorNotReady]. In this case, the call does not block on completion of the event, and any
associated resources will automatically be released asynchronously at completion.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventRecord, cudaEventElapsedTime, cuEventDestroy

CUDA Runtime API vRelease Version | 88

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g593ec73a8ec5a5fc031311d3e4dca1ef

Modules

__host__cudaError_t cudaEventElapsedTime (float
*ms, cudaEvent t start, cudaEvent t end]

Computes the elapsed time between events.

Parameters

ms

- Time between start and end in ms
start

- Starting event
end

- Ending event

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Computes the elapsed time between two events (in milliseconds with a resolution of around
0.5 microseconds).

If either event was last recorded in a non-NULL stream, the resulting time may be greater
than expected (even if both used the same stream handle). This happens because the
cudaEventRecord() operation takes place asynchronously and there is no guarantee that

the measured latency is actually just between the two events. Any number of other different
stream operations could execute in between the two measured events, thus altering the timing
in a significant way.

If cudaEventRecord() has not been called on either event, then
cudaErrorinvalidResourceHandle is returned. If cudaEventRecord() has been called on both
events but one or both of them has not yet been completed (that is, cudaEventQuery(] would
return cudaErrorNotReady on at least one of the events), cudaErrorNotReady is returned. If
either event was created with the cudaEventDisableTiming flag, then this function will return
cudaErrorinvalidResourceHandle.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 89

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventRecord, cuEventElapsedTime

__host__cudaError_t cudaEventQuery (cudaEvent_t
event)

Queries an event's status.

Parameters

event
- Event to query

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudakErrorLaunchFailure

Description

Queries the status of all work currently captured by event. See cudaEventRecord(] for details
on what is captured by an event.

Returns cudaSuccess if all captured work has been completed, or cudaErrorNotReady if any
captured work is incomplete.

For the purposes of Unified Memory, a return value of cudaSuccess is equivalent to having
called cudaEventSynchronize().

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 90

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1gdfb1178807353bbcaa9e245da497cf97

Modules

See also:

cudaEventCreate [C API], cudaEventCreateWithFlags, cudaEventRecord,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cuEventQuery

__host device cudaError_t cudakventRecord
(cudaEvent_t event, cudaStream t stream)

Records an event.

Parameters

event
- Event to record
stream
- Stream in which to record event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Captures in event the contents of stream at the time of this call. event and stream must
be on the same CUDA context. Calls such as cudaEventQuery(] or cudaStreamWaitEvent() will
then examine or wait for completion of the work that was captured. Uses of stream after this
call do not modify event. See note on default stream behavior for what is captured in the
default case.

cudaEventRecord() can be called multiple times on the same event and will overwrite

the previously captured state. Other APIs such as cudaStreamWaitEvent(] use the most
recently captured state at the time of the APl call, and are not affected by later calls to
cudaEventRecord(). Before the first call to cudaEventRecord(), an event represents an empty
set of work, so for example cudaEventQuery() would return cudaSuccess.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 91

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g6f0704d755066b0ee705749ae911deef

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cudakEventRecordWithFlags, cuEventRecord

__host__cudaError_t cudaEventRecordWithFlags
(cudaEvent_t event, cudaStream_t stream, unsigned
int flags)

Records an event.

Parameters

event
- Event to record
stream
- Stream in which to record event
flags
- Parameters for the operation(See above]

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Captures in event the contents of stream at the time of this call. event and stream must
be on the same CUDA context. Calls such as cudaEventQuery(] or cudaStreamWaitEvent() will
then examine or wait for completion of the work that was captured. Uses of stream after this
call do not modify event. See note on default stream behavior for what is captured in the
default case.

cudaEventRecordWithFlags() can be called multiple times on the same event and will
overwrite the previously captured state. Other APIs such as cudaStreamWaitEvent(] use the
most recently captured state at the time of the API call, and are not affected by later calls to
cudaEventRecordWithFlags(). Before the first call to cudaEventRecordWithFlags(), an event
represents an empty set of work, so for example cudaEventQuery() would return cudaSuccess.

flags include:

» cudaEventRecordDefault: Default event creation flag.

CUDA Runtime API vRelease Version | 92

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

» cudaEventRecordExternal: Event is captured in the graph as an external event node when
performing stream capture.

Note:
» This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventQuery,
cudakEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent,
cudaEventRecord, cuEventRecord,

__host__cudaError_t cudaEventSynchronize
(cudaEvent _t event)

Waits for an event to complete.

Parameters

event
- Event to wait for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorLaunchFailure

Description

Waits until the completion of all work currently captured in event. See cudaEventRecord(] for
details on what is captured by an event.

Waiting for an event that was created with the cudaEventBlockingSync flag will cause

the calling CPU thread to block until the event has been completed by the device. If the
cudaEventBlockingSync flag has not been set, then the CPU thread will busy-wait until the
event has been completed by the device.

CUDA Runtime API vRelease Version | 93

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery,
cudakEventDestroy, cudakventElapsedTime, cuEventSynchronize

6.6. External Resource Interoperability

This section describes the external resource interoperability functions of the CUDA runtime
application programming interface.

__host___cudaError_t cudaDestroybExternalMemory
(cudaExternalMemory_t extMem)]

Destroys an external memory object.

Parameters

extMem
- External memory object to be destroyed

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Destroys the specified external memory object. Any existing buffers and CUDA mipmapped
arrays mapped onto this object must no longer be used and must be explicitly freed using
cudaFree and cudaFreeMipmappedArray respectively.

n Note:

CUDA Runtime API vRelease Version | 94

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g9e520d34e51af7f5375610bca4add99c

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudalmportExternalMemory, cudaExternalMemoryGetMappedBuffer,
cudakExternalMemoryGetMappedMipmappedArray

__host_ _cudaError_t
cudaDestroyExternalSemaphore
(cudaExternalSemaphore_t extSem]

Destroys an external semaphore.

Parameters

extSem
- External semaphore to be destroyed

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Destroys an external semaphore object and releases any references to the underlying
resource. Any outstanding signals or waits must have completed before the semaphore is
destroyed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 95

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudalmportExternalSemaphore, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host_ _cudaError_t
cudaExternalMemoryGetMappedBuffer (void
**devPtr, cudabExternalMemory_t extMem, const
cudaExternalMemoryBufferDesc *bufferDesc])

Maps a buffer onto an imported memory object.

Parameters
devPtr

- Returned device pointer to buffer
extMem

- Handle to external memory object
bufferDesc

- Buffer descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Maps a buffer onto an imported memory object and returns a device pointer in devPtr.

The properties of the buffer being mapped must be described in bufferDesc. The
cudakxternalMemoryBufferDesc structure is defined as follows:

r typedef struct cudaExternalMemoryBufferDesc st (
unsigned long long offset;
unsigned long long size;
unsigned int flags;
} cudaExternalMemoryBufferDesc;

where cudaExternalMemoryBufferDesc::offset is the offset in the memory object where
the buffer's base address is. cudaExternalMemoryBufferDesc::size is the size of the buffer.
cudaExternalMemoryBufferDesc::flags must be zero.

CUDA Runtime API vRelease Version | 96

Modules

The offset and size have to be suitably aligned to match the requirements of the external API.
Mapping two buffers whose ranges overlap may or may not result in the same virtual address
being returned for the overlapped portion. In such cases, the application must ensure that all
accesses to that region from the GPU are volatile. Otherwise writes made via one address are
not guaranteed to be visible via the other address, even if they're issued by the same thread.
It is recommended that applications map the combined range instead of mapping separate
buffers and then apply the appropriate offsets to the returned pointer to derive the individual
buffers.

The returned pointer devPtr must be freed using cudaFree.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalmportExternalMemory, cudaDestroyExternalMemory,
cudakExternalMemoryGetMappedMipmappedArray

__host__cudaError_t
cudaExternalMemoryGetMappedMipmappedArray
(cudaMipmappedArray_t *mipmap,
cudaExternalMemory_t extMem, const
cudaEkxternalMemoryMipmappedArrayDesc
*mipmapDesc)

Maps a CUDA mipmapped array onto an external memory object.

Parameters

mipmap

- Returned CUDA mipmapped array
extMem

- Handle to external memory object

CUDA Runtime API vRelease Version | 97

Modules

mipmapDesc
- CUDA array descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Maps a CUDA mipmapped array onto an external object and returns a handle to it in mipmap.

The properties of the CUDA mipmapped array being mapped must be described in
mipmapDesc. The structure cudaExternalMemoryMipmappedArrayDesc is defined as follows:

r typedef struct cudaExternalMemoryMipmappedArrayDesc st {
unsigned long long offset;
cudaChannelFormatDesc formatDesc;
cudaExtent extent;
unsigned int flags;
unsigned int numLevels;

} cudaExternalMemoryMipmappedArrayDesc;

where cudaExternalMemoryMipmappedArrayDesc::offset is the offset

in the memory object where the base level of the mipmap chain is.
cudaExternalMemoryMipmappedArrayDesc::formatDesc describes the format of the
data. cudaExternalMemoryMipmappedArrayDesc::extent specifies the dimensions of
the base level of the mipmap chain. cudaExternalMemoryMipmappedArrayDesc::flags
are flags associated with CUDA mipmapped arrays. For further details, please refer
to the documentation for cudaMalloc3DArray. Note that if the mipmapped array is
bound as a color target in the graphics API, then the flag cudaArrayColorAttachment
must be specified in cudaExternalMemoryMipmappedArrayDesc::flags.
cudaExternalMemoryMipmappedArrayDesc::numlevels specifies the total number of levels in
the mipmap chain.

The returned CUDA mipmapped array must be freed using cudaFreeMipmappedArray.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 98

Modules

cudalmportExternalMemory, cudaDestroyExternalMemory,
cudaExternalMemoryGetMappedBuffer

Note:

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeNvSciBuf, then

cudaExternalMemoryMipmappedArrayDesc::numlLevels must not be greater than 1.

__host__cudaError_t cudalmportExternalMemory
(cudaExternalMemory_t *extMem_out, const
cudaExternalMemoryHandleDesc *memHandleDesc])

Imports an external memory object.

Parameters

extMem_out

- Returned handle to an external memory object
memHandleDesc

- Memory import handle descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description
Imports an externally allocated memory object and returns a handle to that in extMem out.

The properties of the handle being imported must be described in memHandleDesc. The
cudakxternalMemoryHandleDesc structure is defined as follows:

r typedef struct cudaExternalMemoryHandleDesc st ({
cudaExternalMemoryHandleType type;
union {

int fd;
struct {
void *handle;
const void *name;
} win32;
const void *nvSciBufObject;
} handle;
unsigned long long size;
unsigned int flags;
} cudaExternalMemoryHandleDesc;

where cudaExternalMemoryHandleDesc::type specifies the type of handle being imported.
cudaExternalMemoryHandleType is defined as:

r typedef enum cudaExternalMemoryHandleType enum {
cudaExternalMemoryHandleTypeOpaqueFd =1,

CUDA Runtime API vRelease Version | 99

Modules

cudaExternalMemoryHandleTypeOpaqueWin32
cudaExternalMemoryHandleTypeOpaqueWin32Kmt
cudaExternalMemoryHandleTypeD3D12Heap
cudaExternalMemoryHandleTypeD3D12Resource
cudaExternalMemoryHandleTypeD3Dl11Resource
cudaExternalMemoryHandleTypeD3D1l1ResourceKmt
cudaExternalMemoryHandleTypeNvSciBuf

} cudaExternalMemoryHandleType;

[T | [TR
QO J o U W
~ N 0~~~ ~

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeOpaqueFd, then
cudaExternalMemoryHandleDesc::handle::fd must be a valid file descriptor referencing a
memory object. Ownership of the file descriptor is transferred to the CUDA driver when the
handle is imported successfully. Performing any operations on the file descriptor after it is
imported results in undefined behavior.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeOpaqueWin32,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudaExternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
avalid shared NT handle that references a memory object. Ownership of this handle is not
transferred to CUDA after the import operation, so the application must release the handle
using the appropriate system call. If cudaExternalMemoryHandleDesc::handle::win32::name is
not NULL, then it must point to a NULL-terminated array of UTF-16 characters that refers to a
memory object.

If cudaExternalMemoryHandleDesc::type is
cudaExternalMemoryHandleTypeOpaqueWin32Kmt, then
cudaExternalMemoryHandleDesc::handle::win32::handle must be non-NULL and
cudakExternalMemoryHandleDesc::handle::win32::name must be NULL. The handle specified
must be a globally shared KMT handle. This handle does not hold a reference to the
underlying object, and thus will be invalid when all references to the memory object are
destroyed.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeD3D12Heap,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudakxternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle when
referring to a ID3D12Heap object. This handle holds a reference to the underlying object. If
cudakExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D12Heap object.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeD3D12Resource,
then exactly one of cudaExternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be NULL. If
cudaExternalMemoryHandleDesc::handle::win32::handle is not NULL, then it must represent
a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle when
referring to a ID3D12Resource object. This handle holds a reference to the underlying object.

CUDA Runtime API vRelease Version | 100

Modules

If cudaExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D12Resource object.

If cudaExternalMemoryHandleDesc::type is
cudaExternalMemoryHandleTypeD3D11Resource,then exactly one

of cudakxternalMemoryHandleDesc::handle::win32::handle and
cudakxternalMemoryHandleDesc::handle::win32::name must not be

NULL. If cudaExternalMemoryHandleDesc::handle::win32::handle is not

NULL, then it must represent a valid shared NT handle that is returned by
IDXGIResourcel::CreateSharedHandle when referring to a ID3D11Resource object. If
cudaExternalMemoryHandleDesc::handle::win32::name is not NULL, then it must point to a
NULL-terminated array of UTF-16 characters that refers to a ID3D11Resource object.

If cudaExternalMemoryHandleDesc::type is
cudaExternalMemoryHandleTypeD3D11ResourceKmt, then
cudakxternalMemoryHandleDesc::handle::win32::handle must be non-NULL and
cudakExternalMemoryHandleDesc::handle::win32::name must be NULL. The handle specified
must be a valid shared KMT handle that is returned by IDXGIResource::GetSharedHandle
when referring to a ID3D11Resource object.

If cudaExternalMemoryHandleDesc::type is cudaExternalMemoryHandleTypeNvSciBuf,

then cudakxternalMemoryHandleDesc::handle::nvSciBufObject must be NON-NULL and
reference a valid NvSciBuf object. If the NvSciBuf object imported into CUDA is also mapped
by other drivers, then the application must use cudaWaitExternalSemaphoresAsync or
cudaSignalExternalSemaphoresAsync as approprriate barriers to maintain coherence
between CUDA and the other drivers. See cudaExternalSemaphoreWaitSkipNvSciBufMemSync
and cudaExternalSemaphoreSignalSkipNvSciBufMemSync for memory synchronization.

The size of the memory object must be specified in cudaExternalMemoryHandleDesc::size.

Specifying the flag cudaExternalMemoryDedicated in cudaExternalMemoryHandleDesc::flags
indicates that the resource is a dedicated resource. The definition

of what a dedicated resource is outside the scope of this extension.

This flag must be set if cudaExternalMemoryHandleDesc::type is one

of the following: cudaExternalMemoryHandleTypeD3D12Resource
cudaExternalMemoryHandleTypeD3D11Resource
cudaExternalMemoryHandleTypeD3D11ResourceKmt

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 101

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

> If the Vulkan memory imported into CUDA is mapped on the CPU then the application
must use vkinvalidateMappedMemoryRanges/vkFlushMappedMemoryRanges as well as
appropriate Vulkan pipeline barriers to maintain coherence between CPU and GPU. For
more information on these APIs, please refer to "Synchronization and Cache Control”
chapter from Vulkan specification.

See also:

cudaDestroyExternalMemory, cudaExternalMemoryGetMappedBuffer,
cudaExternalMemoryGetMappedMipmappedArray

__host__cudaError_t cudalmportExternalSemaphore
(cudaExternalSemaphore_t *extSem_out,

const cudakxternalSemaphoreHandleDesc
*semHandleDesc]

Imports an external semaphore.

Parameters

extSem_out

- Returned handle to an external semaphore
semHandleDesc

- Semaphore import handle descriptor

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

Description

Imports an externally allocated synchronization object and returns a handle to that in
extSem out.

The properties of the handle being imported must be described in semHandleDesc. The
cudaExternalSemaphoreHandleDesc is defined as follows:

r typedef struct cudaExternalSemaphoreHandleDesc st ({
cudaExternalSemaphoreHandleType type;
union {

int £fd;
struct {
void *handle;
const void *name;
} win32;

CUDA Runtime API vRelease Version | 102

Modules

const void* NvSciSyncObj;
} handle;
unsigned int flags;
} cudaExternalSemaphoreHandleDesc;

where cudaExternalSemaphoreHandleDesc::type specifies the type of handle being imported.
cudaExternalSemaphoreHandleType is defined as:

r typedef enum cudaExternalSemaphoreHandleType enum {
cudaExternalSemaphoreHandleTypeOpaqueFd
cudaExternal SemaphoreHandleTypeOpaqueWin32
cudaExternal SemaphoreHandleTypeOpaqueWin32Kmt
cudaExternalSemaphoreHandleTypeD3D12Fence
cudaExternalSemaphoreHandleTypeD3Dl1Fence
cudaExternal SemaphoreHandleTypeNvSciSync
cudaExternal SemaphoreHandleTypeKeyedMutex
cudaExternal SemaphoreHandleTypeKeyedMutexKmt
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd
cudaExternal SemaphoreHandleTypeTimelineSemaphoreWin32

} cudaExternalSemaphoreHandleType;

N~ N N o~ O~

~

R WOWOow-Jo U b W

O~ N~

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeOpaqueFd,
then cudakExternalSemaphoreHandleDesc::handle::fd must be a valid file descriptor
referencing a synchronization object. Ownership of the file descriptor is transferred to the
CUDA driver when the handle is imported successfully. Performing any operations on the file
descriptor after it is imported results in undefined behavior.

If cudaExternalSemaphoreHandleDesc::type is
cudakxternalSemaphoreHandleTypeOpaqueWin3?2, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudakxternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it

must represent a valid shared NT handle that references a synchronization object.
Ownership of this handle is not transferred to CUDA after the import operation,

so the application must release the handle using the appropriate system call. If
cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt, then
cudaExternalSemaphoreHandleDesc::handle::win32::handle must be non-NULL and
cudakxternalSemaphoreHandleDesc::handle::win32::name must be NULL. The handle
specified must be a globally shared KMT handle. This handle does not hold a reference to the
underlying object, and thus will be invalid when all references to the synchronization object
are destroyed.

If cudaExternalSemaphoreHandleDesc::type is
cudakxternalSemaphoreHandleTypeD3D12Fence, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudakxternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must
represent a valid shared NT handle that is returned by ID3D12Device::CreateSharedHandle

CUDA Runtime API vRelease Version | 103

Modules

when referring to a ID3D12Fence object. This handle holds a reference to the underlying
object. If cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must
name a valid synchronization object that refers to a valid ID3D12Fence object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeD3D11Fence, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudakxternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it must
represent a valid shared NT handle that is returned by ID3D11Fence::CreateSharedHandle. If
cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object that refers to a valid ID3D11Fence object.

If cudaExternalSemaphoreHandleDesc::type is cudaExternalSemaphoreHandleTypeNvSciSync,
then cudaExternalSemaphoreHandleDesc::handle::nvSciSyncObj represents a valid
NvSciSyncObj.

cudaExternalSemaphoreHandleTypeKeyedMutex, then exactly one

of cudakxternalSemaphoreHandleDesc::handle::win32::handle and
cudaExternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudakxternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it represent
a valid shared NT handle that is returned by IDXGIResourcel::CreateSharedHandle when
referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then
cudaExternalSemaphoreHandleDesc::handle::win32::handle must be non-NULL
and cudaExternalSemaphoreHandleDesc::handle::win32::name must be NULL.
The handle specified must represent a valid KMT handle that is returned by
IDXGIResource::GetSharedHandle when referring to a IDXGIKeyedMutex object.

If cudaExternalSemaphoreHandleDesc::type is
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd, then
cudaExternalSemaphoreHandleDesc::handle::fd must be a valid file descriptor referencing a
synchronization object. Ownership of the file descriptor is transferred to the CUDA driver when
the handle is imported successfully. Performing any operations on the file descriptor after it is
imported results in undefined behavior.

If cudaExternalSemaphoreHandleDesc::type is
cudakxternalSemaphoreHandleTypeTimelineSemaphoreWin32, then exactly

one of cudaExternalSemaphoreHandleDesc::handle::win32::handle and
cudakxternalSemaphoreHandleDesc::handle::win32::name must not be NULL. If
cudaExternalSemaphoreHandleDesc::handle::win32::handle is not NULL, then it
must represent a valid shared NT handle that references a synchronization object.
Ownership of this handle is not transferred to CUDA after the import operation,

so the application must release the handle using the appropriate system call. If

CUDA Runtime API vRelease Version | 104

Modules

cudaExternalSemaphoreHandleDesc::handle::win32::name is not NULL, then it must name a
valid synchronization object.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDestroyExternalSemaphore, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaSignalExternalSemaphoresAsync (const
cudaExternalSemaphore_t *extSemArray, const
cudaExternalSemaphoreSignalParams *paramsArray,
unsigned int numExtSems, cudaStream_t stream]

Signals a set of external semaphore objects.

Parameters

extSemArray

- Set of external semaphores to be signaled
paramsArray

- Array of semaphore parameters
numExtSems

- Number of semaphores to signal
stream

- Stream to enqueue the signal operations in

Returns

cudaSuccess, cudaErrorinvalidResourceHandle

CUDA Runtime API vRelease Version | 105

Modules

Description

Enqueues a signal operation on a set of externally allocated semaphore object in the specified
stream. The operations will be executed when all prior operations in the stream complete.

The exact semantics of signaling a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeOpaquefd,
cudakExternalSemaphoreHandleTypeOpagueWin32,
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt then signaling the semaphore will set it
to the signaled state.

If the semaphore object is any one of the following types:
cudakxternalSemaphoreHandleTypeD3D12Fence,
cudaExternalSemaphoreHandleTypeD3D11Fence,
cudaExternalSemaphoreHandleTypeTimelineSemaphorekd,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 then the semaphore will be set
to the value specified in cudaExternalSemaphoreSignalParams::params::fence::value.

If the semaphore object is of the type cudaExternalSemaphoreHandleTypeNvSciSync

this APl sets cudaExternalSemaphoreSignalParams::params::nvSciSync::fence to a

value that can be used by subsequent waiters of the same NvSciSync object to order
operations with those currently submitted in stream. Such an update will overwrite
previous contents of cudaExternalSemaphoreSignalParams::params::nvSciSync::fence.

By deefault, signaling such an external semaphore object causes appropriate memory
synchronization operations to be performed over all the external memory objects

that are imported as cudaExternalMemoryHandleTypeNvSciBuf. This ensures that

any subsequent accesses made by other importers of the same set of NvSciBuf

memory object(s) are coherent. These operations can be skipped by specifying the flag
cudakxternalSemaphoreSignalSkipNvSciBufMemSync, which can be used as a performance
optimization when data coherency is not required. But specifying this flag in scenarios
where data coherency is required results in undefined behavior. Also, for semaphore object
of the type cudaExternalSemaphoreHandleTypeNvSciSync, if the NvSciSyncAttrList used

to create the NvSciSyncObj had not set the flags in cudaDeviceGetNvSciSyncAttributes to
cudaNvSciSyncAttrSignal, this APl will return cudaErrorNotSupported.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeKeyedMutex,
cudaExternalSemaphoreHandleTypeKeyedMutexKmt, then the keyed mutex will be released
with the key specified in cudaExternalSemaphoreSignalParams::params::keyedmutex::key.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 106

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaWaitExternalSemaphoresAsync

__host_ _cudaError_t
cudaWaitExternalSemaphoresAsync (const
cudaExternalSemaphore_t *extSemArray, const
cudaExternalSemaphoreWaitParams *paramsArray,
unsigned int numExtSems, cudaStream_t stream)

Waits on a set of external semaphore objects.

Parameters

extSemArray

- External semaphores to be waited on
paramsArray

- Array of semaphore parameters
numExtSems

- Number of semaphores to wait on
stream

- Stream to enqueue the wait operations in

Returns

cudaSuccess, cudaErrorinvalidResourceHandle cudaErrorTimeout

Description

Enqueues a wait operation on a set of externally allocated semaphore object in the specified
stream. The operations will be executed when all prior operations in the stream complete.

The exact semantics of waiting on a semaphore depends on the type of the object.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeOpaquekd,
cudaExternalSemaphoreHandleTypeOpaqueWin32,

CUDA Runtime API vRelease Version | 107

Modules

cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt then waiting on the semaphore will
wait until the semaphore reaches the signaled state. The semaphore will then be reset to the
unsignaled state. Therefore for every signal operation, there can only be one wait operation.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeD3D12Fence,
cudakExternalSemaphoreHandleTypeD3D11Fence,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd,
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 then waiting on the
semaphore will wait until the value of the semaphore is greater than or equal to
cudaExternalSemaphoreWaitParams::params::fence::value.

If the semaphore object is of the type cudaExternalSemaphoreHandleTypeNvSciSync then,
waiting on the semaphore will wait until the
cudaExternalSemaphoreSignalParams::params::nvSciSync::fence is signaled by the
signaler of the NvSciSyncObj that was associated with this semaphore object. By

default, waiting on such an external semaphore object causes appropriate memory
synchronization operations to be performed over all external memory objects that

are imported as cudakExternalMemoryHandleTypeNvSciBuf. This ensures that any
subsequent accesses made by other importers of the same set of NvSciBuf memory
object(s) are coherent. These operations can be skipped by specifying the flag
cudaExternalSemaphoreWaitSkipNvSciBufMemSync, which can be used as a performance
optimization when data coherency is not required. But specifying this flag in scenarios
where data coherency is required results in undefined behavior. Also, for semaphore object
of the type cudaExternalSemaphoreHandleTypeNvSciSync, if the NvSciSyncAttrList used
to create the NvSciSyncObj had not set the flags in cudaDeviceGetNvSciSyncAttributes to
cudaNvSciSyncAttrWait, this APl will return cudaErrorNotSupported.

If the semaphore object is any one of the following types:
cudaExternalSemaphoreHandleTypeKeyedMutex,
cudakxternalSemaphoreHandleTypeKeyedMutexKmt, then the keyed

mutex will be acquired when it is released with the key specified in
cudaExternalSemaphoreSignalParams::params::keyedmutex::key or until the timeout
specified by cudaExternalSemaphoreSignalParams::params::keyedmutex::timeoutMs has
lapsed. The timeout interval can either be a finite value specified in milliseconds or an infinite
value. In case an infinite value is specified the timeout never elapses. The windows INFINITE
macro must be used to specify infinite timeout

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 108

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalmportExternalSemaphore, cudaDestroyExternalSemaphore,
cudaSignalExternalSemaphoresAsync

6.7. Execution Control

This section describes the execution control functions of the CUDA runtime application
programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

__host_ _device_ cudaError_t
cudaFuncGetAttributes (cudaFuncAttributes *attr,
const void *func]

Find out attributes for a given function.

Parameters

attr

- Return pointer to function’s attributes
func

- Device function symbol

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

Description

This function obtains the attributes of a function specified via func. func is a

device function symbol and must be declared asa global function. The

fetched attributes are placed in attr. If the specified function does not exist, then
cudaErrorinvalidDeviceFunction is returned. For templated functions, pass the function
symbol as follows: func_name<template_arg_0,...,template_arg_N>

Note that some function attributes such as maxThreadsPerBlock may vary based on the device
that is currently being used.

CUDA Runtime API vRelease Version | 109

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes (C++ API], cudaLaunchKernel (C
API), cuFuncGetAttribute

__host__cudaError_t cudaFuncSetAttribute (const
void *func, cudaFuncAttribute attr, int value])

Set attributes for a given function.

Parameters

func

- Function to get attributes of
attr

- Attribute to set
value

- Value to set

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidValue

Description

This function sets the attributes of a function specified via func. The parameter func must

be a pointer to a function that executes on the device. The parameter specified by func must
be declaredasa global function. The enumeration defined by attr is set to the value
defined by value. If the specified function does not exist, then cudaErrorinvalidDeviceFunction
is returned. If the specified attribute cannot be written, or if the value is incorrect, then
cudaErrorinvalidValue is returned.

CUDA Runtime API vRelease Version | 110

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g5e92a1b0d8d1b82cb00dcfb2de15961b

Modules

Valid values for attr are:

» cudaFuncAttributeMaxDynamicSharedMemorySize - The requested maximum
size in bytes of dynamically-allocated shared memory. The sum of this value
and the function attribute sharedSizeBytes cannot exceed the device attribute
cudaDevAttrMaxSharedMemoryPerBlockOptin. The maximal size of requestable dynamic
shared memory may differ by GPU architecture.

» cudaFuncAttributePreferredSharedMemoryCarveout - On devices where the
L1 cache and shared memory use the same hardware resources, this sets the
shared memory carveout preference, in percent of the total shared memory. See
cudaDevAttrMaxSharedMemoryPerMultiprocessor. This is only a hint, and the driver can
choose a different ratio if required to execute the function.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C++ API), cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes (C
API),

__host__cudaError_t cudaFuncSetCacheConfig (const
void *func, cudaFuncCache cacheConfig)

Sets the preferred cache configuration for a device function.

Parameters

func

- Device function symbol
cacheConfig

- Requested cache configuration

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

CUDA Runtime API vRelease Version | 111

Modules

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
sets through cacheConfig the preferred cache configuration for the function specified via
func. Thisis only a preference. The runtime will use the requested configuration if possible,
but it is free to choose a different configuration if required to execute func.

func is a device function symbol and must be declared asa global function.
If the specified function does not exist, then cudaErrorinvalidDeviceFunction

is returned. For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default]

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

» cudaFuncCachePreferEqual: prefer equal size L1 cache and shared memory

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes [C API], cudalLaunchKernel (C
API), cudaThreadGetCacheConfig, cudaThreadSetCacheConfig, cuFuncSetCacheConfig

CUDA Runtime API vRelease Version | 112

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g40f8c11e81def95dc0072a375f965681

Modules

__host__cudaError_t cudaFuncSetSharedMemConfig
[const void *func, cudaSharedMemConfig config)

Sets the shared memory configuration for a device function.

Parameters

func
- Device function symbol
config
- Requested shared memory configuration

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidValue,

Description

On devices with configurable shared memory banks, this function will force all subsequent
launches of the specified device function to have the given shared memory bank size
configuration. On any given launch of the function, the shared memory configuration of the
device will be temporarily changed if needed to suit the function's preferred configuration.
Changes in shared memory configuration between subsequent launches of functions, may
introduce a device side synchronization point.

Any per-function setting of shared memory bank size set via cudaFuncSetSharedMemConfig
will override the device wide setting set by cudaDeviceSetSharedMemConfig.

Changing the shared memory bank size will not increase shared memory usage or affect
occupancy of kernels, but may have major effects on performance. Larger bank sizes will
allow for greater potential bandwidth to shared memory, but will change what kinds of
accesses to shared memory will result in bank conflicts.

This function will do nothing on devices with fixed shared memory bank size.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

The supported bank configurations are:

» cudaSharedMemBankSizeDefault: use the device's shared memory configuration when
launching this function.

» cudaSharedMemBankSizeFourByte: set shared memory bank width to be four bytes
natively when launching this function.

» cudaSharedMemBankSizeEightByte: set shared memory bank width to be eight bytes
natively when launching this function.

CUDA Runtime API vRelease Version | 113

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a function as the func parameter was deprecated in CUDA 4.1 and
removed in CUDA 5.0.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetSharedMemConfig, cudaDeviceGetSharedMemConfig,
cudaDeviceSetCacheConfig, cudaDeviceGetCacheConfig, cudaFuncSetCacheConfig,
cuFuncSetSharedMemConfig

__device_ void *cudaGetParameterBuffer (size t
alignment, size_t size)

Obtains a parameter buffer.

Parameters

alignment

- Specifies alignment requirement of the parameter buffer
size

- Specifies size requirement in bytes

Returns

Returns pointer to the allocated parameterBuffer

Description

Obtains a parameter buffer which can be filled with parameters for a kernel launch.
Parameters passed to cudalLaunchDevice must be allocated via this function.

This is a low level APl and can only be accessed from Parallel Thread Execution (PTX). CUDA
user code should use <<< >>> to launch kernels.

CUDA Runtime API vRelease Version | 114

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g430b913f24970e63869635395df6d9f5

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudalaunchDevice

__device_ void *cudaGetParameterBufferV2 (void
*func, dim3 gridDimension, dim3 blockDimension,
unsigned int sharedMemSize)

Launches a specified kernel.

Parameters

func

- Pointer to the kernel to be launched
gridDimension

- Specifies grid dimensions
blockDimension

- Specifies block dimensions
sharedMemSize

- Specifies size of shared memory

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorLaunchMaxDepthExceeded,
cudaErrorinvalidConfiguration, cudaErrorStartupFailure,
cudaErrorLaunchPendingCountExceeded, cudaErrorLaunchOutOfResources

Description

Launches a specified kernel with the specified parameter buffer. A parameter buffer can be
obtained by calling cudaGetParameterBuffer(].

This is a low level APl and can only be accessed from Parallel Thread Execution (PTX). CUDA
user code should use <<< >>> to launch the kernels.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 115

Modules

Please refer to Execution Configuration and Parameter Buffer Layout from the CUDA
Programming Guide for the detailed descriptions of launch configuration and parameter layout
respectively.

See also:

cudaGetParameterBuffer

__host__cudaError_t cudaLaunchCooperativeKernel
[const void *func, dim3 gridDim, dim3 blockDim, void
**args, size_t sharedMem, cudaStream_t stream)

Launches a device function where thread blocks can cooperate and synchronize as they
execute.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions
blockDim

- Block dimentions
args

- Arguments
sharedMem

- Shared memory
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudakErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorCooperativeLaunchToolarge, cudaErrorSharedObjectinitFailed

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim. z) threads.

The device on which this kernel is invoked must have a non-zero value for the device attribute
cudaDevAttrCooperativeLaunch.

The total number of blocks launched cannot exceed the maximum number of blocks
per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor

CUDA Runtime API vRelease Version | 116

Modules

(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount.

The kernel cannot make use of CUDA dynamic parallelism.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
fromargs[0] toargs[N - 117, pointto the region of memory from which the actual
parameter will be copied.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

sharedMem sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:
» This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalLaunchCooperativeKernel [C++ API], cudalLaunchCooperativeKernelMultiDevice,
cuLaunchCooperativeKernel

CUDA Runtime API vRelease Version | 117

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g06d753134145c4584c0c62525c1894cb

Modules

__host__cudaError_t
cudaLaunchCooperativeKernelMultiDevice
(cudaLaunchParams *launchParamsList, unsigned int
numDevices, unsigned int flags]

Launches device functions on multiple devices where thread blocks can cooperate and
synchronize as they execute.

Parameters

launchParamsList

- List of launch parameters, one per device
numbDevices

- Size of the launchParamsList array
flags

- Flags to control launch behavior

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudakErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorCooperativeLaunchToolarge, cudaErrorSharedObjectlnitFailed

Description
Deprecated This function is deprecated as of CUDA 11.3.

Invokes kernels as specified in the launchParamsList array where each element of
the array specifies all the parameters required to perform a single kernel launch. These
kernels can cooperate and synchronize as they execute. The size of the array is specified by

numDevices.

No two kernels can be launched on the same device. All the devices targeted by this multi-
device launch must be identical. All devices must have a non-zero value for the device
attribute cudaDevAttrCooperativeMultiDevicelLaunch.

The same kernel must be launched on all devices. Note that any __device_ _or __constant__
variables are independently instantiated on every device. It is the application’s responsiblity to
ensure these variables are initialized and used appropriately.

The size of the grids as specified in blocks, the size of the blocks themselves and the amount
of shared memory used by each thread block must also match across all launched kernels.

The streams used to launch these kernels must have been created via either
cudaStreamCreate or cudaStreamCreateWithPriority or cudaStreamCreateWithPriority. The
NULL stream or cudaStreamlLegacy or cudaStreamPerThread cannot be used.

CUDA Runtime API vRelease Version | 118

Modules

The total number of blocks launched per kernel cannot exceed the maximum number of
blocks per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount. Since
the total number of blocks launched per device has to match across all devices, the maximum
number of blocks that can be launched per device will be limited by the device with the least
number of multiprocessors.

The kernel cannot make use of CUDA dynamic parallelism.

The cudalLaunchParams structure is defined as:

r struct cudal.aunchParams

{

dim3 gridDim;
dim3 blockDim;
void **args;
size t sharedMem;
cudaStream t
stream;

where:

» cudalaunchParams::func specifies the kernel to be launched. This same functions must
be launched on all devices. For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

» cudalaunchParams::gridDim specifies the width, height and depth of the grid in blocks.
This must match across all kernels launched.

» cudalaunchParams::blockDim is the width, height and depth of each thread block. This
must match across all kernels launched.

» cudalaunchParams::args specifies the arguments to the kernel. If the kernel has N
parameters then cudalaunchParams::args should point to array of N pointers. Each

pointer, from cudaLaunchParams::args[0] to cudalLaunchParams::args[N - 1],
point to the region of memory from which the actual parameter will be copied.

» cudalaunchParams::sharedMem is the dynamic shared-memory size per thread block in
bytes. This must match across all kernels launched.

» cudalaunchParams::stream is the handle to the stream to perform the launch in. This
cannot be the NULL stream or cudaStreaml egacy or cudaStreamPerThread.

By default, the kernel won't begin execution on any GPU until all prior work in all the
specified streams has completed. This behavior can be overridden by specifying the flag
cudaCooperativelLaunchMultiDeviceNoPreSync. When this flag is specified, each kernel will
only wait for prior work in the stream corresponding to that GPU to complete before it begins
execution.

CUDA Runtime API vRelease Version | 119

Modules

Similarly, by default, any subsequent work pushed in any of the specified streams will not
begin execution until the kernels on all GPUs have completed. This behavior can be overridden
by specifying the flag cudaCooperativeLaunchMultiDeviceNoPostSync. When this flag is
specified, any subsequent work pushed in any of the specified streams will only wait for

the kernel launched on the GPU corresponding to that stream to complete before it begins
execution.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchCooperativeKernel [C++ API), cudalLaunchCooperativeKernel,
cuLaunchCooperativeKernelMultiDevice

__host__cudaError_t cudalLaunchHostFunc
(cudaStream_t stream, cudaHostFn_t fn, void
*userData)

Enqueues a host function call in a stream.

Parameters

stream
fn

- The function to call once preceding stream operations are complete
userData

- User-specified data to be passed to the function

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue,
cudaErrorNotSupported

CUDA Runtime API vRelease Version | 120

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1g1d34025bc4f8fcec82fbcfc18d07a6e2

Modules

Description

Enqueues a host function to run in a stream. The function will be called after currently
enqueued work and will block work added after it.

The host function must not make any CUDA API calls. Attempting to use a CUDA APl may
result in cudaErrorNotPermitted, but this is not required. The host function must not perform
any synchronization that may depend on outstanding CUDA work not mandated to run earlier.
Host functions without a mandated order (such as in independent streams) execute in
undefined order and may be serialized.

For the purposes of Unified Memory, execution makes a number of guarantees:

» The stream is considered idle for the duration of the function’s execution. Thus, for
example, the function may always use memory attached to the stream it was enqueued in.

» The start of execution of the function has the same effect as synchronizing an event
recorded in the same stream immediately prior to the function. It thus synchronizes
streams which have been “joined” prior to the function.

» Adding device work to any stream does not have the effect of making the stream active
until all preceding host functions and stream callbacks have executed. Thus, for example,
a function might use global attached memory even if work has been added to another
stream, if the work has been ordered behind the function call with an event.

» Completion of the function does not cause a stream to become active except as described
above. The stream will remain idle if no device work follows the function, and will remain
idle across consecutive host functions or stream callbacks without device work in
between. Thus, for example, stream synchronization can be done by signaling from a host
function at the end of the stream.

Note that, in constrast to cuStreamAddCallback, the function will not be called in the event of
an error in the CUDA context.

Note:
» This function uses standard default stream semantics.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 121

../cuda-driver-api/cuda-driver-api/content/group__CUDA__STREAM.html#group__CUDA__STREAM_1g613d97a277d7640f4cb1c03bd51c2483

Modules

See also:

cudaStreamCreate, cudaStreamQuery, cudaStreamSynchronize, cudaStreamWaitEvent,
cudaStreamDestroy, cudaMallocManaged, cudaStreamAttachMemAsync,
cudaStreamAddCallback, cuLaunchHostFunc

__host__cudaError_t cudaLaunchKernel (const void
*func, dim3 gridDim, dim3 blockDim, void **args,
size t sharedMem, cudaStream_t stream)

Launches a device function.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions
blockDim

- Block dimentions
args

- Arguments
sharedMem

- Shared memory
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudakrrorSharedQObjectinitFailed, cudaErrorinvalidPtx, cudaErrorUnsupportedPtxVersion,
cudaErrorNoKernellmageForDevice, cudakErrorJitCompilerNotFound,
cudaErrorJitCompilationDisabled

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim. z) threads.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
from args[0] to args [N - 117, pointto the region of memory from which the actual
parameter will be copied.

For templated functions, pass the function symbol as follows:
func_name<template_arg_0,....,template_arg_N>

CUDA Runtime API vRelease Version | 122

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1gab95a78143bae7f21eebb978f91e7f3f

Modules

sharedMem sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchKernel [C++ API), cuLaunchKernel

__host__cudaError_t cudaSetDoubleForDevice
(double *d)

Converts a double argument to be executed on a device.

Parameters

d
- Double to convert

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 7.5

Converts the double value of d to an internal float representation if the device does not support
double arithmetic. If the device does natively support doubles, then this function does nothing.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 123

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EXEC.html#group__CUDA__EXEC_1gb8f3dc3031b40da29d5f9a7139e52e15

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes [C API), cudaSetDoubleForHost

__host__cudaError_t cudaSetDoubleForHost (double

Converts a double argument after execution on a device.

Parameters

d
- Double to convert

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 7.5

Converts the double value of d from a potentially internal float representation if the device
does not support double arithmetic. If the device does natively support doubles, then this
function does nothing.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 124

Modules

cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes [C API), cudaSetDoubleForDevice

6.8. Occupancy

This section describes the occupancy calculation functions of the CUDA runtime application
programming interface.

Besides the occupancy calculator functions
(cudaOccupancyMaxActiveBlocksPerMultiprocessor and
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags), there are also C++ only
occupancy-based launch configuration functions documented in C++ AP| Routines module.

See cudaOccupancyMaxPotentialBlockSize [C++ API), cudaOccupancyMaxPotentialBlockSize
(C++ API), cudaOccupancyMaxPotentialBlockSizeVariableSMem [C+

+ API], cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API)
cudaOccupancyAvailableDynamicSMemPerBlock [C++ APIJ,

__host__cudaError_t
cudaOccupancyAvailableDynamicSMemPerBlock
([size_t *dynamicSmemSize, const void *func, int
numBlocks, int blockSize)

Returns dynamic shared memory available per block when launching numBlocks blocks on
SM.

Parameters

dynamicSmemSize

- Returned maximum dynamic shared memory
func

- Kernel function for which occupancy is calculated
numBlocks

- Number of blocks to fit on SM
blockSize

- Size of the block

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

CUDA Runtime API vRelease Version | 125

Modules

Description

Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow
numBlocks blocks per SM.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags,
cudaOccupancyMaxPotentialBlockSize [C++ API),
cudaOccupancyMaxPotentialBlockSizeWithFlags [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C++ APIJ,
cudaOccupancyAvailableDynamicSMemPerBlock

__host_ device cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessor
(int *numBlocks, const void *func, int blockSize, size t
dynamicSMemSize]

Returns occupancy for a device function.

Parameters

numBlocks

- Returned occupancy
func

- Kernel function for which occupancy is calculated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes

CUDA Runtime API vRelease Version | 126

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags,
cudaOccupancyMaxPotentialBlockSize [C++ APIJ,
cudaOccupancyMaxPotentialBlockSizeWithFlags [C++ APlJ,
cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C+
+ API), cudaOccupancyAvailableDynamicSMemPerBlock [C++ API),
cuOccupancyMaxActiveBlocksPerMultiprocessor

__host__cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
(int *numBlocks, const void *func, int blockSize, size t
dynamicSMemSize, unsigned int flags)

Returns occupancy for a device function with the specified flags.

Parameters

numBlocks
- Returned occupancy

CUDA Runtime API vRelease Version | 127

../cuda-driver-api/cuda-driver-api/content/group__CUDA__OCCUPANCY.html#group__CUDA__OCCUPANCY_1gcc6e1094d05cba2cee17fe33ddd04a98

Modules

func

- Kernel function for which occupancy is calculated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
flags

- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorlnvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

The flags parameter controls how special cases are handled. Valid flags include:

» cudaOccupancyDefault: keeps the default behavior as
cudaOccupancyMaxActiveBlocksPerMultiprocessor

» cudaOccupancyDisableCachingQOverride: This flag suppresses the default behavior
on platform where global caching affects occupancy. On such platforms, if caching is
enabled, but per-block SM resource usage would result in zero occupancy, the occupancy
calculator will calculate the occupancy as if caching is disabled. Setting this flag makes
the occupancy calculator to return 0 in such cases. More information can be found about
this feature in the "Unified L1/Texture Cache"” section of the Maxwell tuning guide.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessor, cudaOccupancyMaxPotentialBlockSize
[C++ API), cudaOccupancyMaxPotentialBlockSizeWithFlags [C++

CUDA Runtime API vRelease Version | 128

Modules

API), cudaOccupancyMaxPotentialBlockSizeVariableSMem [C++ API),
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags [C+
+ API), cudaOccupancyAvailableDynamicSMemPerBlock [C++ APIJ,
cuOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

6.9. Memory Management

This section describes the memory management functions of the CUDA runtime application
programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++
APl Routines module.

__host___cudaError_t cudaArrayGetlnfo
(cudaChannelFormatDesc *desc, cudaExtent *extent,
unsigned int *flags, cudaArray_t array)

Gets info about the specified cudaArray.

Parameters

desc
- Returned array type
extent
- Returned array shape. 2D arrays will have depth of zero
flags
- Returned array flags
array
- The cudaArray to get info for

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Returns in *desc, *extent and *flags respectively, the type, shape and flags of array.

Any of *desc, *extent and *flags may be specified as NULL.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 129

../cuda-driver-api/cuda-driver-api/content/group__CUDA__OCCUPANCY.html#group__CUDA__OCCUPANCY_1g8f1da4d4983e5c3025447665423ae2c2

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuArrayGetDescriptor, cuArray3DGetDescriptor

__host__cudaError_t cudaArrayGetPlane
(cudaArray_t *pPlaneArray, cudaArray_t hArray,

unsigned int planeldx)
Gets a CUDA array plane from a CUDA array.

Parameters

pPlaneArray

- Returned CUDA array referenced by the planeIdx
hArray

- CUDA array
planeldx

- Plane index

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidResourceHandle

Description

Returns in pPlaneArray a CUDA array that represents a single format plane of the CUDA
array hArray.

If planeIdx is greater than the maximum number of planes in this array or if the array does
not have a multi-planar format e.g: cudaChannelFormatKindNV12, then cudaErrorinvalidValue
Is returned.

Note that if the hArray has format cudaChannelFormatKindNV12, then passing in O for
planeIdx returns a CUDA array of the same size as hArray but with one 8-bit channel and
cudaChannelFormatKindUnsigned as its format kind. If 1 is passed for planeIdx, then the
returned CUDA array has half the height and width of hArray with two 8-bit channels and
cudaChannelFormatKindUnsigned as its format kind.

CUDA Runtime API vRelease Version | 130

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g661fe823dbd37bf11f82a71bd4762acf
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb58549f2f3f390b9e0e7c8f3acd53857

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cuArrayGetPlane

__host__cudaError_t cudaArrayGetSparseProperties
(cudaArraySparseProperties *sparseProperties,
cudaArray_t array)

Returns the layout properties of a sparse CUDA array.

Parameters

sparseProperties

- Pointer to return the cudaArraySparseProperties
array

- The CUDA array to get the sparse properties of

Returns

cudaSuccess cudaErrorinvalidValue

Description

Returns the layout properties of a sparse CUDA array in sparseProperties. If the CUDA
array is not allocated with flag cudaArraySparse cudaErrorlnvalidValue will be returned.

If the returned value in cudaArraySparseProperties::flags contains
cudaArraySparsePropertiesSingleMipTail, then cudaArraySparseProperties::miptailSize
represents the total size of the array. Otherwise, it will be zero. Also, the returned value in
cudaArraySparseProperties::miptailFirstLevel is always zero. Note that the array must have
been allocated using cudaMallocArray or cudaMalloc3DArray. For CUDA arrays obtained

using cudaMipmappedArrayGetLevel, cudaErrorinvalidValue will be returned. Instead,
cudaMipmappedArrayGetSparseProperties must be used to obtain the sparse properties of the
entire CUDA mipmapped array to which array belongs to.

See also:

cudaMipmappedArrayGetSparseProperties, cuMemMapArrayAsync

CUDA Runtime API vRelease Version | 131

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge66ce245a1e3802f9ccc3583cec6b71f
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab

Modules

__host_ device_ cudaError_t cudaFree (void
*devPtr)

Frees memory on the device.

Parameters

devPtr
- Device pointer to memory to free

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the memory space pointed to by devPtr, which must have been returned by a previous
call to cudaMalloc(] or cudaMallocPitch(]. Otherwise, or if cudaFree(devPtr) has already
been called before, an error is returned. If devPtr is 0, no operation is performed. cudaFree
returns cudaErrorValue in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API,
and vice versa.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocArray, cudaFreeArray, cudaMallocHost [C AP,
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemFree

CUDA Runtime API vRelease Version | 132

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g89b3f154e17cc89b6eea277dbdf5c93a

Modules

__host__cudaError_t cudaFreeArray (cudaArray_t
array)

Frees an array on the device.

Parameters

array
- Pointer to array to free

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the CUDA array array, which must have been returned by a previous call to
cudaMallocArray(). If devPtr is 0, no operation is performed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaMallocHost [C API),
cudaFreeHost, cudaHostAlloc, cuArrayDestroy

__host__cudaError_t cudaFreeHost (void *ptr]

Frees page-locked memory.

Parameters

ptr
- Pointer to memory to free

CUDA Runtime API vRelease Version | 133

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g982878affbbc023de84874faac838b0b

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the memory space pointed to by hostPtr, which must have been returned by a
previous call to cudaMallocHost() or cudaHostAlloc().

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost (C
API), cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemFreeHost

__host__cudaError_t cudaFreeMipmappedArray
(cudaMipmappedArray_t mipmappedArray)

Frees a mipmapped array on the device.

Parameters

mipmappedArray
- Pointer to mipmapped array to free

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Frees the CUDA mipmapped array mipmappedArray, which must have been returned by a
previous call to cudaMallocMipmappedArray(). If devPtr is 0, no operation is performed.

CUDA Runtime API vRelease Version | 134

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g62e0fdbe181dab6b1c90fa1a51c7b92c

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaMallocArray, cudaMallocHost [C API),
cudaFreeHost, cudaHostAlloc, cuMipmappedArrayDestroy

__host__cudaError_t cudaGetMipmappedArrayLevel
(cudaArray_t *levelArray,
cudaMipmappedArray_const_t mipmappedArray,

unsigned int level)
Gets a mipmap level of a CUDA mipmapped array.

Parameters

levelArray

- Returned mipmap level CUDA array
mipmappedArray

- CUDA mipmapped array
level

- Mipmap level

Returns

cudaSuccess, cudaErrorinvalidValue cudaErrorinvalidResourceHandle

Description

Returnsin *levelArray a CUDA array that represents a single mipmap level of the CUDA
mipmapped array mipmappedArray.

If level is greater than the maximum number of levels in this mipmapped array,
cudaErrorinvalidValue is returned.

If mipmappedArray is NULL, cudaErrorinvalidResourceHandle is returned.

CUDA Runtime API vRelease Version | 135

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge0d7c768b6a6963c4d4bde5bbc74f0ad

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API), cudaFreeHost, cudaHostAlloc, make cudaExtent, cuMipmappedArrayGetlLevel

__host__cudaError_t cudaGetSymbolAddress (void

**devPtr, const void *symbol]
Finds the address associated with a CUDA symbol.

Parameters

devPtr

- Return device pointer associated with symbol
symbol

- Device symbol address

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *devPtr the address of symbol symbol on the device. symbol is a variable that
resides in global or constant memory space. If symbol cannot be found, or if symbol is

not declared in the global or constant memory space, *devPtr is unchanged and the error
cudaErrorinvalidSymbol is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

CUDA Runtime API vRelease Version | 136

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g82f276659f05be14820e99346b0f86b7

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetSymbolAddress [C++ API), cudaGetSymbolSize [C API], cuModuleGetGlobal

__host__cudaError_t cudaGetSymbolSize (size_t

*size, const void *symbol)
Finds the size of the object associated with a CUDA symbol.

Parameters
size

- Size of object associated with symbol
symbol

- Device symbol address

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *size the size of symbol symbol. symbol is a variable that resides in global or
constant memory space. If symbol cannot be found, or if symbol is not declared in global
or constant memory space, *size is unchanged and the error cudaErrorinvalidSymbol is
returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 137

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1gf3e43672e26073b1081476dbf47a86ab

Modules

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetSymbolAddress [C API), cudaGetSymbolSize [C++ API), cuModuleGetGlobal

__host__cudaError_t cudaHostAlloc (void **pHost,
size_t size, unsigned int flags)

Allocates page-locked memory on the host.

Parameters

pHost
- Device pointer to allocated memory
size
- Requested allocation size in bytes
flags
- Requested properties of allocated memory

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device.

The driver tracks the virtual memory ranges allocated with this function and automatically
accelerates calls to functions such as cudaMemcpy(]. Since the memory can be accessed
directly by the device, it can be read or written with much higher bandwidth than pageable
memory obtained with functions such as malloc(). Allocating excessive amounts of pinned
memory may degrade system performance, since it reduces the amount of memory available
to the system for paging. As a result, this function is best used sparingly to allocate staging
areas for data exchange between host and device.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaHostAllocDefault: This flag's value is defined to be 0 and causes cudaHostAlloc(] to
emulate cudaMallocHost().

» cudaHostAllocPortable: The memory returned by this call will be considered as pinned
memory by all CUDA contexts, not just the one that performed the allocation.

» cudaHostAllocMapped: Maps the allocation into the CUDA address space. The device
pointer to the memory may be obtained by calling cudaHostGetDevicePointer(].

CUDA Runtime API vRelease Version | 138

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1gf3e43672e26073b1081476dbf47a86ab

Modules

» cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC). WC
memory can be transferred across the PCI Express bus more quickly on some system
configurations, but cannot be read efficiently by most CPUs. WC memory is a good option
for buffers that will be written by the CPU and read by the device via mapped pinned
memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is
portable, mapped and/or write-combined with no restrictions.

In order for the cudaHostAllocMapped flag to have any effect, the CUDA context must
support the cudaDeviceMapHost flag, which can be checked via cudaGetDeviceFlags(). The
cudaDeviceMapHost flag is implicitly set for contexts created via the runtime API.

The cudaHostAllocMapped flag may be specified on CUDA contexts for devices that do not
support mapped pinned memory. The failure is deferred to cudaHostGetDevicePointer(]
because the memory may be mapped into other CUDA contexts via the cudaHostAllocPortable
flag.

Memory allocated by this function must be freed with cudaFreeHost(].

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaSetDeviceFlags, cudaMallocHost [C API), cudaFreeHost, cudaGetDeviceFlags,
cuMemHostAlloc

__host__cudaError_t cudaHostGetDevicePointer (void
**pDevice, void *pHost, unsigned int flags])

Passes back device pointer of mapped host memory allocated by cudaHostAlloc or registered

by cudaHostRegister.

Parameters

pDevice
- Returned device pointer for mapped memory

CUDA Runtime API vRelease Version | 139

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g572ca4011bfcb25034888a14d4e035b9

Modules

pHost
- Requested host pointer mapping
flags
- Flags for extensions (must be 0 for now)

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Passes back the device pointer corresponding to the mapped, pinned host buffer allocated by
cudaHostAlloc(] or registered by cudaHostRegister().

cudaHostGetDevicePointer() will fail if the cudaDeviceMapHost flag was not specified before
deferred context creation occurred, or if called on a device that does not support mapped,
pinned memory.

For devices that have a non-zero value for the device attribute
cudaDevAttrCanUseHostPointerForRegisteredMem, the memory can also be accessed

from the device using the host pointer pHost. The device pointer returned by
cudaHostGetDevicePointer(] may or may not match the original host pointer pHost

and depends on the devices visible to the application. If all devices visible to the

application have a non-zero value for the device attribute, the device pointer returned by
cudaHostGetDevicePointer() will match the original pointer pHost. If any device visible

to the application has a zero value for the device attribute, the device pointer returned by
cudaHostGetDevicePointer() will not match the original host pointer pHost, but it will be
suitable for use on all devices provided Unified Virtual Addressing is enabled. In such systems,
it is valid to access the memory using either pointer on devices that have a non-zero value for
the device attribute. Note however that such devices should access the memory using only of
the two pointers and not both.

flags provides for future releases. For now, it must be set to 0.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 140

Modules

cudaSetDeviceFlags, cudaHostAlloc, cuMemHostGetDevicePointer

__host__cudaError_t cudaHostGetFlags (unsigned int
*pFlags, void *pHost)

Passes back flags used to allocate pinned host memory allocated by cudaHostAlloc.

Parameters

pFlags

- Returned flags word
pHost

- Host pointer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

cudaHostGetFlags() will fail if the input pointer does not reside in an address range allocated
by cudaHostAlloc().

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaHostAlloc, cuMemHostGetFlags

CUDA Runtime API vRelease Version | 141

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g57a39e5cba26af4d06be67fc77cc62f0
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g42066246915fcb0400df2a17a851b35f

Modules

__host__cudaError_t cudaHostRegister (void *ptr,
size_t size, unsigned int flags])

Registers an existing host memory range for use by CUDA.

Parameters

ptr

- Host pointer to memory to page-lock
size

- Size in bytes of the address range to page-lock in bytes
flags

- Flags for allocation request

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation,
cudaErrorHostMemoryAlreadyReqgistered, cudaErrorNotSupported

Description

Page-locks the memory range specified by ptr and size and maps it for the device(s) as
specified by flags. This memory range also is added to the same tracking mechanism as
cudaHostAlloc(] to automatically accelerate calls to functions such as cudaMemcpyl). Since
the memory can be accessed directly by the device, it can be read or written with much higher
bandwidth than pageable memory that has not been registered. Page-locking excessive
amounts of memory may degrade system performance, since it reduces the amount of
memory available to the system for paging. As a result, this function is best used sparingly to
register staging areas for data exchange between host and device.

cudaHostRegister is supported only on I/0 coherent devices that have a non-zero value for the
device attribute cudaDevAttrHostRegisterSupported.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaHostRegisterDefault: On a system with unified virtual addressing, the memory will be
both mapped and portable. On a system with no unified virtual addressing, the memory will
be neither mapped nor portable.

» cudaHostRegisterPortable: The memory returned by this call will be considered as pinned
memory by all CUDA contexts, not just the one that performed the allocation.

» cudaHostRegisterMapped: Maps the allocation into the CUDA address space. The device
pointer to the memory may be obtained by calling cudaHostGetDevicePointer(].

CUDA Runtime API vRelease Version | 142

Modules

» cudaHostRegisterloMemory: The passed memory pointer is treated as pointing to some
memory-mapped |/0 space, e.g. belonging to a third-party PCle device, and it will marked
as non cache-coherent and contiguous.

» cudaHostRegisterReadOnly: The passed memory pointer is treated as pointing
to memory that is considered read-only by the device. On platforms without
cudaDevAttrPageableMemoryAccessUsesHostPageTables, this flag is required in order to
register memory mapped to the CPU as read-only. Support for the use of this flag can be
queried from the device attribute cudaDeviceAttrReadOnlyHostRegisterSupported. Using
this flag with a current context associated with a device that does not have this attribute
set will cause cudaHostRegister to error with cudakrrorNotSupported.

All of these flags are orthogonal to one another: a developer may page-lock memory that is
portable or mapped with no restrictions.

The CUDA context must have been created with the cudaMapHost flag in order for the
cudaHostRegisterMapped flag to have any effect.

The cudaHostRegisterMapped flag may be specified on CUDA contexts for

devices that do not support mapped pinned memory. The failure is deferred to
cudaHostGetDevicePointer() because the memory may be mapped into other CUDA contexts
via the cudaHostRegisterPortable flag.

For devices that have a non-zero value for the device attribute
cudaDevAttrCanUseHostPointerForRegisteredMem, the memory can also be

accessed from the device using the host pointer ptr. The device pointer returned by
cudaHostGetDevicePointer() may or may not match the original host pointer ptr and depends
on the devices visible to the application. If all devices visible to the application have a non-zero
value for the device attribute, the device pointer returned by cudaHostGetDevicePointer(] will
match the original pointer ptr. If any device visible to the application has a zero value for the
device attribute, the device pointer returned by cudaHostGetDevicePointer(] will not match the
original host pointer ptr, but it will be suitable for use on all devices provided Unified Virtual
Addressing is enabled. In such systems, it is valid to access the memory using either pointer
on devices that have a non-zero value for the device attribute. Note however that such devices
should access the memory using only of the two pointers and not both.

The memory page-locked by this function must be unregistered with cudaHostUnregister().

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 143

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaHostUnreqister, cudaHostGetFlags, cudaHostGetDevicePointer, cuMemHostReqister

__host__cudaError_t cudaHostUnregister (void *ptr]

Unregisters a memory range that was registered with cudaHostRegister.

Parameters

ptr
- Host pointer to memory to unregister

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorHostMemoryNotRegistered

Description

Unmaps the memory range whose base address is specified by ptr, and makes it pageable
again.

The base address must be the same one specified to cudaHostRegister(].

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaHostUnregister, cuMemHostUnreqgister

CUDA Runtime API vRelease Version | 144

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf0a9fe11544326dabd743b7aa6b54223
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g63f450c8125359be87b7623b1c0b2a14

Modules

__host_ device_ cudaError_t cudaMalloc (void
**devPtr, size t size)

Allocate memory on the device.

Parameters

devPtr

- Pointer to allocated device memory
size

- Requested allocation size in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of linear memory on the device and returns in *devPtr a pointer to
the allocated memory. The allocated memory is suitably aligned for any kind of variable. The
memory is not cleared. cudaMalloc() returns cudaErrorMemoryAllocation in case of failure.

The device version of cudaFree cannot be used with a *devPtr allocated using the host API,
and vice versa.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMalloc3D,
cudaMalloc3DArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc, cuMemAlloc

CUDA Runtime API vRelease Version | 145

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb82d2a09844a58dd9e744dc31e8aa467

Modules

__host__cudaError_t cudaMalloc3D (cudaPitchedPtr
*pitchedDevPtr, cudaExtent extent)

Allocates logical 1D, 2D, or 3D memory objects on the device.

Parameters

pitchedDevPir

- Pointer to allocated pitched device memory
extent

- Requested allocation size (width field in bytes)

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates at least width * height * depth bytes of linear memory on the device and returns
a cudaPitchedPtr in which ptr is a pointer to the allocated memory. The function may pad
the allocation to ensure hardware alignment requirements are met. The pitch returned in the
pitch field of pitchedDevPtr is the width in bytes of the allocation.

The returned cudaPitchedPtr contains additional fields xsize and ysize, the logical
width and height of the allocation, which are equivalent to the width and height extent
parameters provided by the programmer during allocation.

For allocations of 2D and 3D objects, it is highly recommended that programmers perform
allocations using cudaMalloc3D() or cudaMallocPitch(). Due to alignment restrictions in the
hardware, this is especially true if the application will be performing memory copies involving
2D or 3D objects (whether linear memory or CUDA arrays).

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 146

Modules

cudaMallocPitch, cudaFree, cudaMemcpy3D, cudaMemset3D, cudaMalloc3DArray,
cudaMallocArray, cudaFreeArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc,
make cudaPitchedPtr, make cudaExtent, cuMemAllocPitch

__host__cudaError_t cudaMalloc3DArray
(cudaArray_t *array, const cudaChannelFormatDesc
*desc, cudaExtent extent, unsigned int flags])

Allocate an array on the device.

Parameters

array
- Pointer to allocated array in device memory
desc
- Requested channel format
extent
- Requested allocation size (width field in elements]
flags
- Flags for extensions

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns
a handle to the new CUDA array in *array.

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int x, vy, z, w;
enum cudaChannelFormatKind
£;

b

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMalloc3DArray() can allocate the following:

» A 1D array is allocated if the height and depth extents are both zero.
» A 2D array is allocated if only the depth extent is zero.

» A3D array is allocated if all three extents are non-zero.

CUDA Runtime API vRelease Version | 147

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gcbe9b033f6c4de80f63cc6e58ed9a45a

Modules

A 1D layered CUDA array is allocated if only the height extent is zero and the
cudaArraylLayered flag is set. Each layeris a 1D array. The number of layers is determined
by the depth extent.

A 2D layered CUDA array is allocated if all three extents are non-zero and the
cudaArraylayered flag is set. Each layer is a 2D array. The number of layers is determined
by the depth extent.

A cubemap CUDA array is allocated if all three extents are non-zero and the
cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. A
cubemap is a special type of 2D layered CUDA array, where the six layers represent the
six faces of a cube. The order of the six layers in memory is the same as that listed in
cudaGraphicsCubeFace.

A cubemap layered CUDA array is allocated if all three extents are non-zero, and both,
cudaArrayCubemap and cudaArraylLayered flags are set. Width must be equal to height,
and depth must be a multiple of six. A cubemap layered CUDA array is a special type of 2D
layered CUDA array that consists of a collection of cubemaps. The first six layers represent
the first cubemap, the next six layers form the second cubemap, and so on.

The flags parameter enables different options to be specified that affect the allocation, as

follows.

» cudaArrayDefault: This flag's value is defined to be 0 and provides default array allocation

» cudaArraylayered: Allocates a layered CUDA array, with the depth extent indicating the
number of layers

» cudaArrayCubemap: Allocates a cubemap CUDA array. Width must be equal to height, and
depth must be six. If the cudaArraylLayered flag is also set, depth must be a multiple of six.

» cudaArraySurfaceloadStore: Allocates a CUDA array that could be read from or written to
using a surface reference.

» cudaArrayTextureGather: This flag indicates that texture gather operations will be
performed on the CUDA array. Texture gather can only be performed on 2D CUDA arrays.

>

cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by calling
cuMemMapArrayAsync. This flag can only be used for creating 2D, 3D or 2D layered sparse
CUDA arrays. The physical backing memory must be allocated via cuMemCreate.

The width, height and depth extents must meet certain size requirements as listed in the
following table. All values are specified in elements.

Note that 2D CUDA arrays have different size requirements if the cudaArrayTextureGather flag
is set. In that case, the valid range for (width, height, depth] is ((1,maxTexture2DGather[0]),
(1,maxTexture2DGather([1]], 0).

CUDA Runtime API vRelease Version | 148

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c

Modules

Valid extents with
Valid extents that must always be met cudaArraySurfaceLoadStore set
CUDA array {(width range in elements), (height {(width range in elements), (height

type range), (depth range)} range), (depth range)}
1D {(1,maxTexture1D), 0,0} { (1,maxSurface1D), 0, 0}
2D { (1, maxTexture2DI[0]), { (1,maxSurface2D[0]),

(1,maxTexture2D[1]), 0 } (1,maxSurface2D[1]), 0}

3D { (1,maxTexture3D[0]), { (1,maxSurface3DI[0]),
(1,maxTexture3DI[1]), (1,maxTexture3D[2]) } | (1,maxSurface3D[1]],
OR { (1,maxTexture3DALt[0]], (1,maxSurface3D[2]) }
(1,maxTexture3DALt[1]),
(1,maxTexture3DALt[2]) }

1D Layered { (1,maxTexture1DLayered[0]), O, { (1,maxSurface1DLayered[0]), 0,
(1,maxTexture1DLayered[1]) } (1,maxSurface1DLayered[1]) }

2D Layered {(1,maxTexture2DLayered[0]), { (1,maxSurface2DLayered[0]),
(1,maxTexture2DLayered[1]), (1,maxSurface2DLayered[1]),
(1,maxTexture2DLayered[2]] } (1,maxSurface2DLayered[2]) }

Cubemap { (1,maxTextureCubemap), { (1,maxSurfaceCubemap),
(1,maxTextureCubemap), 6 } (1,maxSurfaceCubemap), 6 }

Cubemap { (1,maxTextureCubemaplLayered[0]), { (1,maxSurfaceCubemaplayered[0]),

Layered (1,maxTextureCubemaplayered[0]), (1,maxSurfaceCubemaplayered[0]),
(1,maxTextureCubemapLayered[1]] } (1,maxSurfaceCubemaplayered[1]) }

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API), cudaFreeHost, cudaHostAlloc, make cudaExtent, cuArray3DCreate

CUDA Runtime API vRelease Version | 149

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gc2322c70b38c2984536c90ed118bb1d7

Modules

__host__cudaError_t cudaMallocArray (cudaArray _t
*array, const cudaChannelFormatDesc *desc, size_t
width, size_t height, unsigned int flags])

Allocate an array on the device.

Parameters

array
- Pointer to allocated array in device memory
desc
- Requested channel format
width
- Requested array allocation width
height
- Requested array allocation height
flags
- Requested properties of allocated array

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA array according to the cudaChannelFormatDesc structure desc and returns
a handle to the new CUDA array in *array.

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int %, y, 2z, w;
enum cudaChannelFormatKind
£;

i

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaArrayDefault: This flag's value is defined to be 0 and provides default array allocation

» cudaArraySurfaceloadStore: Allocates an array that can be read from or written to using a
surface reference

» cudaArraylextureGather: This flag indicates that texture gather operations will be
performed on the array.

CUDA Runtime API vRelease Version | 150

Modules

» cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by
calling cuMemMapArrayAsync. The physical backing memory must be allocated via
cuMemCreate.

width and height must meet certain size requirements. See cudaMalloc3DArray() for more
details.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C API),
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuArrayCreate

__host__cudaError_t cudaMallocHost (void **ptr,
size t size)

Allocates page-locked memory on the host.

Parameters

ptr

- Pointer to allocated host memory
size

- Requested allocation size in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device.

The driver tracks the virtual memory ranges allocated with this function and automatically
accelerates calls to functions such as cudaMemcpy*(). Since the memory can be accessed
directly by the device, it can be read or written with much higher bandwidth than pageable

CUDA Runtime API vRelease Version | 151

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab
../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4192ff387a81c3bd5ed8c391ed62ca24

Modules

memory obtained with functions such as malloc(). Allocating excessive amounts of memory
with cudaMallocHost(] may degrade system performance, since it reduces the amount of
memory available to the system for paging. As a result, this function is best used sparingly to
allocate staging areas for data exchange between host and device.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc, cudaMallocPitch, cudaMallocArray, cudaMalloc3D, cudaMalloc3DArray,
cudaHostAlloc, cudaFree, cudaFreeArray, cudaMallocHost [C++ API), cudaFreeHost,
cudaHostAlloc, cuMemAllocHost

__host__cudaError_t cudaMallocManaged (void
**devPtr, size_t size, unsigned int flags)

Allocates memory that will be automatically managed by the Unified Memory system.

Parameters

devPtr
- Pointer to allocated device memory
size
- Requested allocation size in bytes
flags
- Must be either cudaMemAttachGlobal or cudaMemAttachHost (defaults to
cudaMemAttachGlobal)

Returns

cudaSuccess, cudaErrorMemoryAllocation, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Allocates size bytes of managed memory on the device and returns in *devPtr a pointer
to the allocated memory. If the device doesn't support allocating managed memory,

CUDA Runtime API vRelease Version | 152

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gdd8311286d2c2691605362c689bc64e0

Modules

cudaErrorNotSupported is returned. Support for managed memory can be queried using the
device attribute cudaDevAttrManagedMemory. The allocated memory is suitably aligned for
any kind of variable. The memory is not cleared. If size is 0, cudaMallocManaged returns
cudaErrorinvalidValue. The pointer is valid on the CPU and on all GPUs in the system that
support managed memory. All accesses to this pointer must obey the Unified Memory
programming model.

flags specifies the default stream association for this allocation. f1ags must be

one of cudaMemAttachGlobal or cudaMemAttachHost. The default value for flags is
cudaMemAttachGlobal. If cudaMemAttachGlobal is specified, then this memory is accessible
from any stream on any device. If cudaMemAttachHost is specified, then the allocation
should not be accessed from devices that have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess; an explicit call to cudaStreamAttachMemAsync will
be required to enable access on such devices.

If the association is later changed via cudaStreamAttachMemAsync to a single stream,

the default association, as specifed during cudaMallocManaged, is restored when that
stream is destroyed. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

Memory allocated with cudaMallocManaged should be released with cudaFree.

Device memory oversubscription is possible for GPUs that have a non-zero value for the device
attribute cudaDevAttrConcurrentManagedAccess. Managed memory on such GPUs may be
evicted from device memory to host memory at any time by the Unified Memory driver in order
to make room for other allocations.

In a multi-GPU system where all GPUs have a non-zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, managed memory may not be populated when this
APl returns and instead may be populated on access. In such systems, managed memory
can migrate to any processor's memory at any time. The Unified Memory driver will employ
heuristics to maintain data locality and prevent excessive page faults to the extent possible.
The application can also guide the driver about memory usage patterns via cudaMemAdvise.
The application can also explicitly migrate memory to a desired processor's memory via
cudaMemPrefetchAsync.

In a multi-GPU system where all of the GPUs have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess and all the GPUs have peer-to-peer support with
each other, the physical storage for managed memory is created on the GPU which is active
at the time cudaMallocManaged is called. All other GPUs will reference the data at reduced
bandwidth via peer mappings over the PCle bus. The Unified Memory driver does not migrate
memory among such GPUs.

In @ multi-GPU system where not all GPUs have peer-to-peer support with each other and
where the value of the device attribute cudaDevAttrConcurrentManagedAccess is zero for

CUDA Runtime API vRelease Version | 153

Modules

at least one of those GPUs, the location chosen for physical storage of managed memory is
system-dependent.

» On Linux, the location chosen will be device memory as long as the current set of active
contexts are on devices that either have peer-to-peer support with each other or have a
non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. If there
is an active context on a GPU that does not have a non-zero value for that device attribute
and it does not have peer-to-peer support with the other devices that have active contexts
on them, then the location for physical storage will be ‘zero-copy’ or host memory. Note
that this means that managed memory that is located in device memory is migrated to
host memory if a new context is created on a GPU that doesn't have a non-zero value
for the device attribute and does not support peer-to-peer with at least one of the other
devices that has an active context. This in turn implies that context creation may fail if
there is insufficient host memory to migrate all managed allocations.

