
RN-06722-001_v11.5 | April 2022

NVIDIA CUDA Toolkit

Release Notes for CUDA 11.5.1

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | ii

Table of Contents

Chapter 1. CUDA 11.5 Release Notes..1
1.1. CUDA Toolkit Major Component Versions...1

1.2. General CUDA... 4

1.3. CUDA Compilers... 5

1.4. Resolved Issues...5

1.4.1. CUDA Compilers...5

1.5. Deprecated Features.. 6

1.6. Known Issues.. 6

1.6.1. General CUDA...6

Chapter 2. CUDA Libraries...7
2.1. cuBLAS Library... 7

2.1.1. cuBLAS: Release 11.4 Update 3..7

2.1.2. cuBLAS: Release 11.4 Update 2..7

2.1.3. cuBLAS: Release 11.4.. 8

2.1.4. cuBLAS: Release 11.3 Update 1..8

2.1.5. cuBLAS: Release 11.3.. 9

2.1.6. cuBLAS: Release 11.2.. 9

2.1.7. cuBLAS: Release 11.1 Update 1..9

2.1.8. cuBLAS: Release 11.1.. 10

2.1.9. cuBLAS: Release 11.0 Update 1..10

2.1.10. cuBLAS: Release 11.0.. 12

2.1.11. cuBLAS: Release 11.0 RC.. 12

2.2. cuFFT Library.. 13

2.2.1. cuFFT: Release 11.5...13

2.2.2. cuFFT: Release 11.4 Update 2...13

2.2.3. cuFFT: Release 11.4 Update 1...14

2.2.4. cuFFT: Release 11.4...14

2.2.5. cuFFT: Release 11.3...14

2.2.6. cuFFT: Release 11.2 Update 2...15

2.2.7. cuFFT: Release 11.2 Update 1...15

2.2.8. cuFFT: Release 11.2...15

2.2.9. cuFFT: Release 11.1...16

2.2.10. cuFFT: Release 11.0 RC...16

2.3. cuRAND Library.. 17

2.3.1. cuRAND: Release 11.5 Update 1...17

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | iii

2.3.2. cuRAND: Release 11.3... 17

2.3.3. cuRAND: Release 11.0 Update 1...18

2.3.4. cuRAND: Release 11.0... 18

2.3.5. cuRAND: Release 11.0 RC... 18

2.4. cuSOLVER Library... 18

2.4.1. cuSOLVER: Release 11.4..18

2.4.2. cuSOLVER: Release 11.3..19

2.4.3. cuSOLVER: Release 11.2 Update 2... 19

2.4.4. cuSOLVER: Release 11.2..19

2.4.5. cuSOLVER: Release 11.1 Update 1... 19

2.4.6. cuSOLVER: Release 11.1..20

2.4.7. cuSOLVER: Release 11.0..21

2.5. cuSPARSE Library...21

2.5.1. cuSPARSE: Release 11.5 Update 1... 21

2.5.2. cuSPARSE: Release 11.4 Update 1... 22

2.5.3. cuSPARSE: Release 11.4... 22

2.5.4. cuSPARSE: Release 11.3 Update 1... 22

2.5.5. cuSPARSE: Release 11.3... 23

2.5.6. cuSPARSE: Release 11.2 Update 2... 23

2.5.7. cuSPARSE: Release 11.2 Update 1... 24

2.5.8. cuSPARSE: Release 11.2... 25

2.5.9. cuSPARSE: Release 11.1 Update 1... 25

2.5.10. cuSPARSE: Release 11.0... 25

2.5.11. cuSPARSE: Release 11.0 RC... 26

2.6. Math Library.. 27

2.6.1. CUDA Math: Release 11.5..27

2.6.2. CUDA Math: Release 11.4..28

2.6.3. CUDA Math: Release 11.3..28

2.6.4. CUDA Math: Release 11.1..29

2.6.5. CUDA Math: Release 11.0 Update 1..29

2.6.6. CUDA Math: Release 11.0 RC..29

2.7. NVIDIA Performance Primitives (NPP).. 29

2.7.1. NPP: Release 11.5..29

2.7.2. NPP: Release 11.4..30

2.7.3. NPP: Release 11.3..30

2.7.4. NPP: Release 11.2 Update 2... 30

2.7.5. NPP: Release 11.2 Update 1... 30

2.7.6. NPP: Release 11.0..31

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | iv

2.7.7. NPP: Release 11.0 RC... 31

2.8. nvJPEG Library..32

2.8.1. nvJPEG: Release 11.5 Update 1.. 32

2.8.2. nvJPEG: Release 11.4.. 32

2.8.3. nvJPEG: Release 11.2 Update 1.. 32

2.8.4. nvJPEG: Release 11.1 Update 1.. 32

2.8.5. nvJPEG: Release 11.0 Update 1.. 32

2.8.6. nvJPEG: Release 11.0.. 32

2.8.7. nvJPEG: Release 11.0 RC.. 33

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | v

List of Tables

Table 1. CUDA 11.5 Component Versions ... 1

Table 2. CUDA Toolkit and Minimum Required Driver Version for CUDA Minor Version
Compatibility... 3

Table 3. CUDA Toolkit and Corresponding Driver Versions ...3

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | vi

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 1

Chapter 1. CUDA 11.5 Release Notes

The release notes for the NVIDIA® CUDA® Toolkit can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.

Note: The release notes have been reorganized into two major sections: the general CUDA
release notes, and the CUDA libraries release notes including historical information for 11.x
releases.

1.1. CUDA Toolkit Major Component
Versions

CUDA Components

Starting with CUDA 11, the various components in the toolkit are versioned independently.

For CUDA 11.5, the table below indicates the versions:

Table 1. CUDA 11.5 Component Versions

Component Name Version Information Supported Architectures
CUDA Runtime (cudart) 11.5.117 x86_64, POWER, Arm64

cuobjdump 11.5.119 x86_64, POWER, Arm64

CUPTI 11.5.114 x86_64, POWER, Arm64

CUDA cuxxfilt (demangler) 11.5.119 x86_64, POWER, Arm64

CUDA Demo Suite 11.5.50 x86_64

CUDA GDB 11.5.114 x86_64, POWER, Arm64

CUDA Memcheck 11.5.114 x86_64, POWER

CUDA Nsight 11.5.114 x86_64, POWER

CUDA NVCC 11.5.119 x86_64, POWER, Arm64

CUDA nvdisasm 11.5.119 x86_64, POWER, Arm64

CUDA NVML Headers 11.5.50 x86_64, POWER, Arm64

CUDA nvprof 11.5.114 x86_64, POWER, Arm64

CUDA nvprune 11.5.119 x86_64, POWER, Arm64

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

CUDA 11.5 Release Notes

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 2

Component Name Version Information Supported Architectures
CUDA NVRTC 11.5.119 x86_64, POWER, Arm64

CUDA NVTX 11.5.114 x86_64, POWER, Arm64

CUDA NVVP 11.5.114 x86_64, POWER

CUDA Samples 11.5.56 x86_64, POWER, Arm64

CUDA Compute Sanitizer API 11.5.114 x86_64, POWER, Arm64

CUDA Thrust 11.5.62 x86_64, POWER, Arm64

CUDA cuBLAS 11.7.4.6 x86_64, POWER, Arm64

CUDA cuFFT 10.6.0.107 x86_64, POWER, Arm64

CUDA cuFile 1.1.1.25 x86_64

CUDA cuRAND 10.2.7.107 x86_64, POWER, Arm64

CUDA cuSOLVER 11.3.2.107 x86_64, POWER, Arm64

CUDA cuSPARSE 11.7.0.107 x86_64, POWER, Arm64

CUDA NPP 11.5.1.107 x86_64, POWER, Arm64

CUDA nvJPEG 11.5.4.107 x86_64, POWER, Arm64

Nsight Compute 2021.3.1.4 x86_64, POWER, Arm64 (CLI
only)

NVTX 1.21018621 x86_64, POWER, Arm64

Nsight Systems 2021.3.3.2 x86_64, POWER, Arm64 (CLI
only)

Nsight Visual Studio Edition
(VSE)

2021.3.1.21308 x86_64 (Windows)

nvidia_fs1 2.9.5 x86_64

Visual Studio Integration 11.5.114 x86_64 (Windows)

NVIDIA Linux Driver 495.29.05 x86_64, POWER, Arm64

NVIDIA Windows Driver 496.13 x86_64 (Windows)

CUDA Driver

Running a CUDA application requires the system with at least one CUDA capable GPU
and a driver that is compatible with the CUDA Toolkit. See Table 3. For more information
various GPU products that are CUDA capable, visit https://developer.nvidia.com/cuda-gpus.

