
DU-05355-001_v11.5 | November 2021

CUDA-MEMCHECK

User Manual

CUDA-MEMCHECK DU-05355-001_v11.5 | ii

Table of Contents

Chapter 1. Introduction.. 1
1.1. About CUDA-MEMCHECK...1

1.2. Why CUDA-MEMCHECK?... 1

1.3. How to Get CUDA-MEMCHECK..1

1.4. CUDA-MEMCHECK tools.. 2

Chapter 2. Using CUDA-MEMCHECK...3
2.1. Command Line Options.. 3

2.2. Supported Operating Systems..6

2.3. Supported Devices.. 6

2.4. Compilation Options..6

2.5. Environment variables.. 7

Chapter 3. Memcheck Tool.. 8
3.1. What is Memcheck?..8

3.2. Supported Error Detection... 8

3.3. Using Memcheck...9

3.4. Understanding Memcheck Errors..9

3.5. Integrated Mode.. 12

3.6. CUDA API Error Checking..12

3.7. Device Side Allocation Checking..12

3.8. Leak Checking...13

Chapter 4. Racecheck Tool.. 14
4.1. What is Racecheck ?.. 14

4.2. What are Hazards?... 14

4.3. Using Racecheck...15

4.4. Racecheck report modes..15

4.5. Understanding Racecheck Analysis Reports...16

4.6. Understanding Racecheck Hazard Reports.. 16

4.7. Racecheck Severity Levels... 18

Chapter 5. Initcheck Tool... 19
5.1. What is Initcheck?...19

5.2. Using Initcheck..19

Chapter 6. Synccheck Tool...20
6.1. What is Synccheck ?... 20

6.2. Using Synccheck... 20

CUDA-MEMCHECK DU-05355-001_v11.5 | iii

6.3. Understanding Synccheck Reports..20

Chapter 7. CUDA-MEMCHECK Features... 22
7.1. Nonblocking Mode.. 22

7.2. Stack Backtraces.. 22

7.3. Name Demangling.. 23

7.4. Dynamic Parallelism...23

7.5. Error Actions... 23

7.6. Escape Sequences.. 25

7.7. Specifying Filters...25

Chapter 8. Operating System Specific Behavior..27
8.1. Windows Specific Behavior...27

8.2. Android Specific Behavior...27

8.3. QNX Specific Behavior.. 28

Chapter 9. CUDA Fortran Support... 29
9.1. CUDA Fortran Specific Behavior..29

Chapter 10. CUDA-MEMCHECK Tool Examples.. 30
10.1. Example Use of Memcheck..30

10.1.1. memcheck_demo Output... 31

10.1.2. memcheck_demo Output with Memcheck (Release Build)..31

10.1.3. memcheck_demo Output with Memcheck (Debug Build).. 32

10.1.4. Leak Checking in CUDA-MEMCHECK...34

10.2. Integrated CUDA-MEMCHECK Example..35

10.3. Example Use of Racecheck..36

10.3.1. Block-level Hazards... 36

10.3.2. Warp-level Hazards.. 37

10.4. Example Use of Initcheck...39

10.4.1. Memset Error... 39

10.5. Example Use of Synccheck.. 40

10.5.1. Divergent Threads.. 40

10.5.2. Illegal Syncwarp... 41

Appendix A. Memory Access Error Reporting... 43

Appendix B. Hardware Exception Reporting..44

Appendix C. Release Notes.. 46
C.1. New Features in 11.0... 46

C.2. New Features in 10.2... 46

C.3. New Features in 10.1... 46

C.4. New Features in 10.0... 46

CUDA-MEMCHECK DU-05355-001_v11.5 | iv

C.5. New Features in 9.1... 46

C.6. New Features in 9.0... 46

C.7. New Features in 8.0... 47

C.8. New Features in 7.0... 47

C.9. New Features in 6.5... 47

C.10. New Features in 6.0... 48

C.11. New Features in 5.5... 48

C.12. New Features in 5.0... 48

Appendix D. Known Issues... 50

CUDA-MEMCHECK DU-05355-001_v11.5 | v

List of Tables

Table 1. Supported Modes by CUDA-MEMCHECK tool .. 2

Table 2. CUDA-MEMCHECK Command line options ..3

Table 3. Memcheck Tool Command line options ... 5

Table 4. Racecheck Tool Command line options ... 6

Table 5. Memcheck reported error types ... 8

Table 6. CUDA-MEMCHECK Stack Backtrace Information ..23

Table 7. CUDA-MEMCHECK Error Actions ... 24

Table 8. CUDA-MEMCHECK Filter Keys ..25

Table 9. Memcheck memory access error detection support ... 43

Table 10. CUDA Exception Codes ..44

CUDA-MEMCHECK DU-05355-001_v11.5 | vi

CUDA-MEMCHECK DU-05355-001_v11.5 | 1

Chapter 1. Introduction

1.1. About CUDA-MEMCHECK
CUDA-MEMCHECK is a functional correctness checking suite included in the CUDA toolkit.
This suite contains multiple tools that can perform different types of checks. The memcheck
tool is capable of precisely detecting and attributing out of bounds and misaligned memory
access errors in CUDA applications. The tool also reports hardware exceptions encountered
by the GPU. The racecheck tool can report shared memory data access hazards that can cause
data races. The initcheck tool can report cases where the GPU performs uninitialized accesses
to global memory. The synccheck tool can report cases where the application is attempting
invalid usages of synchronization primitives. This document describes the usage of these
tools.

CUDA-MEMCHECK can be run in standalone mode where the user's application is started
under CUDA-MEMCHECK. The memcheck tool can also be enabled in integrated mode inside
CUDA-GDB.

CUDA-MEMCHECK is deprecated and will be removed in a future release of the CUDA toolkit.
Please use the compute-sanitizer as a drop-in replacement.

1.2. Why CUDA-MEMCHECK?
NVIDIA allows developers to easily harness the power of GPUs to solve problems in parallel
using CUDA. CUDA applications often run thousands of threads in parallel. Every programmer
invariably encounters memory access errors and thread ordering hazards that are hard to
detect and time consuming to debug. The number of such errors increases substantially when
dealing with thousands of threads. The CUDA-MEMCHECK suite is designed to detect those
problems in your CUDA application.

1.3. How to Get CUDA-MEMCHECK
CUDA-MEMCHECK is installed as part of the CUDA toolkit.

Introduction

CUDA-MEMCHECK DU-05355-001_v11.5 | 2

1.4. CUDA-MEMCHECK tools
Tools allow use the basic CUDA-MEMCHECK infrastructure to provide different checking
mechanisms. Currently, the supported tools are :

‣ Memcheck - The memory access error and leak detection tool. See Memcheck Tool

‣ Racecheck - The shared memory data access hazard detection tool. See Racecheck Tool

‣ Initcheck - The unitialized device global memory access detection tool. See Initcheck Tool

‣ Synccheck - The thread synchronization hazard detection tool. See Synccheck Tool

Table 1. Supported Modes by CUDA-MEMCHECK tool

Tool Name Standalone Mode Integrated Mode
Memcheck Yes Yes

Racecheck Yes No

Initcheck Yes No

Synccheck Yes No

CUDA-MEMCHECK DU-05355-001_v11.5 | 3

Chapter 2. Using CUDA-MEMCHECK

CUDA-MEMCHECK tools can be invoked by running the cuda-memcheck executable as follows:

cuda-memcheck [options] app_name [app_options]

For a full list of options that can be specified to memcheck and their default values, see
Command Line Options.

2.1. Command Line Options
Command line options can be specified to cuda-memcheck. With some exceptions, the options
to memcheck are usually of the form --option value. The option list can be terminated by
specifying --. All subsequent words on the command line are treated as the application being
run and its arguments.

The table below describes the supported options in detail. The first column is the option name
as passed to CUDA-MEMCHECK. Some options have a one character short form, which is
given in parentheses. These options can be invoked using a single hyphen. For example, the
help option can be invoked as -h. The options that have a short form do not take a value.

The second column contains the permissible values for the option. In case the value is user
defined, this is shown below in braces {}. An option that can accept any numerical value is
represented as {number} .

The third column contains the default value of the option. Some options have different default
values depending on the architecture they are being run on.

Table 2. CUDA-MEMCHECK Command line options

Option Values Default Description
binary-patching yes, no yes Controls whether CUDA-MEMCHECK

should modify the application binary
at runtime. This option is enabled by
default. Setting this to "no" will reduce
the precision of errors reported by the
tool. Normal users will not need to
modify this flag.

Using CUDA-MEMCHECK

CUDA-MEMCHECK DU-05355-001_v11.5 | 4

Option Values Default Description
check-deprecated-
instr

yes, no no When enabled, CUDA-MEMCHECK
will report errors when deprecated
instructions are detected in executed
kernels. Which instructions are
reported depends on the selected tool.
This option is disabled by default.

demangle full, simple, no full Enables demangling of device function
names. For more information, see
Name Demangling.

destroy-on-device-
error

context,kernel context This controls how the application
proceeds on hitting a memory access
error. For more information, see Error
Actions.

error-exitcode {number} 0 The exit code CUDA-MEMCHECK
will return if the original application
succeeded but memcheck detected
errors were present. This is meant
to allow CUDA-MEMCHECK to be
integrated into automated test suites

filter {key1=val1}
[{,key2=val2}]

N/A Controls which application kernels
will be checked by the running
CUDA-MEMCHECK tool. For more
information, see Specifying Filters.

flush-to-disk yes,no no Forces every disk write to be flushed
to disk. When enabled, this will make
CUDA-MEMCHECK tools much slower.

force-blocking-
launches

yes,no no This forces all host kernel launches
to be sequential. When enabled, the
number and precision of memcheck
reported errors will decrease.

help (h) N/A N/A Displays the help message

language c,fortran c This controls application source
language specific behavior in CUDA-
MEMCHECK tools. For fortan specific
behavior, see CUDA Fortran Specific
Behavior.

log-file {filename} N/A This is the file CUDA-MEMCHECK will
write all of its text output to. By default,
CUDA-MEMCHECK will print all output
to stdout. For more information, see
Escape Sequences.

prefix {string} ======== The string prepended to CUDA-
MEMCHECK output lines

print-level info,warn,error,fatal warn The minimum level print level of
messages from CUDA-MEMCHECK.

print-limit {number} 10000 When this option is set, memcheck
will stop printing errors after reaching

Using CUDA-MEMCHECK

CUDA-MEMCHECK DU-05355-001_v11.5 | 5

Option Values Default Description
the given number of errors. Use 0 for
unlimited printing.

read {filename} N/A The input CUDA-MEMCHECK file to
read data from. This can be used in
conjunction with the --save option to
allow processing records after a run.

save {filename} N/A Filename where CUDA-MEMCHECK
will save the output from the current
run. For more information, see Escape
Sequences.

show-backtrace yes,host,device,no yes Displays a backtrace for most types of
errors. No disables all backtraces, Yes
enables all backtraces. Host enables
only host side backtraces. Device
enables only device side backtraces.
For more information, see Stack
Backtraces.

tool memcheck,
racecheck,
initcheck,
synccheck

memcheck Controls which CUDA-MEMCHECK tool
is actively running

version (V) N/A N/A Prints the version of cuda-memcheck

Table 3. Memcheck Tool Command line options

Option Values Default Description
check-api-
memory-access

yes,no yes Enable checking of cudaMemcpy/
cudaMemset

check-device-heap yes,no yes Enable checking of device heap
allocations. This applies to both error
checking and leak checking.

leak-check full,no no Prints information about all allocations
that have not been freed via cudaFree
at the point when the context was
destroyed. For more information, see
Leak Checking.

report-api-errors all, explicit, no explicit Report errors if any CUDA API call fails.
For more information, see CUDA API
Error Checking.