» On Windows, the physical storage is always created in ‘zero-copy’ or host memory.
All GPUs will reference the data at reduced bandwidth over the PCle bus. In these
circumstances, use of the environment variable CUDA_VISIBLE DEVICES is recommended
to restrict CUDA to only use those GPUs that have peer-to-peer support. Alternatively,
users can also set CUDA_MANAGED_ FORCE_DEVICE_ALLOC to a non-zero value
to force the driver to always use device memory for physical storage. When this
environment variable is set to a non-zero value, all devices used in that process that
support managed memory have to be peer-to-peer compatible with each other. The error
cudaErrorinvalidDevice will be returned if a device that supports managed memory is used
and it is not peer-to-peer compatible with any of the other managed memory supporting
devices that were previously used in that process, even if cudaDeviceReset has been called
on those devices. These environment variables are described in the CUDA programming
guide under the "CUDA environment variables” section.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 154

Modules

cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMalloc3D,
cudaMalloc3DArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc,
cudaDeviceGetAttribute, cudaStreamAttachMemAsync, cuMemAllocManaged

__host__cudaError_t cudaMallocMipmappedArray
(cudaMipmappedArray_t *mipmappedArray, const

cudaChannelFormatDesc *desc, cudaExtent extent,
unsigned int numLevels, unsigned int flags)

Allocate a mipmapped array on the device.

Parameters

mipmappedArray

- Pointer to allocated mipmapped array in device memory
desc

- Requested channel format
extent

- Requested allocation size (width field in elements)
numLevels

- Number of mipmap levels to allocate
flags

- Flags for extensions

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates a CUDA mipmapped array according to the cudaChannelFormatDesc structure desc
and returns a handle to the new CUDA mipmapped array in *mipmappedArray. numLevels

specifies the number of mipmap levels to be allocated. This value is clamped to the range [1, 1

+ floor({log2(max(width, height, depth]))].

The cudaChannelFormatDesc is defined as:

r struct cudaChannelFormatDesc {
int %, y, 2z, w;
enum cudaChannelFormatKind
£;

)8

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

cudaMallocMipmappedArray() can allocate the following:

CUDA Runtime API vRelease Version | 155

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb347ded34dc326af404aa02af5388a32

Modules

A 1D mipmapped array is allocated if the height and depth extents are both zero.
A 2D mipmapped array is allocated if only the depth extent is zero.
A 3D mipmapped array is allocated if all three extents are non-zero.

A 1D layered CUDA mipmapped array is allocated if only the height extent is zero and the
cudaArraylLayered flag is set. Each layer is a 1D mipmapped array. The number of layers is
determined by the depth extent.

A 2D layered CUDA mipmapped array is allocated if all three extents are non-zero and the
cudaArraylayered flag is set. Each layer is a 2D mipmapped array. The number of layers is
determined by the depth extent.

A cubemap CUDA mipmapped array is allocated if all three extents are non-zero and the
cudaArrayCubemap flag is set. Width must be equal to height, and depth must be six. The
order of the six layers in memory is the same as that listed in cudaGraphicsCubeFace.

A cubemap layered CUDA mipmapped array is allocated if all three extents are non-zero,
and both, cudaArrayCubemap and cudaArraylLayered flags are set. Width must be equal to
height, and depth must be a multiple of six. A cubemap layered CUDA mipmapped array
is a special type of 2D layered CUDA mipmapped array that consists of a collection of
cubemap mipmapped arrays. The first six layers represent the first cubemap mipmapped
array, the next six layers form the second cubemap mipmapped array, and so on.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

cudaArrayDefault: This flag's value is defined to be 0 and provides default mipmapped
array allocation

cudaArraylLayered: Allocates a layered CUDA mipmapped array, with the depth extent
indicating the number of layers

cudaArrayCubemap: Allocates a cubemap CUDA mipmapped array. Width must be equal
to height, and depth must be six. If the cudaArraylLayered flag is also set, depth must be a
multiple of six.

cudaArraySurfaceloadStore: This flag indicates that individual mipmap levels of the CUDA
mipmapped array will be read from or written to using a surface reference.

cudaArrayTextureGather: This flag indicates that texture gather operations will be
performed on the CUDA array. Texture gather can only be performed on 2D CUDA
mipmapped arrays, and the gather operations are performed only on the most detailed
mipmap level.

cudaArraySparse: Allocates a CUDA array without physical backing memory. The
subregions within this sparse array can later be mapped to physical memory by calling
cuMemMapArrayAsync. This flag can only be used for creating 2D, 3D or 2D layered

CUDA Runtime API vRelease Version | 156

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab

Modules

sparse CUDA mipmapped arrays. The physical backing memory must be allocated via
cuMemCreate.

The width, height and depth extents must meet certain size requirements as listed in the

following table. All values are specified in elements.

CUDA array
type

1D

2D

3D

1D Layered

2D Layered

Cubemap

Cubemap
Layered

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

Valid extents that must always be met

{(width range in elements), (height
range), (depth range)}

{ (1,maxTexture1DMipmap), 0, 0}

{ (1,maxTexture2DMipmapl0]),
(1,maxTexture2DMipmapl[1]), 0}

{ (1,maxTexture3D[0]),

(1,maxTexture3D[1]), (1,maxTexture3D[2]) }

OR { (1,maxTexture3DALt[0]),
(1,maxTexture3DALt[1]),
(1,maxTexture3DALt[2]) }

{ (1,maxTexture1DLayered[0]), O,
(1,maxTexture1DLayered[1]) }

{ (1,maxTexture2DLayered[0]),
(1,maxTexture2DLayered[1]),
(1,maxTexture2DLayered[2]) }

{ (1, maxTextureCubemap),
(1,maxTextureCubemap), 6 }

{ (1,maxTextureCubemaplayered[0]),
(1,maxTextureCubemapLayered[0],
(1,maxTextureCubemapLayered[1]] }

Valid extents with
cudaArraySurfaceLoadStore set
{lwidth range in elements), (height
range), (depth range)}

{ (1,maxSurface1D), 0,0}

{ (1,maxSurface2DI0]),
(1,maxSurface2D[1]), 0}

{ (1,maxSurface3D[0]),
(1,maxSurface3D[1]),
(1,maxSurface3D[2]) }

{ (1,maxSurface1DLayered|0]), 0,
(1,maxSurface1DLayered[1]) }

{ (1,maxSurface2DLayered[0]),
(1,maxSurface2DLayered[1]),
(1,maxSurface2DLayered(2]) }

{ (1, maxSurfaceCubemap),
(1,maxSurfaceCubemap), 6 }

{ (1,maxSurfaceCubemaplayered(0]),
(1,maxSurfaceCubemaplayered|0]),
(1,maxSurfaceCubemaplayered[1]) }

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API

vRelease Version | 157

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g899d69a862bba36449789c64b430dc7c

Modules

cudaMalloc3D, cudaMalloc, cudaMallocPitch, cudaFree, cudaFreeArray, cudaMallocHost [C
API), cudaFreeHost, cudaHostAlloc, make cudaExtent, cuMipmappedArrayCreate

__host cudaError_t cudaMallocPitch (void **devPtr,
size_t *pitch, size_t width, size_t height]

Allocates pitched memory on the device.

Parameters
devPtr

- Pointer to allocated pitched device memory
pitch

- Pitch for allocation
width

- Requested pitched allocation width (in bytes)
height

- Requested pitched allocation height

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Allocates at least width (in bytes] * height bytes of linear memory on the device and returns
in *devPtr a pointer to the allocated memory. The function may pad the allocation to ensure
that corresponding pointers in any given row will continue to meet the alignment requirements
for coalescing as the address is updated from row to row. The pitch returned in *pitch by
cudaMallocPitch(] is the width in bytes of the allocation. The intended usage of pitchisas a
separate parameter of the allocation, used to compute addresses within the 2D array. Given
the row and column of an array element of type T, the address is computed as:

r T* pElement = (T*) ((char*)BaseAddress + Row * pitch) + Column;

For allocations of 2D arrays, it is recommended that programmers consider performing pitch
allocations using cudaMallocPitch(]. Due to pitch alignment restrictions in the hardware, this
is especially true if the application will be performing 2D memory copies between different
regions of device memory (whether linear memory or CUDA arrays).

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 158

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ga5d2e311c7f9b0bc6d130af824a40bd3

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMalloc, cudaFree, cudaMallocArray, cudaFreeArray, cudaMallocHost [C AP,
cudaFreeHost, cudaMalloc3D, cudaMalloc3DArray, cudaHostAlloc, cuMemAllocPitch

__host__cudaError_t cudaMemAdvise (const void
*devPtr, size_t count, cudaMemoryAdvise advice, int
device])

Advise about the usage of a given memory range.

Parameters
devPtr
- Pointer to memory to set the advice for
count
- Size in bytes of the memory range
advice
- Advice to be applied for the specified memory range
device

- Device to apply the advice for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Advise the Unified Memory subsystem about the usage pattern for the memory range starting
at devPtr with a size of count bytes. The start address and end address of the memory
range will be rounded down and rounded up respectively to be aligned to CPU page size
before the advice is applied. The memory range must refer to managed memory allocated via
cudaMallocManaged or declared via __managed__ variables. The memory range could also
refer to system-allocated pageable memory provided it represents a valid, host-accessible
region of memory and all additional constraints imposed by advice as outlined below are
also satisfied. Specifying an invalid system-allocated pageable memory range results in an
error being returned.

CUDA Runtime API vRelease Version | 159

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gcbe9b033f6c4de80f63cc6e58ed9a45a

Modules

The advice parameter can take the following values:

> cudaMemAdviseSetReadMostly: This implies that the data is mostly going to be read
from and only occasionally written to. Any read accesses from any processor to this
region will create a read-only copy of at least the accessed pages in that processor’s
memory. Additionally, if cudaMemPrefetchAsync is called on this region, it will create a
read-only copy of the data on the destination processor. If any processor writes to this
region, all copies of the corresponding page will be invalidated except for the one where
the write occurred. The device argument is ignored for this advice. Note that for a page
to be read-duplicated, the accessing processor must either be the CPU or a GPU that
has a non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess.
Also, if a context is created on a device that does not have the device attribute
cudaDevAttrConcurrentManagedAccess set, then read-duplication will not occur until
all such contexts are destroyed. If the memory region refers to valid system-allocated
pageable memory, then the accessing device must have a non-zero value for the device
attribute cudaDevAttrPageableMemoryAccess for a read-only copy to be created on that
device. Note however that if the accessing device also has a non-zero value for the device
attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then setting this
advice will not create a read-only copy when that device accesses this memory region.

» cudaMemAdviceUnsetReadMostly: Undoes the effect of cudaMemAdviceReadMostly and
also prevents the Unified Memory driver from attempting heuristic read-duplication on
the memory range. Any read-duplicated copies of the data will be collapsed into a single
copy. The location for the collapsed copy will be the preferred location if the page has a
preferred location and one of the read-duplicated copies was resident at that location.
Otherwise, the location chosen is arbitrary.

» cudaMemAdviseSetPreferredLocation: This advice sets the preferred location for the data
to be the memory belonging to device. Passing in cudaCpuDeviceld for device sets the
preferred location as host memory. If device is a GPU, then it must have a non-zero value
for the device attribute cudaDevAttrConcurrentManagedAccess. Setting the preferred
location does not cause data to migrate to that location immediately. Instead, it guides the
migration policy when a fault occurs on that memory region. If the data is already in its
preferred location and the faulting processor can establish a mapping without requiring
the data to be migrated, then data migration will be avoided. On the other hand, if the data
is not in its preferred location or if a direct mapping cannot be established, then it will be
migrated to the processor accessing it. It is important to note that setting the preferred
location does not prevent data prefetching done using cudaMemPrefetchAsync. Having
a preferred location can override the page thrash detection and resolution logic in the
Unified Memory driver. Normally, if a page is detected to be constantly thrashing between
for example host and device memory, the page may eventually be pinned to host memory
by the Unified Memory driver. But if the preferred location is set as device memory, then
the page will continue to thrash indefinitely. If cudaMemAdviseSetReadMostly is also set
on this memory region or any subset of it, then the policies associated with that advice
will override the policies of this advice, unless read accesses from device will not result

CUDA Runtime API vRelease Version | 160

Modules

in a read-only copy being created on that device as outlined in description for the advice
cudaMemAdviseSetReadMostly. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect. Note however that this behavior may change in the future.

» cudaMemAdviseUnsetPreferredLocation: Undoes the effect of
cudaMemAdviseSetPreferredLocation and changes the preferred location to none.

> cudaMemAdviseSetAccessedBy: This advice implies that the data will be accessed by
device. Passing in cudaCpuDeviceld for device will set the advice for the CPU. If
device is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess
must be non-zero. This advice does not cause data migration and has no impact on
the location of the data per se. Instead, it causes the data to always be mapped in
the specified processor’'s page tables, as long as the location of the data permits a
mapping to be established. If the data gets migrated for any reason, the mappings are
updated accordingly. This advice is recommended in scenarios where data locality is not
important, but avoiding faults is. Consider for example a system containing multiple GPUs
with peer-to-peer access enabled, where the data located on one GPU is occasionally
accessed by peer GPUs. In such scenarios, migrating data over to the other GPUs is
not as important because the accesses are infrequent and the overhead of migration
may be too high. But preventing faults can still help improve performance, and so
having a mapping set up in advance is useful. Note that on CPU access of this data,
the data may be migrated to host memory because the CPU typically cannot access
device memory directly. Any GPU that had the cudaMemAdviceSetAccessedBy flag set
for this data will now have its mapping updated to point to the page in host memory.
If cudaMemAdviseSetReadMostly is also set on this memory region or any subset of
it, then the policies associated with that advice will override the policies of this advice.
Additionally, if the preferred location of this memory region or any subset of it is also
device, then the policies associated with cudaMemAdviseSetPreferredLocation will
override the policies of this advice. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect.

» cudaMemAdviseUnsetAccessedBy: Undoes the effect of cudaMemAdviseSetAccessedBy.
Any mappings to the data from device may be removed at any time causing accesses
to result in non-fatal page faults. If the memory region refers to valid system-allocated
pageable memory, then device must have a non-zero value for the device attribute
cudaDevAttrPageableMemoryAccess. Additionally, if device has a non-zero value for the
device attribute cudaDevAttrPageableMemoryAccessUsesHostPageTables, then this call
has no effect.

CUDA Runtime API vRelease Version | 161

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cudaMemPrefetchAsync, cuMemAdvise

__host__cudaError_t cudaMemcpy (void *dst, const
void *src, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description

Copies count bytes from the memory area pointed to by src to the memory area
pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is

CUDA Runtime API vRelease Version | 162

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1g27608c857a9254789c13f3e3b72029e2

Modules

recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
Calling cudaMemcpyl) with dst and src pointers that do not match the direction of the copy
results in an undefined behavior.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

> This function exhibits synchronous behavior for most use cases.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy?2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpy?2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyDtoH, cuMemcpyHtoD, cuMemcpyDtoD,

cuMemcpy

__host__cudaError_t cudaMemcpy2D (void *dst,
size_t dpitch, const void *src, size_t spitch, size t
width, size_t height, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
dpitch

- Pitch of destination memory

CUDA Runtime API vRelease Version | 163

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3480368ee0208a98f75019c9a8450893
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4d32266788c440b0220b1a9ba5795169
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698

Modules

src
- Source memory address
spitch
- Pitch of source memory
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed

to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from
the pointer values. However, cudaMemcpyDefault is only allowed on systems that support
unified virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D
arrays pointed to by dst and src, including any padding added to the end of each row. The
memory areas may not overlap. width must not exceed either dpitch or spitch. Calling
cudaMemcpy?D() with dst and src pointers that do not match the direction of the copy
results in an undefined behavior. cudaMemcpy?D(] returns an error if dpitch or spitch
exceeds the maximum allowed.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations

CUDA Runtime API vRelease Version | 164

Modules

that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpyZ2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpy?2DUnaligned

__host__cudaError_t cudaMemcpy2DArrayToArray
(cudaArray_t dst, size_t wOffsetDst, size_t
hOffsetDst, cudaArray_const_t src, size_t wOffsetSrc,
size_t hOffsetSrc, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffsetDst
- Destination starting X offset (columns in bytes)
hOffsetDst
- Destination starting Y offset (rows)
src
- Source memory address
wOffsetSrc
- Source starting X offset (columns in bytes)
hOffsetSrc
- Source starting Y offset [rows)
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

CUDA Runtime API vRelease Version | 165

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

Description

Copies a matrix (height rows of width bytes each] from the CUDA array src starting at
hOffsetSrc rows and wOffsetSrc bytes from the upper left corner to the CUDA array

dst starting at hOffsetDst rows and wOffsetDst bytes from the upper left corner,

where kind specifies the direction of the copy, and must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of
transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on
systems that support unified virtual addressing. woffsetDst + width must not exceed the
width of the CUDA array dst. wOffsetSrc + width must not exceed the width of the CUDA
array src.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync,
cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpy2DUnaligned

CUDA Runtime API vRelease Version | 166

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

__host_ _device_ cudaError_t
cudaMemcpy2DAsync (void *dst, size_t dpitch, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters
dst

- Destination memory address
dpitch

- Pitch of destination memory
src

- Source memory address
spitch

- Pitch of source memory
width

- Width of matrix transfer (columns in bytes)
height

- Height of matrix transfer (rows]
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each)] from the memory area pointed

to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing. dpitch and spitch are the widths in memory in bytes of the 2D arrays
pointed to by dst and src, including any padding added to the end of each row. The memory
areas may not overlap. width must not exceed either dpitch or spitch.

CUDA Runtime API vRelease Version | 167

Modules

Calling cudaMemcpy2DAsync(] with dst and src pointers that do not match the direction of
the copy results in an undefined behavior. cudaMemcpy?2DAsync(] returns an error if dpitch
or spitchis greater than the maximum allowed.

cudaMemcpy2DAsync() is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
streamargument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
streamis non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy?2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy?2DAsync

CUDA Runtime API vRelease Version | 168

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

__host__cudaError_t cudaMemcpy2DFromArray (void
*dst, size_t dpitch, cudaArray_const_t src, size_t
wOffset, size_t hOffset, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters
dst
- Destination memory address
dpitch
- Pitch of destination memory
src
- Source memory address
wOffset
- Source starting X offset (columns in bytes)
hOffset
- Source starting Y offset [rows)
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each)] from the CUDA array src starting

at hOffset rows and wOffset bytes from the upper left corner to the memory area
pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any
padding added to the end of each row. woffset + width must not exceed the width of the
CUDA array src. width must not exceed dpitch. cudaMemcpy2DFromArray(] returns an
error if dpitch exceeds the maximum allowed.

CUDA Runtime API vRelease Version | 169

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync,
cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy?2D, cuMemcpy?2DUnaligned

__host__cudaError_t
cudaMemcpy2DFromArrayAsync (void *dst, size t
dpitch, cudaArray_const_t src, size_t wOffset, size t
hOffset, size_t width, size_t height, cudaMemcpyKind
kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst
- Destination memory address
dpitch
- Pitch of destination memory
src
- Source memory address
wOffset
- Source starting X offset (columns in bytes)

CUDA Runtime API vRelease Version | 170

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

hOffset
- Source starting Y offset (rows)
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind
- Type of transfer
stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each)] from the CUDA array src starting

at hOffset rows and wOffset bytes from the upper left corner to the memory area

pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
dpitch is the width in memory in bytes of the 2D array pointed to by dst, including any
padding added to the end of each row. wOffset + width must not exceed the width of the
CUDA array src. width must not exceed dpitch. cudaMemcpy?DFromArrayAsync() returns
an error If dpitch exceeds the maximum allowed.

cudaMemcpy2DFromArrayAsync(] is asynchronous with respect to the host, so the call

may return before the copy is complete. The copy can optionally be associated to a

stream by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

CUDA Runtime API vRelease Version | 171

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

> Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpyZ2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,

cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpyZ2DAsync

__host__cudaError_t cudaMemcpy2DToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind)

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffset
- Destination starting X offset (columns in bytes)
hOffset
- Destination starting Y offset (rows)
src
- Source memory address
spitch
- Pitch of source memory
width
- Width of matrix transfer (columns in bytes)
height

- Height of matrix transfer (rows])

CUDA Runtime API vRelease Version | 172

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each] from the memory area pointed

to by src to the CUDA array dst starting at hOf fset rows and wOffset bytes from

the upper left corner, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
spitchis the width in memory in bytes of the 2D array pointed to by src, including any
padding added to the end of each row. woffset + width must not exceed the width of the
CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArray(] returns an error
if spitch exceeds the maximum allowed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy?2D, cudaMemcpy2DFromArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync, cudaMemcpy2DAsync,
cudaMemcpy?2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2D, cuMemcpyZ2DUnaligned

CUDA Runtime API vRelease Version | 173

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g27f885b30c34cc20a663a671dbf6fc27
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g2fa285d47fd7020e596bfeab3deb651b

Modules

__host__cudaError_t cudaMemcpy2DToArrayAsync
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t spitch, size_t width, size_t height,
cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffset
- Destination starting X offset (columns in bytes)
hOffset
- Destination starting Y offset (rows)
src
- Source memory address
spitch
- Pitch of source memory
width
- Width of matrix transfer (columns in bytes)
height
- Height of matrix transfer (rows]
kind
- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

Copies a matrix (height rows of width bytes each) from the memory area pointed

to by src to the CUDA array dst starting at hOf fset rows and wOffset bytes from

the upper left corner, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.
spitch is the width in memory in bytes of the 2D array pointed to by src, including any
padding added to the end of each row. woffset + width must not exceed the width of the

CUDA Runtime API vRelease Version | 174

Modules

CUDA array dst. width must not exceed spitch. cudaMemcpy2DToArrayAsync(] returns an
error if spitch exceeds the maximum allowed.

cudaMemcpy?2DToArrayAsyncl(] is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpyZ2DAsync,

cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpy2DAsync

__host__cudaError_t cudaMemcpy3D (const
cudaMemcpy3DParms *p)

Copies data between 3D objects.

Parameters

p
- 3D memory copy parameters

CUDA Runtime API vRelease Version | 175

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

[struct cudaExtent {
size t width;
size t height;
size t depth;
i
struct cudaExtent
make cudaExtent(size t w, size t h, size t d);

struct cudaPos {
size t x;
size t y;
size t z;
}i
struct cudaPos
make cudaPos(size t x, size t y, size t z);

struct cudaMemcpy3DParms {
cudaArray t

SrcArray;
struct cudaPos
srcPos;
struct cudaPitchedPtr
srcPtr;
cudaArray t
dstArray;
struct cudaPos
dstPos;
struct cudaPitchedPtr
dstPtr;
struct cudaExtent
extent;
enum cudaMemcpyKind
kind;

) 8

cudaMemcpy3D(] copies data betwen two 3D objects. The source and destination objects may
be in either host memory, device memory, or a CUDA array. The source, destination, extent,
and kind of copy performed is specified by the cudaMemcpy3DParms struct which should be
initialized to zero before use:

[cudaMemcpy3DParms myParms = {0};

The struct passed to cudaMemcpy3D(] must specify one of srcArray or srcPtr and one
of dstArray or dstPtr. Passing more than one non-zero source or destination will cause
cudaMemcpy3D() to return an error.

The srcPos and dstPos fields are optional offsets into the source and destination objects
and are defined in units of each object’s elements. The element for a host or device pointer is
assumed to be unsigned char.

CUDA Runtime API vRelease Version | 176

Modules

The extent field defines the dimensions of the transferred area in elements. If a CUDA array
is participating in the copy, the extent is defined in terms of that array’'s elements. If no CUDA
array is participating in the copy then the extents are defined in elements of unsigned char.

The kind field defines the direction of the copy. It must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the

type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only
allowed on systems that support unified virtual addressing. For cudaMemcpyHostToHost or
cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost passed as kind and cudaArray type
passed as source or destination, if the kind implies cudaArray type to be present on the host,
cudaMemcpy3D() will disregard that implication and silently correct the kind based on the fact
that cudaArray type can only be present on the device.

If the source and destination are both arrays, cudaMemcpy3D(] will return an error if they do
not have the same element size.

The source and destination object may not overlap. If overlapping source and destination
objects are specified, undefined behavior will result.

The source object must entirely contain the region defined by srcPos and extent. The
destination object must entirely contain the region defined by dstPos and extent.

cudaMemcpy3D(] returns an error if the pitch of srcPtr or dstPtr exceeds the maximum
allowed. The pitch of a cudaPitchedPtr allocated with cudaMalloc3D() will always be valid.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits synchronous behavior for most use cases.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc3DArray, cudaMemset3D, cudaMemcpy3DAsync,
cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy?2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy?2DToArrayAsync,
cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, make cudaExtent, make cudaPos, cuMemcpy3D

CUDA Runtime API vRelease Version | 177

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4b5238975579f002c0199a3800ca44df

Modules

__host device_ cudaError_t
cudaMemcpy3DAsync (const cudaMemcpy3DParms
*p, cudaStream_t stream)

Copies data between 3D objects.

Parameters

p
- 3D memory copy parameters

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidPitchValue,
cudaErrorinvalidMemcpyDirection

Description

[struct cudaExtent {
size t width;
size t height;
size t depth;
}i
struct cudaExtent
make cudaExtent(size t w, size t h, size t d);

struct cudaPos {
size t x;
size t y;
size t z;
}i
struct cudaPos
make cudaPos(size t x, size t y, size t z);

struct cudaMemcpy3DParms {
cudaArray t

SrcArray;
struct cudaPos
srcPos;
struct cudaPitchedPtr
srcPtr;
cudaArray t
dstArray;
struct cudaPos
dstPos;
struct cudaPitchedPtr
dstPtr;
struct cudaExtent
extent;
enum cudaMemcpyKind
kind;

) 8

CUDA Runtime API vRelease Version | 178

Modules

cudaMemcpy3DAsync() copies data betwen two 3D objects. The source and destination objects
may be in either host memory, device memory, or a CUDA array. The source, destination,
extent, and kind of copy performed is specified by the cudaMemcpy3DParms struct which
should be initialized to zero before use:

[cudaMemcpy3DParms myParms = {0};

The struct passed to cudaMemcpy3DAsync(] must specify one of srcArray or srcPtr and
one of dstArray or dstPtr. Passing more than one non-zero source or destination will
cause cudaMemcpy3DAsync(] to return an error.

The srcPos and dstPos fields are optional offsets into the source and destination objects
and are defined in units of each object’s elements. The element for a host or device pointer is
assumed to be unsigned char. For CUDA arrays, positions must be in the range [0, 2048) for
any dimension.

The extent field defines the dimensions of the transferred area in elements. If a CUDA array
Is participating in the copy, the extent is defined in terms of that array’'s elements. If no CUDA
array is participating in the copy then the extents are defined in elements of unsigned char.

The kind field defines the direction of the copy. It must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the

type of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only
allowed on systems that support unified virtual addressing. For cudaMemcpyHostToHost or
cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost passed as kind and cudaArray type
passed as source or destination, if the kind implies cudaArray type to be present on the host,
cudaMemcpy3DAsync(] will disregard that implication and silently correct the kind based on
the fact that cudaArray type can only be present on the device.

If the source and destination are both arrays, cudaMemcpy3DAsync() will return an error if
they do not have the same element size.

The source and destination object may not overlap. If overlapping source and destination
objects are specified, undefined behavior will result.

The source object must lie entirely within the region defined by srcPos and extent. The
destination object must lie entirely within the region defined by dstPos and extent.

cudaMemcpy3DAsync() returns an error if the pitch of srcPtr or dstPtr exceeds the
maximum allowed. The pitch of a cudaPitchedPtr allocated with cudaMalloc3D() will always be
valid.

cudaMemcpy3DAsync(] is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
streamargument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

CUDA Runtime API vRelease Version | 179

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMalloc3D, cudaMalloc3DArray, cudaMemset3D, cudaMemcpy3D, cudaMemcpy,
cudaMemcpy?D, cudaMemcpy?2DToArray, :cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, make cudaExtent, make cudaPos, cuMemcpy3DAsync

__host__cudaError_t cudaMemcpy3DPeer (const
cudaMemcpy3DPeerParms *p)

Copies memory between devices.

Parameters

p
- Parameters for the memory copy

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Perform a 3D memory copy according to the parameters specified in p. See the definition of
the cudaMemcpy3DPeerParms structure for documentation of its parameters.

Note that this function is synchronous with respect to the host only if the source or destination
of the transfer is host memory. Note also that this copy is serialized with respect to all pending

CUDA Runtime API vRelease Version | 180

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g79f4f3fde6ae0f529568d881d9e11987

Modules

and future asynchronous work in to the current device, the copy’'s source device, and the
copy's destination device (use cudaMemcpy3DPeerAsync to avoid this synchronization).

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync,
cudaMemcpy3DPeerAsync, cuMemcpy3DPeer

__host__cudaError_t cudaMemcpy3DPeerAsync
(const cudaMemcpy3DPeerParms *p, cudaStream_t
stream]

Copies memory between devices asynchronously.

Parameters

p
- Parameters for the memory copy

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Perform a 3D memory copy according to the parameters specified in p. See the definition of
the cudaMemcpy3DPeerParms structure for documentation of its parameters.

CUDA Runtime API vRelease Version | 181

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g11466fd70cde9329a4e16eb1f258c433

Modules

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpyPeerAsync,
cudaMemcpy3DPeerAsync, cuMemcpy3DPeerAsync

__host_ device__cudaError_t cudaMemcpyAsync
(void *dst, const void *src, size_t count,
cudaMemcpyKind kind, cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

CUDA Runtime API vRelease Version | 182

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gc4e4bfd9f627d3aa3695979e058f1bb8

Modules

Description

Copies count bytes from the memory area pointed to by src to the memory area

pointed to by dst, where kind specifies the direction of the copy, and must be one

of cudaMemcpyHostToHost, cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost,
cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing cudaMemcpyDefault is
recommended, in which case the type of transfer is inferred from the pointer values. However,
cudaMemcpyDefault is only allowed on systems that support unified virtual addressing.

The memory areas may not overlap. Calling cudaMemcpyAsync() with dst and src pointers
that do not match the direction of the copy results in an undefined behavior.

cudaMemcpyAsync(] is asynchronous with respect to the host, so the call may return before
the copy is complete. The copy can optionally be associated to a stream by passing a non-zero
streamargument. If kind is cudaMemcpyHostToDevice or cudaMemcpyDeviceToHost and
the stream is non-zero, the copy may overlap with operations in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Memory regions requested must be either entirely registered with CUDA, or in the case of
host pageable transfers, not registered at all. Memory regions spanning over allocations
that are both registered and not registered with CUDA are not supported and will return
CUDA_ERROR_INVALID_VALUE.

See also:

cudaMemcpy, cudaMemcpyZ2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,

CUDA Runtime API vRelease Version | 183

Modules

cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpyAsync,
cuMemcpyDtoHAsync, cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemcpyFromSymbol (void
*dst, const void *symbol, size_t count, size_t offset,
cudaMemcpyKind kind)

Copies data from the given symbol on the device.

Parameters

dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by of fset bytes from the start of
symbol symbol to the memory area pointed to by dst. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

CUDA Runtime API vRelease Version | 184

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1572263fe2597d7ba4f6964597a354a3
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy?D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyAsync,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy, cuMemcpyDtoH,
cuMemcpyDtoD

__host__cudaError_t cudaMemcpyFromSymbolAsync
(void *dst, const void *symbol, size_t count, size_t
offset, cudaMemcpyKind kind, cudaStream_t stream]

Copies data from the given symbol on the device.

Parameters

dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by of fset bytes from the start of
symbol symbol to the memory area pointed to by dst. The memory areas may not overlap.

CUDA Runtime API vRelease Version | 185

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3480368ee0208a98f75019c9a8450893
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b

Modules

symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyFromSymbolAsync() is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream by
passing a non-zero streamargument. If kind is cudaMemcpyDeviceToHost and stream is
non-zero, the copy may overlap with operations in other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

» Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync, cuMemcpyAsync,
cuMemcpyDtoHAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemcpyPeer (void *dst, int
dstDevice, const void *src, int srcDevice, size t count]

Copies memory between two devices.

Parameters

dst
- Destination device pointer

CUDA Runtime API vRelease Version | 186

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g56f30236c7c5247f8e061b59d3268362
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8

Modules

dstDevice
- Destination device
src
- Source device pointer
srcDevice
- Source device
count
- Size of memory copy in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlinvalidDevice

Description

Copies memory from one device to memory on another device. dst is the base device pointer
of the destination memory and dstDevice is the destination device. src is the base device
pointer of the source memory and srcDevice is the source device. count specifies the
number of bytes to copy.

Note that this function is asynchronous with respect to the host, but serialized with respect all
pending and future asynchronous work in to the current device, srcDevice, and dstDevice
(use cudaMemcpyPeerAsync to avoid this synchronization).

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyAsync, cudaMemcpyPeerAsync, cudaMemcpy3DPeerAsync,
cuMemcpyPeer

CUDA Runtime API vRelease Version | 187

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge1f5c7771544fee150ada8853c7cbf4a

Modules

__host__cudaError_t cudaMemcpyPeerAsync (void
*dst, int dstDevice, const void *src, int srcDevice,
size_t count, cudaStream_t stream)

Copies memory between two devices asynchronously.

Parameters

dst

- Destination device pointer
dstDevice

- Destination device
src

- Source device pointer
srcDevice

- Source device
count

- Size of memory copy in bytes
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

Description

Copies memory from one device to memory on another device. dst is the base device pointer
of the destination memory and dstDevice is the destination device. src is the base device
pointer of the source memory and srcDevice is the source device. count specifies the
number of bytes to copy.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 188

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cuMemcpyPeerAsync

__host__cudaError_t cudaMemcpyToSymbol (const
void *symbol, const void *src, size_t count, size_t
offset, cudaMemcpyKind kind)

Copies data to the given symbol on the device.

Parameters

symbol
- Device symbol address
src
- Source memory address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed

to by offset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

CUDA Runtime API vRelease Version | 189

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g82fcecb38018e64b98616a8ac30112f2

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy?D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyFromSymbol, cudaMemcpyAsync,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync, cuMemcpy, cuMemcpyHtoD,
cuMemcpyDtoD

__host__cudaError_t cudaMemcpyToSymbolAsync
(const void *symbol, const void *src, size_t count,
size_t offset, cudaMemcpyKind kind, cudaStream_t
stream)

Copies data to the given symbol on the device.

Parameters

symbol
- Device symbol address
src
- Source memory address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

CUDA Runtime API vRelease Version | 190

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8d0ff510f26d4b87bd3a51e731e7f698
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4d32266788c440b0220b1a9ba5795169
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1725774abf8b51b91945f3336b778c8b

Modules

stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area pointed

to by of fset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyToSymbolAsync(] is asynchronous with respect to the host, so the call may return
before the copy is complete. The copy can optionally be associated to a stream by passing a
non-zero streamargument. If kind is cudaMemcpyHostToDevice and stream is non-zero,
the copy may overlap with operations in other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,

CUDA Runtime API vRelease Version | 191

Modules

cudaMemcpyZ2DFromArrayAsync, cudaMemcpyFromSymbolAsync, cuMemcpyAsync,
cuMemcpyHtoDAsync, cuMemcpyDtoDAsync

__host__cudaError_t cudaMemGetinfo (size t *free,
size_t *total

Gets free and total device memory.

Parameters

free

- Returned free memory in bytes
total

- Returned total memory in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure

Description

Returns in *total the total amount of memory available on the device. Returns in *free the
amount of memory on the device that is free according to the 0OS. CUDA is not guaranteed to
be able to allocate all of the memory that the OS reports as free.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuMemGetlInfo

CUDA Runtime API vRelease Version | 192

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g5f26aaf5582ade791e5688727a178d78
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g1572263fe2597d7ba4f6964597a354a3
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g39ea09ba682b8eccc9c3e0c04319b5c8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g808f555540d0143a331cc42aa98835c0

Modules

__host__cudaError_t cudaMemPrefetchAsync
(const void *devPtr, size t count, int dstDevice,
cudaStream_t stream)

Prefetches memory to the specified destination device.

Parameters

devPtr
- Pointer to be prefetched
count
- Size in bytes
dstDevice
- Destination device to prefetch to
stream
- Stream to enqueue prefetch operation

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorlinvalidDevice

Description

Prefetches memory to the specified destination device. devPtr is the base device pointer

of the memory to be prefetched and dstDevice is the destination device. count specifies
the number of bytes to copy. stream is the stream in which the operation is enqueued. The
memory range must refer to managed memory allocated via cudaMallocManaged or declared
via __managed__ variables.

Passing in cudaCpuDeviceld for dstDevice will prefetch the data to host memory. If
dstDevice is a GPU, then the device attribute cudaDevAttrConcurrentManagedAccess must
be non-zero. Additionally, stream must be associated with a device that has a non-zero value
for the device attribute cudaDevAttrConcurrentManagedAccess.

The start address and end address of the memory range will be rounded down and rounded up
respectively to be aligned to CPU page size before the prefetch operation is enqueued in the
stream.

If no physical memory has been allocated for this region, then this memory region will be
populated and mapped on the destination device. If there's insufficient memory to prefetch the
desired region, the Unified Memory driver may evict pages from other cudaMallocManaged
allocations to host memory in order to make room. Device memory allocated using
cudaMalloc or cudaMallocArray will not be evicted.

By default, any mappings to the previous location of the migrated pages are removed and
mappings for the new location are only setup on dstDevice. The exact behavior however also
depends on the settings applied to this memory range via cudaMemAdvise as described below:

CUDA Runtime API vRelease Version | 193

Modules

If cudaMemAdviseSetReadMostly was set on any subset of this memory range, then that
subset will create a read-only copy of the pages on dstDevice.

If cudaMemAdviseSetPreferredLocation was called on any subset of this memory range, then
the pages will be migrated to dstDevice even if dstDevice is not the preferred location of
any pages in the memory range.

If cudaMemAdviseSetAccessedBy was called on any subset of this memory range, then
mappings to those pages from all the appropriate processors are updated to refer to the new
location if establishing such a mapping is possible. Otherwise, those mappings are cleared.

Note that this APl is not required for functionality and only serves to improve performance by
allowing the application to migrate data to a suitable location before it is accessed. Memory
accesses to this range are always coherent and are allowed even when the data is actively
being migrated.

Note that this function is asynchronous with respect to the host and all work on other devices.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpyPeer, cudaMemcpyAsync, cudaMemcpy3DPeerAsync,
cudaMemAdvise, cuMemPrefetchAsync

CUDA Runtime API vRelease Version | 194

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gfe94f8b7fb56291ebcea44261aa4cb84

Modules

__host__cudaError_t cudaMemRangeGetAttribute
[void *data, size_t dataSize, cudaMemRangeAttribute
attribute, const void *devPtr, size_t count)

Query an attribute of a given memory range.

Parameters

data
- A pointers to a memory location where the result of each attribute query will be written to.
dataSize
- Array containing the size of data
attribute
- The attribute to query
devPtr
- Start of the range to query
count
- Size of the range to query

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Query an attribute about the memory range starting at devPtr with a size of count bytes.
The memory range must refer to managed memory allocated via cudaMallocManaged or
declared via __managed__ variables.

The attribute parameter can take the following values:

» cudaMemRangeAttributeReadMostly: If this attribute is specified, data will be interpreted
as a 32-bit integer, and dataSize must be 4. The result returned will be 1 if all pages in
the given memory range have read-duplication enabled, or 0 otherwise.

» cudaMemRangeAttributePreferredLocation: If this attribute is specified, data will be
interpreted as a 32-bit integer, and dataSize must be 4. The result returned will be a
GPU device id if all pages in the memory range have that GPU as their preferred location,
or it will be cudaCpuDeviceld if all pages in the memory range have the CPU as their
preferred location, or it will be cudalnvalidDeviceld if either all the pages don’t have the
same preferred location or some of the pages don't have a preferred location at all. Note
that the actual location of the pages in the memory range at the time of the query may be
different from the preferred location.

» cudaMemRangeAttributeAccessedBy: If this attribute is specified, data will be interpreted
as an array of 32-bit integers, and dataSize must be a non-zero multiple of 4. The result

CUDA Runtime API vRelease Version | 195

Modules

returned will be a list of device ids that had cudaMemAdviceSetAccessedBy set for that
entire memory range. If any device does not have that advice set for the entire memory
range, that device will not be included. If data is larger than the number of devices that
have that advice set for that memory range, cudalnvalidDeviceld will be returned in all
the extra space provided. For ex., if dataSize is 12 [i.e. data has 3 elements) and only
device 0 has the advice set, then the result returned will be { 0, cudalnvalidDeviceld,
cudalnvalidDeviceld }. If data is smaller than the number of devices that have that
advice set, then only as many devices will be returned as can fit in the array. There is no
guarantee on which specific devices will be returned, however.

» cudaMemRangeAttributelLastPrefetchlLocation: If this attribute is specified, data will
be interpreted as a 32-bit integer, and dataSize must be 4. The result returned will be
the last location to which all pages in the memory range were prefetched explicitly via
cudaMemPrefetchAsync. This will either be a GPU id or cudaCpuDeviceld depending on
whether the last location for prefetch was a GPU or the CPU respectively. If any page in
the memory range was never explicitly prefetched or if all pages were not prefetched to
the same location, cudalnvalidDeviceld will be returned. Note that this simply returns the
last location that the applicaton requested to prefetch the memory range to. It gives no
indication as to whether the prefetch operation to that location has completed or even
begun.

Note:

» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemRangeGetAttributes, cudaMemPrefetchAsync, cudaMemAdyvise,
cuMemRangeGetAttribute

CUDA Runtime API vRelease Version | 196

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1g1c92408a7d0d8875e19b1a58af56f67d

Modules

__host__cudaError_t cudaMemRangeGetAttributes
(void **data, size t *dataSizes,
cudaMemRangeAttribute *attributes, size_t
numAttributes, const void *devPtr, size t count])

Query attributes of a given memory range.

Parameters

data
- A two-dimensional array containing pointers to memory locations where the result of
each attribute query will be written to.
dataSizes
- Array containing the sizes of each result
attributes
- An array of attributes to query (numAttributes and the number of attributes in this array
should match]
numAttributes
- Number of attributes to query
devPtr
- Start of the range to query
count
- Size of the range to query

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Query attributes of the memory range starting at devPtr with a size of count bytes.

The memory range must refer to managed memory allocated via cudaMallocManaged
or declared via __managed__ variables. The attributes array will be interpreted to
have numAttributes entries. The dataSizes array will also be interpreted to have
numAttributes entries. The results of the query will be stored in data.

The list of supported attributes are given below. Please refer to cudaMemRangeGetAttribute
for attribute descriptions and restrictions.

» cudaMemRangeAttributeReadMostly

» cudaMemRangeAttributePreferredLocation

» cudaMemRangeAttributeAccessedBy

» cudaMemRangeAttributel.astPrefetchlLocation

CUDA Runtime API vRelease Version | 197

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemRangeGetAttribute, cudaMemAdvise, cudaMemPrefetchAsync,
cuMemRangeGetAttributes

__host_ cudaError_t cudaMemset (void *devPtr, int
value, size t count]

Initializes or sets device memory to a value.

Parameters

devPtr

- Pointer to device memory
value

- Value to set for each byte of specified memory
count

- Size in bytes to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Fills the first count bytes of the memory area pointed to by devPtr with the constant byte
value value.

Note that this function is asynchronous with respect to the host unless devPtr refers to
pinned host memory.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 198

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gc7ce142e60f8613cfb7d722b87dc9d12

Modules

> See also memset synchronization details.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cuMemsetD8, cuMemsetD16, cuMemsetD32

__host__cudaError_t cudaMemset2D (void *devPtr,
size_t pitch, int value, size_t width, size_t height)

Initializes or sets device memory to a value.

Parameters
devPtr
- Pointer to 2D device memory
pitch
- Pitch in bytes of 2D device memory(Unused if height is 1)
value
- Value to set for each byte of specified memory
width
- Width of matrix set (columns in bytes)
height

- Height of matrix set (rows]

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets to the specified value value a matrix (height rows of width bytes each) pointed to
by dstPtr. pitch is the width in bytes of the 2D array pointed to by dstPtr, including any
padding added to the end of each row. This function performs fastest when the pitch is one
that has been passed back by cudaMallocPitch(].

Note that this function is asynchronous with respect to the host unless devPtr refers to
pinned host memory.

CUDA Runtime API vRelease Version | 199

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g6e582bf866e9e2fb014297bfaf354d7b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g7d805e610054392a4d11e8a8bf5eb35c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g983e8d8759acd1b64326317481fbf132

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> See also memset synchronization details.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset3D, cudaMemsetAsync, cudaMemset2DAsync,
cudaMemset3DAsync, cuMemsetD2D8, cuMemsetD2D16, cuMemsetD2D3?2

__host_ _device cudaError_t
cudaMemset2DAsync (void *devPtr, size_t pitch,
int value, size_t width, size_t height, cudaStream_t
stream)

Initializes or sets device memory to a value.

Parameters

devPtr

- Pointer to 2D device memory
pitch

- Pitch in bytes of 2D device memory(Unused if height is 1)
value

- Value to set for each byte of specified memory
width

- Width of matrix set (columns in bytes)
height

- Height of matrix set (rows])
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 200

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1ge88b13e646e2be6ba0e0475ef5205974
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g7f561a15a66144fa9f6ab5350edc8a30
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g74b359b2d026bfeb7c795b5038d07523

Modules

Description

Sets to the specified value value a matrix (height rows of width bytes each) pointed to
by dstPtr. pitch is the width in bytes of the 2D array pointed to by dstPtr, including any
padding added to the end of each row. This function performs fastest when the pitch is one
that has been passed back by cudaMallocPitch(].

cudaMemset?2DAsyncl(] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero streamargument. If stream is non-zero, the operation may overlap with operations
in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

» See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemset, cudaMemset?2D, cudaMemset3D, cudaMemsetAsync, cudaMemset3DAsync,
cuMemsetD2D8Async, cuMemsetD2D16Async, cuMemsetD2D32Async

__host__cudaError_t cudaMemset3D (cudaPitchedPtr
pitchedDevPtr, int value, cudaExtent extent]

Initializes or sets device memory to a value.

Parameters

pitchedDevPtr
- Pointer to pitched device memory
value
- Value to set for each byte of specified memory

CUDA Runtime API vRelease Version | 201

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g3f7b6924a3e49c3265b328f534102e97
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g64ee197befac3d74d9fefedcf6ef6b10
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g8a78d3147ac93fac955052c815d9ea3c

Modules

extent
- Size parameters for where to set device memory (width field in bytes]

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Initializes each element of a 3D array to the specified value value. The object to initialize is
defined by pitchedDevPtr. The pitch field of pitchedDevPtr is the width in memory

in bytes of the 3D array pointed to by pitchedDevPtr, including any padding added to the
end of each row. The xsize field specifies the logical width of each row in bytes, while the
ysize field specifies the height of each 2D slice in rows. The pitch field of pitchedDevPtr
isignored when height and depth are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a height in rows, and a
depth in slices.

Extents with width greater than or equal to the xsize of pitchedDevPtr may perform
significantly faster than extents narrower than the xsize. Secondarily, extents with height
equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter
than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by
cudaMalloc3D(].

Note that this function is asynchronous with respect to the host unless pitchedDevPtr
refers to pinned host memory.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» See also memset synchronization details.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset?2D, cudaMemsetAsync, cudaMemsetZ2DAsync,
cudaMemset3DAsync, cudaMalloc3D, make cudaPitchedPtr, make cudaExtent

CUDA Runtime API vRelease Version | 202

Modules

__host_ _device_ cudaError_t
cudaMemset3DAsync (cudaPitchedPtr pitchedDevPtr,
int value, cudaExtent extent, cudaStream_t stream)

Initializes or sets device memory to a value.

Parameters

pitchedDevPtr
- Pointer to pitched device memory
value
- Value to set for each byte of specified memory
extent
- Size parameters for where to set device memory (width field in bytes]
stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Initializes each element of a 3D array to the specified value value. The object to initialize is
defined by pitchedDevPtr. The pitch field of pitchedDevPtr is the width in memory

in bytes of the 3D array pointed to by pitchedDevPtr, including any padding added to the
end of each row. The xsize field specifies the logical width of each row in bytes, while the
ysize field specifies the height of each 2D slice in rows. The pitch field of pitchedDevPtr
isignored when height and depth are both equal to 1.

The extents of the initialized region are specified as a width in bytes, a height in rows, and a
depth in slices.

Extents with width greater than or equal to the xsize of pitchedDevPtr may perform
significantly faster than extents narrower than the xsize. Secondarily, extents with height
equal to the ysize of pitchedDevPtr will perform faster than when the height is shorter
than the ysize.

This function performs fastest when the pitchedDevPtr has been allocated by
cudaMalloc3D(].

cudaMemset3DAsyncl] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero stream argument. If stream is non-zero, the operation may overlap with operations
in other streams.

CUDA Runtime API vRelease Version | 203

Modules

The device version of this function only handles device to device copies and cannot be given

local or shared pointers.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset, cudaMemset2D, cudaMemset3D, cudaMemsetAsync, cudaMemset2DAsync,

cudaMalloc3D, make cudaPitchedPtr, make cudaExtent

__host_ device_ _cudaEkrror_t cudaMemsetAsync
(void *devPtr, int value, size t count, cudaStream t

stream)

Initializes or sets device memory to a value.

Parameters

devPtr
- Pointer to device memory
value
- Value to set for each byte of specified memory
count
- Size in bytes to set
stream
- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime AP!I

vRelease Version | 204

Modules

Description

Fills the first count bytes of the memory area pointed to by devPtr with the constant byte
value value.

cudaMemsetAsync(] is asynchronous with respect to the host, so the call may return before
the memset is complete. The operation can optionally be associated to a stream by passing a
non-zero streamargument. If stream is non-zero, the operation may overlap with operations
in other streams.

The device version of this function only handles device to device copies and cannot be given
local or shared pointers.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

» See also memset synchronization details.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemset, cudaMemset?2D, cudaMemset3D, cudaMemsetZ2DAsync, cudaMemset3DAsync,
cuMemsetD8Async, cuMemsetD16Async, cuMemsetD32Async

__host__cudaError_t
cudaMipmappedArrayGetSparseProperties
(cudaArraySparseProperties *sparseProperties,
cudaMipmappedArray_t mipmap)

Returns the layout properties of a sparse CUDA mipmapped array.

Parameters

sparseProperties
- Pointer to return cudaArraySparseProperties

CUDA Runtime API vRelease Version | 205

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gaef08a7ccd61112f94e82f2b30d43627
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf731438877dd8ec875e4c43d848c878c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g58229da5d30f1c0cdf667b320ec2c0f5

Modules

mipmap
- The CUDA mipmapped array to get the sparse properties of

Returns

cudaSuccess cudaErrorinvalidValue

Description

Returns the sparse array layout properties in sparseProperties. If the CUDA mipmapped
array is not allocated with flag cudaArraySparse cudaErrorinvalidValue will be returned.

For non-layered CUDA mipmapped arrays, cudaArraySparseProperties::miptailSize
returns the size of the mip tail region. The mip tail region includes all mip levels whose
width, height or depth is less than that of the tile. For layered CUDA mipmapped arrays,

if cudaArraySparseProperties::flags contains cudaArraySparsePropertiesSingleMipTail,
then cudaArraySparseProperties::miptailSize specifies the size of the mip tail of all layers
combined. Otherwise, cudaArraySparseProperties::miptailSize specifies mip tail size per
layer. The returned value of cudaArraySparseProperties::miptailFirstLevel is valid only if
cudaArraySparseProperties::miptailSize is non-zero.

See also:

cudaArrayGetSparseProperties, cuMemMapArrayAsync

__host__make cudaExtent (size tw, size th, size_t
d

Returns a cudaExtent based on input parameters.

Parameters

w
- Width in elements when referring to array memory, in bytes when referring to linear
memory
h
- Height in elements
d
- Depth in elements

Returns
cudaExtent specified by w, h, and d

Description

Returns a cudaExtent based on the specified input parameters w, h, and d.

CUDA Runtime API vRelease Version | 206

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VA.html#group__CUDA__VA_1g5dc41a62a9feb68f2e943b438c83e5ab

See also:

make cudaPitchedPtr, make cudaPos

__host__make_cudaPitchedPtr (void *d, size_t p,

size_t xsz, size_t ysz]

Returns a cudaPitchedPtr based on input parameters.

Parameters

d
- Pointer to allocated memory
p
- Pitch of allocated memory in bytes
Xsz
- Logical width of allocation in elements
ysz
- Logical height of allocation in elements

Returns
cudaPitchedPtr specified by d, p, xsz, and ysz

Description

Returns a cudaPitchedPtr based on the specified input parameters d, p, xsz, and ysz.

See also:

make cudaExtent, make cudaPos

Modules

__host__make_cudaPos (size_t x, size_tvy, size_t z]

Returns a cudaPos based on input parameters.

Parameters

X

- X position
y

- Y position

- Z position

Returns

cudaPos specified by x, y, and z

CUDA Runtime API vRelease Version | 207

Modules

Description

Returns a cudaPos based on the specified input parameters %, y, and z.

See also:

make cudaExtent, make cudaPitchedPtr

6.10. Memory Management
[DEPRECATED]

This section describes deprecated memory management functions of the CUDA runtime
application programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

__host__cudaError_t cudaMemcpyArrayToArray
(cudaArray_t dst, size_t wOffsetDst, size_t hOffsetDst,
cudaArray_const_t src, size_t wOffsetSrc, size_t
hOffsetSrc, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters
dst
- Destination memory address
wOffsetDst
- Destination starting X offset (columns in bytes)
hOffsetDst
- Destination starting Y offset (rows)
src
- Source memory address
wOffsetSrc
- Source starting X offset (columns in bytes)
hOffsetSrc
- Source starting Y offset [rows)
count

- Size in bytes to copy

CUDA Runtime API vRelease Version | 208

Modules

kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the CUDA array src starting at hOf fsetSrc rows and
wOffsetSrc bytes from the upper left corner to the CUDA array dst starting at
hOffsetDst rows and wOffsetDst bytes from the upper left corner, where kind

specifies the direction of the copy, and must be one of cudaMemcpyHostToHost,
cudaMemcpyHostToDevice, cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or
cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type of
transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed on
systems that support unified virtual addressing.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy?2DFromArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoA

CUDA Runtime API vRelease Version | 209

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf81b218c984a31436ec9e23a85fb604a

Modules

__host__cudaError_t cudaMemcpyFromArray (void
*dst, cudaArray_const_t src, size_t wOffset, size_t
hOffset, size_t count, cudaMemcpyKind kind])

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
wOffset

- Source starting X offset (columns in bytes)
hOffset

- Source starting Y offset (rows)
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the CUDA array src starting at hOffset rows and wOffset bytes
from the upper left corner to the memory area pointed to by dst, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 210

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpy2DFromArray, cudaMemcpyArrayToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoH, cuMemcpyAtoD

__host__cudaError_t cudaMemcpyFromArrayAsync
(void *dst, cudaArray_const_t src, size_t wOffset,
size_t hOffset, size_t count, cudaMemcpyKind kind,
cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
src

- Source memory address
wOffset

- Source starting X offset (columns in bytes)
hOffset

- Source starting Y offset [rows)
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

CUDA Runtime API vRelease Version | 211

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gf7ad1edb2539cccc352c6b8b76f657f4
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g825b3f037f7f51382cae991bae8173fd

Modules

Copies count bytes from the CUDA array src starting at hOf fset rows and wOffset bytes
from the upper left corner to the memory area pointed to by dst, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyFromArrayAsync(] is asynchronous with respect to the host, so the call may
return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy?2DFromArray, cudaMemcpyArrayToArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpyToArrayAsync,
cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyAtoHAsync, cuMemcpyZ2DAsync

CUDA Runtime API vRelease Version | 212

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g64cbd2e60436699aebdd0bdbf14d0f01
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

__host__cudaError_t cudaMemcpyToArray
(cudaArray_t dst, size_t wOffset, size_t hOffset, const
void *src, size_t count, cudaMemcpyKind kind]

Copies data between host and device.

Parameters

dst

- Destination memory address
wOffset

- Destination starting X offset (columns in bytes)
hOffset

- Destination starting Y offset (rows)
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting
at hOffset rows and wOf fset bytes from the upper left corner, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 213

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpyFromArray,
cudaMemcpy2DFromArray, cudaMemcpyArrayToArray, cudaMemcpy2DArrayToArray,
cudaMemcpyToSymbol, cudaMemcpyFromSymbol, cudaMemcpyAsync,

cudaMemcpy2DAsync, cudaMemcpyToArrayAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyHtoA, cuMemcpyDtoA

__host__cudaError_t cudaMemcpyToArrayAsync
(cudaArray_t dst, size_t wOffset, size_t hOffset,
const void *src, size_t count, cudaMemcpyKind kind,
cudaStream_t stream)

Copies data between host and device.

Parameters

dst

- Destination memory address
wOffset

- Destination starting X offset (columns in bytes)
hOffset

- Destination starting Y offset (rows)
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidMemcpyDirection

Description
Deprecated

CUDA Runtime API vRelease Version | 214

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g57d3d780d165ecc0e3b3ce08e141cd89
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gad6827247af91600b56ce6e2ddb802e1

Modules

Copies count bytes from the memory area pointed to by src to the CUDA array dst starting
athOffset rows and wOffset bytes from the upper left corner, where kind specifies the
direction of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing.

cudaMemcpyToArrayAsyncl] is asynchronous with respect to the host, so the call may

return before the copy is complete. The copy can optionally be associated to a stream

by passing a non-zero stream argument. If kind is cudaMemcpyHostToDevice or
cudaMemcpyDeviceToHost and stream is non-zero, the copy may overlap with operations in
other streams.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpyToArray, cudaMemcpy2DToArray,
cudaMemcpyFromArray, cudaMemcpy?2DFromArray, cudaMemcpyArrayToArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy?2DToArrayAsync,
cudaMemcpyFromArrayAsync, cudaMemcpy2DFromArrayAsync, cudaMemcpyToSymbolAsync,
cudaMemcpyFromSymbolAsync, cuMemcpyHtoAAsync, cuMemcpyZ2DAsync

6.11. Stream Ordered Memory Allocator

overview

The asynchronous allocator allows the user to allocate and free in stream order. All
asynchronous accesses of the allocation must happen between the stream executions of the

CUDA Runtime API vRelease Version | 215

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb5c4863f64f132b4bc2661818b3fd188
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1g4acf155faeb969d9d21f5433d3d0f274

Modules

allocation and the free. If the memory is accessed outside of the promised stream order, a use
before allocation / use after free error will cause undefined behavior.

The allocator is free to reallocate the memory as long as it can guarantee that compliant
memory accesses will not overlap temporally. The allocator may refer to internal stream
ordering as well as inter-stream dependencies (such as CUDA events and null stream
dependencies) when establishing the temporal guarantee. The allocator may also insert inter-
stream dependencies to establish the temporal guarantee.

Supported Platforms

Whether or not a device supports the integrated stream ordered memory allocator
may be queried by calling cudaDeviceGetAttribute() with the device attribute
cudaDevAttrMemoryPoolsSupported.

__host__cudaError_t cudaFreeAsync (void *devPtr,
cudaStream_t hStream)

Frees memory with stream ordered semantics.

Parameters

devPtr
hStream
- The stream establishing the stream ordering promise

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported

Description

Inserts a free operation into hStream. The allocation must not be accessed after stream
execution reaches the free. After this API returns, accessing the memory from any subsequent
work launched on the GPU or querying its pointer attributes results in undefined behavior.

Note:

During stream capture, this function results in the creation of a free node and must therefore
be passed the address of a graph allocation.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» This function uses standard default stream semantics.

CUDA Runtime API vRelease Version | 216

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cuMemFreeAsync, cudaMallocAsync

__host__cudaError_t cudaMallocAsync (void
**devPtr, size t size, cudaStream_t hStream)

Allocates memory with stream ordered semantics.

Parameters

devPtr
- Returned device pointer
size
- Number of bytes to allocate
hStream
- The stream establishing the stream ordering contract and the memory pool to allocate
from

Returns

cudaSuccess, cudaErrorinvalidValue, cudakrrorNotSupported, cudaErrorOutOfMemory,

Description

Inserts an allocation operation into hStream. A pointer to the allocated memory is returned
immediately in *dptr. The allocation must not be accessed until the the allocation operation
completes. The allocation comes from the memory pool associated with the stream’s device.

Note:
> The default memory pool of a device contains device memory from that device.

> Basic stream ordering allows future work submitted into the same stream to use the
allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee
that the allocation operation completes before work submitted in a separate stream runs.

CUDA Runtime API vRelease Version | 217

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g41acf4131f672a2a75cd93d3241f10cf

Modules

> During stream capture, this function results in the creation of an allocation node. In this
case, the allocation is owned by the graph instead of the memory pool. The memory pool's
properties are used to set the node's creation parameters.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
» This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuMemAllocAsync, cudaMallocAsync [C++ API), cudaMallocFromPoolAsync, cudaFreeAsync,
cudaDeviceSetMemPool, cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool,
cudaMemPoolSetAccess, cudaMemPoolSetAttribute, cudaMemPoolGetAttribute

__host__cudaError_t cudaMallocFromPoolAsync
[void **ptr, size_t size, cudaMemPool_t memPool,
cudaStream_t stream)

Allocates memory from a specified pool with stream ordered semantics.

Parameters
ptr
- Returned device pointer
size
memPool
- The pool to allocate from
stream
- The stream establishing the stream ordering semantic

Returns

cudaSuccess, cudakrrorinvalidValue, cudakrrorNotSupported, cudakErrorOutOfMemory

CUDA Runtime API vRelease Version | 218

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g13413273e84a641bce1929eae9e6501f

Modules

Description

Inserts an allocation operation into hStream. A pointer to the allocated memory is returned
immediately in *dptr. The allocation must not be accessed until the the allocation operation
completes. The allocation comes from the specified memory pool.

Note:

> The specified memory pool may be from a device different than that of the specified
hStream.

» Basic stream ordering allows future work submitted into the same stream to use the
allocation. Stream query, stream synchronize, and CUDA events can be used to guarantee
that the allocation operation completes before work submitted in a separate stream runs.

Note:

During stream capture, this function results in the creation of an allocation node. In this case,
the allocation is owned by the graph instead of the memory pool. The memory pool's properties
are used to set the node’s creation parameters.

See also:

cuMemAllocFromPoolAsync, cudaMallocAsync [C++ API), cudaMallocAsync, cudaFreeAsync,
cudaDeviceGetDefaultMemPool, cudaMemPoolCreate, cudaMemPoolSetAccess,
cudaMemPoolSetAttribute

__host__cudaError_t cudaMemPoolCreate
(cudaMemPool_t *memPool, const
cudaMemPoolProps *poolProps]

Creates a memory pool.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported

Description

Creates a CUDA memory pool and returns the handle in pool. The poolProps determines
the properties of the pool such as the backing device and IPC capabilities.

CUDA Runtime API vRelease Version | 219

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gf1dd6e1e2e8f767a5e0ea63f38ff260b

Modules

By default, the pool's memory will be accessible from the device it is allocated on.

Note:

Specifying cudaMemHandleTypeNone creates a memory pool that will not support IPC.

See also:

cuMemPoolCreate, cudaDeviceSetMemPool, cudaMallocFromPoolAsync,
cudaMemPoolExportToShareableHandle, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool

__host__cudaError_t cudaMemPoolDestroy
(cudaMemPool t memPool)

Destroys the specified memory pool.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

If any pointers obtained from this pool haven't been freed or the pool has free operations that
haven't completed when cudaMemPoolDestroy is invoked, the function will return immediately
and the resources associated with the pool will be released automatically once there are no
more outstanding allocations.

Destroying the current mempool of a device sets the default mempool of that device as the
current mempool for that device.

Note:

A device's default memory pool cannot be destroyed.

See also:

cuMemPoolDestroy, cudaFreeAsync, cudaDeviceSetMemPool,
cudaDeviceGetDefaultMemPool, cudaDeviceGetMemPool, cudaMemPoolCreate

CUDA Runtime API vRelease Version | 220

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g8aa4c143dbc20293659cd883232b95f2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1ge0e211115e5ad1c79250b9dd425b77f7

Modules

__host__cudaError_t cudaMemPoolExportPointer
(cudaMemPoolPtrExportData *exportData, void *ptr]

Export data to share a memory pool allocation between processes.

Parameters

exportData
ptr
- pointer to memory being exported

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Constructs shareData out for sharing a specific allocation from an already shared memory
pool. The recipient process can import the allocation with the cudaMemPoollmportPointer api.
The data is not a handle and may be shared through any IPC mechanism.

See also:

cuMemPoolExportPointer, cudaMemPoolExportToShareableHandle,
cudaMemPoollmportFromShareableHandle, cudaMemPoollmportPointer

__host__cudaError_t
cudaMemPoolExportToShareableHandle (void
*shareableHandle, cudaMemPool_t memPool,
cudaMemAllocationHandleType handleType, unsigned
int flags)

Exports a memory pool to the requested handle type.

Parameters

shareableHandle
memPool
handleType
- the type of handle to create
flags
- must be 0

CUDA Runtime API vRelease Version | 221

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gfe89f0478d26edaa91eb8a2e0349329d

Modules

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Given an IPC capable mempool, create an OS handle to share the pool with another

process. A recipient process can convert the shareable handle into a mempool with
cudaMemPoollmportFromShareableHandle. Individual pointers can then be shared with the
cudaMemPoolExportPointer and cudaMemPoollmportPointer APIs. The implementation of
what the shareable handle is and how it can be transferred is defined by the requested handle

type.

Note:

: To create an IPC capable mempool, create a mempool with a CUmemAllocationHandleType
other than cudaMemHandleTypeNone.

See also:

cuMemPoolExportToShareableHandle, cudaMemPoollmportFromShareableHandle,
cudaMemPoolExportPointer, cudaMemPoollmportPointer

__host_ cudaError_t cudaMemPoolGetAccess
(cudaMemAccessFlags *flags, cudaMemPool t
memPool, cudaMemLocation *location)

Returns the accessibility of a pool from a device.

Parameters

flags

- the accessibility of the pool from the specified location
memPool

- the pool being queried
location

- the location accessing the pool

Description
Returns the accessibility of the pool’'s memory from the specified location.

See also:

cuMemPoolGetAccess, cudaMemPoolSetAccess

CUDA Runtime API vRelease Version | 222

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g79ed285fdfffb76932871fb96fbba8f8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g838f28fd535a1cbd06c5f7fe0edbdcc7

Modules

__host__cudaError_t cudaMemPoolGetAttribute
(cudaMemPool t memPool, cudaMemPoolAttr attr,
void *value)

Gets attributes of a memory pool.

Parameters

memPool
attr

- The attribute to get
value

- Retrieved value

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Supported attributes are:

» cudaMemPoolAttrReleaseThreshold: (value type = cuuinté4_t) Amount of reserved memory

in bytes to hold onto before trying to release memory back to the 0S. When more than the
release threshold bytes of memory are held by the memory pool, the allocator will try to
release memory back to the OS on the next call to stream, event or context synchronize.
(default 0)

» cudaMemPoolReuseFollowEventDependencies: (value type = int) Allow cudaMallocAsync
to use memory asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda events and null stream
interactions can create the required stream ordered dependencies. (default enabled)

» cudaMemPoolReuseAllowOpportunistic: (value type = int) Allow reuse of already
completed frees when there is no dependency between the free and allocation. (default
enabled)

» cudaMemPoolReuseAllowInternalDependencies: (value type = int) Allow cudaMallocAsync

to insert new stream dependencies in order to establish the stream ordering required to
reuse a piece of memory released by cudaFreeAsync (default enabled).

n Note:

CUDA Runtime API vRelease Version | 223

Modules

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in

such case.

See also:

cuMemPoolGetAttribute, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

__host__cudaError_t
cudaMemPoollmportFromShareableHandle
(cudaMemPool t *memPool, void *shareableHandle,
cudaMemAllocationHandleType handleType, unsigned
int flags)

imports a memory pool from a shared handle.

Parameters

memPool
shareableHandle
handleType
- The type of handle being imported
flags
- must be 0

Returns

cudaSuccess, cudakrrorinvalidValue, cudaErrorOutOfMemory

Description

Specific allocations can be imported from the imported pool with cudaMemPoollmportPointer.

Note:

Imported memory pools do not support creating new allocations. As such imported memory
pools may not be used in cudaDeviceSetMemPool or cudaMallocFromPoolAsync calls.

See also:

cuMemPoollmportFromShareableHandle, cudaMemPoolExportToShareableHandle,
cudaMemPoolExportPointer, cudaMemPoollmportPointer

CUDA Runtime API vRelease Version | 224

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gd45ea7c43e4a1add4b971d06fa72eda4
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g02b4f18dd8a1c45b7f302800e90cec5b

Modules

__host__cudaError_t cudaMemPoollmportPointer
[void **ptr, cudaMemPool_t memPool,
cudaMemPoolPtrExportData *exportData)

Import a memory pool allocation from another process.

Returns

CUDA_SUCCESS, CUDA_ERROR_INVALID_VALUE, CUDA_ERROR_NOT_INITIALIZED,
CUDA_ERROR_OUT_OF_MEMORY

Description

Returns in ptr out a pointer to the imported memory. The imported memory must not be
accessed before the allocation operation completes in the exporting process. The imported
memory must be freed from all importing processes before being freed in the exporting
process. The pointer may be freed with cudaFree or cudaFreeAsync. If cudaFreeAsync is
used, the free must be completed on the importing process before the free operation on the
exporting process.

Note:

The cudaFreeAsync api may be used in the exporting process before the cudaFreeAsync
operation completes in its stream as long as the cudaFreeAsync in the exporting process
specifies a stream with a stream dependency on the importing process’'s cudaFreeAsync.

See also:

cuMemPoollmportPointer, cudaMemPoolExportToShareableHandle,
cudaMemPoollmportFromShareableHandle, cudaMemPoolExportPointer

__host__cudaError_t cudaMemPoolSetAccess
(cudaMemPool_t memPool, const
cudaMemAccessDesc *desclList, size t count])

Controls visibility of pools between devices.

Parameters

memPool
descList
count
- Number of descriptors in the map array.

CUDA Runtime API vRelease Version | 225

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e9a0eed720f8a87cd1c5fd1c453bc7a03d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e990696c86fcee1f536a1ec7d25867feeb
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e98feb999f0af99b4a25ab26b3866f4df8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggc6c391505e117393cc2558fff6bfc2e9264c50688ed110e8476b591befe60c02
../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g2620bb972ed5edcce312d3689454acbd

Ret

Modules

urns

cudaSuccess, cudaErrorinvalidValue

Description

See

also:

cuMemPoolSetAccess, cudaMemPoolGetAccess, cudaMallocAsync, cudaFreeAsync

host cudaError_t cudaMemPoolSetAttribute

(cudaMemPool t memPool, cudaMemPoolAttr attr,

VO

id *value)

Sets attributes of a memory pool.

Parameters

memPool

attr

The attribute to modify

value

Pointer to the value to assign

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sup

»

ported attributes are:

cudaMemPoolAttrReleaseThreshold: (value type = cuuinté4_t] Amount of reserved memory

in bytes to hold onto before trying to release memory back to the 0S. When more than the
release threshold bytes of memory are held by the memory pool, the allocator will try to
release memory back to the OS on the next call to stream, event or context synchronize.
(default 0)

cudaMemPoolReuseFollowEventDependencies: [value type = int] Allow cudaMallocAsync

to use memory asynchronously freed in another stream as long as a stream ordering
dependency of the allocating stream on the free action exists. Cuda events and null stream
interactions can create the required stream ordered dependencies. (default enabled)

cudaMemPoolReuseAllowOpportunistic: (value type = int) Allow reuse of already

CuD

completed frees when there is no dependency between the free and allocation. (default
enabled)

A Runtime API vRelease Version | 226

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1gff3ce33e252443f4b087b94e42913406

Modules

» cudaMemPoolReuseAllowInternalDependencies: (value type = int] Allow cudaMallocAsync
to insert new stream dependencies in order to establish the stream ordering required to
reuse a piece of memory released by cudaFreeAsync (default enabled).

Note:

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in

such case.

See also:

cuMemPoolSetAttribute, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

__host__cudaError_t cudaMemPoolTrimTo
[cudaMemPool_t memPool, size_t minBytesToKeep)

Tries to release memory back to the 0S.

Parameters

memPool

minBytesToKeep
- If the pool has less than minBytesToKeep reserved, the TrimTo operation is a no-op.
Otherwise the pool will be guaranteed to have at least minBytesToKeep bytes reserved after
the operation.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Releases memory back to the OS until the pool contains fewer than minBytesToKeep reserved
bytes, or there is no more memory that the allocator can safely release. The allocator cannot
release OS allocations that back outstanding asynchronous allocations. The 0S allocations
may happen at different granularity from the user allocations.

Note:
> : Allocations that have not been freed count as outstanding.

> : Allocations that have been asynchronously freed but whose completion has not been
observed on the host (eg. by a synchronize) can count as outstanding.

CUDA Runtime API vRelease Version | 227

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g223e786cb217709235a06e41bccaec00

Modules

Note:

Note that as specified by cudaStreamAddCallback no CUDA function may be called from
callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a diagnostic in

such case.

See also:

cuMemPoolTrimTo, cudaMallocAsync, cudaFreeAsync, cudaDeviceGetDefaultMemPool,
cudaDeviceGetMemPool, cudaMemPoolCreate

6.12. Unified Addressing

This section describes the unified addressing functions of the CUDA runtime application
programming interface.

Overview

CUDA devices can share a unified address space with the host. For these devices there is

no distinction between a device pointer and a host pointer -- the same pointer value may be
used to access memory from the host program and from a kernel running on the device (with
exceptions enumerated below).

Supported Platforms

Whether or not a device supports unified addressing may be queried by calling
cudaGetDeviceProperties(] with the device property cudaDeviceProp::unifiedAddressing.

Unified addressing is automatically enabled in 64-bit processes .
Looking Up Information from Pointer Values

It is possible to look up information about the memory which backs a pointer value.
For instance, one may want to know if a pointer points to host or device memory.

As another example, in the case of device memory, one may want to know on which
CUDA device the memory resides. These properties may be queried using the function
cudaPointerGetAttributes()

Since pointers are unique, it is not necessary to specify information about the pointers
specified to cudaMemcpyl) and other copy functions. The copy direction cudaMemcpyDefault
may be used to specify that the CUDA runtime should infer the location of the pointer from its
value.

Automatic Mapping of Host Allocated Host Memory

All host memory allocated through all devices using cudaMallocHost() and cudaHostAlloc(] is
always directly accessible from all devices that support unified addressing. This is the case

CUDA Runtime API vRelease Version | 228

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MALLOC__ASYNC.html#group__CUDA__MALLOC__ASYNC_1g9c7e267e3460945b0ca76c48314bb669

Modules

regardless of whether or not the flags cudaHostAllocPortable and cudaHostAllocMapped are
specified.

The pointer value through which allocated host memory may be accessed in kernels on all
devices that support unified addressing is the same as the pointer value through which that
memory is accessed on the host. It is not necessary to call cudaHostGetDevicePointer(] to get
the device pointer for these allocations.