Each release of the CUDA Toolkit requires a minimum version of the CUDA driver. The
CUDA driver is backward compatible, meaning that applications compiled against a
particular version of the CUDA will continue to work on subsequent (later) driver releases.

More information on compatibility can be found at https://docs.nvidia.com/cuda/cuda-c-
best-practices-guide/index.html#cuda-compatibility-and-upgrades.

Note: Starting with CUDA 11.0, the toolkit components are individually versioned, and the
toolkit itself is versioned as shown in the table below.

1 Only available on select Linux distros

https://developer.nvidia.com/cuda-gpus
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#cuda-compatibility-and-upgrades

CUDA 11.5 Release Notes

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 3

The minimum required driver version for CUDA minor version compatibility is shown below.
CUDA minor version compatibility is described in detail in https://docs.nvidia.com/deploy/
cuda-compatibility/index.html

Table 2. CUDA Toolkit and Minimum Required Driver Version for
CUDA Minor Version Compatibility

Minimum Required Driver Version for
CUDA Minor Version Compatibility*

CUDA Toolkit Linux x86_64 Driver Version
Windows x86_64

Driver Version
CUDA 11.5.x >=450.80.02 >=452.39

CUDA 11.4.x >=450.80.02 >=452.39

CUDA 11.3.x >=450.80.02 >=452.39

CUDA 11.2.x >=450.80.02 >=452.39

CUDA 11.1 (11.1.0) >=450.80.02 >=452.39

CUDA 11.0 (11.0.3) >=450.36.06** >=451.22**

* Using a Minimum Required Version that is different from Toolkit Driver Version could be
allowed in compatibility mode -- please read the CUDA Compatibility Guide for details.

** CUDA 11.0 was released with an earlier driver version, but by upgrading to drivers
450.80.02 (Linux) / 452.39 (Windows), minor version compatibility is possible across the
CUDA 11.x family of toolkits.

The version of the development NVIDIA GPU Driver packaged in each CUDA Toolkit release
is shown below.

Table 3. CUDA Toolkit and Corresponding Driver Versions

Toolkit Driver Version

CUDA Toolkit Linux x86_64 Driver Version
Windows x86_64

Driver Version
CUDA 11.5 Update 1 >=495.29.05 >=496.13

CUDA 11.5 GA >=495.29.05 >=496.04

CUDA 11.4 Update 3 >=470.82.01 >=472.50

CUDA 11.4 Update 2 >=470.57.02 >=471.41

CUDA 11.4 Update 1 >=470.57.02 >=471.41

CUDA 11.4.0 GA >=470.42.01 >=471.11

CUDA 11.3.1 Update 1 >=465.19.01 >=465.89

CUDA 11.3.0 GA >=465.19.01 >=465.89

CUDA 11.2.2 Update 2 >=460.32.03 >=461.33

CUDA 11.2.1 Update 1 >=460.32.03 >=461.09

https://docs.nvidia.com/deploy/cuda-compatibility/index.html
https://docs.nvidia.com/deploy/cuda-compatibility/index.html

CUDA 11.5 Release Notes

RN-06722-001 _v11.5 | 4

Toolkit Driver Version

CUDA Toolkit Linux x86_64 Driver Version
Windows x86_64

Driver Version
CUDA 11.2.0 GA >=460.27.03 >=460.82

CUDA 11.1.1 Update 1 >=455.32 >=456.81

CUDA 11.1 GA >=455.23 >=456.43

CUDA 11.0.3 Update 1 >= 450.51.06 >= 451.82

CUDA 11.0.2 GA >= 450.51.05 >= 451.48

CUDA 11.0.1 RC >= 450.36.06 >= 451.22

CUDA 10.2.89 >= 440.33 >= 441.22

CUDA 10.1 (10.1.105 general
release, and updates)

>= 418.39 >= 418.96

CUDA 10.0.130 >= 410.48 >= 411.31

CUDA 9.2 (9.2.148 Update 1) >= 396.37 >= 398.26

CUDA 9.2 (9.2.88) >= 396.26 >= 397.44

CUDA 9.1 (9.1.85) >= 390.46 >= 391.29

CUDA 9.0 (9.0.76) >= 384.81 >= 385.54

CUDA 8.0 (8.0.61 GA2) >= 375.26 >= 376.51

CUDA 8.0 (8.0.44) >= 367.48 >= 369.30

CUDA 7.5 (7.5.16) >= 352.31 >= 353.66

CUDA 7.0 (7.0.28) >= 346.46 >= 347.62

For convenience, the NVIDIA driver is installed as part of the CUDA Toolkit installation.
Note that this driver is for development purposes and is not recommended for use in
production with Tesla GPUs.

For running CUDA applications in production with Tesla GPUs, it is recommended to
download the latest driver for Tesla GPUs from the NVIDIA driver downloads site at http://
www.nvidia.com/drivers.

During the installation of the CUDA Toolkit, the installation of the NVIDIA driver may be
skipped on Windows (when using the interactive or silent installation) or on Linux (by using
meta packages).

For more information on customizing the install process on Windows, see http://
docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-
software.

For meta packages on Linux, see https://docs.nvidia.com/cuda/cuda-installation-guide-
linux/index.html#package-manager-metas

1.2. General CUDA
11.5

NVIDIA CUDA Toolkit 11.5.1

http://www.nvidia.com/drivers
http://www.nvidia.com/drivers
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
http://docs.nvidia.com/cuda/cuda-installation-guide-microsoft-windows/index.html#install-cuda-software
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas
https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#package-manager-metas

CUDA 11.5 Release Notes

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 5

‣ Device-side caching behavior is now configurable with annotated pointers.

‣ Prefix sums (scans) for cooperative groups: Added four new functions for inclusive and
exclusive scans.

‣ Support for NvSciBufGeneralAttrKey_EnableGpuCompression in CUDA will be available
in r470TRD2.

‣ Preview release of a new data type, __int128, usable with compatible host compilers. As
it is a preview, there is no broad support for math operations, library support, dev tools,
and so on.

‣ Added native support for signed and unsigned normalized 8- and 16-bit types.

‣ Improved interoperability with graphics frameworks: Added support for normalized integer
and block-compressed data types.

‣ For multi-process sharing of GPUs, CUDA now supports per-process memory access
policies.

‣ Linking is supported with cubins larger than 2 GB.

‣ GSP-RM is enabled as opt-in for Turing+ Tesla GPUs.

‣ GA release of CUDA Python.

1.3. CUDA Compilers
11.5

‣ CUDA now provides a static version of the NVRTC library.

‣ builtin_assume can now be used to specify address space to allow for efficient loads and
stores.

‣ Added support for numerous pragmas that offer more control over diagnostic messages.

‣ To generate code for multiple architectures at the same time, use the -arch=all or -
arch=all-major options.

‣ Deterministic code generation: compiled bits will not change between nvcc invocations
without semantic source code changes.

1.4. Resolved Issues

1.4.1. CUDA Compilers
11.5. Update 1

‣ When using the --fmad=false compiler option, even the explicitly requested fused
multiply-add instructions were decomposed into separate multiply and add, leading to loss

https://github.com/NVIDIA/cuda-python

CUDA 11.5 Release Notes

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 6

of algorithm semantics intended by the programmer. One of the consequences was that
CUDA Math APIs could not be trusted to deliver correct results; worst case errors became
unbounded. This issue was introduced in 11.5, and is now resolved.

‣ Fixed a compiler optimization bug that may move memory access instructions across
memory barriers that may lead to incorrect runtime results with certain synchronization
dependencies.

‣ An issue in the PTX optimizer sometimes produced incorrect results. This issue is
resolved.

11.5

‣ Linking with cubins larger than 2 GB is now supported.

‣ Certain C++17 features that were backported to C++14 in MSVC are now supported.

‣ An issue with the use of lambda function when an object is passed-by-value is resolved.
https://github.com/Ahdhn/nvcc_bug_maybe

1.5. Deprecated Features
The following features are deprecated in the current release of the CUDA software. The
features still work in the current release, but their documentation may have been removed,
and they will become officially unsupported in a future release. We recommend that
developers employ alternative solutions to these features in their software.
General CUDA

‣ NVIDIA Driver support for Kepler is removed beginning with R495. CUDA Toolkit
development support for Kepler continues through CUDA 11.x.