Using CUDA-MEMCHECK

CUDA-MEMCHECK DU-05355-001_v11.5 | 6

Table 4. Racecheck Tool Command line options

Option Values Default Description
racecheck-report hazard,analysis,all analysis Controls how racecheck reports

information. For more information, see
Racecheck report modes.

2.2. Supported Operating Systems
The standalone CUDA-MEMCHECK binary is supported on all CUDA supported platforms i.e.
Windows, supported Linux distributions and Android. CUDA-MEMCHECK can interoperate with
CUDA-GDB on Android and Linux.

CUDA-MEMCHECK tools are not supported on Windows Server 2016. For such cases, the
compute-sanitizer tool should be used as a replacement for CUDA-MEMCHECK.

2.3. Supported Devices
The CUDA-MEMCHECK tool suite is supported on all CUDA capable GPUs with SM versions
3.5 and above.

Virtual GPUs (such as NVIDIA GRID) are not supported by CUDA-MEMCHECK.

CUDA-MEMCHECK tools are not supported when Windows Hardware-accelerated GPU
scheduling is enabled. For such cases the compute-sanitizer tool should be used as a
replacement for CUDA-MEMCHECK.

2.4. Compilation Options
The CUDA-MEMCHECK tools do not need any special compilation flags to function.

The output displayed by the CUDA-MEMCHECK tools is more useful with some extra compiler
flags. The -G option to nvcc forces the compiler to generate debug information for the
CUDA application. To generate line number information for applications without affecting
the optimization level of the output, the -lineinfo option to nvcc can be used. The CUDA-
MEMCHECK tools fully support both of these options and can display source attribution of
errors for applications compiled with line information.

The stack backtrace feature of the CUDA-MEMCHECK tools is more useful when the
application contains function symbol names. For the host backtrace, this varies based on the
host OS. On Linux, the host compiler must be given the -rdynamic option to retain function
symbols. On Windows, the application must be compiled for debugging, i.e. the /Zi option.
When using nvcc, flags to the host compiler can be specified using the -Xcompiler option.
For the device backtrace, the full frame information is only available when the application
is compiled with device debug information. The compiler can skip generation of frame
information when building with optimizations.

Sample command line to build with function symbols and device side line information on linux:

Using CUDA-MEMCHECK

CUDA-MEMCHECK DU-05355-001_v11.5 | 7

nvcc -Xcompiler -rdynamic -lineinfo -o out in.cu

2.5. Environment variables
The CUDA-MEMCHECK tools can fail to initialize when there are a lot of CUDA functions in the
target app. This is due to CUDA-MEMCHECK trying to find a subset of functions to patch and
running out of memory. The environment variable CUDA_MEMCHECK_PATCH_MODULE can
be set to 1 in order to bypass this behavior, thus resolving the initialization error.

CUDA-MEMCHECK DU-05355-001_v11.5 | 8

Chapter 3. Memcheck Tool

3.1. What is Memcheck?
The memcheck tool is a run time error detection tool for CUDA applications.

The tool can precisely detect and report out of bounds and misaligned memory accesses to
global, local, shared and global atomic instructions in CUDA applications. It can also detect
and report hardware reported error information. In addition, the memcheck tool can detect
and report memory leaks in the user application.

3.2. Supported Error Detection
The errors that can be reported by the memcheck tool are summarized in the table below. The
location column indicates whether the report originates from the host or from the device. The
precision of an error is explained in the paragraph below.

Table 5. Memcheck reported error types

Name Description Location Precision See also
Memory access
error

Errors due to out of bounds or
misaligned accesses to memory
by a global, local, shared or
global atomic access.

Device Precise Memory
Access Error
Reporting

Hardware
exception

Errors that are reported by
the hardware error reporting
mechanism.

Device Imprecise Hardware
Exception
Reporting

Malloc/Free
errors

Errors that occur due to
incorrect use of malloc()/
free() in CUDA kernels.

Device Precise Device Side
Allocation
Checking

CUDA API
errors

Reported when a CUDA API
call in the application returns a
failure.

Host Precise CUDA API
Error Checking

cudaMalloc
memory leaks

Allocations of device memory
using cudaMalloc() that

Host Precise Leak Checking

Memcheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 9

Name Description Location Precision See also
have not been freed by the
application.

Device Heap
Memory Leaks

Allocations of device memory
using malloc() in device code
that have not been freed by the
application.

Device Imprecise Device Side
Allocation
Checking

The memcheck tool reports two classes of errors precise and imprecise.

Precise errors in memcheck are those that the tool can uniquely identify and gather all
information for. For these errors, memcheck can report the block and thread coordinates of
the thread causing the failure, the program counter (PC) of the instruction performing the
access, as well as the address being accessed and its size and type. If the CUDA application
contains line number information (by either being compiled with device side debugging
information, or with line information), then the tool will also print the source file and line
number of the erroneous access.

Imprecise errors are errors reported by the hardware error reporting mechanism that could
not be precisely attributed to a particular thread. The precision of the error varies based on the
type of the error and in many cases, memcheck may not be able to attribute the cause of the
error back to the source file and line.

3.3. Using Memcheck
The memcheck tool is enabled by default when running the CUDA-MEMCHECK application. It
can also be explicitly enabled by using the --tool memcheck option.

cuda-memcheck [memcheck_options] app_name [app_options]

When run in this way, the memcheck tool will look for precise, imprecise, malloc/free and
CUDA API errors. The reporting of device leaks must be explictly enabled. Errors identified
by the memcheck tool are displayed on the screen after the application has completed
execution. See Understanding Memcheck Errors for more information about how to interpret
the messages printed by the tool.

3.4. Understanding Memcheck Errors
The memcheck tool can produce a variety of different errors. This is a short guide showing
some samples of errors and explaining how the information in each error report can be
interpreted.

 1. Memory access error: Memory access errors are generated for errors that the memcheck
tool can correctly attribute and identify the erroneous instruction. Below is an example of a
precise memory access error

========= Invalid __global__ write of size 4
========= at 0x00000060 in memcheck_demo.cu:6:unaligned_kernel(void)

Memcheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 10

========= by thread (0,0,0) in block (0,0,0)
========= Address 0x400100001 is misaligned

Let us examine this error line by line :

Invalid __global__ write of size 4

The first line shows the memory segment, type and size being accessed. The memory
segment is one of :

‣ __global__ : for device global memory

‣ __shared__ : for per block shared memory

‣ __local__ : for per thread local memory

In this case, the access was to device global memory. The next field contains information
about the type of access, whether it was a read or a write. In this case, the access is a
write. Finally, the last item is the size of the access in bytes. In this example, the access
was 4 bytes in size.

at 0x00000060 in memcheck_demo.cu:6:unaligned_kernel(void)

The second line contains the PC of the instruction, the source file and line number (if
available) and the CUDA kernel name. In this example, the instruction causing the access
was at PC 0x60 inside the unaligned_kernel CUDA kernel. Additionally, since the
application was compiled with line number information, this instruction corresponds to
line 6 in the memcheck_demo.cu source file.

by thread (0,0,0) in block (0,0,0)

The third line contains the thread indices and block indices of the thread on which the
error was hit. In this example, the thread doing the erroneous access belonged to the first
thread in the first block.

Address 0x400100001 is misaligned

The fourth line contains the memory address being accessed and the type of of access
error. The type of access error can either be out of bounds access or misaligned access. In
this example, the access was to address 0x400100001 and the access error was because
this address was not aligned correctly.

 2. Hardware exception: Imprecise errors are generated for errors that the hardware reports
to the memcheck tool. Hardware exceptions have a variety of formats and messages.
Typically, the first line will provide some information about the type of error encountered.

 3. Malloc/free error: Malloc/free errors refer to the errors in the invocation of device side
malloc()/free() in CUDA kernels. An example of a malloc/free error :

========= Malloc/Free error encountered : Double free
========= at 0x000079d8
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x400aff920

Memcheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 11

We can examine this line by line.

Malloc/Free error encountered : Double free

The first line indicates that this is a malloc/free error, and contains the type of error. This
type can be :

‣ Double free : This indicates that the thread called free() on an allocation that has
already been freed.

‣ Invalid pointer to free : This indicates that free was called on a pointer that was not
returned by malloc()

‣ Heap corruption : This indicates generalized heap corruption, or cases where the state
of the heap was modified in a way that memcheck did not expect

In this example, the error is due to calling free() on a pointer which had already been
freed.

at 0x000079d8

The second line gives the PC on GPU where the error was reported. This PC is usually
inside of system code, and is not interesting to the user. The device frame backtrace will
contain the location in user code where the malloc()/free() call was made.

by thread (0,0,0) in block (0,0,0)

The third line contains the thread and block indices of the thread that caused this error. In
this example, the thread has threadIdx = (0,0,0) and blockIdx = (0,0,0)

Address 0x400aff920

This line contains the value of the pointer passed to free() or returned by malloc()

 4. Leak errors: Errors are reported for allocations created using cudaMalloc and for
allocations on the device heap that were not freed when the CUDA context was destroyed.
An example of a cudaMalloc allocation leak report follows :

========= Leaked 64 bytes at 0x400200200

The error message reports information about the size of the allocation that was leaked as
well as the address of the allocation on the device.

A device heap leak message will be explicitly identified as such:

========= Leaked 16 bytes at 0x4012ffff6 on the device heap

 5. CUDA API error: CUDA API errors are reported for CUDA API calls that return an error
value. An example of a CUDA API error:

========= Program hit error 11 on CUDA API call to cudaMemset

Memcheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 12

The message contains the returned value of the CUDA API call, as well as the name of the
API function that was called.