Note that this is not the case for memory allocated using the flag
cudaHostAllocWriteCombined, as discussed below.

Direct Access of Peer Memory

Upon enabling direct access from a device that supports unified addressing to another peer
device that supports unified addressing using cudaDeviceEnablePeerAccess() all memory
allocated in the peer device using cudaMalloc(] and cudaMallocPitch() will immediately be
accessible by the current device. The device pointer value through which any peer’'s memory
may be accessed in the current device is the same pointer value through which that memory
may be accessed from the peer device.

Exceptions, Disjoint Addressing

Not all memory may be accessed on devices through the same pointer value through

which they are accessed on the host. These exceptions are host memory registered using
cudaHostRegister(] and host memory allocated using the flag cudaHostAllocWriteCombined.
For these exceptions, there exists a distinct host and device address for the memory. The
device address is guaranteed to not overlap any valid host pointer range and is guaranteed to
have the same value across all devices that support unified addressing.

This device address may be queried using cudaHostGetDevicePointer(] when a device using
unified addressing is current. Either the host or the unified device pointer value may be used
to refer to this memory in cudaMemcpyl] and similar functions using the cudaMemcpyDefault
memory direction.

__host__cudaError_t cudaPointerGetAttributes
(cudaPointerAttributes *attributes, const void *ptr)

Returns attributes about a specified pointer.

Parameters

attributes

- Attributes for the specified pointer
ptr

- Pointer to get attributes for

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 229

Modules

Description

Returnsin *attributes the attributes of the pointer ptr. If pointer was not allocated in,
mapped by or registered with context supporting unified addressing cudaErrorinvalidValue is
returned.

Note:

In CUDA 11.0 forward passing host pointer will return cudaMemoryTypeUnregistered in

cudaPointerAttributes::type and call will return cudaSuccess.

The cudaPointerAttributes structure is defined as:

r struct cudaPointerAttributes {
enum cudaMemoryType
type;
int device;
void *devicePointer;
void *hostPointer;

}

In this structure, the individual fields mean

» cudaPointerAttributes::type identifies type of memory. It can be
cudaMemoryTypeUnregistered for unregistered host memory, cudaMemoryTypeHost
for registered host memory, cudaMemoryTypeDevice for device memory or
cudaMemoryTypeManaged for managed memory.

» device is the device against which ptr was allocated. If ptr has memory type
cudaMemoryTypeDevice then this identifies the device on which the memory referred
to by ptr physically resides. If ptr has memory type cudaMemoryTypeHost then this
identifies the device which was current when the allocation was made (and if that device is
deinitialized then this allocation will vanish with that device's state).

» devicePointer is the device pointer alias through which the memory referred to by ptr may
be accessed on the current device. If the memory referred to by ptr cannot be accessed
directly by the current device then this is NULL.

» hostPointer is the host pointer alias through which the memory referred to by ptr may be
accessed on the host. If the memory referred to by ptr cannot be accessed directly by the
host then this is NULL.

Note:

» Note that this function may also return cudaErrorlinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 230

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetDeviceCount, cudaGetDevice, cudaSetDevice, cudaChooseDevice,
cuPointerGetAttributes

6.13. Peer Device Memory Access

This section describes the peer device memory access functions of the CUDA runtime
application programming interface.

__host__cudaError_t cudaDeviceCanAccessPeer (int
*canAccessPeer, int device, int peerDevice]

Queries if a device may directly access a peer device's memory.

Parameters

canAccessPeer

- Returned access capability
device

- Device from which allocations on peerDevice are to be directly accessed.
peerDevice

- Device on which the allocations to be directly accessed by device reside.

Returns

cudaSuccess, cudaErrorinvalidDevice

Description

Returns in *canAccessPeer avalue of 1 if device device is capable of directly accessing
memory from peerDevice and 0 otherwise. If direct access of peerDevice from device is
possible, then access may be enabled by calling cudaDeviceEnablePeerAccess().

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 231

../cuda-driver-api/cuda-driver-api/content/group__CUDA__UNIFIED.html#group__CUDA__UNIFIED_1gf65e9ea532e311dd049166e4894955ad

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceEnablePeerAccess, cudaDeviceDisablePeerAccess, cuDeviceCanAccessPeer

__host_ _cudaError_t cudaDeviceDisablePeerAccess
lint peerDevice])

Disables direct access to memory allocations on a peer device.

Parameters

peerDevice
- Peer device to disable direct access to

Returns

cudaSuccess, cudaErrorPeerAccessNotEnabled, cudaErrorinvalidDevice

Description

Returns cudaErrorPeerAccessNotEnabled if direct access to memory on peerDevice has not
yet been enabled from the current device.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceCanAccessPeer, cudaDeviceEnablePeerAccess, cuCtxDisablePeerAccess

CUDA Runtime API vRelease Version | 232

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g496bdaae1f632ebfb695b99d2c40f19e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g5b4b6936ea868d4954ce4d841a3b4810

Modules

__host___cudaError_t cudaDeviceEnablePeerAccess
lint peerDevice, unsigned int flags]

Enables direct access to memory allocations on a peer device.

Parameters

peerDevice

- Peer device to enable direct access to from the current device
flags

- Reserved for future use and must be setto 0

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorPeerAccessAlreadyEnabled,
cudaErrorinvalidValue

Description

On success, all allocations from peerDevice will immediately be accessible by the
current device. They will remain accessible until access is explicitly disabled using
cudaDeviceDisablePeerAccess|(] or either device is reset using cudaDeviceReset(].

Note that access granted by this call is unidirectional and that in order to access
memory on the current device from peerDevice, a separate symmetric call to
cudaDeviceEnablePeerAccess(] is required.

Note that there are both device-wide and system-wide limitations per system configuration, as
noted in the CUDA Programming Guide under the section "Peer-to-Peer Memory Access”.

Returns cudaErrorinvalidDevice if cudaDeviceCanAccessPeer(] indicates that the current
device cannot directly access memory from peerDevice.

Returns cudakErrorPeerAccessAlreadyEnabled if direct access of peerDevice from the
current device has already been enabled.

Returns cudaErrorinvalidValue if flags is not 0.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 233

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDeviceCanAccessPeer, cudaDeviceDisablePeerAccess, cuCtxEnablePeerAccess

6.14. OpenGL Interoperability

This section describes the OpenGL interoperability functions of the CUDA runtime application
programming interface. Note that mapping of OpenGL resources is performed with the
graphics APl agnostic, resource mapping interface described in Graphics Interopability.

enum cudaGLDevicelList

CUDA devices corresponding to the current OpenGL context

Values

cudaGLDeviceListAll = 1
The CUDA devices for all GPUs used by the current OpenGL context
cudaGLDeviceListCurrentFrame = 2
The CUDA devices for the GPUs used by the current OpenGL context in its currently
rendering frame
cudaGLDeviceListNextFrame = 3
The CUDA devices for the GPUs to be used by the current OpenGL context in the next frame

__host__cudaError_t cudaGLGetDevices (unsigned int
*pCudaDeviceCount, int *pCudaDevices, unsigned int
cudaDeviceCount, cudaGLDeviceList deviceList]

Gets the CUDA devices associated with the current OpenGL context.

Parameters

pCudaDeviceCount

- Returned number of CUDA devices corresponding to the current OpenGL context
pCudaDevices

- Returned CUDA devices corresponding to the current OpenGL context
cudaDeviceCount

- The size of the output device array pCudaDevices

CUDA Runtime API vRelease Version | 234

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PEER__ACCESS.html#group__CUDA__PEER__ACCESS_1g0889ec6728e61c05ed359551d67b3f5a

Modules

deviceList
- The set of devices to return. This set may be cudaGl Devicel istAll for all devices,
cudaGLDevicelListCurrentFrame for the devices used to render the current frame (in SLIJ,
or cudaGLDevicelistNextFrame for the devices used to render the next frame (in SLIJ.

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorinvalidGraphicsContext, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding to
the current OpenGL context. Also returns in *pCudaDevices at most cudaDeviceCount of
the CUDA-compatible devices corresponding to the current OpenGL context. If any of the GPUs
being used by the current OpenGL context are not CUDA capable then the call will return
cudaErrorNoDevice.

Note:
» This function is not supported on Mac OS X.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGLGetDevices

__host__cudaError_t cudaGraphicsGLRegisterBuffer
(cudaGraphicsResource **resource, GLuint buffer,

unsigned int flags)
Registers an OpenGL buffer object.

Parameters

resource

- Pointer to the returned object handle
buffer

- name of buffer object to be registered
flags

- Register flags

CUDA Runtime API vRelease Version | 235

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g98bb15525b04d2f6a817c21e07d8b7cd

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the buffer object specified by buffer for access by CUDA. A handle to the
registered object is returned as resource. The register flags £1ags specify the intended
usage, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

» cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsResourceGetMappedPointer, cuGraphicsGLReqgisterBuffer

__host__cudaError_t cudaGraphicsGLRegisterlmage
(cudaGraphicsResource **resource, GLuint image,
GLenum target, unsigned int flags)

Register an OpenGL texture or renderbuffer object.

Parameters

resource

- Pointer to the returned object handle
image

- name of texture or renderbuffer object to be registered
target

- Identifies the type of object specified by image

CUDA Runtime API vRelease Version | 236

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1gd530f66cc9ab43a31a98527e75f343a0

Modules

flags
- Register flags

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the texture or renderbuffer object specified by image for access by CUDA. A handle
to the registered object is returned as resource.

target must match the type of the object, and must be one of GL_TEXTURE_2D,
GL _TEXTURE_RECTANGLE, GL_TEXTURE_CUBE_MAP, GL_TEXTURE_3D,
GL TEXTURE_2D_ARRAY, or GL_ RENDERBUFFER.

The register flags £1ags specify the intended usage, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

» cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

> cudaGraphicsRegisterFlagsSurfaceloadStore: Specifies that CUDA will bind this resource
to a surface reference.

» cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

The following image formats are supported. For brevity's sake, the list is abbreviated. For ex.,
{GL_R, GL_RG} X {8, 16} would expand to the following 4 formats {GL_R8, GL_R16, GL_RGS,
GL_RG1é}:

» GL_RED, GL_RG, GL_RGBA, GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA,
GL_INTENSITY

» {GL_R, GL_RG, GL_RGBA} X {8, 16, 16F, 32F, 8Ul, 16Ul, 32Ul, 8I, 161, 321}

» {GL_LUMINANCE, GL_ALPHA, GL_LUMINANCE_ALPHA, GL_INTENSITY} X {8, 16,
16F_ARB, 32F_ARB, 8UI_EXT, 16UI_EXT, 32UI_EXT, 8I_EXT, 16I_EXT, 32I_EXT}

The following image classes are currently disallowed:
» Textures with borders

» Multisampled renderbuffers

CUDA Runtime API vRelease Version | 237

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsGLReqgisterlmage

__host__cudaError_t cudaWGLGetDevice (int *device,
HGPUNV hGpu]

Gets the CUDA device associated with hGpu.

Parameters

device

- Returns the device associated with hGpu, or -1 if hGpu is not a compute device.
hGpu

- Handle to a GPU, as queried via WGL_NV_gpu_affinity

Returns

cudaSuccess

Description

Returns the CUDA device associated with a hGpu, if applicable.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

WGL_NV_gpu_affinity, cuWGLGetDevice

6.15. OpenGL Interoperability
[DEPRECATED]

This section describes deprecated OpenGL interoperability functionality.

CUDA Runtime API vRelease Version | 238

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g52c3a36c4c92611b6fcf0662b2f74e40
../cuda-driver-api/cuda-driver-api/content/group__CUDA__GL.html#group__CUDA__GL_1g21ff8296192dc38dff42ba3346078282

Modules

enum cudaGLMapFlags

CUDA GL Map Flags

Values

cudaGLMapFlagsNone =0

Default; Assume resource can be read/written
cudaGLMapFlagsReadOnly =1

CUDA kernels will not write to this resource
cudaGLMapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

__host__cudaError_t cudaGLMapBufferObject (void
**devPtr, GLuint bufObj)

Maps a buffer object for access by CUDA.

Parameters

devPtr

- Returned device pointer to CUDA object
bufObj

- Buffer object ID to map

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufOb7j into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered

by calling cudaGLRegisterBufferObject(). While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the
current thread when this is called.

All streams in the current thread are synchronized with the current GL context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 239

Modules

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaGLMapBufferObjectAsync

[void **devPtr, GLuint bufObj, cudaStream_t stream]
Maps a buffer object for access by CUDA.

Parameters

devPtr

- Returned device pointer to CUDA object
bufObj

- Buffer object ID to map
stream

- Stream to synchronize

Returns

cudaSuccess, cudaErrorMapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the buffer object of ID bufOb7j into the address space of CUDA and returns in *devPtr
the base pointer of the resulting mapping. The buffer must have previously been registered

by calling cudaGLRegisterBufferObject(]. While a buffer is mapped by CUDA, any OpenGL
operation which references the buffer will result in undefined behavior. The OpenGL context
used to create the buffer, or another context from the same share group, must be bound to the
current thread when this is called.

Stream /p stream is synchronized with the current GL context.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

CUDA Runtime API vRelease Version | 240

Modules

__host__cudaError_t cudaGLRegisterBufferObject
(GLuint bufObj)

Registers a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object ID to register

Returns

cudaSuccess, cudaErrorinitializationError

Description
Deprecated This function is deprecated as of CUDA 3.0.

Registers the buffer object of ID bufObj for access by CUDA. This function must be called
before CUDA can map the buffer object. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsGLReqisterBuffer

__host_ _cudaError_t
cudaGLSetBufferObjectMapFlags (GLuint bufQObj,

unsigned int flags)
Set usage flags for mapping an OpenGL buffer.

Parameters

bufObj

- Registered buffer object to set flags for
flags

- Parameters for buffer mapping

CUDA Runtime API vRelease Version | 241

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Set flags for mapping the OpenGL buffer bufOb]

Changes to flags will take effect the next time bufObj is mapped. The £1lags argument may
be any of the following:

» cudaGLMapFlagsNone: Specifies no hints about how this buffer will be used. It is therefore
assumed that this buffer will be read from and written to by CUDA kernels. This is the
default value.

» cudaGLMapFlagsReadOnly: Specifies that CUDA kernels which access this buffer will not
write to the buffer.

» cudaGLMapFlagsWriteDiscard: Specifies that CUDA kernels which access this buffer will
not read from the buffer and will write over the entire contents of the buffer, so none of the
data previously stored in the buffer will be preserved.

If bufObj has not been registered for use with CUDA, then cudaErrorinvalidResourceHandle
is returned. If bufObj is presently mapped for access by CUDA, then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceSetMapFlags

__host__cudaError_t cudaGLSetGLDevice (int device]
Sets a CUDA device to use OpenGL interoperability.

Parameters

device
- Device to use for OpenGL interoperability

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorSetOnActiveProcess

CUDA Runtime API vRelease Version | 242

Modules

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with an OpenGL context in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsGLReqgisterBuffer, cudaGraphicsGLRegisterlmage

__host__cudaError_t cudaGLUnmapBufferObject
(GLuint bufObj)

Unmaps a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object to unmap

Returns

cudaSuccess, cudaErrorUnmapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the buffer object of ID bufObj for access by CUDA. When a buffer is unmapped, the
base address returned by cudaGLMapBufferObject(] is invalid and subsequent references to
the address result in undefined behavior. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

All streams in the current thread are synchronized with the current GL context.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 243

Modules

See also:

cudaGraphicsUnmapResources

__host_ _cudaError_t
cudaGLUnmapBufferObjectAsync (GLuint bufObj,

cudaStream t stream)
Unmaps a buffer object for access by CUDA.

Parameters

bufObj

- Buffer object to unmap
stream

- Stream to synchronize

Returns

cudaSuccess, cudaErrorUnmapBufferObjectFailed

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the buffer object of ID bufObj for access by CUDA. When a buffer is unmapped, the
base address returned by cudaGlLMapBufferObject(] is invalid and subsequent references to
the address result in undefined behavior. The OpenGL context used to create the buffer, or
another context from the same share group, must be bound to the current thread when this is
called.

Stream /p stream is synchronized with the current GL context.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnmapResources

CUDA Runtime API vRelease Version | 244

Modules

__host__cudaError_t cudaGLUnregisterBufferObject
(GLuint bufObj)

Unregisters a buffer object for access by CUDA.

Parameters

bufObj
- Buffer object to unregister

Returns

cudaSuccess

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the buffer object of ID bufObj for access by CUDA and releases any CUDA
resources associated with the buffer. Once a buffer is unregistered, it may no longer be
mapped by CUDA. The GL context used to create the buffer, or another context from the same
share group, must be bound to the current thread when this is called.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource

6.16. Direct3D 9 Interoperability

This section describes the Direct3D 9 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 9 resources is performed
with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D9Devicelist

CUDA devices corresponding to a D3D9 device

Values
cudaD3D9DeviceListAll =1

CUDA Runtime API vRelease Version | 245

Modules

The CUDA devices for all GPUs used by a D3D9 device
cudaD3D9DevicelListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D9 device in its currently rendering frame
cudaD3D9DeviceListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D9 device in the next frame

__host__cudaError_t cudaD3D9GetDevice (int
*device, const char *pszAdapterName)

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pszAdapterName
pszAdapterName

- D3D9 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter name
pszAdapterName obtained from EnumDisplayDevices or IDirect3D9::GetAdapterldentifier(). If
no device on the adapter with name pszAdapterName is CUDA-compatible then the call will
fail.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9SetDirect3DDevice, cudaGraphicsD3D?ReqgisterResource, cuD3D9GetDevice

CUDA Runtime API vRelease Version | 246

Modules

__host__cudaError_t cudaD3D9GetDevices (unsigned
Int *pCudaDeviceCount, int *pCudaDevices, unsigned
Int cudaDeviceCount, IDirect3DDevice? *pD3D9Device,
cudaD3D9DevicelList devicelList]

Gets the CUDA devices corresponding to a Direct3D 9 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D9Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D9Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D9Device
- Direct3D 9 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D9Devicel istAll for all devices,
cudaD3D9DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D9DeviceListNextFrame for the devices used to render the next frame (in
SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 9 device pD3D9Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 9
device pD3D9Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 247

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D9GetDevices

__host__cudaError_t cudaD3D9GetDirect3DDevice
(IDirect3DDevice9 **ppD3D9Device]

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D9Device
- Returns the Direct3D device for this thread

Returns

cudaSuccess, cudaErrorlnvalidGraphicsContext, cudaErrorUnknown

Description

Returns in *ppD3D9Device the Direct3D device against which this CUDA context was created
in cudaD3D9SetDirect3DDevice(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9SetDirect3DDevice, cuD3D9GetDirect3DDevice

__host__cudaError_t cudaD3D9SetDirect3DDevice
(IDirect3DDevice9 *pD3D9Device, int device)

Sets the Direct3D 9 device to use for interoperability with a CUDA device.

Parameters

pD3D9Device
- Direct3D device to use for this thread

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D9DeviceListAll from cudaD3D9GetDevices, may be set to -1 to automatically select
an appropriate CUDA device.

CUDA Runtime API vRelease Version | 248

Modules

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudaErrorSetOnActiveProcess

Description

Records pD3D9Device as the Direct3D 9 device to use for Direct3D 9 interoperability with the
CUDA device device and sets device as the current device for the calling host thread.

If device has already been initialized then this call will fail with the error
cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using
cudaDeviceReset(] before Direct3D 9 interoperability on device may be enabled.

Successfully initializing CUDA interoperability with pD3D9Device will increase the internal
reference count on pD3D9Device. This reference count will be decremented when device is
reset using cudaDeviceReset().

Note that this function is never required for correct functionality. Use of this function will
result in accelerated interoperability only when the operating system is Windows Vista
or Windows 7, and the device pD3DDdevice is not an IDirect3DDevice9Ex. In all other
cirumstances, this function is not necessary.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D9GetDevice, cudaGraphicsD3D9ReqgisterResource, cudaDeviceReset

__host__cudaError_t
cudaGraphicsD3D9RegisterResource
(cudaGraphicsResource **resource,
IDirect3DResource9 *pD3DResource, unsigned int
flags)

Register a Direct3D 9 resource for access by CUDA.

Parameters

resource
- Pointer to returned resource handle

CUDA Runtime API vRelease Version | 249

Modules

pD3DResource
- Direct3D resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 9 resource pD3DResource for access by CUDA.

If this call is successful then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.
» |Direct3DVertexBuffer9: may be accessed through a device pointer
» |Direct3DIndexBuffer9: may be accessed through a device pointer

» |Direct3DSurface?: may be accessed through an array. Only stand-alone objects of
type IDirect3DSurface? may be explicitly shared. In particular, individual mipmap levels
and faces of cube maps may not be registered directly. To access individual surfaces
associated with a texture, one must register the base texture object.

» |Direct3DBaseTexture9: individual surfaces on this texture may be accessed through an
array.

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

> cudaGraphicsRegisterFlagsSurfacel oadStore: Specifies that CUDA will bind this resource
to a surface reference.

> cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

» The primary rendertarget may not be registered with CUDA.

CUDA Runtime API vRelease Version | 250

Modules

» Resources allocated as shared may not be registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

> Surfaces of depth or stencil formats cannot be shared.
A complete list of supported formats is as follows:
» D3DFMT_LS8

» D3DFMT_L16

» D3DFMT_A8R8G8BS

» D3DFMT_X8R8G8BS8

» D3DFMT_G16R16

» D3DFMT_A8B8G8RS8

» D3DFMT_A8

» D3DFMT_A8LS

» D3DFMT_Q8W8V8US8

» D3DFMT_V16U16

» D3DFMT_A16B16G16R16F

» D3DFMT_A16B16G16R16

» D3DFMT_R32F

» D3DFMT_G16R16F

» D3DFMT_A32B32G32R32F

» D3DFMT_G32R32F

» D3DFMT_R16F

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then
cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 251

Modules

cudaD3D9SetDirect3DDevice, cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D9RegisterResource

6.17. Direct3D 9 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 9 interoperability functions.

enum cudaD3D9MapFlags

CUDA D3D9 Map Flags

Values

cudaD3D9MapFlagsNone =0

Default; Assume resource can be read/written
cudaD3D9MapFlagsReadOnly = 1

CUDA kernels will not write to this resource
cudaD3D9MapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

enum cudaD3D9RegisterFlags

CUDA D3D9 Register Flags

Values

cudaD3D9RegisterFlagsNone =0

Default; Resource can be accessed througa void*
cudaD3D9RegisterFlagsArray = 1

Resource can be accessed through a CUarray*

__host__cudaError_t cudaD3D9MapResources (int

count, IDirect3DResource9 **ppResources)
Map Direct3D resources for access by CUDA.

Parameters

count

- Number of resources to map for CUDA
ppResources

- Resources to map for CUDA

CUDA Runtime API vRelease Version | 252

Modules

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped.
Direct3D should not access any resources while they are mapped by CUDA. If an application
does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued
before cudaD3D9MapResources(] will complete before any CUDA kernels issued after
cudaD3D9MapResources() begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries then cudaErrorinvalidResourceHandle is returned. If any
of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaD3D9RegisterResource
(IDirect3DResource? *pResource, unsigned int flags)

Registers a Direct3D resource for access by CUDA.

Parameters

pResource
- Resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 253

Modules

Description
Deprecated This function is deprecated as of CUDA 3.0.

Registers the Direct3D resource pResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaD3D9UnregisterResource(). Also on success, this call
will increase the internal reference count on pResource. This reference count will be

decremented when this resource is unregistered through cudaD3D9UnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pResource must be one of the following.
> |Direct3DVertexBuffer%: No notes.
» |Direct3DIndexBuffer?: No notes.

> |Direct3DSurface9: Only stand-alone objects of type IDirect3DSurface? may be explicitly
shared. In particular, individual mipmap levels and faces of cube maps may not be
registered directly. To access individual surfaces associated with a texture, one must
register the base texture object.

> |Direct3DBaseTexture?: When a texture is registered, all surfaces associated with all
mipmap levels of all faces of the texture will be accessible to CUDA.

The flags argument specifies the mechanism through which CUDA will access the Direct3D
resource. The following value is allowed:

» cudaD3D9RegisterFlagsNone: Specifies that CUDA will access this resource through a
void*. The pointer, size, and pitch for each subresource of this resource may be queried
through cudaD3D9ResourceGetMappedPointer(), cudaD3D9ResourceGetMappedSizel),
and cudaD3D9ResourceGetMappedPitch(] respectively. This option is valid for all resource

types.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations:

» The primary rendertarget may not be registered with CUDA.
» Resources allocated as shared may not be registered with CUDA.

» Anyresources allocated in D3DPOOL_SYSTEMMEM or D3DPOOL_MANAGED may not be
registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

> Surfaces of depth or stencil formats cannot be shared.

CUDA Runtime API vRelease Version | 254

Modules

If Direct3D interoperability is not initialized on this context, then cudaErrorinvalidDevice is
returned. If presource is of incorrect type (e.g, is a non-stand-alone IDirect3DSurface9) or is
already registered, then cudaErrorinvalidResourceHandle is returned. If pResource cannot
be registered then cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D9ReqgisterResource

__host__cudaError_t
cudaD3D9ResourceGetMappedArray (cudaArray
**ppArray, IDirect3DResource9 *pResource, unsigned
int face, unsigned int level

Get an array through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

ppArray
- Returned array corresponding to subresource
pResource
- Mapped resource to access
face
- Face of resource to access
level
- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Returns in *pArray an array through which the subresource of the mapped Direct3D

resource pResource, which corresponds to face and 1evel may be accessed. The value set
in pArray may change every time that pResource is mapped.

If pResource is not registered then cudaErrorinvalidResourceHandle is returned. If
pResource was not registered with usage flags cudaD3D9RegisterFlagsArray, then

CUDA Runtime API vRelease Version | 255

Modules

cudaErrorinvalidResourceHandle is returned. If pResource is not mapped, then
cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D9ResourceGetMappedPitch (size_t *pPitch,
size_t *pPitchSlice, IDirect3DResource? *pResource,
unsigned int face, unsigned int level)

Get the pitch of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters

pPitch

- Returned pitch of subresource
pPitchSlice

- Returned Z-slice pitch of subresource
pResource

- Mapped resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the
mapped Direct3D resource pResource, which corresponds to face and level. The values
setin pPitch and pPitchSlice may change every time that pResource is mapped.

CUDA Runtime API vRelease Version | 256

Modules

The pitch and Z-slice pitch values may be used to compute the location of a sample on a
surface as follows.

For a 2D surface, the byte offset of the sample at position x, y from the base pointer of the
surface is:

y * pitch + (bytes per pixel] * x

For a 3D surface, the byte offset of the sample at position x, y, z from the base pointer of the
surface is:

z* slicePitch +y * pitch + (bytes per pixel) * x

Both parameters pPitch and pPitchSlice are optional and may be set to NULL.

If pResource is not of type IDirect3DBaseTexture? or one of its sub-types or if pResource
has not been registered for use with CUDA, then cudaErrorinvalidResourceHandle is returned.
If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone, then

cudaErrorinvalidResourceHandle is returned. If pResource is not mapped for access by
CUDA then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer(].

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D9ResourceGetMappedPointer (void
**pPointer, IDirect3DResource? *pResource,
unsigned int face, unsigned int level)

Get a pointer through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

pPointer

- Returned pointer corresponding to subresource
pResource

- Mapped resource to access

CUDA Runtime API vRelease Version | 257

Modules

face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource
pResource, which corresponds to face and level. The value set in pPointer may change
every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

If pResource was not registered with usage flags cudaD3D9RegisterFlagsNone,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped, then
cudaErrorUnknown is returned.

If pResource is of type IDirect3DCubeTexture?, then face must one of the values
enumerated by type D3DCUBEMAP_FACES. For all other types, face must be 0. If face is
invalid, then cudaErrorinvalidValue is returned.

If pResource is of type IDirect3DBaseTexture?, then level must correspond to a valid
mipmap level. Only mipmap level O is supported for now. For all other types 1evel must be 0.
If level isinvalid, then cudaErrorinvalidValue is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

CUDA Runtime API vRelease Version | 258

Modules

__host__cudaError_t
cudaD3D9ResourceGetMappedSize (size_t *pSize,
IDirect3DResource9 *pResource, unsigned int face,
unsigned int level)

Get the size of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters
pSize

- Returned size of subresource
pResource

- Mapped resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource,
which corresponds to face and level. The value set in pSize may change every time that
pResource is mapped.

If pResource has not been registered for use with CUDA then
cudaErrorinvalidResourceHandle is returned. If pResource was not registered with usage
flags cudaD3D9RegisterFlagsNone, then cudaErrorinvalidResourceHandle is returned. If
pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

CUDA Runtime API vRelease Version | 259

Modules

__host__cudaError_t
cudaD3D9ResourceGetSurfaceDimensions

(size_t *pWidth, size_t *pHeight, size_t *pDepth,
IDirect3DResource9 *pResource, unsigned int face,
unsigned int level)

Get the dimensions of a registered Direct3D surface.

Parameters
pWidth

- Returned width of surface
pHeight

- Returned height of surface
pDepth

- Returned depth of surface
pResource

- Registered resource to access
face

- Face of resource to access
level

- Level of resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the
mapped Direct3D resource pResource which corresponds to face and level.

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the
dimensions of a resource will be an integer factor larger than the dimensions reported by the
Direct3D runtime.

The parameters pWwidth, pHeight, and pDepth are optional. For 2D surfaces, the value
returned in *pDepth will be 0.

If pResource is not of type IDirect3DBaseTexture? or IDirect3DSurface? or if pResource has
not been registered for use with CUDA, then cudaErrorinvalidResourceHandle is returned.

For usage requirements of face and level parameters, see
cudaD3D9ResourceGetMappedPointer.

CUDA Runtime API vRelease Version | 260

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D9ResourceSetMapFlags (IDirect3DResource?
*pResource, unsigned int flags]

Set usage flags for mapping a Direct3D resource.

Parameters

pResource

- Registered resource to set flags for
flags

- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Set flags for mapping the Direct3D resource pResource.

Changes to flags will take effect the next time pResource is mapped. The £lags argument
may be any of the following:

» cudaD3D9MapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA kernels.
This is the default value.

» cudaD3D9MapFlagsReadOnly: Specifies that CUDA kernels which access this resource will
not write to this resource.

> cudaD3D9MapFlagsWriteDiscard: Specifies that CUDA kernels which access this resource
will not read from this resource and will write over the entire contents of the resource, so
none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA, then
cudaErrorinvalidResourceHandle is returned. If pResource is presently mapped for access
by CUDA, then cudaErrorUnknown is returned.

CUDA Runtime API vRelease Version | 261

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudalnteropResourceSetMapFlags

__host__cudaError_t cudaD3D9UnmapResources [(int
count, IDirect3DResource? **ppResources]

Unmap Direct3D resources for access by CUDA.

Parameters

count

- Number of resources to unmap for CUDA
ppResources

- Resources to unmap for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.
Unmaps the count Direct3D resources in ppResources.

This function provides the synchronization guarantee that any CUDA kernels issued
before cudaD3D9UnmapResources(] will complete before any Direct3D calls issued after
cudaD3D9UnmapResources(] begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries, then cudaErrorlnvalidResourceHandle is returned. If any of
ppResources are not presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnmapResources

CUDA Runtime API vRelease Version | 262

Modules

__host__cudaError_t cudaD3D9UnregisterResource
(IDirect3DResource? *pResource)

Unregisters a Direct3D resource for access by CUDA.

Parameters

pResource
- Resource to unregister

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the Direct3D resource pResource so it is not accessible by CUDA unless
registered again.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnreqgisterResource

6.18. Direct3D 10 Interoperability

This section describes the Direct3D 10 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 10 resources is
performed with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D10DevicelList

CUDA devices corresponding to a D3D10 device

Values
cudaD3D10DeviceListAll =1

CUDA Runtime API vRelease Version | 263

Modules

The CUDA devices for all GPUs used by a D3D10 device
cudaD3D10DevicelListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D10 device in its currently rendering frame
cudaD3D10DevicelListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D10 device in the next frame

__host__cudaError_t cudaD3D10GetDevice (int
*device, IDXGIAdapter *pAdapter]

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pAdapter
pAdapter

- D3D10 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter pAdapter
obtained from IDXGIFactory::EnumAdapters. This call will succeed only if a device on adapter
pAdapter is CUDA-compatible.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D10RegisterResource, cuD3D10GetDevice

CUDA Runtime API vRelease Version | 264

Modules

__host_ _cudaError_t cudaD3D10GetDevices
(unsigned int *pCudaDeviceCount, int *pCudaDevices,

unsigned int cudaDeviceCount, ID3D10Device
*pD3D10Device, cudaD3D10Devicelist devicelist]

Gets the CUDA devices corresponding to a Direct3D 10 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D10Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D10Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D10Device
- Direct3D 10 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D10DeviceListAll for all devices,
cudaD3D10DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D10DevicelistNextFrame for the devices used to render the next frame (in
SLI).

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 10 device pD3D10Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 10
device pD3D10Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

CUDA Runtime API vRelease Version | 265

Modules

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D10GetDevices

__host__cudaError_t
cudaGraphicsD3D10RegisterResource
(cudaGraphicsResource **resource, ID3D10Resource
*pD3DResource, unsigned int flags)

Registers a Direct3D 10 resource for access by CUDA.

Parameters

resource

- Pointer to returned resource handle
pD3DResource

- Direct3D resource to register
flags

- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 10 resource pD3DResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.

» |D3D10Buffer: may be accessed via a device pointer

> |D3D10Texture1D: individual subresources of the texture may be accessed via arrays
» |ID3D10Texture2D: individual subresources of the texture may be accessed via arrays
> |ID3D10Texture3D: individual subresources of the texture may be accessed via arrays

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

CUDA Runtime API vRelease Version | 266

Modules

cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

cudaGraphicsRegisterFlagsSurfaceloadStore: Specifies that CUDA will bind this resource

to a surface reference.

cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture
gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

4

>

»

The primary rendertarget may not be registered with CUDA.

Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation
A {B,C,D} represents A_ B, A_C, and A_D.

>

>

»

>

>

DXGI_FORMAT A8 UNORM
DXGI_FORMAT_B8G8R8A8_UNORM

DXG|_FORMAT B8G8R8X8 UNORM

DXGI_FORMAT R16_FLOAT
DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R32_FLOAT

DXGI_FORMAT R32G32B32A32 {FLOAT,SINT,UINT}
DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}
DXGI_FORMAT R32 {SINT,UINT}

DXGI_FORMAT R8G8B8A8 {SINT,SNORM,UINT,UNORM,UNORM_SRGB}
DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then

cudaErrorUnknown is returned.

CUDA Runtime API vRelease Version | 267

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D10RegisterResource

6.19. Direct3D 10 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 10 interoperability functions.

enum cudaD3D10MapkFlags

CUDA D3D10 Map Flags

Values

cudaD3D10MapFlagsNone =0

Default; Assume resource can be read/written
cudaD3D10MapFlagsReadOnly = 1

CUDA kernels will not write to this resource
cudaD3D10MapFlagsWriteDiscard = 2

CUDA kernels will only write to and will not read from this resource

enum cudaD3D10ReqgisterFlags

CUDA D3D10 Register Flags

Values

cudaD3D10RegisterFlagsNone = 0

Default; Resource can be accessed through a void*
cudaD3D10RegisterFlagsArray = 1

Resource can be accessed through a CUarray*

CUDA Runtime API vRelease Version | 268

Modules

__host_ cudaError_t cudaD3D10GetDirect3DDevice
(ID3D10Device **ppD3D10Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D10Device
- Returns the Direct3D device for this thread

Returns

cudaSuccess, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D10SetDirect3DDevice

__host__cudaError_t cudaD3D10MapResources (int

count, ID3D10Resource **ppResources)
Maps Direct3D Resources for access by CUDA.

Parameters

count

- Number of resources to map for CUDA
ppResources

- Resources to map for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 269

Modules

Description
Deprecated This function is deprecated as of CUDA 3.0.

Maps the count Direct3D resources in ppResources for access by CUDA.

The resources in ppResources may be accessed in CUDA kernels until they are unmapped.
Direct3D should not access any resources while they are mapped by CUDA. If an application
does so, the results are undefined.

This function provides the synchronization guarantee that any Direct3D calls issued
before cudaD3D10MapResources() will complete before any CUDA kernels issued after
cudaD3D10MapResources() begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries then cudaErrorinvalidResourceHandle is returned. If any
of ppResources are presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsMapResources

__host__cudaError_t cudaD3D10RegisterResource
(ID3D10Resource *pResource, unsigned int flags)

Registers a Direct3D 10 resource for access by CUDA.

Parameters

pResource
- Resource to register
flags
- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

CUDA Runtime API vRelease Version | 270

Modules

Registers the Direct3D resource pResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaD3D10UnregisterResource(). Also on success, this

call will increase the internal reference count on pResource. This reference count will be
decremented when this resource is unregistered through cudaD3D10UnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pResource must be one of the following:

> |D3D10Buffer: Cannot be used with flags set to cudaD3D10RegisterFlagsArray.
» |D3D10Texture1D: No restrictions.

» |D3D10Texture2D: No restrictions.

» |D3D10Texture3D: No restrictions.

The flags argument specifies the mechanism through which CUDA will access the Direct3D
resource. The following values are allowed.

» cudaD3D10RegisterFlagsNone: Specifies that CUDA will access this resource through a
void*. The pointer, size, and pitch for each subresource of this resource may be queried
through cudaD3D10ResourceGetMappedPointer(), cudaD3D10ResourceGetMappedSize(),
and cudaD3D10ResourceGetMappedPitch(] respectively. This option is valid for all
resource types.

» cudaD3D10RegisterFlagsArray: Specifies that CUDA will access this
resource through a CUarray queried on a sub-resource basis through

cudaD3D10ResourceGetMappedArray(). This option is only valid for resources of type
ID3D10Texture1D, ID3D10Texture2D, and ID3D10Texture3D.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

» The primary rendertarget may not be registered with CUDA.
» Resources allocated as shared may not be registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or
floating-point data cannot be shared.

» Surfaces of depth or stencil formats cannot be shared.

If Direct3D interoperability is not initialized on this context then cudaErrorinvalidDevice
Is returned. If pResource is of incorrect type or is already registered then
cudaErrorinvalidResourceHandle is returned. If pResource cannot be registered then
cudakrrorUnknown is returned.

CUDA Runtime API vRelease Version | 271

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsD3D10RegisterResource

__host__cudaError_t
cudaD3D10ResourceGetMappedArray (cudaArray
**ppArray, ID3D10Resource *pResource, unsigned int
subResource])

Gets an array through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

ppArray

- Returned array corresponding to subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *ppArray an array through which the subresource of the mapped Direct3D
resource pResource which corresponds to subResource may be accessed. The value set in
ppArray may change every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

If pResource was not registered with usage flags cudaD3D10RegisterFlagsArray,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped then
cudakrrorUnknown is returned.

For usage requirements of the subResource parameter, see
cudaD3D10ResourceGetMappedPointer(].

CUDA Runtime API vRelease Version | 272

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceGetMappedPitch (size_t *pPitch,
size_t *pPitchSlice, ID3D10Resource *pResource,
unsigned int subResource)

Gets the pitch of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters
pPitch

- Returned pitch of subresource
pPitchSlice

- Returned Z-slice pitch of subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPitch and *pPitchSlice the pitch and Z-slice pitch of the subresource of the
mapped Direct3D resource pResource, which corresponds to subResource. The values set
in pPitch and pPitchSlice may change every time that pResource is mapped.

The pitch and Z-slice pitch values may be used to compute the location of a sample on a
surface as follows.

For a 2D surface, the byte offset of the sample at position x, y from the base pointer of the
surface is:

y * pitch + (bytes per pixel] * x

CUDA Runtime API vRelease Version | 273

Modules

For a 3D surface, the byte offset of the sample at position x, y, z from the base pointer of the
surface is:

z* slicePitch + y * pitch + (bytes per pixel] * x

Both parameters pPitch and pPitchSlice are optional and may be set to NULL.

If pResource is not of type ID3D10Texture1D, ID3D10Texture2D, or

ID3D10Texture3D, or if pResource has not been registered for use with CUDA, then
cudaErrorinvalidResourceHandle is returned. If pResource was not registered with usage

flags cudaD3D10RegisterFlagsNone, then cudaErrorinvalidResourceHandle is returned. If
pResource is not mapped for access by CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see
cudaD3D10ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceGetMappedPointer (void
**pPointer, ID3D10Resource *pResource, unsigned
int subResource)

Gets a pointer through which to access a subresource of a Direct3D resource which has been
mapped for access by CUDA.

Parameters

pPointer

- Returned pointer corresponding to subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 274

Modules

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pPointer the base pointer of the subresource of the mapped Direct3D resource
pResource which corresponds to subResource. The value set in pPointer may change
every time that pResource is mapped.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

If pPResource was not registered with usage flags cudaD3D9RegisterFlagsNone,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped then
cudaErrorUnknown is returned.

If pResource is of type ID3D10Buffer then subResource must be 0. If pResource is of any
other type, then the value of subResource must come from the subresource calculation in
D3D10CalcSubResourcel().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D10ResourceGetMappedSize (size_t
*pSize, ID3D10Resource *pResource, unsigned int
subResource]

Gets the size of a subresource of a Direct3D resource which has been mapped for access by
CUDA.

Parameters
pSize

- Returned size of subresource
pResource

- Mapped resource to access
subResource

- Subresource of pResource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 275

Modules

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pSize the size of the subresource of the mapped Direct3D resource pResource
which corresponds to subResource. The value set in pSize may change every time that
pResource is mapped.

If pResource has not been registered for use with CUDA then cudaErrorinvalidHandle is
returned. If pResource was not registered with usage flags cudaD3D10RegisterFlagsNone,
then cudaErrorinvalidResourceHandle is returned. If pResource is not mapped for access by
CUDA then cudaErrorUnknown is returned.

For usage requirements of the subResource parameter see
cudaD3D10ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaD3D10ResourceGetSurfaceDimensions
([size_t *pWidth, size_t *pHeight, size_t *pDepth,
ID3D10Resource *pResource, unsigned int
subResource])

Gets the dimensions of a registered Direct3D surface.

Parameters

pWidth

- Returned width of surface
pHeight

- Returned height of surface
pDepth

- Returned depth of surface
pResource

- Registered resource to access
subResource

- Subresource of pResource to access

CUDA Runtime API vRelease Version | 276

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,

Description
Deprecated This function is deprecated as of CUDA 3.0.

Returns in *pWidth, *pHeight, and *pDepth the dimensions of the subresource of the
mapped Direct3D resource pResource which corresponds to subResource.

Since anti-aliased surfaces may have multiple samples per pixel, it is possible that the
dimensions of a resource will be an integer factor larger than the dimensions reported by the
Direct3D runtime.

The parameters pWidth, pHeight, and pDepth are optional. For 2D surfaces, the value
returned in *pDepth will be 0.

If pResource is not of type ID3D10Texture1D, ID3D10Texture2D, or ID3D10Texture3D, or
if pResource has not been registered for use with CUDA, then cudaErrorinvalidHandle is
returned.

For usage requirements of subResource parameters see
cudaD3D10ResourceGetMappedPointer().

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsSubResourceGetMappedArray

__host__cudaError_t
cudaD3D10ResourceSetMapFlags (ID3D10Resource
*pResource, unsigned int flags)

Set usage flags for mapping a Direct3D resource.

Parameters

pResource

- Registered resource to set flags for
flags

- Parameters for resource mapping

CUDA Runtime API vRelease Version | 277

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown,

Description
Deprecated This function is deprecated as of CUDA 3.0.
Set usage flags for mapping the Direct3D resource pResource.

Changes to flags will take effect the next time pResource is mapped. The £lags argument
may be any of the following:

» cudaD3D10MapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA kernels.
This is the default value.

» cudaD3D10MapFlagsReadOnly: Specifies that CUDA kernels which access this resource
will not write to this resource.

» cudaD3D10MapFlagsWriteDiscard: Specifies that CUDA kernels which access this
resource will not read from this resource and will write over the entire contents of the
resource, so none of the data previously stored in the resource will be preserved.

If pResource has not been registered for use with CUDA then cudaErrorinvalidHandle is
returned. If pResource is presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsResourceSetMapFlags

__host_ _cudaError_t cudaD3D10SetDirect3DDevice
(ID3D10Device *pD3D10Device, int device)

Sets the Direct3D 10 device to use for interoperability with a CUDA device.

Parameters

pD3D10Device
- Direct3D device to use for interoperability

CUDA Runtime API vRelease Version | 278

Modules

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D10DeviceListAll from cudaD3D10GetDevices, may be set to -1 to automatically
select an appropriate CUDA device.

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudaErrorSetOnActiveProcess

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D10 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D10GetDevice, cudaGraphicsD3D10ReqgisterResource, cudaDeviceReset

__host__cudaError_t cudaD3D10UnmapResources
lint count, ID3D10Resource **ppResources)

Unmaps Direct3D resources.

Parameters

count

- Number of resources to unmap for CUDA
ppResources

- Resources to unmap for CUDA

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unmaps the count Direct3D resource in ppResources.

CUDA Runtime API vRelease Version | 279

Modules

This function provides the synchronization guarantee that any CUDA kernels issued
before cudaD3D10UnmapResources(] will complete before any Direct3D calls issued after
cudaD3D10UnmapResources() begin.

If any of ppResources have not been registered for use with CUDA or if ppResources
contains any duplicate entries, then cudaErrorinvalidResourceHandle is returned. If any of
ppResources are not presently mapped for access by CUDA then cudaErrorUnknown is
returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnmapResources

__host__cudaError_t cudaD3D10UnregisterResource
(ID3D10Resource *pResource]

Unregisters a Direct3D resource.

Parameters

pResource
- Resource to unregister

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 3.0.

Unregisters the Direct3D resource resource so it is not accessible by CUDA unless
registered again.

If pResource is not registered, then cudaErrorinvalidResourceHandle is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource

CUDA Runtime API vRelease Version | 280

Modules

6.20. Direct3D 11 Interoperability

This section describes the Direct3D 11 interoperability functions of the CUDA runtime
application programming interface. Note that mapping of Direct3D 11 resources is
performed with the graphics APl agnostic, resource mapping interface described in Graphics

Interopability.

enum cudaD3D11DevicelList

CUDA devices corresponding to a D3D11 device

Values

cudaD3D11DeviceListAll =1

The CUDA devices for all GPUs used by a D3D11 device
cudaD3D11DeviceListCurrentFrame = 2

The CUDA devices for the GPUs used by a D3D11 device in its currently rendering frame
cudaD3D11DeviceListNextFrame =3

The CUDA devices for the GPUs to be used by a D3D11 device in the next frame

__host__cudaError_t cudaD3D11GetDevice (int
*device, IDXGIAdapter *pAdapter)

Gets the device number for an adapter.

Parameters

device

- Returns the device corresponding to pAdapter
pAdapter

- D3D11 adapter to get device for

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *device the CUDA-compatible device corresponding to the adapter pAdapter
obtained from IDXGlFactory::EnumAdapters. This call will succeed only if a device on adapter
pAdapter is CUDA-compatible.

u Note:

CUDA Runtime API vRelease Version | 281

Modules

- Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D11GetDevice

__host_ _cudaError_t cudaD3D11GetDevices
[unsigned int *pCudaDeviceCount, int *pCudaDevices,

unsigned int cudaDeviceCount, ID3D11Device
*pD3D11Device, cudaD3D11Devicelist devicelList)

Gets the CUDA devices corresponding to a Direct3D 11 device.

Parameters

pCudaDeviceCount
- Returned number of CUDA devices corresponding to pD3D11Device

pCudaDevices
- Returned CUDA devices corresponding to pD3D11Device

cudaDeviceCount
- The size of the output device array pCudaDevices

pD3D11Device
- Direct3D 11 device to query for CUDA devices

deviceList
- The set of devices to return. This set may be cudaD3D11DeviceListAll for all devices,
cudaD3D11DevicelistCurrentFrame for the devices used to render the current frame (in
SLI), or cudaD3D11DevicelistNextFrame for the devices used to render the next frame (in
SLIJ.

Returns

cudaSuccess, cudaErrorNoDevice, cudaErrorUnknown

Description

Returns in *pCudaDeviceCount the number of CUDA-compatible devices corresponding
to the Direct3D 11 device pD3D11Device. Also returns in *pCudaDevices at most
cudaDeviceCount of the the CUDA-compatible devices corresponding to the Direct3D 11
device pD3D11Device.

If any of the GPUs being used to render pDevice are not CUDA capable then the call will
return cudaErrorNoDevice.

CUDA Runtime API vRelease Version | 282

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnregisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuD3D11GetDevices

__host__cudaError_t
cudaGraphicsD3D11RegisterResource
(cudaGraphicsResource **resource, ID3D11Resource
*pD3DResource, unsigned int flags]

Register a Direct3D 11 resource for access by CUDA.

Parameters

resource

- Pointer to returned resource handle
pD3DResource

- Direct3D resource to register
flags

- Parameters for resource registration

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Registers the Direct3D 11 resource pD3DResource for access by CUDA.

If this call is successful, then the application will be able to map and unmap this resource
until it is unregistered through cudaGraphicsUnregisterResource(). Also on success, this call
will increase the internal reference count on pD3DResource. This reference count will be
decremented when this resource is unregistered through cudaGraphicsUnregisterResource(].

This call potentially has a high-overhead and should not be called every frame in interactive
applications.

The type of pD3DResource must be one of the following.

> |ID3D11Buffer: may be accessed via a device pointer

CUDA Runtime API vRelease Version | 283

>

>

>

Modules

ID3D11Texture1D: individual subresources of the texture may be accessed via arrays

ID3D11Texture2D: individual subresources of the texture may be accessed via arrays

ID3D11Texture3D: individual subresources of the texture may be accessed via arrays

The flags argument may be used to specify additional parameters at register time. The valid
values for this parameter are

>

»

cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.

cudaGraphicsRegisterFlagsSurfaceloadStore: Specifies that CUDA will bind this resource

to a surface reference.

cudaGraphicsRegisterFlagsTextureGather: Specifies that CUDA will perform texture

gather operations on this resource.

Not all Direct3D resources of the above types may be used for interoperability with CUDA. The
following are some limitations.

>

The primary rendertarget may not be registered with CUDA.

» Textures which are not of a format which is 1, 2, or 4 channels of 8, 16, or 32-bit integer or

»

floating-point data cannot be shared.

Surfaces of depth or stencil formats cannot be shared.

A complete list of supported DXGI formats is as follows. For compactness the notation
A {B,C,D} represents A_B, A_C, and A_D.

>

4

>

CUDA Runtime API

DXGI_FORMAT A8 UNORM

DXGI_FORMAT_B8G8R8A8_UNORM

DXGl_FORMAT B8G8R8X8 UNORM

DXGI_FORMAT R16_FLOAT
DXGI_FORMAT_R16G16B16A16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16G16_{FLOAT,SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R16_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R32_FLOAT

DXGI_FORMAT R32G32B32A32 {FLOAT,SINT,UINT}
DXGI_FORMAT_R32G32_{FLOAT,SINT,UINT}
DXGI_FORMAT R32 {SINT,UINT}

DXGI_FORMAT_R8G8B8A8 _{SINT,SNORM,UINT,UNORM,UNORM_SRGB}
DXGI_FORMAT_R8G8_{SINT,SNORM,UINT,UNORM}
DXGI_FORMAT_R8_{SINT,SNORM,UINT,UNORM}

vRelease Version | 284

Modules

If pD3DResource is of incorrect type or is already registered, then
cudaErrorinvalidResourceHandle is returned. If pD3DResource cannot be registered, then
cudaErrorUnknown is returned.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsUnreqgisterResource, cudaGraphicsMapResources,
cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsD3D11RegisterResource

6.21. Direct3D 11 Interoperability
[DEPRECATED]

This section describes deprecated Direct3D 11 interoperability functions.

__host__cudaError_t cudaD3D11GetDirect3DDevice
(ID3D11Device **ppD3D11Device)

Gets the Direct3D device against which the current CUDA context was created.

Parameters

ppD3D11Device
- Returns the Direct3D device for this thread

Returns

cudaSuccess, cudaErrorUnknown

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D11 device in order to achieve maximum interoperability
performance.

n Note:

CUDA Runtime API vRelease Version | 285

Modules

- Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D11SetDirect3DDevice

__host_ _cudaError_t cudaD3D11SetDirect3DDevice
(ID3D11Device *pD3D11Device, int device]

Sets the Direct3D 11 device to use for interoperability with a CUDA device.

Parameters

pD3D11Device
- Direct3D device to use for interoperability

device
- The CUDA device to use. This device must be among the devices returned when querying
cudaD3D11DeviceListAll from cudaD3D11GetDevices, may be set to -1 to automatically
select an appropriate CUDA device.

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue,
cudaErrorSetOnActiveProcess

Description
Deprecated This function is deprecated as of CUDA 5.0.

This function is deprecated and should no longer be used. It is no longer necessary to
associate a CUDA device with a D3D11 device in order to achieve maximum interoperability
performance.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaD3D11GetDevice, cudaGraphicsD3D11ReqisterResource, cudaDeviceReset

6.22. VDPAU Interoperability

This section describes the VDPAU interoperability functions of the CUDA runtime application
programming interface.

CUDA Runtime API vRelease Version | 286

Modules

__host__cudaError_t
cudaGraphicsVDPAURegisterOutputSurface
(cudaGraphicsResource **resource,
VdpOutputSurface vdpSurface, unsigned int flags)

Register a VdpOutputSurface object.

Parameters

resource

- Pointer to the returned object handle
vdpSurface

- VDPAU object to be registered
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the VdpOutputSurface specified by vdpSurface for access by CUDA. A handle to
the registered object is returned as resource. The surface’s intended usage is specified
using flags, as follows:

» cudaGraphicsMapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA. This is the
default value.

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies that CUDA will not read from this resource
and will write over the entire contents of the resource, so none of the data previously
stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cudaGraphicsUnregisterResource,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsVDPAUReqgisterOutputSurface

CUDA Runtime API vRelease Version | 287

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1g54874c7f771e51f27292a562c92cee28

Modules

__host__cudaError_t
cudaGraphicsVDPAURegisterVideoSurface
(cudaGraphicsResource **resource, VdpVideoSurface

vdpSurface, unsigned int flags)
Register a VdpVideoSurface object.

Parameters

resource

- Pointer to the returned object handle
vdpSurface

- VDPAU object to be registered
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidValue,
cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Registers the VdpVideoSurface specified by vdpSurface for access by CUDA. A handle to the
registered object is returned as resource. The surface's intended usage is specified using
flags, as follows:

» cudaGraphicsMapFlagsNone: Specifies no hints about how this resource will be used. It is
therefore assumed that this resource will be read from and written to by CUDA. This is the
default value.

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to this resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies that CUDA will not read from this resource
and will write over the entire contents of the resource, so none of the data previously
stored in the resource will be preserved.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cudaGraphicsUnregisterResource,
cudaGraphicsSubResourceGetMappedArray, cuGraphicsVDPAUReqisterVideoSurface

CUDA Runtime API vRelease Version | 288

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1ga5e00ff2d3ff2f8b680a69f3bc5cd891

Modules

__host__cudaError_t cudaVDPAUGetDevice (int
*device, VdpDevice vdpDevice, VdpGetProcAddress
*vdpGetProcAddress]

Gets the CUDA device associated with a VdpDevice.

Parameters

device
- Returns the device associated with vdpDevice, or -1 if the device associated with
vdpDevice is not a compute device.
vdpDevice
- AVdpDevice handle
vdpGetProcAddress
- VDPAU's VdpGetProcAddress function pointer

Returns

cudaSuccess

Description

Returns the CUDA device associated with a VdpDevice, if applicable.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaVDPAUSetVDPAUDevice, cuVDPAUGetDevice

__host_ _cudaError_t cudaVDPAUSetVDPAUDevice
[int device, VdpDevice vdpDevice, VdpGetProcAddress
*vdpGetProcAddress]

Sets a CUDA device to use VDPAU interoperability.

Parameters

device

- Device to use for VDPAU interoperability
vdpDevice

- The VdpDevice to interoperate with

CUDA Runtime API vRelease Version | 289

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VDPAU.html#group__CUDA__VDPAU_1g0cce87525545da2cf1e84e007d5fe230

Modules

vdpGetProcAddress
- VDPAU's VdpGetProcAddress function pointer

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorSetOnActiveProcess

Description

Records vdpDevice as the VdpDevice for VDPAU interoperability with the CUDA device
device and sets device as the current device for the calling host thread.

If device has already been initialized then this call will fail with the error
cudaErrorSetOnActiveProcess. In this case it is necessary to reset device using
cudaDeviceReset(] before VDPAU interoperability on device may be enabled.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphicsVDPAURegisterVideoSurface, cudaGraphicsVDPAURegisterOutputSurface,
cudaDeviceReset

6.23. EGL Interoperability

This section describes the EGL interoperability functions of the CUDA runtime application
programming interface.

__host__cudaError_t
cudaEGLStreamConsumerAcquireFrame
(cudaEglStreamConnection *conn,
cudaGraphicsResource_t *pCudaResource,
cudaStream_t *pStream, unsigned int timeout)

Acquire an image frame from the EGLStream with CUDA as a consumer.

Parameters

conn
- Connection on which to acquire

CUDA Runtime API vRelease Version | 290

Modules

pCudaResource
- CUDA resource on which the EGLStream frame will be mapped for use.
pStream
- CUDA stream for synchronization and any data migrations implied by
cudaEglResourcelocationFlags.
timeout
- Desired timeout in usec.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown, cudaErrorLaunchTimeout

Description

Acquire an image frame from EGLStreamKHR. cudaGraphicsResourceGetMappedEglFrame
can be called on pCudaResource to get cudakEglFrame.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerDisconnect,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerAcquireFrame

__host__cudaError_t
cudaEGLStreamConsumerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream)

Connect CUDA to EGLStream as a consumer.

Parameters

conn

- Pointer to the returned connection handle
eglStream

- EGLStreamKHR handle

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description
Connect CUDA as a consumer to EGLStreamKHR specified by eglStream.

The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API
to another.

CUDA Runtime API vRelease Version | 291

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g10507a0acb74a90136caacb363a3c6a7

Modules

See also:

cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnect

__host__cudaError_t
cudaEGLStreamConsumerConnectWithFlags
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream, unsigned int flags]

Connect CUDA to EGLStream as a consumer with given flags.

Parameters
conn
- Pointer to the returned connection handle
eglStream
- EGLStreamKHR handle
flags
- Flags denote intended location - system or video.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Connect CUDA as a consumer to EGLStreamKHR specified by stream with specified £lags
defined by cudaEglResourcel ocationFlags.

The flags specify whether the consumer wants to access frames from system memory or video
memory. Default is cudaEglResourcelocationVidmem.

See also:

cudaEGLStreamConsumerDisconnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerConnectWithFlags

CUDA Runtime API vRelease Version | 292

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g3f59b85a292d59c19c8b64b8ade8a658
../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g7be3b064ea600a7bac4906e5d61ba4b7

Modules

__host__cudaError_t
cudakEGLStreamConsumerDisconnect
(cudaEglStreamConnection *conn)

Disconnect CUDA as a consumer to EGLStream .

Parameters

conn
- Conection to disconnect.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Disconnect CUDA as a consumer to EGLStreamKHR.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerAcquireFrame,
cudaEGLStreamConsumerReleaseFrame, cuEGLStreamConsumerDisconnect

__host__cudaError_t
cudaEGLStreamConsumerReleaseFrame
(cudaEglStreamConnection *conn,
cudaGraphicsResource_t pCudaResource,
cudaStream_t *pStream)

Releases the last frame acquired from the EGLStream.

Parameters

conn

- Connection on which to release
pCudaResource

- CUDA resource whose corresponding frame is to be released
pStream

- CUDA stream on which release will be done.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

CUDA Runtime API vRelease Version | 293

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61

Modules

Description

Release the acquired image frame specified by pCudaResource to EGLStreamKHR.

See also:

cudaEGLStreamConsumerConnect, cudaEGLStreamConsumerDisconnect,
cudaEGLStreamConsumerAcquireFrame, cuEGLStreamConsumerReleaseFrame

__host__cudaError_t
cudaEGLStreamProducerConnect
(cudaEglStreamConnection *conn, EGLStreamKHR
eglStream, EGLint width, EGLint height)

Connect CUDA to EGLStream as a producer.

Parameters

conn

- Pointer to the returned connection handle
eglStream

- EGLStreamKHR handle
width

- width of the image to be submitted to the stream
height

- height of the image to be submitted to the stream

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description
Connect CUDA as a producer to EGLStreamKHR specified by stream.

The EGLStreamKHR is an EGL object that transfers a sequence of image frames from one API
to another.

See also:

cudaEGLStreamProducerDisconnect, cudaEGLStreamProducerPresentFrame,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerConnect

CUDA Runtime API vRelease Version | 294

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g4dadfefc718210e91c8f44f6a8e4b233
../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef

Modules

__host__cudaError_t
cudaEGLStreamProducerDisconnect
(cudaEglStreamConnection *conn)
Disconnect CUDA as a producer to EGLStream .

Parameters

conn
- Conection to disconnect.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Disconnect CUDA as a producer to EGLStreamKHR.

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerPresentFrame,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerDisconnect

__host__cudaError_t
cudaEGLStreamProducerPresentFrame
(cudaEglStreamConnection *conn, cudaEglFrame

eglframe, cudaStream_t *pStream]
Present a CUDA eglFrame to the EGLStream with CUDA as a producer.

Parameters

conn

- Connection on which to present the CUDA array
eglframe

- CUDA Eglstream Proucer Frame handle to be sent to the consumer over EglStream.
pStream

- CUDA stream on which to present the frame.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

CUDA Runtime API vRelease Version | 295

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd

Modules

Description
The cudaEglFrame is defined as:

[typedef struct cudaEglFrame st {
union {

cudaArray t pArray [CUDA EGL MAX PLANES];
struct cudaPitchedPtr pPitch[CUDA EGL MAX PLANES];
} frame;

cudaEglPlaneDesc planeDesc [CUDA EGL MAX PLANES];
unsigned int planeCount;

cudaEglFrameType frameType;

cudaEglColorFormat eglColorFormat;

} cudaEglFrame;

For cudaEglFrame of type cudaEglFrameTypePitch, the application may present sub-region
of a memory allocation. In that case, cudaPitchedPtr::ptr will specify the start address of the
sub-region in the allocation and cudaEglPlaneDesc will specify the dimensions of the sub-
region.

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect,
cudaEGLStreamProducerReturnFrame, cuEGLStreamProducerPresentFrame

__host__cudaError_t
cudaEGLStreamProducerReturnFrame
(cudaEglStreamConnection *conn, cudaEglFrame

*eglframe, cudaStream_t *pStream)
Return the CUDA eglFrame to the EGLStream last released by the consumer.

Parameters

conn

- Connection on which to present the CUDA array
eglframe

- CUDA Eglstream Proucer Frame handle returned from the consumer over EglStream.
pStream

- CUDA stream on which to return the frame.

Returns

cudaSuccess, cudaErrorLaunchTimeout, cudaErrorinvalidValue, cudaErrorUnknown

CUDA Runtime API vRelease Version | 296

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g60dcaadeabcbaedb4a271d529306687b

Modules

Description

This APl can potentially return cudaErrorLaunchTimeout if the consumer has not returned a
frame to EGL stream. If timeout is returned the application can retry.

See also:

cudaEGLStreamProducerConnect, cudaEGLStreamProducerDisconnect,
cudaEGLStreamProducerPresentFrame, cuEGLStreamProducerReturnFrame

__host__cudaError_t cudakventCreateFromEGLSync
(cudaEvent_t *phEvent, EGLSyncKHR eglSync,
unsigned int flags)

Creates an event from EGLSync object.

Parameters

phEvent

- Returns newly created event
eglSync

- Opaque handle to EGLSync object
flags

- Event creation flags

Returns

cudaSuccess, cudaErrorlnitializationError, cudaErrorinvalidValue, cudaErrorLaunchFailure,
cudaErrorMemoryAllocation

Description

Creates an event *phEvent from an EGLSyncKHR eglSync with the flages specified via f1ags.
Valid flags include:

> cudaEventDefault: Default event creation flag.

» cudaEventBlockingSync: Specifies that the created event should use blocking
synchronization. A CPU thread that uses cudaEventSynchronize() to wait on an event
created with this flag will block until the event has actually been completed.

cudaEventRecord and TimingData are not supported for events created from EGLSync.

The EGLSyncKHR is an opaque handle to an EGL sync object. typedef void* EGLSyncKHR

See also:

CUDA Runtime API vRelease Version | 297

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06

Modules

cudaEventQuery, cudakEventSynchronize, cudakEventDestroy

__host__cudaError_t
cudaGraphicsEGLRegisterlmage
(cudaGraphicsResource **pCudaResource,
EGLImageKHR image, unsigned int flags]

Registers an EGL image.

Parameters

pCudaResource

- Pointer to the returned object handle
image

- An EGLImageKHR image which can be used to create target resource.
flags

- Map flags

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorinvalidValue, cudaErrorUnknown

Description

Registers the EGLImageKHR specified by image for access by CUDA. A handle to the
registered object is returned as pCudaResource. Additional Mapping/Unmapping is not
required for the registered resource and cudaGraphicsResourceGetMappedEglFrame can be
directly called on the pCudaResource.

The application will be responsible for synchronizing access to shared objects. The application
must ensure that any pending operation which access the objects have completed before
passing control to CUDA. This may be accomplished by issuing and waiting for glFinish
command on all GLcontexts (for OpenGL and likewise for other APIs]. The application will be
also responsible for ensuring that any pending operation on the registered CUDA resource has
completed prior to executing subsequent commands in other APIs accesing the same memory
objects. This can be accomplished by calling cuCtxSynchronize or cuEventSynchronize
(preferably).

The surface's intended usage is specified using £lags, as follows:

» cudaGraphicsRegisterFlagsNone: Specifies no hints about how this resource will be used.
It is therefore assumed that this resource will be read from and written to by CUDA. This is
the default value.

» cudaGraphicsRegisterFlagsReadOnly: Specifies that CUDA will not write to this resource.

CUDA Runtime API vRelease Version | 298

Modules

» cudaGraphicsRegisterFlagsWriteDiscard: Specifies that CUDA will not read from this
resource and will write over the entire contents of the resource, so none of the data
previously stored in the resource will be preserved.

The EGLImageKHR is an object which can be used to create EGLImage target resource. It is
defined as a void pointer. typedef void* EGLImageKHR

See also:

cudaGraphicsUnregisterResource, cudaGraphicsResourceGetMappedEglFrame,
cuGraphicsEGLReqisterlmage

__host__cudaError_t
cudaGraphicsResourceGetMappedEglFrame
(cudaEglFrame *eglFrame, cudaGraphicsResource_t
resource, unsigned int index, unsigned int mipLevel]

Get an eglFrame through which to access a registered EGL graphics resource.

Parameters

eglFrame
- Returned eglFrame.
resource
- Registered resource to access.
index
- Index for cubemap surfaces.
mipLevel
- Mipmap level for the subresource to access.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorUnknown

Description

Returns in *eglFrame an eglFrame pointer through which the registered graphics resource
resource may be accessed. This APl can only be called for EGL graphics resources.

The cudaEglFrame is defined as

[typedef struct cudaEglFrame st {

union {
cudaArray t pPArray[CUDA EGL MAX PLANES] ;
struct cudaPitchedPtr pPitch[CUDA EGL MAX PLANES];
} frame;

cudaEglPlaneDesc planeDesc[CUDA EGL MAX PLANES];
unsigned int planeCount;
cudaEglFrameType frameType;

CUDA Runtime API vRelease Version | 299

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1g9f9b026d175238be6f6e79048d6879c5

Modules

cudakEglColorFormat eglColorFormat;
} cudaEglFrame;

Note:

Note that in case of multiplanar *eglFrame, pitch of only first plane (unsigned int
cudaEglPlaneDesc::pitch] is to be considered by the application.

See also:

cudaGraphicsSubResourceGetMappedArray, cudaGraphicsResourceGetMappedPointer,
cuGraphicsResourceGetMappedEglFrame

6.24. Graphics Interoperability

This section describes the graphics interoperability functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaGraphicsMapResources
lint count, cudaGraphicsResource_t *resources,
cudaStream_t stream)

Map graphics resources for access by CUDA.

Parameters

count

- Number of resources to map
resources

- Resources to map for CUDA
stream

- Stream for synchronization

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Maps the count graphics resources in resources for access by CUDA.

The resources in resources may be accessed by CUDA until they are unmapped. The
graphics APl from which resources were registered should not access any resources while
they are mapped by CUDA. If an application does so, the results are undefined.

CUDA Runtime API vRelease Version | 300

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EGL.html#group__CUDA__EGL_1ge1e57193ad1dbf554af60d5b2d096ede

Modules

This function provides the synchronization guarantee that any graphics calls issued before
cudaGraphicsMapResources(] will complete before any subsequent CUDA work issued in
stream begins.

If resources contains any duplicate entries then cudaErrorinvalidResourceHandle
Is returned. If any of resources are presently mapped for access by CUDA then
cudaErrorUnknown is returned.

Note:
> This function uses standard default stream semantics.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cudaGraphicsSubResourceGetMappedArray,
cudaGraphicsUnmapResources, cuGraphicsMapResources

__host__cudaError_t
cudaGraphicsResourceGetMappedMipmappedArray
(cudaMipmappedArray_t *mipmappedArray,
cudaGraphicsResource_t resource]

Get a mipmapped array through which to access a mapped graphics resource.

Parameters

mipmappedArray

- Returned mipmapped array through which resource may be accessed
resource

- Mapped resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 301

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1gffcfd8e78d82cc4f6dd987e8bce4edb0

Modules

Description

Returns in *mipmappedArray a mipmapped array through which the mapped graphics
resource resource may be accessed. The value set in mipmappedArray may change every
time that resource is mapped.

If resource is not a texture then it cannot be accessed via an array and cudakrrorUnknown is
returned. If resource is not mapped then cudaErrorUnknown is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cuGraphicsResourceGetMappedMipmappedArray

__host__cudaError_t
cudaGraphicsResourceGetMappedPointer (void
**devPtr, size_t *size, cudaGraphicsResource_t
resource)

Get an device pointer through which to access a mapped graphics resource.

Parameters

devPtr

- Returned pointer through which resource may be accessed
size

- Returned size of the buffer accessible starting at *devPtr
resource

- Mapped resource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

CUDA Runtime API vRelease Version | 302

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g37680bbe89c7fe5c613563eaab9d14c1

Modules

Description

Returns in *devPtr a pointer through which the mapped graphics resource resource may
be accessed. Returns in *size the size of the memory in bytes which may be accessed from
that pointer. The value set in devPtr may change every time that resource is mapped.

If resource is not a buffer then it cannot be accessed via a pointer and cudaErrorUnknown is
returned. If resource is not mapped then cudaErrorUnknown is returned. *

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsMapResources, cudaGraphicsSubResourceGetMappedArray,
cuGraphicsResourceGetMappedPointer

__host__cudaError_t
cudaGraphicsResourceSetMapFlags
(cudaGraphicsResource_t resource, unsigned int
flags)

Set usage flags for mapping a graphics resource.

Parameters

resource

- Registered resource to set flags for
flags

- Parameters for resource mapping

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown,

CUDA Runtime API vRelease Version | 303

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g8a634cf4150d399f0018061580592457

Modules

Description
Set flags for mapping the graphics resource resource.

Changes to flags will take effect the next time resource is mapped. The flags argument
may be any of the following:

» cudaGraphicsMapFlagsNone: Specifies no hints about how resource will be used. It is
therefore assumed that CUDA may read from or write to resource.

» cudaGraphicsMapFlagsReadOnly: Specifies that CUDA will not write to resource.

» cudaGraphicsMapFlagsWriteDiscard: Specifies CUDA will not read from resource and
will write over the entire contents of resource, so none of the data previously stored in
resource will be preserved.

If resource is presently mapped for access by CUDA then cudaErrorUnknown is returned. If
flags is not one of the above values then cudaErrorinvalidValue is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphicsMapResources, cuGraphicsResourceSetMapFlags

CUDA Runtime API vRelease Version | 304

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1gfe96aa7747f8b11d44a6fa6a851e1b39

Modules

__host__cudaError_t
cudaGraphicsSubResourceGetMappedArray
(cudaArray_t *array, cudaGraphicsResource t
resource, unsigned int arraylndex, unsigned int
mipLevel)

Get an array through which to access a subresource of a mapped graphics resource.

Parameters

array
- Returned array through which a subresource of resource may be accessed
resource
- Mapped resource to access
arraylndex
- Array index for array textures or cubemap face index as defined by
cudaGraphicsCubeFace for cubemap textures for the subresource to access
mipLevel
- Mipmap level for the subresource to access

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Returns in *array an array through which the subresource of the mapped graphics resource
resource which corresponds to array index arrayIndex and mipmap level mipLevel may
be accessed. The value set in array may change every time that resource is mapped.

If resource is not a texture then it cannot be accessed via an array and cudaErrorUnknown
Is returned. If arrayIndex is not a valid array index for resource then
cudaErrorinvalidValue is returned. If mipLevel is not a valid mipmap level for resource
then cudaErrorinvalidValue is returned. If resource is not mapped then cudaErrorUnknown
Is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 305

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphicsResourceGetMappedPointer, cuGraphicsSubResourceGetMappedArray

__host__cudaError_t cudaGraphicsUnmapResources
lint count, cudaGraphicsResource_t *resources,
cudaStream_t stream)

Unmap graphics resources.

Parameters

count

- Number of resources to unmap
resources

- Resources to unmap
stream

- Stream for synchronization

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description
Unmaps the count graphics resources in resources.

Once unmapped, the resources in resources may not be accessed by CUDA until they are
mapped again.

This function provides the synchronization guarantee that any CUDA work issued in stream
before cudaGraphicsUnmapResources() will complete before any subsequently issued
graphics work begins.

If resources contains any duplicate entries then cudaErrorinvalidResourceHandle
is returned. If any of resources are not presently mapped for access by CUDA then
cudaErrorUnknown is returned.

Note:
» This function uses standard default stream semantics.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 306

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g61c55e987e54558cce547240d6123078

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphicsMapResources, cuGraphicsUnmapResources

__host__cudaError_t
cudaGraphicsUnregisterResource
(cudaGraphicsResource_t resource)

Unregisters a graphics resource for access by CUDA.

Parameters

resource
- Resource to unregister

Returns

cudaSuccess, cudaErrorinvalidResourceHandle, cudaErrorUnknown

Description

Unregisters the graphics resource resource so it is not accessible by CUDA unless
registered again.

If resource isinvalid then cudaErrorinvalidResourceHandle is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

CUDA Runtime API vRelease Version | 307

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1g8e9ff25d071375a0df1cb5aee924af32

Modules

See also:

cudaGraphicsD3D9ReqisterResource, cudaGraphicsD3D10ReqgisterResource,
cudaGraphicsD3D11ReqisterResource, cudaGraphicsGLReqgisterBuffer,
cudaGraphicsGLReqgisterlmage, cuGraphicsUnreqgisterResource

6.25. Texture Reference Management
[DEPRECATED]

This section describes the low level texture reference management functions of the CUDA
runtime application programming interface.