1.6. Known Issues

1.6.1. General CUDA
‣ Intermittent crashes were seen when CUDA binaries were running on a system with a

GLIBC version older than 2.17-106.el7_2.1. This is due to a known bug in older versions
of GLIBC (Bug reference: https://bugzilla.redhat.com/show_bug.cgi?id=1293976) and has
been fixed in later versions (>= glibc-2.17-107.el7).

https://github.com/Ahdhn/nvcc_bug_maybe
https://bugzilla.redhat.com/show_bug.cgi?id=1293976

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 7

Chapter 2. CUDA Libraries

This section covers CUDA Libraries release notes for 11.x releases.

‣ CUDA Math Libraries toolchain uses C++11 features, and a C++11-compatible standard
library (libstdc++ >= 20150422) is required on the host.

‣ CUDA Math libraries are no longer shipped for SM30 and SM32.

‣ Support for the following compute capabilities are deprecated for all libraries:

‣ sm_35 (Kepler)

‣ sm_37 (Kepler)

2.1. cuBLAS Library

2.1.1. cuBLAS: Release 11.4 Update 3
‣ Resolved Issues

‣ Some cublas and cublasLt functions sometimes returned
CUBLAS_STATUS_EXECUTION_FAILED if the dynamic library was loaded and unloaded
several times during application lifetime within the same CUDA context. This issue has
been resolved.

2.1.2. cuBLAS: Release 11.4 Update 2
‣ New Features

‣ Vector (and batched) alpha support for per-row scaling in TN int32 math Matmul with
int8 output. See CUBLASLT_POINTER_MODE_ALPHA_DEVICE_VECTOR_BETA_HOST and
CUBLASLT_MATMUL_DESC_ALPHA_VECTOR_BATCH_STRIDE.

‣ New epilogue options have been added to support fusion in DLtraining:
CUBLASLT_EPILOGUE_BGRADA and CUBLASLT_EPILOGUE_BGRADB which compute bias
gradients based on matrices A and B respectively.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 8

‣ New auxiliary functions cublasGetStatusName(), cublasGetStatusString() have
been added to cuBLAS that return the string representation and the description of the
cuBLAS status (cublasStatus_t) respectively. Similarly, cublasLtGetStatusName(),
cublasLtGetStatusString() have been added to cuBlasLt.

‣ Known Issues

‣ cublasGemmBatchedEx() and cublas<t>gemmBatched() check the alignment of the
input/output arrays of the pointers like they were the pointers to the actual matrices.
These checks are irrelevant and will be disabled in future releases. This mostly affects
half-precision inputGEMMs which might require 16-byte alignment, and array of
pointers could only be aligned by 8-byte boundary.

‣ Resolved Issues

‣ cublasLtMatrixTransform can now operate on matrices with dimensions greater than
65535.

‣ Fixed out-of-bound access in GEMM and Matmul functions, when split K or non-default
epilogue is used and leading dimension of the output matrix exceeds int32_t limit.

‣ NVBLAS now uses lazy loading of the CPU BLAS library on Linux to avoid issues
caused by preloading libnvblas.so in complex applications that use fork and
similar APIs.

‣ Resolved symbols name conflict when using cuBlasLt static library with static
TensorRT or cuDNN libraries.

2.1.3. cuBLAS: Release 11.4
‣ Resolved Issues

‣ Some gemv cases were producing incorrect results if the matrix dimension (n or m)
was large, for example 2^20.

2.1.4. cuBLAS: Release 11.3 Update 1
‣ New Features

‣ Some new kernels have been added for improved performance but have the limitation
that only host pointers are supported for scalars (for example, alpha and beta
parameters). This limitation is expected to be resolved in a future release.

‣ New epilogues have been added to support fusion in ML training. These include:

‣ ReLuBias and GeluBias epilogues that produce an auxiliary output which is used on
backward propagation to compute the corresponding gradients.

‣ DReLuBGrad and DGeluBGrad epilogues that compute the backpropagation of
the corresponding activation function on matrix C, and produce bias gradient as a
separate output. These epilogues require auxiliary input mentioned in the bullet
above.

‣ Resolved Issues

https://docs.nvidia.com/cuda/cublas/index.html#cublas-GemmBatchedEx
https://docs.nvidia.com/cuda/cublas/index.html#cublas-lt-t-gt-gemmbatched

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 9

‣ Some tensor core accelerated strided batched GEMM routines would result in
misaligned memory access exceptions when batch stride wasn't a multiple of 8.

‣ Tensor core accelerated cublasGemmBatchedEx (pointer-array) routines would use
slower variants of kernels assuming bad alignment of the pointers in the pointer array.
Now it assumes that pointers are well aligned, as noted in the documentation.

‣ Known Issues

‣ To be able to access the fastest possible kernels through
cublasLtMatmulAlgoGetHeuristic() you need to set
CUBLASLT_MATMUL_PREF_POINTER_MODE_MASK in search
preferences to CUBLASLT_POINTER_MODE_MASK_HOST or
CUBLASLT_POINTER_MODE_MASK_NO_FILTERING. By default, heuristics query
assumes the pointer mode may change later and only returns algo configurations that
support both _HOST and _DEVICE modes. Without this, newly added kernels will be
excluded and it will likely lead to a performance penalty on some problem sizes.

‣ Deprecated Features

‣ Linking with static cublas and cublasLt libraries on Linux now requires using gcc-5.2
and compatible or higher due to C++11 requirements in these libraries.

2.1.5. cuBLAS: Release 11.3
‣ Known Issues

‣ The planar complex matrix descriptor for batched matmul has inconsistent
interpretation of batch offset.

‣ Mixed precision operations with reduction scheme
CUBLASLT_REDUCTION_SCHEME_OUTPUT_TYPE (might be automatically selected
based on problem size by cublasSgemmEx() or cublasGemmEx() too, unless
CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION math mode bit is
set) not only stores intermediate results in output type but also accumulates
them internally in the same precision, which may result in lower than expected
accuracy. Please use CUBLASLT_MATMUL_PREF_REDUCTION_SCHEME_MASK or
CUBLAS_MATH_DISALLOW_REDUCED_PRECISION_REDUCTION if this results in
numerical precision issues in your application.

2.1.6. cuBLAS: Release 11.2
‣ Known Issues

‣ cublas<s/d/c/z>Gemm() with very large n and m=k=1 may fail on Pascal devices.

2.1.7. cuBLAS: Release 11.1 Update 1
‣ New Features

‣ cuBLASLt Logging is officially stable and no longer experimental. cuBLASLt Logging
APIs are still experimental and may change in future releases.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 10

‣ Resolved Issues

‣ cublasLt Matmul fails on Volta architecture GPUs with
CUBLAS_STATUS_EXECUTION_FAILED when n dimension > 262,137 and epilogue
bias feature is being used. This issue exists in 11.0 and 11.1 releases but has been
corrected in 11.1 Update 1

2.1.8. cuBLAS: Release 11.1
‣ Resolved Issues

‣ A performance regression in the cublasCgetrfBatched and cublasCgetriBatched
routines has been fixed.

‣ The IMMA kernels do not support padding in matrix C and may corrupt
the data when matrix C with padding is supplied to cublasLtMatmul. A
suggested work around is to supply matrix C with leading dimension equal to
32 times the number of rows when targeting the IMMA kernels: computeType
= CUDA_R_32I and CUBLASLT_ORDER_COL32 for matrices A,C,D, and
CUBLASLT_ORDER_COL4_4R2_8C (on NVIDIA Ampere GPU architecture or Turing
architecture) or CUBLASLT_ORDER_COL32_2R_4R4 (on NVIDIA Ampere GPU
architecture) for matrix B. Matmul descriptor must specify CUBLAS_OP_T on matrix B
and CUBLAS_OP_N (default) on matrix A and C. The data corruption behavior was fixed
so that CUBLAS_STATUS_NOT_SUPPORTED is returned instead.

‣ Fixed an issue that caused an Address out of bounds error when calling
cublasSgemm().

‣ A performance regression in the cublasCgetrfBatched and cublasCgetriBatched
routines has been fixed.

2.1.9. cuBLAS: Release 11.0 Update 1
‣ New Features

‣ The cuBLAS API was extended with a new function, cublasSetWorkspace(), which
allows the user to set the cuBLAS library workspace to a user-owned device buffer,
which will be used by cuBLAS to execute all subsequent calls to the library on the
currently set stream.