3.5. Integrated Mode
You can execute the memcheck tool from within CUDA-GDB by using the following option
before running the application:

(cuda-gdb) set cuda memcheck on

In integrated mode, the memcheck tool improves the precision of error reporting by CUDA-
GDB. The memory access checks are enabled, allowing identification of the thread that may be
causing a warp or device level exception.

3.6. CUDA API Error Checking
The memcheck tool supports reporting an error if a CUDA API call made by the user program
returned an error. The tool supports this detection for both CUDA run time and CUDA driver
API calls. In all cases, if the API function call has a nonzero return value, CUDA-MEMCHECK
will print an error message containing the name of the API call that failed and the return value
of the API call.

CUDA API error reports do not terminate the application, they merely provide extra
information. It is up to the application to check the return status of CUDA API calls and handle
error conditions appropriately.

3.7. Device Side Allocation Checking
The memcheck tool checks accesses to allocations in the device heap.

These allocations are created by calling malloc() inside a kernel. This feature is implicitly
enabled and can be disabled by specifying the --check-device-heap no option. This feature
is only activated for kernels in the application that call malloc().

The current implementation does not require space on the device heap, and so the heap
allocation behavior of the program with and without memcheck should remain similar. The
memcheck tool does require space in device global memory to track these heap allocations
and will print an internal error message if it is not able to allocate this space in device global
memory.

In addition to access checks, the memcheck tool can now perform libc style checks on the
malloc()/free() calls. The tool will report an error if the application calls a free() twice on
a kernel, or if it calls free() on an invalid pointer.

Note: Make sure to look at the device side backtrace to find the location in the application
where the malloc()/free() call was made

Memcheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 13

3.8. Leak Checking
The memcheck tool can detect leaks of allocated memory.

Memory leaks are device side allocations that have not been freed by the time the context
is destroyed. The memcheck tool tracks device memory allocations created using the CUDA
driver or runtime APIs. Starting in CUDA 5, allocations that are created dynamically on the
device heap by calling malloc() inside a kernel are also tracked.

For an accurate leak checking summary to be generated, the application's CUDA context must
be destroyed at the end. This can be done explicitly by calling cuCtxDestroy() in applications
using the CUDA driver API, or by calling cudaDeviceReset() in applications programmed
against the CUDA run time API.

The --leak-check full option must be specified to enable leak checking.

CUDA-MEMCHECK DU-05355-001_v11.5 | 14

Chapter 4. Racecheck Tool

4.1. What is Racecheck ?
The racecheck tool is a run time shared memory data access hazard detector. The primary use
of this tool is to help identify memory access race conditions in CUDA applications that use
shared memory.

In CUDA applications, storage declared with the __shared__ qualifier is placed in on chip
shared memory. All threads in a thread block can access this per block shared memory.
Shared memory goes out of scope when the thread block completes execution. As shared
memory is on chip, it is frequently used for inter thread communication and as a temporary
buffer to hold data being processed. As this data is being accessed by multiple threads in
parallel, incorrect program assumptions may result in data races. Racecheck is a tool built to
identify these hazards and help users write programs free of shared memory races.

Currently, this tool only supports detecting accesses to on-chip shared memory. For
supported architectures, see Supported Devices.

4.2. What are Hazards?
A data access hazard is a case where two threads attempt to access the same location
in memory resulting in nondeterministic behavior, based on the relative order of the two
accesses. These hazards cause data races where the behavior or the output of the application
depends on the order in which all parallel threads are executed by the hardware. Race
conditions manifest as intermittent application failures or as failures when attempting to run a
working application on a different GPU.

The racecheck tool identifies three types of canonical hazards in a program. These are :

‣ Write-After-Write (WAW) hazards

This hazard occurs when two threads attempt to write data to the same memory location.
The resulting value in that location depends on the relative order of the two accesses.

‣ Write-After-Read (WAR) hazards

This hazard occurs when two threads access the same memory location, with one thread
performing a read and another a write. In this case, the writing thread is ordered before

Racecheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 15

the reading thread and the value returned to the reading thread is not the original value at
the memory location.

‣ Read-After-Write (RAW) hazards

This hazard occurs when two threads access the same memory location, with one thread
performing a read and the other a write. In this case, the reading thread reads the value
before the writing thread commits it.

4.3. Using Racecheck
The racecheck tool is enabled by running the CUDA-MEMCHECK application with the --tool
racecheck option.

cuda-memcheck --tool racecheck [memcheck_options] app_name [app_options]

Once racecheck has identified a hazard, the user can make program modifications to ensure
this hazard is no longer present. In the case of Write-After-Write hazards, the program
should be modified so that multiple writes are not happening to the same location. In the
case of Read-After-Write and Write-After-Read hazards, the reading and writing locations
should be deterministically ordered. In CUDA kernels, this can be achieved by inserting a
__syncthreads() call between the two accesses. To avoid races between threads within a
single warp, __syncwarp() can be used.

Note: The racecheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free of
errors

4.4. Racecheck report modes
The racecheck tool can produce two types of output :

‣ Hazard reports

These reports contain detailed information about one particular hazard. Each hazard
report is byte accurate and represents information about conflicting accesses between two
threads that affect this byte of shared memory.

‣ Analysis reports

These reports contain a post analysis set of reports. These reports are produced by the
racecheck tool by analysing multiple hazard reports and examining active device state. For
example usage of analysis reports, see Understanding Racecheck Analysis Reports.

Racecheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 16

4.5. Understanding Racecheck Analysis
Reports

In analysis reports, the racecheck tool produces a series of high level messages that identify
the source locations of a particular race, based on observed hazards and other machine state

A sample racecheck analysis report is below:

========= ERROR: Race reported between Write access at 0x00000050 in
 raceGroupBasic.cu:53:WAW(void)
========= and Write access at 0x00000050 in raceGroupBasic.cu:53:WAW(void)

The analysis record contains high level information about the hazard that is conveyed to the
end user. Each line contains information about a unique location in the application which is
participating in the race.

The first word on the first line indicates the severity of this report. In this case, the message
is at the ERROR level of severity. For more information on the different severity levels, see
Racecheck Severity Levels. Analysis reports are composed of one or more racecheck hazards,
and the severity level of the report is that of the hazard with the highest severity.

The first line additionally contains the type of access. The access can be either:

‣ Read

‣ Write

The next item on the line is the PC of the location where the access happened from. In
this case, the PC is 0x50. If the application was compiled was compiled with line number
information, this line would also contain the file name and line number of the access. Finally,
the line contains the kernel name of the kernel issuing the access.

A given analysis report will always contain at least one line which is performing a write access.
A common strategy to eliminate races which contain only write accesses is to ensure that the
write access is performed by only one thread. In the case of races with multiple readers and
one writer, introducing explicit program ordering via a __syncthreads() call can avoid the
race condition. For races between threads within the same warp, the __syncwarp() intrinsic
can be used to avoid the hazard.

4.6. Understanding Racecheck Hazard
Reports

In hazard reporting mode, the racecheck tool produces a series of messages detailing
information about hazards in the application. The tool is byte accurate and produces a
message for each byte on which a hazard was detected. Additionally, when enabled, the host
backtrace for the launch of the kernel will also be displayed.

Racecheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 17

A sample racecheck hazard is below:

========= ERROR: Potential WAW hazard detected at __shared__ 0x0 in block (0, 0,
 0) :
========= Write Thread (0, 0, 0) at 0x00000088 in raceWAW.cu:18:WAW(void)
========= Write Thread (1, 0, 0) at 0x00000088 in raceWAW.cu:18:WAW(void)
========= Current Value : 0, Incoming Value : 2

The hazard records are dense and capture a lot of interesting information. In general terms,
the first line contains information about the hazard severity, type and address, as well as
information about the thread block where it occurred. The next 2 lines contain detailed
information about the two threads that were in contention. These two lines are ordered
chronologically, so the first entry is for the access that occurred earlier and the second for the
access that occurred later. The final line is printed for some hazard types and captures the
actual data that was being written.

Examining this line by line, we have :

ERROR: Potential WAW hazard detected at __shared__ 0x0 in block (0, 0, 0)

The first word on this line indicates the severity of this hazard. In this case, the message
is at the ERROR level of severity. For more information on the different severity levels, see
Racecheck Severity Levels.

The next piece of information here is the type of hazard. The racecheck tool detects three
types of hazards:

‣ WAW or Write-After-Write hazards

‣ WAR or Write-After-Read hazards

‣ RAW or Read-After-Write hazards

The type of hazard indicates the accesses types of the two threads that were in contention. In
this example, the hazard is of Write-After-Write type.

The next piece of information is the address in shared memory that was being accessed. This
is the offset in per block shared memory that was being accessed by both threads. Since the
racecheck tool is byte accurate, the message is only for the byte of memory at given address.
In this example, the byte being accessed is byte 0x0 in shared memory.

Finally, the first line contains the block index of the thread block to which the two racing
threads belong.

The second line contains information about the first thread to write to this location.

Write Thread (0, 0, 0) at 0x00000088 in raceWAW.cu:18:WAW(void)

The first item on this line indicates the type of access being performed by this thread to the
shared memory address. In this example, the thread was writing to the location. The next
component is the index of the thread the thread block. In this case, the thread is at index
(0,0,0). Following this, we have the byte offset of the instruction which did the access in the
kernel. In this example, the offset is 0x88. This is followed by the source file and line number
(if line number information is available). The final item on this line is the name of the kernel
that was being executed.

Racecheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 18

The third line contains similar information about the second thread which was causing this
hazard. This line has an identical format to the previous line.

The fourth line contains information about the data in the two accesses.

Current Value : 0, Incoming Value : 2

If the second thread in the hazard was performing a write access, i.e. the hazard is a Write-
After-Write (WAW) or a Write-After-Read (WAR) this line contains the value after the access
by the first thread as the Current Value and the value that will be written by the second access
as the Incoming Value. In this case, the first thread wrote the value 0 to the shared memory
location. The second thread is attempting to write the value 2.

4.7. Racecheck Severity Levels
Problems reported by racecheck can be of different severity levels. Depending on the level,
different actions are required from developers. By default, only issues of severity level
WARNING and ERROR are shown. The command line option --print-level can be used to
set the lowest severity level that should be reprted.

Racecheck reports have one of the following severity levels:

‣ INFO : The lowest level of severity. This is for hazards that have no impact on program
execution and hence are not contributing to data access hazards. It is still a good idea to
find and eliminate such hazards

‣ WARNING : Hazards at this level of severity are determined to be programming model
hazards, however may be intentionally created by the programmer. An example of this
are hazards due to warp level programming that make the assumption that threads
are proceeding in groups. Such hazards are typically only encountered by advanced
programmers. In cases where a beginner programmer encounters such errors, he should
treat them as sources of hazards.

