
DA-09073-001_v11.5    |    October 2021

Tuning CUDA Applications for Turing

Application Note



Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   ii

Table of Contents

Chapter 1. Turing Tuning Guide...........................................................................................1
1.1. NVIDIA Turing Compute Architecture......................................................................................1

1.2. CUDA Best Practices................................................................................................................1

1.3. Application Compatibility.......................................................................................................... 2

1.4. Turing Tuning............................................................................................................................ 2

1.4.1. Streaming Multiprocessor................................................................................................. 2

1.4.1.1.  Instruction Scheduling.................................................................................................2

1.4.1.2. Independent Thread Scheduling................................................................................. 2

1.4.1.3. Occupancy.................................................................................................................... 3

1.4.1.4.  Integer Arithmetic........................................................................................................3

1.4.2. Tensor Core Operations.....................................................................................................3

1.4.3. Memory Throughput...........................................................................................................4

1.4.3.1. Unified Shared Memory/L1/Texture Cache................................................................ 4

Appendix A. Revision History............................................................................................... 5



Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   1

Chapter 1. Turing Tuning Guide

1.1.  NVIDIA Turing Compute Architecture
Turing is NVIDIA's latest architecture for CUDA compute applications. Turing retains and
extends the same CUDA programming model provided by previous NVIDIA architectures such
as Pascal and Volta, and applications that follow the best practices for those architectures
should typically see speedups on the Turing architecture without any code changes. This guide
summarizes the ways that an application can be fine-tuned to gain additional speedups by
leveraging Turing architectural features.1

For further details on the programming features discussed in this guide, please refer to the
CUDA C++ Programming Guide.

1.2.  CUDA Best Practices
The performance guidelines and best practices described in the CUDA C++ Programming
Guide and the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures.
Programmers must primarily focus on following those recommendations to achieve the best
performance.

The high-priority recommendations from those guides are as follows:

‣ Find ways to parallelize sequential code,

‣ Minimize data transfers between the host and the device,

‣ Adjust kernel launch configuration to maximize device utilization,

‣ Ensure global memory accesses are coalesced,

‣ Minimize redundant accesses to global memory whenever possible,

‣ Avoid long sequences of diverged execution by threads within the same warp.

1 Throughout this guide, Kepler refers to devices of compute capability 3.x, Maxwell refers to devices of compute capability 5.x,
Pascal refers to devices of compute capability 6.x, Volta refers to devices of compute capability 7.0, and Turing refers to devices
of compute capability 7.5.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/


Turing Tuning Guide

Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   2

1.3.  Application Compatibility
Before addressing specific performance tuning issues covered in this guide, refer to the
Turing Compatibility Guide for CUDA Applications to ensure that your application is compiled
in a way that is compatible with Turing.

1.4.  Turing Tuning

1.4.1.  Streaming Multiprocessor
The Turing Streaming Multiprocessor (SM) is based on the same major architecture (7.x) as
Volta, and provides similar improvements over Pascal.

1.4.1.1.  Instruction Scheduling
Each Turing SM includes 4 warp-scheduler units. Each scheduler handles a static set of warps
and issues to a dedicated set of arithmetic instruction units. Instructions are performed over
two cycles, and the schedulers can issue independent instructions every cycle. Dependent
instruction issue latency for core FMA math operations is four clock cycles, like Volta,
compared to six cycles on Pascal. As a result, execution latencies of core math operations can
be hidden by as few as 4 warps per SM, assuming 4-way instruction-level parallelism ILP per
warp, or by 16 warps per SM without any instuction-level parallelism.

Like Volta, the Turing SM provides 64 FP32 cores, 64 INT32 cores and 8 improved mixed-
precision Tensor Cores. Turing has a lower double precision throughput than Volta with only 2
FP64 cores.

1.4.1.2.  Independent Thread Scheduling
The Turing architecture features the same Independent Thread Scheduling introduced with
Volta. This enables intra-warp synchronization patterns previously unavailable and simplifies
code changes when porting CPU code. However, Independent Thread Scheduling can also
lead to a rather different set of threads participating in the executed code than intended if the
developer made assumptions about warp-synchronicity2 of previous hardware architectures.

When porting existing codes to Volta or Turing, the following three code patterns need careful
attention. For more details see the CUDA C++ Programming Guide.

‣ To avoid data corruption, applications using warp intrinsics (__shfl*, __any, __all, and
__ballot) should transition to the new, safe, synchronizing counterparts, with the *_sync
suffix. The new warp intrinsics take in a mask of threads that explicitly define which lanes
(threads of a warp) must participate in the warp intrinsic.

2 The term warp-synchronous refers to code that implicitly assumes threads in the same warp are synchronized at every
instruction.

http://docs.nvidia.com/cuda/turing-compatibility-guide/


Turing Tuning Guide

Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   3

‣ Applications that assume reads and writes are implicitly visible to other threads in the
same warp need to insert the new __syncwarp() warp-wide barrier synchronization
instruction between steps where data is exchanged between threads via global or shared
memory. Assumptions that code is executed in lockstep or that reads/writes from separate
threads are visible across a warp without synchronization are invalid.

‣ Applications using __syncthreads() or the PTX bar.sync (and their derivatives) in such a
way that a barrier will not be reached by some non-exited thread in the thread block must
be modified to ensure that all non-exited threads reach the barrier.