‣ cuBLASLt experimental logging mechanism can be enabled in two ways:

‣ By setting the following environment variables before launching the target
application:

‣ CUBLASLT_LOG_LEVEL=<level> -- where level is one of the following levels:

‣ "0" - Off - logging is disabled (default)

‣ "1" - Error - only errors will be logged

‣ "2" - Trace - API calls that launch CUDA kernels will log their parameters
and important information

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 11

‣ "3" - Hints - hints that can potentially improve the application's
performance

‣ "4" - Heuristics - heuristics log that may help users to tune their
parameters

‣ "5" - API Trace - API calls will log their parameter and important
information

‣ CUBLASLT_LOG_MASK=<mask> -- where mask is a combination of the following
masks:

‣ "0" - Off

‣ "1" - Error

‣ "2" - Trace

‣ "4" - Hints

‣ "8" - Heuristics

‣ "16" - API Trace

‣ CUBLASLT_LOG_FILE=<value> -- where value is a file name in the format of
"<file_name>.%i", %i will be replaced with process id.If CUBLASLT_LOG_FILE
is not defined, the log messages are printed to stdout.

‣ By using the runtime API functions defined in the cublasLt header:

‣ typedef void(*cublasLtLoggerCallback_t)(int logLevel, const
char* functionName, const char* message) -- A type of callback function
pointer.

‣ cublasStatus_t
cublasLtLoggerSetCallback(cublasLtLoggerCallback_t callback) --
Allows to set a call back functions that will be called for every message that is
logged by the library.

‣ cublasStatus_t cublasLtLoggerSetFile(FILE* file) -- Allows to set the
output file for the logger. The file must be open and have write permissions.

‣ cublasStatus_t cublasLtLoggerOpenFile(const char* logFile) --
Allows to give a path in which the logger should create the log file.

‣ cublasStatus_t cublasLtLoggerSetLevel(int level) -- Allows to set the
log level to one of the above mentioned levels.

‣ cublasStatus_t cublasLtLoggerSetMask(int mask) -- Allows to set the
log mask to a combination of the above mentioned masks.

‣ cublasStatus_t cublasLtLoggerForceDisable() -- Allows to disable to
logger for the entire session. Once this API is being called, the logger cannot be
reactivated in the current session.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 12

2.1.10. cuBLAS: Release 11.0
‣ New Features

‣ cuBLASLt Matrix Multiplication adds support for fused ReLU and bias operations for all
floating point types except double precision (FP64).

‣ Improved batched TRSM performance for matrices larger than 256.

2.1.11. cuBLAS: Release 11.0 RC
‣ New Features

‣ Many performance improvements have been implemented for NVIDIA Ampere, Volta,
and Turing Architecture based GPUs.

‣ The cuBLASLt logging mechanism can be enabled by setting the following environment
variables before launching the target application:

‣ CUBLASLT_LOG_LEVEL=<level> - while level is one of the following levels:

‣ "0" - Off - logging is disabled (default)

‣ "1" - Error - only errors will be logged

‣ "2" - Trace - API calls will be logged with their parameters and important
information

‣ CUBLASLT_LOG_FILE=<value> - while value is a file name in the format of
"<file_name>.%i", %i will be replaced with process id. If CUBLASLT_LOG_FILE is
not defined, the log messages are printed to stdout.

‣ For matrix multiplication APIs:

‣ cublasGemmEx, cublasGemmBatchedEx, cublasGemmStridedBatchedEx
and cublasLtMatmul added new data type support for __nv_bfloat16
(CUDA_R_16BF).

‣ A new compute type TensorFloat32 (TF32) has been added to provide tensor core
acceleration for FP32 matrix multiplication routines with full dynamic range and
increased precision compared to BFLOAT16.

‣ New compute modes Default, Pedantic, and Fast have been introduced to offer
more control over compute precision used.

‣ Tensor cores are now enabled by default for half-, and mixed-precision- matrix
multiplications.

‣ Double precision tensor cores (DMMA) are used automatically.

‣ Tensor cores can now be used for all sizes and data alignments and for all GPU
architectures:

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 13

‣ Selection of these kernels through cuBLAS heuristics is automatic and will
depend on factors such as math mode setting as well as whether it will run
faster than the non-tensor core kernels.

‣ Users should note that while these new kernels that use tensor cores for all
unaligned cases are expected to perform faster than non-tensor core based
kernels but slower than kernels that can be run when all buffers are well
aligned.

‣ Deprecated Features

‣ Algorithm selection in cublasGemmEx APIs (including batched variants) is non-
functional for NVIDIA Ampere Architecture GPUs. Regardless of selection it will default
to a heuristics selection. Users are encouraged to use the cublasLt APIs for algorithm
selection functionality.

‣ The matrix multiply math mode CUBLAS_TENSOR_OP_MATH is being deprecated
and will be removed in a future release. Users are encouraged to use the new
cublasComputeType_t enumeration to define compute precision.

2.2. cuFFT Library

2.2.1. cuFFT: Release 11.5
‣ Known Issues

‣ FFTs of certain sizes in single and double precision (multiples of size 6) could fail on
future devices. This issue will be fixed in an upcoming release.

2.2.2. cuFFT: Release 11.4 Update 2
‣ Resolved Issues

‣ Since cuFFT 10.3.0 (CUDA Toolkit 11.1), cuFFT may require user to make sure that all
operations on input and output buffers are complete before calling cufft[Xt]Exec* if:

‣ sm70 or later, 3D FFT, batch > 1, total size of transform is greater than 4.5MB

‣ FFT size for all dimensions is in the set of the following sizes: {2, 4, 8, 16, 32, 64,
128, 3, 9, 81, 243, 729, 2187, 6561, 5, 25, 125, 625, 3125, 6, 36, 216, 1296, 7776, 7, 49,
343, 2401, 11, 121}

‣ Some V100 FFTs were slower than expected. This issue is resolved.

‣ Known Issues

‣ Some T4 FFTs are slower than expected.

‣ Plans for FFTs of certain sizes in single precision (including some multiples of 1024
sizes, and some large prime numbers) could fail on future devices with less than 64 kB
of shared memory. This issue will be fixed in an upcoming release.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 14

2.2.3. cuFFT: Release 11.4 Update 1
‣ Resolved Issues

‣ Some cuFFT multi-GPU plans exhibited very long creation times.

‣ cuFFT sometimes produced incorrect results for real-to-complex and complex-to-real
transforms when the total number of elements across all batches in a single execution
exceeded 2147483647.

‣ Known Issues

‣ Some V100 FFTs are slower than expected.

‣ Some T4 FFTs are slower than expected.

2.2.4. cuFFT: Release 11.4
‣ New Features

‣ Performance improvements.

‣ Known Issues

‣ Some T4 FFTs are slower than expected.

‣ cuFFT may produce incorrect results for real-to-complex and complex-to-real
transforms when the total number of elements across all batches in a single execution
exceeds 2147483647.

‣ Some cuFFT multi-GPU plans may exhibit very long creation time. Issue will be fixed in
the next update.

‣ cuFFT may produce incorrect results for transforms with strides when the index of the
last element across all batches exceeds 2147483647 (see Advanced Data Layout).

‣ Deprecated Features

‣ Support for callback functionality using separately compiled device code is deprecated
on all GPU architectures. Callback functionality will continue to be supported for all
GPU architectures.

2.2.5. cuFFT: Release 11.3
‣ New Features

‣ cuFFT shared libraries are now linked statically against libstdc++ on Linux platforms.

‣ Improved performance of certain sizes (multiples of large powers of 3, powers of 11) in
SM86.

‣ Known Issues

https://docs.nvidia.com/cuda/cufft/index.html#advanced-data-layout

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 15

‣ cuFFT planning and plan estimation functions may not restore correct context affecting
CUDA driver API applications.

‣ Plans with strides, primes larger than 127 in FFT size decomposition and total size of
transform including strides bigger than 32GB produce incorrect results.

2.2.6. cuFFT: Release 11.2 Update 2
‣ Known Issues

‣ cuFFT planning and plan estimation functions may not restore correct context affecting
CUDA driver API applications.

‣ Plans with strides, primes larger than 127 in FFT size decomposition and total size of
transform including strides bigger than 32GB produce incorrect results.