Some functions have overloaded C++ AP| template versions documented separately in the C++
APl Routines module.

__host__cudaError_t cudaBindTexture (size t *offset,
const textureReference *texref, const void *devPtr,
const cudaChannelFormatDesc *desc, size_t size)

Binds a memory area to a texture.

Parameters

offset
- Offset in bytes
texref
- Texture to bind
devPtr
- Memory area on device
desc
- Channel format
size
- Size of the memory area pointed to by devPtr

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds size bytes of the memory area pointed to by devPtr to the texture reference texref.
desc describes how the memory is interpreted when fetching values from the texture. Any
memory previously bound to texref is unbound.

CUDA Runtime API vRelease Version | 308

../cuda-driver-api/cuda-driver-api/content/group__CUDA__GRAPHICS.html#group__CUDA__GRAPHICS_1ga7e5e97b74eaa13dfa6582e853e4c96d

Modules

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture(] returns in *offset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size

and passed to kernels that read from the texture so they can be applied to the tex1Dfetchl()
function. If the device memory pointer was returned from cudaMalloc|], the offset is
guaranteed to be 0 and NULL may be passed as the of fset parameter.

The total number of elements (or texels] in the linear address range cannot exceed
cudaDeviceProp::maxTexture1DLinear[0]. The number of elements is computed as (size /
elementSize], where elementSize is determined from desc.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture2D [C API), cudaBindTextureToArray [C API),
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset (C AP}, cuTexRefSetAddress,
cuTexRefSetAddressMode, cuTexRefSetFormat, cuTexRefSetFlags, cuTexRefSetBorderColor

__host_ cudaError_t cudaBindTexture2D (size t
*offset, const textureReference *texref, const void
*devPtr, const cudaChannelFormatDesc *desc, size t
width, size_t height, size_t pitch]

Binds a 2D memory area to a texture.

Parameters

offset
- Offset in bytes
texref
- Texture reference to bind

CUDA Runtime API vRelease Version | 309

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga6e288992f58e7a6e3350614bc9e813b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea

Modules

devPtr
- 2D memory area on device
desc
- Channel format
width
- Width in texel units
height
- Height in texel units
pitch

- Pitch in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds the 2D memory area pointed to by devPtr to the texture reference texref. The size
of the area is constrained by width in texel units, height in texel units, and pitch in byte
units. desc describes how the memory is interpreted when fetching values from the texture.
Any memory previously bound to texref is unbound.

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture2D(] returns in *of fset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size and
passed to kernels that read from the texture so they can be applied to the tex2D() function. If
the device memory pointer was returned from cudaMallocl), the offset is guaranteed to be 0
and NULL may be passed as the offset parameter.

width and height, which are specified in elements (or texels), cannot exceed
cudaDeviceProp::maxTexture?2DLinear[0] and cudaDeviceProp::maxTexture2DLinear[1]
respectively. pitch, which is specified in bytes, cannot exceed
cudaDeviceProp::maxTexture2DLinear[2].

The driver returns cudaErrorinvalidValue if pitch is not a multiple of
cudaDeviceProp::texturePitchAlignment.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 310

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C++ API), cudaBindTexture2D [C++ API,
inherited channel descriptor), cudaBindTextureToArray [C API), cudaBindTextureToArray (C
API), cudaGetTextureAlignmentOffset (C API), cuTexRefSetAddress2D, cuTexRefSetFormat,
cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetBorderColor

__host__cudaError_t cudaBindTextureToArray (const
textureReference *texref, cudaArray_const_t array,
const cudaChannelFormatDesc *desc)

Binds an array to a texture.

Parameters

texref

- Texture to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds the CUDA array array to the texture reference texref. desc describes how the
memory is interpreted when fetching values from the texture. Any CUDA array previously
bound to texref is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 311

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gbdec8983628f68bcde5db4b4c3f90851
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API}, cudaBindTexture2D (C API), cudaBindTextureToArray (C++ AP,
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset [C API), cuTexRefSetArray,
cuTexRefSetFormat, cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetFilterMode,
cuTexRefSetBorderColor, cuTexRefSetMaxAnisotropy

__host__cudaError_t
cudaBindTextureToMipmappedArray

(const textureReference *texref,
cudaMipmappedArray_const_t mipmappedArray,
const cudaChannelFormatDesc *desc])

Binds a mipmapped array to a texture.

Parameters

texref

- Texture to bind
mipmappedArray

- Memory mipmapped array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description
Deprecated

Binds the CUDA mipmapped array mipmappedArray to the texture reference texref. desc
describes how the memory is interpreted when fetching values from the texture. Any CUDA
mipmapped array previously bound to texref is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 312

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gac3a34b4b10983433865fdadb83b9118
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g93819286c48db39afc253c0f10358d2e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2b144345d6089ec4053c334fb7d04490

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API}, cudaBindTexture2D (C API), cudaBindTextureToArray

([C++ API), cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset

[C API), cuTexRefSetMipmappedArray, cuTexRefSetMipmapFilterMode,
cuTexRefSetMipmapLevelClamp, cuTexRefSetMipmaplevelBias, cuTexRefSetFormat,
cuTexRefSetFlags, cuTexRefSetAddressMode, cuTexRefSetBorderColor,
cuTexRefSetMaxAnisotropy

__host__cudaError_t cudaGetTextureAlignmentOffset
(size t *offset, const textureReference *texref]

Get the alignment offset of a texture.

Parameters

offset

- Offset of texture reference in bytes
texref

- Texture to get offset of

Returns

cudaSuccess, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding

Description
Deprecated

Returns in *offset the offset that was returned when texture reference texref was bound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 313

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1gb35f38ee0738f00c988db5c1ed8c38ea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g82a54190706dd35d8923966b60f320eb
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9b39decf969353890454895e988e9018
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g6d208de7a968f051fc54224883b1994c
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2d57eabbd5ef6780307c008b0f4ce83d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g9d4816a6561e1d09e0eef9f9c0cdbfa2
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1ga45732a5c4ec291c0682fffcbaa6d393
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g1db39c355bedd9e7ffb00e2011784dea
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXREF__DEPRECATED.html#group__CUDA__TEXREF__DEPRECATED_1g2b144345d6089ec4053c334fb7d04490

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C APIJ, cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C API), cudaBindTextureToArray [C API),
cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset [C++ API)

__host_ _cudaError_t cudaGetTextureReference
(const textureReference **texref, const void *symbol)

Get the texture reference associated with a symbol.

Parameters

texref

- Texture reference associated with symbol
symbol

- Texture to get reference for

Returns

cudaSuccess, cudaErrorinvalidTexture

Description
Deprecated

Returns in *texref the structure associated to the texture reference defined by symbol
symbol.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> Use of a string naming a variable as the symbol parameter was removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 314

Modules

See also:

cudaCreateChannelDesc [C API), cudaGetChannelDesc, cudaGetTextureAlignmentOffset (C
API], cudaBindTexture [C API), cudaBindTexture2D [C API], cudaBindTextureToArray [C AP,
cudaUnbindTexture [C API), cuModuleGetTexRef

__host__cudaError_t cudaUnbindTexture (const
textureReference *texref)

Unbinds a texture.

Parameters

texref
- Texture to unbind

Returns

cudaSuccess, cudaErrorinvalidTexture

Description
Deprecated

Unbinds the texture bound to texref. If texref is not currently bound, no operation is
performed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C APIJ, cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture2D [C API), cudaBindTextureToArray [C API),
cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C API]

CUDA Runtime API vRelease Version | 315

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1g9607dcbf911c16420d5264273f2b5608

Modules

6.26. Surface Reference Management
[DEPRECATED]

This section describes the low level surface reference management functions of the CUDA
runtime application programming interface.

Some functions have overloaded C++ API template versions documented separately in the C++
APl Routines module.

__host__cudaError_t cudaBindSurfaceToArray (const
surfaceReference *surfref, cudaArray_const_t array,
const cudaChannelFormatDesc *desc)

Binds an array to a surface.

Parameters

surfref

- Surface to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSurface

Description
Deprecated

Binds the CUDA array array to the surface reference surfref. desc describes how the
memory is interpreted when fetching values from the surface. Any CUDA array previously
bound to surfref is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 316

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaBindSurfaceToArray [C++ API), cudaBindSurfaceToArray [C++ API, inherited channel
descriptor), cudaGetSurfaceReference, cuSurfRefSetArray

__host_ _cudaError_t cudaGetSurfaceReference
(const surfaceReference **surfref, const void
*symbol)

Get the surface reference associated with a symbol.

Parameters

surfref

- Surface reference associated with symbol
symbol

- Surface to get reference for

Returns

cudaSuccess, cudaErrorinvalidSurface

Description
Deprecated

Returns in *surfref the structure associated to the surface reference defined by symbol
symbol.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> Use of a string naming a variable as the symbol parameter was removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 317

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFREF__DEPRECATED.html#group__CUDA__SURFREF__DEPRECATED_1g68abcde159fa897b1dfb23387926dd66

Modules

See also:

cudaBindSurfaceToArray [C API], cuModuleGetSurfRef

6.27. Texture Object Management

This section describes the low level texture object management functions of the CUDA
runtime application programming interface. The texture object APl is only supported on
devices of compute capability 3.0 or higher.

__host__cudaCreateChannelDesc (int x, inty, int z, int
w, cudaChannelFormatKind f)

Returns a channel descriptor using the specified format.

Parameters
X

- X component
y

- Y component
z

- Z component
w

- W component
f

- Channel format
Returns

Channel descriptor with format £

Description

Returns a channel descriptor with format £ and number of bits of each component %, y, z, and
w. The cudaChannelFormatDesc is defined as:

[struct cudaChannelFormatDesc {
int x, v, z, w;
enum cudaChannelFormatKind
£;

}i

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, or cudaChannelFormatKindFloat.

See also:

CUDA Runtime API vRelease Version | 318

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MODULE.html#group__CUDA__MODULE_1g71c19dab9374e8481d8d8629a77377b1

Modules

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaCreateTextureObject,
cudaCreateSurfaceObject

__host__cudaError_t cudaCreateTextureObject
(cudaTextureObject_t *pTexObject, const
cudaResourceDesc *pResDesc, const
cudaTextureDesc *pTexDesc, const
cudaResourceViewDesc *pResViewDesc)

Creates a texture object.

Parameters

pTexObject

- Texture object to create
pResDesc

- Resource descriptor
pTexDesc

- Texture descriptor
pResViewDesc

- Resource view descriptor

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a texture object and returns it in pTexObject. pResDesc describes the data to
texture from. pTexDesc describes how the data should be sampled. pResViewDesc is an
optional argument that specifies an alternate format for the data described by pResDesc, and
also describes the subresource region to restrict access to when texturing. pResViewDesc
can only be specified if the type of resource is a CUDA array or a CUDA mipmapped array.

Texture objects are only supported on devices of compute capability 3.0 or higher. Additionally,
a texture object is an opaque value, and, as such, should only be accessed through CUDA API
calls.

The cudaResourceDesc structure is defined as:

r struct cudaResourceDesc {
enum cudaResourceType

resType;

union {
struct {
cudaArray t
array;

CUDA Runtime API vRelease Version | 319

Modules

} array;
struct {
cudaMipmappedArray t

mipmap;
} mipmap;
struct {
void *devPtr;
struct cudaChannelFormatDesc

desc;
size t sizelInBytes;
} linear;
struct {
void *devPtr;
struct cudaChannelFormatDesc

desc;
size t width;
size t height;
size t pitchInBytes;
} pitch2D;
} res;

b

where:

» cudaResourceDesc::resType specifies the type of resource to texture from.
CUresourceType is defined as:

r enum cudaResourceType {
cudaResourceTypeArray = 0x00,
cudaResourceTypeMipmappedArray = 0x01,
cudaResourceTypelinear = 0x02,
cudaResourceTypePitch2D = 0x03

)8

If cudaResourceDesc::resType is set to cudaResourceTypeArray,
cudaResourceDesc::res::array::array must be set to a valid CUDA array handle.

If cudaResourceDesc::resType is set to cudaResourceTypeMipmappedArray,
cudaResourceDesc::res::mipmap:mipmap must be set to a valid CUDA mipmapped array
handle and cudaTextureDesc::normalizedCoords must be set to true.

If cudaResourceDesc::resType is set to cudaResourceTypelinear,
cudaResourceDesc::res::linear::devPtr must be set to a valid device pointer, that is

aligned to cudaDeviceProp::textureAlignment. cudaResourceDesc::res::linear::desc

describes the format and the number of components per array element.
cudaResourceDesc::res::linear::sizelnBytes specifies the size of the array in

bytes. The total number of elements in the linear address range cannot exceed
cudaDeviceProp::maxTexture1DLinear. The number of elements is computed as [sizeInBytes /
sizeof(desc]).

If cudaResourceDesc::resType is set to cudaResourceTypePitch2D,
cudaResourceDesc::res::pitch2D::devPtr must be set to a valid device pointer, that is
aligned to cudaDeviceProp::textureAlignment. cudaResourceDesc::res::pitch2D::desc
describes the format and the number of components per array element.
cudaResourceDesc::res::pitch2D::width and cudaResourceDesc::res::pitch2D::height

CUDA Runtime API vRelease Version | 320

Modules

specify the width and height of the array in elements, and cannot exceed
cudaDeviceProp::maxTexture2DLinear[0] and cudaDeviceProp::maxTexture2DLinear[1]
respectively. cudaResourceDesc::res::pitch2D::pitchInBytes specifies the pitch between two
rows in bytes and has to be aligned to cudaDeviceProp::texturePitchAlignment. Pitch cannot
exceed cudaDeviceProp::maxTexture2DLinear[2].

The cudaTextureDesc struct is defined as

r struct cudaTextureDesc {
enum cudaTextureAddressMode
addressMode [3];
enum cudaTextureFilterMode

filterMode;

enum cudaTextureReadMode

readMode;

int sRGB;

float borderColor[4];

int normalizedCoords;
unsigned int maxAnisotropy;

enum cudaTextureFilterMode

mipmapFilterMode;

float mipmapLevelBias;
float minMipmaplLevelClamp;
float maxMipmapLevelClamp;
int disableTrilinearOptimization;

}i
where

» cudaTextureDesc::addressMode specifies the addressing mode for each dimension of the
texture data. cudaTextureAddressMode is defined as:

r enum cudaTextureAddressMode {
cudaAddressModeWrap
cudaAddressModeClamp
cudaAddressModeMirror
cudaAddressModeBorder =

I
wWN PO

~ N~ 0~

b

This is ignored if cudaResourceDesc::resType is cudaResourceTypelinear. Also,
if cudaTextureDesc::normalizedCoords is set to zero, cudaAddressModeWrap
and cudaAddressModeMirror won't be supported and will be switched to
cudaAddressModeClamp.

» cudaTextureDesc::filterMode specifies the filtering mode to be used when fetching from
the texture. cudaTextureFilterMode is defined as:

r enum cudaTextureFilterMode {
cudaFilterModePoint = 0,
cudaFilterModeLinear = 1

}i

This is ignored if cudaResourceDesc::resType is cudaResourceTypelinear.

» cudaTlextureDesc::readMode specifies whether integer data should be converted to
floating point or not. cudaTextureReadMode is defined as:

r enum cudaTextureReadMode {

CUDA Runtime API vRelease Version | 321

Modules

cudaReadModeElementType
cudaReadModeNormalizedFloat

}i

Note that this applies only to 8-bit and 16-bit integer formats. 32-bit integer format would
not be promoted, regardless of whether or not this cudaTextureDesc::readMode is set
cudaReadModeNormalizedFloat is specified.

> cudaTextureDesc::sRGB specifies whether sRGB to linear conversion should be performed
during texture fetch.

» cudaTextureDesc::borderColor specifies the float values of color. where:
cudaTextureDesc::borderColor[0] contains value of ‘R’, cudaTextureDesc::borderColor[1]
contains value of 'G’, cudaTextureDesc::borderColor[2] contains value of 'B’,
cudaTextureDesc::borderColor[3] contains value of ‘A" Note that application using integer
border color values will need to <reinterpret_cast> these values to float. The values
are set only when the addressing mode specified by cudaTextureDesc::addressMode is
cudaAddressModeBorder.

» cudaTlextureDesc::normalizedCoords specifies whether the texture coordinates will be
normalized or not.

» cudaTextureDesc::maxAnisotropy specifies the maximum anistropy ratio to be used when
doing anisotropic filtering. This value will be clamped to the range [1,16].

» cudaTextureDesc::mipmapFilterMode specifies the filter mode when the calculated
mipmap level lies between two defined mipmap levels.

» cudaTlextureDesc::mipmaplevelBias specifies the offset to be applied to the calculated
mipmap level.

» cudaTextureDesc::minMipmapLevelClamp specifies the lower end of the mipmap level
range to clamp access to.

> cudaTextureDesc::maxMipmapLevelClamp specifies the upper end of the mipmap level
range to clamp access to.

» cudaTextureDesc::disableTrilinearOptimization specifies whether the trilinear filtering
optimizations will be disabled.

The cudaResourceViewDesc struct is defined as

r struct cudaResourceViewDesc {
enum cudaResourceViewFormat
format;
size t width;
size t height;
size t depth;
unsigned int firstMipmaplLevel;
unsigned int lastMipmapLevel;
unsigned int firstlayer;
unsigned int lastlayer;

CUDA Runtime API vRelease Version | 322

Modules

where:

>

cudaResourceViewDesc::format specifies how the data contained in the CUDA array or
CUDA mipmapped array should be interpreted. Note that this can incur a change in size
of the texture data. If the resource view format is a block compressed format, then the
underlying CUDA array or CUDA mipmapped array has to have a 32-bit unsigned integer
format with 2 or 4 channels, depending on the block compressed format. For ex., BC1 and
BC4 require the underlying CUDA array to have a 32-bit unsigned int with 2 channels. The
other BC formats require the underlying resource to have the same 32-bit unsigned int
format but with 4 channels.

cudaResourceViewDesc::width specifies the new width of the texture data. If the resource
view format is a block compressed format, this value has to be 4 times the original width of
the resource. For non block compressed formats, this value has to be equal to that of the
original resource.

cudaResourceViewDesc::height specifies the new height of the texture data. If the resource
view format is a block compressed format, this value has to be 4 times the original height
of the resource. For non block compressed formats, this value has to be equal to that of
the original resource.

cudaResourceViewDesc::depth specifies the new depth of the texture data. This value has
to be equal to that of the original resource.

cudaResourceViewDesc::firstMipmapLevel specifies the most detailed mipmap

level. This will be the new mipmap level zero. For non-mipmapped resources,

this value has to be zero.cudaTextureDesc::minMipmapLevelClamp and
cudaTextureDesc::maxMipmaplLevelClamp will be relative to this value. For ex., if the
firstMipmapLevel is set to 2, and a minMipmapLevelClamp of 1.2 is specified, then the
actual minimum mipmap level clamp will be 3.2.

cudaResourceViewDesc::lastMipmapLevel specifies the least detailed mipmap level. For
non-mipmapped resources, this value has to be zero.

cudaResourceViewDesc::firstLayer specifies the first layer index for layered textures. This
will be the new layer zero. For non-layered resources, this value has to be zero.

cudaResourceViewDesc::lastlLayer specifies the last layer index for layered textures. For
non-layered resources, this value has to be zero.

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 323

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDestroyTextureQObject, cuTexObjectCreate

__host__cudaError_t cudaDestroyTextureObject
(cudaTextureObject_t texObject]

Destroys a texture object.

Parameters

texObject
- Texture object to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the texture object specified by texObject.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaCreateTextureQObject, cuTexObjectDestroy

CUDA Runtime API vRelease Version | 324

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g1f6dd0f9cbf56db725b1f45aa0a7218a
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1gcd522ba5e2d1852aff8c0388f66247fd

Modules

__host_ _cudaError_t cudaGetChannelDesc
(cudaChannelFormatDesc *desc, cudaArray_const_t
array)

Get the channel descriptor of an array.

Parameters

desc
- Channel format
array
- Memory array on device

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *desc the channel descriptor of the CUDA array array.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C API), cudaCreateTextureObject, cudaCreateSurfaceObject

CUDA Runtime API vRelease Version | 325

Modules

__host__cudaError_t
cudaGetTextureObjectResourceDesc
(cudaResourceDesc *pResDesc, cudaTextureObject_t
texObject]

Returns a texture object’s resource descriptor.

Parameters

pResDesc

- Resource descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the resource descriptor for the texture object specified by texObject.

Note:

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetResourceDesc

CUDA Runtime API vRelease Version | 326

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g0cc8eb2fa1e584d2b04d631586d0921f

Modules

__host__cudaError_t
cudaGetTextureObjectResourceViewDesc
(cudaResourceViewDesc *pResViewDesc,
cudaTextureObject_t texObject]

Returns a texture object’s resource view descriptor.

Parameters

pResViewDesc

- Resource view descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the resource view descriptor for the texture object specified by texObject. If no
resource view was specified, cudaErrorinvalidValue is returned.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetResourceViewDesc

CUDA Runtime API vRelease Version | 327

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g185fa4c933a1c3a7b6aebe3e4291a37b

Modules

__host__cudaError_t
cudaGetTextureObjectTextureDesc (cudaTextureDesc
*pTexDesc, cudaTextureObject_t texObject]

Returns a texture object’s texture descriptor.

Parameters

pTexDesc

- Texture descriptor
texObject

- Texture object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the texture descriptor for the texture object specified by texObject.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateTextureObject, cuTexObjectGetTextureDesc

6.28. Surface Object Management

This section describes the low level texture object management functions of the CUDA
runtime application programming interface. The surface object APl is only supported on
devices of compute capability 3.0 or higher.

CUDA Runtime API vRelease Version | 328

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TEXOBJECT.html#group__CUDA__TEXOBJECT_1g688de37b844df7313c8fce30fc912645

Modules

__host__cudaError_t cudaCreateSurfaceObject
(cudaSurfaceObject_t *pSurfObject, const
cudaResourceDesc *pResDesc)

Creates a surface object.

Parameters

pSurfObject

- Surface object to create
pResDesc

- Resource descriptor

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidChannelDescriptor,
cudaErrorinvalidResourceHandle

Description

Creates a surface object and returns it in pSurfObject. pResDesc describes

the data to perform surface load/stores on. cudaResourceDesc::resType must be
cudaResourceTypeArray and cudaResourceDesc::res::array::array must be set to a valid CUDA
array handle.

Surface objects are only supported on devices of compute capability 3.0 or higher. Additionally,
a surface object is an opaque value, and, as such, should only be accessed through CUDA API
calls.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDestroySurfaceObject, cuSurfObjectCreate

CUDA Runtime API vRelease Version | 329

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g6bc972c90c9590c9f720b2754e6d079d

Modules

__host__cudaError_t cudaDestroySurfaceObject
(cudaSurfaceObject_t surfObject]

Destroys a surface object.

Parameters

surfObject
- Surface object to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the surface object specified by surfObject.

Note:

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaCreateSurfaceObject, cuSurfObjectDestroy

CUDA Runtime API vRelease Version | 330

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g4c4ec48d203d1e0bb71750ddc4d7aef3

Modules

__host__cudaError_t
cudaGetSurfaceObjectResourceDesc
(cudaResourceDesc *pResDesc, cudaSurfaceObject_t
surfObject)

Returns a surface object’s resource descriptor Returns the resource descriptor for the
surface object specified by surfObject.

Parameters

pResDesc

- Resource descriptor
surfObject

- Surface object

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Note:

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateSurfaceObject, cuSurfObjectGetResourceDesc

6.29. Version Management

CUDA Runtime API vRelease Version | 331

../cuda-driver-api/cuda-driver-api/content/group__CUDA__SURFOBJECT.html#group__CUDA__SURFOBJECT_1g2472b7ea0b7e74600ed3d6c244b7ba21

Modules

__host__cudaError_t cudaDriverGetVersion (int

*driverVersion)
Returns the latest version of CUDA supported by the driver.

Parameters

driverVersion
- Returns the CUDA driver version.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *driverVersion the latest version of CUDA supported by the driver. The version
is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be represented by 9020.
If no driver is installed, then 0 is returned as the driver version.

This function automatically returns cudaErrorinvalidValue if drivervVersion is NULL.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaRuntimeGetVersion, cuDriverGetVersion

__host_ device cudaError_t
cudaRuntimeGetVersion (int *runtimeVersion)

Returns the CUDA Runtime version.

Parameters

runtimeVersion
- Returns the CUDA Runtime version.

CUDA Runtime API vRelease Version | 332

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VERSION.html#group__CUDA__VERSION_1g8b7a10395392e049006e61bcdc8ebe71

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns in *runtimeVersion the version number of the current CUDA Runtime instance.
The version is returned as (1000 major + 10 minor). For example, CUDA 9.2 would be
represented by 9020.

This function automatically returns cudaErrorinvalidValue if the runtimeVersion argument
is NULL.

Note:

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaDriverGetVersion, cuDriverGetVersion

6.30. Graph Management

This section describes the graph management functions of CUDA runtime application
programming interface.

__host__cudaError_t
cudaDeviceGetGraphMemAttribute (int device,
cudaGraphMemAttributeType attr, void *value]

Query asynchronous allocation attributes related to graphs.

Parameters

device

- Specifies the scope of the query
attr

- attribute to get

CUDA Runtime API vRelease Version | 333

../cuda-driver-api/cuda-driver-api/content/group__CUDA__VERSION.html#group__CUDA__VERSION_1g8b7a10395392e049006e61bcdc8ebe71

Modules

value
- retrieved value

Returns

cudaSuccess, cudaErrorinvalidDevice

Description
Valid attributes are:

» cudaGraphMemAttrUsedMemCurrent: Amount of memory, in bytes, currently associated
with graphs

» cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with
graphs since the last time it was reset. High watermark can only be reset to zero.

» cudaGraphMemAttrReservedMemCurrent: Amount of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

» cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceSetGraphMemAttribute, cudaGraphAddMemAllocNode,
cudaGraphAddMem£FreeNode, cudaDeviceGraphMemTrim, cudaMallocAsync, cudaFreeAsync,

CUDA Runtime API vRelease Version | 334

Modules

__host__cudaError_t cudaDeviceGraphMemTrim (int
device)

Free unused memory that was cached on the specified device for use with graphs back to the
0S.

Parameters

device
- The device for which cached memory should be freed.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Blocks which are not in use by a graph that is either currently executing or scheduled to
execute are freed back to the operating system.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemAllocNode, cudaGraphAddMemFreeNode,
cudaDeviceGetGraphMemAttribute, cudaDeviceSetGraphMemAttribute, cudaMallocAsync,
cudaFreeAsync,

CUDA Runtime API vRelease Version | 335

Modules

__host__cudaError_t
cudaDeviceSetGraphMemAttribute (int device,
cudaGraphMemAttributeType attr, void *value]

Set asynchronous allocation attributes related to graphs.

Parameters

device

- Specifies the scope of the query
attr

- attribute to get
value

- pointer to value to set

Returns

cudaSuccess, cudaErrorinvalidDevice

Description
Valid attributes are:

» cudaGraphMemAttrUsedMemHigh: High watermark of memory, in bytes, associated with
graphs since the last time it was reset. High watermark can only be reset to zero.

» cudaGraphMemAttrReservedMemHigh: High watermark of memory, in bytes, currently
allocated for use by the CUDA graphs asynchronous allocator.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaDeviceGetGraphMemAttribute, cudaGraphAddMemAllocNode,
cudaGraphAddMemFreeNode, cudaDeviceGraphMemTrim, cudaMallocAsync, cudaFreeAsync,

CUDA Runtime API vRelease Version | 336

Modules

__host__cudaError_t cudaGraphAddChildGraphNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaGraph_t childGraph)

Creates a child graph node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
childGraph

- The graph to clone into this node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new node which executes an embedded graph, and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

If hGraph contains allocation or free nodes, this call will return an error.

The node executes an embedded child graph. The child graph is cloned in this call.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 337

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphChildGraphNodeGetGraph, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode, cudaGraphClone

__host__cudaError_t cudaGraphAddDependencies
(cudaGraph_t graph, const cudaGraphNode_t
*from, const cudaGraphNode_t *to, size_t

numDependencies)
Adds dependency edges to a graph.

Parameters
graph

- Graph to which dependencies are added
from

- Array of nodes that provide the dependencies
to

- Array of dependent nodes
numDependencies

- Number of dependencies to be added

Returns

cudaSuccess, cudaErrorinvalidValue

Description

The number of dependencies to be added is defined by numDependencies Elements in
pFromand pTo at corresponding indices define a dependency. Each node in pFrom and pTo
must belong to graph.

If numDependencies is 0, elements in pFrom and pTo will be ignored. Specifying an existing
dependency will return an error.

Note:
» Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 338

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphRemoveDependencies, cudaGraphGetEdges, cudaGraphNodeGetDependencies,
cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphAddEmptyNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies)

Creates an empty node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new node which performs no operation, and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

CUDA Runtime API vRelease Version | 339

Modules

An empty node performs no operation during execution, but can be used for transitive
ordering. For example, a phased execution graph with 2 groups of n nodes with a barrier
between them can be represented using an empty node and 2*n dependency edges, rather
than no empty node and n*2 dependency edges.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphAddEventRecordNode (cudaGraphNode _t
*pGraphNode, cudaGraph_t graph, const
cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaEvent_t event]

Creates an event record node and adds it to a graph.

Parameters

pGraphNode
graph
pDependencies
numDependencies

- Number of dependencies
event

- Event for the node

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 340

Modules

Description

Creates a new event record node and adds it to hGraph with numDependencies
dependencies specified via dependencies and event specified in event. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new node will be returned
in phGraphNode.

Each launch of the graph will record event to capture execution of the node’s dependencies.

These nodes may not be used in loops or conditionals.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode,

CUDA Runtime API vRelease Version | 341

Modules

__host__cudaError_t cudaGraphAddEventWaitNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaEvent_t event]

Creates an event wait node and adds it to a graph.

Parameters

pGraphNode
graph
pDependencies
numDependencies

- Number of dependencies
event

- Event for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new event wait node and adds it to hGraph with numDependencies

dependencies specified via dependencies and event specified in event. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
dependencies may not have any duplicate entries. A handle to the new node will be returned
in phGraphNode.

The graph node will wait for all work captured in event. See cuEventRecord() for details on
what is captured by an event. The synchronization will be performed efficiently on the device
when applicable. event may be from a different context or device than the launch stream.

These nodes may not be used in loops or conditionals.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 342

../cuda-driver-api/cuda-driver-api/content/group__CUDA__EVENT.html#group__CUDA__EVENT_1g95424d3be52c4eb95d83861b70fb89d1

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode,

__host__cudaError_t
cudaGraphAddExternalSemaphoresSignalNode
(cudaGraphNode_t *pGraphNode,

cudaGraph_t graph, const cudaGraphNode_t
*pDependencies, size_t numDependencies, const
cudaExternalSemaphoreSignalNodeParams
*nodeParams]

Creates an external semaphore signal node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new external semaphore signal node and adds it to graph with numDependencies
dependencies specified via dependencies and arguments specified in nodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of

CUDA Runtime API vRelease Version | 343

Modules

the graph. dependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

Performs a signal operation on a set of externally allocated semaphore objects when the node
is launched. The operation(s) will occur after all of the node's dependencies have completed.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphExternalSemaphoresSignalNodeGetParams,
cudaGraphExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddEventRecordNode,
cudaGraphAddEventWaitNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,

CUDA Runtime API vRelease Version | 344

Modules

__host__cudaError_t
cudaGraphAddExternalSemaphoresWaitNode
(cudaGraphNode_t *pGraphNode,

cudaGraph_t graph, const cudaGraphNode_t
*pDependencies, size_t numDependencies,
const cudaExternalSemaphoreWaitNodeParams
*nodeParams]

Creates an external semaphore wait node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new external semaphore wait node and adds it to graph with numDependencies
dependencies specified via dependencies and arguments specified in nodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. dependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

Performs a wait operation on a set of externally allocated semaphore objects when the
node is launched. The node’s dependencies will not be launched until the wait operation has
completed.

Note:
> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 345

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphExternalSemaphoresWaitNodeGetParams,
cudaGraphExternalSemaphoresWaitNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams,
cudaGraphAddExternalSemaphoresSignalNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddEventRecordNode,
cudaGraphAddEventWaitNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,

__host__cudaError_t cudaGraphAddHostNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaHostNodeParams
*pNodeParams)

Creates a host execution node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pNodeParams

- Parameters for the host node

CUDA Runtime API vRelease Version | 346

Modules

Returns

cudaSuccess, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Creates a new CPU execution node and adds it to graph with numDependencies
dependencies specified via pDependencies and arguments specified in pNodeParamns. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. pDependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

When the graph is launched, the node will invoke the specified CPU function. Host nodes are
not supported under MPS with pre-Volta GPUs.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchHostFunc, cudaGraphHostNodeGetParams, cudaGraphHostNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 347

Modules

__host__cudaError_t cudaGraphAddKernelNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaKernelNodeParams
*pNodeParams)

Creates a kernel execution node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pNodeParams

- Parameters for the GPU execution node

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDeviceFunction

Description

Creates a new kernel execution node and adds it to graph with numDependencies
dependencies specified via pDependencies and arguments specified in pNodeParams. It is
possible for numDependencies to be 0, in which case the node will be placed at the root of
the graph. pDependencies may not have any duplicate entries. A handle to the new node will
be returned in pGraphNode.

The cudaKernelNodeParams structure is defined as:

[struct cudaKernelNodeParams

{

void* func;

dim3 gridDim;

dim3 blockDim;

unsigned int sharedMemBytes;
void **kernelParams;

void **extra;

CUDA Runtime API vRelease Version | 348

Modules

When the graph is launched, the node will invoke kernel func on a (gridDim.x x
gridDim.y x gridDim. z) grid of blocks. Each block contains [blockDim.x x blockDim.y
xblockDim. z) threads.

sharedMemn sets the amount of dynamic shared memory that will be available to each thread
block.

Kernel parameters to func can be specified in one of two ways:

1) Kernel parameters can be specified via kernelParams. If the kernel has N

parameters, then kernelParams needs to be an array of N pointers. Each pointer, from
kernelParams[0] to kernelParams[N-1], points to the region of memory from which the
actual parameter will be copied. The number of kernel parameters and their offsets and sizes
do not need to be specified as that information is retrieved directly from the kernel's image.

2] Kernel parameters can also be packaged by the application into a single buffer that is
passed in via extra. This places the burden on the application of knowing each kernel
parameter’s size and alignment/padding within the buffer. The extra parameter exists to
allow this function to take additional less commonly used arguments. extra specifies a
list of names of extra settings and their corresponding values. Each extra setting name is
immediately followed by the corresponding value. The list must be terminated with either
NULL or CU_LAUNCH_PARAM_END.

» CU LAUNCH PARAM END, which indicates the end of the extra array;

» CU_LAUNCH_PARAM_BUFFER_POINTER, which specifies that the next value in extra
will be a pointer to a buffer containing all the kernel parameters for launching kernel

func;

» CU_LAUNCH_PARAM_BUFFER_SIZE, which specifies that the next value in
extra will be a pointer to a size_t containing the size of the buffer specified with
CU_LAUNCH_PARAM_BUFFER_POINTER;

The error cudaErrorinvalidValue will be returned if kernel parameters are specified with both
kernelParams and extra (i.e. both kernelParams and extra are non-NULL).

The kernelParams or extra array, as well as the argument values it points to, are copied
during this call.

Note:

Kernels launched using graphs must not use texture and surface references. Reading or
writing through any texture or surface reference is undefined behavior. This restriction does
not apply to texture and surface objects.

Note:

» Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 349

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd5c11cff5adfa5a69d66829399653532
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g36d10d0b40c51372877578a2cffd6acd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf339c057cd94562ead93a192e11c17e9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g36d10d0b40c51372877578a2cffd6acd

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphKernelNodeGetParams, cudaGraphKernelNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddHostNode, cudaGraphAddMemcpyNode,
cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemAllocNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, cudaMemAllocNodeParams
*nodeParams]

Creates an allocation node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
nodeParams

- Parameters for the node

Returns

cudaSuccess, cudaErrorCudartUnloading, cudaErrorinitializationError,
cudaErrorNotSupported, cudaErrorinvalidValue, cudaErrorOutOfMemory

CUDA Runtime API vRelease Version | 350

Modules

Description

Creates a new allocation node and adds it to graph with numDependencies dependencies
specified via pDependencies and arguments specified in nodeParams. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When cudaGraphAddMemAllocNode creates an allocation node, it returns the address of the
allocation in nodeParams.dptr. The allocation’s address remains fixed across instantiations
and launches.

If the allocation is freed in the same graph, by creating a free node using
cudaGraphAddMemFreeNode, the allocation can be accessed by nodes ordered after the
allocation node but before the free node. These allocations cannot be freed outside the owning
graph, and they can only be freed once in the owning graph.

If the allocation is not freed in the same graph, then it can be accessed not only by nodes in
the graph which are ordered after the allocation node, but also by stream operations ordered
after the graph’s execution but before the allocation is freed.

Allocations which are not freed in the same graph can be freed by:
> passing the allocation to cudaMemFreeAsync or cudaMemFree;
» launching a graph with a free node for that allocation; or

> specifying cudaGraphlnstantiateFlagAutoFreeOnlaunch during instantiation, which makes
each launch behave as though it called cudaMemFreeAsync for every unfreed allocation.

It is not possible to free an allocation in both the owning graph and another graph. If the
allocation is freed in the same graph, a free node cannot be added to another graph. If the
allocation is freed in another graph, a free node can no longer be added to the owning graph.

The following restrictions apply to graphs which contain allocation and/or memory free nodes:
» Nodes and edges of the graph cannot be deleted.

» The graph cannot be used in a child node.

» Only one instantiation of the graph may exist at any point in time.

> The graph cannot be cloned.

Note:
» Graph objects are not threadsafe. More here.

» Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 351

Modules

See also:

cudaGraphAddMemFreeNode, cudaGraphMemAllocNodeGetParams,
cudaDeviceGraphMemTrim, cudaDeviceGetGraphMemAttribute,
cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddEventRecordNode, cudaGraphAddEventWaitNode,
cudaGraphAddExternalSemaphoresSignalNode, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemcpyNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const cudaMemcpy3DParms
*pCopyParams)

Creates a memcpy node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pCopyParams

- Parameters for the memory copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will perform the memcpy described by pCopyParams.
See cudaMemcpy3D|(] for a description of the structure and its restrictions.

CUDA Runtime API vRelease Version | 352

Modules

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy3D, cudaGraphAddMemcpyNodeToSymbol,

cudaGraphAddMemcpyNodeFromSymbol, cudaGraphAddMemcpyNode1D,

cudaGraphMemcpyNodeGetParams, cudaGraphMemcpyNodeSetParams, cudaGraphCreate,

cudaGraphDestroyNode, cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode,

cudaGraphAddKernelNode, cudaGraphAddHostNode, cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemcpyNode1D
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dst, const void *src, size_t
count, cudaMemcpyKind kind])

Creates a 1D memcpy node and adds it to a graph.

Parameters

pGraphNode
- Returns newly created node

graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies

CUDA Runtime API vRelease Version | 353

Modules

dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new 1D memcpy node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing. Launching a memcpy node with dst and src pointers that do not match the
direction of the copy results in an undefined behavior.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:
» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 354

Modules

See also:

cudaMemcpy, cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParams1D,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemsetNode

__host__cudaError_t
cudaGraphAddMemcpyNodeFromSymbol
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dst, const void *symbol,
size_t count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy from a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 355

Modules

Description

Creates a new memcpy node to copy from symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by of fset bytes from the start of symbol symbol to the memory area pointed to by dst.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:
» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyFromSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeToSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,
cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 356

Modules

__host__cudaError_t
cudaGraphAddMemcpyNodeToSymbol
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, const void *symbol, const void
*src, size_t count, size_t offset, cudaMemcpyKind

kind)

Creates a memcpy node to copy to a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
symbol

- Device symbol address
src

- Source memory address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node to copy to symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

CUDA Runtime API vRelease Version | 357

Modules

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by of fset bytes from the start of symbol symbol.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyToSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeFromSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 358

Modules

__host__cudaError_t cudaGraphAddMemFreeNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dptr]

Creates a memory free node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dptr

- Address of memory to free

Returns

cudaSuccess, cudaErrorCudartUnloading, cudaErrorinitializationError,
cudaErrorNotSupported, cudaErrorinvalidValue, cudaErrorOutOfMemory

Description

Creates a new memory free node and adds it to graph with numDependencies
dependencies specified via pDependencies and address specified in dptr. It is possible

for numDependencies to be 0, in which case the node will be placed at the root of the
graph. pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

cudaGraphAddMem£FreeNode will return cudaErrorinvalidValue if the user attempts to free:

» an allocation twice in the same graph.

» an address that was not returned by an allocation node.

» aninvalid address.

The following restrictions apply to graphs which contain allocation and/or memory free nodes:
» Nodes and edges of the graph cannot be deleted.

» The graph cannot be used in a child node.

» Only one instantiation of the graph may exist at any point in time.

CUDA Runtime API vRelease Version | 359

Modules

» The graph cannot be cloned.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaGraphAddMemAllocNode, cudaGraphMemFreeNodeGetParams,
cudaDeviceGraphMemTrim, cudaDeviceGetGraphMemAttribute,
cudaDeviceSetGraphMemAttribute, cudaMallocAsync, cudaFreeAsync,

cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddEventRecordNode, cudaGraphAddEventWaitNode,
cudaGraphAddExternalSemaphoresSignalNode, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphAddKernelNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

__host__cudaError_t cudaGraphAddMemsetNode
(cudaGraphNode_t *pGraphNode, cudaGraph_t
graph, const cudaGraphNode_t *pDependencies,
size_t numDependencies, const cudaMemsetParams
*pMemsetParams]

Creates a memset node and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
pMemsetParams

- Parameters for the memory set

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDevice

CUDA Runtime API vRelease Version | 360

Modules

Description

Creates a new memset node and adds it to graph with numDependencies dependencies
specified via pDependencies. It is possible for numDependencies to be 0, in which case
the node will be placed at the root of the graph. pDependencies may not have any duplicate
entries. A handle to the new node will be returned in pGraphNode.

The element size must be 1, 2, or 4 bytes. When the graph is launched, the node will perform
the memset described by pMemsetParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset2D, cudaGraphMemsetNodeGetParams, cudaGraphMemsetNodeSetParams,
cudaGraphCreate, cudaGraphDestroyNode, cudaGraphAddChildGraphNode,
cudaGraphAddEmptyNode, cudaGraphAddKernelNode, cudaGraphAddHostNode,
cudaGraphAddMemcpyNode

__host__cudaError_t
cudaGraphChildGraphNodeGetGraph
(cudaGraphNode_t node, cudaGraph_t *pGraph])

Gets a handle to the embedded graph of a child graph node.

Parameters

node

- Node to get the embedded graph for
pGraph

- Location to store a handle to the graph

CUDA Runtime API vRelease Version | 361

Modules

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Gets a handle to the embedded graph in a child graph node. This call does not clone the graph.
Changes to the graph will be reflected in the node, and the node retains ownership of the
graph.

Allocation and free nodes cannot be added to the returned graph. Attempting to do so will
return an error.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphNodeFindInClone

__host__cudaError_t cudaGraphClone (cudaGraph _t
*pGraphClone, cudaGraph_t originalGraph)

Clones a graph.

Parameters

pGraphClone

- Returns newly created cloned graph
originalGraph

- Graph to clone

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

CUDA Runtime API vRelease Version | 362

Modules

Description

This function creates a copy of originalGraph and returns it in pGraphClone. All
parameters are copied into the cloned graph. The original graph may be modified after this
call without affecting the clone.

Child graph nodes in the original graph are recursively copied into the clone.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphNodeFindInClone

__host__cudaError_t cudaGraphCreate (cudaGraph_t
*pGraph, unsigned int flags)

Creates a graph.

Parameters
pGraph

- Returns newly created graph
flags

- Graph creation flags, must be 0

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorMemoryAllocation

Description

Creates an empty graph, which is returned via pGraph.

CUDA Runtime API vRelease Version | 363

Modules

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode,
cudaGraphlnstantiate, cudaGraphDestroy, cudaGraphGetNodes, cudaGraphGetRootNodes,
cudaGraphGetEdges, cudaGraphClone

__host__cudaError_t cudaGraphDebugDotPrint
(cudaGraph_t graph, const char *path, unsigned int
flags)

Write a DOT file describing graph structure.

Parameters
graph

- The graph to create a DOT file from
path

- The path to write the DOT file to
flags

- Flags from cudaGraphDebugDotFlags for specifying which additional node information to
write

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorOperatingSystem

Description

Using the provided graph, write to path a DOT formatted description of the graph. By default
this includes the graph topology, node types, node id, kernel names and memcpy direction.

CUDA Runtime API vRelease Version | 364

Modules

flags can be specified to write more detailed information about each node type such as
parameter values, kernel attributes, node and function handles.

__host__cudaError_t cudaGraphDestroy
(cudaGraph_t graph)

Destroys a graph.

Parameters
graph
- Graph to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the graph specified by graph, as well as all of its nodes.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaGraphCreate

CUDA Runtime API vRelease Version | 365

Modules

__host__cudaError_t cudaGraphDestroyNode
(cudaGraphNode_t node])

Remove a node from the graph.

Parameters

node
- Node to remove

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Removes node from its graph. This operation also severs any dependencies of other nodes on
node and vice versa.

Dependencies cannot be removed from graphs which contain allocation or free nodes. Any
attempt to do so will return an error.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

» Use of the handle after this call is undefined behavior.

See also:

cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemcpyNode, cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 366

Modules

__host__cudaError_t
cudaGraphEventRecordNodeGetEvent
(cudaGraphNode_t node, cudaEvent_t *event_out]

Returns the event associated with an event record node.

Parameters

node
event_out
- Pointer to return the event

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the event of event record node hNode in event out.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeSetEvent,
cudaGraphEventWaitNodeGetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

CUDA Runtime API vRelease Version | 367

Modules

__host__cudaError_t
cudaGraphEventRecordNodeSetEvent
(cudaGraphNode_t node, cudaEvent_t event]

Sets an event record node’s event.

Parameters

node
event
- Event to use

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the event of event record node hNode to event.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeGetEvent,
cudaGraphEventWaitNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

CUDA Runtime API vRelease Version | 368

Modules

__host__cudaError_t
cudaGraphEventWaitNodeGetEvent
(cudaGraphNode_t node, cudaEvent_t *event_out]

Returns the event associated with an event wait node.

Parameters

node
event_out
- Pointer to return the event

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the event of event wait node hNode in event out.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeSetEvent,
cudaGraphEventRecordNodeGetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

CUDA Runtime API vRelease Version | 369

Modules

__host__cudaError_t
cudaGraphEventWaitNodeSetEvent
(cudaGraphNode_t node, cudaEvent_t event]

Sets an event wait node's event.

Parameters

node
event
- Event to use

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the event of event wait node hNode to event.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeGetEvent,
cudaGraphEventRecordNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent

CUDA Runtime API vRelease Version | 370

Modules

__host__cudaError_t
cudaGraphExecChildGraphNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, cudaGraph_t childGraph]

Updates node parameters in the child graph node in the given graphExec.

Parameters
hGraphExec
- The executable graph in which to set the specified node
node
- Host node from the graph which was used to instantiate graphExec
childGraph
- The graph supplying the updated parameters

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though the nodes contained in
node's graph had the parameters contained in childGraph's nodes at instantiation. node
must remain in the graph which was used to instantiate hGraphExec. Changed edges to and
from node are ignored.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

The topology of childGraph, as well as the node insertion order, must match that of the
graph contained in node. See cudaGraphExecUpdatel(] for a list of restrictions on what can
be updated in an instantiated graph. The update is recursive, so child graph nodes contained
within the top level child graph will also be updated.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 371

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddChildGraphNode, cudaGraphChildGraphNodeGetGraph,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t cudaGraphExecDestroy
(cudaGraphExec_t graphExec)

Destroys an executable graph.

Parameters

graphExec
- Executable graph to destroy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Destroys the executable graph specified by graphExec.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

» Use of the handle after this call is undefined behavior.

CUDA Runtime API vRelease Version | 372

Modules

See also:

cudaGraphlnstantiate, cudaGraphUpload, cudaGraphlLaunch

__host_ _cudaError_t
cudaGraphExecEventRecordNodeSetEvent
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
hNode, cudaEvent_t event]

Sets the event for an event record node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- Event record node from the graph from which graphExec was instantiated
event

- Updated event to use

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the event of an event record node in an executable graph hGraphExec. The node is
identified by the corresponding node hNode in the non-executable graph, from which the
executable graph was instantiated.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 373

Modules

See also:

cudaGraphAddEventRecordNode, cudaGraphEventRecordNodeGetEvent,
cudaGraphEventWaitNodeSetEvent, cudakEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecEventWaitNodeSetEvent
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
hNode, cudaEvent t event]

Sets the event for an event wait node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- Event wait node from the graph from which graphExec was instantiated
event

- Updated event to use

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the event of an event wait node in an executable graph hGraphExec. The node is
identified by the corresponding node hNode in the non-executable graph, from which the
executable graph was instantiated.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 374

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddEventWaitNode, cudaGraphEventWaitNodeGetEvent,
cudaGraphEventRecordNodeSetEvent, cudaEventRecordWithFlags, cudaStreamWaitEvent,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecExternalSemaphoresSignalNodeSetParams
(cudaGraphExec_t hGraphExec,

cudaGraphNode_t hNode, const
cudaExternalSemaphoreSignalNodeParams

*nodeParams]

Sets the parameters for an external semaphore signal node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- semaphore signal node from the graph from which graphExec was instantiated
nodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 375

Modules

Description

Sets the parameters of an external semaphore signal node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode in the non-executable
graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Changing nodeParams->numExtSems is not supported.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresSignalNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 376

Modules

__host__cudaError_t
cudaGraphExecExternalSemaphoresWaitNodeSetParams
(cudaGraphExec_t hGraphExec,

cudaGraphNode_t hNode, const
cudaEkxternalSemaphoreWaitNodeParams

*nodeParams]

Sets the parameters for an external semaphore wait node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
hNode

- semaphore wait node from the graph from which graphExec was instantiated
nodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the parameters of an external semaphore wait node in an executable graph
hGraphExec. The node is identified by the corresponding node hNode in the non-executable
graph, from which the executable graph was instantiated.

hNode must not have been removed from the original graph.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. hNode is also not modified by this call.

Changing nodeParams->numExtSemns is not supported.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 377

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresWaitNode, cudalmportExternalSemaphore,
cudaSignalExternalSemaphoresAsync, cudaWaitExternalSemaphoresAsync,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecHostNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaHostNodeParams *pNodeParams)

Sets the parameters for a host node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Host node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

CUDA Runtime API vRelease Version | 378

Modules

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddHostNode, cudaGraphHostNodeSetParams,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecKernelNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaKernelNodeParams *pNodeParams)

Sets the parameters for a kernel node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- kernel node from the graph from which graphExec was instantiated
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

CUDA Runtime API vRelease Version | 379

Modules

Description

Sets the parameters of a kernel node in an executable graph hGraphExec. The node is
identified by the corresponding node node in the non-executable graph, from which the
executable graph was instantiated.

node must not have been removed from the original graph. The func field of nodeParams
cannot be modified and must match the original value. All other values can be modified.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddKernelNode, cudaGraphKernelNodeSetParams,
cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemsetNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 380

Modules

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, const cudaMemcpy3DParms *pNodeParams)

Sets the parameters for a memcpy node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memcpy node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The source and destination memory in pNodeParams must be allocated from the same
contexts as the original source and destination memory. Both the instantiation-time memory
operands and the memory operands in pNodeParams must be 1-dimensional. Zero-length
operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or either the
original or new memory operands are multidimensional.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 381

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsToSymbol,
cudaGraphExecMemcpyNodeSetParamsFromSymbol,
cudaGraphExecMemcpyNodeSetParams1D, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParamsi1D
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, void *dst, const void *src, size_t count,
cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to perform a 1-dimensional
copy.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memcpy node from the graph which was used to instantiate graphExec
dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 382

Modules

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

src and dst must be allocated from the same contexts as the original source and destination
memory. The instantiation-time memory operands must be 1-dimensional. Zero-length
operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNode 1D,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParams1D,
cudaGraphExecMemcpyNodeSetParams, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams,
cudaGraphExecChildGraphNodeSetParams, cudaGraphExecEventRecordNodeSetEvent,
cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

CUDA Runtime API vRelease Version | 383

Modules

__host__cudaError_t
cudaGraphExecMemcpyNodeSetParamsFromSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, void *dst, const void *symbol, size_t count,
size_t offset, cudaMemcpyKind kind]

Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the
device.

Parameters

hGraphExec
- The executable graph in which to set the specified node
node
- Memcpy node from the graph which was used to instantiate graphExec
dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

symbol and dst must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

CUDA Runtime API vRelease Version | 384

Modules

Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeFromSymbol,

cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,

cudaGraphExecMemcpyNodeSetParams, cudaGraphExecMemcpyNodeSetParamsToSymbol,

cudaGraphExecKernelNodeSetParams, cudaGraphExecMemsetNodeSetParams,

cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,

cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,

cudaGraphExecExternalSemaphoresSignalNodeSetParams,

cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,

cudaGraphlnstantiate

__host_ _cudaError_t
cudaGraphExecMemcpyNodeSetParamsToSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const void *symbol, const void *src, size_t
count, size_t offset, cudaMemcpyKind kind)

Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the

device.

Parameters

hGraphExec
- The executable graph in which to set the specified node

node

- Memcpy node from the graph which was used to instantiate graphExec

symbol

- Device symbol address

CUDA Runtime API vRelease Version | 385

Modules

src
- Source memory address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

src and symbol must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

Note:
» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeToSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphExecMemcpyNodeSetParams,

CUDA Runtime API vRelease Version | 386

Modules

cudaGraphExecMemcpyNodeSetParamsFromSymbol,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemsetNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t
cudaGraphExecMemsetNodeSetParams
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const cudaMemsetParams *pNodeParams]

Sets the parameters for a memset node in the given graphExec.

Parameters

hGraphExec

- The executable graph in which to set the specified node
node

- Memset node from the graph which was used to instantiate graphExec
pNodeParams

- Updated Parameters to set

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Updates the work represented by node in hGraphExec as though node had contained
pNodeParams at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

The destination memory in pNodeParams must be allocated from the same context as the
original destination memory. Both the instantiation-time memory operand and the memory
operand in pNodeParams must be 1-dimensional. Zero-length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operand’'s mappings changed or either the
original or new memory operand are multidimensional.

CUDA Runtime API vRelease Version | 387

Modules

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemsetNode, cudaGraphMemsetNodeSetParams,
cudaGraphExecKernelNodeSetParams, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecHostNodeSetParams, cudaGraphExecChildGraphNodeSetParams,
cudaGraphExecEventRecordNodeSetEvent, cudaGraphExecEventWaitNodeSetEvent,
cudaGraphExecExternalSemaphoresSignalNodeSetParams,
cudaGraphExecExternalSemaphoresWaitNodeSetParams, cudaGraphExecUpdate,
cudaGraphlnstantiate

__host__cudaError_t cudaGraphExecUpdate
(cudaGraphExec_t hGraphExec, cudaGraph_t
hGraph, cudaGraphNode_t *hErrorNode_out,
cudaGraphExecUpdateResult *updateResult_out)

Check whether an executable graph can be updated with a graph and perform the update if
possible.

Parameters

hGraphExec
The instantiated graph to be updated
hGraph
The graph containing the updated parameters
hErrorNode_out
The node which caused the permissibility check to forbid the update, if any
updateResult_out
Whether the graph update was permitted. If was forbidden, the reason why

CUDA Runtime API vRelease Version | 388

Modules

Returns

cudaSuccess, cudaErrorGraphExecUpdateFailure,

Description

Updates the node parameters in the instantiated graph specified by hGraphExec with the
node parameters in a topologically identical graph specified by hGraph.

Limitations:
» Kernel nodes:
» The owning context of the function cannot change.

» A node whose function originally did not use CUDA dynamic parallelism cannot be
updated to a function which uses CDP

» Memset and memcpy nodes:
» The CUDA device(s] to which the operand(s) was allocated/mapped cannot change.

» The source/destination memory must be allocated from the same contexts as the
original source/destination memory.

» Only 1D memsets can be changed.
» Additional memcpy node restrictions:

» Changing either the source or destination memory typeli.e. CU_MEMORYTYPE_DEVICE,
CU_MEMORYTYPE_ARRAY, etc.) is not supported.

Note: The APl may add further restrictions in future releases. The return code should always
be checked.

cudaGraphExecUpdate sets updateResult out to
cudaGraphExecUpdateErrorTopologyChanged under the following conditions:

> The count of nodes directly in hGraphExec and hGraph differ, in which case
hErrorNode out is NULL.

» Anode is deleted in hGraph but not not its pair from hGraphExec, in which case
hErrorNode out is NULL.

» A node is deleted in hGraphExec but not its pair from hGraph, in which case
hErrorNode out is the pairless node from hGraph.

» The dependent nodes of a pair differ, in which case hErrorNode out is the node from
hGraph.

cudaGraphExecUpdate sets updateResult out to:

» cudaGraphExecUpdateError if passed an invalid value.

CUDA Runtime API vRelease Version | 389

Modules

» cudaGraphExecUpdateErrorTopologyChanged if the graph topology changed

» cudaGraphExecUpdateErrorNodeTypeChanged if the type of a node changed, in which case
hErrorNode out is set to the node from hGraph.

» cudaGraphExecUpdateErrorFunctionChanged if the function of a kernel node changed
(CUDA driver < 11.2)

» cudaGraphExecUpdateErrorUnsupportedFunctionChange if the func field of a kernel
changed in an unsupported way(see note above), in which case hErrorNode out is set to
the node from hGraph

» cudaGraphExecUpdateErrorParametersChanged if any parameters to a node changed
in a way that is not supported, in which case hErrorNode out is set to the node from
hGraph

» cudaGraphExecUpdateErrorNotSupported if something about a node is unsupported, like
the node’s type or configuration, in which case hErrorNode out is set to the node from
hGraph

If updateResult out isn't setin one of the situations described above, the update
check passes and cudaGraphExecUpdate updates hGraphExec to match the
contents of hGraph. If an error happens during the update, updateResult out
will be set to cudaGraphExecUpdateError; otherwise, updateResult out is setto
cudaGraphExecUpdateSuccess.

cudaGraphExecUpdate returns cudaSuccess when the updated was performed successfully. It
returns cudakrrorGraphExecUpdatefailure if the graph update was not performed because it
included changes which violated constraints specific to instantiated graph update.

Note:
» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphlnstantiate,

CUDA Runtime API vRelease Version | 390

Modules

__host__cudaError_t
cudaGraphExternalSemaphoresSignalNodeGetParams
(cudaGraphNode_t hNode,
cudaExternalSemaphoreSignalNodeParams
*params_out)

Returns an external semaphore signal node’'s parameters.

Parameters

hNode

- Node to get the parameters for
params_out

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of an external semaphore signal node hNode in params_out. The
extSemArray and paramsArray returned in params_out, are owned by the node. This
memory remains valid until the node is destroyed or its parameters are modified, and should
not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update
the parameters of this node.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 391

Modules

cudalaunchKernel, cudaGraphAddExternalSemaphoresSignalNode,
cudaGraphExternalSemaphoresSignalNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host_ _cudaError_t
cudaGraphExternalSemaphoresSignalNodeSetParams
(cudaGraphNode_t hNode, const
cudaExternalSemaphoreSignalNodeParams
*nodeParams]

Sets an external semaphore signal node’s parameters.

Parameters

hNode

- Node to set the parameters for
nodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of an external semaphore signal node hNode to nodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 392

Modules

cudaGraphAddExternalSemaphoresSignalNode,
cudaGraphExternalSemaphoresSignalNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaGraphExternalSemaphoresWaitNodeGetParams
(cudaGraphNode_t hNode,
cudaEkxternalSemaphoreWaitNodeParams
*params_out)

Returns an external semaphore wait node's parameters.

Parameters

hNode

- Node to get the parameters for
params_out

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of an external semaphore wait node hNode in params_out. The
extSemArray and paramsArray returned in params_out, are owned by the node. This
memory remains valid until the node is destroyed or its parameters are modified, and should
not be modified directly. Use cudaGraphExternalSemaphoresSignalNodeSetParams to update
the parameters of this node.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 393

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphExternalSemaphoresWaitNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t
cudaGraphExternalSemaphoresWaitNodeSetParams
(cudaGraphNode_t hNode, const
cudaExternalSemaphoreWaitNodeParams
*nodeParams)

Sets an external semaphore wait node’s parameters.

Parameters

hNode

- Node to set the parameters for
nodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of an external semaphore wait node hNode to nodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 394

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddExternalSemaphoresWaitNode,
cudaGraphExternalSemaphoresWaitNodeSetParams,
cudaGraphAddExternalSemaphoresWaitNode, cudaSignalExternalSemaphoresAsync,
cudaWaitExternalSemaphoresAsync

__host__cudaError_t cudaGraphGetEdges
(cudaGraph_t graph, cudaGraphNode_t *from,
cudaGraphNode_t *to, size_t *numEdges]

Returns a graph’s dependency edges.

Parameters
graph

- Graph to get the edges from
from

- Location to return edge endpoints
to

- Location to return edge endpoints
numEdges

- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's dependency edges. Edges are returned via corresponding indices
in from and to; that is, the node in tolil has a dependency on the node in froml[i]. from
and to may both be NULL, in which case this function only returns the number of edges in
numEdges. Otherwise, numEdges entries will be filled in. If numEdges is higher than the
actual number of edges, the remaining entries in from and to will be set to NULL, and the
number of edges actually returned will be written to numEdges.

Note:
> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 395

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphGetNodes, cudaGraphGetRootNodes, cudaGraphAddDependencies,
cudaGraphRemoveDependencies, cudaGraphNodeGetDependencies,
cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphGetNodes
(cudaGraph_t graph, cudaGraphNode_t *nodes, size_t
*numNodes])

Returns a graph’s nodes.

Parameters
graph
- Graph to query
nodes
- Pointer to return the nodes
numNodes
- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's nodes. nodes may be NULL, in which case this function will
return the number of nodes in numNodes. Otherwise, numNodes entries will be filled in. If
numNodes is higher than the actual number of nodes, the remaining entries in nodes will be
set to NULL, and the number of nodes actually obtained will be returned in numNodes.

Note:

> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 396

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphGetRootNodes, cudaGraphGetEdges, cudaGraphNodeGetType,
cudaGraphNodeGetDependencies, cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphGetRootNodes
(cudaGraph_t graph, cudaGraphNode_t *pRootNodes,
size_t *pNumRootNodes]

Returns a graph’s root nodes.

Parameters
graph
- Graph to query
pRootNodes
- Pointer to return the root nodes
pNumRootNodes
- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of graph's root nodes. pRootNodes may be NULL, in which case this function
will return the number of root nodes in pNumRootNodes. Otherwise, pNumRootNodes
entries will be filled in. If pNumRootNodes is higher than the actual number of root nodes,
the remaining entries in pRootNodes will be set to NULL, and the number of nodes actually
obtained will be returned in pNumRootNodes.

Note:

> Graph objects are not threadsafe. More here.

CUDA Runtime API vRelease Version | 397

Modules

> Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphCreate, cudaGraphGetNodes, cudaGraphGetEdges, cudaGraphNodeGetType,
cudaGraphNodeGetDependencies, cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphHostNodeGetParams
(cudaGraphNode_t node, cudaHostNodeParams
*pNodeParams)

Returns a host node’s parameters.

Parameters

node

- Node to get the parameters for
pNodeParams

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of host node node in pNodeParams.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 398

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchHostFunc, cudaGraphAddHostNode, cudaGraphHostNodeSetParams

__host__cudaError_t cudaGraphHostNodeSetParams
(cudaGraphNode_t node, const cudaHostNodeParams
*pNodeParams)

Sets a host node’'s parameters.

Parameters

node

- Node to set the parameters for
pNodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of host node node to nodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaLaunchHostFunc, cudaGraphAddHostNode, cudaGraphHostNodeGetParams

CUDA Runtime API vRelease Version | 399

Modules

__host__cudaError_t cudaGraphlnstantiate
(cudaGraphExec_t *pGraphExec, cudaGraph_t graph,
cudaGraphNode_t *pErrorNode, char *pLogBuffer,
size t bufferSize)

Creates an executable graph from a graph.

Parameters

pGraphExec
- Returns instantiated graph
graph
- Graph to instantiate
pErrorNode
- In case of an instantiation error, this may be modified to indicate a node contributing to
the error
pLogBuffer
- A character buffer to store diagnostic messages
bufferSize
- Size of the log buffer in bytes

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Instantiates graph as an executable graph. The graph is validated for any structural
constraints or intra-node constraints which were not previously validated. If instantiation is
successful, a handle to the instantiated graph is returned in pGraphExec.

If there are any errors, diagnostic information may be returned in pErrorNode and
pLogBuffer. Thisis the primary way to inspect instantiation errors. The output will be null
terminated unless the diagnostics overflow the buffer. In this case, they will be truncated, and
the last byte can be inspected to determine if truncation occurred.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 400

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphlnstantiateWithFlags, cudaGraphCreate, cudaGraphUpload, cudaGraphlLaunch,
cudaGraphExecDestroy

__host__cudaError_t cudaGraphlnstantiateWithFlags
(cudaGraphExec_t *pGraphExec, cudaGraph_t graph,
unsigned long long flags)

Creates an executable graph from a graph.

Parameters

pGraphExec
- Returns instantiated graph
graph
- Graph to instantiate
flags
- Flags to control instantiation. See CUgraphlnstantiate flags.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Instantiates graph as an executable graph. The graph is validated for any structural
constraints or intra-node constraints which were not previously validated. If instantiation is
successful, a handle to the instantiated graph is returned in pGraphExec.

The flags parameter controls the behavior of instantiation and subsequent graph launches.
Valid flags are:

» cudaGraphlnstantiateFlagAutoFreeOnLaunch, which configures a graph containing
memory allocation nodes to automatically free any unfreed memory allocations before the
graph is relaunched.

If graph contains any allocation or free nodes, there can be at most one executable graph in
existence for that graph at a time.

An attempt to instantiate a second executable graph before destroying the first with
cudaGraphExecDestroy will result in an error.

CUDA Runtime API vRelease Version | 401

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g070bf5517d3a7915667c256eefce4956

Modules

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphlnstantiate, cudaGraphCreate, cudaGraphUpload, cudaGraphLaunch,
cudaGraphExecDestroy

__host__cudaError_t
cudaGraphKernelNodeCopyAttributes
(cudaGraphNode_t hSrc, cudaGraphNode_t hDst)

Copies attributes from source node to destination node.

Returns

cudaSuccess, cudaErrorinvalidContext

Description

Copies attributes from source node src to destination node dst. Both node must have the
same context.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

CUDA Runtime API vRelease Version | 402

Modules

__host__cudaError_t
cudaGraphKernelNodeGetAttribute

(cudaGraphNode_t hNode, cudaKernelNodeAttrID
attr, cudaKernelNodeAttrValue *value out]

Queries node attribute.

Parameters

hNode
attr
value_out

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Queries attribute attr from node hNode and stores it in corresponding member of

value out.

Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t
cudaGraphKernelNodeGetParams (cudaGraphNode _t
node, cudaKernelNodeParams *pNodeParams]

Returns a kernel node’s parameters.

Parameters

node

- Node to get the parameters for
pNodeParams

- Pointer to return the parameters

CUDA Runtime API vRelease Version | 403

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidDeviceFunction

Description

Returns the parameters of kernel node node in pNodeParams. The kernelParams or
extra array returned in pNodeParams, as well as the argument values it points to, are
owned by the node. This memory remains valid until the node is destroyed or its parameters
are modified, and should not be modified directly. Use cudaGraphKernelNodeSetParams to
update the parameters of this node.

The params will contain either kernelParams or extra, according to which of these was
most recently set on the node.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphAddKernelNode, cudaGraphKernelNodeSetParams

__host__cudaError_t
cudaGraphKernelNodeSetAttribute

(cudaGraphNode_t hNode, cudaKernelNodeAttrID
attr, const cudaKernelNodeAttrValue *value]

Sets node attribute.

Parameters

hNode
attr
value

CUDA Runtime API vRelease Version | 404

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Sets attribute attr on node hNode from corresponding attribute of value.
Note:
Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaAccessPolicyWindow

__host__cudaError_t
cudaGraphKernelNodeSetParams (cudaGraphNode t
node, const cudaKernelNodeParams *pNodeParams)

Sets a kernel node’s parameters.

Parameters

node

- Node to set the parameters for
pNodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle,
cudaErrorMemoryAllocation

Description

Sets the parameters of kernel node node to pNodeParams.
Note:

> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 405

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudalaunchKernel, cudaGraphAddKernelNode, cudaGraphKernelNodeGetParams

__host__cudaError_t cudaGraphLaunch
(cudaGraphExec_t graphExec, cudaStream_t stream)

Launches an executable graph in a stream.

Parameters

graphExec
- Executable graph to launch
stream
- Stream in which to launch the graph

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Executes graphExec in stream. Only one instance of graphExec may be executing at a
time. Each launch is ordered behind both any previous work in stream and any previous
launches of graphExec. To execute a graph concurrently, it must be instantiated multiple
times into multiple executable graphs.

If any allocations created by graphExec remain unfreed (from a previous launch] and
graphExec was not instantiated with cudaGraphlnstantiateFlagAutoFreeOnlaunch, the
launch will fail with cudaErrorinvalidValue.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 406

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphlnstantiate, cudaGraphUpload, cudaGraphExecDestroy

__host__cudaError_t
cudaGraphMemAllocNodeGetParams
(cudaGraphNode_t node, cudaMemAllocNodeParams
*params_out]

Returns a memory alloc node’s parameters.

Parameters

node

- Node to get the parameters for
params_out

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of a memory alloc node hNode in params_out. The poolProps and
accessDescs returned in params_out, are owned by the node. This memory remains valid
until the node is destroyed. The returned parameters must not be modified.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 407

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddMemAllocNode, cudaGraphMemFreeNodeGetParams

__host_ _cudaError_t
cudaGraphMemcpyNodeGetParams
(cudaGraphNode_t node, cudaMemcpy3DParms
*pNodeParams)

Returns a memcpy node's parameters.

Parameters

node

- Node to get the parameters for
pNodeParams

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of memcpy node node in pNodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 408

Modules

cudaMemcpy3D, cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeSetParams

__host__cudaError_t
cudaGraphMemcpyNodeSetParams
(cudaGraphNode_t node, const cudaMemcpy3DParms
*pNodeParams)

Sets a memcpy node's parameters.

Parameters

node

- Node to set the parameters for
pNodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Sets the parameters of memcpy node node to pNodeParams.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy3D, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphMemcpyNodeSetParams1D,
cudaGraphAddMemcpyNode, cudaGraphMemcpyNodeGetParams

CUDA Runtime API vRelease Version | 409

Modules

__host__cudaError_t
cudaGraphMemcpyNodeSetParams1D
(cudaGraphNode_t node, void *dst, const void *src,
size_t count, cudaMemcpyKind kind]

Sets a memcpy node's parameters to perform a 1-dimensional copy.

Parameters

node

- Node to set the parameters for
dst

- Destination memory address
src

- Source memory address
count

- Size in bytes to copy
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Sets the parameters of memcpy node node to the copy described by the provided parameters.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by dst, where kind specifies the direction

of the copy, and must be one of cudaMemcpyHostToHost, cudaMemcpyHostToDevice,
cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice, or cudaMemcpyDefault. Passing
cudaMemcpyDefault is recommended, in which case the type of transfer is inferred from the
pointer values. However, cudaMemcpyDefault is only allowed on systems that support unified
virtual addressing. Launching a memcpy node with dst and src pointers that do not match the
direction of the copy results in an undefined behavior.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 410

> Note that this function may also return cudaErrorinitializationError,

Modules

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaGraphMemcpyNodeSetParams, cudaGraphAddMemcpyNode,

cudaGraphMemcpyNodeGetParams

host cudaError_t

EdaGraphMemcpyNodeSetParamsFromSymbol
(cudaGraphNode_t node, void *dst, const void

*symbol, size_t count, size_t offset, cudaMemcpyKind

kind)

Sets a memcpy node’s parameters to copy from a symbol on the device.

Parameters

node

- Node to set the parameters for
dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of memcpy node node to the copy described by the provided parameters.

CUDA Runtime AP!I

vRelease Version | 411

Modules

When the graph is launched, the node will copy count bytes from the memory area pointed
to by of fset bytes from the start of symbol symbol to the memory area pointed to by dst.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyFromSymbol, cudaGraphMemcpyNodeSetParams,
cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphAddMemcpyNode,
cudaGraphMemcpyNodeGetParams

__host__cudaError_t
cudaGraphMemcpyNodeSetParamsToSymbol
(cudaGraphNode_t node, const void *symbol, const

void *src, size_t count, size_t offset, cudaMemcpyKind
kind)

Sets a memcpy node's parameters to copy to a symbol on the device.

Parameters

node

- Node to set the parameters for
symbol

- Device symbol address
src

- Source memory address

CUDA Runtime API vRelease Version | 412

Modules

count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Sets the parameters of memcpy node node to the copy described by the provided parameters.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by of fset bytes from the start of symbol symbol.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyToSymbol, cudaGraphMemcpyNodeSetParams,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphAddMemcpyNode,
cudaGraphMemcpyNodeGetParams

CUDA Runtime API vRelease Version | 413

Modules

__host__cudaError_t
cudaGraphMemFreeNodeGetParams
(cudaGraphNode_t node, void *dptr_out]

Returns a memory free node's parameters.

Parameters

node

- Node to get the parameters for
dptr_out

- Pointer to return the device address

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the address of a memory free node hNode in dptr out.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphAddMem€FreeNode, cudaGraphMemFreeNodeGetParams

CUDA Runtime API vRelease Version | 414

Modules

__host__cudaError_t
cudaGraphMemsetNodeGetParams
(cudaGraphNode_t node, cudaMemsetParams
*pNodeParams)

Returns a memset node’s parameters.

Parameters

node

- Node to get the parameters for
pNodeParams

- Pointer to return the parameters

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the parameters of memset node node in pNodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset2D, cudaGraphAddMemsetNode, cudaGraphMemsetNodeSetParams

CUDA Runtime API vRelease Version | 415

Modules

__host__cudaError_t
cudaGraphMemsetNodeSetParams
(cudaGraphNode_t node, const cudaMemsetParams
*pNodeParams)

Sets a memset node's parameters.

Parameters

node

- Node to set the parameters for
pNodeParams

- Parameters to copy

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of memset node node to pNodeParams.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemset2D, cudaGraphAddMemsetNode, cudaGraphMemsetNodeGetParams

CUDA Runtime API vRelease Version | 416

Modules

__host__cudaError_t cudaGraphNodeFindInClone
(cudaGraphNode_t *pNode, cudaGraphNode_t
originalNode, cudaGraph_t clonedGraph]

Finds a cloned version of a node.