Starting with the Volta architecture, programmers cannot rely anymore on the assumption
that threads within a warp execute in lock-step unconditionally. As a result, warnings
due to warp-synchronous programming without explicit synchronization must be fixed
when developing or porting applications from earlier architectures to Volta and above.
Developers can use the __syncwarp() intrinsic or the Cooperative Groups API.

‣ ERROR : The highest level of severity. Correspond to hazards that are very likely
candidates for causing data access races. Programmers would be well advised to examine
errors at this level of severity.

CUDA-MEMCHECK DU-05355-001_v11.5 | 19

Chapter 5. Initcheck Tool

5.1. What is Initcheck?
The initcheck tool is a run time uninitialized device global memory access detector. This tool
can identify when device global memory is accessed without it being initialized via device side
writes, or via CUDA memcpy and memset API calls.

Currently, this tool only supports detecting accesses to device global memory. For supported
architectures, see Supported Devices.

5.2. Using Initcheck
The initcheck tool is enabled by running the CUDA-MEMCHECK application with the --tool
initcheck option.

cuda-memcheck --tool initcheck [memcheck_options] app_name [app_options]

Note: The initcheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free of
errors

CUDA-MEMCHECK DU-05355-001_v11.5 | 20

Chapter 6. Synccheck Tool

6.1. What is Synccheck ?
The synccheck tool is a runtime tool that can identify whether a CUDA application is correctly
using synchronization primitives, specifically __syncthreads() and __syncwarp() intrinsics
and their Cooperative Groups API counterparts.

For supported architectures, see Supported Devices.

6.2. Using Synccheck
The synccheck tool is enabled by running the CUDA-MEMCHECK application with the --tool
synccheck option.

cuda-memcheck --tool synccheck [memcheck_options] app_name [app_options]

Note: The synccheck tool does not perform any memory access error checking. It is
recommended that users first run the memcheck tool to ensure the application is free of
errors

6.3. Understanding Synccheck Reports
For each violation, the synccheck tool produces a report message that identifies the source
location of the violation and its classification.

A sample synccheck report is below:

========= Barrier error detected. Divergent thread(s) in block
========= at 0x00000130 in divergence.cu:61:threadDivergence(int*)
========= by thread (37,0,0) in block (0,0,0)
=========
========= ERROR SUMMARY: 1 error

Synccheck Tool

CUDA-MEMCHECK DU-05355-001_v11.5 | 21

Each report starts with "Barrier error detected". In most cases, this is followed by a
classification of the detected barrier error. In this message, a CUDA block with divergent
threads was found. The following error classes can be reported:

‣ Divergent thread(s) in block : Divergence between threads within a block was detected for
a barrier that does not support this on the current architecture. For example, this occurs
when __syncthreads() is used within conditional code but the conditional does not
evaluate equally across all threads in the block.

‣ Divergent thread(s) in warp : Divergence between threads within a single warp was detected
for a barrier that does not support this on the current architecture.

‣ Invalid arguments : A barrier instruction or primitive was used with invalid arguments. This
can occur for example if not all threads reaching a __syncwarp() declare themselves in
the mask parameter.

‣ Deprecated instruction : A deprecated instruction was detected. Synccheck currently
reports the following deprecated instructions:

‣ __shfl(), __shfl_up(), __shfl_down(), __shfl_xor()

‣ __any(), __all()

‣ __ballot()

‣ Unknown error : synccheck does not recognize this particular error class. This can occur if
the CUDA driver is newer than the CUDA-MEMCHECK utility.

The next line states the PC of the location where the access happened. In this case, the PC
is 0x130. If the application was compiled with line number information, this line would also
contain the file name and line number of the access, followed by the name of the kernel
issuing the access.

The third line contains information on the thread and block for which this violation was
detected. In this case, it is thread 37 in block 0.

CUDA-MEMCHECK DU-05355-001_v11.5 | 22

Chapter 7. CUDA-MEMCHECK
Features

7.1. Nonblocking Mode
By default, the standalone CUDA-MEMCHECK tool will launch kernels in nonblocking mode.
This allows the tool to support error reporting in applications running concurrent kernels

To force kernels to execute serially, a user can use the --force-blocking-launches yes
option. One side effect is that when in blocking mode, only the first thread to hit an error in a
kernel will be reported.

7.2. Stack Backtraces
In standalone mode, CUDA-MEMCHECK can generate backtraces when given --show-
backtrace option. Backtraces usually consist of two sections - a saved host backtrace that
leads upto the CUDA driver call site, and a device backtrace at the time of the error. Each
backtrace contains a list of frames showing the state of the stack at the time the backtrace
was created.

To get function names in the host backtraces, the user application must be built with support
for symbol information in the host application. For more information, see Compilation Options

In CUDA 5, the host stack backtrace will show a maximum of 61 frames. Some device frames
are internal and will not be shown in the backtrace. Instead, a placeholder message like the
following will be inserted:

========= Device Frame:<1 frames were hidden>

Backtraces are printed for most CUDA-MEMCHECK tool outputs, and the information
generated varies depending on the type of output. The table below explains the kind of host
and device backtrace seen under different conditions.

CUDA-MEMCHECK Features

CUDA-MEMCHECK DU-05355-001_v11.5 | 23

Table 6. CUDA-MEMCHECK Stack Backtrace Information

Output Type Host Backtrace Device Backtrace
Memory access error Kernel launch on host Precise backtrace on device

Hardware exception Kernel launch on host Imprecise backtrace on device 1

Malloc/Free error Kernel launch on host Precise backtrace on device

cudaMalloc allocation
leak

Callsite of cudaMalloc N/A

CUDA API error Callsite of CUDA API call N/A

CUDA-MEMCHECK
internal error

Callsite leading to internal error N/A

Device heap allocation
leak

N/A N/A

Shared memory hazard Kernel launch on host N/A

7.3. Name Demangling
The CUDA-MEMCHECK suite now supports displaying mangled and demangled names for
CUDA kernels and CUDA device functions. By default, tools display the fully demangled
name, which contains the name of the kernel as well as its prototype information. In the
simple demangle mode, the tools will only display the first part of the name. If demangling is
disabled, tools will display the complete mangled name of the kernel.

7.4. Dynamic Parallelism
The CUDA-MEMCHECK tool suite supports dynamic parallelism. The memcheck tool supports
precise error reporting of out of bounds and misaligned accesses on global, local and shared
memory accesses as well as on global atomic instructions for applications using dynamic
parallelism. In addition, the imprecise hardware exception reporting mechanism is also fully
supported. Error detection on applications using dynamic parallelism requires significantly
more memory on the device and as a result, in memory constrained environments, memcheck
may fail to initialize with an internal out of memory error.

For limitations, see Known Issues.

7.5. Error Actions
On encountering an error, CUDA-MEMCHECK behavior depends on the type of error. The
default behavior of CUDA-MEMCHECK is to continue execution on purely host side errors.
Hardware exceptions detected by the memcheck tool cause the CUDA context to be destroyed.
Precise errors (such as memory access and malloc/free errors) detected by the memcheck

1 In some cases, there may be no device backtrace

CUDA-MEMCHECK Features

CUDA-MEMCHECK DU-05355-001_v11.5 | 24

tool cause the kernel to be terminated. This terminates the kernel without running any
subsequent instructions and the application continues launching other kernels in the CUDA
context. The handling of memory access and malloc/free errors detected by the memcheck
tool can be changed using the --destroy-on-device-error option.

For racecheck detected hazards, the hazard is reported, but execution is not affected.

For a full summary of error action, based on the type of the error see the table below. The
error action terminate kernel refers to the cases where the kernel is terminated early, and no
subsequent instructions are run. In such cases, the CUDA context is not destroyed and other
kernels continue execution and CUDA API calls can still be made.

Note: When kernel execution is terminated early, the application may not have completed its
computations on data. Any subsequent kernels that depend on this data will have undefined
behavior.

The action terminate CUDA context refers to the cases where the CUDA context is forcibly
terminated. In such cases, all outstanding work for the context is terminated and subsequent
CUDA API calls will fail. The action continue application refers to cases where the application
execution is not impacted, and the kernel continues executing instructions.

Table 7. CUDA-MEMCHECK Error Actions

Error Type Location Action Comments
Memory access error Device Terminate CUDA

context
User can choose to instead
terminate the kernel

Hardware exception Device Terminate CUDA
context

Subsequent calls on the
CUDA context will fail

Malloc/Free error Device Terminate CUDA
context

User can choose to instead
terminate the kernel

cudaMalloc allocation leak Host Continue application Error reported. No other
action taken.

CUDA API error Host Continue application Error reported. No other
action taken.

Device heap allocation leak Device Continue application Error reported. No other
action taken.

Shared memory hazard Device Continue application Error reported. No other
action taken.

Synchronization error Device Terminate CUDA
context

User can choose to instead
terminate the kernel

CUDA-MEMCHECK internal
error

Host Undefined The application may behave in
an undefined fashion

CUDA-MEMCHECK Features

CUDA-MEMCHECK DU-05355-001_v11.5 | 25

7.6. Escape Sequences
The --save and --log-file options to CUDA-MEMCHECK accept the following escape
sequences in the file name.

‣ %% : Replaced with a literal %

‣ %p : Replaced with the PID of the CUDA-MEMCHECK frontend application.

‣ %q{ENVVAR} : Replaced with the contents of the environment variable 'ENVVAR'. If the
variable does not exist, this is replaced with an empty string.

‣ Any other character following the % causes an error.

7.7. Specifying Filters
CUDA-MEMCHECK tools support filtering the choice of kernels which should be checked.
When a filter is specified, only kernels matching the filter will be checked. Filters are specified
using the --filter option. By default, CUDA-MEMCHECK tools will check all kernels in the
application.

The --filter option can be specified multiple times. If a kernel satisfies any filter, it will be
checked by the running CUDA-MEMCHECK tool.

The --filter takes a filter specification consisting of a list of comma separated key value
pairs, specified as key=value. In order for a filter to be matched, all components of the
filter specification must be satisfied. If a filter is incorrectly specified in any component, the
entire filter is ignored. For a full summary of valid key values, see the table below. If a key has
multiple strings, any of the strings can be used to specify that filter component.

Table 8. CUDA-MEMCHECK Filter Keys

Name Key String Value Comments
Kernel Name kernel_name, kne Complete mangled kernel

name
User specifies the complete
mangled kernel name.
Cannot be included in
same filter specification as
kernel_substring

Kernel Substring kernel_substring,
kns

Any substring in mangled
kernel name

User specifies a substring
in the mangled kernel
name. Cannot be included
in same filter specification
as kernel_name.