2.2.7. cuFFT: Release 11.2 Update 1
‣ Resolved Issues

‣ Previously, reduced performance of power-of-2 single precision FFTs was observed on
GPUs with sm_86 architecture. This issue has been resolved.

‣ Large prime factors in size decomposition and real to complex or complex to real FFT
type no longer cause cuFFT plan functions to fail.

‣ Known Issues

‣ cuFFT planning and plan estimation functions may not restore correct context affecting
CUDA driver API applications.

‣ Plans with strides, primes larger than 127 in FFT size decomposition and total size of
transform including strides bigger than 32GB produce incorrect results.

2.2.8. cuFFT: Release 11.2
‣ New Features

‣ Multi-GPU plans can be associated with a stream using the cufftSetStream API
function call.

‣ Performance improvements for R2C/C2C/C2R transforms.

‣ Performance improvements for multi-GPU systems.

‣ Resolved Issues

‣ cuFFT is no longer stuck in a bad state if previous plan creation fails with
CUFFT_ALLOC_FAILED.

‣ Previously, single dimensional multi-GPU FFT plans ignored user input on
cufftXtSetGPUswhichGPUs argument and assumed that GPUs IDs are always
numbered from 0 to N-1. This issue has been resolved.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 16

‣ Plans with primes larger than 127 in FFT size decomposition or FFT size being a prime
number bigger than 4093 do not perform calculations on second and subsequent
cufftExecute* calls. The regression was introduced in cuFFT 11.1.

‣ Known Issues

‣ cuFFT planning and plan estimation functions may not restore correct context affecting
CUDA driver API applications.

2.2.9. cuFFT: Release 11.1
‣ New Features

‣ cuFFT is now L2-cache aware and uses L2 cache for GPUs with more than 4.5MB of L2
cache. Performance may improve in certain single-GPU 3D C2C FFT cases.

‣ After successfully creating a plan, cuFFT now enforces a lock on the cufftHandle.
Subsequent calls to any planning function with the same cufftHandle will fail.

‣ Added support for very large sizes (3k cube) to multi-GPU cuFFT on DGX-2.

‣ Improved performance on multi-gpu cuFFT for certain sizes (1k cube).

‣ Resolved Issues

‣ Resolved an issue that caused cuFFT to crash when reusing a handle after clearing a
callback.

‣ Fixed an error which produced incorrect results / NaN values when running a real-to-
complex FFT in half precision.

‣ Known Issues

‣ cuFFT will always overwrite the input for out-of-place C2R transform.

‣ Single dimensional multi-GPU FFT plans ignore user input on the whichGPUs
parameter of cufftXtSetGPUs() and assume that GPUs IDs are always numbered
from 0 to N-1.

2.2.10. cuFFT: Release 11.0 RC
‣ New Features

‣ cuFFT now accepts __nv_bfloat16 input and output data type for power-of-two sizes
with single precision computations within the kernels.

‣ Reoptimized power of 2 FFT kernels on Volta and Turing architectures.

‣ Resolved Issues

‣ Reduced R2C/C2R plan memory usage to previous levels.

‣ Resolved bug introduced in 10.1 update 1 that caused incorrect results when using
custom strides, batched 2D plans and certain sizes on Volta and later.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 17

‣ Known Issues

‣ cuFFT modifies C2R input buffer for some non-strided FFT plans.

‣ There is a known issue with certain cuFFT plans that causes an assertion in the
execution phase of certain plans. This applies to plans with all of the following
characteristics: real input to complex output (R2C), in-place, native compatibility mode,
certain even transform sizes, and more than one batch.

2.3. cuRAND Library

2.3.1. cuRAND: Release 11.5 Update 1
‣ New Features

‣ Improved performance of CURAND_RNG_PSEUDO_MRG32K3A pseudorandom
number generator when using ordering CURAND_ORDERING_PSEUDO_BEST or
CURAND_ORDERING_PSEUDO_DEFAULT.

‣ Added a new type of order parameter: CURAND_ORDERING_PSEUDO_DYNAMIC.

‣ Supported PRNGs:

‣ CURAND_RNG_PSEUDO_XORWOW

‣ CURAND_RNG_PSEUDO_MRG32K3A

‣ CURAND_RNG_PSEUDO_MTGP32

‣ CURAND_RNG_PSEUDO_PHILOX4_32_10

‣ Improved performance compared to CURAND_ORDERING_PSEUDO_DEFAULT,
especially on NVIDIA Ampere architecture GPUs.

‣ The output ordering of generated random numbers for
CURAND_ORDERING_PSEUDO_DYNAMIC depends on the number of SMs on a GPU,
and thus can be different on different GPUs.

‣ The CURAND_ORDERING_PSEUDO_DYNAMIC ordering can't be used with a host
generator created using curandCreateGeneratorHost().

‣ Resolved Issues

‣ Added information about cuRAND thread safety.

‣ Known Issues

‣ CURAND_RNG_PSEUDO_XORWOW with ordering CURAND_ORDERING_PSEUDO_DYNAMIC can
produce incorrect results on architectures newer than SM86.

2.3.2. cuRAND: Release 11.3
‣ Resolved Issues

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 18

‣ Fixed inconsistency between random numbers generated by GPU and host generators
when CURAND_ORDERING_PSEUDO_LEGACY ordering is selected for certain generator
types.

2.3.3. cuRAND: Release 11.0 Update 1
‣ Resolved Issues

‣ Fixed an issue that caused linker errors about the multiple definitions of
mtgp32dc_params_fast_11213 and mtgpdc_params_11213_num when including
curand_mtgp32dc_p_11213.h in different compilation units.

2.3.4. cuRAND: Release 11.0
‣ Resolved Issues

‣ Fixed an issue that caused linker errors about the multiple definitions of
mtgp32dc_params_fast_11213 and mtgpdc_params_11213_num when including
curand_mtgp32dc_p_11213.h in different compilation units.

2.3.5. cuRAND: Release 11.0 RC
‣ Resolved Issues

‣ Introduced CURAND_ORDERING_PSEUDO_LEGACY ordering. Starting with CUDA
10.0, the ordering of random numbers returned by MTGP32 and MRG32k3a
generators are no longer the same as previous releases despite being guaranteed
by the documentation for the CURAND_ORDERING_PSEUDO_DEFAULT setting. The
CURAND_ORDERING_PSEUDO_LEGACY provides pre-CUDA 10.0 ordering for MTGP32 and
MRG32k3a generators.

‣ Starting with CUDA 11.0 CURAND_ORDERING_PSEUDO_DEFAULT is the same
as CURAND_ORDERING_PSEUDO_BEST for all generators except MT19937. Only
CURAND_ORDERING_PSEUDO_LEGACY is guaranteed to provide the same for all future
cuRAND releases.

2.4. cuSOLVER Library

2.4.1. cuSOLVER: Release 11.4
‣ New Features

‣ Introducing cusolverDnXtrtri, a new generic API for triangular matrix inversion
(trtri).

‣ Introducing cusolverDnXsytrs, a new generic API for solving systems of linear
equations using a given factorized symmetric matrix from SYTRF.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 19

2.4.2. cuSOLVER: Release 11.3
‣ Known Issues

‣ For values N<=16, cusolverDn[S|D|C|Z]syevjBatched hits out-of-bound access and
may deliver the wrong result. The workaround is to pad the matrix A with a diagonal
matrix D such that the dimension of [A 0 ; 0 D] is bigger than 16. The diagonal entry
D(j,j) must be bigger than maximum eigenvalue of A, for example, norm(A, ‘fro’).
After the syevj, W(0:n-1) contains the eigenvalues and A(0:n-1,0:n-1) contains the
eigenvectors.

2.4.3. cuSOLVER: Release 11.2 Update 2
‣ New Features

‣ New singular value decomposition (GESVDR) is added. GESVDR computes partial
spectrum with random sampling, an order of magnitude faster than GESVD.

‣ libcusolver.so no longer links libcublas_static.a; instead, it depends on
libcublas.so. This reduces the binary size of libcusolver.so. However, it breaks
backward compatibility. The user has to link libcusolver.so with the correct version
of libcublas.so.

2.4.4. cuSOLVER: Release 11.2
‣ Resolved Issues

‣ cusolverDnIRSXgels sometimes returned CUSOLVER_STATUS_INTERNAL_ERROR
when the precision is ‘z’. This issue has been fixed in CUDA 11.2; now
cusolverDnIRSXgels works for all precisions.