Parameters

pNode

- Returns handle to the cloned node
originalNode

- Handle to the original node
clonedGraph

- Cloned graph to query

Returns

cudaSuccess, cudaErrorinvalidValue

Description

This function returns the node in clonedGraph corresponding to originalNode in the
original graph.

clonedGraph must have been cloned from originalGraph via cudaGraphClone.
originalNode must have been in originalGraph at the time of the call to
cudaGraphClone, and the corresponding cloned node in clonedGraph must not have been
removed. The cloned node is then returned via pClonedNode.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphClone

CUDA Runtime API vRelease Version | 417

Modules

__host__cudaError_t
cudaGraphNodeGetDependencies (cudaGraphNode t
node, cudaGraphNode_t *pDependencies, size_t
*nNumDependencies)

Returns a node’'s dependencies.

Parameters

node

- Node to query
pDependencies

- Pointer to return the dependencies
pNumDependencies

- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of node ' s dependencies. pDependencies may be NULL, in which case

this function will return the number of dependencies in pNumDependencies. Otherwise,
pNumDependencies entries will be filled in. If pNumDependencies is higher than the actual
number of dependencies, the remaining entries in pDependencies will be set to NULL, and
the number of nodes actually obtained will be returned in pNumDependencies.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 418

Modules

cudaGraphNodeGetDependentNodes, cudaGraphGetNodes, cudaGraphGetRootNodes,
cudaGraphGetEdges, cudaGraphAddDependencies, cudaGraphRemoveDependencies

__host_ _cudaError_t
cudaGraphNodeGetDependentNodes
(cudaGraphNode_t node, cudaGraphNode_t
*pnDependentNodes, size_t *pNumDependentNodes)

Returns a node's dependent nodes.

Parameters

node

- Node to query
pDependentNodes

- Pointer to return the dependent nodes
pNumDependentNodes

- See description

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns a list of node ' s dependent nodes. pDependentNodes may be NULL, in which
case this function will return the number of dependent nodes in pNumDependentNodes.
Otherwise, pNumDependentNodes entries will be filled in. If pNumDependentNodes

is higher than the actual number of dependent nodes, the remaining entries in
pDependentNodes will be set to NULL, and the number of nodes actually obtained will be
returned in pNumDependentNodes.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 419

Modules

See also:

cudaGraphNodeGetDependencies, cudaGraphGetNodes, cudaGraphGetRootNodes,
cudaGraphGetEdges, cudaGraphAddDependencies, cudaGraphRemoveDependencies

__host__cudaError_t cudaGraphNodeGetType
(cudaGraphNode_t node, cudaGraphNodeType

*pType]

Returns a node's type.

Parameters

node
- Node to query

pType
- Pointer to return the node type

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Returns the node type of node in pType.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGraphGetNodes, cudaGraphGetRootNodes, cudaGraphChildGraphNodeGetGraph,
cudaGraphKernelNodeGetParams, cudaGraphKernelNodeSetParams,
cudaGraphHostNodeGetParams, cudaGraphHostNodeSetParams,

CUDA Runtime API vRelease Version | 420

Modules

cudaGraphMemcpyNodeGetParams, cudaGraphMemcpyNodeSetParams,
cudaGraphMemsetNodeGetParams, cudaGraphMemsetNodeSetParams

__host__cudaError_t cudaGraphReleaseUserObject
(cudaGraph_t graph, cudaUserObject_t object,
unsigned int count]

Release a user object reference from a graph.

Parameters
graph
- The graph that will release the reference
object
- The user object to release a reference for
count
- The number of references to release, typically 1. Must be nonzero and not larger than
INT_MAX.

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Releases user object references owned by a graph.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user
objects.

See also:

cudaUserQObjectCreate cudaUserObjectRetain, cudaUserObjectRelease,
cudaGraphRetainUserObject, cudaGraphCreate

CUDA Runtime API vRelease Version | 421

Modules

__host__cudaError_t
cudaGraphRemoveDependencies (cudaGraph_t
graph, const cudaGraphNode_t *from, const
cudaGraphNode_t *to, size_t numDependencies]

Removes dependency edges from a graph.

Parameters
graph

- Graph from which to remove dependencies
from

- Array of nodes that provide the dependencies
to

- Array of dependent nodes
numDependencies

- Number of dependencies to be removed

Returns

cudaSuccess, cudaErrorinvalidValue

Description

The number of pDependencies to be removed is defined by numDependencies. Elements
in pFrom and pTo at corresponding indices define a dependency. Each node in pFrom and
pTo must belong to graph.

If numDependencies is 0, elements in pFrom and pTo will be ignored. Specifying a non-
existing dependency will return an error.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

CUDA Runtime API vRelease Version | 422

Modules

See also:

cudaGraphAddDependencies, cudaGraphGetEdges, cudaGraphNodeGetDependencies,
cudaGraphNodeGetDependentNodes

__host__cudaError_t cudaGraphRetainUserObject
(cudaGraph_t graph, cudaUserQObject_t object,
unsigned int count, unsigned int flags)

Retain a reference to a user object from a graph.

Parameters

graph
- The graph to associate the reference with

object
- The user object to retain a reference for

count
- The number of references to add to the graph, typically 1. Must be nonzero and not larger
than INT_MAX.

flags
- The optional flag cudaGraphUserObjectMove transfers references from the calling thread,
rather than create new references. Pass 0 to create new references.

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Creates or moves user object references that will be owned by a CUDA graph.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user
objects.

See also:

cudaUserObjectCreate cudaUserObjectRetain, cudaUserObjectRelease,
cudaGraphReleaseUserQObject, cudaGraphCreate

CUDA Runtime API vRelease Version | 423

Modules

__host__cudaError_t cudaGraphUpload
(cudaGraphExec_t graphExec, cudaStream_t stream)

Uploads an executable graph in a stream.

Returns

cudaSuccess, cudaErrorinvalidValue,

Description

Uploads hGraphExec to the device in hStream without executing it. Uploads of the same
hGraphExec will be serialized. Each upload is ordered behind both any previous work in
hStream and any previous launches of hGraphExec. Uses memory cached by stream to
back the allocations owned by graphExec.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

See also:

cudaGraphlnstantiate, cudaGraphlLaunch, cudaGraphExecDestroy

__host__cudaError_t cudaUserObjectCreate
(cudaUserObject_t *object_out, void *ptr,
cudaHostFn_t destroy, unsigned int initialRefcount,
unsigned int flags)

Create a user object.

Parameters

object_out
- Location to return the user object handle
ptr
- The pointer to pass to the destroy function
destroy
- Callback to free the user object when it is no longer in use

CUDA Runtime API vRelease Version | 424

Modules

initialRefcount
- The initial refcount to create the object with, typically 1. The initial references are owned
by the calling thread.

flags
- Currently it is required to pass cudaUserObjectNoDestructorSync, which is the only
defined flag. This indicates that the destroy callback cannot be waited on by any CUDA API.
Users requiring synchronization of the callback should signal its completion manually.

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Create a user object with the specified destructor callback and initial reference count. The
initial references are owned by the caller.

Destructor callbacks cannot make CUDA API calls and should avoid blocking behavior, as they
are executed by a shared internal thread. Another thread may be signaled to perform such
actions, if it does not block forward progress of tasks scheduled through CUDA.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user
objects.

See also:

cudaUserObjectRetain, cudaUserObjectRelease, cudaGraphRetainUserObject,
cudaGraphReleaseUserQObject, cudaGraphCreate

__host__cudaError_t cudaUserObjectRelease
(cudaUserObject_t object, unsigned int count]

Release a reference to a user object.

Parameters

object
- The object to release

count
- The number of references to release, typically 1. Must be nonzero and not larger than
INT_MAX.

Returns

cudaSuccess, cudaErrorinvalidValue

CUDA Runtime API vRelease Version | 425

Modules

Description

Releases user object references owned by the caller. The object’s destructor is invoked if the
reference count reaches zero.

It is undefined behavior to release references not owned by the caller, or to use a user object
handle after all references are released.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user
objects.

See also:

cudaUserQObjectCreate, cudaUserObjectRetain, cudaGraphRetainUserObject,
cudaGraphReleaseUserQObject, cudaGraphCreate

__host__cudaError_t cudaUserObjectRetain
(cudaUserObject_t object, unsigned int count)

Retain a reference to a user object.

Parameters

object
- The object to retain

count
- The number of references to retain, typically 1. Must be nonzero and not larger than
INT_MAX.

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Retains new references to a user object. The new references are owned by the caller.

See CUDA User Objects in the CUDA C++ Programming Guide for more information on user
objects.

See also:

cudaUserQObjectCreate, cudaUserObjectRelease, cudaGraphRetainUserObject,
cudaGraphReleaseUserQObject, cudaGraphCreate

CUDA Runtime API vRelease Version | 426

Modules

6.31. Driver Entry Point Access

This section describes the driver entry point access functions of CUDA runtime application
programming interface.

__host__cudaError_t cudaGetDriverEntryPoint (const
char *symbol, void **funcPtr, unsigned long long
flags)

Returns the requested driver API function pointer.

Parameters

symbol
- The base name of the driver API function to look for. As an example, for the driver API
cuMemAlloc_v2, symbol would be cuMemAlloc. Note that the APl will use the CUDA
runtime version to return the address to the most recent ABl compatible driver symbol,
cuMemAlloc or cuMemAlloc_v2.

funcPtr
- Location to return the function pointer to the requested driver function

flags
- Flags to specify search options.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorNotSupported, cudaErrorSymbolNotFound

Description
Returns in **funcPtr the address of the CUDA driver function for the requested flags.

For a requested driver symbol, if the CUDA version in which the driver symbol was introduced
is less than or equal to the CUDA runtime version, the APl will return the function pointer to
the corresponding versioned driver function.

The pointer returned by the APl should be cast to a function pointer matching the requested
driver function’s definition in the APl header file. The function pointer typedef can be picked up
from the corresponding typedefs header file. For example, cudaTypedefs.h consists of function
pointer typedefs for driver APls defined in cuda.h.

The APl will return cudaErrorSymbolNotFound if the requested driver function is not
supported on the platform, no ABI compatible driver function exists for the CUDA runtime
version or if the driver symbol is invalid.

The requested flags can be:

CUDA Runtime API vRelease Version | 427

../cuda-driver-api/cuda-driver-api/content/group__CUDA__MEM.html#group__CUDA__MEM_1gb82d2a09844a58dd9e744dc31e8aa467

Modules

» cudaEnableDefault: This is the default mode. This is equivalent to
cudaEnablePerThreadDefaultStream if the code is compiled with --default-stream per-
thread compilation flag or the macro CUDA_API_PER_THREAD_DEFAULT_STREAM is

defined; cudaEnablelLegacyStream otherwise.

> cudaEnablel egacyStream: This will enable the search for all driver symbols that match
the requested driver symbol name except the corresponding per-thread versions.

» cudaEnablePerThreadDefaultStream: This will enable the search for all driver symbols
that match the requested driver symbol name including the per-thread versions. If a per-
thread version is not found, the APl will return the legacy version of the driver function.

Note:

> Version mixing among CUDA-defined types and driver API versions is strongly discouraged
and doing so can result in an undefined behavior. More here.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cuGetProcAddress

6.32. C++ APl Routines

C++-style interface built on top of CUDA runtime API.

This section describes the C++ high level API functions of the CUDA runtime application
programming interface. To use these functions, your application needs to be compiled with the
nvcc compiler.

__cudaOccupancyB2DHelper

cppClassifierVisibility: visibility=public

CUDA Runtime API vRelease Version | 428

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DRIVER__ENTRY__POINT.html#group__CUDA__DRIVER__ENTRY__POINT_1gcab1eff2d9f22e000e6537d74b9ffd4c

Modules

template < class T, int dim > __host__cudaError_t
cudaBindSurfaceToArray (const surfaceTdim surf,
cudaArray_const_t array)

[C++ API] Binds an array to a surface

Parameters

surf
- Surface to bind
array
- Memory array on device

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSurface

Description

Binds the CUDA array array to the surface reference surf. The channel descriptor is
inherited from the CUDA array. Any CUDA array previously bound to surf is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaBindSurfaceToArray [C API], cudaBindSurfaceToArray [C++ APl

CUDA Runtime API vRelease Version | 429

Modules

template < class T, int dim > __host__cudaError_t
cudaBindSurfaceToArray (const surfaceTdim

surf, cudaArray_const_t array, const
cudaChannelFormatDesc desc)

[C++ API] Binds an array to a surface

Parameters

surf

- Surface to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSurface

Description

Binds the CUDA array array to the surface reference surf. desc describes how the memory
is interpreted when dealing with the surface. Any CUDA array previously bound to surf is
unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaBindSurfaceToArray [C API], cudaBindSurfaceToArray [C++ API, inherited channel
descriptor]

CUDA Runtime API vRelease Version | 430

Modules

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTexture (size t *offset,
const textureTdimreadMode tex, const void *devPtr,
size t size)

[C++ API] Binds a memory area to a texture

Parameters

offset
- Offset in bytes
tex
- Texture to bind
devPtr
- Memory area on device
size
- Size of the memory area pointed to by devPtr

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Binds size bytes of the memory area pointed to by devPtr to texture reference tex. The
channel descriptor is inherited from the texture reference type. The offset parameter

is an optional byte offset as with the low-level cudaBindTexture(size_t*, const struct
textureReference*, const void*, const struct cudaChannelFormatDesc*, size_t) function. Any
memory previously bound to tex is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

CUDA Runtime API vRelease Version | 431

Modules

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture [C++ API), cudaBindTexture2D [C++ API),
cudaBindTexture2D [C++ API, inherited channel descriptor), cudaBindTextureToArray [C++
API), cudaBindTextureToArray (C++ API, inherited channel descriptor), cudaUnbindTexture [C
++ API1), cudaGetTextureAlignmentOffset [C++ API)

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTexture (size_t *offset,
const textureTdimreadMode tex, const void *devPtr,
const cudaChannelFormatDesc desc, size t size)

[C++ API] Binds a memory area to a texture

Parameters

offset
- Offset in bytes
tex
- Texture to bind
devPtr
- Memory area on device
desc
- Channel format
size
- Size of the memory area pointed to by devPtr

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Binds size bytes of the memory area pointed to by devPtr to texture reference tex. desc
describes how the memory is interpreted when fetching values from the texture. The offset
parameter is an optional byte offset as with the low-level cudaBindTexture() function. Any
memory previously bound to tex is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 432

Modules

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C API), cudaBindTexture [C++ API, inherited channel descriptor],
cudaBindTexture2D [C++ API), cudaBindTexture2D (C++ API, inherited channel descriptor],
cudaBindTextureToArray [C++ APIl), cudaBindTextureToArray (C++ API, inherited channel
descriptor), cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C++ API)

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTexture2D (size t
*offset, const textureTdimreadMode tex, const void
*devPtr, size_t width, size_t height, size_t pitch)

[C++ API] Binds a 2D memory area to a texture

Parameters
offset

- Offset in bytes
tex

- Texture reference to bind
devPtr

- 2D memory area on device
width

- Width in texel units
height

- Height in texel units
pitch

- Pitch in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

CUDA Runtime API vRelease Version | 433

Modules

Description

Binds the 2D memory area pointed to by devPtr to the texture reference tex. The size of the
area is constrained by width in texel units, height in texel units, and pitch in byte units.
The channel descriptor is inherited from the texture reference type. Any memory previously
bound to tex is unbound.

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture2D(] returns in *offset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size and
passed to kernels that read from the texture so they can be applied to the tex2D() function. If
the device memory pointer was returned from cudaMalloc(], the offset is guaranteed to be O
and NULL may be passed as the offset parameter.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor],
cudaBindTexture2D (C AP}, cudaBindTexture2D [C++ AP}, cudaBindTextureToArray [C++
API), cudaBindTextureToArray (C++ API, inherited channel descriptor), cudaUnbindTexture [C
++ API1), cudaGetTextureAlignmentOffset [C++ API)

CUDA Runtime API vRelease Version | 434

Modules

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTexture2D (size t
*offset, const textureTdimreadMode tex, const void
*devPtr, const cudaChannelFormatDesc desc, size t
width, size_t height, size_t pitch])

[C++ API] Binds a 2D memory area to a texture

Parameters
offset

- Offset in bytes
tex

- Texture reference to bind
devPtr

- 2D memory area on device
desc

- Channel format
width

- Width in texel units
height

- Height in texel units
pitch

- Pitch in bytes

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Binds the 2D memory area pointed to by devPtr to the texture reference tex. The size of the
area is constrained by width in texel units, height in texel units, and pitch in byte units.
desc describes how the memory is interpreted when fetching values from the texture. Any
memory previously bound to tex is unbound.

Since the hardware enforces an alignment requirement on texture base addresses,
cudaBindTexture2D(] returns in *offset a byte offset that must be applied to texture fetches
in order to read from the desired memory. This offset must be divided by the texel size and
passed to kernels that read from the texture so they can be applied to the tex2D() function. If
the device memory pointer was returned from cudaMalloc(), the offset is guaranteed to be 0
and NULL may be passed as the offset parameter.

CUDA Runtime API vRelease Version | 435

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor),
cudaBindTexture2D [C API), cudaBindTexture2D [C++ API, inherited channel descriptor),
cudaBindTextureToArray [C++ API), cudaBindTextureToArray [C++ API, inherited channel
descriptor), cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C++ API)

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTextureToArray (const
textureTdimreadMode tex, cudaArray_const_t array)

[C++ API] Binds an array to a texture

Parameters

tex
- Texture to bind
array
- Memory array on device

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Binds the CUDA array array to the texture reference tex. The channel descriptor is inherited
from the CUDA array. Any CUDA array previously bound to tex is unbound.

CUDA Runtime API vRelease Version | 436

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor),
cudaBindTexture2D [C++ API), cudaBindTexture2D (C++ API, inherited channel descriptor],
cudaBindTextureToArray [C API), cudaBindTextureToArray [C++ API), cudaUnbindTexture [C+
+ APl), cudaGetTextureAlignmentOffset [C++ API)

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaBindTextureToArray (const
textureTdimreadMode tex, cudaArray_const_t array,
const cudaChannelFormatDesc desc]

[C++ API] Binds an array to a texture

Parameters

tex

- Texture to bind
array

- Memory array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

CUDA Runtime API vRelease Version | 437

Modules

Description

Binds the CUDA array array to the texture reference tex. desc describes how the memory
is interpreted when fetching values from the texture. Any CUDA array previously bound to tex
Is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor],
cudaBindTexture2D (C++ API), cudaBindTexture2D ([C++ AP, inherited channel descriptor],
cudaBindTextureToArray [C API), cudaBindTextureToArray (C++ API, inherited channel
descriptor), cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C++ API)

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t
cudaBindTextureToMipmappedArray

(const textureTdimreadMode tex,
cudaMipmappedArray_const_t mipmappedArray]

[C++ API] Binds a mipmapped array to a texture

Parameters

tex
- Texture to bind
mipmappedArray
- Memory mipmapped array on device

CUDA Runtime API vRelease Version | 438

Modules

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Binds the CUDA mipmapped array mipmappedArray to the texture reference tex. The
channel descriptor is inherited from the CUDA array. Any CUDA mipmapped array previously
bound to tex is unbound.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor),
cudaBindTexture2D [C++ API), cudaBindTexture2D (C++ API, inherited channel descriptor],
cudaBindTextureToArray [C API), cudaBindTextureToArray [C++ API), cudaUnbindTexture [C+
+ APl), cudaGetTextureAlignmentOffset [C++ API)

CUDA Runtime API vRelease Version | 439

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t
cudaBindTextureToMipmappedArray

(const textureTdimreadMode tex,
cudaMipmappedArray_const_t mipmappedArray,
const cudaChannelFormatDesc desc])

[C++ API] Binds a mipmapped array to a texture

Parameters

tex

- Texture to bind
mipmappedArray

- Memory mipmapped array on device
desc

- Channel format

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidTexture

Description

Modules

Binds the CUDA mipmapped array mipmappedArray to the texture reference tex. desc
describes how the memory is interpreted when fetching values from the texture. Any CUDA

mipmapped array previously bound to tex is unbound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

CUDA Runtime API vRelease Version | 440

Modules

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor),
cudaBindTexture2D [C++ API), cudaBindTexture2D ([C++ API, inherited channel descriptor],
cudaBindTextureToArray [C API), cudaBindTextureToArray [C++ API, inherited channel
descriptor), cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C++ API)

template < class T >
__host__cudaCreateChannelDesc (void]

[C++ API] Returns a channel descriptor using the specified format

Returns

Channel descriptor with format £

Description

Returns a channel descriptor with format £ and number of bits of each component %, y, z, and
w. The cudaChannelFormatDesc is defined as:

[struct cudaChannelFormatDesc {
int %, y, 2z, w;
enum cudaChannelFormatKind
£;

) 8

where cudaChannelFormatKind is one of cudaChannelFormatKindSigned,
cudaChannelFormatKindUnsigned, cudaChannelFormatKindFloat,
cudaChannelFormatKindSignedNormalized8X1,
cudaChannelFormatKindSignedNormalized8X2,
cudaChannelFormatKindSignedNormalized8X4,
cudaChannelFormatKindUnsignedNormalized8X1,
cudaChannelFormatKindUnsignedNormalized8X2,
cudaChannelFormatKindUnsignedNormalized8X4,

(

l

[

l

(

(

cudaChannelFormatKindSignedNormalized16X1,
cudaChannelFormatKindSignedNormalized16X2,
cudaChannelFormatKindSignedNormalized16X4,
cudaChannelFormatKindUnsignedNormalized16X1,
cudaChannelFormatKindUnsignedNormalized16X2,
cudaChannelFormatKindUnsignedNormalized16X4 or cudaChannelFormatKindNV12.

The format is specified by the template specialization.

The template function specializes for the following scalar types: char, signed char,
unsigned char, short, unsigned short, int, unsigned int, long, unsigned long, and

float. The template function specializes for the following vector types: char{1]2|4},
uchar{112[4}, short{11214}, ushort{11214}, int{11214}, uint{112[4}, long{11214}, ulong{112]4},
float{112]4}. The template function specializes for following cudaChannelFormatKind

CUDA Runtime API vRelease Version | 441

Modules

enum values: cudaChannelFormatKind{Uns|SlignedNormalized{8]16}X{112/4}, and
cudaChannelFormatKindNV12.

Invoking the function on a type without a specialization defaults to creating a channel format of
kind cudaChannelFormatKindNone

See also:

cudaCreateChannelDesc [Low level], cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [High level], cudaBindTexture [High level, inherited channel

descriptor), cudaBindTexture2D (High level], cudaBindTextureToArray (High level],
cudaBindTextureToArray [High level, inherited channel descriptor), cudaUnbindTexture [High
level], cudaGetTextureAlignmentOffset [High level]

__host__cudaError_t cudaEventCreate (cudaEvent t
*event, unsigned int flags)

[C++ API] Creates an event object with the specified flags

Parameters

event

- Newly created event
flags

- Flags for new event

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorLaunchFailure, cudaErrorMemoryAllocation

Description
Creates an event object with the specified flags. Valid flags include:

» cudaEventDefault: Default event creation flag.

» cudaEventBlockingSync: Specifies that event should use blocking synchronization. A host
thread that uses cudaEventSynchronize(] to wait on an event created with this flag will
block until the event actually completes.

» cudaEventDisableTiming: Specifies that the created event does not need to record timing
data. Events created with this flag specified and the cudaEventBlockingSync flag not
specified will provide the best performance when used with cudaStreamWaitEvent(] and
cudaEventQuery().

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 442

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaEventCreate [C API), cudaEventCreateWithFlags, cudaEventRecord, cudaEventQuery,
cudaEventSynchronize, cudaEventDestroy, cudaEventElapsedTime, cudaStreamWaitEvent

template < class T > ___host__cudaError_t
cudaFuncGetAttributes (cudaFuncAttributes *attr, T
*entry)

[C++ API] Find out attributes for a given function

Parameters

attr

- Return pointer to function’s attributes
entry

- Function to get attributes of

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

Description

This function obtains the attributes of a function specified via entry. The parameter entry
must be a pointer to a function that executes on the device. The parameter specified by entry
must be declared asa global function. The fetched attributes are placed in attr. If the
specified function does not exist, then cudaErrorinvalidDeviceFunction is returned.

Note that some function attributes such as maxThreadsPerBlock may vary based on the device
that is currently being used.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 443

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C++ API), cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes (C
API], cudaSetDoubleForDevice, cudaSetDoubleForHost

template < class T > __host__cudaError_t
cudaFuncSetAttribute (T *entry, cudaFuncAttribute
attr, int value)

[C++ API] Set attributes for a given function

Parameters
entry
- Function to get attributes of
attr
- Attribute to set
value
- Value to set

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidValue

Description

This function sets the attributes of a function specified via entry. The parameter entry must
be a pointer to a function that executes on the device. The parameter specified by entry must
be declaredasa global function. The enumeration defined by attr is set to the value
defined by value. If the specified function does not exist, then cudaErrorinvalidDeviceFunction
is returned. If the specified attribute cannot be written, or if the value is incorrect, then
cudaErrorinvalidValue is returned.

Valid values for attr are:

» cudaFuncAttributeMaxDynamicSharedMemorySize - The requested maximum
size in bytes of dynamically-allocated shared memory. The sum of this value
and the function attribute sharedSizeBytes cannot exceed the device attribute
cudaDevAttrMaxSharedMemoryPerBlockOptin. The maximal size of requestable dynamic
shared memory may differ by GPU architecture.

CUDA Runtime API vRelease Version | 444

Modules

» cudaFuncAttributePreferredSharedMemoryCarveout - On devices where the
L1 cache and shared memory use the same hardware resources, this sets the
shared memory carveout preference, in percent of the total shared memory. See
cudaDevAttrMaxSharedMemoryPerMultiprocessor. This is only a hint, and the driver can
choose a different ratio if required to execute the function.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C++ API), cudaFuncSetCacheConfig [C++ API), cudaFuncGetAttributes (C
API], cudaSetDoubleForDevice, cudaSetDoubleForHost

template < class T > __host__cudaError_t
cudaFuncSetCacheConfig (T *func, cudaFuncCache
cacheConfig]

[C++ API] Sets the preferred cache configuration for a device function

Parameters

func

- device function pointer
cacheConfig

- Requested cache configuration

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction

Description

On devices where the L1 cache and shared memory use the same hardware resources, this
sets through cacheConfig the preferred cache configuration for the function specified via
func. This is only a preference. The runtime will use the requested configuration if possible,
but it is free to choose a different configuration if required to execute func.

CUDA Runtime API vRelease Version | 445

Modules

func must be a pointer to a function that executes on the device. The parameter specified by
func must be declaredasa global function. If the specified function does not exist,
then cudaErrorinvalidDeviceFunction is returned.

This setting does nothing on devices where the size of the L1 cache and shared memory are
fixed.

Launching a kernel with a different preference than the most recent preference setting may
insert a device-side synchronization point.

The supported cache configurations are:

» cudaFuncCachePreferNone: no preference for shared memory or L1 (default)

» cudaFuncCachePreferShared: prefer larger shared memory and smaller L1 cache

» cudaFuncCachePreferL1: prefer larger L1 cache and smaller shared memory

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C++ API), cudaFuncSetCacheConfig [C API), cudaFuncGetAttributes
[C++ API], cudaSetDoubleForDevice, cudaSetDoubleForHost, cudaThreadGetCacheConfig,
cudaThreadSetCacheConfig

template < class T > ___host__cudaError_t
cudaGetSymbolAddress (void **devPtr, const T
symbol]

[C++ API] Finds the address associated with a CUDA symbol

Parameters

devPtr

- Return device pointer associated with symbol
symbol

- Device symbol reference

CUDA Runtime API vRelease Version | 446

Modules

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *devPtr the address of symbol symbol on the device. symbol can either be a
variable that resides in global or constant memory space. If symbol cannot be found, or if
symbol is not declared in the global or constant memory space, *devPtr is unchanged and
the error cudaErrorinvalidSymbol is returned.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGetSymbolAddress [C API), cudaGetSymbolSize [C++ API]

template < class T > __host__cudaError_t

cudaGetSymbolSize (size_t *size, const T symbol]
[C++ API] Finds the size of the object associated with a CUDA symbol

Parameters
size

- Size of object associated with symbol
symbol

- Device symbol reference

Returns

cudaSuccess, cudaErrorinvalidSymbol, cudaErrorNoKernellmageForDevice

Description

Returns in *size the size of symbol symbol. symbol must be a variable that resides in
global or constant memory space. If symbol cannot be found, or if symbol is not declared in

CUDA Runtime API vRelease Version | 447

Modules

global or constant memory space, *size is unchanged and the error cudaErrorlinvalidSymbol
is returned.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaGetSymbolAddress [C++ API), cudaGetSymbolSize [C API]

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaGetTextureAlignmentOffset

(size t *offset, const textureTdimreadMode tex)
[C++ API] Get the alignment offset of a texture

Parameters

offset

- Offset of texture reference in bytes
tex

- Texture to get offset of

Returns

cudaSuccess, cudaErrorinvalidTexture, cudaErrorinvalidTextureBinding

Description

Returns in *offset the offset that was returned when texture reference tex was bound.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 448

Modules

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor],
cudaBindTexture2D [C++ API), cudaBindTexture2D (C++ API, inherited channel descriptor],
cudaBindTextureToArray [C++ APIl), cudaBindTextureToArray (C++ API, inherited channel
descriptor), cudaUnbindTexture [C++ API), cudaGetTextureAlignmentOffset [C API)

template < class T > __host___cudaError_t
cudaGraphAddMemcpyNodeFromSymbol
(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,
const cudaGraphNode_t *pDependencies, size_t
numDependencies, void *dst, const T symbol, size_t
count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy from a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes

CUDA Runtime API vRelease Version | 449

Modules

kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node to copy from symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for
numDependencies to be 0, in which case the node will be placed at the root of the graph.
pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by offset bytes from the start of symbol symbol to the memory area pointed to by dst.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:
» Graph objects are not threadsafe. More here.
» Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyFromSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeToSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,
cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphCreate, cudaGraphDestroyNode,

CUDA Runtime API vRelease Version | 450

cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,

cudaGraphAddHostNode, cudaGraphAddMemsetNode

template < class T > __host__cudaError_t
cudaGraphAddMemcpyNodeToSymbol

Modules

(cudaGraphNode_t *pGraphNode, cudaGraph_t graph,

const cudaGraphNode_t *pDependencies, size_t

numDependencies, const T symbol, const void *src,

size_t count, size_t offset, cudaMemcpyKind kind)

Creates a memcpy node to copy to a symbol on the device and adds it to a graph.

Parameters

pGraphNode

- Returns newly created node
graph

- Graph to which to add the node
pDependencies

- Dependencies of the node
numDependencies

- Number of dependencies
symbol

- Device symbol address
src

- Source memory address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Creates a new memcpy node to copy to symbol and adds it to graph with
numDependencies dependencies specified via pDependencies. It is possible for

numDependencies to be 0, in which case the node will be placed at the root of the graph.

CUDA Runtime AP!I

vRelease Version | 451

Modules

pDependencies may not have any duplicate entries. A handle to the new node will be
returned in pGraphNode.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by of fset bytes from the start of symbol symbol.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Memcpy nodes have some additional restrictions with regards to managed memory, if
the system contains at least one device which has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyToSymbol, cudaGraphAddMemcpyNode,
cudaGraphAddMemcpyNodeFromSymbol, cudaGraphMemcpyNodeGetParams,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphCreate, cudaGraphDestroyNode,
cudaGraphAddChildGraphNode, cudaGraphAddEmptyNode, cudaGraphAddKernelNode,
cudaGraphAddHostNode, cudaGraphAddMemsetNode

CUDA Runtime API vRelease Version | 452

Modules

template < class T > __host___cudaError_t
cudaGraphExecMemcpyNodeSetParamsFromSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode _t
node, void *dst, const T symbol, size_t count, size_t
offset, cudaMemcpyKind kind])

Sets the parameters for a memcpy node in the given graphExec to copy from a symbol on the
device.

Parameters

hGraphExec
- The executable graph in which to set the specified node
node
- Memcpy node from the graph which was used to instantiate graphExec
dst
- Destination memory address
symbol
- Device symbol address
count
- Size in bytes to copy
offset
- Offset from start of symbol in bytes
kind
- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

symbol and dst must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

CUDA Runtime API vRelease Version | 453

Modules

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeFromSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsFromSymbol,
cudaGraphlnstantiate, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsToSymbol, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams

template < class T > ___host__cudaError_t
cudaGraphExecMemcpyNodeSetParamsToSymbol
(cudaGraphExec_t hGraphExec, cudaGraphNode_t
node, const T symbol, const void *src, size_t count,
size_t offset, cudaMemcpyKind kind]

Sets the parameters for a memcpy node in the given graphExec to copy to a symbol on the
device.

Parameters

hGraphExec
- The executable graph in which to set the specified node
node
- Memcpy node from the graph which was used to instantiate graphExec
symbol
- Device symbol address
src
- Source memory address
count
- Size in bytes to copy

CUDA Runtime API vRelease Version | 454

Modules

offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Updates the work represented by node in hGraphExec as though node had contained the
given params at instantiation. node must remain in the graph which was used to instantiate
hGraphExec. Changed edges to and from node are ignored.

src and symbol must be allocated from the same contexts as the original source and
destination memory. The instantiation-time memory operands must be 1-dimensional. Zero-
length operations are not supported.

The modifications only affect future launches of hGraphExec. Already enqueued or running
launches of hGraphExec are not affected by this call. node is also not modified by this call.

Returns cudaErrorinvalidValue if the memory operands’ mappings changed or the original
memory operands are multidimensional.

Note:
» Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaGraphAddMemcpyNode, cudaGraphAddMemcpyNodeToSymbol,
cudaGraphMemcpyNodeSetParams, cudaGraphMemcpyNodeSetParamsToSymbol,
cudaGraphlnstantiate, cudaGraphExecMemcpyNodeSetParams,
cudaGraphExecMemcpyNodeSetParamsFromSymbol, cudaGraphExecKernelNodeSetParams,
cudaGraphExecMemsetNodeSetParams, cudaGraphExecHostNodeSetParams

CUDA Runtime API vRelease Version | 455

Modules

template < class T > __host___cudaError_t
cudaGraphMemcpyNodeSetParamsFromSymbol
(cudaGraphNode_t node, void *dst, const T symbol,
size_t count, size_t offset, cudaMemcpyKind kind)

Sets a memcpy node’s parameters to copy from a symbol on the device.

Parameters

node

- Node to set the parameters for
dst

- Destination memory address
symbol

- Device symbol address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description
Sets the parameters of memcpy node node to the copy described by the provided parameters.

When the graph is launched, the node will copy count bytes from the memory area pointed
to by of fset bytes from the start of symbol symbol to the memory area pointed to by dst.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyDeviceToHost, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Note:
> Graph objects are not threadsafe. More here.

> Note that this function may also return error codes from previous, asynchronous launches.

CUDA Runtime API vRelease Version | 456

> Note that this function may also return cudaErrorinitializationError,

Modules

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal

CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called

from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyFromSymbol, cudaGraphMemcpyNodeSetParams,

cudaGraphMemcpyNodeSetParamsToSymbol, cudaGraphAddMemcpyNode,

cudaGraphMemcpyNodeGetParams

template < class T > __host__cudaError_t
cudaGraphMemcpyNodeSetParamsToSymbol

(cudaGraphNode_t node, const T symbol, const void

*src, size_t count, size_t offset, cudaMemcpyKind

kind)

Sets a memcpy node's parameters to copy to a symbol on the device.

Parameters

node

- Node to set the parameters for
symbol

- Device symbol address
src

- Source memory address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue

Description

Sets the parameters of memcpy node node to the copy described by the provided parameters.

CUDA Runtime AP!I

vRelease Version | 457

Modules

When the graph is launched, the node will copy count bytes from the memory area pointed
to by src to the memory area pointed to by of fset bytes from the start of symbol symbol.
The memory areas may not overlap. symbol is a variable that resides in global or constant
memory space. kind can be either cudaMemcpyHostToDevice, cudaMemcpyDeviceToDevice,
or cudaMemcpyDefault. Passing cudaMemcpyDefault is recommended, in which case the type
of transfer is inferred from the pointer values. However, cudaMemcpyDefault is only allowed
on systems that support unified virtual addressing.

Note:
> Graph objects are not threadsafe. More here.
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpyToSymbol, cudaGraphMemcpyNodeSetParams,
cudaGraphMemcpyNodeSetParamsFromSymbol, cudaGraphAddMemcpyNode,
cudaGraphMemcpyNodeGetParams

template < class T > __host__cudaError_t
cudalLaunchCooperativeKernel [const T *func,
dim3 gridDim, dim3 blockDim, void **args, size_t
sharedMem, cudaStream_t stream)

Launches a device function.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions
blockDim

- Block dimentions

CUDA Runtime API vRelease Version | 458

Modules

args

- Arguments
sharedMem

- Shared memory (defaults to 0]
stream

- Stream identifier (defaults to NULL)

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorSharedObjectlnitFailed

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim [blockDim.x blockDim.y blockDim. z] threads.

The device on which this kernel is invoked must have a non-zero value for the device attribute
cudaDevAttrCooperativeLaunch.

The total number of blocks launched cannot exceed the maximum number of blocks

per multiprocessor as returned by cudaOccupancyMaxActiveBlocksPerMultiprocessor
(or cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags) times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount.

The kernel cannot make use of CUDA dynamic parallelism.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
fromargs[0] toargs[N - 1], pointto the region of memory from which the actual
parameter will be copied.

sharedMemn sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

» This function uses standard default stream semantics.

» Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 459

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchCooperativeKernel [C API)

template < class T > __host__cudaError_t
cudaLaunchKernel (const T *func, dim3 gridDim,
dim3 blockDim, void **args, size_t sharedMem,
cudaStream_t stream)

Launches a device function.

Parameters

func

- Device function symbol
gridDim

- Grid dimentions
blockDim

- Block dimentions
args

- Arguments
sharedMem

- Shared memory (defaults to 0]
stream

- Stream identifier (defaults to NULL)

Returns

cudaSuccess, cudaErrorinvalidDeviceFunction, cudaErrorinvalidConfiguration,
cudaErrorLaunchFailure, cudaErrorLaunchTimeout, cudaErrorLaunchOutOfResources,
cudaErrorSharedQObjectinitFailed, cudaErrorinvalidPtx, cudaErrorUnsupportedPtxVersion,
cudaErrorNoKernellmageForDevice, cudaErrorJitCompilerNotFound,
cudaErrorJitCompilationDisabled

Description

The function invokes kernel func on gridDim (gridDim.x gridDim.y gridDim. z) grid of
blocks. Each block contains blockDim (blockDim.x blockDim.y blockDim. z) threads.

If the kernel has N parameters the args should point to array of N pointers. Each pointer,
from args[0] to args [N - 1], pointto the region of memory from which the actual
parameter will be copied.

CUDA Runtime API vRelease Version | 460

Modules

sharedMem sets the amount of dynamic shared memory that will be available to each thread
block.

stream specifies a stream the invocation is associated to.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.
» This function exhibits asynchronous behavior for most use cases.

> This function uses standard default stream semantics.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

cudalaunchKernel [C API)

__host__cudaError_t cudaMallocAsync (void **ptr,
size tsize, cudaMemPool t memPool, cudaStream t
stream)

Allocate from a pool.

Description

This is an alternate spelling for cudaMallocFromPoolAsync made available through operator
overloading.

See also:

cudaMallocFromPoolAsync, cudaMallocAsync [C API)

__host__cudaError_t cudaMallocHost (void **ptr,
size_t size, unsigned int flags])
[C++ API] Allocates page-locked memory on the host

Parameters

ptr
- Device pointer to allocated memory

CUDA Runtime API vRelease Version | 461

Modules

size
- Requested allocation size in bytes
flags
- Requested properties of allocated memory

Returns

cudaSuccess, cudaErrorMemoryAllocation

Description

Allocates size bytes of host memory that is page-locked and accessible to the device.

The driver tracks the virtual memory ranges allocated with this function and automatically
accelerates calls to functions such as cudaMemcpy(). Since the memory can be accessed
directly by the device, it can be read or written with much higher bandwidth than pageable
memory obtained with functions such as malloc(). Allocating excessive amounts of pinned
memory may degrade system performance, since it reduces the amount of memory available
to the system for paging. As a result, this function is best used sparingly to allocate staging
areas for data exchange between host and device.

The flags parameter enables different options to be specified that affect the allocation, as
follows.

» cudaHostAllocDefault: This flag's value is defined to be 0.

» cudaHostAllocPortable: The memory returned by this call will be considered as pinned
memory by all CUDA contexts, not just the one that performed the allocation.

» cudaHostAllocMapped: Maps the allocation into the CUDA address space. The device
pointer to the memory may be obtained by calling cudaHostGetDevicePointer().

» cudaHostAllocWriteCombined: Allocates the memory as write-combined (WC). WC
memory can be transferred across the PCI Express bus more quickly on some system
configurations, but cannot be read efficiently by most CPUs. WC memory is a good option
for buffers that will be written by the CPU and read by the device via mapped pinned
memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is
portable, mapped and/or write-combined with no restrictions.

cudaSetDeviceFlags(] must have been called with the cudaDeviceMapHost flag in order for the
cudaHostAllocMapped flag to have any effect.

The cudaHostAllocMapped flag may be specified on CUDA contexts for devices that do not
support mapped pinned memory. The failure is deferred to cudaHostGetDevicePointer(]
because the memory may be mapped into other CUDA contexts via the cudaHostAllocPortable
flag.

Memory allocated by this function must be freed with cudaFreeHost(].

CUDA Runtime API vRelease Version | 462

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaSetDeviceFlags, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc

template < class T > __host__cudaError_t
cudaMallocManaged (T **devPtr, size_t size, unsigned
int flags])

Allocates memory that will be automatically managed by the Unified Memory system.

Parameters

devPtr
- Pointer to allocated device memory
size
- Requested allocation size in bytes
flags
- Must be either cudaMemAttachGlobal or cudaMemAttachHost (defaults to
cudaMemAttachGlobal)

Returns

cudaSuccess, cudaErrorMemoryAllocation, cudaErrorNotSupported, cudaErrorinvalidValue

Description

Allocates size bytes of managed memory on the device and returns in *devPtr a pointer
to the allocated memory. If the device doesn't support allocating managed memory,
cudaErrorNotSupported is returned. Support for managed memory can be queried using the
device attribute cudaDevAttrManagedMemory. The allocated memory is suitably aligned for
any kind of variable. The memory is not cleared. If size is 0, cudaMallocManaged returns
cudakrrorinvalidValue. The pointer is valid on the CPU and on all GPUs in the system that

CUDA Runtime API vRelease Version | 463

Modules

support managed memory. All accesses to this pointer must obey the Unified Memory
programming model.

flags specifies the default stream association for this allocation. f1ags must be

one of cudaMemAttachGlobal or cudaMemAttachHost. The default value for £lags is
cudaMemAttachGlobal. If cudaMemAttachGlobal is specified, then this memory is accessible
from any stream on any device. If cudaMemAttachHost is specified, then the allocation
should not be accessed from devices that have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess; an explicit call to cudaStreamAttachMemAsync will
be required to enable access on such devices.

If the association is later changed via cudaStreamAttachMemAsync to a single stream,

the default association, as specifed during cudaMallocManaged, is restored when that
stream is destroyed. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

Memory allocated with cudaMallocManaged should be released with cudaFree.

Device memory oversubscription is possible for GPUs that have a non-zero value for the device
attribute cudaDevAttrConcurrentManagedAccess. Managed memory on such GPUs may be
evicted from device memory to host memory at any time by the Unified Memory driver in order
to make room for other allocations.

In a multi-GPU system where all GPUs have a non-zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, managed memory may not be populated when this
APl returns and instead may be populated on access. In such systems, managed memory
can migrate to any processor's memory at any time. The Unified Memory driver will employ
heuristics to maintain data locality and prevent excessive page faults to the extent possible.
The application can also guide the driver about memory usage patterns via cudaMemAdvise.
The application can also explicitly migrate memory to a desired processor’'s memory via
cudaMemPrefetchAsync.

In a multi-GPU system where all of the GPUs have a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess and all the GPUs have peer-to-peer support with
each other, the physical storage for managed memory is created on the GPU which is active
at the time cudaMallocManaged is called. All other GPUs will reference the data at reduced
bandwidth via peer mappings over the PCle bus. The Unified Memory driver does not migrate
memory among such GPUs.

In @ multi-GPU system where not all GPUs have peer-to-peer support with each other and
where the value of the device attribute cudaDevAttrConcurrentManagedAccess is zero for
at least one of those GPUs, the location chosen for physical storage of managed memory is
system-dependent.

» On Linux, the location chosen will be device memory as long as the current set of active
contexts are on devices that either have peer-to-peer support with each other or have a

CUDA Runtime API vRelease Version | 464

Modules

non-zero value for the device attribute cudaDevAttrConcurrentManagedAccess. If there
is an active context on a GPU that does not have a non-zero value for that device attribute
and it does not have peer-to-peer support with the other devices that have active contexts
on them, then the location for physical storage will be ‘zero-copy’ or host memory. Note
that this means that managed memory that is located in device memory is migrated to
host memory if a new context is created on a GPU that doesn't have a non-zero value

for the device attribute and does not support peer-to-peer with at least one of the other
devices that has an active context. This in turn implies that context creation may fail if
there is insufficient host memory to migrate all managed allocations.

» On Windows, the physical storage is always created in ‘zero-copy’ or host memory.
All GPUs will reference the data at reduced bandwidth over the PCle bus. In these
circumstances, use of the environment variable CUDA_VISIBLE DEVICES is recommended
to restrict CUDA to only use those GPUs that have peer-to-peer support. Alternatively,
users can also set CUDA_MANAGED_ FORCE_DEVICE_ALLOC to a non-zero value
to force the driver to always use device memory for physical storage. When this
environment variable is set to a non-zero value, all devices used in that process that
support managed memory have to be peer-to-peer compatible with each other. The error
cudaErrorinvalidDevice will be returned if a device that supports managed memory is used
and it is not peer-to-peer compatible with any of the other managed memory supporting
devices that were previously used in that process, even if cudaDeviceReset has been called
on those devices. These environment variables are described in the CUDA programming
guide under the "CUDA environment variables” section.

» On ARM, managed memory is not available on discrete gpu with Drive PX-2.

Note:

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMallocPitch, cudaFree, cudaMallocArray, cudaFreeArray, cudaMalloc3D,
cudaMalloc3DArray, cudaMallocHost [C API), cudaFreeHost, cudaHostAlloc,
cudaDeviceGetAttribute, cudaStreamAttachMemAsync

CUDA Runtime API vRelease Version | 465

Modules

template < class T > __host___cudaError_t
cudaMemcpyFromSymbol (void *dst, const T symbol,
size_t count, size_t offset, cudaMemcpyKind kind)

[C++ API] Copies data from the given symbol on the device

Parameters

dst

- Destination memory address
symbol

- Device symbol reference
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudakErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area of fset bytes from the start of symbol
symbol to the memory area pointed to by dst. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost or cudaMemcpyDeviceToDevice.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 466

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyAsync,
cudaMemcpy?2DAsync, cudaMemcpy?2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync

template < class T > __host__cudaError_t
cudaMemcpyFromSymbolAsync (void *dst, const T
symbol, size_t count, size_t offset, cudaMemcpyKind
kind, cudaStream_t stream)

[C++ API] Copies data from the given symbol on the device

Parameters

dst

- Destination memory address
symbol

- Device symbol reference
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area offset bytes from the start of symbol
symbol to the memory area pointed to by dst. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyDeviceToHost or cudaMemcpyDeviceToDevice.

CUDA Runtime API vRelease Version | 467

Modules

cudaMemcpyFromSymbolAsync() is asynchronous with respect to the host, so the call may

return before the copy is complete. The copy can optionally be associated to a stream by
passing a non-zero streamargument. If kind is cudaMemcpyDeviceToHost and stream is
non-zero, the copy may overlap with operations in other streams.

Note:

> Note that this function may also return error codes from previous, asynchronous launches.

> This function exhibits asynchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy2DToArray, cudaMemcpy2DFromArray,

cudaMemcpyZ2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,

cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,

cudaMemcpyZ2DFromArrayAsync, cudaMemcpyToSymbolAsync

template < class T > __host___cudaError_t
cudaMemcpyToSymbol (const T symbol, const void
*src, size_t count, size_t offset, cudaMemcpyKind

kind)

[C++ API] Copies data to the given symbol on the device

Parameters

symbol

- Device symbol reference

src

- Source memory address

count

- Size in bytes to copy

CUDA Runtime API vRelease Version | 468

Modules

offset

- Offset from start of symbol in bytes
kind

- Type of transfer

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area
offset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice or cudaMemcpyDeviceToDevice.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.
> This function exhibits synchronous behavior for most use cases.

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy2D, cudaMemcpy?2DToArray, cudaMemcpy2DFromArray,
cudaMemcpyZ2DArrayToArray, cudaMemcpyFromSymbol, cudaMemcpyAsync,
cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync, cudaMemcpy2DFromArrayAsync,
cudaMemcpyToSymbolAsync, cudaMemcpyFromSymbolAsync

CUDA Runtime API vRelease Version | 469

Modules

template < class T > __host___cudaError_t
cudaMemcpyToSymbolAsync (const T symbol, const
void *src, size_t count, size_t offset, cudaMemcpyKind

kind, cudaStream_t stream)
[C++ API] Copies data to the given symbol on the device

Parameters

symbol

- Device symbol reference
src

- Source memory address
count

- Size in bytes to copy
offset

- Offset from start of symbol in bytes
kind

- Type of transfer
stream

- Stream identifier

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorinvalidSymbol,
cudaErrorinvalidMemcpyDirection, cudaErrorNoKernellmageForDevice

Description

Copies count bytes from the memory area pointed to by src to the memory area
offset bytes from the start of symbol symbol. The memory areas may not overlap.
symbol is a variable that resides in global or constant memory space. kind can be either
cudaMemcpyHostToDevice or cudaMemcpyDeviceToDevice.

cudaMemcpyToSymbolAsync(]) is asynchronous with respect to the host, so the call may return
before the copy is complete. The copy can optionally be associated to a stream by passing a
non-zero stream argument. If kind is cudaMemcpyHostToDevice and stream is non-zero,
the copy may overlap with operations in other streams.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> This function exhibits asynchronous behavior for most use cases.

CUDA Runtime API vRelease Version | 470

Modules

> Use of a string naming a variable as the symbol parameter was deprecated in CUDA 4.1
and removed in CUDA 5.0.

> Note that this function may also return cudaErrorinitializationError,
cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaMemcpy, cudaMemcpy?D, cudaMemcpy?2DToArray, cudaMemcpyZ2DFromArray,
cudaMemcpy2DArrayToArray, cudaMemcpyToSymbol, cudaMemcpyFromSymbol,
cudaMemcpyAsync, cudaMemcpy2DAsync, cudaMemcpy2DToArrayAsync,
cudaMemcpyZ2DFromArrayAsync, cudaMemcpyFromSymbolAsync

template < class T > ___host__cudaError_t
cudaOccupancyAvailableDynamicSMemPerBlock

[size_t *dynamicSmemSize, T func, int numBlocks, int
blockSize])

Returns dynamic shared memory available per block when launching numBlocks blocks on
SM.

Parameters

dynamicSmemSize

- Returned maximum dynamic shared memory
func

- Kernel function for which occupancy is calculated
numBlocks

- Number of blocks to fit on SM
blockSize

- Size of the block

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *dynamicSmemSize the maximum size of dynamic shared memory to allow
numBlocks blocks per SM.

CUDA Runtime API vRelease Version | 471

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

template < class T > ___host__cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessor
(int *numBlocks, T func, int blockSize, size t
dynamicSMemSize]

Returns occupancy for a device function.

Parameters

numBlocks
- Returned occupancy
func
- Kernel function for which occupancy is calulated
blockSize
- Block size the kernel is intended to be launched with
dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes

CUDA Runtime API vRelease Version | 472

Modules

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

template < class T>__host cudaError_t
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags
(int *numBlocks, T func, int blockSize, size t
dynamicSMemSize, unsigned int flags)

Returns occupancy for a device function with the specified flags.

Parameters

numBlocks
- Returned occupancy

CUDA Runtime API vRelease Version | 473

Modules

func

- Kernel function for which occupancy is calulated
blockSize

- Block size the kernel is intended to be launched with
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
flags

- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorlnvalidValue, cudaErrorUnknown,

Description

Returns in *numBlocks the maximum number of active blocks per streaming multiprocessor
for the device function.

The flags parameter controls how special cases are handled. Valid flags include:

» cudaOccupancyDefault: keeps the default behavior as
cudaOccupancyMaxActiveBlocksPerMultiprocessor

» cudaOccupancyDisableCachingOverride: suppresses the default behavior on platform
where global caching affects occupancy. On such platforms, if caching is enabled, but per-
block SM resource usage would result in zero occupancy, the occupancy calculator will
calculate the occupancy as if caching is disabled. Setting this flag makes the occupancy
calculator to return 0 in such cases. More information can be found about this feature in
the "Unified L1/Texture Cache” section of the Maxwell tuning guide.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxPotentialBlockSize

CUDA Runtime API vRelease Version | 474

Modules

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

template < class T > ___host__cudaError_t
cudaOccupancyMaxPotentialBlockSize (int
*minGridSize, int *blockSize, T func, size t
dynamicSMemSize, int blockSizeLimit)

Returns grid and block size that achieves maximum potential occupancy for a device function.

Parameters

minGridSize
- Returned minimum grid size needed to achieve the best potential occupancy
blockSize
- Returned block size
func
- Device function symbol
dynamicSMemSize
- Per-block dynamic shared memory usage intended, in bytes
blockSizeLimit
- The maximum block size func is designed to work with. 0 means no limit.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves
the best potential occupancy (i.e. the maximum number of active warps with the smallest
number of blocks).

Use
See also:

cudaOccupancyMaxPotentialBlockSizeVariableSMem if the amount of per-block dynamic
shared memory changes with different block sizes.

CUDA Runtime API vRelease Version | 475

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

template < typename UnaryFunction,

class T> _ host cudaError t
cudaOccupancyMaxPotentialBlockSizeVariableSMem
(int *minGridSize, int *blockSize, T func,
UnaryFunction blockSizeToDynamicSMemSize, int
blockSizeLimit)

Returns grid and block size that achieves maximum potential occupancy for a device function.

Parameters

minGridSize

- Returned minimum grid size needed to achieve the best potential occupancy
blockSize

- Returned block size
func

- Device function symbol

CUDA Runtime API vRelease Version | 476

Modules

blockSizeToDynamicSMemSize
- A unary function / functor that takes block size, and returns the size, in bytes, of dynamic
shared memory needed for a block

blockSizeLimit
- The maximum block size func is designed to work with. 0 means no limit.

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves
the best potential occupancy (i.e. the maximum number of active warps with the smallest
number of blocks).

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a
diagnostic in such case.

See also:

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

CUDA Runtime API vRelease Version | 477

Modules

template < typename UnaryFunction,

class T > host cudaError_t
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags
(int *minGridSize, int *blockSize, T func,

UnaryFunction blockSizeToDynamicSMemSize, int
blockSizeLimit, unsigned int flags)

Returns grid and block size that achieves maximum potential occupancy for a device function.

Parameters

minGridSize
- Returned minimum grid size needed to achieve the best potential occupancy
blockSize
- Returned block size
func
- Device function symbol
blockSizeToDynamicSMemSize
- A unary function / functor that takes block size, and returns the size, in bytes, of dynamic
shared memory needed for a block
blockSizeLimit
- The maximum block size func is designed to work with. 0 means no limit.
flags
- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorinvalidValue, cudaErrorUnknown,

Description

Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves
the best potential occupancy (i.e. the maximum number of active warps with the smallest
number of blocks).

The flags parameter controls how special cases are handled. Valid flags include:

> cudaOccupancyDefault: keeps the default behavior as
cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

» cudaOccupancyDisableCachingOverride: This flag suppresses the default behavior
on platform where global caching affects occupancy. On such platforms, if caching is
enabled, but per-block SM resource usage would result in zero occupancy, the occupancy

CUDA Runtime API vRelease Version | 478

Modules

calculator will calculate the occupancy as if caching is disabled. Setting this flag makes
the occupancy calculator to return 0 in such cases. More information can be found about
this feature in the "Unified L1/Texture Cache"” section of the Maxwell tuning guide.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxPotentialBlockSizeWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

template < class T > __host__cudaError_t
cudaOccupancyMaxPotentialBlockSizeWithFlags
(int *minGridSize, int *blockSize, T func, size t
dynamicSMemSize, int blockSizeLimit, unsigned int
flags)

Returns grid and block size that achived maximum potential occupancy for a device function
with the specified flags.

Parameters

minGridSize

- Returned minimum grid size needed to achieve the best potential occupancy
blockSize
- Returned block size

CUDA Runtime API vRelease Version | 479

Modules

func

- Device function symbol
dynamicSMemSize

- Per-block dynamic shared memory usage intended, in bytes
blockSizeLimit

- The maximum block size func is designed to work with. 0 means no limit.
flags

- Requested behavior for the occupancy calculator

Returns

cudaSuccess, cudaErrorinvalidDevice, cudaErrorinvalidDeviceFunction,
cudaErrorlnvalidValue, cudaErrorUnknown,

Description

Returns in *minGridSize and *blocksize a suggested grid / block size pair that achieves
the best potential occupancy [i.e. the maximum number of active warps with the smallest
number of blocks).

The flags parameter controls how special cases are handle. Valid flags include:

> cudaOccupancyDefault: keeps the default behavior as
cudaOccupancyMaxPotentialBlockSize

» cudaOccupancyDisableCachingOverride: This flag suppresses the default behavior
on platform where global caching affects occupancy. On such platforms, if caching is
enabled, but per-block SM resource usage would result in zero occupancy, the occupancy
calculator will calculate the occupancy as if caching is disabled. Setting this flag makes
the occupancy calculator to return 0 in such cases. More information can be found about
this feature in the "Unified L1/Texture Cache” section of the Maxwell tuning guide.

Use

See also:

cudaOccupancyMaxPotentialBlockSizeVariableSMem if the amount of per-block dynamic
shared memory changes with different block sizes.

Note:
» Note that this function may also return error codes from previous, asynchronous launches.

» Note that this function may also return cudaErrorinitializationError,

cudaErrorlnsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 480

Modules

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaOccupancyMaxPotentialBlockSize

cudaOccupancyMaxActiveBlocksPerMultiprocessor

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

cudaOccupancyMaxPotentialBlockSizeVariableSMem

cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags

cudaOccupancyAvailableDynamicSMemPerBlock

template < class T > ___host__cudaError_t
cudaStreamAttachMemAsync (cudaStream_t stream,
T *devPtr, size_t length, unsigned int flags]

Attach memory to a stream asynchronously.

Parameters

stream
- Stream in which to enqueue the attach operation

devPtr
- Pointer to memory (must be a pointer to managed memory or to a valid host-accessible
region of system-allocated memory)

length
- Length of memory (defaults to zero)

flags
- Must be one of cudaMemAttachGlobal, cudaMemAttachHost or cudaMemAttachSingle
(defaults to cudaMemAttachSingle)

Returns

cudaSuccess, cudaErrorNotReady, cudaErrorinvalidValue, cudaErrorinvalidResourceHandle

Description

Enqueues an operation in stream to specify stream association of length bytes of memory
starting from devPtr. This function is a stream-ordered operation, meaning that it is
dependent on, and will only take effect when, previous work in stream has completed. Any
previous association is automatically replaced.

devPtr must point to an one of the following types of memories:

CUDA Runtime API vRelease Version | 481

Modules

» managed memory declared using the __managed__ keyword or allocated with
cudaMallocManaged.

» avalid host-accessible region of system-allocated pageable memory. This type of memory
may only be specified if the device associated with the stream reports a non-zero value for
the device attribute cudaDevAttrPageableMemoryAccess.

For managed allocations, length must be either zero or the entire allocation’s size. Both
indicate that the entire allocation’s stream association is being changed. Currently, it is not
possible to change stream association for a portion of a managed allocation.

For pageable allocations, 1ength must be non-zero.

The stream association is specified using f1ags which must be one of cudaMemAttachGlobal,
cudaMemAttachHost or cudaMemAttachSingle. The default value for flags is
cudaMemAttachSingle If the cudaMemAttachGlobal flag is specified, the memory

can be accessed by any stream on any device. If the cudaMemAttachHost flag is

specified, the program makes a guarantee that it won't access the memory on the

device from any stream on a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess. If the cudaMemAttachSingle flag is specified

and stream is associated with a device that has a zero value for the device attribute
cudaDevAttrConcurrentManagedAccess, the program makes a guarantee that it will only
access the memory on the device from stream. It is illegal to attach singly to the NULL
stream, because the NULL stream is a virtual global stream and not a specific stream. An
error will be returned in this case.

When memory is associated with a single stream, the Unified Memory system will allow

CPU access to this memory region so long as all operations in stream have completed,
regardless of whether other streams are active. In effect, this constrains exclusive ownership
of the managed memory region by an active GPU to per-stream activity instead of whole-GPU
activity.

Accessing memory on the device from streams that are not associated with it will produce
undefined results. No error checking is performed by the Unified Memory system to ensure
that kernels launched into other streams do not access this region.

It is a program’s responsibility to order calls to cudaStreamAttachMemAsync via events,
synchronization or other means to ensure legal access to memory at all times. Data visibility
and coherency will be changed appropriately for all kernels which follow a stream-association
change.

If stream is destroyed while data is associated with it, the association is removed

and the association reverts to the default visibility of the allocation as specified at
cudaMallocManaged. For __managed__ variables, the default association is always
cudaMemAttachGlobal. Note that destroying a stream is an asynchronous operation, and
as a result, the change to default association won't happen until all work in the stream has
completed.

CUDA Runtime API vRelease Version | 482

Modules

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorlnitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

> Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaStreamCreate, cudaStreamCreateWithFlags, cudaStreamWaitEvent,
cudaStreamSynchronize, cudaStreamAddCallback, cudaStreamDestroy, cudaMallocManaged

template < class T, int dim, enum
cudaTextureReadMode readMode >
__host__cudaError_t cudaUnbindTexture (const
textureTdimreadMode tex]

[C++ API] Unbinds a texture

Parameters

tex
- Texture to unbind

Returns

cudaSuccess, cudaErrorinvalidTexture

Description

Unbinds the texture bound to tex. If texref is not currently bound, no operation is
performed.

Note:
> Note that this function may also return error codes from previous, asynchronous launches.

> Note that this function may also return cudaErrorinitializationError,

cudaErrorinsufficientDriver or cudaErrorNoDevice if this call tries to initialize internal
CUDA RT state.

CUDA Runtime API vRelease Version | 483

Modules

» Note that as specified by cudaStreamAddCallback no CUDA function may be called
from callback. cudaErrorNotPermitted may, but is not guaranteed to, be returned as a

diagnostic in such case.

See also:

cudaCreateChannelDesc [C++ API), cudaGetChannelDesc, cudaGetTextureReference,
cudaBindTexture [C++ API), cudaBindTexture [C++ API, inherited channel descriptor),
cudaBindTexture2D [C++ API), cudaBindTexture2D (C++ API, inherited channel descriptor],
cudaBindTextureToArray [C++ API), cudaBindTextureToArray [C++ AP, inherited channel
descriptor), cudaUnbindTexture [C API), cudaGetTextureAlignmentOffset [C++ API)

6.33. Interactions with the CUDA Driver API

This section describes the interactions between the CUDA Driver APl and the CUDA Runtime
API

Primary Contexts

There exists a one to one relationship between CUDA devices in the CUDA Runtime APl and
CUcontext s in the CUDA Driver APl within a process. The specific context which the CUDA
Runtime APl uses for a device is called the device's primary context. From the perspective of
the CUDA Runtime API, a device and its primary context are synonymous.

Initialization and Tear-Down

CUDA Runtime API calls operate on the CUDA Driver APl CUcontext which is current to to the
calling host thread.

The function cudaSetDevice() makes the primary context for the specified device current to the
calling thread by calling cuCtxSetCurrent().

The CUDA Runtime APl will automatically initialize the primary context for a device at the
first CUDA Runtime API call which requires an active context. If no CUcontext is current to
the calling thread when a CUDA Runtime API call which requires an active context is made,
then the primary context for a device will be selected, made current to the calling thread, and
initialized.

The context which the CUDA Runtime APl initializes will be initialized

using the parameters specified by the CUDA Runtime API functions

cudaSetDeviceFlagsl), cudaD3D9SetDirect3DDevice(), cudaD3D10SetDirect3DDevicel(),
cudaD3D11SetDirect3DDevice(), cudaGLSetGLDevice(), and cudaVDPAUSetVDPAUDevice().
Note that these functions will fail with cudakrrorSetOnActiveProcess if they are called when
the primary context for the specified device has already been initialized. (or if the current
device has already been initialized, in the case of cudaSetDeviceFlags(]).

CUDA Runtime API vRelease Version | 484

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1gbe562ee6258b4fcc272ca6478ca2a2f7
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9

Modules

Primary contexts will remain active until they are explicitly deinitialized using
cudaDeviceReset(). The function cudaDeviceReset() will deinitialize the primary context for
the calling thread's current device immediately. The context will remain current to all of the
threads that it was current to. The next CUDA Runtime API call on any thread which requires
an active context will trigger the reinitialization of that device's primary context.

Note that primary contexts are shared resources. It is recommended that the primary context
not be reset except just before exit or to recover from an unspecified launch failure.

Context Interoperability

Note that the use of multiple CUcontext s per device within a single process will substantially
degrade performance and is strongly discouraged. Instead, it is highly recommended that the
implicit one-to-one device-to-context mapping for the process provided by the CUDA Runtime
API be used.

If a non-primary CUcontext created by the CUDA Driver APl is current to a thread then the
CUDA Runtime API calls to that thread will operate on that CUcontext, with some exceptions
listed below. Interoperability between data types is discussed in the following sections.

The function cudaPointerGetAttributes(] will return the error
cudaErrorincompatibleDriverContext if the pointer being queried was allocated by a non-
primary context. The function cudaDeviceEnablePeerAccess(] and the rest of the peer access
APl may not be called when a non-primary CUcontext is current. To use the pointer query and
peer access APls with a context created using the CUDA Driver API, it is necessary that the
CUDA Driver API be used to access these features.

ALl CUDA Runtime API state (e.g, global variables' addresses and values] travels with its
underlying CUcontext. In particular, if a CUcontext is moved from one thread to another then
all CUDA Runtime API state will move to that thread as well.

Please note that attaching to legacy contexts (those with a version of 3010 as
returned by cuCtxGetApiVersion(]) is not possible. The CUDA Runtime will return
cudaErrorincompatibleDriverContext in such cases.

Interactions between CUstream and cudaStream_t

The types CUstream and cudaStream_t are identical and may be used interchangeably.
Interactions between CUevent and cudaEvent_t

The types CUevent and cudaEvent t are identical and may be used interchangeably.

Interactions between CUarray and cudaArray_t

The types CUarray and struct cudaArray * represent the same data type and may be used
interchangeably by casting the two types between each other.

In order to use a CUarray in a CUDA Runtime API function which takes a struct cudaArray *, it
is necessary to explicitly cast the CUarray to a struct cudaArray *.

CUDA Runtime API vRelease Version | 485

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g088a90490dafca5893ef6fbebc8de8fb
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gb946c7f02e09efd788a204718015d88a
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g6d740185cf0953636d4ae37f68d7559b
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd550651524a56766b60f10f0e7628042
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd550651524a56766b60f10f0e7628042
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd550651524a56766b60f10f0e7628042

Modules

In order to use a struct cudaArray * in a CUDA Driver API function which takes a CUarray, it is
necessary to explicitly cast the struct cudaArray * to a CUarray .

Interactions between CUgraphicsResource and cudaGraphicsResource_t

The types CUgraphicsResource and cudaGraphicsResource_t represent the same data type
and may be used interchangeably by casting the two types between each other.

In order to use a CUgraphicsResource in a CUDA Runtime API function which takes a
cudaGraphicsResource_t, it is necessary to explicitly cast the CUgraphicsResource to a
cudaGraphicsResource t.

In order to use a cudaGraphicsResource tin a CUDA Driver APl function which takes a
CUgraphicsResource, it is necessary to explicitly cast the cudaGraphicsResource_t to a
CUgraphicsResource.

Interactions between CUtexObject * and cudaTextureObject_t

The types CUtexObject * and cudaTextureObject t represent the same data type and may be
used interchangeably by casting the two types between each other.

In order to use a CUtexObject * in a CUDA Runtime API function which takes
a cudaTextureObject t, it is necessary to explicitly cast the CUtexObject * to a
cudaTextureObject t.

In order to use a cudaTextureObject_t in a CUDA Driver API function which takes a
CUtexObject *, it is necessary to explicitly cast the cudaTextureObject t to a CUtexObject *.

Interactions between CUsurfObject * and cudaSurfaceObject_t

The types CUsurfObject * and cudaSurfaceObject t represent the same data type and may be
used interchangeably by casting the two types between each other.

In order to use a CUsurfObject * in a CUDA Runtime API function which takes
a cudaSurfaceObjec_t, it is necessary to explicitly cast the CUsurfObject * to a
cudaSurfaceObject t.

In order to use a cudaSurfaceObject tin a CUDA Driver API function which takes a
CUsurfObject *, it is necessary to explicitly cast the cudaSurfaceObject_t to a CUsurfObject *.

Interactions between CUfunction and cudaFunction_t

The types CUfunction and cudaFunction_t represent the same data type and may be used
interchangeably by casting the two types between each other.

In order to use a cudaFunction_tin a CUDA Driver APl function which takes a CUfunction, it is
necessary to explicitly cast the cudaFunction_t to a CUfunction.

CUDA Runtime API vRelease Version | 486

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd550651524a56766b60f10f0e7628042
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gd550651524a56766b60f10f0e7628042
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc0c4e1704647178d9c5ba3be46517dcd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc0c4e1704647178d9c5ba3be46517dcd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc0c4e1704647178d9c5ba3be46517dcd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc0c4e1704647178d9c5ba3be46517dcd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gc0c4e1704647178d9c5ba3be46517dcd
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g65fb6720dea73d56db0b4d4974be052d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g65fb6720dea73d56db0b4d4974be052d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g65fb6720dea73d56db0b4d4974be052d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g65fb6720dea73d56db0b4d4974be052d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g65fb6720dea73d56db0b4d4974be052d
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4acc685a8412637d05668e30e984e220
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4acc685a8412637d05668e30e984e220
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4acc685a8412637d05668e30e984e220
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4acc685a8412637d05668e30e984e220
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g4acc685a8412637d05668e30e984e220
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gba6128b948022f495706d93bc2cea9c8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gba6128b948022f495706d93bc2cea9c8
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gba6128b948022f495706d93bc2cea9c8

Modules

__host__cudaError_t cudaGetFuncBySymbol
(cudaFunction_t *functionPtr, const void *symbolPtr]

Get pointer to device entry function that matches entry function symbolPtr.

Parameters

functionPtr

- Returns the device entry function
symbolPtr

- Pointer to device entry function to search for

Returns

cudaSuccess

Description

Returns in functionPtr the device entry function corresponding to the symbol symbolPtr.

6.34. Profiler Control [DEPRECATED]

This section describes the profiler control functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaProfilerinitialize
(const char *configFile, const char *outputFile,
cudaOutputMode_t outputMode])

Initialize the CUDA profiler.

Parameters

configFile

- Name of the config file that lists the counters/options for profiling.
outputFile

- Name of the outputFile where the profiling results will be stored.
outputMode

- outputMode, can be cudaKeyValuePair OR cudaCSV.

Returns

cudaSuccess, cudaErrorinvalidValue, cudaErrorProfilerDisabled

CUDA Runtime API vRelease Version | 487

Modules

Description
Deprecated

Using this APl user can initialize the CUDA profiler by specifying the configuration file, output
file and output file format. This APl is generally used to profile different set of counters by
looping the kernel launch. The configFile parameter can be used to select profiling options
including profiler counters. Refer to the "Compute Command Line Profiler User Guide” for
supported profiler options and counters.

Limitation: The CUDA profiler cannot be initialized with this APl if another profiling tool is
already active, as indicated by the cudaErrorProfilerDisabled return code.

Typical usage of the profiling APIs is as follows:

for each set of counters/options { cudaProfilerlInitialize(); //Initialize profiling,set the counters/
options in the config file ... cudaProfilerStart(); // code to be profiled cudaProfilerStopl(]; ...
cudaProfilerStart(); // code to be profiled cudaProfilerStop(J; ... }

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaProfilerStart, cudaProfilerStop, cuProfilerinitialize

6.35. Profiler Control

This section describes the profiler control functions of the CUDA runtime application
programming interface.

__host__cudaError_t cudaProfilerStart (void]
Enable profiling.

Returns

cudaSuccess

Description

Enables profile collection by the active profiling tool for the current context. If profiling is
already enabled, then cudaProfilerStart(] has no effect.

cudaProfilerStart and cudaProfilerStop APls are used to programmatically control the
profiling granularity by allowing profiling to be done only on selective pieces of code.

CUDA Runtime API vRelease Version | 488

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PROFILER__DEPRECATED.html#group__CUDA__PROFILER__DEPRECATED_1gd15d4f964bf948988679232a54ce9fc1

Modules

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaProfilerlnitialize, cudaProfilerStop, cuProfilerStart

__host__cudaError_t cudaProfilerStop (void)
Disable profiling.

Returns

cudaSuccess

Description

Disables profile collection by the active profiling tool for the current context. If profiling is
already disabled, then cudaProfilerStop() has no effect.

cudaProfilerStart and cudaProfilerStop APls are used to programmatically control the
profiling granularity by allowing profiling to be done only on selective pieces of code.

Note:

Note that this function may also return error codes from previous, asynchronous launches.

See also:

cudaProfilerInitialize, cudaProfilerStart, cuProfilerStop

6.36. Data types used by CUDA Runtime

CUDA Runtime API vRelease Version | 489

../cuda-driver-api/cuda-driver-api/content/group__CUDA__PROFILER.html#group__CUDA__PROFILER_1g8a5314de2292c2efac83ac7fcfa9190e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__PROFILER.html#group__CUDA__PROFILER_1g4d8edef6174fd90165e6ac838f320a5f

Modules

struct cudaAccessPolicyWindow

struct cudaArraySparseProperties

struct cudaChannelFormatDesc

struct cudaDeviceProp

struct cudakEglFrame

struct cudaEglPlaneDesc

struct cudaExtent

struct cudaExternalMemoryBufferDesc

struct cudakExternalMemoryHandleDesc

struct cudakExternalMemoryMipmappedArrayDesc
struct cudakxternalSemaphoreHandleDesc

struct cudaExternalSemaphoreSignalNodeParams
struct cudaExternalSemaphoreSignalParams
struct cudaExternalSemaphoreSignalParams_v1
struct cudaExternalSemaphoreWaitNodeParams
struct cudaExternalSemaphoreWaitParams

struct cudakxternalSemaphoreWaitParams_v1

CUDA Runtime API vRelease Version | 490

struct cudaFuncAttributes

struct cudaHostNodeParams
struct cudalpcEventHandle_t
struct cudalpcMemHandle_t

union cudaKernelNodeAttrValue
struct cudaKernelNodeParams
struct cudalLaunchParams

struct cudaMemAccessDesc
struct cudaMemAllocNodeParams
struct cudaMemcpy3DParms
struct cudaMemcpy3DPeerParms
struct cudaMemLocation

struct cudaMemPoolProps

struct cudaMemPoolPtrExportData
struct cudaMemsetParams

struct cudaPitchedPtr

struct cudaPointerAttributes

CUDA Runtime AP!I

Modules

vRelease Version | 491

Modules

struct cudaPos

struct cudaResourceDesc
struct cudaResourceViewDesc
union cudaStreamAttrValue
struct cudaTextureDesc
struct CUuuid_st

struct surfaceReference
struct textureReference

enum cudaAccessProperty

Specifies performance hint with cudaAccessPolicyWindow for hitProp and missProp members.