When using the kernel_name or kernel_substring filters, CUDA-MEMCHECK tools will
check all device function calls made by the kernel. When using CUDA Dynamic Parallelism
(CDP), CUDA-MEMCHECK tools will not check child kernels launched from a checked kernel

CUDA-MEMCHECK Features

CUDA-MEMCHECK DU-05355-001_v11.5 | 26

unless the child kernel matches a filter. If a GPU launched kernel that does not match a filter
calls a device function that is reachable from a kernel that does match a filter, the device
function will behave as though it was checked. In the case of some tools, this can result in
undefined behavior.

CUDA-MEMCHECK DU-05355-001_v11.5 | 27

Chapter 8. Operating System Specific
Behavior

This section describes operating system specific behavior.

8.1. Windows Specific Behavior
‣ Timeout Detection and Recovery (TDR)

On Windows Vista and above, GPUs have a timeout associated with them. GPU applications
that take longer than the threshold (default of 2 seconds) will be killed by the operating
system. Since CUDA-MEMCHECK tools increase the runtime of kernels, it is possible
for a CUDA kernel to exceed the timeout and therefore be terminated due to the TDR
mechanism.

For the purposes of debugging, the number of seconds before which the timeout is
hit can be modified by setting the the timeout value in seconds in the DWORD registry
key TdrDelay at HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control
\GraphicsDrivers

More information about the registry keys to control the Timeout Detection and Recovery
mechanism is available from MSDN at http://msdn.microsoft.com/en-us/library/windows/
hardware/ff569918%28v=vs.85%29.aspx

8.2. Android Specific Behavior
‣ TMPDIR environment variable

On Android, CUDA-MEMCHECK requires the TMPDIR environment variable to be set to a
directory that is readable and writable by the current user.

‣ Host stack backtraces

Host side function call stack backtraces are disabled on Android.

‣ Andoid GUI

To ensure the GPU kernel is not terminated unexpectedly, the Android UI can be stopped
by using the "stop" command in the adb shell.

http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff569918%28v=vs.85%29.aspx

Operating System Specific Behavior

CUDA-MEMCHECK DU-05355-001_v11.5 | 28

‣ CUDA-MEMCHECK tool cannot be used with APK binaries.

8.3. QNX Specific Behavior
‣ TMPDIR environment variable

On QNX, CUDA-MEMCHECK requires the TMPDIR environment variable to be set to a
directory that is readable and writable by the current user.

‣ Host stack backtraces

Host side function call stack backtraces are disabled on QNX.

CUDA-MEMCHECK DU-05355-001_v11.5 | 29

Chapter 9. CUDA Fortran Support

This section describes support for CUDA Fortran.

9.1. CUDA Fortran Specific Behavior
‣ By default, error reports printed by CUDA-MEMCHECK contain 0-based C style values for

thread index (threadIdx) and block index (blockIdx). For CUDA-MEMCHECK tools to use
Fortran style 1-based offsets, use the --language fortran option.

‣ The CUDA Fortran compiler may insert extra padding in shared memory. Accesses hitting
this extra padding may not be reported as an error.

CUDA-MEMCHECK DU-05355-001_v11.5 | 30

Chapter 10. CUDA-MEMCHECK Tool
Examples

10.1. Example Use of Memcheck
This section presents a walk-through of running the memcheck tool from CUDA-MEMCHECK
on a simple application called memcheck_demo.

Note: Depending on the SM type of your GPU, your system output may vary.

memcheck_demo.cu source code

#include <stdio.h>

__device__ int x;

__global__ void unaligned_kernel(void) {
 (int) ((char*)&x + 1) = 42;
}

__device__ void out_of_bounds_function(void) {
 (int) 0x87654320 = 42;
}

__global__ void out_of_bounds_kernel(void) {
 out_of_bounds_function();
}

void run_unaligned(void) {
 printf("Running unaligned_kernel\n");
 unaligned_kernel<<<1,1>>>();
 printf("Ran unaligned_kernel: %s\n",
 cudaGetErrorString(cudaGetLastError()));
 printf("Sync: %s\n", cudaGetErrorString(cudaDeviceSynchronize()));
}

void run_out_of_bounds(void) {
 printf("Running out_of_bounds_kernel\n");
 out_of_bounds_kernel<<<1,1>>>();
 printf("Ran out_of_bounds_kernel: %s\n",
 cudaGetErrorString(cudaGetLastError()));
 printf("Sync: %s\n", cudaGetErrorString(cudaDeviceSynchronize()));

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 31

}

int main() {
 int *devMem;

 printf("Mallocing memory\n");
 cudaMalloc((void**)&devMem, 1024);

 run_unaligned();
 run_out_of_bounds();

 cudaDeviceReset();
 cudaFree(devMem);

 return 0;
}

This application is compiled for release builds as :

nvcc -o memcheck_demo memcheck_demo.cu

10.1.1. memcheck_demo Output
When a CUDA application causes access violations, the kernel launch may terminate with an
error code of unspecified launch failure or a subsequent cudaDeviceSynchronize call which
will fail with an error code of unspecified launch failure.

This sample application is causing two failures but there is no way to detect where these
kernels are causing the access violations, as illustrated in the following output:

$./memcheck_demo
Mallocing memory
Running unaligned_kernel
Ran unaligned_kernel: no error
Sync: unspecified launch failure
Running out_of_bounds_kernel
Ran out_of_bounds_kernel: unspecified launch failure
Sync: unspecified launch failure

10.1.2. memcheck_demo Output with Memcheck
(Release Build)

In this case, since the application is built in release mode, the CUDA-MEMCHECK output
contains only the kernel names from the application causing the access violation. Though the
kernel name and error type are detected, there is no line number information on the failing
kernel. Also included in the output are the host and device backtraces for the call sites where
the functions were launched. In addition, CUDA API errors are reported, such as the invalid
cudaFree() call in the application.

$ cuda-memcheck ./memcheck_demo
========= CUDA-MEMCHECK
Mallocing memory
Running unaligned_kernel
Ran unaligned_kernel: no error
Sync: no error
Running out_of_bounds_kernel
Ran out_of_bounds_kernel: no error

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 32

Sync: no error
========= Invalid __global__ write of size 4
========= at 0x00000028 in unaligned_kernel(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x400100001 is misaligned
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]
========= Host Frame:memcheck_demo [0xdfc]
========= Host Frame:memcheck_demo [0xc76]
========= Host Frame:memcheck_demo [0xc81]
========= Host Frame:memcheck_demo [0xb03]
========= Host Frame:memcheck_demo [0xc27]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0x9b9]
=========
========= Invalid __global__ write of size 4
========= at 0x00000010 in out_of_bounds_kernel(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0xffffffff87654320 is out of bounds
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]
========= Host Frame:memcheck_demo [0xdfc]
========= Host Frame:memcheck_demo [0xca0]
========= Host Frame:memcheck_demo [0xcab]
========= Host Frame:memcheck_demo [0xbbc]
========= Host Frame:memcheck_demo [0xc2c]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0x9b9]
=========
========= Program hit error 17 on CUDA API call to cudaFree
========= Saved host backtrace up to driver entry point at error
========= Host Frame:/usr/local/lib/libcuda.so [0x28f850]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaFree + 0x20d)
 [0x364ed]
========= Host Frame:memcheck_demo [0xc3d]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0x9b9]
=========
========= ERROR SUMMARY: 3 errors

10.1.3. memcheck_demo Output with Memcheck
(Debug Build)

The application is now built with device side debug information and function symbols as :

nvcc -G -Xcompiler -rdynamic -o memcheck_demo memcheck_demo.cu

Now run this application with CUDA-MEMCHECK and check the output. By default, the
application will run so that the kernel is terminated on memory access errors but other work
in the CUDA context can still proceed.

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 33

In the output below the first kernel no longer reports an unspecified launch failure as its
execution has been terminated early after CUDA-MEMCHECK detected the error. The
application continued to run the second kernel. The error detected in the second kernel
causes it to terminate early. Finally, the application calls cudaDeviceReset(), which destroys
the CUDA context and then attempts to call cudaFree(). This call returns an API error that is
caught and displayed by memcheck.

$ cuda-memcheck ./memcheck_demo
========= CUDA-MEMCHECK
Mallocing memory
Running unaligned_kernel
Ran unaligned_kernel: no error
Sync: no error
Running out_of_bounds_kernel
Ran out_of_bounds_kernel: no error
Sync: no error
========= Invalid __global__ write of size 4
========= at 0x00000028 in memcheck_demo.cu:6:unaligned_kernel(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x400100001 is misaligned
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]
========= Host Frame:memcheck_demo (_Z10cudaLaunchIcE9cudaErrorPT_ + 0x18)
 [0x11a4]
========= Host Frame:memcheck_demo (_Z35__device_stub__Z16unaligned_kernelvv +
 0x1d) [0x101d]
========= Host Frame:memcheck_demo (_Z16unaligned_kernelv + 0x9) [0x1028]
========= Host Frame:memcheck_demo (_Z13run_unalignedv + 0x76) [0xeaa]
========= Host Frame:memcheck_demo (main + 0x28) [0xfce]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xd79]
=========
========= Invalid __global__ write of size 4
========= at 0x00000028 in memcheck_demo.cu:10:out_of_bounds_function(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x87654320 is out of bounds
========= Device Frame:memcheck_demo.cu:15:out_of_bounds_kernel(void)
 (out_of_bounds_kernel(void) : 0x10)
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]
========= Host Frame:memcheck_demo (_Z10cudaLaunchIcE9cudaErrorPT_ + 0x18)
 [0x11a4]
========= Host Frame:memcheck_demo (_Z39__device_stub__Z20out_of_bounds_kernelvv
 + 0x1d) [0x1047]
========= Host Frame:memcheck_demo (_Z20out_of_bounds_kernelv + 0x9) [0x1052]
========= Host Frame:memcheck_demo (_Z17run_out_of_boundsv + 0x76) [0xf63]
========= Host Frame:memcheck_demo (main + 0x2d) [0xfd3]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xd79]
=========
========= Program hit error 17 on CUDA API call to cudaFree
========= Saved host backtrace up to driver entry point at error
========= Host Frame:/usr/local/lib/libcuda.so [0x28f850]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaFree + 0x20d)
 [0x364ed]
========= Host Frame:memcheck_demo (main + 0x3e) [0xfe4]

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 34

========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xd79]
=========
========= ERROR SUMMARY: 3 errors

10.1.4. Leak Checking in CUDA-MEMCHECK
To print information about the allocations that have not been freed at the time the CUDA
context is destroyed, we can specify the --leak-check full option to CUDA-MEMCHECK.

When running the program with the leak check option, the user is presented with a list of
allocations that were not destroyed, along with the size of the allocation and the address
on the device of the allocation. For allocations made on the host, each leak report will also
print a backtrace corresponding to the saved host stack at the time the allocation was first
made. Also presented is a summary of the total number of bytes leaked and the corresponding
number of allocations.