‣ ZSYTRF sometimes returned CUSOLVER_STATUS_INTERNAL_ERROR due to insufficient
resources to launch the kernel. This issue has been fixed in CUDA 11.2.

‣ GETRF returned early without finishing the whole factorization when the matrix was
singular. This issue has been fixed in CUDA 11.2.

2.4.5. cuSOLVER: Release 11.1 Update 1
‣ Resolved Issues

‣ cusolverDnDDgels reports IRS_NOT_SUPPORTED when m > n. The issue has been
fixed in release 11.1 U1, so cusolverDnDDgels will support m > n.

‣ cusolverMgDeviceSelect can consume over 1GB device memory. The issue has been
fixed in release 11.1 U1. The hidden memory allocation inside cusolverMG handle is
about 30 MB per device.

‣ Known Issues

‣ cusolverDnIRSXgels may return CUSOLVER_STATUS_INTERNAL_ERROR. when the
precision is ‘z’ due to insufficient workspace which causes illegal memory access.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 20

The cusolverDnIRSXgels_bufferSize() does not report the correct size of
workspace. To workaround the issue, the user has to add more workspace than what
is reported by cusolverDnIRSXgels_bufferSize(). For example, if x is the size of
workspace returned by cusolverDnIRSXgels_bufferSize(), then the user has to
allocate (x + min(m,n)*sizeof(cuDoubleComplex)) bytes.

2.4.6. cuSOLVER: Release 11.1
‣ New Features

‣ Added new 64-bit APIs:

‣ cusolverDnXpotrf_bufferSize

‣ cusolverDnXpotrf

‣ cusolverDnXpotrs

‣ cusolverDnXgeqrf_bufferSize

‣ cusolverDnXgeqrf

‣ cusolverDnXgetrf_bufferSize

‣ cusolverDnXgetrf

‣ cusolverDnXgetrs

‣ cusolverDnXsyevd_bufferSize

‣ cusolverDnXsyevd

‣ cusolverDnXsyevdx_bufferSize

‣ cusolverDnXsyevdx

‣ cusolverDnXgesvd_bufferSize

‣ cusolverDnXgesvd

‣ Added a new SVD algorithm based on polar decomposition, called GESVDP
which uses the new 64-bit API, including cusolverDnXgesvdp_bufferSize and
cusolverDnXgesvdp.

‣ Deprecated Features

The following 64-bit APIs are deprecated:

‣ cusolverDnPotrf_bufferSize

‣ cusolverDnPotrf

‣ cusolverDnPotrs

‣ cusolverDnGeqrf_bufferSize

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 21

‣ cusolverDnGeqrf

‣ cusolverDnGetrf_bufferSize

‣ cusolverDnGetrf

‣ cusolverDnGetrs

‣ cusolverDnSyevd_bufferSize

‣ cusolverDnSyevd

‣ cusolverDnSyevdx_bufferSize

‣ cusolverDnSyevdx

‣ cusolverDnGesvd_bufferSize

‣ cusolverDnGesvd

2.4.7. cuSOLVER: Release 11.0
‣ New Features

‣ Add 64-bit API of GESVD. The new routine cusolverDnGesvd_bufferSize() fills the
missing parameters in 32-bit API cusolverDn[S|D|C|Z]gesvd_bufferSize() such
that it can estimate the size of the workspace accurately.

‣ Added the single process multi-GPU Cholesky factorization capabilities POTRF, POTRS
and POTRI in cusolverMG library.

‣ Resolved Issues

‣ Fixed an issue where SYEVD/SYGVD would fail and return error code 7 if the matrix is
zero and the dimension is bigger than 25.

2.5. cuSPARSE Library

2.5.1. cuSPARSE: Release 11.5 Update 1
‣ New Features

‣ New routine cusparseSpMMOp that exploits Just-In-Time Link-Time-Optimization
(JIT LTO) for providing sparse matrix-dense matrix multiplication with custom (user-
defined) operators. See https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-
generic-function-spmm-op.

‣ cuSPARSE now supports logging functionalities. See https://docs.nvidia.com/cuda/
cusparse/index.html#cusparse-logging.

‣ Resolved Issues

https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-generic-function-spmm-op
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-generic-function-spmm-op
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging
https://docs.nvidia.com/cuda/cusparse/index.html#cusparse-logging

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 22

‣ Added memory requirements, graph capture, and asynchronous notes for
cusparseXcsrsm2_analysis.

‣ CSR, CSC, and COO format descriptions wrongly reported sorted column indices
requirement. All routines support unsorted column indices, except where strictly
indicated

‣ Clarified cusparseSpSV and cusparseSpSM memory management.

‣ cusparseSpSM produced wrong results in some cases when the
matB operation is CUSPARSE_ OPERATION_NON_TRANSPOSE or
CUSPARSE_OPERATION_CONJUGATE_TRANSPOSE.

‣ cusparseSpSM produced wrong results in some cases when the matrix layout is row-
major.

2.5.2. cuSPARSE: Release 11.4 Update 1
‣ Resolved Issues

‣ cusparseSpSV and cusparseSpSM could produce wrong results

‣ cusparseSpSV and cusparseSpSM did not work correctly when vecX == vecY or matB
== matC.

2.5.3. cuSPARSE: Release 11.4
‣ Known Issues

‣ cusparseSpSV and cusparseSpSM could produce wrong results

‣ cusparseSpSV and cusparseSpSM do not work correctly when vecX == vecY or matB ==
matC.

2.5.4. cuSPARSE: Release 11.3 Update 1
‣ New Features

‣ Introduced a new routine for sparse matrix - sparse matrix multiplication
(cusparseSpGEMMreuse) where the output matrix structure is reused for multiple
computation. The new routine supports CSR storage format and mixed-precision
computation.

‣ Sparse triangular solver adds support for COO format.

‣ Introduced a new routine for sparse triangular solver with multiple right-hand sides
cusparseSpSM().

‣ cusparseDenseToSparse() routine adds the conversion from dense matrix (row-
major/column-major) to Blocked-ELL format.

‣ Blocke-ELL format now support empty blocks

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 23

‣ Better performance for Blocked-ELL SpMM with block size > 64, double data type, and
alignments smaller than 128-byte on NVIDIA Ampere sm80.

‣ All cuSPARSE APIs are now asynchronous on platforms that support stream ordered
memory allocators https://docs.nvidia.com/cuda/cuda-c-programming-guide/
index.html#stream-ordered-querying-memory-support.

‣ Improved NTVX trace with distinction between light calls and kernel routines

‣ Resolved Issues

‣ cusparseCnnz_compress produced wrong results when the number of rows are
greater than 128 * resident CTAs.

‣ cusparseSnnz produced wrong results for some particular sparsity pattern.

‣ Deprecated Features

‣ cusparseXcsrsm2_zeroPivot, cusparseXcsrsm2_solve,
cusparseXcsrsm2_analysis, and cusparseScsrsm2_bufferSizeExt have been
deprecated in favor of cusparseSpSM Generic APIs

2.5.5. cuSPARSE: Release 11.3
‣ New Features

Added new routine cusparesSpSV for sparse triangular solver with better performance.
The new Generic API supports:

‣ CSR storage format

‣ Non-transpose, transpose, and transpose-conjugate operations

‣ Upper, lower fill mode

‣ Unit, non-unit diagonal type

‣ 32-bit and 64-bit indices

‣ Uniform data type computation

‣ Deprecated Features

‣ cusparseScsrsv2_analysis, cusparseScsrsv2_solve,
cusparseXcsrsv2_zeroPivot, and cusparseScsrsv2_bufferSize have been
deprecated in favor of cusparseSpSV.

2.5.6. cuSPARSE: Release 11.2 Update 2
‣ Resolved Issues

‣ cusparseDestroy(NULL) no longer crashes on Windows.

‣ Known Issues

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-querying-memory-support
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#stream-ordered-querying-memory-support

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 24

‣ cusparseDestroySpVec, cusparseDestroyDnVec, cusparseDestroySpMat,
cusparseDestroyDnMat, cusparseDestroy with NULL argument could cause
segmentation fault on Windows.

2.5.7. cuSPARSE: Release 11.2 Update 1
‣ New Features

‣ New Tensor Core-accelerated Block Sparse Matrix - Matrix Multiplication
(cusparseSpMM) and introduction of the Blocked-Ellpack storage format.