Values

cudaAccessPropertyNormal =0

Normal cache persistence.
cudaAccessPropertyStreaming = 1

Streaming access is less likely to persit from cache.
cudaAccessPropertyPersisting = 2

Persisting access is more likely to persist in cache.

enum cudaCGScope

CUDA cooperative group scope

Values

cudaCGScopelnvalid =0

Invalid cooperative group scope
cudaCGScopeGrid =1

Scope represented by a grid_group
cudaCGScopeMultiGrid = 2

CUDA Runtime API vRelease Version | 492

Scope represented by a multi_grid_group

Channel format kind

cudaChannelFormatKindSigned = 0

Signed channel format
cudaChannelFormatKindUnsigned = 1

Unsigned channel format
cudaChannelFormatKindFloat = 2

Float channel format
cudaChannelFormatKindNone = 3

No channel format
cudaChannelFormatKindNV12 = 4

Unsigned 8-bit integers, planar 4:2:0 YUV format
cudaChannelFormatKindUnsignedNormalized8X1 =5

1 channel unsigned 8-bit normalized integer
cudaChannelFormatKindUnsignedNormalized8X2 = 6

2 channel unsigned 8-bit normalized integer
cudaChannelFormatKindUnsignedNormalized8X4 = 7

4 channel unsigned 8-bit normalized integer
cudaChannelFormatKindUnsignedNormalized16X1 =8

1 channel unsigned 16-bit normalized integer
cudaChannelFormatKindUnsignedNormalized16X2 = 9

2 channel unsigned 16-bit normalized integer
cudaChannelFormatKindUnsignedNormalized16X4 = 10

4 channel unsigned 16-bit normalized integer
cudaChannelFormatKindSignedNormalized8X1 = 11

1 channel signed 8-bit normalized integer
cudaChannelFormatKindSignedNormalized8X2 = 12

2 channel signed 8-bit normalized integer
cudaChannelFormatKindSignedNormalized8X4 = 13

4 channel signed 8-bit normalized integer
cudaChannelFormatKindSignedNormalized16X1 = 14

1 channel signed 16-bit normalized integer
cudaChannelFormatKindSignedNormalized16X2 = 15

2 channel signed 16-bit normalized integer
cudaChannelFormatKindSignedNormalized16X4 = 16

4 channel signed 16-bit normalized integer
cudaChannelFormatKindUnsignedBlockCompressed1 =17

4 channel unsigned normalized block-compressed [BC1 compression) format

Modules

CUDA Runtime API vRelease Version | 493

Modules

cudaChannelFormatKindUnsignedBlockCompressed1SRGB = 18

4 channel unsigned normalized block-compressed [BC1 compression) format with sRGB

encoding
cudaChannelFormatKindUnsignedBlockCompressed2 = 19

4 channel unsigned normalized block-compressed (BC2 compression) format
cudaChannelFormatKindUnsignedBlockCompressed2SRGB = 20

4 channel unsigned normalized block-compressed (BC2 compression) format with sRGB

encoding
cudaChannelFormatKindUnsignedBlockCompressed3 = 21

4 channel unsigned normalized block-compressed (BC3 compression) format
cudaChannelFormatKindUnsignedBlockCompressed3SRGB = 22

4 channel unsigned normalized block-compressed (BC3 compression] format with sRGB

encoding
cudaChannelFormatKindUnsignedBlockCompressed4 = 23

1 channel unsigned normalized block-compressed (BC4 compression) format
cudaChannelFormatKindSignedBlockCompressed4 = 24

1 channel signed normalized block-compressed (BC4 compression) format
cudaChannelFormatKindUnsignedBlockCompressed5 = 25

2 channel unsigned normalized block-compressed (BC5 compression) format
cudaChannelFormatKindSignedBlockCompressedb = 26

2 channel signed normalized block-compressed (BC5 compression) format
cudaChannelFormatKindUnsignedBlockCompressedéH = 27

3 channel unsigned half-float block-compressed (BC6H compression) format
cudaChannelFormatKindSignedBlockCompressedéH = 28

3 channel signed half-float block-compressed (BC6H compression) format
cudaChannelFormatKindUnsignedBlockCompressed7 = 29

4 channel unsigned normalized block-compressed (BC7 compression) format
cudaChannelFormatKindUnsignedBlockCompressed7SRGB = 30

4 channel unsigned normalized block-compressed (BC7 compression] format with sRGB

encoding

CUDA device compute modes

cudaComputeModeDefault = 0
Default compute mode (Multiple threads can use cudaSetDevice() with this device)
cudaComputeModeExclusive = 1
Compute-exclusive-thread mode (Only one thread in one process will be able to use
cudaSetDevice() with this device)
cudaComputeModeProhibited = 2
Compute-prohibited mode (No threads can use cudaSetDevice() with this device)

CUDA Runtime API vRelease Version | 494

Modules

cudaComputeModeExclusiveProcess = 3
Compute-exclusive-process mode (Many threads in one process will be able to use
cudaSetDevice(] with this device)

CUDA device attributes

cudaDevAttrMaxThreadsPerBlock = 1

Maximum number of threads per block
cudaDevAttrMaxBlockDimX = 2

Maximum block dimension X
cudaDevAttrMaxBlockDimY =3

Maximum block dimension Y
cudaDevAttrMaxBlockDimZ = 4

Maximum block dimension Z
cudaDevAttrMaxGridDimX =5

Maximum grid dimension X
cudaDevAttrMaxGridDimY = é

Maximum grid dimension Y
cudaDevAttrMaxGridDimZ =7

Maximum grid dimension Z
cudaDevAttrMaxSharedMemoryPerBlock = 8

Maximum shared memory available per block in bytes
cudaDevAttrTotalConstantMemory =9

Memory available on device for __constant__ variables in a CUDA C kernel in bytes
cudaDevAttrWarpSize =10

Warp size in threads
cudaDevAttrMaxPitch = 11

Maximum pitch in bytes allowed by memory copies
cudaDevAttrMaxRegistersPerBlock = 12

Maximum number of 32-bit registers available per block
cudaDevAttrClockRate = 13

Peak clock frequency in kilohertz
cudaDevAttrTextureAlignment = 14

Alignment requirement for textures
cudaDevAttrGpuOverlap = 15

Device can possibly copy memory and execute a kernel concurrently
cudaDevAttrMultiProcessorCount = 16

Number of multiprocessors on device
cudaDevAttrKernelExecTimeout =17

Specifies whether there is a run time limit on kernels

CUDA Runtime API vRelease Version | 495

cudaDevAttrintegrated = 18
Device is integrated with host memory
cudaDevAttrCanMapHostMemory = 19
Device can map host memory into CUDA address space
cudaDevAttrComputeMode = 20
Compute mode (See cudaComputeMode for details)
cudaDevAttrMaxTexture1DWidth = 21
Maximum 1D texture width
cudaDevAttrMaxTexture2DWidth = 22
Maximum 2D texture width
cudaDevAttrMaxTexture2DHeight = 23
Maximum 2D texture height
cudaDevAttrMaxTexture3DWidth = 24
Maximum 3D texture width
cudaDevAttrMaxTexture3DHeight = 25
Maximum 3D texture height
cudaDevAttrMaxTexture3DDepth = 26
Maximum 3D texture depth
cudaDevAttrMaxTexture2DLayeredWidth = 27
Maximum 2D layered texture width
cudaDevAttrMaxTexture2DLayeredHeight = 28
Maximum 2D layered texture height
cudaDevAttrMaxTexture2DLayeredLayers = 29
Maximum layers in a 2D layered texture
cudaDevAttrSurfaceAlignment = 30
Alignment requirement for surfaces
cudaDevAttrConcurrentKernels = 31

Device can possibly execute multiple kernels concurrently

cudaDevAttrEccEnabled = 32

Device has ECC support enabled
cudaDevAttrPciBusid = 33

PCl bus ID of the device
cudaDevAttrPciDeviceld = 34

PCl device ID of the device
cudaDevAttrTccDriver = 35

Device is using TCC driver model
cudaDevAttrMemoryClockRate = 36

Peak memory clock frequency in kilohertz
cudaDevAttrGlobalMemoryBusWidth = 37

Global memory bus width in bits
cudaDevAttrL2CacheSize = 38

Size of L2 cache in bytes
cudaDevAttrMaxThreadsPerMultiProcessor = 39

CUDA Runtime API

Modules

vRelease Version | 496

Maximum resident threads per multiprocessor
cudaDevAttrAsyncEngineCount = 40

Number of asynchronous engines
cudaDevAttrUnifiedAddressing = 41

Device shares a unified address space with the host
cudaDevAttrMaxTexture1DLayeredWidth = 42

Maximum 1D layered texture width
cudaDevAttrMaxTexture1DLayeredLayers = 43

Maximum layers in a 1D layered texture
cudaDevAttrMaxTexture2DGatherWidth = 45

Maximum 2D texture width if cudaArrayTextureGather is set
cudaDevAttrMaxTexture2DGatherHeight = 46

Maximum 2D texture height if cudaArrayTextureGather is set
cudaDevAttrMaxTexture3DWidthAlt = 47

Alternate maximum 3D texture width
cudaDevAttrMaxTexture3DHeightAlt = 48

Alternate maximum 3D texture height
cudaDevAttrMaxTexture3DDepthAlt = 49

Alternate maximum 3D texture depth
cudaDevAttrPciDomainld = 50

PCl domain ID of the device
cudaDevAttrTexturePitchAlignment = 51

Pitch alignment requirement for textures
cudaDevAttrMaxTextureCubemapWidth = 52

Maximum cubemap texture width/height
cudaDevAttrMaxTextureCubemaplLayeredWidth = 53

Maximum cubemap layered texture width/height
cudaDevAttrMaxTextureCubemaplLayeredLayers = 54

Maximum layers in a cubemap layered texture
cudaDevAttrMaxSurface1DWidth = 55

Maximum 1D surface width
cudaDevAttrMaxSurface2DWidth = 56

Maximum 2D surface width
cudaDevAttrMaxSurface2DHeight = 57

Maximum 2D surface height
cudaDevAttrMaxSurface3DWidth = 58

Maximum 3D surface width
cudaDevAttrMaxSurface3DHeight = 59

Maximum 3D surface height
cudaDevAttrMaxSurface3DDepth = 60

Maximum 3D surface depth
cudaDevAttrMaxSurface1DLayeredWidth = 61

Maximum 1D layered surface width

CUDA Runtime API

Modules

vRelease Version | 497

cudaDevAttrMaxSurface1DLayeredLayers = 62
Maximum layers in a 1D layered surface
cudaDevAttrMaxSurface2DLayeredWidth = 63
Maximum 2D layered surface width
cudaDevAttrMaxSurface2DLayeredHeight = 64
Maximum 2D layered surface height
cudaDevAttrMaxSurface2DLayeredLayers = 65
Maximum layers in a 2D layered surface
cudaDevAttrMaxSurfaceCubemapWidth = 66
Maximum cubemap surface width
cudaDevAttrMaxSurfaceCubemapLayeredWidth = 67
Maximum cubemap layered surface width
cudaDevAttrMaxSurfaceCubemapLayeredLayers = 68
Maximum layers in a cubemap layered surface
cudaDevAttrMaxTexture1DLinearWidth = 69
Maximum 1D linear texture width
cudaDevAttrMaxTexture2DLinearWidth = 70
Maximum 2D linear texture width
cudaDevAttrMaxTexture2DLinearHeight = 71
Maximum 2D linear texture height
cudaDevAttrMaxTexture2DLinearPitch = 72
Maximum 2D linear texture pitch in bytes
cudaDevAttrMaxTexture2DMipmappedWidth = 73
Maximum mipmapped 2D texture width
cudaDevAttrMaxTexture2DMipmappedHeight = 74
Maximum mipmapped 2D texture height
cudaDevAttrComputeCapabilityMajor = 75
Major compute capability version number
cudaDevAttrComputeCapabilityMinor = 76
Minor compute capability version number
cudaDevAttrMaxTexture1DMipmappedWidth = 77
Maximum mipmapped 1D texture width
cudaDevAttrStreamPrioritiesSupported = 78
Device supports stream priorities
cudaDevAttrGlobalL1CacheSupported = 79
Device supports caching globals in L1
cudaDevAttrLocalL1CacheSupported = 80
Device supports caching locals in L1
cudaDevAttrMaxSharedMemoryPerMultiprocessor = 81
Maximum shared memory available per multiprocessor in bytes
cudaDevAttrMaxRegistersPerMultiprocessor = 82
Maximum number of 32-bit registers available per multiprocessor
cudaDevAttrManagedMemory = 83

CUDA Runtime API

Modules

vRelease Version | 498

Device can allocate managed memory on this system
cudaDevAttrisMultiGpuBoard = 84

Device is on a multi-GPU board
cudaDevAttrMultiGpuBoardGrouplD = 85

Unique identifier for a group of devices on the same multi-GPU board
cudaDevAttrHostNativeAtomicSupported = 86

Link between the device and the host supports native atomic operations
cudaDevAttrSingleToDoublePrecisionPerfRatio = 87

Modules

Ratio of single precision performance (in floating-point operations per second) to double

precision performance
cudaDevAttrPageableMemoryAccess = 88

Device supports coherently accessing pageable memory without calling cudaHostRegister

on it
cudaDevAttrConcurrentManagedAccess = 89

Device can coherently access managed memory concurrently with the CPU
cudaDevAttrComputePreemptionSupported = 90

Device supports Compute Preemption
cudaDevAttrCanUseHostPointerForRegisteredMem = 91

Device can access host registered memory at the same virtual address as the CPU
cudaDevAttrReserved92 = 92
cudaDevAttrReserved93 = 93
cudaDevAttrReserved%4 = 94
cudaDevAttrCooperativeLaunch = 95

Device supports launching cooperative kernels via cudalaunchCooperativeKernel
cudaDevAttrCooperativeMultiDeviceLaunch = 96

Deprecated, cudalLaunchCooperativeKernelMultiDevice is deprecated.
cudaDevAttrMaxSharedMemoryPerBlockOptin = 97

The maximum optin shared memory per block. This value may vary by chip. See

cudaFuncSetAttribute
cudaDevAttrCanFlushRemoteWrites = 98

Device supports flushing of outstanding remote writes.
cudaDevAttrHostRegisterSupported = 99

Device supports host memory registration via cudaHostRegister.
cudaDevAttrPageableMemoryAccessUsesHostPageTables = 100

Device accesses pageable memory via the host's page tables.
cudaDevAttrDirectManagedMemAccessFromHost = 101

Host can directly access managed memory on the device without migration.
cudaDevAttrMaxBlocksPerMultiprocessor = 106

Maximum number of blocks per multiprocessor
cudaDevAttrMaxPersistingL2CacheSize = 108

Maximum L2 persisting lines capacity setting in bytes.
cudaDevAttrMaxAccessPolicyWindowSize = 109

Maximum value of cudaAccessPolicyWindow::num_bytes.

CUDA Runtime API vRelease Version | 499

Modules

cudaDevAttrReservedSharedMemoryPerBlock = 111

Shared memory reserved by CUDA driver per block in bytes
cudaDevAttrSparseCudaArraySupported = 112

Device supports sparse CUDA arrays and sparse CUDA mipmapped arrays
cudaDevAttrHostRegisterReadOnlySupported = 113

Device supports using the cudaHostRegister flag cudaHostRegisterReadOnly to register

memory that must be mapped as read-only to the GPU
cudaDevAttrTimelineSemaphorelnteropSupported = 114

External timeline semaphore interop is supported on the device
cudaDevAttrMaxTimelineSemaphorelnteropSupported = 114

Deprecated, External timeline semaphore interop is supported on the device
cudaDevAttrMemoryPoolsSupported = 115

Device supports using the cudaMallocAsync and cudaMemPool family of APls
cudaDevAttrGPUDirectRDMASupported =116

Device supports GPUDirect RDMA APIs, like nvidia_p2p_get_pages (see https://

docs.nvidia.com/cuda/gpudirect-rdma for more information)
cudaDevAttrGPUDirectRDMAFlushWritesOptions = 117

The returned attribute shall be interpreted as a bitmask, where the individual bits are listed

in the cudaFlushGPUDirectRDMAWTritesOptions enum
cudaDevAttrGPUDirectRDMAWTritesOrdering =118

GPUDirect RDMA writes to the device do not need to be flushed for consumers within the

scope indicated by the returned attribute. See cudaGPUDirectRDMAWTritesOrdering for the

numerical values returned here.
cudaDevAttrMemoryPoolSupportedHandleTypes = 119

Handle types supported with mempool based IPC
cudaDevAttrMax

CUDA device P2P attributes

cudaDevP2PAttrPerformanceRank =1

A relative value indicating the performance of the link between two devices
cudaDevP2PAttrAccessSupported = 2

Peer access is enabled
cudaDevP2PAttrNativeAtomicSupported = 3

Native atomic operation over the link supported
cudaDevP2PAttrCudaArrayAccessSupported = 4

Accessing CUDA arrays over the link supported

CUDA Runtime API vRelease Version | 500

https://docs.nvidia.com/cuda/gpudirect-rdma
https://docs.nvidia.com/cuda/gpudirect-rdma

Modules

CUDA EGL Color Format - The different planar and multiplanar formats currently supported
for CUDA_EGL interops.

cudaEglColorFormatYUV420Planar =0
Y, U, Vin three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatYUV420SemiPlanar = 1
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as
YUV420Planar.
cudaEglColorFormatYUV422Planar = 2
Y, U, V each in a separate surface, U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatYUV422SemiPlanar =3
Y, UV in two surfaces with VU byte ordering, width, height ratio same as YUV422Planar.
cudaEglColorFormatARGB = 6
R/G/B/A four channels in one surface with BGRA byte ordering.
cudaEglColorFormatRGBA =7
R/G/B/A four channels in one surface with ABGR byte ordering.
cudaEglColorFormatL = 8
single luminance channel in one surface.
cudaEglColorFormatR = 9
single color channel in one surface.
cudaEglColorFormatYUV444Planar = 10
Y, U, Vin three surfaces, each in a separate surface, U/V width =Y width, U/V height =Y
height.
cudaEglColorFormatYUV444SemiPlanar = 11
Y, UV in two surfaces (UV as one surface) with VU byte ordering, width, height ratio same as
YUV444Planar.
cudaEglColorFormatYUYV422 = 12
Y, U, Vin one surface, interleaved as UYVY in one channel.
cudaEglColorFormatUYVY422 = 13
Y, U, Vin one surface, interleaved as YUYV in one channel.
cudaEglColorFormatABGR = 14
R/G/B/A four channels in one surface with RGBA byte ordering.
cudaEglColorFormatBGRA = 15
R/G/B/A four channels in one surface with ARGB byte ordering.
cudaEglColorFormatA =16
Alpha color format - one channel in one surface.
cudaEglColorFormatRG =17
R/G color format - two channels in one surface with GR byte ordering

CUDA Runtime API vRelease Version | 501

Modules

cudaEglColorFormatAYUV =18
Y, U, V, A four channels in one surface, interleaved as VUYA.
cudaEglColorFormatYVU444SemiPlanar =19
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width =Y width, U/V
height = Y height.
cudaEglColorFormatYVU422SemiPlanar = 20
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V
height =Y height.
cudaEglColorFormatYVU420SemiPlanar = 21
Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y width, U/V
height = 1/2 Y height.
cudaEglColorFormatY10V10U10_444SemiPlanar = 22
Y10, V10U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width =Y width,
U/V height =Y height.
cudaEglColorFormatY10V10U10_420SemiPlanar = 23
Y10, VI0U10 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2 Y
width, U/V height = 1/2 Y height.
cudaEglColorFormatY12V12U12_444SemiPlanar = 24
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = Y width,
U/V height =Y height.
cudaEglColorFormatY12V12U12_420SemiPlanar = 25
Y12, V12U12 in two surfaces (VU as one surface) with UV byte ordering, U/V width = 1/2'Y
width, U/V height = 1/2 Y height.
cudaEglColorFormatVYUY_ER = 26
Extended Range Y, U, Vin one surface, interleaved as YVYU in one channel.
cudaEglColorFormatUYVY_ER = 27
Extended Range Y, U, Vin one surface, interleaved as YUYV in one channel.
cudaEglColorFormatYUYV_ER = 28
Extended Range Y, U, Vin one surface, interleaved as UYVY in one channel.
cudaEglColorFormatYVYU_ER = 29
Extended Range Y, U, Vin one surface, interleaved as VYUY in one channel.
cudaEglColorFormatYUVA_ER = 31
Extended Range Y, U, V, A four channels in one surface, interleaved as AVUY.
cudaEglColorFormatAYUV_ER = 32
Extended Range Y, U, V, A four channels in one surface, interleaved as VUYA.
cudaEglColorFormatYUV444Planar_ER =33
Extended Range Y, U, Vin three surfaces, U/V width =Y width, U/V height = Y height.
cudaEglColorFormatYUV422Planar_ER = 34
Extended Range Y, U, Vin three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatYUV420Planar_ER =35
Extended Range Y, U, Vin three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUV444SemiPlanar_ER = 36

CUDA Runtime API vRelease Version | 502

Modules

Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width
=Y width, U/V height = Y height.
cudaEglColorFormatYUV422SemiPlanar_ER = 37
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width
= 1/2 Y width, U/V height =Y height.
cudaEglColorFormatYUV420SemiPlanar_ER = 38
Extended Range Y, UV in two surfaces (UV as one surface) with VU byte ordering, U/V width
= 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYVU444Planar_ER =39
Extended Range Y, V, U in three surfaces, U/V width =Y width, U/V height = Y height.
cudaEglColorFormatYVU422Planar_ER = 40
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = Y height.
cudaEglColorFormatYVU420Planar_ER = 41
Extended Range Y, V, U in three surfaces, U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYVU444SemiPlanar_ER = 42
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width
=Y width, U/V height = Y height.
cudaEglColorFormatYVU422SemiPlanar_ER = 43
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width
=1/2 Y width, U/V height = Y height.
cudaEglColorFormatYVU420SemiPlanar_ER = 44
Extended Range Y, VU in two surfaces (VU as one surface) with UV byte ordering, U/V width
= 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatBayerRGGB = 45
Bayer format - one channel in one surface with interleaved RGGB ordering.
cudaEglColorFormatBayerBGGR = 46
Bayer format - one channel in one surface with interleaved BGGR ordering.
cudaEglColorFormatBayerGRBG = 47
Bayer format - one channel in one surface with interleaved GRBG ordering.
cudaEglColorFormatBayerGBRG = 48
Bayer format - one channel in one surface with interleaved GBRG ordering.
cudaEglColorFormatBayer10RGGB = 49
Bayer10 format - one channel in one surface with interleaved RGGB ordering. Out of 16 bits,
10 bits used 6 bits No-op.
cudaEglColorFormatBayer10BGGR = 50
Bayer10 format - one channel in one surface with interleaved BGGR ordering. Out of 16 bits,
10 bits used 6 bits No-op.
cudaEglColorFormatBayer10GRBG = 51
Bayer10 format - one channel in one surface with interleaved GRBG ordering. Out of 16 bits,
10 bits used 6 bits No-op.
cudaEglColorFormatBayer10GBRG = 52
Bayer10 format - one channel in one surface with interleaved GBRG ordering. Out of 16 bits,
10 bits used 6 bits No-op.

CUDA Runtime API vRelease Version | 503

cudaEglColorFormatBayer12RGGB = 53
Bayer12 format - one channel in one surface with interleaved RGGB ordering.
12 bits used 4 bits No-op.

cudaEglColorFormatBayer12BGGR = 54
Bayer12 format - one channel in one surface with interleaved BGGR ordering.
12 bits used 4 bits No-op.

cudaEglColorFormatBayer12GRBG = 55
Bayer12 format - one channel in one surface with interleaved GRBG ordering.
12 bits used 4 bits No-op.

cudaEglColorFormatBayer12GBRG = 56
Bayer12 format - one channel in one surface with interleaved GBRG ordering.
12 bits used 4 bits No-op.

cudaEglColorFormatBayer14RGGB = 57
Bayer14 format - one channel in one surface with interleaved RGGB ordering.
14 bits used 2 bits No-op.

cudaEglColorFormatBayer14BGGR = 58
Bayer14 format - one channel in one surface with interleaved BGGR ordering.
14 bits used 2 bits No-op.

cudaEglColorFormatBayer14GRBG = 59
Bayer14 format - one channel in one surface with interleaved GRBG ordering.
14 bits used 2 bits No-op.

cudaEglColorFormatBayer14GBRG = 60
Bayer14 format - one channel in one surface with interleaved GBRG ordering.
14 bits used 2 bits No-op.

cudaEglColorFormatBayer20RGGB = 61
Bayer20 format - one channel in one surface with interleaved RGGB ordering.
20 bits used 12 bits No-op.

cudaEglColorFormatBayer20BGGR = 62
Bayer20 format - one channel in one surface with interleaved BGGR ordering.
20 bits used 12 bits No-op.

cudaEglColorFormatBayer20GRBG = 63
Bayer20 format - one channel in one surface with interleaved GRBG ordering.
20 bits used 12 bits No-op.

cudaEglColorFormatBayer20GBRG = 64
Bayer20 format - one channel in one surface with interleaved GBRG ordering.
20 bits used 12 bits No-op.

cudaEglColorFormatYVU444Planar = 65

Modules

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 16 bits,

Out of 32 bits,

Out of 32 bits,

Out of 32 bits,

Out of 32 bits,

Y,V, U in three surfaces, each in a separate surface, U/V width =Y width, U/V height =Y

height.
cudaEglColorFormatYVU422Planar = 66

Y,V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =Y

height.
cudaEglColorFormatYVU420Planar = 67

CUDA Runtime API vRelease Version | 504

Modules

Y,V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatBayerlspRGGB = 68
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved RGGB
ordering and mapped to opaque integer datatype.
cudaEglColorFormatBayerlspBGGR = 69
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved BGGR
ordering and mapped to opaque integer datatype.
cudaEglColorFormatBayerilspGRBG = 70
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GRBG
ordering and mapped to opaque integer datatype.
cudaEglColorFormatBayerlspGBRG = 71
Nvidia proprietary Bayer ISP format - one channel in one surface with interleaved GBRG
ordering and mapped to opaque integer datatype.
cudaEglColorFormatBayerBCCR = 72
Bayer format - one channel in one surface with interleaved BCCR ordering.
cudaEglColorFormatBayerRCCB = 73
Bayer format - one channel in one surface with interleaved RCCB ordering.
cudaEglColorFormatBayerCRBC = 74
Bayer format - one channel in one surface with interleaved CRBC ordering.
cudaEglColorFormatBayerCBRC = 75
Bayer format - one channel in one surface with interleaved CBRC ordering.
cudaEglColorFormatBayer10CCCC = 76
Bayer10 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits,
10 bits used 6 bits No-op.
cudaEglColorFormatBayer12BCCR = 77
Bayer12 format - one channel in one surface with interleaved BCCR ordering. Out of 16 bits,
12 bits used 4 bits No-op.
cudaEglColorFormatBayer12RCCB = 78
Bayer12 format - one channel in one surface with interleaved RCCB ordering. Out of 16 bits,
12 bits used 4 bits No-op.
cudaEglColorFormatBayer12CRBC = 79
Bayer12 format - one channel in one surface with interleaved CRBC ordering. Out of 16 bits,
12 bits used 4 bits No-op.
cudaEglColorFormatBayer12CBRC = 80
Bayer12 format - one channel in one surface with interleaved CBRC ordering. Out of 16 bits,
12 bits used 4 bits No-op.
cudaEglColorFormatBayer12CCCC = 81
Bayer12 format - one channel in one surface with interleaved CCCC ordering. Out of 16 bits,
12 bits used 4 bits No-op.
cudaEglColorFormatY = 82
Color format for single Y plane.
cudaEglColorFormatYUV420SemiPlanar_2020 = 83

CUDA Runtime API vRelease Version | 505

Modules

Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYVU420SemiPlanar_2020 = 84
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUV420Planar_2020 = 85
Y, U, Vin three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatYVU420Planar_2020 = 86
Y,V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatYUV420SemiPlanar_709 = 87
Y, UV in two surfaces (UV as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYVU420SemiPlanar_709 = 88
Y, VU in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y height.
cudaEglColorFormatYUV420Planar_709 = 89
Y, U, Vin three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatYVU420Planar_709 = 90
Y,V, U in three surfaces, each in a separate surface, U/V width = 1/2 Y width, U/V height =
1/2 Y height.
cudaEglColorFormatY10V10U10_420SemiPlanar_709 = 91
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2Y
height.
cudaEglColorFormatY10V10U10_420SemiPlanar_2020 = 92
Y10, VI0U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height = 1/2 Y
height.
cudaEglColorFormatY10V10U10_422SemiPlanar_2020 = 93
Y10, VI0U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height =Y
height.
cudaEglColorFormatY10V10U10_422SemiPlanar = 94
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height =Y
height.
cudaEglColorFormatY10V10U10_422SemiPlanar_709 = 95
Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/V height =Y
height.
cudaEglColorFormatY_ER =96
Extended Range Color format for single Y plane.
cudaEglColorFormatY_709_ER = 97
Extended Range Color format for single Y plane.
cudaEglColorFormatY10_ER =98
Extended Range Color format for single Y10 plane.
cudaEglColorFormatY10_709_ER =99
Extended Range Color format for single Y10 plane.
cudaEglColorFormatY12_ER =100

CUDA Runtime API vRelease Version | 506

Modules

Extended Range Color format for single Y12 plane.
cudaEglColorFormatY12_709_ER =101
Extended Range Color format for single Y12 plane.
cudaEglColorFormatYUVA = 102
Y, U, V, A four channels in one surface, interleaved as AVUY.
cudaEglColorFormatYVYU = 104
Y, U, Vin one surface, interleaved as YVYU in one channel.
cudaEglColorFormatVYUY = 105
Y, U, Vin one surface, interleaved as VYUY in one channel.
cudaEglColorFormatY10V10U10_420SemiPlanar_ER = 106
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/
V height = 1/2 Y height.
cudaEglColorFormatY10V10U10_420SemiPlanar_709_ER = 107
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/
V height = 1/2 Y height.
cudaEglColorFormatY10V10U10_444SemiPlanar_ER = 108
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V
height =Y height.
cudaEglColorFormatY10V10U10_444SemiPlanar_709_ER =109
Extended Range Y10, V10U10 in two surfaces (VU as one surface) U/V width = Y width, U/V
height =Y height.
cudaEglColorFormatY12V12U12_420SemiPlanar_ER =110
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/
V height = 1/2 Y height.
cudaEglColorFormatY12V12U12_420SemiPlanar_709_ER =111
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = 1/2 Y width, U/
V height = 1/2 Y height.
cudaEglColorFormatY12V12U12_444SemiPlanar_ER =112
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V
height =Y height.
cudaEglColorFormatY12V12U12_444SemiPlanar_709_ER =113
Extended Range Y12, V12U12 in two surfaces (VU as one surface) U/V width = Y width, U/V
height =Y height.

CUDA EglFrame type - array or pointer

cudaEglFrameTypeArray =0
Frame type CUDA array

cudaEglFrameTypePitch =1
Frame type CUDA pointer

CUDA Runtime API vRelease Version | 507

Modules

enum cudaEglResourcelocationFlags

Resource location flags- sysmem or vidmem

For CUDA context on iGPU, since video and system memory are equivalent - these flags will
not have an effect on the execution.

For CUDA context on dGPU, applications can use the flag cudaEglResourcelocationFlags to
give a hint about the desired location.

cudakglResourcel ocationSysmem - the frame data is made resident on the system memory
to be accessed by CUDA.

cudaEglResourcelocationVidmem - the frame data is made resident on the dedicated video
memory to be accessed by CUDA.

There may be an additional latency due to new allocation and data migration, if the frame is
produced on a different memory.

Values

cudaEglResourceLocationSysmem = 0x00
Resource location sysmem

cudaEglResourceLocationVidmem = 0x01
Resource location vidmem

enum cudaError

CUDA error types

Values

cudaSuccess =0
The API call returned with no errors. In the case of query calls, this also means that the
operation being queried is complete (see cudaEventQuery() and cudaStreamQuery(]).
cudaErrorinvalidValue =1
This indicates that one or more of the parameters passed to the API call is not within an
acceptable range of values.
cudaErrorMemoryAllocation = 2
The API call failed because it was unable to allocate enough memory to perform the
requested operation.
cudaErrorinitializationError =3
The API call failed because the CUDA driver and runtime could not be initialized.
cudaErrorCudartUnloading = 4
This indicates that a CUDA Runtime API call cannot be executed because it is being called
during process shut down, at a point in time after CUDA driver has been unloaded.
cudaErrorProfilerDisabled = 5

CUDA Runtime API vRelease Version | 508

Modules

This indicates profiler is not initialized for this run. This can happen when the application is
running with external profiling tools like visual profiler.
cudaErrorProfilerNotInitialized = 6
Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to
attempt to enable/disable the profiling via cudaProfilerStart or cudaProfilerStop without
initialization.
cudaErrorProfilerAlreadyStarted = 7
Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to call
cudaProfilerStart(] when profiling is already enabled.
cudaErrorProfilerAlreadyStopped = 8
Deprecated This error return is deprecated as of CUDA 5.0. It is no longer an error to call
cudaProfilerStop(] when profiling is already disabled.
cudaErrorinvalidConfiguration = 9
This indicates that a kernel launch is requesting resources that can never be satisfied by
the current device. Requesting more shared memory per block than the device supports
will trigger this error, as will requesting too many threads or blocks. See cudaDeviceProp
for more device limitations.
cudaErrorinvalidPitchValue = 12
This indicates that one or more of the pitch-related parameters passed to the APl call is not
within the acceptable range for pitch.
cudaErrorinvalidSymbol = 13
This indicates that the symbol name/identifier passed to the API call is not a valid name or
identifier.
cudaErrorinvalidHostPointer = 16
This indicates that at least one host pointer passed to the API call is not a valid host pointer.
Deprecated This error return is deprecated as of CUDA 10.1.
cudaErrorinvalidDevicePointer = 17
This indicates that at least one device pointer passed to the APl call is not a valid device
pointer. Deprecated This error return is deprecated as of CUDA 10.1.
cudaErrorinvalidTexture = 18
This indicates that the texture passed to the APl call is not a valid texture.
cudaErrorinvalidTextureBinding =19
This indicates that the texture binding is not valid. This occurs if you call
cudaGetTextureAlignmentOffset() with an unbound texture.
cudaErrorinvalidChannelDescriptor = 20
This indicates that the channel descriptor passed to the APl call is not valid. This occurs if
the format is not one of the formats specified by cudaChannelFormatKind, or if one of the
dimensions is invalid.
cudaErrorinvalidMemcpyDirection = 21
This indicates that the direction of the memcpy passed to the APl call is not one of the types
specified by cudaMemcpyKind.
cudaErrorAddressOfConstant = 22

CUDA Runtime API vRelease Version | 509

Modules

This indicated that the user has taken the address of a constant variable, which was
forbidden up until the CUDA 3.1 release. Deprecated This error return is deprecated as of
CUDA 3.1. Variables in constant memory may now have their address taken by the runtime
via cudaGetSymbolAddress|().
cudaErrorTextureFetchFailed = 23
This indicated that a texture fetch was not able to be performed. This was previously used
for device emulation of texture operations. Deprecated This error return is deprecated as
of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1 release.
cudaErrorTextureNotBound = 24
This indicated that a texture was not bound for access. This was previously used for device
emulation of texture operations. Deprecated This error return is deprecated as of CUDA
3.1. Device emulation mode was removed with the CUDA 3.1 release.
cudaErrorSynchronizationError = 25
This indicated that a synchronization operation had failed. This was previously used for
some device emulation functions. Deprecated This error return is deprecated as of CUDA
3.1. Device emulation mode was removed with the CUDA 3.1 release.
cudaErrorinvalidFilterSetting = 26
This indicates that a non-float texture was being accessed with linear filtering. This is not
supported by CUDA.
cudaErrorinvalidNormSetting = 27
This indicates that an attempt was made to read a non-float texture as a normalized float.
This is not supported by CUDA.
cudaErrorMixedDeviceExecution = 28
Mixing of device and device emulation code was not allowed. Deprecated This error return
is deprecated as of CUDA 3.1. Device emulation mode was removed with the CUDA 3.1
release.
cudaErrorNotYetimplemented = 31
This indicates that the APl call is not yet implemented. Production releases of CUDA will
never return this error. Deprecated This error return is deprecated as of CUDA 4.1.
cudaErrorMemoryValueToolLarge = 32
This indicated that an emulated device pointer exceeded the 32-bit address range.
Deprecated This error return is deprecated as of CUDA 3.1. Device emulation mode was
removed with the CUDA 3.1 release.
cudaErrorStubLibrary = 34
This indicates that the CUDA driver that the application has loaded is a stub library.
Applications that run with the stub rather than a real driver loaded will result in CUDA API
returning this error.
cudaErrorinsufficientDriver = 35
This indicates that the installed NVIDIA CUDA driver is older than the CUDA runtime library.
This is not a supported configuration. Users should install an updated NVIDIA display driver
to allow the application to run.
cudaErrorCallRequiresNewerDriver = 36

CUDA Runtime API vRelease Version | 510

Modules

This indicates that the API call requires a newer CUDA driver than the one currently
installed. Users should install an updated NVIDIA CUDA driver to allow the API call to
succeed.
cudaErrorinvalidSurface = 37
This indicates that the surface passed to the APl call is not a valid surface.
cudaErrorDuplicateVariableName = 43
This indicates that multiple global or constant variables (across separate CUDA source files
in the application) share the same string name.
cudaErrorDuplicateTextureName = 44
This indicates that multiple textures (across separate CUDA source files in the application)
share the same string name.
cudaErrorDuplicateSurfaceName = 45
This indicates that multiple surfaces (across separate CUDA source files in the application)
share the same string name.
cudaErrorDevicesUnavailable = 46
This indicates that all CUDA devices are busy or unavailable at the current time.
Devices are often busy/unavailable due to use of cudaComputeModeExclusive,
cudaComputeModeProhibited or when long running CUDA kernels have filled up the GPU
and are blocking new work from starting. They can also be unavailable due to memory
constraints on a device that already has active CUDA work being performed.
cudaErrorincompatibleDriverContext = 49
This indicates that the current context is not compatible with this the CUDA Runtime. This
can only occur if you are using CUDA Runtime/Driver interoperability and have created
an existing Driver context using the driver API. The Driver context may be incompatible
either because the Driver context was created using an older version of the API, because
the Runtime API call expects a primary driver context and the Driver context is not primary,
or because the Driver context has been destroyed. Please see Interactions with the CUDA
Driver API" for more information.
cudaErrorMissingConfiguration = 52
The device function being invoked (usually via cudalLaunchKernel()) was not previously
configured via the cudaConfigureCall() function.
cudaErrorPriorLaunchFailure = 53
This indicated that a previous kernel launch failed. This was previously used for device
emulation of kernel launches. Deprecated This error return is deprecated as of CUDA 3.1.
Device emulation mode was removed with the CUDA 3.1 release.
cudaErrorLaunchMaxDepthExceeded = 65
This error indicates that a device runtime grid launch did not occur because the depth of
the child grid would exceed the maximum supported number of nested grid launches.
cudaErrorLaunchFileScopedTex = 66
This error indicates that a grid launch did not occur because the kernel uses file-scoped
textures which are unsupported by the device runtime. Kernels launched via the device
runtime only support textures created with the Texture Object API's.
cudaErrorLaunchFileScopedSurf = 67

CUDA Runtime API vRelease Version | 511

Modules

This error indicates that a grid launch did not occur because the kernel uses file-scoped
surfaces which are unsupported by the device runtime. Kernels launched via the device
runtime only support surfaces created with the Surface Object API's.
cudaErrorSyncDepthExceeded = 68
This error indicates that a call to cudaDeviceSynchronize made from the device runtime
failed because the call was made at grid depth greater than than either the default (2
levels of grids) or user specified device limit cudaLimitDevRuntimeSyncDepth. To be
able to synchronize on launched grids at a greater depth successfully, the maximum
nested depth at which cudaDeviceSynchronize will be called must be specified with the
cudaLimitDevRuntimeSyncDepth limit to the cudaDeviceSetLimit api before the host-side
launch of a kernel using the device runtime. Keep in mind that additional levels of sync
depth require the runtime to reserve large amounts of device memory that cannot be used
for user allocations.
cudaErrorLaunchPendingCountExceeded = 69
This error indicates that a device runtime grid launch failed because the launch
would exceed the limit cudaLimitDevRuntimePendinglLaunchCount. For this
launch to proceed successfully, cudaDeviceSetLimit must be called to set the
cudalimitDevRuntimePendinglLaunchCount to be higher than the upper bound of
outstanding launches that can be issued to the device runtime. Keep in mind that raising
the limit of pending device runtime launches will require the runtime to reserve device
memory that cannot be used for user allocations.
cudaErrorinvalidDeviceFunction = 98
The requested device function does not exist or is not compiled for the proper device
architecture.
cudaErrorNoDevice = 100
This indicates that no CUDA-capable devices were detected by the installed CUDA driver.
cudaErrorinvalidDevice = 101
This indicates that the device ordinal supplied by the user does not correspond to a valid
CUDA device or that the action requested is invalid for the specified device.
cudaErrorDeviceNotLicensed = 102
This indicates that the device doesn't have a valid Grid License.
cudaErrorSoftwareValidityNotEstablished = 103
By default, the CUDA runtime may perform a minimal set of self-tests, as well as CUDA
driver tests, to establish the validity of both. Introduced in CUDA 11.2, this error return
indicates that at least one of these tests has failed and the validity of either the runtime or
the driver could not be established.
cudaErrorStartupFailure = 127
This indicates an internal startup failure in the CUDA runtime.
cudaErrorinvalidKernellmage = 200
This indicates that the device kernel image is invalid.
cudaErrorDeviceUninitialized = 201
This most frequently indicates that there is no context bound to the current thread. This
can also be returned if the context passed to an API call is not a valid handle (such as a

CUDA Runtime API vRelease Version | 512

Modules

context that has had cuCtxDestroy() invoked on it). This can also be returned if a user mixes
different APl versions [(i.e. 3010 context with 3020 API calls). See cuCtxGetApiVersion(] for
more details.
cudaErrorMapBufferObjectFailed = 205
This indicates that the buffer object could not be mapped.
cudaErrorUnmapBufferObjectFailed = 206
This indicates that the buffer object could not be unmapped.
cudaErrorArraylsMapped = 207
This indicates that the specified array is currently mapped and thus cannot be destroyed.
cudaErrorAlreadyMapped = 208
This indicates that the resource is already mapped.
cudaErrorNoKernellmageForDevice = 209
This indicates that there is no kernel image available that is suitable for the device. This can
occur when a user specifies code generation options for a particular CUDA source file that
do not include the corresponding device configuration.
cudaErrorAlreadyAcquired = 210
This indicates that a resource has already been acquired.
cudaErrorNotMapped = 211
This indicates that a resource is not mapped.
cudaErrorNotMappedAsArray = 212
This indicates that a mapped resource is not available for access as an array.
cudaErrorNotMappedAsPointer = 213
This indicates that a mapped resource is not available for access as a pointer.
cudaErrorECCUncorrectable = 214
This indicates that an uncorrectable ECC error was detected during execution.
cudaErrorUnsupportedLimit = 215
This indicates that the cudaLimit passed to the APl call is not supported by the active
device.
cudaErrorDeviceAlreadylnUse = 216
This indicates that a call tried to access an exclusive-thread device that is already in use by
a different thread.
cudaErrorPeerAccessUnsupported = 217
This error indicates that P2P access is not supported across the given devices.
cudaErrorinvalidPtx = 218
A PTX compilation failed. The runtime may fall back to compiling PTX if an application does
not contain a suitable binary for the current device.
cudaErrorinvalidGraphicsContext = 219
This indicates an error with the OpenGL or DirectX context.
cudaErrorNvlinkUncorrectable = 220
This indicates that an uncorrectable NVLink error was detected during the execution.
cudaErrorJitCompilerNotFound = 221

CUDA Runtime API vRelease Version | 513

../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g27a365aebb0eb548166309f58a1e8b8e
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g088a90490dafca5893ef6fbebc8de8fb

Modules

This indicates that the PTX JIT compiler library was not found. The JIT Compiler library is
used for PTX compilation. The runtime may fall back to compiling PTX if an application does
not contain a suitable binary for the current device.
cudaErrorUnsupportedPtxVersion = 222
This indicates that the provided PTX was compiled with an unsupported toolchain. The
most common reason for this, is the PTX was generated by a compiler newer than what is
supported by the CUDA driver and PTX JIT compiler.
cudaErrorJitCompilationDisabled = 223
This indicates that the JIT compilation was disabled. The JIT compilation compiles PTX. The
runtime may fall back to compiling PTX if an application does not contain a suitable binary
for the current device.
cudaErrorUnsupportedExecAffinity = 224
This indicates that the provided execution affinity is not supported by the device.
cudaErrorinvalidSource = 300
This indicates that the device kernel source is invalid.
cudaErrorFileNotFound = 301
This indicates that the file specified was not found.
cudaErrorSharedObjectSymbolNotFound = 302
This indicates that a link to a shared object failed to resolve.
cudaErrorSharedObjectinitFailed = 303
This indicates that initialization of a shared object failed.
cudaErrorOperatingSystem = 304
This error indicates that an OS call failed.
cudaErrorinvalidResourceHandle = 400
This indicates that a resource handle passed to the API call was not valid. Resource
handles are opaque types like cudaStream_t and cudaEvent t.
cudaErrorlillegalState = 401
This indicates that a resource required by the APl call is not in a valid state to perform the
requested operation.
cudaErrorSymbolNotFound = 500
This indicates that a named symbol was not found. Examples of symbols are global/
constant variable names, driver function names, texture names, and surface names.
cudaErrorNotReady = 600
This indicates that asynchronous operations issued previously have not completed yet.
This result is not actually an error, but must be indicated differently than cudaSuccess
(which indicates completion). Calls that may return this value include cudaEventQuery(] and
cudaStreamQuery().
cudaErrorillegalAddress = 700
The device encountered a load or store instruction on an invalid memory address. This
leaves the process in an inconsistent state and any further CUDA work will return the same
error. To continue using CUDA, the process must be terminated and relaunched.
cudaErrorLaunchOutOfResources = 701

CUDA Runtime API vRelease Version | 514

Modules

This indicates that a launch did not occur because it did not have appropriate resources.
Although this error is similar to cudaErrorinvalidConfiguration, this error usually indicates
that the user has attempted to pass too many arguments to the device kernel, or the kernel
launch specifies too many threads for the kernel's register count.
cudaErrorLaunchTimeout = 702
This indicates that the device kernel took too long to execute. This can only occur if
timeouts are enabled - see the device property kernelExecTimeoutEnabled for more
information. This leaves the process in an inconsistent state and any further CUDA work
will return the same error. To continue using CUDA, the process must be terminated and
relaunched.
cudaErrorLaunchincompatibleTexturing = 703
This error indicates a kernel launch that uses an incompatible texturing mode.
cudaErrorPeerAccessAlreadyEnabled = 704
This error indicates that a call to cudaDeviceEnablePeerAccess(] is trying to re-enable peer
addressing on from a context which has already had peer addressing enabled.
cudaErrorPeerAccessNotEnabled = 705
This error indicates that cudaDeviceDisablePeerAccessl(] is trying to disable peer
addressing which has not been enabled yet via cudaDeviceEnablePeerAccess(].
cudaErrorSetOnActiveProcess = 708
This indicates that the user has called cudaSetValidDevices(), cudaSetDeviceFlags(],
cudaD3D9SetDirect3DDevice(), cudaD3D10SetDirect3DDevice,
cudaD3D11SetDirect3DDevice(], or cudaVDPAUSetVDPAUDevice(] after initializing the
CUDA runtime by calling non-device management operations (allocating memory and
launching kernels are examples of non-device management operations). This error can
also be returned if using runtime/driver interoperability and there is an existing CUcontext
active on the host thread.
cudaErrorContextlsDestroyed = 709
This error indicates that the context current to the calling thread has been destroyed using
cuCtxDestroy, oris a primary context which has not yet been initialized.
cudaErrorAssert =710
An assert triggered in device code during kernel execution. The device cannot be used
again. All existing allocations are invalid. To continue using CUDA, the process must be
terminated and relaunched.
cudaErrorTooManyPeers = 711
This error indicates that the hardware resources required to enable peer access have been
exhausted for one or more of the devices passed to cudaEnablePeerAccessl().
cudaErrorHostMemoryAlreadyRegistered = 712
This error indicates that the memory range passed to cudaHostRegister(] has already been
registered.
cudaErrorHostMemoryNotRegistered = 713
This error indicates that the pointer passed to cudaHostUnregister() does not correspond to
any currently registered memory region.
cudaErrorHardwareStackError =714

CUDA Runtime API vRelease Version | 515

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gf9f5bd81658f866613785b3a0bb7d7d9
../cuda-driver-api/cuda-driver-api/content/group__CUDA__CTX.html#group__CUDA__CTX_1g27a365aebb0eb548166309f58a1e8b8e

Modules

Device encountered an error in the call stack during kernel execution, possibly due to stack
corruption or exceeding the stack size limit. This leaves the process in an inconsistent
state and any further CUDA work will return the same error. To continue using CUDA, the
process must be terminated and relaunched.

cudaErrorlllegallnstruction = 715
The device encountered an illegal instruction during kernel execution This leaves the
process in an inconsistent state and any further CUDA work will return the same error. To
continue using CUDA, the process must be terminated and relaunched.

cudaErrorMisalignedAddress = 716
The device encountered a load or store instruction on a memory address which is not
aligned. This leaves the process in an inconsistent state and any further CUDA work will
return the same error. To continue using CUDA, the process must be terminated and
relaunched.

cudaErrorinvalidAddressSpace = 717
While executing a kernel, the device encountered an instruction which can only operate on
memory locations in certain address spaces (global, shared, or locall, but was supplied a
memory address not belonging to an allowed address space. This leaves the process in an
inconsistent state and any further CUDA work will return the same error. To continue using
CUDA, the process must be terminated and relaunched.

cudaErrorinvalidPc =718
The device encountered an invalid program counter. This leaves the process in an
inconsistent state and any further CUDA work will return the same error. To continue using
CUDA, the process must be terminated and relaunched.

cudaErrorLaunchFailure =719
An exception occurred on the device while executing a kernel. Common causes include
dereferencing an invalid device pointer and accessing out of bounds shared memory. Less
common cases can be system specific - more information about these cases can be found
in the system specific user guide. This leaves the process in an inconsistent state and any
further CUDA work will return the same error. To continue using CUDA, the process must
be terminated and relaunched.

cudaErrorCooperativeLaunchTooLarge = 720
This error indicates that the number of blocks launched per grid for a
kernel that was launched via either cudalLaunchCooperativeKernel or
cudalaunchCooperativeKernelMultiDevice exceeds the maximum number of
blocks as allowed by cudaOccupancyMaxActiveBlocksPerMultiprocessor or
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags times the number of
multiprocessors as specified by the device attribute cudaDevAttrMultiProcessorCount.

cudaErrorNotPermitted = 800
This error indicates the attempted operation is not permitted.

cudaErrorNotSupported = 801
This error indicates the attempted operation is not supported on the current system or
device.

cudaErrorSystemNotReady = 802

CUDA Runtime API vRelease Version | 516

Modules

This error indicates that the system is not yet ready to start any CUDA work. To continue
using CUDA, verify the system configuration is in a valid state and all required driver
daemons are actively running. More information about this error can be found in the system
specific user guide.
cudaErrorSystemDriverMismatch = 803
This error indicates that there is a mismatch between the versions of the display driver and
the CUDA driver. Refer to the compatibility documentation for supported versions.
cudaErrorCompatNotSupportedOnDevice = 804
This error indicates that the system was upgraded to run with forward compatibility
but the visible hardware detected by CUDA does not support this configuration. Refer
to the compatibility documentation for the supported hardware matrix or ensure that
only supported hardware is visible during initialization via the CUDA_VISIBLE_DEVICES
environment variable.
cudaErrorMpsConnectionFailed = 805
This error indicates that the MPS client failed to connect to the MPS control daemon or the
MPS server.
cudaErrorMpsRpcFailure = 806
This error indicates that the remote procedural call between the MPS server and the MPS
client failed.
cudaErrorMpsServerNotReady = 807
This error indicates that the MPS server is not ready to accept new MPS client requests.
This error can be returned when the MPS server is in the process of recovering from a fatal
failure.
cudaErrorMpsMaxClientsReached = 808
This error indicates that the hardware resources required to create MPS client have been
exhausted.
cudaErrorMpsMaxConnectionsReached = 809
This error indicates the the hardware resources required to device connections have been
exhausted.
cudaErrorStreamCaptureUnsupported = 900
The operation is not permitted when the stream is capturing.
cudaErrorStreamCapturelnvalidated = 901
The current capture sequence on the stream has been invalidated due to a previous error.
cudaErrorStreamCaptureMerge = 902
The operation would have resulted in a merge of two independent capture sequences.
cudaErrorStreamCaptureUnmatched = 903
The capture was not initiated in this stream.
cudaErrorStreamCaptureUnjoined = 904
The capture sequence contains a fork that was not joined to the primary stream.
cudaErrorStreamCapturelsolation = 905
A dependency would have been created which crosses the capture sequence boundary.
Only implicit in-stream ordering dependencies are allowed to cross the boundary.
cudaErrorStreamCapturelmplicit = 906

CUDA Runtime API vRelease Version | 517

Modules

The operation would have resulted in a disallowed implicit dependency on a current capture
sequence from cudaStreamlegacy.
cudaErrorCapturedEvent = 907
The operation is not permitted on an event which was last recorded in a capturing stream.
cudaErrorStreamCaptureWrongThread = 908
A stream capture sequence not initiated with the cudaStreamCaptureModeRelaxed
argument to cudaStreamBeginCapture was passed to cudaStreamEndCapture in a different
thread.
cudaErrorTimeout = 909
This indicates that the wait operation has timed out.
cudaErrorGraphExecUpdateFailure = 910
This error indicates that the graph update was not performed because it included changes
which violated constraints specific to instantiated graph update.
cudaErrorExternalDevice = 911
This indicates that an async error has occurred in a device outside of CUDA. If CUDA was
waiting for an external device's signal before consuming shared data, the external device
signaled an error indicating that the data is not valid for consumption. This leaves the
process in an inconsistent state and any further CUDA work will return the same error. To
continue using CUDA, the process must be terminated and relaunched.
cudaErrorUnknown = 999
This indicates that an unknown internal error has occurred.
cudaErrorApiFailureBase = 10000
Any unhandled CUDA driver error is added to this value and returned via the runtime.
Production releases of CUDA should not return such errors. Deprecated This error return
is deprecated as of CUDA 4.1.

External memory handle types

cudaExternalMemoryHandleTypeOpaqueFd = 1
Handle is an opaque file descriptor
cudaExternalMemoryHandleTypeOpaqueWin32 = 2
Handle is an opaque shared NT handle
cudaExternalMemoryHandleTypeOpaqueWin32Kmt = 3
Handle is an opaque, globally shared handle
cudaExternalMemoryHandleTypeD3D12Heap = 4
Handle is a D3D12 heap object
cudaExternalMemoryHandleTypeD3D12Resource =5
Handle is a D3D12 committed resource
cudaExternalMemoryHandleTypeD3D11Resource = 6
Handle is a shared NT handle to a D3D11 resource

CUDA Runtime API vRelease Version | 518

Modules

cudaExternalMemoryHandleTypeD3D11ResourceKmt =7
Handle is a globally shared handle to a D3D11 resource
cudaExternalMemoryHandleTypeNvSciBuf = 8
Handle is an NvSciBuf object

External semaphore handle types

cudaExternalSemaphoreHandleTypeOpaqueFd =1

Handle is an opaque file descriptor
cudaExternalSemaphoreHandleTypeOpaqueWin32 = 2

Handle is an opaque shared NT handle
cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt =3

Handle is an opaque, globally shared handle
cudaExternalSemaphoreHandleTypeD3D12Fence = 4

Handle is a shared NT handle referencing a D3D12 fence object
cudaExternalSemaphoreHandleTypeD3D11Fence =5

Handle is a shared NT handle referencing a D3D11 fence object
cudaExternalSemaphoreHandleTypeNvSciSync = 6

Opaque handle to NvSciSync Object
cudaExternalSemaphoreHandleTypeKeyedMutex = 7

Handle is a shared NT handle referencing a D3D11 keyed mutex object
cudaExternalSemaphoreHandleTypeKeyedMutexKmt = 8

Handle is a shared KMT handle referencing a D3D11 keyed mutex object
cudaExternalSemaphoreHandleTypeTimelineSemaphoreFd = 9

Handle is an opaque handle file descriptor referencing a timeline semaphore
cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 =10

Handle is an opaque handle file descriptor referencing a timeline semaphore

CUDA GPUDirect RDMA flush writes APIs supported on the device

cudaFlushGPUDirectRDMAWTritesOptionHost = 1<<0
cudaDeviceFlushGPUDirectRDMAWFrites(] and its CUDA Driver APl counterpart are
supported on the device.

cudaFlushGPUDirectRDMAWTritesOptionMemOps = 1<<1
The CU_STREAM_WAIT_VALUE_FLUSH flag and the
CU_STREAM_MEM_0OP_FLUSH REMOTE WRITES MemOp are supported on the CUDA
device.

CUDA Runtime API vRelease Version | 519

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggf16864e8693d888f8178067470001b215dd93e7173619c943fae495568f4d771
../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1ggb257b534afdb704b6ebdb99c16a5b292d4e126a89b57ebf4a213ee1774ed103f

Modules

enum cudaFlushGPUDirectRDMAWTritesScope

CUDA GPUDirect RDMA flush writes scopes

Values

cudaFlushGPUDirectRDMAWTritesToOwner = 100

Blocks until remote writes are visible to the CUDA device context owning the data.
cudaFlushGPUDirectRDMAWTritesToAllDevices = 200

Blocks until remote writes are visible to all CUDA device contexts.

enum cudaFlushGPUDirectRDMAWTritesTarget

CUDA GPUDirect RDMA flush writes targets

Values

cudaFlushGPUDirectRDMAWT ritesTargetCurrentDevice
Sets the target for cudaDeviceFlushGPUDirectRDMAWFrites(] to the currently active CUDA
device context.

enum cudaFuncAttribute

CUDA function attributes that can be set using cudaFuncSetAttribute

Values

cudaFuncAttributeMaxDynamicSharedMemorySize = 8
Maximum dynamic shared memory size
cudaFuncAttributePreferredSharedMemoryCarveout = 9
Preferred shared memory-L1 cache split
cudaFuncAttributeMax

enum cudaFuncCache

CUDA function cache configurations

Values

cudaFuncCachePreferNone =0

Default function cache configuration, no preference
cudaFuncCachePreferShared = 1

Prefer larger shared memory and smaller L1 cache
cudaFuncCachePreferL1 =2

Prefer larger L1 cache and smaller shared memory
cudaFuncCachePreferEqual =3

CUDA Runtime API vRelease Version | 520

Modules

Prefer equal size L1 cache and shared memory

enum cudaGetDriverEntryPointFlags

Flags to specify search options to be used with cudaGetDriverEntryPoint For more details see
cuGetProcAddress

Values

cudaEnableDefault = 0x0

Default search mode for driver symbols.
cudaEnableLegacyStream = 0x1

Search for legacy versions of driver symbols.
cudaEnablePerThreadDefaultStream = 0x2

Search for per-thread versions of driver symbols.

enum cudaGPUDirectRDMAWTritesOrdering

CUDA GPUDirect RDMA flush writes ordering features of the device

Values

cudaGPUDirectRDMAWTritesOrderingNone =0
The device does not natively support ordering of GPUDirect RDMA writes.
cudaFlushGPUDirectRDMAWrites() can be leveraged if supported.
cudaGPUDirectRDMAWTritesOrderingOwner = 100
Natively, the device can consistently consume GPUDirect RDMA writes, although other
CUDA devices may not.
cudaGPUDirectRDMAWTritesOrderingAllDevices = 200
Any CUDA device in the system can consistently consume GPUDirect RDMA writes to this
device.

enum cudaGraphDebugDotFlags

CUDA Graph debug write options

Values

cudaGraphDebugDotFlagsVerbose = 1<<0
cudaGraphDebugDotFlagsKernelNodeParams = 1<<2
Output all debug data as if every debug flag is enabled
cudaGraphDebugDotFlagsMemcpyNodeParams = 1<<3
Adds cudaKernelNodeParams to output
cudaGraphDebugDotFlagsMemsetNodeParams = 1<<4
Adds cudaMemcpy3DParms to output
cudaGraphDebugDotFlagsHostNodeParams = 1<<5

CUDA Runtime API vRelease Version | 521

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DRIVER__ENTRY__POINT.html#group__CUDA__DRIVER__ENTRY__POINT_1gcab1eff2d9f22e000e6537d74b9ffd4c

Modules

Adds cudaMemsetParams to output
cudaGraphDebugDotFlagsEventNodeParams = 1<<é

Adds cudaHostNodeParams to output
cudaGraphDebugDotFlagsExtSemasSignalNodeParams = 1<<7

Adds cudaEvent_t handle from record and wait nodes to output
cudaGraphDebugDotFlagsExtSemasWaitNodeParams = 1<<8

Adds cudaExternalSemaphoreSignalNodeParams values to output
cudaGraphDebugDotFlagsKernelNodeAttributes = 1<<9

Adds cudaExternalSemaphoreWaitNodeParams to output
cudaGraphDebugDotFlagsHandles = 1<<10

Adds cudaKernelNodeAttrID values to output

CUDA Graph Update error types

cudaGraphExecUpdateSuccess = 0x0

The update succeeded
cudaGraphExecUpdateError = 0x1

The update failed for an unexpected reason which is described in the return value of the

function
cudaGraphExecUpdateErrorTopologyChanged = 0x2

The update failed because the topology changed
cudaGraphExecUpdateErrorNodeTypeChanged = 0x3

The update failed because a node type changed
cudaGraphExecUpdateErrorFunctionChanged = 0x4

The update failed because the function of a kernel node changed (CUDA driver < 11.2)
cudaGraphExecUpdateErrorParametersChanged = 0x5

The update failed because the parameters changed in a way that is not supported
cudaGraphExecUpdateErrorNotSupported = 0xé

The update failed because something about the node is not supported
cudaGraphExecUpdateErrorUnsupportedFunctionChange = 0x7

The update failed because the function of a kernel node changed in an unsupported way

CUDA graphics interop array indices for cube maps

cudaGraphicsCubeFacePositiveX = 0x00
Positive X face of cubemap
cudaGraphicsCubeFaceNegativeX = 0x01

CUDA Runtime API vRelease Version | 522

Modules

Negative X face of cubemap
cudaGraphicsCubeFacePositiveY = 0x02
Positive Y face of cubemap
cudaGraphicsCubeFaceNegativeY = 0x03
Negative Y face of cubemap
cudaGraphicsCubeFacePositiveZ = 0x04
Positive Z face of cubemap
cudaGraphicsCubeFaceNegativeZ = 0x05
Negative Z face of cubemap

CUDA graphics interop map flags

cudaGraphicsMapFlagsNone =0

Default; Assume resource can be read/written
cudaGraphicsMapFlagsReadOnly = 1

CUDA will not write to this resource
cudaGraphicsMapFlagsWriteDiscard = 2

CUDA will only write to and will not read from this resource

CUDA graphics interop register flags

cudaGraphicsRegisterFlagsNone = 0

Default
cudaGraphicsRegisterFlagsReadOnly = 1

CUDA will not write to this resource
cudaGraphicsRegisterFlagsWriteDiscard = 2

CUDA will only write to and will not read from this resource
cudaGraphicsRegisterFlagsSurfaceLoadStore = 4

CUDA will bind this resource to a surface reference
cudaGraphicsRegisterFlagsTextureGather = 8

CUDA will perform texture gather operations on this resource

Flags for instantiating a graph

CUDA Runtime API vRelease Version | 523

Modules

cudaGraphlnstantiateFlagAutoFreeOnLaunch = 1
Automatically free memory allocated in a graph before relaunching.

Graph memory attributes

cudaGraphMemAttrUsedMemCurrent = 0x1
(value type = cuuinté4_t) Amount of memory, in bytes, currently associated with graphs.
cudaGraphMemAttrUsedMemHigh = 0x2
(value type = cuuinté4_t) High watermark of memory, in bytes, associated with graphs since
the last time it was reset. High watermark can only be reset to zero.
cudaGraphMemAttrReservedMemCurrent = 0x3
(value type = cuuinté4_t) Amount of memory, in bytes, currently allocated for use by the
CUDA graphs asynchronous allocator.
cudaGraphMemAttrReservedMemHigh = 0x4
(value type = cuuintb4_t] High watermark of memory, in bytes, currently allocated for use by
the CUDA graphs asynchronous allocator.

CUDA Graph node types

cudaGraphNodeTypeKernel = 0x00

GPU kernel node
cudaGraphNodeTypeMemcpy = 0x01

Memcpy node
cudaGraphNodeTypeMemset = 0x02

Memset node
cudaGraphNodeTypeHost = 0x03

Host (executable) node
cudaGraphNodeTypeGraph = 0x04

Node which executes an embedded graph
cudaGraphNodeTypeEmpty = 0x05

Empty (no-op) node
cudaGraphNodeTypeWaitEvent = 0x06

External event wait node
cudaGraphNodeTypeEventRecord = 0x07

External event record node

CUDA Runtime API vRelease Version | 524

Modules

cudaGraphNodeTypeExtSemaphoreSignal = 0x08
External semaphore signal node
cudaGraphNodeTypeExtSemaphoreWait = 0x09
External semaphore wait node
cudaGraphNodeTypeMemAlloc = 0x0a
Memory allocation node
cudaGraphNodeTypeMemFree = 0x0b
Memory free node
cudaGraphNodeTypeCount

Graph kernel node Attributes

cudaKernelNodeAttributeAccessPolicyWindow = 1

Identifier for cudaKernelNodeAttrValue::accessPolicyWindow.
cudaKernelNodeAttributeCooperative = 2

Allows a kernel node to be cooperative (see cudalaunchCooperativeKernel).

CUDA Limits

cudaLimitStackSize = 0x00
GPU thread stack size
cudaLimitPrintfFifoSize = 0x01
GPU printf FIFO size
cudaLimitMallocHeapSize = 0x02
GPU malloc heap size
cudaLimitDevRuntimeSyncDepth = 0x03
GPU device runtime synchronize depth
cudaLimitDevRuntimePendingLaunchCount = 0x04
GPU device runtime pending launch count
cudaLimitMaxL2FetchGranularity = 0x05
A value between 0 and 128 that indicates the maximum fetch granularity of L2 (in Bytes).
This is a hint
cudaLimitPersistingL2CacheSize = 0x06
A size in bytes for L2 persisting lines cache size

CUDA Runtime API vRelease Version | 525

Modules

enum cudaMemAccessFlags

Specifies the memory protection flags for mapping.

Values

cudaMemAccessFlagsProtNone =0

Default, make the address range not accessible
cudaMemAccessFlagsProtRead = 1

Make the address range read accessible
cudaMemAccessFlagsProtReadWrite =3

Make the address range read-write accessible

enum cudaMemAllocationHandleType

Flags for specifying particular handle types

Values

cudaMemHandleTypeNone = 0x0

Does not allow any export mechanism. >
cudaMemHandleTypePosixFileDescriptor = 0x1

Allows a file descriptor to be used for exporting. Permitted only on POSIX systems. (int]
cudaMemHandleTypeWin32 = 0x2

Allows a Win32 NT handle to be used for exporting. ([HANDLE])
cudaMemHandleTypeWin32Kmt = 0x4

Allows a Win32 KMT handle to be used for exporting. (D3DKMT_HANDLE)

enum cudaMemAllocationType

Defines the allocation types available

Values

cudaMemAllocationTypelnvalid = 0x0

cudaMemAllocationTypePinned = 0x1
This allocation type is ‘pinned’, i.e. cannot migrate from its current location while the
application is actively using it

cudaMemAllocationTypeMax = 0x7FFFFFFF

enum cudaMemcpyKind

CUDA memory copy types

CUDA Runtime API vRelease Version | 526

Modules

cudaMemcpyHostToHost = 0
Host -> Host

cudaMemcpyHostToDevice = 1
Host -> Device

cudaMemcpyDeviceToHost = 2
Device -> Host

cudaMemcpyDeviceToDevice = 3
Device -> Device

cudaMemcpyDefault = 4
Direction of the transfer is inferred from the pointer values. Requires unified virtual
addressing

Specifies the type of location

cudaMemLocationTypelnvalid =0
cudaMemLocationTypeDevice =1
Location is a device location, thus id is a device ordinal

CUDA Memory Advise values

cudaMemAdviseSetReadMostly = 1

Data will mostly be read and only occassionally be written to
cudaMemAdviseUnsetReadMostly = 2

Undo the effect of cudaMemAdviseSetReadMostly
cudaMemAdviseSetPreferredLocation =3

Set the preferred location for the data as the specified device
cudaMemAdviseUnsetPreferredLocation = 4

Clear the preferred location for the data
cudaMemAdviseSetAccessedBy = 5

Data will be accessed by the specified device, so prevent page faults as much as possible
cudaMemAdviseUnsetAccessedBy = 6

Let the Unified Memory subsystem decide on the page faulting policy for the specified

device

CUDA Runtime API vRelease Version | 527

Modules

CUDA memory types

cudaMemoryTypeUnregistered =0
Unregistered memory
cudaMemoryTypeHost = 1
Host memory
cudaMemoryTypeDevice = 2
Device memory
cudaMemoryTypeManaged = 3
Managed memory

CUDA memory pool attributes

cudaMemPoolReuseFollowEventDependencies = 0x1
(value type = int] Allow cuMemAllocAsync to use memory asynchronously freed in another
streams as long as a stream ordering dependency of the allocating stream on the free
action exists. Cuda events and null stream interactions can create the required stream
ordered dependencies. (default enabled)
cudaMemPoolReuseAllowOpportunistic = 0x2
(value type = int) Allow reuse of already completed frees when there is no dependency
between the free and allocation. (default enabled)
cudaMemPoolReuseAllowInternalDependencies = 0x3
(value type = int] Allow cuMemAllocAsync to insert new stream dependencies in order
to establish the stream ordering required to reuse a piece of memory released by
cuFreeAsync (default enabled).
cudaMemPoolAttrReleaseThreshold = O0x4
(value type = cuuinté4_t) Amount of reserved memory in bytes to hold onto before trying to
release memory back to the 0S. When more than the release threshold bytes of memory
are held by the memory pool, the allocator will try to release memory back to the OS on the
next call to stream, event or context synchronize. (default 0
cudaMemPoolAttrReservedMemCurrent = 0x5
(value type = cuuintb4_t) Amount of backing memory currently allocated for the mempool.
cudaMemPoolAttrReservedMemHigh = 0x6
(value type = cuuinté4_t) High watermark of backing memory allocated for the mempool
since the last time it was reset. High watermark can only be reset to zero.
cudaMemPoolAttrUsedMemCurrent = 0x7

CUDA Runtime API vRelease Version | 528

Modules

(value type = cuuinté4_t) Amount of memory from the pool that is currently in use by the
application.

cudaMemPoolAttrUsedMemHigh = 0x8
(value type = cuuintb4_t] High watermark of the amount of memory from the pool that was
In use by the application since the last time it was reset. High watermark can only be reset
to zero.

CUDA range attributes

cudaMemRangeAttributeReadMostly = 1

Whether the range will mostly be read and only occassionally be written to
cudaMemRangeAttributePreferredLocation = 2

The preferred location of the range
cudaMemRangeAttributeAccessedBy = 3

Memory range has cudaMemAdviseSetAccessedBy set for specified device
cudaMemRangeAttributeLastPrefetchLocation = 4

The last location to which the range was prefetched

CUDA Profiler Output modes

cudaKeyValuePair = 0x00
Output mode Key-Value pair format.
cudaCSV = 0x01
Output mode Comma separated values format.