In this example, the program created an allocation using cudaMalloc() and has not called
cudaFree() to release it, leaking memory. Notice that CUDA-MEMCHECK still prints errors it
encountered while running the application.

$ cuda-memcheck --leak-check full memcheck_demo
========= CUDA-MEMCHECK
Mallocing memory
Running unaligned_kernel
Ran unaligned_kernel: no error
Sync: no error
Running out_of_bounds_kernel
Ran out_of_bounds_kernel: no error
Sync: no error
========= Invalid __global__ write of size 4
========= at 0x00000060 in memcheck_demo.cu:6:unaligned_kernel(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x400100001 is misaligned
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]
========= Host Frame:memcheck_demo (_Z10cudaLaunchIcE9cudaErrorPT_ + 0x18)
 [0x122c]
========= Host Frame:memcheck_demo (_Z35__device_stub__Z16unaligned_kernelvv +
 0x1d) [0x10a6]
========= Host Frame:memcheck_demo (_Z16unaligned_kernelv + 0x9) [0x10b1]
========= Host Frame:memcheck_demo (_Z13run_unalignedv + 0x76) [0xf33]
========= Host Frame:memcheck_demo (main + 0x28) [0x1057]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xde9]
=========
========= Invalid __global__ write of size 4
========= at 0x00000028 in memcheck_demo.cu:10:out_of_bounds_function(void)
========= by thread (0,0,0) in block (0,0,0)
========= Address 0x87654320 is out of bounds
========= Device Frame:memcheck_demo.cu:15:out_of_bounds_kernel(void)
 (out_of_bounds_kernel(void) : 0x10)
========= Saved host backtrace up to driver entry point at kernel launch time
========= Host Frame:/usr/local/lib/libcuda.so (cuLaunchKernel + 0x3ae)
 [0xddbee]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xcd27]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaLaunch + 0x1bb)
 [0x3778b]

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 35

========= Host Frame:memcheck_demo (_Z10cudaLaunchIcE9cudaErrorPT_ + 0x18)
 [0x122c]
========= Host Frame:memcheck_demo (_Z39__device_stub__Z20out_of_bounds_kernelvv
 + 0x1d) [0x10d0]
========= Host Frame:memcheck_demo (_Z20out_of_bounds_kernelv + 0x9) [0x10db]
========= Host Frame:memcheck_demo (_Z17run_out_of_boundsv + 0x76) [0xfec]
========= Host Frame:memcheck_demo (main + 0x2d) [0x105c]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xde9]
=========
========= Leaked 1024 bytes at 0x400200000
========= Saved host backtrace up to driver entry point at cudaMalloc time
========= Host Frame:/usr/local/lib/libcuda.so (cuMemAlloc_v2 + 0x236) [0xe9746]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0x26dd7]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 [0xb37b]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaMalloc + 0x17a)
 [0x36e6a]
========= Host Frame:memcheck_demo (main + 0x23) [0x1052]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xde9]
=========
========= Program hit error 17 on CUDA API call to cudaFree
========= Saved host backtrace up to driver entry point at error
========= Host Frame:/usr/local/lib/libcuda.so [0x28f850]
========= Host Frame:/usr/local/lib/libcudart.so.5.0 (cudaFree + 0x20d)
 [0x364ed]
========= Host Frame:memcheck_demo (main + 0x3e) [0x106d]
========= Host Frame:/lib64/libc.so.6 (__libc_start_main + 0xfd) [0x1eb1d]
========= Host Frame:memcheck_demo [0xde9]
=========
========= LEAK SUMMARY: 1024 bytes leaked in 1 allocations
========= ERROR SUMMARY: 3 errors

10.2. Integrated CUDA-MEMCHECK
Example

This example shows how to enable CUDA-MEMCHECK from within CUDA-GDB and how to
detect errors within the debugger so you can access the line number information and check
the state of the variables

In this example the unaligned kernel has a misaligned memory access in block 1 lane 1, which
gets trapped as an illegal lane address at line 6 from within CUDA-GDB. Note that CUDA-GDB
displays the address and that caused the bad access.

(cuda-gdb) set cuda memcheck on
(cuda-gdb) run
Starting program: memcheck_demo
[Thread debugging using libthread_db enabled]
Mallocing memory
[New Thread 0x7ffff6fe1710 (LWP 7783)]
[Context Create of context 0x6218a0 on Device 0]
[Launch of CUDA Kernel 0 (memset32_post<<<(1,1,1),(64,1,1)>>>) on Device 0]
Running unaligned_kernel
[Launch of CUDA Kernel 1 (unaligned_kernel<<<(1,1,1),(1,1,1)>>>) on Device 0]
Memcheck detected an illegal access to address (@global)0x400100001

Program received signal CUDA_EXCEPTION_1, Lane Illegal Address.
[Switching focus to CUDA kernel 1, grid 2, block (0,0,0), thread (0,0,0), device 0,
 sm 0, warp 0, lane 0]
0x000000000078b8b0 in unaligned_kernel<<<(1,1,1),(1,1,1)>>> () at memcheck_demo.cu:6

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 36

6 *(int*) ((char*)&x + 1) = 42;
(cuda-gdb) print &x
$1 = (@global int *) 0x400100000
(cuda-gdb) continue
Continuing.
[Termination of CUDA Kernel 1 (unaligned_kernel<<<(1,1,1),(1,1,1)>>>) on Device 0]
[Termination of CUDA Kernel 0 (memset32_post<<<(1,1,1),(64,1,1)>>>) on Device 0]

Program terminated with signal CUDA_EXCEPTION_1, Lane Illegal Address.
The program no longer exists.
(cuda-gdb)

10.3. Example Use of Racecheck
This section presents two example usages of the racecheck tool from CUDA-MEMCHECK. The
first example uses an application called block_error, which has shared memory hazards on
the block level. The second example uses an application called warp_error, which has shared
memory hazards on the warp level.

Note: Depending on the SM type of your GPU, your system output may vary.

10.3.1. Block-level Hazards

block_error.cu source code

#define THREADS 128

__shared__ int smem[THREADS];

__global__
void sumKernel(int *data_in, int *sum_out)
{
 int tx = threadIdx.x;
 smem[tx] = data_in[tx] + tx;

 if (tx == 0) {
 *sum_out = 0;
 for (int i = 0; i < THREADS; ++i)
 *sum_out += smem[i];
 }
}

int main(int argc, char **argv)
{
 int *data_in = NULL;
 int *sum_out = NULL;

 cudaMalloc((void**)&data_in, sizeof(int) * THREADS);
 cudaMalloc((void**)&sum_out, sizeof(int));
 cudaMemset(data_in, 0, sizeof(int) * THREADS);

 sumKernel<<<1, THREADS>>>(data_in, sum_out);
 cudaDeviceSynchronize();

 cudaFree(data_in);

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 37

 cudaFree(sum_out);
 return 0;
}

Each kernel thread write some element in shared memory. Afterwards, thread 0 computes
the sum of all elements in shared memory and stores the result in global memory variable
sum_out.

Running this application under the racecheck tool with the --racecheck-report analysis
option, the following error is reported:

========= CUDA-MEMCHECK
========= ERROR: Race reported between Write access at 0x00000068 in
 block_error.cu:9:sumKernel(int*, int*)
========= and Read access at 0x000000e8 in block_error.cu:14:sumKernel(int*,
 int*) [128 hazards]
========= and Read access at 0x00000130 in block_error.cu:14:sumKernel(int*,
 int*) [128 hazards]
========= and Read access at 0x000000d0 in block_error.cu:14:sumKernel(int*,
 int*) [124 hazards]
========= and Read access at 0x00000188 in block_error.cu:14:sumKernel(int*,
 int*) [128 hazards]

Racecheck reports races between thread 0 reading all shared memory elements in line 14 and
each individual thread writing its shared memory entry in line 9. Accesses to shared memory
between multiple threads, where at least one access is a write, can potentially race with each
other. Since the races are between threads of different warps, the block-level synchronization
barrier __syncthreads() is required in line 10.

Note that a total of 508 hazards are reported: the kernel uses a single block of 128 threads.
The data size written or read, respectively, by each thread is four bytes (one int) and hazards
are reported at the byte level. The writes by all threads race with the reads by thread 0, except
for the four writes by thread 0 itself.

10.3.2. Warp-level Hazards

warp_error.cu source code

#define WARPS 2
#define WARP_SIZE 32
#define THREADS (WARPS * WARP_SIZE)

__shared__ int smem_first[THREADS];
__shared__ int smem_second[WARPS];

__global__
void sumKernel(int *data_in, int *sum_out)
{
 int tx = threadIdx.x;
 smem_first[tx] = data_in[tx] + tx;

 if (tx % WARP_SIZE == 0) {
 int wx = tx / WARP_SIZE;

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 38

 smem_second[wx] = 0;
 for (int i = 0; i < WARP_SIZE; ++i)
 smem_second[wx] += smem_first[wx * WARP_SIZE + i];
 }

 __syncthreads();

 if (tx == 0) {
 *sum_out = 0;
 for (int i = 0; i < WARPS; ++i)
 *sum_out += smem_second[i];
 }
}

int main(int argc, char **argv)
{
 int *data_in = NULL;
 int *sum_out = NULL;

 cudaMalloc((void**)&data_in, sizeof(int) * THREADS);
 cudaMalloc((void**)&sum_out, sizeof(int));
 cudaMemset(data_in, 0, sizeof(int) * THREADS);

 sumKernel<<<1, THREADS>>>(data_in, sum_out);
 cudaDeviceSynchronize();

 cudaFree(data_in);
 cudaFree(sum_out);
 return 0;
}

The kernel computes the some of all individual elements in shared memory two stages. First,
each thread computes its local shared memory value in smem_first. Second, a single thread
of each warp is chosen with if (tx % WARP_SIZE == 0) to sum all elements written by
its warp, indexed wx, and store the result in smem_second. Finally, thread 0 of the kernel
computes the sum of elements in smem_second and writes the value into global memory.

Running this application under the racecheck tool with the --racecheck-report hazard
option, multiple hazards with WARNING severity are reported:

========= WARN:(Warp Level Programming) Potential RAW hazard detected at __shared__
 0x7 in block (0, 0, 0) :
========= Write Thread (1, 0, 0) at 0x00000070 in
 warp_error.cu:12:sumKernel(int*, int*)
========= Read Thread (0, 0, 0) at 0x000000b0 in
 warp_error.cu:19:sumKernel(int*, int*)
========= Current Value : 0

The avoid the errors demonstrated in the Block-level Hazards example, the kernel uses the
block-level barrier __syncthreads() in line 22. However, racecheck still reports read-after-
write (RAW) hazards between threads within the same warp, with severity WARNING. On
architectures prior to SM 7.0 (Volta), programmers commonly relied on the assumption that
threads within a warp execute code in lock-step (warp-level programming). Starting with
CUDA 9.0, programmers can use the new __syncwarp() warp-wide barrier (instead of only
__syncthreads() beforehand) to avoid such hazards. This barrier should be inserted at line
13.