‣ New algorithms for CSR/COO Sparse Matrix - Vector Multiplication (cusparseSpMV)
with better performance.

‣ Extended functionalities for cusparseSpMV:

‣ Support for the CSC format.

‣ Support for regular/complex bfloat16 data types for both uniform and mixed-
precision computation.

‣ Support for mixed regular-complex data type computation.

‣ Support for deterministic and non-deterministic computation.

‣ New algorithm (CUSPARSE_SPMM_CSR_ALG3) for Sparse Matrix - Matrix Multiplication
(cusparseSpMM) with better performance especially for small matrices.

‣ New routine for Sampled Dense Matrix - Dense Matrix Multiplication (cusparseSDDMM)
which deprecated cusparseConstrainedGeMM and provides better performance.

‣ Better accuracy of cusparseAxpby, cusparseRot, cusparseSpVV for bfloat16 and
half regular/complex data types.

‣ All routines support NVTX annotation for enhancing the profiler time line on complex
applications.

‣ Resolved Issues

‣ cusparseAxpby, cusparseGather, cusparseScatter, cusparseRot, cusparseSpVV,
cusparseSpMV now support zero-size matrices.

‣ cusparseCsr2cscEx2 now correctly handles empty matrices (nnz = 0).

‣ cusparseXcsr2csr_compress now uses 2-norm for the comparison of complex
values instead of only the real part.

‣ Known Issues

cusparseDestroySpVec, cusparseDestroyDnVec, cusparseDestroySpMat,
cusparseDestroyDnMat, cusparseDestroy with NULL argument could cause
segmentation fault on Windows.

‣ Deprecated Features

‣ cusparseConstrainedGeMM has been deprecated in favor of cusparseSDDMM.

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 25

‣ cusparseCsrmvEx has been deprecated in favor of cusparseSpMV.

‣ COO Array of Structure (CooAoS) format has been deprecated including
cusparseCreateCooAoS, cusparseCooAoSGet, and its support for cusparseSpMV.

2.5.8. cuSPARSE: Release 11.2
‣ Known Issues

‣ cusparseXdense2csr provides incorrect results for some matrix sizes.

2.5.9. cuSPARSE: Release 11.1 Update 1
‣ New Features

‣ cusparseSparseToDense

‣ CSR, CSC, or COO conversion to dense representation

‣ Support row-major and column-major layouts

‣ Support all data types

‣ Support 32-bit and 64-bit indices

‣ Provide performance 3x higher than cusparseXcsc2dense, cusparseXcsr2dense

‣ cusparseDenseToSparse

‣ Dense representation to CSR, CSC, or COO

‣ Support row-major and column-major layouts

‣ Support all data types

‣ Support 32-bit and 64-bit indices

‣ Provide performance 3x higher than cusparseXcsc2dense, cusparseXcsr2dense

‣ Known Issues

‣ cusparseXdense2csr provides incorrect results for some matrix sizes.

‣ Deprecated Features

‣ Legacy conversion routines: cusparseXcsc2dense, cusparseXcsr2dense,
cusparseXdense2csc, cusparseXdense2csr

2.5.10. cuSPARSE: Release 11.0
‣ New Features

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 26

‣ Added new Generic APIs for Axpby (cusparseAxpby), Scatter (cusparseScatter), Gather
(cusparseGather), Givens rotation (cusparseRot). __nv_bfloat16/ __nv_bfloat162 data
types and 64-bit indices are also supported.

‣ This release adds the following features for cusparseSpMM:

‣ Support for row-major layout for cusparseSpMM for both CSR and COO format

‣ Support for 64-bit indices

‣ Support for __nv_bfloat16 and __nv_bfloat162 data types

‣ Support for the following strided batch mode:

‣ Ci=A⋅Bi

‣ Ci=Ai⋅B

‣ Ci=Ai⋅Bi

2.5.11. cuSPARSE: Release 11.0 RC
‣ New Features

‣ Added new Generic APIs for Axpby (cusparseAxpby), Scatter (cusparseScatter), Gather
(cusparseGather), Givens rotation (cusparseRot). __nv_bfloat16/ __nv_bfloat162 data
types and 64-bit indices are also supported.

‣ This release adds the following features for cusparseSpMM:

‣ Support for row-major layout for cusparseSpMM for both CSR and COO format

‣ Support for 64-bit indices

‣ Support for __nv_bfloat16 and __nv_bfloat162 data types

‣ Support for the following strided batch mode:

‣ Ci=A⋅Bi

‣ Ci=Ai⋅B

‣ Ci=Ai⋅Bi

‣ Added new generic APIs and improved performance for sparse matrix-
sparse matrix multiplication (SpGEMM): cusparseSpGEMM_workEstimation,
cusparseSpGEMM_compute, and cusparseSpGEMM_copy.

‣ SpVV: added support for __nv_bfloat16.

‣ Deprecated Features

The following functions have been removed:

‣ cusparse<t>gemmi()

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 27

‣ cusparseXaxpyi, cusparseXgthr, cusparseXgthrz, cusparseXroti,
cusparseXsctr

‣ Hybrid format enums and helper functions: cusparseHybPartition_t,
cusparseHybPartition_t, cusparseCreateHybMat, cusparseDestroyHybMat

‣ Triangular solver enums and helper functions: cusparseSolveAnalysisInfo_t,
cusparseCreateSolveAnalysisInfo, cusparseDestroySolveAnalysisInfo

‣ Sparse dot product: cusparseXdoti, cusparseXdotci

‣ Sparse matrix-vector multiplication: cusparseXcsrmv, cusparseXcsrmv_mp

‣ Sparse matrix-matrix multiplication: cusparseXcsrmm, cusparseXcsrmm2

‣ Sparse triangular-single vector solver: cusparseXcsrsv_analysis,
cusparseCsrsv_analysisEx, cusparseXcsrsv_solve, cusparseCsrsv_solveEx

‣ Sparse triangular-multiple vectors solver: cusparseXcsrsm_analysis,
cusparseXcsrsm_solve

‣ Sparse hybrid format solver: cusparseXhybsv_analysis, cusparseShybsv_solve

‣ Extra functions: cusparseXcsrgeamNnz, cusparseScsrgeam, cusparseXcsrgemmNnz,
cusparseXcsrgemm

‣ Incomplete Cholesky Factorization, level 0: cusparseXcsric0

‣ Incomplete LU Factorization, level 0: cusparseXcsrilu0, cusparseCsrilu0Ex

‣ Tridiagonal Solver: cusparseXgtsv, cusparseXgtsv_nopivot

‣ Batched Tridiagonal Solver: cusparseXgtsvStridedBatch

‣ Reordering: cusparseXcsc2hyb, cusparseXcsr2hyb, cusparseXdense2hyb,
cusparseXhyb2csc, cusparseXhyb2csr, cusparseXhyb2dense

The following functions have been deprecated:

‣ SpGEMM: cusparseXcsrgemm2_bufferSizeExt, cusparseXcsrgemm2Nnz,
cusparseXcsrgemm2

2.6. Math Library

2.6.1. CUDA Math: Release 11.5
‣ Deprecations

‣ The following undocumented CUDA Math APIs are deprecated and will be removed in
a future release. Please consider switching to similar intrinsic APIs documented here:
https://docs.nvidia.com/cuda/cuda-math-api/index.html

‣ __device__ int mulhi(const int a, const int b)

https://docs.nvidia.com/cuda/cuda-math-api/index.html

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 28

‣ __device__ unsigned int mulhi(const unsigned int a, const unsigned
int b)

‣ __device__ unsigned int mulhi(const int a, const unsigned int b)

‣ __device__ unsigned int mulhi(const unsigned int a, const int b)

‣ __device__ long long int mul64hi(const long long int a, const long
long int b)

‣ __device__ unsigned long long int mul64hi(const unsigned long long
int a, const unsigned long long int b)

‣ __device__ unsigned long long int mul64hi(const long long int a,
const unsigned long long int b)

‣ __device__ unsigned long long int mul64hi(const unsigned long long
int a, const long long int b)

‣ __device__ int float_as_int(const float a)

‣ __device__ float int_as_float(const int a)

‣ __device__ unsigned int float_as_uint(const float a)

‣ __device__ float uint_as_float(const unsigned int a)

‣ __device__ float saturate(const float a)

‣ __device__ int mul24(const int a, const int b)

‣ __device__ unsigned int umul24(const unsigned int a, const unsigned
int b)

‣ __device__ int float2int(const float a, const enum cudaRoundMode
mode = cudaRoundZero)

‣ __device__ unsigned int float2uint(const float a, const enum
cudaRoundMode mode = cudaRoundZero)

‣ __device__ float int2float(const int a, const enum cudaRoundMode
mode = cudaRoundNearest)

‣ __device__ float uint2float(const unsigned int a, const enum
cudaRoundMode mode = cudaRoundNearest)

2.6.2. CUDA Math: Release 11.3

‣ Resolved Issues

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 29

‣ Previous releases of CUDA were potentially delivering incorrect results in some Linux
distributions for the following host Math APIs: sinpi, cospi, sincospi, sinpif,
cospif, sincospif. If passed huge inputs like 7.3748776e+15 or 8258177.5 the results
were not equal to 0 or 1. These have been corrected with this release.