CUDA resource types

cudaResourceTypeArray = 0x00

Array resource
cudaResourceTypeMipmappedArray = 0x01

Mipmapped array resource
cudaResourceTypeLinear = 0x02

Linear resource
cudaResourceTypePitch2D = 0x03

CUDA Runtime API vRelease Version | 529

Pitch 2D resource

CUDA texture resource view formats

cudaResViewFormatNone = 0x00

No resource view format (use underlying resource format)

cudaResViewFormatUnsignedChar1 = 0x01

1 channel unsigned 8-bit integers
cudaResViewFormatUnsignedChar2 = 0x02

2 channel unsigned 8-bit integers
cudaResViewFormatUnsignedChar4 = 0x03

4 channel unsigned 8-bit integers
cudaResViewFormatSignedChar1 = 0x04

1 channel signed 8-bit integers
cudaResViewFormatSignedChar2 = 0x05

2 channel signed 8-bit integers
cudaResViewFormatSignedChar4 = 0x06

4 channel signed 8-bit integers
cudaResViewFormatUnsignedShort1 = 0x07

1 channel unsigned 16-bit integers
cudaResViewFormatUnsignedShort2 = 0x08

2 channel unsigned 16-bit integers
cudaResViewFormatUnsignedShort4 = 0x09

4 channel unsigned 16-bit integers
cudaResViewFormatSignedShort1 = 0x0a

1 channel signed 16-bit integers
cudaResViewFormatSignedShort2 = 0x0b

2 channel signed 16-bit integers
cudaResViewFormatSignedShort4 = 0x0c

4 channel signed 16-bit integers
cudaResViewFormatUnsignedint1 = 0x0d

1 channel unsigned 32-bit integers
cudaResViewFormatUnsignedint2 = 0x0e

2 channel unsigned 32-bit integers
cudaResViewFormatUnsignedint4 = 0x0f

4 channel unsigned 32-bit integers
cudaResViewFormatSignedint1 = 0x10

1 channel signed 32-bit integers
cudaResViewFormatSignediInt2 = 0x11

2 channel signed 32-bit integers

CUDA Runtime API

Modules

vRelease Version | 530

cudaResViewFormatSignedint4 = 0x12

4 channel signed 32-bit integers
cudaResViewFormatHalf1 = 0x13

1 channel 16-bit floating point
cudaResViewFormatHalf2 = 0x14

2 channel 16-bit floating point
cudaResViewFormatHalf4 = 0x15

4 channel 16-bit floating point
cudaResViewFormatFloat1 = 0x16

1 channel 32-bit floating point
cudaResViewFormatFloat2 = 0x17

2 channel 32-bit floating point
cudaResViewFormatFloat4 = 0x18

4 channel 32-bit floating point
cudaResViewFormatUnsignedBlockCompressed1 = 0x19

Block compressed 1
cudaResViewFormatUnsignedBlockCompressed2 = 0x1a

Block compressed 2
cudaResViewFormatUnsignedBlockCompressed3 = 0x1b

Block compressed 3
cudaResViewFormatUnsignedBlockCompressed4 = 0x1c

Block compressed 4 unsigned
cudaResViewFormatSignedBlockCompressed4 = 0x1d

Block compressed 4 signed
cudaResViewFormatUnsignedBlockCompressed5 = Ox1e

Block compressed 5 unsigned
cudaResViewFormatSignedBlockCompressed5 = 0x1f

Block compressed 5 signed
cudaResViewFormatUnsignedBlockCompressed6H = 0x20

Block compressed 6 unsigned half-float
cudaResViewFormatSignedBlockCompressedé6H = 0x21

Block compressed 6 signed half-float
cudaResViewFormatUnsignedBlockCompressed7 = 0x22

Block compressed 7

Shared memory carveout configurations. These may be passed to cudaFuncSetAttribute

cudaSharedmemCarveoutDefault = -1
No preference for shared memory or L1 (default)
cudaSharedmemCarveoutMaxShared = 100

Modules

CUDA Runtime API vRelease Version | 531

Prefer maximum available shared memory, minimum L1 cache
cudaSharedmemCarveoutMaxL1 =0
Prefer maximum available L1 cache, minimum shared memory

enum cudaSharedMemConfig

CUDA shared memory configuration

Values

cudaSharedMemBankSizeDefault = 0
cudaSharedMemBankSizeFourByte = 1
cudaSharedMemBankSizeEightByte = 2

enum cudaStreamAttriD

Stream Attributes

Values

cudaStreamAttributeAccessPolicyWindow = 1
Identifier for cudaStreamAttrValue::accessPolicyWindow.
cudaStreamAttributeSynchronizationPolicy = 3
cudaSynchronizationPolicy for work queued up in this stream

enum cudaStreamCaptureMode

Possible modes for stream capture thread interactions. For more details see
cudaStreamBeginCapture and cudaThreadExchangeStreamCaptureMode

Values

cudaStreamCaptureModeGlobal = 0
cudaStreamCaptureModeThreadLocal = 1
cudaStreamCaptureModeRelaxed = 2

enum cudaStreamCaptureStatus

Possible stream capture statuses returned by cudaStreamlsCapturing

Values

cudaStreamCaptureStatusNone =0
Stream is not capturing

cudaStreamCaptureStatusActive = 1
Stream is actively capturing

cudaStreamCaptureStatusinvalidated = 2

Modules

CUDA Runtime API vRelease Version | 532

Modules

Stream is part of a capture sequence that has been invalidated, but not terminated

enum cudaStreamUpdateCaptureDependenciesFlags

Flags for cudaStreamUpdateCaptureDependencies

Values

cudaStreamAddCaptureDependencies = 0x0
Add new nodes to the dependency set
cudaStreamSetCaptureDependencies = 0x1
Replace the dependency set with the new nodes

enum cudaSurfaceBoundaryMode

CUDA Surface boundary modes

Values

cudaBoundaryModeZero =0
Zero boundary mode

cudaBoundaryModeClamp =1
Clamp boundary mode

cudaBoundaryModeTrap = 2
Trap boundary mode

enum cudaSurfaceFormatMode

CUDA Surface format modes

Values

cudaFormatModeForced =0
Forced format mode

cudaFormatModeAuto = 1
Auto format mode

enum cudaTextureAddressMode

CUDA texture address modes

Values

cudaAddressModeWrap =0
Wrapping address mode

cudaAddressModeClamp = 1
Clamp to edge address mode

CUDA Runtime API vRelease Version | 533

Modules

cudaAddressModeMirror = 2
Mirror address mode

cudaAddressModeBorder = 3
Border address mode

enum cudaTextureFilterMode

CUDA texture filter modes

Values

cudaFilterModePoint =0
Point filter mode

cudaFilterModeLinear =1
Linear filter mode

enum cudaTextureReadMode

CUDA texture read modes

Values

cudaReadModeElementType =0
Read texture as specified element type
cudaReadModeNormalizedFloat = 1
Read texture as normalized float

enum cudaUserObjectFlags
Flags for user objects for graphs

Values

cudaUserObjectNoDestructorSync = 0x1
Indicates the destructor execution is not synchronized by any CUDA handle.

enum cudaUserObjectRetainFlags
Flags for retaining user object references for graphs

Values

cudaGraphUserObjectMove = 0x1
Transfer references from the caller rather than creating new references.

CUDA Runtime API vRelease Version | 534

Modules

typedef cudaArray *cudaArray const_t

CUDA array (as source copy argument]

typedef cudaArray *cudaArray_t

CUDA array

typedef struct CUeglStreamConnection_st
*cudaEglStreamConnection

CUDA EGLSream Connection

typedef cudaError_t

CUDA Error types

typedef struct CUevent_st *cudaEvent_t

CUDA event types

typedef struct CUexternalMemory_st
*cudaExternalMemory t

CUDA external memory

typedef struct CUexternalSemaphore_st
*cudaExternalSemaphore_t

CUDA external semaphore

typedef struct CUfunc_st *cudaFunction_t

CUDA function

typedef struct CUgraph_st *cudaGraph_t

CUDA graph

typedef struct CUgraphExec_st *cudaGraphExec_t

CUDA executable (launchable] graph

CUDA Runtime API vRelease Version | 535

Modules

typedef cudaGraphicsResource
*cudaGraphicsResource_t

CUDA graphics resource types

typedef struct CUgraphNode_st *cudaGraphNode_t

CUDA graph node.

typedef void (CUDART_CB *cudaHostFn_t] (void*
userData)

CUDA host function

typedef struct CUmemPoolHandle_st
*cudaMemPool t

CUDA memory pool

typedef cudaMipmappedArray
*cudaMipmappedArray_const_t

CUDA mipmapped array (as source argument)

typedef cudaMipmappedArray
*cudaMipmappedArray_t

CUDA mipmapped array

typedef cudaOutputMode_t

CUDA output file modes

typedef struct CUstream_st *cudaStream_t

CUDA stream

typedef unsigned long long cudaSurfaceObject_t

An opaque value that represents a CUDA Surface object

CUDA Runtime API vRelease Version | 536

Modules

typedef unsigned long long cudaTextureObject_t

An opaque value that represents a CUDA texture object

typedef struct CUuserObject_st *cudaUserQObject_t

CUDA user object for graphs

#define CUDA_EGL_MAX_PLANES 3

Maximum number of planes per frame

#define CUDA_IPC_HANDLE_SIZE 64

CUDA IPC Handle Size

#define cudaArrayColorAttachment 0x20

Must be set in cudaExternalMemoryGetMappedMipmappedArray if the mipmapped array is
used as a color target in a graphics AP

#define cudaArrayCubemap 0x04

Must be set in cudaMalloc3DArray to create a cubemap CUDA array

#define cudaArrayDefault 0x00

Default CUDA array allocation flag

#define cudaArraylLayered 0x01

Must be set in cudaMalloc3DArray to create a layered CUDA array

#define cudaArraySparse 0x40

Must be set in cudaMallocArray, cudaMalloc3DArray or cudaMallocMipmappedArray in order
to create a sparse CUDA array or CUDA mipmapped array

#define cudaArraySparsePropertiesSingleMipTail 0x1

Indicates that the layered sparse CUDA array or CUDA mipmapped array has a single mip tail
region for all layers

CUDA Runtime API vRelease Version | 537

Modules

#define cudaArraySurfacelLoadStore 0x02

Must be set in cudaMallocArray or cudaMalloc3DArray in order to bind surfaces to the CUDA
array

#define cudaArrayTextureGather 0x08

Must be set in cudaMallocArray or cudaMalloc3DArray in order to perform texture gather
operations on the CUDA array

#define
cudaCooperativeLaunchMultiDeviceNoPostSync 0x02

If set, any subsequent work pushed in a stream that participated in a call to
cudalaunchCooperativeKernelMultiDevice will only wait for the kernel launched on the GPU
corresponding to that stream to complete before it begins execution.

#define
cudaCooperativeLaunchMultiDeviceNoPreSync 0x01

If set, each kernel launched as part of cudalLaunchCooperativeKernelMultiDevice only waits
for prior work in the stream corresponding to that GPU to complete before the kernel begins
execution.

#define cudaCpuDeviceld ((int)-1]

Device id that represents the CPU

#define cudaDeviceBlockingSync 0x04

Deprecated This flag was deprecated as of CUDA 4.0 and replaced with
cudaDeviceScheduleBlockingSync.

Device flag - Use blocking synchronization

#define cudaDeviceLmemResizeToMax 0x10

Device flag - Keep local memory allocation after launch

#define cudaDeviceMapHost 0x08

Device flag - Support mapped pinned allocations

CUDA Runtime API vRelease Version | 538

Modules

#define cudaDeviceMask Ox1f

Device flags mask

#define cudaDevicePropDontCare

Empty device properties

#define cudaDeviceScheduleAuto 0x00

Device flag - Automatic scheduling

#define cudaDeviceScheduleBlockingSync 0x04

Device flag - Use blocking synchronization

#define cudaDeviceScheduleMask 0x07

Device schedule flags mask

#define cudaDeviceScheduleSpin 0x01

Device flag - Spin default scheduling

#define cudaDeviceScheduleYield 0x02

Device flag - Yield default scheduling

#define cudaEventBlockingSync 0x01

Event uses blocking synchronization

#define cudakventDefault 0x00

Default event flag

#define cudaEventDisableTiming 0x02

Event will not record timing data

#define cudaEventinterprocess 0x04

Event is suitable for interprocess use. cudakventDisableTiming must be set

CUDA Runtime API vRelease Version | 539

Modules

#define cudakventRecordDefault 0x00

Default event record flag

#define cudakventRecordExternal 0x01

Event is captured in the graph as an external event node when performing stream capture

#define cudakventWaitDefault 0x00

Default event wait flag

#define cudakventWaitExternal 0x01

Event is captured in the graph as an external event node when performing stream capture

#define cudaExternalMemoryDedicated 0x1

Indicates that the external memory object is a dedicated resource

#define
cudaExternalSemaphoreSignalSkipNvSciBufMemSync
0x01

When the /p flags parameter of cudaExternalSemaphoreSignalParams contains this flag, it
indicates that signaling an external semaphore object should skip performing appropriate
memory synchronization operations over all the external memory objects that are imported
as cudaExternalMemoryHandleTypeNvSciBuf, which otherwise are performed by default to
ensure data coherency with other importers of the same NvSciBuf memory objects.

#define
cudaExternalSemaphoreWaitSkipNvSciBufMemSync
0x02

When the /p flags parameter of cudaExternalSemaphoreWaitParams contains this flag, it
indicates that waiting an external semaphore object should skip performing appropriate
memory synchronization operations over all the external memory objects that are imported
as cudaExternalMemoryHandleTypeNvSciBuf, which otherwise are performed by default to
ensure data coherency with other importers of the same NvSciBuf memory objects.

CUDA Runtime API vRelease Version | 540

#define cudaHostAllocDefault 0x00

Default page-locked allocation flag

#define cudaHostAllocMapped 0x02

Map allocation into device space

#Hdefine cudaHostAllocPortable 0x01

Pinned memory accessible by all CUDA contexts

#define cudaHostAllocWriteCombined 0x04

Write-combined memory

#define cudaHostRegisterDefault 0x00

Default host memory registration flag

#define cudaHostRegisterloMemory 0x04

Memory-mapped /0 space

#define cudaHostRegisterMapped 0x02

Map registered memory into device space

#define cudaHostRegisterPortable 0x01

Pinned memory accessible by all CUDA contexts

#define cudaHostRegisterReadOnly 0x08

Memory-mapped read-only

#define cudalnvalidDeviceld ((int)-2)

Device id that represents an invalid device

#define cudalpcMemlLazyEnablePeerAccess 0x01

Automatically enable peer access between remote devices as needed

Modules

CUDA Runtime API vRelease Version | 541

Modules

#define cudaMemAttachGlobal 0x01

Memory can be accessed by any stream on any device

#define cudaMemAttachHost 0x02

Memory cannot be accessed by any stream on any device

#define cudaMemAttachSingle 0x04

Memory can only be accessed by a single stream on the associated device

#define cudaNvSciSyncAttrSignal 0x1

When /p flags of cudaDeviceGetNvSciSyncAttributes is set to this, it indicates that application
need signaler specific NvSciSyncAttr to be filled by cudaDeviceGetNvSciSyncAttributes.

#define cudaNvSciSyncAttrWait 0x2

When /p flags of cudaDeviceGetNvSciSyncAttributes is set to this, it indicates that application
need waiter specific NvSciSyncAttr to be filled by cudaDeviceGetNvSciSyncAttributes.

#define cudaOccupancyDefault 0x00

Default behavior

#define cudaOccupancyDisableCachingOverride 0x01

Assume global caching is enabled and cannot be automatically turned off

H#Hdefine cudaPeerAccessDefault 0x00

Default peer addressing enable flag

#define cudaStreamDefault 0x00

Default stream flag

#define cudaStreamlegacy ((cudaStream_t)0x1)

Legacy stream handle

Stream handle that can be passed as a cudaStream_t to use an implicit stream with legacy
synchronization behavior.

CUDA Runtime API vRelease Version | 542

Modules

See details of the synchronization behavior.

#define cudaStreamNonBlocking 0x01

Stream does not synchronize with stream 0 (the NULL stream)

#define cudaStreamPerThread ((cudaStream_t)0x2)

Per-thread stream handle

Stream handle that can be passed as a cudaStream_t to use an implicit stream with per-
thread synchronization behavior.

See details of the synchronization behavior.

CUDA Runtime API vRelease Version | 543

Chapter 7. Data Structures

Here are the data structures with brief descriptions:

cudaOccupancyB2DHelper
cudaAccessPolicyWindow
cudaArraySparseProperties
cudaChannelFormatDesc
cudaDeviceProp
cudaEglFrame
cudaEglPlaneDesc
cudaExtent
cudaExternalMemoryBufferDesc
cudaExternalMemoryHandleDesc
cudaExternalMemoryMipmappedArrayDesc
cudaExternalSemaphoreHandleDesc
cudaExternalSemaphoreSignalNodeParams
cudaExternalSemaphoreSignalParams
cudaExternalSemaphoreSignalParams_v1
cudaExternalSemaphoreWaitNodeParams
cudaExternalSemaphoreWaitParams
cudaExternalSemaphoreWaitParams_v1
cudaFuncAttributes
cudaHostNodeParams
cudalpcEventHandle_t
cudalpcMemHandle_t
cudaKernelNodeAttrValue
cudaKernelNodeParams
cudaLaunchParams
cudaMemAccessDesc
cudaMemAllocNodeParams
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
cudaMemLocation
cudaMemPoolProps
cudaMemPoolPtrExportData

CUDA Runtime API

vRelease Version | 544

Data Structures

cudaMemsetParams
cudaPitchedPtr
cudaPointerAttributes
cudaPos
cudaResourceDesc
cudaResourceViewDesc
cudaStreamAttrValue
cudaTextureDesc
cudaUUID_t
surfaceReference
textureReference

7.1. __cudaOccupancyB2DHelper

C++ API Routines cppClassifierVisibility: visibility=public cppClassifierTemplateModel: =

Helper functor for cudaOccupancyMaxPotentialBlockSize

7.2. cudaAccessPolicyWindow Struct
Reference

Specifies an access policy for a window, a contiguous extent of memory beginning at base_ptr
and ending at base_ptr + num_bytes. Partition into many segments and assign segments
such that. sum of "hit segments” / window == approx. ratio. sum of "miss segments” / window
== approx 1-ratio. Segments and ratio specifications are fitted to the capabilities of the
architecture. Accesses in a hit segment apply the hitProp access policy. Accesses in a miss
segment apply the missProp access policy.

vold *cudaAccessPolicyWindow::base_ptr

Starting address of the access policy window. CUDA driver may align it.

enumcudaAccessProperty
cudaAccessPolicyWindow::hitProp

CUaccessProperty set for hit.

float cudaAccessPolicyWindow::hitRatio

hitRatio specifies percentage of lines assigned hitProp, rest are assigned missProp.

CUDA Runtime API vRelease Version | 545

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gbf4806140e86865b45fc144941a6ced5

Data Structures

enumcudaAccessProperty
cudaAccessPolicyWindow::missProp

CUaccessProperty set for miss. Must be either NORMAL or STREAMING.

size_t cudaAccessPolicyWindow::num_bytes

Size in bytes of the window policy. CUDA driver may restrict the maximum size and alignment.

7.3. cudaArraySparseProperties Struct
Reference

Sparse CUDA array and CUDA mipmapped array properties

unsigned int cudaArraySparseProperties::depth

Tile depth in elements

unsigned int cudaArraySparseProperties::flags

Flags will either be zero or cudaArraySparsePropertiesSingleMipTail

unsigned int cudaArraySparseProperties::height

Tile height in elements

unsigned int
cudaArraySparseProperties::miptailFirstLevel

First mip level at which the mip tail begins

unsigned long long
cudaArraySparseProperties::miptailSize

Total size of the mip tail.

unsigned int cudaArraySparseProperties::width

Tile width in elements

CUDA Runtime API vRelease Version | 546

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1gbf4806140e86865b45fc144941a6ced5

Data Structures

7.4, cudaChannelFormatDesc Struct
Reference

CUDA Channel format descriptor

enumcudaChannelFormatKind
cudaChannelFormatDesc::f

Channel format kind

int cudaChannelFormatDesc::w

wW

int cudaChannelFormatDesc::x

X

Int cudaChannelFormatDesc::y

y

int cudaChannelFormatDesc::z

z

7.9. cudaDeviceProp Struct Reference

CUDA device properties

Int cudaDeviceProp::accessPolicyMaxWindowSize

The maximum value of cudaAccessPolicyWindow::num_bytes.

int cudaDeviceProp::asyncEngineCount

Number of asynchronous engines

CUDA Runtime API vRelease Version | 547

Data Structures

Int cudaDeviceProp::canMapHostMemory

Device can map host memory with cudaHostAlloc/cudaHostGetDevicePointer

Int
cudaDeviceProp::canUseHostPointerForRegisteredMem

Device can access host registered memory at the same virtual address as the CPU

Int cudaDeviceProp::clockRate

Clock frequency in kilohertz

int cudaDeviceProp::computeMode

Compute mode (See cudaComputeMode)

int cudaDeviceProp::computePreemptionSupported

Device supports Compute Preemption

Int cudaDeviceProp::concurrentKernels

Device can possibly execute multiple kernels concurrently

Int cudaDeviceProp::concurrentManagedAccess

Device can coherently access managed memory concurrently with the CPU

Int cudaDeviceProp::cooperativeLaunch

Device supports launching cooperative kernels via cudalLaunchCooperativeKernel

iInt cudaDeviceProp::cooperativeMultiDevicelLaunch

Deprecated, cudaLaunchCooperativeKernelMultiDevice is deprecated.

Int cudaDeviceProp::deviceOverlap

Device can concurrently copy memory and execute a kernel. Deprecated. Use instead
asyncEngineCount.

CUDA Runtime API vRelease Version | 548

Data Structures

int
cudaDeviceProp::directManagedMemAccessFromHost

Host can directly access managed memory on the device without migration.

Int cudaDeviceProp::ECCEnabled

Device has ECC support enabled

int cudaDeviceProp::globalL1CacheSupported

Device supports caching globals in L1

Int cudaDeviceProp::hostNativeAtomicSupported

Link between the device and the host supports native atomic operations

Int cudaDeviceProp::integrated

Device is integrated as opposed to discrete

Int cudaDeviceProp::isMultiGpuBoard

Device is on a multi-GPU board

Int cudaDeviceProp::kernelExecTimeoutEnabled

Specified whether there is a run time limit on kernels

int cudaDeviceProp::12CacheSize

Size of L2 cache in bytes

Int cudaDeviceProp::localL1CacheSupported

Device supports caching locals in L1

char cudaDeviceProp::luid

8-byte locally unique identifier. Value is undefined on TCC and non-Windows platforms

CUDA Runtime API vRelease Version | 549

Data Structures

unsigned int cudaDeviceProp::luidDeviceNodeMask

LUID device node mask. Value is undefined on TCC and non-Windows platforms

Int cudaDeviceProp::major

Major compute capability

Int cudaDeviceProp::managedMemory

Device supports allocating managed memory on this system

Int cudaDeviceProp::maxBlocksPerMultiProcessor

Maximum number of resident blocks per multiprocessor

Int cudaDeviceProp::maxGridSize

Maximum size of each dimension of a grid

int cudaDeviceProp::maxSurface1D

Maximum 1D surface size

Int cudaDeviceProp::maxSurface1DLayered

Maximum 1D layered surface dimensions

int cudaDeviceProp::maxSurface2D

Maximum 2D surface dimensions

int cudaDeviceProp::maxSurface2DLayered

Maximum 2D layered surface dimensions

Int cudaDeviceProp::maxSurface3D

Maximum 3D surface dimensions

int cudaDeviceProp::maxSurfaceCubemap

Maximum Cubemap surface dimensions

CUDA Runtime API vRelease Version | 550

Data Structures

int cudaDeviceProp::maxSurfaceCubemaplayered

Maximum Cubemap layered surface dimensions

Int cudaDeviceProp::maxTexturel1D

Maximum 1D texture size

Int cudaDeviceProp::maxTexture1DLayered

Maximum 1D layered texture dimensions

int cudaDeviceProp::maxTexturelDLinear

Deprecated, do not use. Use cudaDeviceGetTexture1DLinearMaxWidth(] or
cuDeviceGetTexture1DLinearMaxWidth() instead.

int cudaDeviceProp::maxTexture1DMipmap

Maximum 1D mipmapped texture size

Int cudaDeviceProp::maxTexturezD

Maximum 2D texture dimensions

int cudaDeviceProp::maxTexture2DGather

Maximum 2D texture dimensions if texture gather operations have to be performed

int cudaDeviceProp::maxTexture2DLayered

Maximum 2D layered texture dimensions

Int cudaDeviceProp::maxTexture2DLinear

Maximum dimensions (width, height, pitch] for 2D textures bound to pitched memory

int cudaDeviceProp::maxTexture2DMipmap

Maximum 2D mipmapped texture dimensions

CUDA Runtime API vRelease Version | 551

../cuda-driver-api/cuda-driver-api/content/group__CUDA__DEVICE.html#group__CUDA__DEVICE_1gb41b3a675bae9932bffa1c0ae969b1e0

Data Structures

int cudaDeviceProp::maxTexture3D

Maximum 3D texture dimensions

int cudaDeviceProp::maxTexture3DAlt

Maximum alternate 3D texture dimensions

int cudaDeviceProp::maxTextureCubemap

Maximum Cubemap texture dimensions

int cudaDeviceProp::maxTextureCubemapLlayered

Maximum Cubemap layered texture dimensions

Int cudaDeviceProp::maxThreadsDim

Maximum size of each dimension of a block

Int cudaDeviceProp::maxThreadsPerBlock

Maximum number of threads per block

Int cudaDeviceProp::maxThreadsPerMultiProcessor

Maximum resident threads per multiprocessor

iInt cudaDeviceProp::memoryBusWidth

Global memory bus width in bits

Int cudaDeviceProp::memoryClockRate

Peak memory clock frequency in kilohertz

size_t cudaDeviceProp::memPitch

Maximum pitch in bytes allowed by memory copies

Int cudaDeviceProp::minor

Minor compute capability

CUDA Runtime API vRelease Version | 552

Data Structures

Int cudaDeviceProp::multiGpuBoardGrouplD

Unique identifier for a group of devices on the same multi-GPU board

iInt cudaDeviceProp::multiProcessorCount

Number of multiprocessors on device

char cudaDeviceProp::name

ASCII string identifying device

Int cudaDeviceProp::pageableMemoryAccess

Device supports coherently accessing pageable memory without calling cudaHostRegister on
it

int
cudaDeviceProp::pageableMemoryAccessUsesHostPageTables

Device accesses pageable memory via the host's page tables

Int cudaDeviceProp::pciBusID

PCIl bus ID of the device

int cudaDeviceProp::pciDevicelD

PCl device ID of the device

Int cudaDeviceProp::pciDomainlD

PCl domain ID of the device

int cudaDeviceProp::persistingL2CacheMaxSize

Device's maximum |2 persisting lines capacity setting in bytes

int cudaDeviceProp::regsPerBlock

32-bit registers available per block

CUDA Runtime API vRelease Version | 553

Data Structures

int cudaDeviceProp::regsPerMultiprocessor

32-bit registers available per multiprocessor

size_t cudaDeviceProp::reservedSharedMemPerBlock

Shared memory reserved by CUDA driver per block in bytes

size_t cudaDeviceProp::sharedMemPerBlock

Shared memory available per block in bytes

size_t cudaDeviceProp::sharedMemPerBlockOptin

Per device maximum shared memory per block usable by special opt in

size t
cudaDeviceProp::sharedMemPerMultiprocessor
Shared memory available per multiprocessor in bytes

int
cudaDeviceProp::singleToDoublePrecisionPerfRatio

Ratio of single precision performance (in floating-point operations per second] to double
precision performance

Int cudaDeviceProp::streamPrioritiesSupported

Device supports stream priorities

size_t cudaDeviceProp::surfaceAlignment

Alignment requirements for surfaces

Int cudaDeviceProp::tccDriver

1 if device is a Tesla device using TCC driver, 0 otherwise

size_t cudaDeviceProp::textureAlignment

Alignment requirement for textures

CUDA Runtime API vRelease Version | 554

Data Structures

size_t cudaDeviceProp::texturePitchAlignment

Pitch alignment requirement for texture references bound to pitched memory

size_t cudaDeviceProp::totalConstMem

Constant memory available on device in bytes

size_t cudaDeviceProp::totalGlobalMem

Global memory available on device in bytes

int cudaDeviceProp::unifiedAddressing

Device shares a unified address space with the host

cudaUUID_t cudaDeviceProp::uuid

16-byte unique identifier

int cudaDeviceProp::warpSize

Warp size in threads

7.6. cudaEglFrame Struct Reference

CUDA EGLFrame Descriptor - structure defining one frame of EGL.

Each frame may contain one or more planes depending on whether the surface is Multiplanar
or not. Each plane of EGLFrame is represented by cudaEglPlaneDesc which is defined as:

[typedef struct cudaEglPlaneDesc st {
unsigned int width;
unsigned int height;
unsigned int depth;
unsigned int pitch;
unsigned int numChannels;
struct cudaChannelFormatDesc channelDesc;
unsigned int reserved([4];
} cudaEglPlaneDesc;

cudaEglColorFormat cudaEglFrame::eglColorFormat

CUDA EGL Color Format

CUDA Runtime API vRelease Version | 555

Data Structures

cudaEglFrameType cudakEglFrame::frameType

Array or Pitch

cudaArray_t cudakEglFrame::pArray

Array of CUDA arrays corresponding to each plane

unsigned int cudaEglFrame::planeCount

Number of planes

struct cudaEglPlaneDesc cudaEglFrame::planeDesc

CUDA EGL Plane Descriptor cudaEglPlaneDesc

struct cudaPitchedPtr cudaEglFrame::pPitch

Array of Pointers corresponding to each plane

7.7. cudaEglPlaneDesc Struct Reference

CUDA EGL Plane Descriptor - structure defining each plane of a CUDA EGLFrame

struct cudaChannelFormatDesc
cudaEglPlaneDesc::channelDesc

Channel Format Descriptor

unsigned int cudaEglPlaneDesc::depth

Depth of plane

unsigned int cudaEglPlaneDesc::height

Height of plane

unsigned int cudakEglPlaneDesc::numChannels

Number of channels for the plane

CUDA Runtime API vRelease Version | 556

Data Structures

unsigned int cudaEglPlaneDesc::pitch

Pitch of plane

unsigned int cudaEglPlaneDesc::reserved

Reserved for future use

unsigned int cudaEglPlaneDesc::width

Width of plane

7.8. cudaExtent Struct Reference

CUDA extent
See also:

make cudaExtent

size_t cudakxtent::depth

Depth in elements

size_t cudaExtent::height

Height in elements

size_t cudaExtent::width

Width in elements when referring to array memory, in bytes when referring to linear memory

7.9. cudakxternalMemoryBufferDesc
Struct Reference

External memory buffer descriptor

unsigned int cudaExternalMemoryBufferDesc::flags

Flags reserved for future use. Must be zero.

CUDA Runtime API vRelease Version | 557

Data Structures

unsigned long long
cudaExternalMemoryBufferDesc::offset

Offset into the memory object where the buffer’s base is

unsigned long long
cudaExternalMemoryBufferDesc::size

Size of the buffer

7.10. cudakxternalMemoryHandleDesc
Struct Reference

External memory handle descriptor

int cudakExternalMemoryHandleDesc::fd

File descriptor referencing the memory object. Valid when type is
cudaExternalMemoryHandleTypeOpaqueFd

unsigned int cudaExternalMemoryHandleDesc::flags

Flags must either be zero or cudaExternalMemoryDedicated

void *cudaExternalMemoryHandleDesc::handle

Valid NT handle. Must be NULL if ‘name’ is non-NULL

const void *cudaExternalMemoryHandleDesc::name

Name of a valid memory object. Must be NULL if handle’ is non-NULL.

const void
*cudaExternalMemoryHandleDesc::nvSciBufObject

A handle representing NvSciBuf Object. Valid when type is
cudaExternalMemoryHandleTypeNvSciBuf

CUDA Runtime API vRelease Version | 558

Data Structures

unsigned long long
cudaExternalMemoryHandleDesc::size

Size of the memory allocation

enumcudaExternalMemoryHandleType
cudaExternalMemoryHandleDesc::type

Type of the handle

cudaExternalMemoryHandleDesc::(d7::(d8
cudaEkxternalMemoryHandleDesc::win32

Win32 handle referencing the semaphore object. Valid when type is one of the following:

> cudakExternalMemoryHandleTypeOpaqueWin32

» cudakExternalMemoryHandleTypeOpaqueWin32Kmt

» cudaExternalMemoryHandleTypeD3D12Heap

» cudaExternalMemoryHandleTypeD3D12Resource

> cudaExternalMemoryHandleTypeD3D11Resource

» cudaExternalMemoryHandleTypeD3D11ResourceKmt Exactly
one of 'handle’ and 'name’ must be non-NULL. If type is one of
the following: cudaExternalMemoryHandleTypeOpaqueWin32Kmt
cudaExternalMemoryHandleTypeD3D11ResourceKmt then 'name’ must be NULL.

7.11. cudakxternalMemoryMipmappedArrayDesc
Struct Reference

External memory mipmap descriptor

struct cudaExtent
cudaExternalMemoryMipmappedArrayDesc::extent

Dimensions of base level of the mipmap chain

CUDA Runtime API vRelease Version | 559

Data Structures

unsigned int
cudaExternalMemoryMipmappedArrayDesc::flags

Flags associated with CUDA mipmapped arrays. See cudaMallocMipmappedArray

struct cudaChannelFormatDesc
cudaExternalMemoryMipmappedArrayDesc::formatDesc

Format of base level of the mipmap chain

unsigned int
cudaExternalMemoryMipmappedArrayDesc::numLevels

Total number of levels in the mipmap chain

unsigned long long
cudakxternalMemoryMipmappedArrayDesc::offset

Offset into the memory object where the base level of the mipmap chain is.

7.12. cudakxternalSemaphoreHandleDesc
Struct Reference

External semaphore handle descriptor

int cudaExternalSemaphoreHandleDesc::fd

File descriptor referencing the semaphore object. Valid when type is one of the following:

> cudakExternalSemaphoreHandleTypeOpaqueFd

» cudaExternalSemaphoreHandleTypeTimelineSemaphorefFd

unsigned int
cudaExternalSemaphoreHandleDesc::flags

Flags reserved for the future. Must be zero.

CUDA Runtime API vRelease Version | 560

Data Structures

void *cudaExternalSemaphoreHandleDesc::handle

Valid NT handle. Must be NULL if ‘'name’ is non-NULL

const void
*cudaExternalSemaphoreHandleDesc::name

Name of a valid synchronization primitive. Must be NULL if ‘handle’ is non-NULL.

const void
*cudaExternalSemaphoreHandleDesc::nv5ciSyncObj

Valid NvSciSyncObj. Must be non NULL

enumcudaExternalSemaphoreHandleType
cudaExternalSemaphoreHandleDesc::type

Type of the handle

cudaExternalSemaphoreHandleDesc::(d9::(@10
cudaExternalSemaphoreHandleDesc::win32

Win32 handle referencing the semaphore object. Valid when type is one of the following:

>

>

>

>

cudaExternalSemaphoreHandleTypeOpaqueWin32

cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt

cudaExternalSemaphoreHandleTypeD3D12Fence

cudaExternalSemaphoreHandleTypeD3D11Fence

cudakExternalSemaphoreHandleTypeKeyedMutex

cudaExternalSemaphoreHandleTypeTimelineSemaphoreWin32 Exactly

one of 'handle’ and ‘name’ must be non-NULL. If type is one of the

following: cudaExternalSemaphoreHandleTypeOpaqueWin32Kmt
cudaExternalSemaphoreHandleTypeKeyedMutexKmt then 'name’ must be NULL.

CUDA Runtime API vRelease Version | 561

Data Structures

7.13. cudaExternalSemaphoreSignalNodeParams
Struct Reference

External semaphore signal node parameters

cudaExternalSemaphore_t
*cudaExternalSemaphoreSignalNodeParams::extSemArray

Array of external semaphore handles.

unsigned int
cudaExternalSemaphoreSignalNodeParams::numExtSems

Number of handles and parameters supplied in extSemArray and paramsArray.

cudaExternalSemaphoreSignalParams
*cudaExternalSemaphoreSignalNodeParams::paramsArray

Array of external semaphore signal parameters.

7.14. cudaExternalSemaphoreSignalParams
Struct Reference

External semaphore signal parameters, compatible with driver type

void *cudaExternalSemaphoreSignalParams::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudakxternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreSignalParams::(@19::(d20
cudaExternalSemaphoreSignalParams::fence

Parameters for fence objects

CUDA Runtime API vRelease Version | 562

Data Structures

unsigned int
cudaExternalSemaphoreSignalParams::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the

valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync: which indicates

that while signaling the cudaExternalSemaphore_t, no memory synchronization

operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.

cudaExternalSemaphoreSignalParams::(d19::(d22
cudaExternalSemaphoreSignalParams::keyedMutex

Parameters for keyed mutex objects

unsigned long long
cudaExternalSemaphoreSignalParams::value

Value of fence to be signaled

7.15. cudaExternalSemaphoreSignalParams_v1
Struct Reference

External semaphore signal parameters(deprecated)

void
*cudaExternalSemaphoreSignalParams_v1::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreSignalParams_v1::(d11::(@12
cudaExternalSemaphoreSignalParams_v1::fence

Parameters for fence objects

CUDA Runtime API vRelease Version | 563

Data Structures

unsigned int
cudaExternalSemaphoreSignalParams_v1::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the

valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync: which indicates

that while signaling the cudaExternalSemaphore_t, no memory synchronization

operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.

cudaExternalSemaphoreSignalParams_v1::(d11::(@14
cudaExternalSemaphoreSignalParams_v1::keyedMutex

Parameters for keyed mutex objects

unsigned long long
cudaExternalSemaphoreSignalParams_v1::value

Value of fence to be signaled

7.16. cudaExternalSemaphoreWaitNodeParams
Struct Reference

External semaphore wait node parameters

cudaExternalSemaphore_t
*cudaExternalSemaphoreWaitNodeParams::extSemArray

Array of external semaphore handles.

unsigned int
cudaExternalSemaphoreWaitNodeParams::numExtSems

Number of handles and parameters supplied in extSemArray and paramsArray.

CUDA Runtime API vRelease Version | 564

Data Structures

cudaExternalSemaphoreWaitParams
*cudaEkxternalSemaphoreWaitNodeParams::paramsArray

Array of external semaphore wait parameters.

7.17. cudaExternalSemaphoreWaitParams
Struct Reference

External semaphore wait parameters, compatible with driver type

void *cudaExternalSemaphoreWaitParams::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreWaitParams::(d23::(d24
cudaExternalSemaphoreWaitParams::fence

Parameters for fence objects

unsigned int
cudaExternalSemaphoreWaitParams::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the

valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync: which indicates

that while waiting for the cudaExternalSemaphore_t, no memory synchronization
operations should be performed for any external memory object imported as
cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.

unsigned long long
cudaExternalSemaphoreWaitParams::key

Value of key to acquire the mutex with

CUDA Runtime API vRelease Version | 565

Data Structures

cudaExternalSemaphoreWaitParams::(d23::(d26
cudaExternalSemaphoreWaitParams::keyedMutex

Parameters for keyed mutex objects

unsigned int
cudaExternalSemaphoreWaitParams::timeoutMs

Timeout in milliseconds to wait to acquire the mutex

unsigned long long
cudaExternalSemaphoreWaitParams::value

Value of fence to be waited on

7.18. cudaExternalSemaphoreWaitParams_ v
Struct Reference

External semaphore wait parameters(deprecated)

void *cudaExternalSemaphoreWaitParams_v1::fence

Pointer to NvSciSyncFence. Valid if cudaExternalSemaphoreHandleType is of type
cudaExternalSemaphoreHandleTypeNvSciSync.

cudaExternalSemaphoreWaitParams_v1::(d15::(d16
cudaExternalSemaphoreWaitParams_v1::fence

Parameters for fence objects

unsigned int
cudaExternalSemaphoreWaitParams_v1::flags

Only when cudaExternalSemaphoreSignalParams is used to signal a
cudaExternalSemaphore_t of type cudaExternalSemaphoreHandleTypeNvSciSync, the
valid flag is cudaExternalSemaphoreSignalSkipNvSciBufMemSync: which indicates
that while waiting for the cudaExternalSemaphore_t, no memory synchronization
operations should be performed for any external memory object imported as

CUDA Runtime API vRelease Version | 566

Data Structures

cudaExternalMemoryHandleTypeNvSciBuf. For all other types of cudaExternalSemaphore_t,
flags must be zero.

unsigned long long
cudaExternalSemaphoreWaitParams_v1::key

Value of key to acquire the mutex with

cudaExternalSemaphoreWaitParams_v1::(d15::(d18
cudaExternalSemaphoreWaitParams_v1::keyedMutex

Parameters for keyed mutex objects

unsigned int
cudaExternalSemaphoreWaitParams_v1::timeoutMs

Timeout in milliseconds to wait to acquire the mutex

unsigned long long
cudaExternalSemaphoreWaitParams_v1::value

Value of fence to be waited on

7.19. cudaFuncAttributes Struct Reference
CUDA function attributes

Int cudaFuncAttributes::binaryVersion

The binary architecture version for which the function was compiled. This value is the major
binary version * 10 + the minor binary version, so a binary version 1.3 function would return the
value 13.

int cudaFuncAttributes::cacheModeCA

The attribute to indicate whether the function has been compiled with user specified option "-
Xptxas --dlcm=ca” set.

size_t cudaFuncAttributes::constSizeBytes

The size in bytes of user-allocated constant memory required by this function.

CUDA Runtime API vRelease Version | 567

Data Structures

size_t cudaFuncAttributes::localSizeBytes

The size in bytes of local memory used by each thread of this function.

Int cudaFuncAttributes::maxDynamicSharedSizeBytes

The maximum size in bytes of dynamic shared memory per block for this function. Any launch
must have a dynamic shared memory size smaller than this value.

int cudaFuncAttributes::maxThreadsPerBlock

The maximum number of threads per block, beyond which a launch of the function would fail.
This number depends on both the function and the device on which the function is currently
loaded.

Int cudaFuncAttributes::numRegs

The number of registers used by each thread of this function.

Int cudaFuncAttributes::preferredShmem~Carveout

On devices where the L1 cache and shared memory use the same hardware resources, this
sets the shared memory carveout preference, in percent of the maximum shared memory.
Refer to cudaDevAttrMaxSharedMemoryPerMultiprocessor. This is only a hint, and the driver
can choose a different ratio if required to execute the function. See cudaFuncSetAttribute

int cudaFuncAttributes::ptxVersion

The PTX virtual architecture version for which the function was compiled. This value is the
major PTX version * 10 + the minor PTX version, so a PTX version 1.3 function would return the
value 13.

size_t cudaFuncAttributes::sharedSizeBytes

The size in bytes of statically-allocated shared memory per block required by this function.
This does not include dynamically-allocated shared memory requested by the user at runtime.

7.20. cudaHostNodeParams Struct
Reference

CUDA host node parameters

CUDA Runtime API vRelease Version | 568

Data Structures

cudaHostFn _t cudaHostNodeParams::fn

The function to call when the node executes

void *cudaHostNodeParams::userData

Argument to pass to the function

7.21. cudalpcEventHandle t Struct
Reference

CUDA IPC event handle

7.22. cudalpcMemHandle_t Struct
Reference

CUDA IPC memory handle

7.23. cudaKernelNodeAttrValue Union
Reference

Graph kernel node attributes union, used with
cudaGraphKernelNodeSetAttribute/cudaGraphKernelNodeGetAttribute

struct cudaAccessPolicyWindow
cudaKernelNodeAttrValue::accessPolicyWindow

Attribute CUaccessPolicyWindow.

7.24. cudaKernelNodeParams Struct
Reference

CUDA GPU kernel node parameters

CUDA Runtime API vRelease Version | 569

Data Structures

dim3 cudaKernelNodeParams::blockDim

Block dimensions

**cudaKernelNodeParams::extra

Pointer to kernel arguments in the “extra” format

void *cudaKernelNodeParams::func

Kernel to launch

dim3 cudaKernelNodeParams::gridDim

Grid dimensions

**cudaKernelNodeParams::kernelParams

Array of pointers to individual kernel arguments

unsigned int
cudaKernelNodeParams::sharedMemBytes

Dynamic shared-memory size per thread block in bytes

7.25. cudalLaunchParams Struct Reference

CUDA launch parameters

**cudalLaunchParams::args

Arguments

dim3 cudalLaunchParams::blockDim

Block dimentions

void *cudal.aunchParams::func

Device function symbol

CUDA Runtime API vRelease Version | 570

Data Structures

dim3 cudaLaunchParams::gridDim

Grid dimentions

size_t cudaLaunchParams::sharedMem

Shared memory

cudaStream_t cudaLaunchParams::stream

Stream identifier

7.26. cudaMemAccessDesc Struct
Reference

Memory access descriptor

enumcudaMemAccessFlags
cudaMemAccessDesc::flags

CUmemProt accessibility flags to set on the request

struct cudaMemLocation
cudaMemAccessDesc::location

Location on which the request is to change it's accessibility

7.27. cudaMemAllocNodeParams Struct
Reference

Memory allocation node parameters

size_t cudaMemAllocNodeParams::accessDescCount

in: Number of "accessDescs’s

CUDA Runtime API vRelease Version | 571

Data Structures

cudaMemAccessDesc
*cudaMemAllocNodeParams::accessDescs

in: number of memory access descriptors. Must not exceed the number of GPUs.

size_t cudaMemAllocNodeParams::bytesize

in: size in bytes of the requested allocation

void *cudaMemAllocNodeParams::dptr

out: address of the allocation returned by CUDA

struct cudaMemPoolProps
cudaMemAllocNodeParams::poolProps

in: location where the allocation should reside (specified in location). handleTypes must be
cudaMemHandleTypeNone. IPC is not supported. in: array of memory access descriptors.
Used to describe peer GPU access

7.28. cudaMemcpy3DParms Struct
Reference

CUDA 3D memory copying parameters

cudaArray_t cudaMemcpy3DParms::dstArray

Destination memory address

struct cudaPos cudaMemcpy3DParms::dstPos

Destination position offset

struct cudaPitchedPtr cudaMemcpy3DParms::dstPtr

Pitched destination memory address

struct cudakExtent cudaMemcpy3DParms::extent

Requested memory copy size

CUDA Runtime API vRelease Version | 572

Data Structures

enumcudaMemcpyKind cudaMemcpy3DParms::kind

Type of transfer

cudaArray_t cudaMemcpy3DParms::srcArray

Source memory address

struct cudaPos cudaMemcpy3DParms::srcPos

Source position offset

struct cudaPitchedPtr cudaMemcpy3DParms::srcPtr

Pitched source memory address

7.29. cudaMemcpy3DPeerParms Struct
Reference

CUDA 3D cross-device memory copying parameters

cudaArray_t cudaMemcpy3DPeerParms::dstArray

Destination memory address

int cudaMemcpy3DPeerParms::dstDevice

Destination device

struct cudaPos cudaMemcpy3DPeerParms::dstPos

Destination position offset

struct cudaPitchedPtr
cudaMemcpy3DPeerParms::dstPtr

Pitched destination memory address

struct cudakxtent cudaMemcpy3DPeerParms::extent

Requested memory copy size

CUDA Runtime API vRelease Version | 573

Data Structures

cudaArray_t cudaMemcpy3DPeerParms::srcArray

Source memory address

Int cudaMemcpy3DPeerParms::srcDevice

Source device

struct cudaPos cudaMemcpy3DPeerParms::srcPos

Source position offset

struct cudaPitchedPtr
cudaMemcpy3DPeerParms::srcPtr

Pitched source memory address

7.30. cudaMemLocation Struct Reference

Specifies a memory location.

To specify a gpu, set type = cudaMemLlocationTypeDevice and set id = the gpu’s device ordinal.

int cudaMemLocation::id

identifier for a given this location’'s CUmemLocationType.

enumcudaMemLocationType cudaMemLocation::type

Specifies the location type, which modifies the meaning of id.

7.31. cudaMemPoolProps Struct Reference

Specifies the properties of allocations made from the pool.

enumcudaMemAllocationType
cudaMemPoolProps::allocType

Allocation type. Currently must be specified as cudaMemAllocationTypePinned

CUDA Runtime API vRelease Version | 574

../cuda-driver-api/cuda-driver-api/content/group__CUDA__TYPES.html#group__CUDA__TYPES_1g75cfd5b9fa5c1c6ee2be2547bfbe882e

Data Structures

enumcudaMemAllocationHandleType
cudaMemPoolProps::handleTypes

Handle types that will be supported by allocations from the pool.

struct cudaMemLocation
cudaMemPoolProps::location

Location allocations should reside.

unsigned char cudaMemPoolProps::reserved

reserved for future use, must be 0

void *cudaMemPoolProps::win32SecurityAttributes

Windows-specific LPSECURITYATTRIBUTES required when cudaMemHandleTypeWin32 is
specified. This security attribute defines the scope of which exported allocations may be
tranferred to other processes. In all other cases, this field is required to be zero.

7.32. cudaMemPoolPtrExportData Struct
Reference

Opaque data for exporting a pool allocation

7.33. cudaMemsetParams Struct
Reference

CUDA Memset node parameters

void *cudaMemsetParams::dst

Destination device pointer

unsigned int cudaMemsetParams::elementSize

Size of each element in bytes. Must be 1, 2, or 4.

CUDA Runtime API vRelease Version | 575

size_t cudaMemsetParams::height

Number of rows

size_t cudaMemsetParams::pitch

Pitch of destination device pointer. Unused if height is 1

unsigned int cudaMemsetParams::value

Value to be set

size_t cudaMemsetParams::width

Width of the row in elements

Data Structures

7.34. cudaPitchedPtr Struct Reference

CUDA Pitched memory pointer
See also:

make cudaPitchedPtr

size_t cudaPitchedPtr::pitch

Pitch of allocated memory in bytes

void *cudaPitchedPtr::ptr

Pointer to allocated memory

size t cudaPitchedPtr::xsize

Logical width of allocation in elements

size_t cudaPitchedPtr::ysize

Logical height of allocation in elements

CUDA Runtime AP!I

vRelease Version | 576

Data Structures

7.35. cudaPointerAttributes Struct
Reference

CUDA pointer attributes

Int cudaPointerAttributes::device

The device against which the memory was allocated or registered. If the memory type

Is cudaMemoryTypeDevice then this identifies the device on which the memory referred
physically resides. If the memory type is cudaMemoryTypeHost or::cudaMemoryTypeManaged
then this identifies the device which was current when the memory was allocated or registered
(and if that device is deinitialized then this allocation will vanish with that device's state).

void *cudaPointerAttributes::devicePointer

The address which may be dereferenced on the current device to access the memory or NULL
if no such address exists.

void *cudaPointerAttributes::hostPointer

The address which may be dereferenced on the host to access the memory or NULL if no such
address exists.

Note:

CUDA doesn’t check if unregistered memory is allocated so this field may contain invalid
pointer if an invalid pointer has been passed to CUDA.

enumcudaMemoryType cudaPointerAttributes::type

The type of memory - cudaMemoryTypeUnregistered, cudaMemoryTypeHost,
cudaMemoryTypeDevice or cudaMemoryTypeManaged.

7.36. cudaPos Struct Reference

CUDA 3D position
See also:

make cudaPos

CUDA Runtime API vRelease Version | 577

Data Structures

size_t cudaPos::x

X

size_t cudaPos::y

y

size _t cudaPos::z

z

7.37. cudaResourceDesc Struct Reference

CUDA resource descriptor

cudaArray_t cudaResourceDesc::array

CUDA array

struct cudaChannelFormatDesc
cudaResourceDesc::desc

Channel descriptor

void *cudaResourceDesc::devPtr

Device pointer

size_t cudaResourceDesc::height

Height of the array in elements

cudaMipmappedArray_t cudaResourceDesc::mipmap

CUDA mipmapped array

size_t cudaResourceDesc::pitchInBytes

Pitch between two rows in bytes

CUDA Runtime API vRelease Version | 578

Data Structures

enumcudaResourceType cudaResourceDesc::resType

Resource type

size_t cudaResourceDesc::sizelnBytes

Size in bytes

size_t cudaResourceDesc::width

Width of the array in elements

7.38. cudaResourceViewDesc Struct
Reference

CUDA resource view descriptor

size_t cudaResourceViewDesc::depth

Depth of the resource view

unsigned int cudaResourceViewDesc::firstLayer

First layer index

unsigned int
cudaResourceViewDesc::firstMipmapLevel

First defined mipmap level

enumcudaResourceViewFormat
cudaResourceViewDesc::format

Resource view format

size_t cudaResourceViewDesc::height

Height of the resource view

CUDA Runtime API vRelease Version | 579

Data Structures

unsigned int cudaResourceViewDesc::lastLayer

Last layer index

unsigned int
cudaResourceViewDesc::lastMipmapLevel

Last defined mipmap level

size_t cudaResourceViewDesc::width

Width of the resource view

7.39. cudaStreamAttrValue Union
Reference

Stream attributes union used with cudaStreamSetAttribute/cudaStreamGetAttribute

7.40. cudaTextureDesc Struct Reference

CUDA texture descriptor

enumcudaTextureAddressMode
cudaTextureDesc::addressMode

Texture address mode for up to 3 dimensions

float cudaTextureDesc::borderColor

Texture Border Color

int cudaTextureDesc::disableTrilinearOptimization

Disable any trilinear filtering optimizations.

CUDA Runtime API vRelease Version | 580

Data Structures

enumcudaTextureFilterMode
cudaTextureDesc::filterMode

Texture filter mode

unsigned int cudaTextureDesc::maxAnisotropy

Limit to the anisotropy ratio

float cudaTextureDesc::maxMipmapLevelClamp

Upper end of the mipmap level range to clamp access to

float cudaTextureDesc::minMipmapLevelClamp

Lower end of the mipmap level range to clamp access to

enumcudaTextureFilterMode
cudaTextureDesc::mipmapFilterMode

Mipmap filter mode

float cudaTextureDesc::mipmapLevelBias

Offset applied to the supplied mipmap level

int cudaTextureDesc::normalizedCoords

Indicates whether texture reads are normalized or not

enumcudaTextureReadMode
cudaTextureDesc::readMode

Texture read mode

int cudaTextureDesc::sRGB

Perform sRGB->linear conversion during texture read

CUDA Runtime API vRelease Version | 581

Data Structures

7.41. CUuuid_st Struct Reference

CUDA UUID types

char CUuuid_st::bytes

< CUDA definition of UUID

7.42. surfaceReference Struct Reference

CUDA Surface reference

struct cudaChannelFormatDesc
surfaceReference::channelDesc

Channel descriptor for surface reference

7.43. textureReference Struct Reference

CUDA texture reference

enumcudaTextureAddressMode
textureReference::addressMode

Texture address mode for up to 3 dimensions

struct cudaChannelFormatDesc
textureReference::channelDesc

Channel descriptor for the texture reference

Int textureReference::disableTrilinearOptimization

Disable any trilinear filtering optimizations.

CUDA Runtime API vRelease Version | 582

Data Structures

enumcudaTextureFilterMode
textureReference::filterMode

Texture filter mode

unsigned int textureReference::maxAnisotropy

Limit to the anisotropy ratio

float textureReference::maxMipmapLevelClamp

Upper end of the mipmap level range to clamp access to

float textureReference::minMipmapLevelClamp

Lower end of the mipmap level range to clamp access to

enumcudaTextureFilterMode
textureReference::mipmapFilterMode

Mipmap filter mode

float textureReference::mipmapLevelBias

Offset applied to the supplied mipmap level

int textureReference::normalized

Indicates whether texture reads are normalized or not

int textureReference::sRGB

Perform sRGB->linear conversion during texture read

CUDA Runtime API vRelease Version | 583

Chapter 8. Data Fields

Here is a list of all documented struct and union fields with links to the struct/union

documentation for each field:

A

accessDescCount
cudaMemAllocNodeParams

accessDescs
cudaMemAllocNodeParams

accessPolicyMaxWindowSize
cudaDeviceProp
accessPolicyWindow
cudaKernelNodeAttrValue
addressMode
textureReference
cudaTextureDesc
allocType
cudaMemPoolProps
args
cudalaunchParams
array
cudaResourceDesc
asyncEngineCount
cudaDeviceProp

B

base_ptr
cudaAccessPolicyWindow

binaryVersion
cudaFuncAttributes

blockDim
cudaKernelNodeParams
cudalaunchParams

CUDA Runtime API

vRelease Version | 584

borderColor
cudaTextureDesc

bytes
cudaUUID t

bytesize
cudaMemAllocNodeParams

C

cacheModeCA
cudaFuncAttributes

canMapHostMemory
cudaDeviceProp

canUseHostPointerForRegisteredMem

cudaDeviceProp
channelDesc
cudaEglPlaneDesc
surfaceReference
textureReference
clockRate
cudaDeviceProp
computeMode
cudaDeviceProp
computePreemptionSupported
cudaDeviceProp
concurrentKernels
cudaDeviceProp
concurrentManagedAccess
cudaDeviceProp
constSizeBytes
cudaFuncAttributes
cooperativeLaunch
cudaDeviceProp
cooperativeMultiDeviceLaunch
cudaDeviceProp

D

depth
cudakEglPlaneDesc
cudaArraySparseProperties
cudaResourceViewDesc
cudaExtent

desc
cudaResourceDesc

CUDA Runtime API

Data Fields

vRelease Version | 585

device
cudaPointerAttributes
deviceOverlap
cudaDeviceProp
devicePointer
cudaPointerAttributes
devPtr
cudaResourceDesc
directManagedMemAccessFromHost
cudaDeviceProp
disableTrilinearOptimization
textureReference
cudaTextureDesc
dptr
cudaMemAllocNodeParams
dst
cudaMemsetParams
dstArray
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
dstDevice
cudaMemcpy3DPeerParms
dstPos
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
dstPtr
cudaMemcpy3DPeerParms
cudaMemcpy3DParms

E

ECCEnabled
cudaDeviceProp

eglColorFormat
cudakglFrame

elementSize
cudaMemsetParams

extent
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
cudaExternalMemoryMipmappedArrayDesc

extra
cudaKernelNodeParams

CUDA Runtime API

Data Fields

vRelease Version | 586

extSemArray
cudaExternalSemaphoreSignalNodeParams

cudaExternalSemaphoreWaitNodeParams

cudaChannelFormatDesc

fd
cudaExternalMemoryHandleDesc
cudaExternalSemaphoreHandleDesc
fence
cudaExternalSemaphoreSignalParams vl
cudaExternalSemaphoreSignalParams
cudaExternalSemaphoreSignalParams vl
cudakExternalSemaphoreWaitParams
cudaExternalSemaphoreWaitParams vl
filterMode
textureReference
cudaTextureDesc
firstLayer
cudaResourceViewDesc
firstMipmapLevel
cudaResourceViewDesc
flags
cudaArraySparseProperties
cudaMemAccessDesc
cudaExternalMemoryHandleDesc
cudaExternalSemaphoreWaitParams vl
cudaExternalSemaphoreWaitParams
cudakxternalMemoryMipmappedArrayDesc
L
L

cudaExternalSemaphoreSignalParams vl
cudakExternalSemaphoreHandleDesc
cudaExternalSemaphoreSignalParams
cudaExternalMemoryBufferDesc

fn
cudaHostNodeParams
format
cudaResourceViewDesc
formatDesc
cudaExternalMemoryMipmappedArrayDesc
frameType

cudaEglFrame

CUDA Runtime AP!I

Data Fields

vRelease Version | 587

func
cudaKernelNodeParams
cudalaunchParams

G

globalL1CacheSupported
cudaDeviceProp

gridDim
cudaKernelNodeParams
cudalaunchParams

H

handle
cudaExternalMemoryHandleDesc
cudakExternalSemaphoreHandleDesc

handleTypes
cudaMemPoolProps

height
cudaEglPlaneDesc
cudaResourceDesc
cudaResourceViewDesc
cudaArraySparseProperties
cudaMemsetParams
cudaExtent

hitProp
cudaAccessPolicyWindow

hitRatio
cudaAccessPolicyWindow

hostNativeAtomicSupported
cudaDeviceProp

hostPointer
cudaPointerAttributes

|
id
cudaMemLocation
integrated
cudaDeviceProp
isMultiGpuBoard
cudaDeviceProp

CUDA Runtime API

Data Fields

vRelease Version | 588

K

kernelExecTimeoutEnabled
cudaDeviceProp

kernelParams
cudaKernelNodeParams

key
cudakxternalSemaphoreWaitParams
cudaExternalSemaphoreWaitParams vl

keyedMutex
cudaExternalSemaphoreWaitParams vl
cudaExternalSemaphoreSignalParams vl

cudaExternalSemaphoreWaitParams

cudaExternalSemaphoreSignalParams
kind

cudaMemcpy3DParms

L
L
L
L

L

l2CacheSize
cudaDeviceProp
lastLayer
cudaResourceViewDesc
lastMipmapLevel
cudaResourceViewDesc
localL1CacheSupported
cudaDeviceProp
localSizeBytes
cudaFuncAttributes
location
cudaMemPoolProps
cudaMemAccessDesc
luid
cudaDeviceProp
luidDeviceNodeMask
cudaDeviceProp

M

major
cudaDeviceProp

managedMemory
cudaDeviceProp

maxAnisotropy
cudaTextureDesc

CUDA Runtime API

Data Fields

vRelease Version | 589

textureReference
maxBlocksPerMultiProcessor
cudaDeviceProp
maxDynamicSharedSizeBytes
cudaFuncAttributes
maxGridSize
cudaDeviceProp
maxMipmapLevelClamp
textureReference
cudaTextureDesc
maxSurface1D
cudaDeviceProp
maxSurface1DLayered
cudaDeviceProp
maxSurface2D
cudaDeviceProp
maxSurface2DLayered
cudaDeviceProp
maxSurface3D
cudaDeviceProp
maxSurfaceCubemap
cudaDeviceProp
maxSurfaceCubemaplLayered
cudaDeviceProp
maxTexture1D
cudaDeviceProp
maxTexture1DLayered
cudaDeviceProp
maxTexturel1DLinear
cudaDeviceProp
maxTexture1DMipmap
cudaDeviceProp
maxTexture2D
cudaDeviceProp
maxTexture2DGather
cudaDeviceProp
maxTexture2DLayered
cudaDeviceProp
maxTexture2DLinear
cudaDeviceProp
maxTexture2DMipmap
cudaDeviceProp

CUDA Runtime API

Data Fields

vRelease Version | 590

maxTexture3D
cudaDeviceProp
maxTexture3DALt
cudaDeviceProp
maxTextureCubemap
cudaDeviceProp
maxTextureCubemapLayered
cudaDeviceProp
maxThreadsDim
cudaDeviceProp
maxThreadsPerBlock
cudaDeviceProp
cudaFuncAttributes
maxThreadsPerMultiProcessor
cudaDeviceProp
memoryBusWidth
cudaDeviceProp
memoryClockRate
cudaDeviceProp
memPitch
cudaDeviceProp
minMipmapLevelClamp
textureReference
cudaTextureDesc
minor
cudaDeviceProp
mipmap
cudaResourceDesc
mipmapFilterMode
cudaTextureDesc
textureReference
mipmapLevelBias
textureReference
cudaTextureDesc
miptailFirstLevel
cudaArraySparseProperties
miptailSize
cudaArraySparseProperties
missProp
cudaAccessPolicyWindow
multiGpuBoardGroupiD
cudaDeviceProp

CUDA Runtime API

Data Fields

vRelease Version | 591

multiProcessorCount
cudaDeviceProp

N

name
cudaDeviceProp
cudaExternalMemoryHandleDesc
cudakExternalSemaphoreHandleDesc
normalized
textureReference
normalizedCoords
cudaTextureDesc
num_bytes
cudaAccessPolicyWindow
numChannels
cudaEglPlaneDesc
numExtSems
cudaExternalSemaphoreSignalNodeParams

cudakxternalSemaphoreWaitNodeParams
numLevels
cudaExternalMemoryMipmappedArrayDesc
numRegs
cudaFuncAttributes
nvSciBufObject
cudaExternalMemoryHandleDesc
nvSciSyncObj
cudaExternalSemaphoreHandleDesc

0

offset
cudaExternalMemoryBufferDesc
cudaExternalMemoryMipmappedArrayDesc

P

pageableMemoryAccess
cudaDeviceProp

pageableMemoryAccessUsesHostPageTables
cudaDeviceProp

paramsArray
cudaExternalSemaphoreWaitNodeParams
cudakExternalSemaphoreSignalNodeParams

pArray
cudakglFrame

CUDA Runtime API

Data Fields

vRelease Version | 592

pciBusID
cudaDeviceProp
pciDevicelD
cudaDeviceProp
pciDomainiD
cudaDeviceProp
persistingL2CacheMaxSize
cudaDeviceProp
pitch
cudaEglPlaneDesc
cudaPitchedPtr
cudaMemsetParams
pitchinBytes
cudaResourceDesc
planeCount

cudakglFrame
planeDesc

cudakglFrame
poolProps
cudaMemAllocNodeParams
pPitch
cudakglFrame
preferredShmemCarveout
cudaFuncAttributes
ptr
cudaPitchedPtr
ptxVersion
cudaFuncAttributes

R

readMode
cudaTextureDesc
regsPerBlock
cudaDeviceProp
regsPerMultiprocessor
cudaDeviceProp
reserved
cudaMemPoolProps
cudakEglPlaneDesc
reservedSharedMemPerBlock
cudaDeviceProp
resType
cudaResourceDesc

CUDA Runtime API

Data Fields

vRelease Version | 593

S

sharedMem
cudalaunchParams
sharedMemBytes
cudaKernelNodeParams
sharedMemPerBlock
cudaDeviceProp
sharedMemPerBlockOptin
cudaDeviceProp
sharedMemPerMultiprocessor
cudaDeviceProp
sharedSizeBytes
cudaFuncAttributes
singleToDoublePrecisionPerfRatio
cudaDeviceProp
size
cudaExternalMemoryHandleDesc

cudaExternalMemoryBufferDesc
sizelnBytes
cudaResourceDesc
srcArray
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
srcDevice
cudaMemcpy3DPeerParms
srcPos
cudaMemcpy3DPeerParms
cudaMemcpy3DParms
srcPtr
cudaMemcpy3DParms
cudaMemcpy3DPeerParms
sRGB
cudaTextureDesc
textureReference
stream
cudalaunchParams
streamPrioritiesSupported
cudaDeviceProp
surfaceAlignment
cudaDeviceProp

CUDA Runtime API

Data Fields

vRelease Version | 594

Data Fields

T

tccDriver
cudaDeviceProp
textureAlignment
cudaDeviceProp
texturePitchAlignment
cudaDeviceProp
timeoutMs
cudaExternalSemaphoreWaitParams_v1
cudaExternalSemaphoreWaitParams
totalConstMem
cudaDeviceProp
totalGlobalMem
cudaDeviceProp
type
cudaMemLocation
cudaExternalSemaphoreHandleDesc
cudakExternalMemoryHandleDesc
cudaPointerAttributes

U

unifiedAddressing
cudaDeviceProp
userData
cudaHostNodeParams
uuid
cudaDeviceProp

\

value
cudaMemsetParams
cudaExternalSemaphoreWaitParams
cudaExternalSemaphoreSignalParams
cudakExternalSemaphoreWaitParams vl
cudaExternalSemaphoreSignalParams vl

W

w

cudaChannelFormatDesc
warpSize

cudaDeviceProp

CUDA Runtime API vRelease Version | 595

width
cudaArraySparseProperties
cudaResourceViewDesc
cudaExtent
cudaResourceDesc
cudaMemsetParams
cudakglPlaneDesc

win32
cudakExternalSemaphoreHandleDesc

cudaExternalMemoryHandleDesc
win32SecurityAttributes
cudaMemPoolProps

cudaChannelFormatDesc
cudaPos

xsize
cudaPitchedPtr

cudaChannelFormatDesc
cudaPos

ysize
cudaPitchedPtr

cudaChannelFormatDesc
cudaPos

CUDA Runtime AP!I

Data Fields

vRelease Version | 596

Chapter 9. Deprecated List

Global cudaThreadExit

Global cudaThreadGetCacheConfig

Global cudaThreadGetLimit

Global cudaThreadSetCacheConfig

Global cudaThreadSetLimit

Global cudaThreadSynchronize

Global cudaLaunchCooperativeKernelMultiDevice

This function is deprecated as of CUDA 11.3.

Global cudaSetDoubleForDevice

This function is deprecated as of CUDA 7.5

Global cudaSetDoubleForHost
This function is deprecated as of CUDA 7.5

CUDA Runtime API

vRelease Version | 597

Global cudaMemcpyArrayToArray

Global cudaMemcpyFromArray

Global cudaMemcpyFromArrayAsync

Global cudaMemcpyToArray

Global cudaMemcpyToArrayAsync

Global cudaGLMapBufferObject

This function is deprecated as of CUDA 3.0.

Global cudaGLMapBufferObjectAsync

This function is deprecated as of CUDA 3.0.

Global cudaGLRegisterBufferObject

This function is deprecated as of CUDA 3.0.

Global cudaGLSetBufferObjectMapFlags

This function is deprecated as of CUDA 3.0.

Global cudaGLSetGLDevice

This function is deprecated as of CUDA 5.0.

Global cudaGLUnmapBufferObject

This function is deprecated as of CUDA 3.0.

Global cudaGLUnmapBufferObjectAsync

This function is deprecated as of CUDA 3.0.

CUDA Runtime API

Deprecated List

vRelease Version | 598

Global cudaGLUnregisterBufferObject
This function is deprecated as of CUDA 3.0.

Global cudaD3D9MapResources
This function is deprecated as of CUDA 3.0.

Global cudaD3D9RegisterResource
This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceGetMappedArray
This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceGetMappedPitch
This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceGetMappedPointer
This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceGetMappedSize
This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceGetSurfaceDimensions

This function is deprecated as of CUDA 3.0.

Global cudaD3D9ResourceSetMapFlags
This function is deprecated as of CUDA 3.0.

Global cudaD3D9UnmapResources

This function is deprecated as of CUDA 3.0.

CUDA Runtime API

Deprecated List

vRelease Version | 599

Global cudaD3D9UnregisterResource

This function is deprecated as of CUDA 3.0.

Global cudaD3D10GetDirect3DDevice
This function is deprecated as of CUDA 5.0.

Global cudaD3D10MapResources
This function is deprecated as of CUDA 3.0.

Global cudaD3D10RegisterResource
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedArray
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedPitch
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedPointer
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetMappedSize
This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceGetSurfaceDimensions

This function is deprecated as of CUDA 3.0.

Global cudaD3D10ResourceSetMapFlags
This function is deprecated as of CUDA 3.0.

CUDA Runtime API

Deprecated List

vRelease Version | 600

Global cudaD3D10SetDirect3DDevice

This function is deprecated as of CUDA 5.0.

Global cudaD3D10UnmapResources

This function is deprecated as of CUDA 3.0.

Global cudaD3D10UnregisterResource

This function is deprecated as of CUDA 3.0.

Global cudaD3D11GetDirect3DDevice

This function is deprecated as of CUDA 5.0.

Global cudaD3D11SetDirect3DDevice

This function is deprecated as of CUDA 5.0.

Global cudaBindTexture

Global cudaBindTexture2D

Global cudaBindTextureToArray

Global cudaBindTextureToMipmappedArray

Global cudaGetTextureAlignmentOffset

Global cudaGetTextureReference

Global cudaUnbindTexture

CUDA Runtime API

Deprecated List

vRelease Version | 601

Deprecated List

Global cudaBindSurfaceToArray

Global cudaGetSurfaceReference

Global cudaProfilerlnitialize

Global cudaErrorProfilerNotlnitialized

This error return is deprecated as of CUDA 5.0. It is no longer an error to attempt to enable/
disable the profiling via cudaProfilerStart or cudaProfilerStop without initialization.

Global cudaErrorProfilerAlreadyStarted

This error return is deprecated as of CUDA 5.0. It is no longer an error to call
cudaProfilerStart() when profiling is already enabled.

Global cudaErrorProfilerAlreadyStopped

This error return is deprecated as of CUDA 5.0. It is no longer an error to call
cudaProfilerStop() when profiling is already disabled.

Global cudaErrorinvalidHostPointer

This error return is deprecated as of CUDA 10.1.

Global cudaErrorinvalidDevicePointer

This error return is deprecated as of CUDA 10.1.

Global cudaErrorAddressOfConstant

This error return is deprecated as of CUDA 3.1. Variables in constant memory may now
have their address taken by the runtime via cudaGetSymbolAddress().

Global cudaErrorTextureFetchFailed

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

CUDA Runtime API vRelease Version | 602

Deprecated List

Global cudaErrorTextureNotBound

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

Global cudaErrorSynchronizationError

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

Global cudaErrorMixedDeviceExecution

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

Global cudaErrorNotYetimplemented

This error return is deprecated as of CUDA 4.1.

Global cudaErrorMemoryValueToolLarge

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

Global cudaErrorPriorLaunchFailure

This error return is deprecated as of CUDA 3.1. Device emulation mode was removed with
the CUDA 3.1 release.

Global cudaErrorApiFailureBase

This error return is deprecated as of CUDA 4.1.
Global cudaDeviceBlockingSync

This flag was deprecated as of CUDA 4.0 and replaced with
cudaDeviceScheduleBlockingSync.