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 39

10.4. Example Use of Initcheck
This section presents the usage of the initcheck tool from CUDA-MEMCHECK. The example
uses an application called memset_error.

10.4.1. Memset Error

memset_error.cu source code

#define THREADS 128
#define BLOCKS 2

__global__
void vectorAdd(int *v)
{
 int tx = threadIdx.x + blockDim.x * blockIdx.x;

 v[tx] += tx;
}

int main(int argc, char **argv)
{
 int *d_vec = NULL;

 cudaMalloc((void**)&d_vec, sizeof(int) * BLOCKS * THREADS);
 cudaMemset(d_vec, 0, BLOCKS * THREADS);

 vectorAdd<<<BLOCKS, THREADS>>>(d_vec);
 cudaDeviceSynchronize();

 cudaFree(d_vec);
 return 0;
}

The example implements a very simple vector addition, where the thread index is added to
each vector element. The vector contains BLOCKS * THREADS elements of type int. The vector
is allocated on the device and then initialized to 0 using cudaMemset before the kernel is
launched.

Running this application under the initcheck tool reports multiple errors like the following:

========= Uninitialized __global__ memory read of size 4
========= at 0x00000070 in /home/user/memset_error.cu:9:vectorAdd(int*)
========= by thread (65,0,0) in block (0,0,0)
========= Address 0x10208e00104
=========

The problem is that the call to cudaMemset expects the size of the to-be set memory in bytes.
However, the size is given in elements, as a factor of sizeof(int) is missing while computing

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 40

the parameter. As a result, 3/4 of the memory will have undefined values during the vector
addition.

10.5. Example Use of Synccheck
This section presents two example usages of the synccheck tool from CUDA-MEMCHECK. The
first example uses an application called divergent_threads. The second example uses an
application called illegal_syncwarp.

Note: Depending on the SM type of your GPU, your system output may vary.

10.5.1. Divergent Threads

divergent_threads.cu source code

#define THREADS 64
#define DATA_BLOCKS 16

__shared__ int smem[THREADS];

__global__ void
myKernel(int *data_in, int *sum_out, const int size)
{
 int tx = threadIdx.x;

 smem[tx] = 0;

 __syncthreads();

 for (int b = 0; b < DATA_BLOCKS; ++b) {
 const int offset = THREADS * b + tx;
 if (offset < size) {
 smem[tx] += data_in[offset];
 __syncthreads();
 }
 }

 if (tx == 0) {
 *sum_out = 0;
 for (int i = 0; i < THREADS; ++i)
 *sum_out += smem[i];
 }
}

int main(int argc, char *argv[])
{
 const int SIZE = (THREADS * DATA_BLOCKS) - 16;
 int *data_in = NULL;
 int *sum_out = NULL;

 cudaMalloc((void**)&data_in, SIZE * sizeof(int));
 cudaMalloc((void**)&sum_out, sizeof(int));

 myKernel<<<1,THREADS>>>(data_in, sum_out, SIZE);

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 41

 cudaDeviceSynchronize();
 cudaFree(data_in);
 cudaFree(sum_out);

 return 0;
}

In this example, we launch a kernel with a single block of 64 threads. The kernels loops over
DATA_BLOCKS blocks of input data data_in. In each iteration, THREADS elements are added
concurrently in shared memory. Finally, a single thread 0 computes the sum of all values in
shared memory and writes it to sum_out.

Running this application under the synccheck tool, 16 errors like the following are reported:

========= Barrier error detected. Divergent thread(s) in block
========= at 0x000006c8 in divergent_threads.cu:20:myKernel(int*, int*, int)
========= by thread (32,0,0) in block (0,0,0)

The issue is with the __syncthreads() in line 20 when reading the last data block into shared
memory. Note that the last data block only has 48 elements (compared to 64 elements for
all other blocks). As a result, not all threads of the second warp execute this statement in
convergence as required.

10.5.2. Illegal Syncwarp

illegal_syncwarp.cu source code

#define THREADS 32

__shared__ int smem[THREADS];

__global__ void
myKernel(int *sum_out)
{
 int tx = threadIdx.x;

 unsigned int mask = __ballot_sync(0xffffffff, tx < (THREADS / 2));

 if (tx <= (THREADS / 2)) {
 smem[tx] = tx;

 __syncwarp(mask);

 *sum_out = 0;
 for (int i = 0; i < (THREADS / 2); ++i)
 *sum_out += smem[i];
 }
}

int main(int argc, char *argv[])
{
 int *sum_out = NULL;

 cudaMalloc((void**)&sum_out, sizeof(int));

CUDA-MEMCHECK Tool Examples

CUDA-MEMCHECK DU-05355-001_v11.5 | 42

 myKernel<<<1,THREADS>>>(sum_out);

 cudaDeviceSynchronize();
 cudaFree(sum_out);

 return 0;
}

This example only applies to devices of compute capability 7.0 (Volta) and above. The kernel
is launched with a single warp (32 threads), but only thread 0-15 are part of the computation.
Each of these threads initializes one shared memory element with its thread index. After
the assignment, __syncwarp() is used to ensure that the warp is converged and all
writes are visible to other threads. The mask passed to __syncwarp() is computed using
__ballot_sync(), which enables the bits for the first 16 threads in mask. Finally, the first
thread (index 0) computes the sum over all initialized shared memory elements and writes it to
global memory.

Building the application with -G to enable debug information and running it under the
synccheck tool on SM 7.0 and above, multiple errors like the following are reported:

========= Barrier error detected. Invalid arguments
========= at 0x00000040 in __cuda_sm70_warpsync
========= by thread (0,0,0) in block (0,0,0)
========= Device Frame:__cuda_sm70_warpsync (__cuda_sm70_warpsync : 0x40)
========= Device Frame:/usr/local/cuda/include/
sm_30_intrinsics.hpp:112:__syncwarp(unsigned int) (__syncwarp(unsigned int) : 0x110)
========= Device Frame:/home/user/illegal_synwarp.cu:15:myKernel(int*)
 (myKernel(int*) : 0x460

The issue is with the __syncwarp(mask) in line 15. All threads for which tx < (THREADS /
2) holds true are enabled in the mask, which are threads 0-15. However, the if condition
evaluates true for threads 0-16. As a result, thread 16 executes the __syncwarp(mask) but
does not declare itself in the mask parameter as required.

CUDA-MEMCHECK DU-05355-001_v11.5 | 43

Appendix A. Memory Access Error
Reporting

The memcheck tool will report memory access errors when run standalone or in integrated
mode with CUDA-GDB.

The table below describes the types of accesses that are checked and the SM version where
such checks happen.

Table 9. Memcheck memory access error detection support

Error Type SM 3.5 SM 5.x SM 6.x SM 7.x SM 8.0
Global Yes Yes Yes Yes Yes

Shared Yes Yes Yes Yes Yes

Local Yes Yes Yes Yes Yes

Global Atomic Yes Yes Yes Yes Yes

Load through texture Yes N/A N/A N/A N/A

System-scoped Atomics N/A N/A Yes Yes Yes

CUDA-MEMCHECK DU-05355-001_v11.5 | 44

Appendix B. Hardware Exception
Reporting

The CUDA‐MEMCHECK tool will report hardware exceptions when run as a standalone or as
part of CUDA‐GDB. The table below enumerates the supported exceptions, their precision
and scope, as well as a brief description of their cause. For more detailed information, see the
documentation for CUDA‐GDB.

Table 10. CUDA Exception Codes

Exception code Precision
of the Error

Scope of the Error Description

CUDA_EXCEPTION_1 :
"Lane Illegal Address"

Precise Per lane/thread
error

This occurs when a thread
accesses an illegal (out of bounds)
global address.

CUDA_EXCEPTION_2 :
"Lane User StackOverflow"

Precise Per lane/thread
error

This occurs when a thread exceeds
its stack memory limit.

CUDA_EXCEPTION_3:
"Device Hardware Stack
Overflow"

Not precise Global error on the
GPU

This occurs when the application
triggers a global hardware stack
overflow. The main cause of
this error is large amounts of
divergence in the presence of
function calls.

CUDA_EXCEPTION_4:
"Warp Illegal Instruction"

Not precise Warp error This occurs when any thread within
a warp has executed an illegal
instruction.

CUDA_EXCEPTION_5:
"Warp Out-of-range
Address"

Not precise Warp error This occurs when any thread within
a warp accesses an address that is
outside the valid range of local or
shared memory regions.

CUDA_EXCEPTION_6:
"Warp Misaligned Address"

Not precise Warp error This occurs when any thread within
a warp accesses an address in the
local or shared memory segments
that is not correctly aligned.

CUDA_EXCEPTION_7:
"Warp Invalid Address
Space"

Not precise Warp error This occurs when any thread within
a warp executes an instruction

Hardware Exception Reporting

CUDA-MEMCHECK DU-05355-001_v11.5 | 45

Exception code Precision
of the Error

Scope of the Error Description

that accesses a memory space not
permitted for that instruction.

CUDA_EXCEPTION_8:
"Warp Invalid PC"

Not precise Warp error This occurs when any thread within
a warp advances its PC beyond the
40-bit address space.

CUDA_EXCEPTION_9:
"Warp Hardware Stack
Overflow"

Not precise Warp error This occurs when any thread in a
warp triggers a hardware stack
overflow. This should be a rare
occurrence.

CUDA_EXCEPTION_10:
"Device Illegal Address"

Not precise Global error This occurs when a thread
accesses an illegal (out of bounds)
global address.

CUDA_EXCEPTION_11:
"Lane Misaligned Address"

Precise Per lane/thread
error

This occurs when a thread
accesses a global address that is
not correctly aligned.

CUDA_EXCEPTION_12:
"Warp Assert"

Precise Per warp This occurs when any thread in the
warp hits a device side assertion.

CUDA_EXCEPTION_13:
"Lane Syscall Error"

Precise Per lane This occurs when a particular
thread causes an syscall error,
such as calling free() in a kernel
on an already free'd pointer.

"Unknown Exception" Not precise Global error The precise cause of the exception
is unknown. Potentially, this may
be due to Device Hardware Stack
overflows or a kernel generating
an exception very close to its
termination.

CUDA-MEMCHECK DU-05355-001_v11.5 | 46

Appendix C. Release Notes

C.1. New Features in 11.0
‣ Support for SM 8.0

C.2. New Features in 10.2
‣ Support for CUDA graphs

C.3. New Features in 10.1
‣ Support for atomic instructions on 16-bit __half floating point type

C.4. New Features in 10.0
‣ Support for SM 7.5

C.5. New Features in 9.1
‣ On Volta, the synccheck tool will report an error if a deprecated variant of __shfl() is used

in divergent code.