The racecheck and synccheck tools provided by cuda-memcheck can aid in locating violations
of points 2 and 3.

1.4.1.3.  Occupancy
The maximum number of concurrent warps per SM is 32 on Turing (versus 64 on Volta). Other
factors influencing warp occupancy remain otherwise similar:

‣ The register file size is 64k 32-bit registers per SM.

‣ The maximum registers per thread is 255.

‣ The maximum number of thread blocks per SM is 16.

‣ Shared memory capacity per SM is 64KB.

Overall, developers can expect similar occupancy as on Pascal or Volta without changes to
their application.

1.4.1.4.  Integer Arithmetic
Similar to Volta, the Turing SM includes dedicated FP32 and INT32 cores. This enables
simultaneous execution of FP32 and INT32 operations. Applications can interleave pointer
arithmetic with floating-point computations. For example, each iteration of a pipelined loop
could update addresses and load data for the next iteration while simultaneously processing
the current iteration at full FP32 throughput.

1.4.2.  Tensor Core Operations
Volta introduced Tensor Cores to accelerate matrix multiply operations on mixed precision
floating point data. Turing adds acceleration for integer matrix multiply operations. The tensor
cores are exposed as Warp-Level Matrix Operations in the CUDA 10 C++ API. The API provides
specialized matrix load, matrix multiply and accumulate, and matrix store operations, where
each warp processes a small matrix fragment, allowing to efficiently use Tensor Cores from a
CUDA-C++ program. In practice, Tensor Cores are used to perform much larger 2D or higher
dimensional matrix operations, built up from these smaller matrix fragments.

Each Tensor Core performs the matrix multiply-accumulate: D = A x B + C. The Tensor
Cores support half precision matrix multiplication, where the matrix multiply inputs A and
B are FP16 matrices, while the accumulation matrices C and D may be either FP16 or FP32
matrices. When accumulating in FP32, the FP16 multiply results in a full precision product

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls


Turing Tuning Guide

Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   4

that is then accumulated using FP32 addition. CUDA 10 supports several fragment sizes,
16x16x16, 32x8x16, and 8x32x16 to use the Tensor Cores on Volta or Turing with FP16 inputs.

Any binary compiled for Volta will run on Turing, but Volta binaries using Tensor Cores
will only be able to reach half of Turing's Tensor Core peak performance. Recompiling the
binary specifically for Turing would allow it to reach the peak performance. See the Turing
Compatibility Guide for more information.

Turing's Tensor Core supports integer matrix multiply operations, which can operate on 8-
bit, 4-bit and 1-bit integer inputs, with 32-bit integer accumulation. When operating on 8-
bit inputs, CUDA exposes fragment sizes of 16x16x16, 32x8x16, and 8x32x16. For sub-byte
operations the fragment sizes available are 8x8x32 for 4-bit inputs, or 8x8x128 for 1-bit inputs.

See the CUDA C++ Programming Guide for more information.

1.4.3.  Memory Throughput

1.4.3.1.  Unified Shared Memory/L1/Texture Cache
Turing features a unified L1 / Shared Memory cache similar to the one introduced
in Volta, but with a smaller size. The total size of the unified L1 / Shared Memory
cache in Turing is 96 KB. The portion of the cache dedicated to shared memory
or L1 (known as the carveout) can be changed at runtime, either automatically by
the driver, or manually using the cudaFuncSetAttribute() with the attribute
cudaFuncAttributePreferredSharedMemoryCarveout. Turing supports two carveout
configurations, either with 64 KB of shared memory and 32 KB of L1, or with 32 KB of shared
memory and 64 KB of L1.

Turing allows a single thread block to address the full 64 KB of shared memory. To maintain
architectural compatibility, static shared memory allocations remain limited to 48 KB, and an
explicit opt-in is also required to enable dynamic allocations above this limit. See the CUDA C+
+ Programming Guide for details.

Like Pascal and Volta, Turing combines the functionality of the L1 and texture caches into a
unified L1/Texture cache which acts as a coalescing buffer for memory accesses, gathering up
the data requested by the threads of a warp prior to delivery of that data to the warp.

The state-of-the-art L1 cache in Volta and Turing offers lower latency, higher bandwidth, and
higher capacity compared to the earlier architectures. Like Volta, Turing's L1 can cache write
operations (write-through). The result is that for many applications Volta and Turing narrow
the performance gap between explicitly managed shared memory and direct access to device
memory. Also, the cost of register spills is lowered compared to Pascal, and the balance of
occupancy versus spilling should be re-evaluated to ensure best performance.



Tuning CUDA Applications for Turing DA-09073-001_v11.5   |   5

Appendix A. Revision History

Version 1.0

‣ Initial Public Release

Version 1.1

‣ Updated references to the CUDA C++ Programming Guide and CUDA C++ Best Practices
Guide.



Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© -2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation  |  2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Turing Tuning Guide
	1.1. NVIDIA Turing Compute Architecture
	1.2. CUDA Best Practices
	1.3. Application Compatibility
	1.4. Turing Tuning
	1.4.1. Streaming Multiprocessor
	1.4.1.1. Instruction Scheduling
	1.4.1.2. Independent Thread Scheduling
	1.4.1.3. Occupancy
	1.4.1.4. Integer Arithmetic

	1.4.2. Tensor Core Operations
	1.4.3. Memory Throughput
	1.4.3.1. Unified Shared Memory/L1/Texture Cache



	Revision History