CUDA Runtime API vRelease Version | 603

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation ["NVIDIA") makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined belowl), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.
Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer ("Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051 @2
http://www.nvidia.com
NVIDIA.

http://www.nvidia.com

	Table of Contents
	Difference between the driver and runtime APIs
	API synchronization behavior
	Stream synchronization behavior
	Graph object thread safety
	Rules for version mixing
	Modules
	6.1. Device Management
	__host__cudaError_t cudaChooseDevice (int *device, const cudaDeviceProp *prop)
	__host__cudaError_t cudaDeviceFlushGPUDirectRDMAWrites (cudaFlushGPUDirectRDMAWritesTarget target, cudaFlushGPUDirectRDMAWritesScope scope)
	__host____device__cudaError_t cudaDeviceGetAttribute (int *value, cudaDeviceAttr attr, int device)
	__host__cudaError_t cudaDeviceGetByPCIBusId (int *device, const char *pciBusId)
	__host____device__cudaError_t cudaDeviceGetCacheConfig (cudaFuncCache *pCacheConfig)
	__host__cudaError_t cudaDeviceGetDefaultMemPool (cudaMemPool_t *memPool, int device)
	__host____device__cudaError_t cudaDeviceGetLimit (size_t *pValue, cudaLimit limit)
	__host__cudaError_t cudaDeviceGetMemPool (cudaMemPool_t *memPool, int device)
	__host__cudaError_t cudaDeviceGetNvSciSyncAttributes (void *nvSciSyncAttrList, int device, int flags)
	__host__cudaError_t cudaDeviceGetP2PAttribute (int *value, cudaDeviceP2PAttr attr, int srcDevice, int dstDevice)
	__host__cudaError_t cudaDeviceGetPCIBusId (char *pciBusId, int len, int device)
	__host____device__cudaError_t cudaDeviceGetSharedMemConfig (cudaSharedMemConfig *pConfig)
	__host__cudaError_t cudaDeviceGetStreamPriorityRange (int *leastPriority, int *greatestPriority)
	__host__cudaError_t cudaDeviceGetTexture1DLinearMaxWidth (size_t *maxWidthInElements, const cudaChannelFormatDesc *fmtDesc, int device)
	__host__cudaError_t cudaDeviceReset (void)
	__host__cudaError_t cudaDeviceSetCacheConfig (cudaFuncCache cacheConfig)
	__host__cudaError_t cudaDeviceSetLimit (cudaLimit limit, size_t value)
	__host__cudaError_t cudaDeviceSetMemPool (int device, cudaMemPool_t memPool)
	__host__cudaError_t cudaDeviceSetSharedMemConfig (cudaSharedMemConfig config)
	__host____device__cudaError_t cudaDeviceSynchronize (void)
	__host____device__cudaError_t cudaGetDevice (int *device)
	__host____device__cudaError_t cudaGetDeviceCount (int *count)
	__host__cudaError_t cudaGetDeviceFlags (unsigned int *flags)
	__host__cudaError_t cudaGetDeviceProperties (cudaDeviceProp *prop, int device)
	__host__cudaError_t cudaIpcCloseMemHandle (void *devPtr)
	__host__cudaError_t cudaIpcGetEventHandle (cudaIpcEventHandle_t *handle, cudaEvent_t event)
	__host__cudaError_t cudaIpcGetMemHandle (cudaIpcMemHandle_t *handle, void *devPtr)
	__host__cudaError_t cudaIpcOpenEventHandle (cudaEvent_t *event, cudaIpcEventHandle_t handle)
	__host__cudaError_t cudaIpcOpenMemHandle (void **devPtr, cudaIpcMemHandle_t handle, unsigned int flags)
	__host__cudaError_t cudaSetDevice (int device)
	__host__cudaError_t cudaSetDeviceFlags (unsigned int flags)
	__host__cudaError_t cudaSetValidDevices (int *device_arr, int len)

	6.2. Thread Management [DEPRECATED]
	__host__cudaError_t cudaThreadExit (void)
	__host__cudaError_t cudaThreadGetCacheConfig (cudaFuncCache *pCacheConfig)
	__host__cudaError_t cudaThreadGetLimit (size_t *pValue, cudaLimit limit)
	__host__cudaError_t cudaThreadSetCacheConfig (cudaFuncCache cacheConfig)
	__host__cudaError_t cudaThreadSetLimit (cudaLimit limit, size_t value)
	__host__cudaError_t cudaThreadSynchronize (void)

	6.3. Error Handling
	__host____device__const char *cudaGetErrorName (cudaError_t error)
	__host____device__const char *cudaGetErrorString (cudaError_t error)
	__host____device__cudaError_t cudaGetLastError (void)
	__host____device__cudaError_t cudaPeekAtLastError (void)

	6.4. Stream Management
	typedef void (CUDART_CB *cudaStreamCallback_t) (cudaStream_t stream, cudaError_t status, void* userData)
	(*) (cudaStream_t stream, cudaError_t status, void* userData)
	void(CUDART_CB * (cudaStream_t stream, cudaError_t status, void* userData)

	__host__cudaError_t cudaCtxResetPersistingL2Cache (void)
	__host__cudaError_t cudaStreamAddCallback (cudaStream_t stream, cudaStreamCallback_t callback, void *userData, unsigned int flags)
	__host__cudaError_t cudaStreamAttachMemAsync (cudaStream_t stream, void *devPtr, size_t length, unsigned int flags)
	__host__cudaError_t cudaStreamBeginCapture (cudaStream_t stream, cudaStreamCaptureMode mode)
	__host__cudaError_t cudaStreamCopyAttributes (cudaStream_t dst, cudaStream_t src)
	__host__cudaError_t cudaStreamCreate (cudaStream_t *pStream)
	__host____device__cudaError_t cudaStreamCreateWithFlags (cudaStream_t *pStream, unsigned int flags)
	__host__cudaError_t cudaStreamCreateWithPriority (cudaStream_t *pStream, unsigned int flags, int priority)
	__host____device__cudaError_t cudaStreamDestroy (cudaStream_t stream)
	__host__cudaError_t cudaStreamEndCapture (cudaStream_t stream, cudaGraph_t *pGraph)
	__host__cudaError_t cudaStreamGetAttribute (cudaStream_t hStream, cudaStreamAttrID attr, cudaStreamAttrValue *value_out)
	__host__cudaError_t cudaStreamGetCaptureInfo (cudaStream_t stream, cudaStreamCaptureStatus *pCaptureStatus, unsigned long long *pId)
	__host__cudaError_t cudaStreamGetCaptureInfo_v2 (cudaStream_t stream, cudaStreamCaptureStatus *captureStatus_out, unsigned long long *id_out, cudaGraph_t *graph_out, const cudaGraphNode_t **dependencies_out, size_t *numDependencies_out)
	__host__cudaError_t cudaStreamGetFlags (cudaStream_t hStream, unsigned int *flags)
	__host__cudaError_t cudaStreamGetPriority (cudaStream_t hStream, int *priority)
	__host__cudaError_t cudaStreamIsCapturing (cudaStream_t stream, cudaStreamCaptureStatus *pCaptureStatus)
	__host__cudaError_t cudaStreamQuery (cudaStream_t stream)
	__host__cudaError_t cudaStreamSetAttribute (cudaStream_t hStream, cudaStreamAttrID attr, const cudaStreamAttrValue *value)
	__host__cudaError_t cudaStreamSynchronize (cudaStream_t stream)
	__host__cudaError_t cudaStreamUpdateCaptureDependencies (cudaStream_t stream, cudaGraphNode_t *dependencies, size_t numDependencies, unsigned int flags)
	__host____device__cudaError_t cudaStreamWaitEvent (cudaStream_t stream, cudaEvent_t event, unsigned int flags)
	__host__cudaError_t cudaThreadExchangeStreamCaptureMode (cudaStreamCaptureMode *mode)

	6.5. Event Management
	__host__cudaError_t cudaEventCreate (cudaEvent_t *event)
	__host____device__cudaError_t cudaEventCreateWithFlags (cudaEvent_t *event, unsigned int flags)
	__host____device__cudaError_t cudaEventDestroy (cudaEvent_t event)
	__host__cudaError_t cudaEventElapsedTime (float *ms, cudaEvent_t start, cudaEvent_t end)
	__host__cudaError_t cudaEventQuery (cudaEvent_t event)
	__host____device__cudaError_t cudaEventRecord (cudaEvent_t event, cudaStream_t stream)
	__host__cudaError_t cudaEventRecordWithFlags (cudaEvent_t event, cudaStream_t stream, unsigned int flags)
	__host__cudaError_t cudaEventSynchronize (cudaEvent_t event)

	6.6. External Resource Interoperability
	__host__cudaError_t cudaDestroyExternalMemory (cudaExternalMemory_t extMem)
	__host__cudaError_t cudaDestroyExternalSemaphore (cudaExternalSemaphore_t extSem)
	__host__cudaError_t cudaExternalMemoryGetMappedBuffer (void **devPtr, cudaExternalMemory_t extMem, const cudaExternalMemoryBufferDesc *bufferDesc)
	__host__cudaError_t cudaExternalMemoryGetMappedMipmappedArray (cudaMipmappedArray_t *mipmap, cudaExternalMemory_t extMem, const cudaExternalMemoryMipmappedArrayDesc *mipmapDesc)
	__host__cudaError_t cudaImportExternalMemory (cudaExternalMemory_t *extMem_out, const cudaExternalMemoryHandleDesc *memHandleDesc)
	__host__cudaError_t cudaImportExternalSemaphore (cudaExternalSemaphore_t *extSem_out, const cudaExternalSemaphoreHandleDesc *semHandleDesc)
	__host__cudaError_t cudaSignalExternalSemaphoresAsync (const cudaExternalSemaphore_t *extSemArray, const cudaExternalSemaphoreSignalParams *paramsArray, unsigned int numExtSems, cudaStream_t stream)
	__host__cudaError_t cudaWaitExternalSemaphoresAsync (const cudaExternalSemaphore_t *extSemArray, const cudaExternalSemaphoreWaitParams *paramsArray, unsigned int numExtSems, cudaStream_t stream)

	6.7. Execution Control
	__host____device__cudaError_t cudaFuncGetAttributes (cudaFuncAttributes *attr, const void *func)
	__host__cudaError_t cudaFuncSetAttribute (const void *func, cudaFuncAttribute attr, int value)
	__host__cudaError_t cudaFuncSetCacheConfig (const void *func, cudaFuncCache cacheConfig)
	__host__cudaError_t cudaFuncSetSharedMemConfig (const void *func, cudaSharedMemConfig config)
	__device__ void *cudaGetParameterBuffer (size_t alignment, size_t size)
	__device__ void *cudaGetParameterBufferV2 (void *func, dim3 gridDimension, dim3 blockDimension, unsigned int sharedMemSize)
	__host__cudaError_t cudaLaunchCooperativeKernel (const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
	__host__cudaError_t cudaLaunchCooperativeKernelMultiDevice (cudaLaunchParams *launchParamsList, unsigned int numDevices, unsigned int flags)
	__host__cudaError_t cudaLaunchHostFunc (cudaStream_t stream, cudaHostFn_t fn, void *userData)
	__host__cudaError_t cudaLaunchKernel (const void *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
	__host__cudaError_t cudaSetDoubleForDevice (double *d)
	__host__cudaError_t cudaSetDoubleForHost (double *d)

	6.8. Occupancy
	__host__cudaError_t cudaOccupancyAvailableDynamicSMemPerBlock (size_t *dynamicSmemSize, const void *func, int numBlocks, int blockSize)
	__host____device__cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessor (int *numBlocks, const void *func, int blockSize, size_t dynamicSMemSize)
	__host__cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags (int *numBlocks, const void *func, int blockSize, size_t dynamicSMemSize, unsigned int flags)

	6.9. Memory Management
	__host__cudaError_t cudaArrayGetInfo (cudaChannelFormatDesc *desc, cudaExtent *extent, unsigned int *flags, cudaArray_t array)
	__host__cudaError_t cudaArrayGetPlane (cudaArray_t *pPlaneArray, cudaArray_t hArray, unsigned int planeIdx)
	__host__cudaError_t cudaArrayGetSparseProperties (cudaArraySparseProperties *sparseProperties, cudaArray_t array)
	__host____device__cudaError_t cudaFree (void *devPtr)
	__host__cudaError_t cudaFreeArray (cudaArray_t array)
	__host__cudaError_t cudaFreeHost (void *ptr)
	__host__cudaError_t cudaFreeMipmappedArray (cudaMipmappedArray_t mipmappedArray)
	__host__cudaError_t cudaGetMipmappedArrayLevel (cudaArray_t *levelArray, cudaMipmappedArray_const_t mipmappedArray, unsigned int level)
	__host__cudaError_t cudaGetSymbolAddress (void **devPtr, const void *symbol)
	__host__cudaError_t cudaGetSymbolSize (size_t *size, const void *symbol)
	__host__cudaError_t cudaHostAlloc (void **pHost, size_t size, unsigned int flags)
	__host__cudaError_t cudaHostGetDevicePointer (void **pDevice, void *pHost, unsigned int flags)
	__host__cudaError_t cudaHostGetFlags (unsigned int *pFlags, void *pHost)
	__host__cudaError_t cudaHostRegister (void *ptr, size_t size, unsigned int flags)
	__host__cudaError_t cudaHostUnregister (void *ptr)
	__host____device__cudaError_t cudaMalloc (void **devPtr, size_t size)
	__host__cudaError_t cudaMalloc3D (cudaPitchedPtr *pitchedDevPtr, cudaExtent extent)
	__host__cudaError_t cudaMalloc3DArray (cudaArray_t *array, const cudaChannelFormatDesc *desc, cudaExtent extent, unsigned int flags)
	__host__cudaError_t cudaMallocArray (cudaArray_t *array, const cudaChannelFormatDesc *desc, size_t width, size_t height, unsigned int flags)
	__host__cudaError_t cudaMallocHost (void **ptr, size_t size)
	__host__cudaError_t cudaMallocManaged (void **devPtr, size_t size, unsigned int flags)
	__host__cudaError_t cudaMallocMipmappedArray (cudaMipmappedArray_t *mipmappedArray, const cudaChannelFormatDesc *desc, cudaExtent extent, unsigned int numLevels, unsigned int flags)
	__host__cudaError_t cudaMallocPitch (void **devPtr, size_t *pitch, size_t width, size_t height)
	__host__cudaError_t cudaMemAdvise (const void *devPtr, size_t count, cudaMemoryAdvise advice, int device)
	__host__cudaError_t cudaMemcpy (void *dst, const void *src, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpy2D (void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpy2DArrayToArray (cudaArray_t dst, size_t wOffsetDst, size_t hOffsetDst, cudaArray_const_t src, size_t wOffsetSrc, size_t hOffsetSrc, size_t width, size_t height, cudaMemcpyKind kind)
	__host____device__cudaError_t cudaMemcpy2DAsync (void *dst, size_t dpitch, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpy2DFromArray (void *dst, size_t dpitch, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpy2DFromArrayAsync (void *dst, size_t dpitch, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpy2DToArray (cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpy2DToArrayAsync (cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t spitch, size_t width, size_t height, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpy3D (const cudaMemcpy3DParms *p)
	__host____device__cudaError_t cudaMemcpy3DAsync (const cudaMemcpy3DParms *p, cudaStream_t stream)
	__host__cudaError_t cudaMemcpy3DPeer (const cudaMemcpy3DPeerParms *p)
	__host__cudaError_t cudaMemcpy3DPeerAsync (const cudaMemcpy3DPeerParms *p, cudaStream_t stream)
	__host____device__cudaError_t cudaMemcpyAsync (void *dst, const void *src, size_t count, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpyFromSymbol (void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpyFromSymbolAsync (void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpyPeer (void *dst, int dstDevice, const void *src, int srcDevice, size_t count)
	__host__cudaError_t cudaMemcpyPeerAsync (void *dst, int dstDevice, const void *src, int srcDevice, size_t count, cudaStream_t stream)
	__host__cudaError_t cudaMemcpyToSymbol (const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpyToSymbolAsync (const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemGetInfo (size_t *free, size_t *total)
	__host__cudaError_t cudaMemPrefetchAsync (const void *devPtr, size_t count, int dstDevice, cudaStream_t stream)
	__host__cudaError_t cudaMemRangeGetAttribute (void *data, size_t dataSize, cudaMemRangeAttribute attribute, const void *devPtr, size_t count)
	__host__cudaError_t cudaMemRangeGetAttributes (void **data, size_t *dataSizes, cudaMemRangeAttribute *attributes, size_t numAttributes, const void *devPtr, size_t count)
	__host__cudaError_t cudaMemset (void *devPtr, int value, size_t count)
	__host__cudaError_t cudaMemset2D (void *devPtr, size_t pitch, int value, size_t width, size_t height)
	__host____device__cudaError_t cudaMemset2DAsync (void *devPtr, size_t pitch, int value, size_t width, size_t height, cudaStream_t stream)
	__host__cudaError_t cudaMemset3D (cudaPitchedPtr pitchedDevPtr, int value, cudaExtent extent)
	__host____device__cudaError_t cudaMemset3DAsync (cudaPitchedPtr pitchedDevPtr, int value, cudaExtent extent, cudaStream_t stream)
	__host____device__cudaError_t cudaMemsetAsync (void *devPtr, int value, size_t count, cudaStream_t stream)
	__host__cudaError_t cudaMipmappedArrayGetSparseProperties (cudaArraySparseProperties *sparseProperties, cudaMipmappedArray_t mipmap)
	__host__make_cudaExtent (size_t w, size_t h, size_t d)
	__host__make_cudaPitchedPtr (void *d, size_t p, size_t xsz, size_t ysz)
	__host__make_cudaPos (size_t x, size_t y, size_t z)

	6.10. Memory Management [DEPRECATED]
	__host__cudaError_t cudaMemcpyArrayToArray (cudaArray_t dst, size_t wOffsetDst, size_t hOffsetDst, cudaArray_const_t src, size_t wOffsetSrc, size_t hOffsetSrc, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpyFromArray (void *dst, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpyFromArrayAsync (void *dst, cudaArray_const_t src, size_t wOffset, size_t hOffset, size_t count, cudaMemcpyKind kind, cudaStream_t stream)
	__host__cudaError_t cudaMemcpyToArray (cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaMemcpyToArrayAsync (cudaArray_t dst, size_t wOffset, size_t hOffset, const void *src, size_t count, cudaMemcpyKind kind, cudaStream_t stream)

	6.11. Stream Ordered Memory Allocator
	__host__cudaError_t cudaFreeAsync (void *devPtr, cudaStream_t hStream)
	__host__cudaError_t cudaMallocAsync (void **devPtr, size_t size, cudaStream_t hStream)
	__host__cudaError_t cudaMallocFromPoolAsync (void **ptr, size_t size, cudaMemPool_t memPool, cudaStream_t stream)
	__host__cudaError_t cudaMemPoolCreate (cudaMemPool_t *memPool, const cudaMemPoolProps *poolProps)
	__host__cudaError_t cudaMemPoolDestroy (cudaMemPool_t memPool)
	__host__cudaError_t cudaMemPoolExportPointer (cudaMemPoolPtrExportData *exportData, void *ptr)
	__host__cudaError_t cudaMemPoolExportToShareableHandle (void *shareableHandle, cudaMemPool_t memPool, cudaMemAllocationHandleType handleType, unsigned int flags)
	__host__cudaError_t cudaMemPoolGetAccess (cudaMemAccessFlags *flags, cudaMemPool_t memPool, cudaMemLocation *location)
	__host__cudaError_t cudaMemPoolGetAttribute (cudaMemPool_t memPool, cudaMemPoolAttr attr, void *value)
	__host__cudaError_t cudaMemPoolImportFromShareableHandle (cudaMemPool_t *memPool, void *shareableHandle, cudaMemAllocationHandleType handleType, unsigned int flags)
	__host__cudaError_t cudaMemPoolImportPointer (void **ptr, cudaMemPool_t memPool, cudaMemPoolPtrExportData *exportData)
	__host__cudaError_t cudaMemPoolSetAccess (cudaMemPool_t memPool, const cudaMemAccessDesc *descList, size_t count)
	__host__cudaError_t cudaMemPoolSetAttribute (cudaMemPool_t memPool, cudaMemPoolAttr attr, void *value)
	__host__cudaError_t cudaMemPoolTrimTo (cudaMemPool_t memPool, size_t minBytesToKeep)

	6.12. Unified Addressing
	__host__cudaError_t cudaPointerGetAttributes (cudaPointerAttributes *attributes, const void *ptr)

	6.13. Peer Device Memory Access
	__host__cudaError_t cudaDeviceCanAccessPeer (int *canAccessPeer, int device, int peerDevice)
	__host__cudaError_t cudaDeviceDisablePeerAccess (int peerDevice)
	__host__cudaError_t cudaDeviceEnablePeerAccess (int peerDevice, unsigned int flags)

	6.14. OpenGL Interoperability
	enum cudaGLDeviceList
	
	
	

	__host__cudaError_t cudaGLGetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, cudaGLDeviceList deviceList)
	__host__cudaError_t cudaGraphicsGLRegisterBuffer (cudaGraphicsResource **resource, GLuint buffer, unsigned int flags)
	__host__cudaError_t cudaGraphicsGLRegisterImage (cudaGraphicsResource **resource, GLuint image, GLenum target, unsigned int flags)
	__host__cudaError_t cudaWGLGetDevice (int *device, HGPUNV hGpu)

	6.15. OpenGL Interoperability [DEPRECATED]
	enum cudaGLMapFlags
	
	
	

	__host__cudaError_t cudaGLMapBufferObject (void **devPtr, GLuint bufObj)
	__host__cudaError_t cudaGLMapBufferObjectAsync (void **devPtr, GLuint bufObj, cudaStream_t stream)
	__host__cudaError_t cudaGLRegisterBufferObject (GLuint bufObj)
	__host__cudaError_t cudaGLSetBufferObjectMapFlags (GLuint bufObj, unsigned int flags)
	__host__cudaError_t cudaGLSetGLDevice (int device)
	__host__cudaError_t cudaGLUnmapBufferObject (GLuint bufObj)
	__host__cudaError_t cudaGLUnmapBufferObjectAsync (GLuint bufObj, cudaStream_t stream)
	__host__cudaError_t cudaGLUnregisterBufferObject (GLuint bufObj)

	6.16. Direct3D 9 Interoperability
	enum cudaD3D9DeviceList
	
	
	

	__host__cudaError_t cudaD3D9GetDevice (int *device, const char *pszAdapterName)
	__host__cudaError_t cudaD3D9GetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, IDirect3DDevice9 *pD3D9Device, cudaD3D9DeviceList deviceList)
	__host__cudaError_t cudaD3D9GetDirect3DDevice (IDirect3DDevice9 **ppD3D9Device)
	__host__cudaError_t cudaD3D9SetDirect3DDevice (IDirect3DDevice9 *pD3D9Device, int device)
	__host__cudaError_t cudaGraphicsD3D9RegisterResource (cudaGraphicsResource **resource, IDirect3DResource9 *pD3DResource, unsigned int flags)

	6.17. Direct3D 9 Interoperability [DEPRECATED]
	enum cudaD3D9MapFlags
	
	
	

	enum cudaD3D9RegisterFlags
	
	

	__host__cudaError_t cudaD3D9MapResources (int count, IDirect3DResource9 **ppResources)
	__host__cudaError_t cudaD3D9RegisterResource (IDirect3DResource9 *pResource, unsigned int flags)
	__host__cudaError_t cudaD3D9ResourceGetMappedArray (cudaArray **ppArray, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
	__host__cudaError_t cudaD3D9ResourceGetMappedPitch (size_t *pPitch, size_t *pPitchSlice, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
	__host__cudaError_t cudaD3D9ResourceGetMappedPointer (void **pPointer, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
	__host__cudaError_t cudaD3D9ResourceGetMappedSize (size_t *pSize, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
	__host__cudaError_t cudaD3D9ResourceGetSurfaceDimensions (size_t *pWidth, size_t *pHeight, size_t *pDepth, IDirect3DResource9 *pResource, unsigned int face, unsigned int level)
	__host__cudaError_t cudaD3D9ResourceSetMapFlags (IDirect3DResource9 *pResource, unsigned int flags)
	__host__cudaError_t cudaD3D9UnmapResources (int count, IDirect3DResource9 **ppResources)
	__host__cudaError_t cudaD3D9UnregisterResource (IDirect3DResource9 *pResource)

	6.18. Direct3D 10 Interoperability
	enum cudaD3D10DeviceList
	
	
	

	__host__cudaError_t cudaD3D10GetDevice (int *device, IDXGIAdapter *pAdapter)
	__host__cudaError_t cudaD3D10GetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, ID3D10Device *pD3D10Device, cudaD3D10DeviceList deviceList)
	__host__cudaError_t cudaGraphicsD3D10RegisterResource (cudaGraphicsResource **resource, ID3D10Resource *pD3DResource, unsigned int flags)

	6.19. Direct3D 10 Interoperability [DEPRECATED]
	enum cudaD3D10MapFlags
	
	
	

	enum cudaD3D10RegisterFlags
	
	

	__host__cudaError_t cudaD3D10GetDirect3DDevice (ID3D10Device **ppD3D10Device)
	__host__cudaError_t cudaD3D10MapResources (int count, ID3D10Resource **ppResources)
	__host__cudaError_t cudaD3D10RegisterResource (ID3D10Resource *pResource, unsigned int flags)
	__host__cudaError_t cudaD3D10ResourceGetMappedArray (cudaArray **ppArray, ID3D10Resource *pResource, unsigned int subResource)
	__host__cudaError_t cudaD3D10ResourceGetMappedPitch (size_t *pPitch, size_t *pPitchSlice, ID3D10Resource *pResource, unsigned int subResource)
	__host__cudaError_t cudaD3D10ResourceGetMappedPointer (void **pPointer, ID3D10Resource *pResource, unsigned int subResource)
	__host__cudaError_t cudaD3D10ResourceGetMappedSize (size_t *pSize, ID3D10Resource *pResource, unsigned int subResource)
	__host__cudaError_t cudaD3D10ResourceGetSurfaceDimensions (size_t *pWidth, size_t *pHeight, size_t *pDepth, ID3D10Resource *pResource, unsigned int subResource)
	__host__cudaError_t cudaD3D10ResourceSetMapFlags (ID3D10Resource *pResource, unsigned int flags)
	__host__cudaError_t cudaD3D10SetDirect3DDevice (ID3D10Device *pD3D10Device, int device)
	__host__cudaError_t cudaD3D10UnmapResources (int count, ID3D10Resource **ppResources)
	__host__cudaError_t cudaD3D10UnregisterResource (ID3D10Resource *pResource)

	6.20. Direct3D 11 Interoperability
	enum cudaD3D11DeviceList
	
	
	

	__host__cudaError_t cudaD3D11GetDevice (int *device, IDXGIAdapter *pAdapter)
	__host__cudaError_t cudaD3D11GetDevices (unsigned int *pCudaDeviceCount, int *pCudaDevices, unsigned int cudaDeviceCount, ID3D11Device *pD3D11Device, cudaD3D11DeviceList deviceList)
	__host__cudaError_t cudaGraphicsD3D11RegisterResource (cudaGraphicsResource **resource, ID3D11Resource *pD3DResource, unsigned int flags)

	6.21. Direct3D 11 Interoperability [DEPRECATED]
	__host__cudaError_t cudaD3D11GetDirect3DDevice (ID3D11Device **ppD3D11Device)
	__host__cudaError_t cudaD3D11SetDirect3DDevice (ID3D11Device *pD3D11Device, int device)

	6.22. VDPAU Interoperability
	__host__cudaError_t cudaGraphicsVDPAURegisterOutputSurface (cudaGraphicsResource **resource, VdpOutputSurface vdpSurface, unsigned int flags)
	__host__cudaError_t cudaGraphicsVDPAURegisterVideoSurface (cudaGraphicsResource **resource, VdpVideoSurface vdpSurface, unsigned int flags)
	__host__cudaError_t cudaVDPAUGetDevice (int *device, VdpDevice vdpDevice, VdpGetProcAddress *vdpGetProcAddress)
	__host__cudaError_t cudaVDPAUSetVDPAUDevice (int device, VdpDevice vdpDevice, VdpGetProcAddress *vdpGetProcAddress)

	6.23. EGL Interoperability
	__host__cudaError_t cudaEGLStreamConsumerAcquireFrame (cudaEglStreamConnection *conn, cudaGraphicsResource_t *pCudaResource, cudaStream_t *pStream, unsigned int timeout)
	__host__cudaError_t cudaEGLStreamConsumerConnect (cudaEglStreamConnection *conn, EGLStreamKHR eglStream)
	__host__cudaError_t cudaEGLStreamConsumerConnectWithFlags (cudaEglStreamConnection *conn, EGLStreamKHR eglStream, unsigned int flags)
	__host__cudaError_t cudaEGLStreamConsumerDisconnect (cudaEglStreamConnection *conn)
	__host__cudaError_t cudaEGLStreamConsumerReleaseFrame (cudaEglStreamConnection *conn, cudaGraphicsResource_t pCudaResource, cudaStream_t *pStream)
	__host__cudaError_t cudaEGLStreamProducerConnect (cudaEglStreamConnection *conn, EGLStreamKHR eglStream, EGLint width, EGLint height)
	__host__cudaError_t cudaEGLStreamProducerDisconnect (cudaEglStreamConnection *conn)
	__host__cudaError_t cudaEGLStreamProducerPresentFrame (cudaEglStreamConnection *conn, cudaEglFrame eglframe, cudaStream_t *pStream)
	__host__cudaError_t cudaEGLStreamProducerReturnFrame (cudaEglStreamConnection *conn, cudaEglFrame *eglframe, cudaStream_t *pStream)
	__host__cudaError_t cudaEventCreateFromEGLSync (cudaEvent_t *phEvent, EGLSyncKHR eglSync, unsigned int flags)
	__host__cudaError_t cudaGraphicsEGLRegisterImage (cudaGraphicsResource **pCudaResource, EGLImageKHR image, unsigned int flags)
	__host__cudaError_t cudaGraphicsResourceGetMappedEglFrame (cudaEglFrame *eglFrame, cudaGraphicsResource_t resource, unsigned int index, unsigned int mipLevel)

	6.24. Graphics Interoperability
	__host__cudaError_t cudaGraphicsMapResources (int count, cudaGraphicsResource_t *resources, cudaStream_t stream)
	__host__cudaError_t cudaGraphicsResourceGetMappedMipmappedArray (cudaMipmappedArray_t *mipmappedArray, cudaGraphicsResource_t resource)
	__host__cudaError_t cudaGraphicsResourceGetMappedPointer (void **devPtr, size_t *size, cudaGraphicsResource_t resource)
	__host__cudaError_t cudaGraphicsResourceSetMapFlags (cudaGraphicsResource_t resource, unsigned int flags)
	__host__cudaError_t cudaGraphicsSubResourceGetMappedArray (cudaArray_t *array, cudaGraphicsResource_t resource, unsigned int arrayIndex, unsigned int mipLevel)
	__host__cudaError_t cudaGraphicsUnmapResources (int count, cudaGraphicsResource_t *resources, cudaStream_t stream)
	__host__cudaError_t cudaGraphicsUnregisterResource (cudaGraphicsResource_t resource)

	6.25. Texture Reference Management [DEPRECATED]
	__host__cudaError_t cudaBindTexture (size_t *offset, const textureReference *texref, const void *devPtr, const cudaChannelFormatDesc *desc, size_t size)
	__host__cudaError_t cudaBindTexture2D (size_t *offset, const textureReference *texref, const void *devPtr, const cudaChannelFormatDesc *desc, size_t width, size_t height, size_t pitch)
	__host__cudaError_t cudaBindTextureToArray (const textureReference *texref, cudaArray_const_t array, const cudaChannelFormatDesc *desc)
	__host__cudaError_t cudaBindTextureToMipmappedArray (const textureReference *texref, cudaMipmappedArray_const_t mipmappedArray, const cudaChannelFormatDesc *desc)
	__host__cudaError_t cudaGetTextureAlignmentOffset (size_t *offset, const textureReference *texref)
	__host__cudaError_t cudaGetTextureReference (const textureReference **texref, const void *symbol)
	__host__cudaError_t cudaUnbindTexture (const textureReference *texref)

	6.26. Surface Reference Management [DEPRECATED]
	__host__cudaError_t cudaBindSurfaceToArray (const surfaceReference *surfref, cudaArray_const_t array, const cudaChannelFormatDesc *desc)
	__host__cudaError_t cudaGetSurfaceReference (const surfaceReference **surfref, const void *symbol)

	6.27. Texture Object Management
	__host__cudaCreateChannelDesc (int x, int y, int z, int w, cudaChannelFormatKind f)
	__host__cudaError_t cudaCreateTextureObject (cudaTextureObject_t *pTexObject, const cudaResourceDesc *pResDesc, const cudaTextureDesc *pTexDesc, const cudaResourceViewDesc *pResViewDesc)
	__host__cudaError_t cudaDestroyTextureObject (cudaTextureObject_t texObject)
	__host__cudaError_t cudaGetChannelDesc (cudaChannelFormatDesc *desc, cudaArray_const_t array)
	__host__cudaError_t cudaGetTextureObjectResourceDesc (cudaResourceDesc *pResDesc, cudaTextureObject_t texObject)
	__host__cudaError_t cudaGetTextureObjectResourceViewDesc (cudaResourceViewDesc *pResViewDesc, cudaTextureObject_t texObject)
	__host__cudaError_t cudaGetTextureObjectTextureDesc (cudaTextureDesc *pTexDesc, cudaTextureObject_t texObject)

	6.28. Surface Object Management
	__host__cudaError_t cudaCreateSurfaceObject (cudaSurfaceObject_t *pSurfObject, const cudaResourceDesc *pResDesc)
	__host__cudaError_t cudaDestroySurfaceObject (cudaSurfaceObject_t surfObject)
	__host__cudaError_t cudaGetSurfaceObjectResourceDesc (cudaResourceDesc *pResDesc, cudaSurfaceObject_t surfObject)

	6.29. Version Management
	__host__cudaError_t cudaDriverGetVersion (int *driverVersion)
	__host____device__cudaError_t cudaRuntimeGetVersion (int *runtimeVersion)

	6.30. Graph Management
	__host__cudaError_t cudaDeviceGetGraphMemAttribute (int device, cudaGraphMemAttributeType attr, void *value)
	__host__cudaError_t cudaDeviceGraphMemTrim (int device)
	__host__cudaError_t cudaDeviceSetGraphMemAttribute (int device, cudaGraphMemAttributeType attr, void *value)
	__host__cudaError_t cudaGraphAddChildGraphNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaGraph_t childGraph)
	__host__cudaError_t cudaGraphAddDependencies (cudaGraph_t graph, const cudaGraphNode_t *from, const cudaGraphNode_t *to, size_t numDependencies)
	__host__cudaError_t cudaGraphAddEmptyNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies)
	__host__cudaError_t cudaGraphAddEventRecordNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaEvent_t event)
	__host__cudaError_t cudaGraphAddEventWaitNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaEvent_t event)
	__host__cudaError_t cudaGraphAddExternalSemaphoresSignalNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaExternalSemaphoreSignalNodeParams *nodeParams)
	__host__cudaError_t cudaGraphAddExternalSemaphoresWaitNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaExternalSemaphoreWaitNodeParams *nodeParams)
	__host__cudaError_t cudaGraphAddHostNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaHostNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphAddKernelNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaKernelNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphAddMemAllocNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, cudaMemAllocNodeParams *nodeParams)
	__host__cudaError_t cudaGraphAddMemcpyNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaMemcpy3DParms *pCopyParams)
	__host__cudaError_t cudaGraphAddMemcpyNode1D (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const void *src, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphAddMemcpyNodeFromSymbol (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphAddMemcpyNodeToSymbol (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphAddMemFreeNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dptr)
	__host__cudaError_t cudaGraphAddMemsetNode (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const cudaMemsetParams *pMemsetParams)
	__host__cudaError_t cudaGraphChildGraphNodeGetGraph (cudaGraphNode_t node, cudaGraph_t *pGraph)
	__host__cudaError_t cudaGraphClone (cudaGraph_t *pGraphClone, cudaGraph_t originalGraph)
	__host__cudaError_t cudaGraphCreate (cudaGraph_t *pGraph, unsigned int flags)
	__host__cudaError_t cudaGraphDebugDotPrint (cudaGraph_t graph, const char *path, unsigned int flags)
	__host__cudaError_t cudaGraphDestroy (cudaGraph_t graph)
	__host__cudaError_t cudaGraphDestroyNode (cudaGraphNode_t node)
	__host__cudaError_t cudaGraphEventRecordNodeGetEvent (cudaGraphNode_t node, cudaEvent_t *event_out)
	__host__cudaError_t cudaGraphEventRecordNodeSetEvent (cudaGraphNode_t node, cudaEvent_t event)
	__host__cudaError_t cudaGraphEventWaitNodeGetEvent (cudaGraphNode_t node, cudaEvent_t *event_out)
	__host__cudaError_t cudaGraphEventWaitNodeSetEvent (cudaGraphNode_t node, cudaEvent_t event)
	__host__cudaError_t cudaGraphExecChildGraphNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, cudaGraph_t childGraph)
	__host__cudaError_t cudaGraphExecDestroy (cudaGraphExec_t graphExec)
	__host__cudaError_t cudaGraphExecEventRecordNodeSetEvent (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, cudaEvent_t event)
	__host__cudaError_t cudaGraphExecEventWaitNodeSetEvent (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, cudaEvent_t event)
	__host__cudaError_t cudaGraphExecExternalSemaphoresSignalNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, const cudaExternalSemaphoreSignalNodeParams *nodeParams)
	__host__cudaError_t cudaGraphExecExternalSemaphoresWaitNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t hNode, const cudaExternalSemaphoreWaitNodeParams *nodeParams)
	__host__cudaError_t cudaGraphExecHostNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaHostNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphExecKernelNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaKernelNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphExecMemcpyNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaMemcpy3DParms *pNodeParams)
	__host__cudaError_t cudaGraphExecMemcpyNodeSetParams1D (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, void *dst, const void *src, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphExecMemcpyNodeSetParamsFromSymbol (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphExecMemcpyNodeSetParamsToSymbol (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphExecMemsetNodeSetParams (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const cudaMemsetParams *pNodeParams)
	__host__cudaError_t cudaGraphExecUpdate (cudaGraphExec_t hGraphExec, cudaGraph_t hGraph, cudaGraphNode_t *hErrorNode_out, cudaGraphExecUpdateResult *updateResult_out)
	__host__cudaError_t cudaGraphExternalSemaphoresSignalNodeGetParams (cudaGraphNode_t hNode, cudaExternalSemaphoreSignalNodeParams *params_out)
	__host__cudaError_t cudaGraphExternalSemaphoresSignalNodeSetParams (cudaGraphNode_t hNode, const cudaExternalSemaphoreSignalNodeParams *nodeParams)
	__host__cudaError_t cudaGraphExternalSemaphoresWaitNodeGetParams (cudaGraphNode_t hNode, cudaExternalSemaphoreWaitNodeParams *params_out)
	__host__cudaError_t cudaGraphExternalSemaphoresWaitNodeSetParams (cudaGraphNode_t hNode, const cudaExternalSemaphoreWaitNodeParams *nodeParams)
	__host__cudaError_t cudaGraphGetEdges (cudaGraph_t graph, cudaGraphNode_t *from, cudaGraphNode_t *to, size_t *numEdges)
	__host__cudaError_t cudaGraphGetNodes (cudaGraph_t graph, cudaGraphNode_t *nodes, size_t *numNodes)
	__host__cudaError_t cudaGraphGetRootNodes (cudaGraph_t graph, cudaGraphNode_t *pRootNodes, size_t *pNumRootNodes)
	__host__cudaError_t cudaGraphHostNodeGetParams (cudaGraphNode_t node, cudaHostNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphHostNodeSetParams (cudaGraphNode_t node, const cudaHostNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphInstantiate (cudaGraphExec_t *pGraphExec, cudaGraph_t graph, cudaGraphNode_t *pErrorNode, char *pLogBuffer, size_t bufferSize)
	__host__cudaError_t cudaGraphInstantiateWithFlags (cudaGraphExec_t *pGraphExec, cudaGraph_t graph, unsigned long long flags)
	__host__cudaError_t cudaGraphKernelNodeCopyAttributes (cudaGraphNode_t hSrc, cudaGraphNode_t hDst)
	__host__cudaError_t cudaGraphKernelNodeGetAttribute (cudaGraphNode_t hNode, cudaKernelNodeAttrID attr, cudaKernelNodeAttrValue *value_out)
	__host__cudaError_t cudaGraphKernelNodeGetParams (cudaGraphNode_t node, cudaKernelNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphKernelNodeSetAttribute (cudaGraphNode_t hNode, cudaKernelNodeAttrID attr, const cudaKernelNodeAttrValue *value)
	__host__cudaError_t cudaGraphKernelNodeSetParams (cudaGraphNode_t node, const cudaKernelNodeParams *pNodeParams)
	__host__cudaError_t cudaGraphLaunch (cudaGraphExec_t graphExec, cudaStream_t stream)
	__host__cudaError_t cudaGraphMemAllocNodeGetParams (cudaGraphNode_t node, cudaMemAllocNodeParams *params_out)
	__host__cudaError_t cudaGraphMemcpyNodeGetParams (cudaGraphNode_t node, cudaMemcpy3DParms *pNodeParams)
	__host__cudaError_t cudaGraphMemcpyNodeSetParams (cudaGraphNode_t node, const cudaMemcpy3DParms *pNodeParams)
	__host__cudaError_t cudaGraphMemcpyNodeSetParams1D (cudaGraphNode_t node, void *dst, const void *src, size_t count, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphMemcpyNodeSetParamsFromSymbol (cudaGraphNode_t node, void *dst, const void *symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphMemcpyNodeSetParamsToSymbol (cudaGraphNode_t node, const void *symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	__host__cudaError_t cudaGraphMemFreeNodeGetParams (cudaGraphNode_t node, void *dptr_out)
	__host__cudaError_t cudaGraphMemsetNodeGetParams (cudaGraphNode_t node, cudaMemsetParams *pNodeParams)
	__host__cudaError_t cudaGraphMemsetNodeSetParams (cudaGraphNode_t node, const cudaMemsetParams *pNodeParams)
	__host__cudaError_t cudaGraphNodeFindInClone (cudaGraphNode_t *pNode, cudaGraphNode_t originalNode, cudaGraph_t clonedGraph)
	__host__cudaError_t cudaGraphNodeGetDependencies (cudaGraphNode_t node, cudaGraphNode_t *pDependencies, size_t *pNumDependencies)
	__host__cudaError_t cudaGraphNodeGetDependentNodes (cudaGraphNode_t node, cudaGraphNode_t *pDependentNodes, size_t *pNumDependentNodes)
	__host__cudaError_t cudaGraphNodeGetType (cudaGraphNode_t node, cudaGraphNodeType *pType)
	__host__cudaError_t cudaGraphReleaseUserObject (cudaGraph_t graph, cudaUserObject_t object, unsigned int count)
	__host__cudaError_t cudaGraphRemoveDependencies (cudaGraph_t graph, const cudaGraphNode_t *from, const cudaGraphNode_t *to, size_t numDependencies)
	__host__cudaError_t cudaGraphRetainUserObject (cudaGraph_t graph, cudaUserObject_t object, unsigned int count, unsigned int flags)
	__host__cudaError_t cudaGraphUpload (cudaGraphExec_t graphExec, cudaStream_t stream)
	__host__cudaError_t cudaUserObjectCreate (cudaUserObject_t *object_out, void *ptr, cudaHostFn_t destroy, unsigned int initialRefcount, unsigned int flags)
	__host__cudaError_t cudaUserObjectRelease (cudaUserObject_t object, unsigned int count)
	__host__cudaError_t cudaUserObjectRetain (cudaUserObject_t object, unsigned int count)

	6.31. Driver Entry Point Access
	__host__cudaError_t cudaGetDriverEntryPoint (const char *symbol, void **funcPtr, unsigned long long flags)

	6.32. C++ API Routines
	__cudaOccupancyB2DHelper
	template < class T, int dim > __host__cudaError_t cudaBindSurfaceToArray (const surfaceTdim surf, cudaArray_const_t array)
	template < class T, int dim > __host__cudaError_t cudaBindSurfaceToArray (const surfaceTdim surf, cudaArray_const_t array, const cudaChannelFormatDesc desc)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTexture (size_t *offset, const textureTdimreadMode tex, const void *devPtr, size_t size)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTexture (size_t *offset, const textureTdimreadMode tex, const void *devPtr, const cudaChannelFormatDesc desc, size_t size)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTexture2D (size_t *offset, const textureTdimreadMode tex, const void *devPtr, size_t width, size_t height, size_t pitch)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTexture2D (size_t *offset, const textureTdimreadMode tex, const void *devPtr, const cudaChannelFormatDesc desc, size_t width, size_t height, size_t pitch)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTextureToArray (const textureTdimreadMode tex, cudaArray_const_t array)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTextureToArray (const textureTdimreadMode tex, cudaArray_const_t array, const cudaChannelFormatDesc desc)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTextureToMipmappedArray (const textureTdimreadMode tex, cudaMipmappedArray_const_t mipmappedArray)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaBindTextureToMipmappedArray (const textureTdimreadMode tex, cudaMipmappedArray_const_t mipmappedArray, const cudaChannelFormatDesc desc)
	template < class T > __host__cudaCreateChannelDesc (void)
	__host__cudaError_t cudaEventCreate (cudaEvent_t *event, unsigned int flags)
	template < class T > __host__cudaError_t cudaFuncGetAttributes (cudaFuncAttributes *attr, T *entry)
	template < class T > __host__cudaError_t cudaFuncSetAttribute (T *entry, cudaFuncAttribute attr, int value)
	template < class T > __host__cudaError_t cudaFuncSetCacheConfig (T *func, cudaFuncCache cacheConfig)
	template < class T > __host__cudaError_t cudaGetSymbolAddress (void **devPtr, const T symbol)
	template < class T > __host__cudaError_t cudaGetSymbolSize (size_t *size, const T symbol)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaGetTextureAlignmentOffset (size_t *offset, const textureTdimreadMode tex)
	template < class T > __host__cudaError_t cudaGraphAddMemcpyNodeFromSymbol (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaGraphAddMemcpyNodeToSymbol (cudaGraphNode_t *pGraphNode, cudaGraph_t graph, const cudaGraphNode_t *pDependencies, size_t numDependencies, const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaGraphExecMemcpyNodeSetParamsFromSymbol (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaGraphExecMemcpyNodeSetParamsToSymbol (cudaGraphExec_t hGraphExec, cudaGraphNode_t node, const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaGraphMemcpyNodeSetParamsFromSymbol (cudaGraphNode_t node, void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaGraphMemcpyNodeSetParamsToSymbol (cudaGraphNode_t node, const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaLaunchCooperativeKernel (const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
	template < class T > __host__cudaError_t cudaLaunchKernel (const T *func, dim3 gridDim, dim3 blockDim, void **args, size_t sharedMem, cudaStream_t stream)
	__host__cudaError_t cudaMallocAsync (void **ptr, size_t size, cudaMemPool_t memPool, cudaStream_t stream)
	__host__cudaError_t cudaMallocHost (void **ptr, size_t size, unsigned int flags)
	template < class T > __host__cudaError_t cudaMallocManaged (T **devPtr, size_t size, unsigned int flags)
	template < class T > __host__cudaError_t cudaMemcpyFromSymbol (void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaMemcpyFromSymbolAsync (void *dst, const T symbol, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)
	template < class T > __host__cudaError_t cudaMemcpyToSymbol (const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind)
	template < class T > __host__cudaError_t cudaMemcpyToSymbolAsync (const T symbol, const void *src, size_t count, size_t offset, cudaMemcpyKind kind, cudaStream_t stream)
	template < class T > __host__cudaError_t cudaOccupancyAvailableDynamicSMemPerBlock (size_t *dynamicSmemSize, T func, int numBlocks, int blockSize)
	template < class T > __host__cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessor (int *numBlocks, T func, int blockSize, size_t dynamicSMemSize)
	template < class T > __host__cudaError_t cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags (int *numBlocks, T func, int blockSize, size_t dynamicSMemSize, unsigned int flags)
	template < class T > __host__cudaError_t cudaOccupancyMaxPotentialBlockSize (int *minGridSize, int *blockSize, T func, size_t dynamicSMemSize, int blockSizeLimit)
	template < typename UnaryFunction, class T > __host__cudaError_t cudaOccupancyMaxPotentialBlockSizeVariableSMem (int *minGridSize, int *blockSize, T func, UnaryFunction blockSizeToDynamicSMemSize, int blockSizeLimit)
	template < typename UnaryFunction, class T > __host__cudaError_t cudaOccupancyMaxPotentialBlockSizeVariableSMemWithFlags (int *minGridSize, int *blockSize, T func, UnaryFunction blockSizeToDynamicSMemSize, int blockSizeLimit, unsigned int flags)
	template < class T > __host__cudaError_t cudaOccupancyMaxPotentialBlockSizeWithFlags (int *minGridSize, int *blockSize, T func, size_t dynamicSMemSize, int blockSizeLimit, unsigned int flags)
	template < class T > __host__cudaError_t cudaStreamAttachMemAsync (cudaStream_t stream, T *devPtr, size_t length, unsigned int flags)
	template < class T, int dim, enum cudaTextureReadMode readMode > __host__cudaError_t cudaUnbindTexture (const textureTdimreadMode tex)

	6.33. Interactions with the CUDA Driver API
	__host__cudaError_t cudaGetFuncBySymbol (cudaFunction_t *functionPtr, const void *symbolPtr)

	6.34. Profiler Control [DEPRECATED]
	__host__cudaError_t cudaProfilerInitialize (const char *configFile, const char *outputFile, cudaOutputMode_t outputMode)

	6.35. Profiler Control
	__host__cudaError_t cudaProfilerStart (void)
	__host__cudaError_t cudaProfilerStop (void)

	6.36. Data types used by CUDA Runtime
	struct cudaAccessPolicyWindow
	struct cudaArraySparseProperties
	struct cudaChannelFormatDesc
	struct cudaDeviceProp
	struct cudaEglFrame
	struct cudaEglPlaneDesc
	struct cudaExtent
	struct cudaExternalMemoryBufferDesc
	struct cudaExternalMemoryHandleDesc
	struct cudaExternalMemoryMipmappedArrayDesc
	struct cudaExternalSemaphoreHandleDesc
	struct cudaExternalSemaphoreSignalNodeParams
	struct cudaExternalSemaphoreSignalParams
	struct cudaExternalSemaphoreSignalParams_v1
	struct cudaExternalSemaphoreWaitNodeParams
	struct cudaExternalSemaphoreWaitParams
	struct cudaExternalSemaphoreWaitParams_v1
	struct cudaFuncAttributes
	struct cudaHostNodeParams
	struct cudaIpcEventHandle_t
	struct cudaIpcMemHandle_t
	union cudaKernelNodeAttrValue
	struct cudaKernelNodeParams
	struct cudaLaunchParams
	struct cudaMemAccessDesc
	struct cudaMemAllocNodeParams
	struct cudaMemcpy3DParms
	struct cudaMemcpy3DPeerParms
	struct cudaMemLocation
	struct cudaMemPoolProps
	struct cudaMemPoolPtrExportData
	struct cudaMemsetParams
	struct cudaPitchedPtr
	struct cudaPointerAttributes
	struct cudaPos
	struct cudaResourceDesc
	struct cudaResourceViewDesc
	union cudaStreamAttrValue
	struct cudaTextureDesc
	struct CUuuid_st
	struct surfaceReference
	struct textureReference
	enum cudaAccessProperty
	
	
	

	enum cudaCGScope
	
	
	

	enum cudaChannelFormatKind
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaComputeMode
	
	
	
	

	enum cudaDeviceAttr
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaDeviceP2PAttr
	
	
	
	

	enum cudaEglColorFormat
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaEglFrameType
	
	

	enum cudaEglResourceLocationFlags
	
	

	enum cudaError
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaExternalMemoryHandleType
	
	
	
	
	
	
	
	

	enum cudaExternalSemaphoreHandleType
	
	
	
	
	
	
	
	
	
	

	enum cudaFlushGPUDirectRDMAWritesOptions
	
	

	enum cudaFlushGPUDirectRDMAWritesScope
	
	

	enum cudaFlushGPUDirectRDMAWritesTarget
	

	enum cudaFuncAttribute
	
	
	

	enum cudaFuncCache
	
	
	
	

	enum cudaGetDriverEntryPointFlags
	
	
	

	enum cudaGPUDirectRDMAWritesOrdering
	
	
	

	enum cudaGraphDebugDotFlags
	
	
	
	
	
	
	
	
	
	

	enum cudaGraphExecUpdateResult
	
	
	
	
	
	
	
	

	enum cudaGraphicsCubeFace
	
	
	
	
	
	

	enum cudaGraphicsMapFlags
	
	
	

	enum cudaGraphicsRegisterFlags
	
	
	
	
	

	enum cudaGraphInstantiateFlags
	

	enum cudaGraphMemAttributeType
	
	
	
	

	enum cudaGraphNodeType
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaKernelNodeAttrID
	
	

	enum cudaLimit
	
	
	
	
	
	
	

	enum cudaMemAccessFlags
	
	
	

	enum cudaMemAllocationHandleType
	
	
	
	

	enum cudaMemAllocationType
	
	
	

	enum cudaMemcpyKind
	
	
	
	
	

	enum cudaMemLocationType
	
	

	enum cudaMemoryAdvise
	
	
	
	
	
	

	enum cudaMemoryType
	
	
	
	

	enum cudaMemPoolAttr
	
	
	
	
	
	
	
	

	enum cudaMemRangeAttribute
	
	
	
	

	enum cudaOutputMode
	
	

	enum cudaResourceType
	
	
	
	

	enum cudaResourceViewFormat
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	enum cudaSharedCarveout
	
	
	

	enum cudaSharedMemConfig
	
	
	

	enum cudaStreamAttrID
	
	

	enum cudaStreamCaptureMode
	
	
	

	enum cudaStreamCaptureStatus
	
	
	

	enum cudaStreamUpdateCaptureDependenciesFlags
	
	

	enum cudaSurfaceBoundaryMode
	
	
	

	enum cudaSurfaceFormatMode
	
	

	enum cudaTextureAddressMode
	
	
	
	

	enum cudaTextureFilterMode
	
	

	enum cudaTextureReadMode
	
	

	enum cudaUserObjectFlags
	

	enum cudaUserObjectRetainFlags
	

	typedef cudaArray *cudaArray_const_t
	cudaArray * ::

	typedef cudaArray *cudaArray_t
	cudaArray * ::

	typedef struct CUeglStreamConnection_st *cudaEglStreamConnection
	CUeglStreamConnection_st * ::

	typedef cudaError_t
	enumcudaError ::

	typedef struct CUevent_st *cudaEvent_t
	CUevent_st * ::

	typedef struct CUexternalMemory_st *cudaExternalMemory_t
	CUexternalMemory_st * ::

	typedef struct CUexternalSemaphore_st *cudaExternalSemaphore_t
	CUexternalSemaphore_st * ::

	typedef struct CUfunc_st *cudaFunction_t
	CUfunc_st * ::

	typedef struct CUgraph_st *cudaGraph_t
	CUgraph_st * ::

	typedef struct CUgraphExec_st *cudaGraphExec_t
	CUgraphExec_st * ::

	typedef cudaGraphicsResource *cudaGraphicsResource_t
	cudaGraphicsResource * ::

	typedef struct CUgraphNode_st *cudaGraphNode_t
	CUgraphNode_st * ::

	typedef void (CUDART_CB *cudaHostFn_t) (void* userData)
	(*) (void* userData)
	void(CUDART_CB * (void* userData)

	typedef struct CUmemPoolHandle_st *cudaMemPool_t
	CUmemPoolHandle_st * ::

	typedef cudaMipmappedArray *cudaMipmappedArray_const_t
	cudaMipmappedArray * ::

	typedef cudaMipmappedArray *cudaMipmappedArray_t
	cudaMipmappedArray * ::

	typedef cudaOutputMode_t
	enumcudaOutputMode ::

	typedef struct CUstream_st *cudaStream_t
	CUstream_st * ::

	typedef unsigned long long cudaSurfaceObject_t
	unsigned long long ::

	typedef unsigned long long cudaTextureObject_t
	unsigned long long ::

	typedef struct CUuserObject_st *cudaUserObject_t
	CUuserObject_st * ::

	#define CUDA_EGL_MAX_PLANES 3
	#define CUDA_IPC_HANDLE_SIZE 64
	#define cudaArrayColorAttachment 0x20
	#define cudaArrayCubemap 0x04
	#define cudaArrayDefault 0x00
	#define cudaArrayLayered 0x01
	#define cudaArraySparse 0x40
	#define cudaArraySparsePropertiesSingleMipTail 0x1
	#define cudaArraySurfaceLoadStore 0x02
	#define cudaArrayTextureGather 0x08
	#define cudaCooperativeLaunchMultiDeviceNoPostSync 0x02
	#define cudaCooperativeLaunchMultiDeviceNoPreSync 0x01
	#define cudaCpuDeviceId ((int)-1)
	#define cudaDeviceBlockingSync 0x04
	#define cudaDeviceLmemResizeToMax 0x10
	#define cudaDeviceMapHost 0x08
	#define cudaDeviceMask 0x1f
	#define cudaDevicePropDontCare
	#define cudaDeviceScheduleAuto 0x00
	#define cudaDeviceScheduleBlockingSync 0x04
	#define cudaDeviceScheduleMask 0x07
	#define cudaDeviceScheduleSpin 0x01
	#define cudaDeviceScheduleYield 0x02
	#define cudaEventBlockingSync 0x01
	#define cudaEventDefault 0x00
	#define cudaEventDisableTiming 0x02
	#define cudaEventInterprocess 0x04
	#define cudaEventRecordDefault 0x00
	#define cudaEventRecordExternal 0x01
	#define cudaEventWaitDefault 0x00
	#define cudaEventWaitExternal 0x01
	#define cudaExternalMemoryDedicated 0x1
	#define cudaExternalSemaphoreSignalSkipNvSciBufMemSync 0x01
	#define cudaExternalSemaphoreWaitSkipNvSciBufMemSync 0x02
	#define cudaHostAllocDefault 0x00
	#define cudaHostAllocMapped 0x02
	#define cudaHostAllocPortable 0x01
	#define cudaHostAllocWriteCombined 0x04
	#define cudaHostRegisterDefault 0x00
	#define cudaHostRegisterIoMemory 0x04
	#define cudaHostRegisterMapped 0x02
	#define cudaHostRegisterPortable 0x01
	#define cudaHostRegisterReadOnly 0x08
	#define cudaInvalidDeviceId ((int)-2)
	#define cudaIpcMemLazyEnablePeerAccess 0x01
	#define cudaMemAttachGlobal 0x01
	#define cudaMemAttachHost 0x02
	#define cudaMemAttachSingle 0x04
	#define cudaNvSciSyncAttrSignal 0x1
	#define cudaNvSciSyncAttrWait 0x2
	#define cudaOccupancyDefault 0x00
	#define cudaOccupancyDisableCachingOverride 0x01
	#define cudaPeerAccessDefault 0x00
	#define cudaStreamDefault 0x00
	#define cudaStreamLegacy ((cudaStream_t)0x1)
	#define cudaStreamNonBlocking 0x01
	#define cudaStreamPerThread ((cudaStream_t)0x2)

	Data Structures
	7.1. __cudaOccupancyB2DHelper
	7.2. cudaAccessPolicyWindow Struct Reference
	void *cudaAccessPolicyWindow::base_ptr
	enumcudaAccessProperty cudaAccessPolicyWindow::hitProp
	float cudaAccessPolicyWindow::hitRatio
	enumcudaAccessProperty cudaAccessPolicyWindow::missProp
	size_t cudaAccessPolicyWindow::num_bytes

	7.3. cudaArraySparseProperties Struct Reference
	unsigned int cudaArraySparseProperties::depth
	unsigned int cudaArraySparseProperties::flags
	unsigned int cudaArraySparseProperties::height
	unsigned int cudaArraySparseProperties::miptailFirstLevel
	unsigned long long cudaArraySparseProperties::miptailSize
	unsigned int cudaArraySparseProperties::width

	7.4. cudaChannelFormatDesc Struct Reference
	enumcudaChannelFormatKind cudaChannelFormatDesc::f
	int cudaChannelFormatDesc::w
	int cudaChannelFormatDesc::x
	int cudaChannelFormatDesc::y
	int cudaChannelFormatDesc::z

	7.5. cudaDeviceProp Struct Reference
	int cudaDeviceProp::accessPolicyMaxWindowSize
	int cudaDeviceProp::asyncEngineCount
	int cudaDeviceProp::canMapHostMemory
	int cudaDeviceProp::canUseHostPointerForRegisteredMem
	int cudaDeviceProp::clockRate
	int cudaDeviceProp::computeMode
	int cudaDeviceProp::computePreemptionSupported
	int cudaDeviceProp::concurrentKernels
	int cudaDeviceProp::concurrentManagedAccess
	int cudaDeviceProp::cooperativeLaunch
	int cudaDeviceProp::cooperativeMultiDeviceLaunch
	int cudaDeviceProp::deviceOverlap
	int cudaDeviceProp::directManagedMemAccessFromHost
	int cudaDeviceProp::ECCEnabled
	int cudaDeviceProp::globalL1CacheSupported
	int cudaDeviceProp::hostNativeAtomicSupported
	int cudaDeviceProp::integrated
	int cudaDeviceProp::isMultiGpuBoard
	int cudaDeviceProp::kernelExecTimeoutEnabled
	int cudaDeviceProp::l2CacheSize
	int cudaDeviceProp::localL1CacheSupported
	char cudaDeviceProp::luid
	unsigned int cudaDeviceProp::luidDeviceNodeMask
	int cudaDeviceProp::major
	int cudaDeviceProp::managedMemory
	int cudaDeviceProp::maxBlocksPerMultiProcessor
	int cudaDeviceProp::maxGridSize
	int cudaDeviceProp::maxSurface1D
	int cudaDeviceProp::maxSurface1DLayered
	int cudaDeviceProp::maxSurface2D
	int cudaDeviceProp::maxSurface2DLayered
	int cudaDeviceProp::maxSurface3D
	int cudaDeviceProp::maxSurfaceCubemap
	int cudaDeviceProp::maxSurfaceCubemapLayered
	int cudaDeviceProp::maxTexture1D
	int cudaDeviceProp::maxTexture1DLayered
	int cudaDeviceProp::maxTexture1DLinear
	int cudaDeviceProp::maxTexture1DMipmap
	int cudaDeviceProp::maxTexture2D
	int cudaDeviceProp::maxTexture2DGather
	int cudaDeviceProp::maxTexture2DLayered
	int cudaDeviceProp::maxTexture2DLinear
	int cudaDeviceProp::maxTexture2DMipmap
	int cudaDeviceProp::maxTexture3D
	int cudaDeviceProp::maxTexture3DAlt
	int cudaDeviceProp::maxTextureCubemap
	int cudaDeviceProp::maxTextureCubemapLayered
	int cudaDeviceProp::maxThreadsDim
	int cudaDeviceProp::maxThreadsPerBlock
	int cudaDeviceProp::maxThreadsPerMultiProcessor
	int cudaDeviceProp::memoryBusWidth
	int cudaDeviceProp::memoryClockRate
	size_t cudaDeviceProp::memPitch
	int cudaDeviceProp::minor
	int cudaDeviceProp::multiGpuBoardGroupID
	int cudaDeviceProp::multiProcessorCount
	char cudaDeviceProp::name
	int cudaDeviceProp::pageableMemoryAccess
	int cudaDeviceProp::pageableMemoryAccessUsesHostPageTables
	int cudaDeviceProp::pciBusID
	int cudaDeviceProp::pciDeviceID
	int cudaDeviceProp::pciDomainID
	int cudaDeviceProp::persistingL2CacheMaxSize
	int cudaDeviceProp::regsPerBlock
	int cudaDeviceProp::regsPerMultiprocessor
	size_t cudaDeviceProp::reservedSharedMemPerBlock
	size_t cudaDeviceProp::sharedMemPerBlock
	size_t cudaDeviceProp::sharedMemPerBlockOptin
	size_t cudaDeviceProp::sharedMemPerMultiprocessor
	int cudaDeviceProp::singleToDoublePrecisionPerfRatio
	int cudaDeviceProp::streamPrioritiesSupported
	size_t cudaDeviceProp::surfaceAlignment
	int cudaDeviceProp::tccDriver
	size_t cudaDeviceProp::textureAlignment
	size_t cudaDeviceProp::texturePitchAlignment
	size_t cudaDeviceProp::totalConstMem
	size_t cudaDeviceProp::totalGlobalMem
	int cudaDeviceProp::unifiedAddressing
	cudaUUID_t cudaDeviceProp::uuid
	int cudaDeviceProp::warpSize

	7.6. cudaEglFrame Struct Reference
	cudaEglColorFormat cudaEglFrame::eglColorFormat
	cudaEglFrameType cudaEglFrame::frameType
	cudaArray_t cudaEglFrame::pArray
	unsigned int cudaEglFrame::planeCount
	struct cudaEglPlaneDesc cudaEglFrame::planeDesc
	struct cudaPitchedPtr cudaEglFrame::pPitch

	7.7. cudaEglPlaneDesc Struct Reference
	struct cudaChannelFormatDesc cudaEglPlaneDesc::channelDesc
	unsigned int cudaEglPlaneDesc::depth
	unsigned int cudaEglPlaneDesc::height
	unsigned int cudaEglPlaneDesc::numChannels
	unsigned int cudaEglPlaneDesc::pitch
	unsigned int cudaEglPlaneDesc::reserved
	unsigned int cudaEglPlaneDesc::width

	7.8. cudaExtent Struct Reference
	size_t cudaExtent::depth
	size_t cudaExtent::height
	size_t cudaExtent::width

	7.9. cudaExternalMemoryBufferDesc Struct Reference
	unsigned int cudaExternalMemoryBufferDesc::flags
	unsigned long long cudaExternalMemoryBufferDesc::offset
	unsigned long long cudaExternalMemoryBufferDesc::size

	7.10. cudaExternalMemoryHandleDesc Struct Reference
	int cudaExternalMemoryHandleDesc::fd
	unsigned int cudaExternalMemoryHandleDesc::flags
	void *cudaExternalMemoryHandleDesc::handle
	const void *cudaExternalMemoryHandleDesc::name
	const void *cudaExternalMemoryHandleDesc::nvSciBufObject
	unsigned long long cudaExternalMemoryHandleDesc::size
	enumcudaExternalMemoryHandleType cudaExternalMemoryHandleDesc::type
	cudaExternalMemoryHandleDesc::@7::@8 cudaExternalMemoryHandleDesc::win32

	7.11. cudaExternalMemoryMipmappedArrayDesc Struct Reference
	struct cudaExtent cudaExternalMemoryMipmappedArrayDesc::extent
	unsigned int cudaExternalMemoryMipmappedArrayDesc::flags
	struct cudaChannelFormatDesc cudaExternalMemoryMipmappedArrayDesc::formatDesc
	unsigned int cudaExternalMemoryMipmappedArrayDesc::numLevels
	unsigned long long cudaExternalMemoryMipmappedArrayDesc::offset

	7.12. cudaExternalSemaphoreHandleDesc Struct Reference
	int cudaExternalSemaphoreHandleDesc::fd
	unsigned int cudaExternalSemaphoreHandleDesc::flags
	void *cudaExternalSemaphoreHandleDesc::handle
	const void *cudaExternalSemaphoreHandleDesc::name
	const void *cudaExternalSemaphoreHandleDesc::nvSciSyncObj
	enumcudaExternalSemaphoreHandleType cudaExternalSemaphoreHandleDesc::type
	cudaExternalSemaphoreHandleDesc::@9::@10 cudaExternalSemaphoreHandleDesc::win32

	7.13. cudaExternalSemaphoreSignalNodeParams Struct Reference
	cudaExternalSemaphore_t *cudaExternalSemaphoreSignalNodeParams::extSemArray
	unsigned int cudaExternalSemaphoreSignalNodeParams::numExtSems
	cudaExternalSemaphoreSignalParams *cudaExternalSemaphoreSignalNodeParams::paramsArray

	7.14. cudaExternalSemaphoreSignalParams Struct Reference
	void *cudaExternalSemaphoreSignalParams::fence
	cudaExternalSemaphoreSignalParams::@19::@20 cudaExternalSemaphoreSignalParams::fence
	unsigned int cudaExternalSemaphoreSignalParams::flags
	cudaExternalSemaphoreSignalParams::@19::@22 cudaExternalSemaphoreSignalParams::keyedMutex
	unsigned long long cudaExternalSemaphoreSignalParams::value

	7.15. cudaExternalSemaphoreSignalParams_v1 Struct Reference
	void *cudaExternalSemaphoreSignalParams_v1::fence
	cudaExternalSemaphoreSignalParams_v1::@11::@12 cudaExternalSemaphoreSignalParams_v1::fence
	unsigned int cudaExternalSemaphoreSignalParams_v1::flags
	cudaExternalSemaphoreSignalParams_v1::@11::@14 cudaExternalSemaphoreSignalParams_v1::keyedMutex
	unsigned long long cudaExternalSemaphoreSignalParams_v1::value

	7.16. cudaExternalSemaphoreWaitNodeParams Struct Reference
	cudaExternalSemaphore_t *cudaExternalSemaphoreWaitNodeParams::extSemArray
	unsigned int cudaExternalSemaphoreWaitNodeParams::numExtSems
	cudaExternalSemaphoreWaitParams *cudaExternalSemaphoreWaitNodeParams::paramsArray

	7.17. cudaExternalSemaphoreWaitParams Struct Reference
	void *cudaExternalSemaphoreWaitParams::fence
	cudaExternalSemaphoreWaitParams::@23::@24 cudaExternalSemaphoreWaitParams::fence
	unsigned int cudaExternalSemaphoreWaitParams::flags
	unsigned long long cudaExternalSemaphoreWaitParams::key
	cudaExternalSemaphoreWaitParams::@23::@26 cudaExternalSemaphoreWaitParams::keyedMutex
	unsigned int cudaExternalSemaphoreWaitParams::timeoutMs
	unsigned long long cudaExternalSemaphoreWaitParams::value

	7.18. cudaExternalSemaphoreWaitParams_v1 Struct Reference
	void *cudaExternalSemaphoreWaitParams_v1::fence
	cudaExternalSemaphoreWaitParams_v1::@15::@16 cudaExternalSemaphoreWaitParams_v1::fence
	unsigned int cudaExternalSemaphoreWaitParams_v1::flags
	unsigned long long cudaExternalSemaphoreWaitParams_v1::key
	cudaExternalSemaphoreWaitParams_v1::@15::@18 cudaExternalSemaphoreWaitParams_v1::keyedMutex
	unsigned int cudaExternalSemaphoreWaitParams_v1::timeoutMs
	unsigned long long cudaExternalSemaphoreWaitParams_v1::value

	7.19. cudaFuncAttributes Struct Reference
	int cudaFuncAttributes::binaryVersion
	int cudaFuncAttributes::cacheModeCA
	size_t cudaFuncAttributes::constSizeBytes
	size_t cudaFuncAttributes::localSizeBytes
	int cudaFuncAttributes::maxDynamicSharedSizeBytes
	int cudaFuncAttributes::maxThreadsPerBlock
	int cudaFuncAttributes::numRegs
	int cudaFuncAttributes::preferredShmemCarveout
	int cudaFuncAttributes::ptxVersion
	size_t cudaFuncAttributes::sharedSizeBytes

	7.20. cudaHostNodeParams Struct Reference
	cudaHostFn_t cudaHostNodeParams::fn
	void *cudaHostNodeParams::userData

	7.21. cudaIpcEventHandle_t Struct Reference
	7.22. cudaIpcMemHandle_t Struct Reference
	7.23. cudaKernelNodeAttrValue Union Reference
	struct cudaAccessPolicyWindow cudaKernelNodeAttrValue::accessPolicyWindow

	7.24. cudaKernelNodeParams Struct Reference
	dim3 cudaKernelNodeParams::blockDim
	**cudaKernelNodeParams::extra
	void *cudaKernelNodeParams::func
	dim3 cudaKernelNodeParams::gridDim
	**cudaKernelNodeParams::kernelParams
	unsigned int cudaKernelNodeParams::sharedMemBytes

	7.25. cudaLaunchParams Struct Reference
	**cudaLaunchParams::args
	dim3 cudaLaunchParams::blockDim
	void *cudaLaunchParams::func
	dim3 cudaLaunchParams::gridDim
	size_t cudaLaunchParams::sharedMem
	cudaStream_t cudaLaunchParams::stream

	7.26. cudaMemAccessDesc Struct Reference
	enumcudaMemAccessFlags cudaMemAccessDesc::flags
	struct cudaMemLocation cudaMemAccessDesc::location

	7.27. cudaMemAllocNodeParams Struct Reference
	size_t cudaMemAllocNodeParams::accessDescCount
	cudaMemAccessDesc *cudaMemAllocNodeParams::accessDescs
	size_t cudaMemAllocNodeParams::bytesize
	void *cudaMemAllocNodeParams::dptr
	struct cudaMemPoolProps cudaMemAllocNodeParams::poolProps

	7.28. cudaMemcpy3DParms Struct Reference
	cudaArray_t cudaMemcpy3DParms::dstArray
	struct cudaPos cudaMemcpy3DParms::dstPos
	struct cudaPitchedPtr cudaMemcpy3DParms::dstPtr
	struct cudaExtent cudaMemcpy3DParms::extent
	enumcudaMemcpyKind cudaMemcpy3DParms::kind
	cudaArray_t cudaMemcpy3DParms::srcArray
	struct cudaPos cudaMemcpy3DParms::srcPos
	struct cudaPitchedPtr cudaMemcpy3DParms::srcPtr

	7.29. cudaMemcpy3DPeerParms Struct Reference
	cudaArray_t cudaMemcpy3DPeerParms::dstArray
	int cudaMemcpy3DPeerParms::dstDevice
	struct cudaPos cudaMemcpy3DPeerParms::dstPos
	struct cudaPitchedPtr cudaMemcpy3DPeerParms::dstPtr
	struct cudaExtent cudaMemcpy3DPeerParms::extent
	cudaArray_t cudaMemcpy3DPeerParms::srcArray
	int cudaMemcpy3DPeerParms::srcDevice
	struct cudaPos cudaMemcpy3DPeerParms::srcPos
	struct cudaPitchedPtr cudaMemcpy3DPeerParms::srcPtr

	7.30. cudaMemLocation Struct Reference
	int cudaMemLocation::id
	enumcudaMemLocationType cudaMemLocation::type

	7.31. cudaMemPoolProps Struct Reference
	enumcudaMemAllocationType cudaMemPoolProps::allocType
	enumcudaMemAllocationHandleType cudaMemPoolProps::handleTypes
	struct cudaMemLocation cudaMemPoolProps::location
	unsigned char cudaMemPoolProps::reserved
	void *cudaMemPoolProps::win32SecurityAttributes

	7.32. cudaMemPoolPtrExportData Struct Reference
	7.33. cudaMemsetParams Struct Reference
	void *cudaMemsetParams::dst
	unsigned int cudaMemsetParams::elementSize
	size_t cudaMemsetParams::height
	size_t cudaMemsetParams::pitch
	unsigned int cudaMemsetParams::value
	size_t cudaMemsetParams::width

	7.34. cudaPitchedPtr Struct Reference
	size_t cudaPitchedPtr::pitch
	void *cudaPitchedPtr::ptr
	size_t cudaPitchedPtr::xsize
	size_t cudaPitchedPtr::ysize

	7.35. cudaPointerAttributes Struct Reference
	int cudaPointerAttributes::device
	void *cudaPointerAttributes::devicePointer
	void *cudaPointerAttributes::hostPointer
	enumcudaMemoryType cudaPointerAttributes::type

	7.36. cudaPos Struct Reference
	size_t cudaPos::x
	size_t cudaPos::y
	size_t cudaPos::z

	7.37. cudaResourceDesc Struct Reference
	cudaArray_t cudaResourceDesc::array
	struct cudaChannelFormatDesc cudaResourceDesc::desc
	void *cudaResourceDesc::devPtr
	size_t cudaResourceDesc::height
	cudaMipmappedArray_t cudaResourceDesc::mipmap
	size_t cudaResourceDesc::pitchInBytes
	enumcudaResourceType cudaResourceDesc::resType
	size_t cudaResourceDesc::sizeInBytes
	size_t cudaResourceDesc::width

	7.38. cudaResourceViewDesc Struct Reference
	size_t cudaResourceViewDesc::depth
	unsigned int cudaResourceViewDesc::firstLayer
	unsigned int cudaResourceViewDesc::firstMipmapLevel
	enumcudaResourceViewFormat cudaResourceViewDesc::format
	size_t cudaResourceViewDesc::height
	unsigned int cudaResourceViewDesc::lastLayer
	unsigned int cudaResourceViewDesc::lastMipmapLevel
	size_t cudaResourceViewDesc::width

	7.39. cudaStreamAttrValue Union Reference
	7.40. cudaTextureDesc Struct Reference
	enumcudaTextureAddressMode cudaTextureDesc::addressMode
	float cudaTextureDesc::borderColor
	int cudaTextureDesc::disableTrilinearOptimization
	enumcudaTextureFilterMode cudaTextureDesc::filterMode
	unsigned int cudaTextureDesc::maxAnisotropy
	float cudaTextureDesc::maxMipmapLevelClamp
	float cudaTextureDesc::minMipmapLevelClamp
	enumcudaTextureFilterMode cudaTextureDesc::mipmapFilterMode
	float cudaTextureDesc::mipmapLevelBias
	int cudaTextureDesc::normalizedCoords
	enumcudaTextureReadMode cudaTextureDesc::readMode
	int cudaTextureDesc::sRGB

	7.41. CUuuid_st Struct Reference
	char CUuuid_st::bytes

	7.42. surfaceReference Struct Reference
	struct cudaChannelFormatDesc surfaceReference::channelDesc

	7.43. textureReference Struct Reference
	enumcudaTextureAddressMode textureReference::addressMode
	struct cudaChannelFormatDesc textureReference::channelDesc
	int textureReference::disableTrilinearOptimization
	enumcudaTextureFilterMode textureReference::filterMode
	unsigned int textureReference::maxAnisotropy
	float textureReference::maxMipmapLevelClamp
	float textureReference::minMipmapLevelClamp
	enumcudaTextureFilterMode textureReference::mipmapFilterMode
	float textureReference::mipmapLevelBias
	int textureReference::normalized
	int textureReference::sRGB

	Data Fields
	Deprecated List