‣ Added a command line option to report deprecated instructions even when they are used
in safe execution paths. For more information, see Command Line Options.

C.6. New Features in 9.0
‣ Support for host API functions with pitch parameter. For more information see Initcheck

Tool.

Release Notes

CUDA-MEMCHECK DU-05355-001_v11.5 | 47

‣ Initial support for the Cooperative Groups programming model.

‣ Support for shared memory atomic instructions. For more information see Memcheck
Tool.

‣ Support for detecting invalid accesses to global memory on Pascal and later architectures
that extend beyond the end of an allocation. For more information see Memcheck Tool.

‣ Support for limiting the numbers of errors printed by cuda-memcheck. For more
information see Command Line Options.

‣ Racecheck analysis reports are assigned a severity level. For more information see
Understanding Racecheck Analysis Reports.

‣ Default print level changed from INFO to WARN. For more information see Command Line
Options.

‣ Support for SM 7.0 and 7.2

C.7. New Features in 8.0
‣ Support for non-migratable system-scoped atomics checking on SM 6.x. For more

information see Memcheck Tool.

‣ Support for reporting fatal CPU-side faults when Unified Memory is enabled. For more
information see Memcheck Tool.

‣ Support for correctly determining the expected set of threads at a barrier in the presence
of exited threads in Synccheck Tool.

‣ Support for SM 6.x

C.8. New Features in 7.0
‣ Support for uninitialized global memory access checking. For more information see

Initcheck Tool.

‣ Support for divergent block synchronization checking. For more information see
Synccheck Tool.

‣ Support for SM 5.2

C.9. New Features in 6.5
‣ More information printed for API errors

‣ Support for escape sequences in file name to --log-file and --save.

‣ Support for controlling which kernels are checked using --filter. For more information
see Specifying Filters.

Release Notes

CUDA-MEMCHECK DU-05355-001_v11.5 | 48

C.10. New Features in 6.0
‣ Support for Unified Memory

‣ Support for CUDA Multi Process Service (MPS)

‣ Support for additional error detection with cudaMemcpy and cudaMemset

C.11. New Features in 5.5
‣ Analysis mode in racecheck tool. For more information, see Racecheck Tool

‣ Support for racecheck on SM 3.5 GPUs.

C.12. New Features in 5.0
‣ Reporting of data access hazards in shared memory accesses. This is supported on Fermi

SM 2.x and Kepler SM 3.0 GPUs. This functionality is not supported on Windows XP. For
more information, see Racecheck Tool.

‣ Support for SM 3.0 and SM 3.5 GPUs. For more information, see Supported Devices.

‣ Support for dynamic parallelism. All memory access error detection is supported for
applications using dynamic parallelism. For more information, see Dynamic Parallelism.

‣ Precise error detection for local loads/stores, shared loads/stores, global atomics/
reductions. On SM 3.5, added precise memory access error detection for noncoherent
global loads through the texture unit. For more information, see Memory Access Error
Reporting.

‣ Error detection in device side malloc()/free(), such as double free() or invalid free() on the
GPU. For more information, see Device Side Allocation Checking.

‣ Leak checking for allocations on the device heap. For more information, see Leak
Checking.

‣ Display of a saved stack backtrace on the host and captured backtrace on the device for
different errors. For more information, see Stack Backtraces.

‣ Reporting of CUDA API errors in the user's application. For more information, see CUDA
API Error Checking.

‣ Added display of mangled, demangled, and full prototype of the kernel. For more
information, see Name Demangling.

‣ Increased functionality in integrated mode with CUDA-GDB. Added reporting of the
address and address space being accessed that caused a precise exception. Added

Release Notes

CUDA-MEMCHECK DU-05355-001_v11.5 | 49

checking of device side malloc() and free() when in integrated mode. For more information,
see Integrated Mode.

‣ Support for applications compiled separately that use the device side linker.

‣ Support for applications compiled with the -lineinfo flag.

‣ New style of command line options. For more information, see Command Line Options.

‣ Changed default behavior. CUDA-MEMCHECK will display backtraces by default and will
report API errors by default. For more information, see Command Line Options.

CUDA-MEMCHECK DU-05355-001_v11.5 | 50

Appendix D. Known Issues

The following are known issues with the current release.

‣ Applications run much slower under CUDA-MEMCHECK tools. This may cause some
kernel launches to fail with a launch timeout error when running with CUDA-MEMCHECK
enabled.

‣ When running CUDA-MEMCHECK tools in integrated mode with CUDA-GDB, only the
memcheck tool is enabled. Also, the following features are disabled:

‣ Nonblocking launches

‣ Leak checking

‣ API error checking

‣ CUDA-MEMCHECK tools do not support CUDA/Direct3D interop.

‣ CUDA-MEMCHECK tools do not fully support CUDA concurrent streams. Applications
relying on kernels running concurrently in different streams may hang.

‣ The memcheck tool does not support CUDA API error checking for API calls made on the
GPU using dynamic parallelism.

‣ The racecheck, synccheck and initcheck tools do not support CUDA dynamic parallelism.

‣ CUDA-MEMCHECK tools do not support OptiX.

‣ In cases where a CUDA application spawns child processes that in turn use CUDA, CUDA-
MEMCHECK tools may not report errors from the child processes.

‣ Tools in the CUDA-MEMCHECK suite cannot interoperate with the following applications:

‣ Nvidia legacy command line profiler (CUDA_PROFILE/COMPUTE_PROFILE)

‣ nvprof

‣ Nvidia Visual Profiler

‣ Nvidia Nsight Visual Studio Edition

If such tools are detected, CUDA-MEMCHECK will terminate with an internal error that
initialization failed. Please make sure that the tools listed above are not running. In case
the message persists, make sure the following environment variables are not set :

Known Issues

CUDA-MEMCHECK DU-05355-001_v11.5 | 51

‣ COMPUTE_PROFILE

‣ CUDA_PROFILE

‣ CUDA_INJECTION32_DLL

‣ CUDA_INJECTION64_DLL

‣ CUDA_INJECTION32_PATH

‣ CUDA_INJECTION64_PATH

‣ On SM 7.0 and above, the racecheck tool does not fully support warp synchronization
instructions with a partial thread mask. If such an instruction is encountered, it is
handled as if the mask would have been full (i.e. 0xffffffff). As a result, checking can be too
conservative at times and some potential intra-warp hazards will not be detected.

‣ The memcheck tool terminates threads which are caught performing double free. On SM
7.0 and above, this might also cause other threads in the same block to exit when a double
free is detected.

‣ On Windows platforms, device call stack backtraces only report the current frame for
GPUs with SM versions 7.0 and above in WDDM mode. All frames are shown if the device is
put in TCC mode.

‣ CUDA-MEMCHECK tools do not support CUDA AsyncCopy and CUDA AWBarrier features.

‣ CUDA-MEMCHECK tools do not fully support CUDA graphs, which can result in kernel
launches failures. For such cases, the compute-sanitizer tool should be used as a
replacement for CUDA-MEMCHECK.

‣ CUDA-MEMCHECK tools may not report errors or report false positives when the
application is using CUBLAS. For such cases, the compute-sanitizer tool should be used
as a replacement for CUDA-MEMCHECK.

‣ CUDA-MEMCHECK tools can fail to initialize when using CUDA libraries. For such cases,
the compute-sanitizer tool should be used as a replacement for CUDA-MEMCHECK.

‣ CUDA-MEMCHECK tools are not supported when Windows Hardware-accelerated GPU
scheduling is enabled. For such cases the compute-sanitizer tool should be used as a
replacement for CUDA-MEMCHECK.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Tables
	Introduction
	1.1. About CUDA-MEMCHECK
	1.2. Why CUDA-MEMCHECK?
	1.3. How to Get CUDA-MEMCHECK
	1.4. CUDA-MEMCHECK tools

	Using CUDA-MEMCHECK
	2.1. Command Line Options
	2.2. Supported Operating Systems
	2.3. Supported Devices
	2.4. Compilation Options
	2.5. Environment variables

	Memcheck Tool
	3.1. What is Memcheck?
	3.2. Supported Error Detection
	3.3. Using Memcheck
	3.4. Understanding Memcheck Errors
	3.5. Integrated Mode
	3.6. CUDA API Error Checking
	3.7. Device Side Allocation Checking
	3.8. Leak Checking

	Racecheck Tool
	4.1. What is Racecheck ?
	4.2. What are Hazards?
	4.3. Using Racecheck
	4.4. Racecheck report modes
	4.5. Understanding Racecheck Analysis Reports
	4.6. Understanding Racecheck Hazard Reports
	4.7. Racecheck Severity Levels

	Initcheck Tool
	5.1. What is Initcheck?
	5.2. Using Initcheck

	Synccheck Tool
	6.1. What is Synccheck ?
	6.2. Using Synccheck
	6.3. Understanding Synccheck Reports

	CUDA-MEMCHECK Features
	7.1. Nonblocking Mode
	7.2. Stack Backtraces
	7.3. Name Demangling
	7.4. Dynamic Parallelism
	7.5. Error Actions
	7.6. Escape Sequences
	7.7. Specifying Filters

	Operating System Specific Behavior
	8.1. Windows Specific Behavior
	8.2. Android Specific Behavior
	8.3. QNX Specific Behavior

	CUDA Fortran Support
	9.1. CUDA Fortran Specific Behavior

	CUDA-MEMCHECK Tool Examples
	10.1. Example Use of Memcheck
	10.1.1. memcheck_demo Output
	10.1.2. memcheck_demo Output with Memcheck (Release Build)
	10.1.3. memcheck_demo Output with Memcheck (Debug Build)
	10.1.4. Leak Checking in CUDA-MEMCHECK

	10.2. Integrated CUDA-MEMCHECK Example
	10.3. Example Use of Racecheck
	10.3.1. Block-level Hazards
	10.3.2. Warp-level Hazards

	10.4. Example Use of Initcheck
	10.4.1. Memset Error

	10.5. Example Use of Synccheck
	10.5.1. Divergent Threads
	10.5.2. Illegal Syncwarp

	Memory Access Error Reporting
	Hardware Exception Reporting
	Release Notes
	C.1. New Features in 11.0
	C.2. New Features in 10.2
	C.3. New Features in 10.1
	C.4. New Features in 10.0
	C.5. New Features in 9.1
	C.6. New Features in 9.0
	C.7. New Features in 8.0
	C.8. New Features in 7.0
	C.9. New Features in 6.5
	C.10. New Features in 6.0
	C.11. New Features in 5.5
	C.12. New Features in 5.0

	Known Issues