2.6.3. CUDA Math: Release 11.1
‣ New Features

‣ Added host support for half and nv_bfloat16 converts to/from integer types.

‣ Added __hcmadd() device only API for fast half2 and nv_bfloat162 based complex
multiply-accumulate.

2.6.4. CUDA Math: Release 11.0 Update 1
‣ Resolved Issues

‣ nv_bfloat16 comparison functions could trigger a fault with misaligned addresses.

‣ Performance improvements in half and nv_bfloat16 basic arithmetic
implementations.

2.6.5. CUDA Math: Release 11.0 RC
‣ New Features

‣ Add arithmetic support for __nv_bfloat16 floating-point data type with 8 bits of
exponent, 7 explicit bits of mantissa.

‣ Performance and accuracy improvements in single precision math functions: fmodf,
expf, exp10f, sinhf, and coshf.

‣ Resolved Issues

‣ Corrected documented maximum ulp error thresholds in erfcinvf and powf.

‣ Improved cuda_fp16.h interoperability with Visual Studio C++ compiler.

‣ Updated libdevice user guide and CUDA math API definitions for j1, j1f, fmod, fmodf,
ilogb, and ilogbf math functions.

2.7. NVIDIA Performance Primitives
(NPP)

2.7.1. NPP: Release 11.5
‣ New Features

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 30

‣ New APIs added to compute Signed Anti-aliased Distance Transform using PBA, the
anti-aliased Euclidean distance between pixel sites in images. This will improve the
accuracy of distance transform.

‣ nppiSignedDistanceTransformAbsPBA_xxxxx_C1R_Ctx() – Input and output
combination supports (xxxxxx) - 32f, 32f64f, 64f

‣ New API for Absolute Manhattan distance transform; another method to improve the
accuracy of distance transform using Manhattan distance transform between pixels.

‣ nppiDistanceTransformAbsPBA_xxxxx_C1R_Ctx() – Input and output
combination supports (xxxxxx) - 8u16u, 8s16u, 16u16u, 16s16u, 8u32f, 8s32f, 16u32f,
16s32f, 8u64f, 8s64f, 16u64f, 16s64f, 32f64f, 64f

‣ Resolved Issues

‣ Fixed an issue in FilterMedian() API with add interpolation when mask even size.

‣ Improved Contour function performance by parallelizing more of it and also improving
quality.

‣ Resolved an issue with Alpha composition used to accumulate output buffers multiple
times.

‣ Resolved an issue with nppiLabelMarkersUF_8u32u_C1R column processing
incorrect results.

2.7.2. NPP: Release 11.4
‣ New Features

‣ New API FindContours .FindContours can be explained simply as a curve joining
all the continuous points (along the boundary), having the same color or intensity. The
contours are a useful tool for shape analysis and object detection and recognition.

2.7.3. NPP: Release 11.3
‣ New Features

‣ Added nppiDistanceTransformPBA functions.

2.7.4. NPP: Release 11.2 Update 2
‣ New Features

‣ Added nppiDistanceTransformPBA functions.

2.7.5. NPP: Release 11.2 Update 1
‣ New Features

New APIs added to compute Distance Transform using Parallel Banding Algorithm (PBA):

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 31

‣ nppiDistanceTransformPBA_xxxxx_C1R_Ctx() – where xxxxx specifies the input and
output combination: 8u16u, 8s16u, 16u16u, 16s16u, 8u32f, 8s32f, 16u32f, 16s32f

‣ nppiSignedDistanceTransformPBA_32f_C1R_Ctx()

‣ Resolved Issues

‣ Fixed the issue in which Label Markers adds zero pixel as object region.

2.7.6. NPP: Release 11.0
‣ New Features

‣ Batched Image Label Markers Compression that removes sparseness between marker
label IDs output from LabelMarkers call.

‣ Image Flood Fill functionality fills a connected region of an image with a specified new
value.

‣ Stability and performance fixes to Image Label Markers and Image Label Markers
Compression.

2.7.7. NPP: Release 11.0 RC
‣ New Features

‣ Batched Image Label Markers Compression that removes sparseness between marker
label IDs output from LabelMarkers call.

‣ Image Flood Fill functionality fills a connected region of an image with a specified new
value.

‣ Added batching support for nppiLabelMarkersUF functions.

‣ Added the nppiCompressMarkerLabelsUF_32u_C1IR function.

‣ Added nppiSegmentWatershed functions.

‣ Added sample apps on GitHub demonstrating the use of NPP application managed
stream contexts along with watershed segmentation and batched and compressed UF
image label markers functions.

‣ Added support for non-blocking streams.

‣ Resolved Issues

‣ Stability and performance fixes to Image Label Markers and Image Label Markers
Compression.

‣ Improved quality of nppiLabelMarkersUF functions.

‣ nppiCompressMarkerLabelsUF_32u_C1IR can now handle a huge number of labels
generated by the nppiLabelMarkersUF function.

‣ Known Issues

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 32

‣ The nppiCopy API is limited by CUDA thread for large image size. Maximum image
limits is a minimum of 16 * 65,535 = 1,048,560 horizontal pixels of any data type and
number of channels and 8 * 65,535 = 524,280 vertical pixels for a maximum total of
549,739,036,800 pixels.

2.8. nvJPEG Library

2.8.1. nvJPEG: Release 11.5 Update 1
‣ Resolved Issues

‣ Fixed the issue in which nvcuvid() released uncompressed frames causing a memory
leak.

2.8.2. nvJPEG: Release 11.4
‣ Resolved Issues

‣ Additional subsampling added to solve the NVJPEG_CSS_2x4.

2.8.3. nvJPEG: Release 11.2 Update 1
‣ New Features

nvJPEG decoder added new APIs to support region of interest (ROI) based decoding for
batched hardware decoder:

‣ nvjpegDecodeBatchedEx()

‣ nvjpegDecodeBatchedSupportedEx()

2.8.4. nvJPEG: Release 11.1 Update 1
‣ New Features

‣ Added error handling capabilities for nonstandard JPEG images.

2.8.5. nvJPEG: Release 11.0 Update 1
‣ Known Issues

‣ NVJPEG_BACKEND_GPU_HYBRID has an issue when handling bit-streams which have
corruption in the scan.

2.8.6. nvJPEG: Release 11.0
‣ New Features

CUDA Libraries

NVIDIA CUDA Toolkit 11.5.1 RN-06722-001 _v11.5 | 33

‣ nvJPEG allows the user to allocate separate memory pools for each chroma
subsampling format. This helps avoid memory re-allocation overhead. This can be
controlled by passing the newly added flag NVJPEG_FLAGS_ENABLE_MEMORY_POOLS to
the nvjpegCreateEx API.

‣ nvJPEG encoder now allow compressed bitstream on the GPU Memory.

2.8.7. nvJPEG: Release 11.0 RC
‣ New Features

‣ nvJPEG allows the user to allocate separate memory pools for each chroma
subsampling format. This helps avoid memory re-allocation overhead. This can be
controlled by passing the newly added flag NVJPEG_FLAGS_ENABLE_MEMORY_POOLS to
the nvjpegCreateEx API.

‣ nvJPEG encoder now allow compressed bitstream on the GPU Memory.

‣ Hardware accelerated decode is now supported on NVIDIA A100.

‣ The nvJPEG decode API (nvjpegDecodeJpeg()) now has the flexibility to select the
backend when creating nvjpegJpegDecoder_t object. The user has the option to
call this API instead of making three separate calls to nvjpegDecodeJpegHost(),
nvjpegDecodeJpegTransferToDevice(), and nvjpegDecodeJpegDevice().

‣ Known Issues

‣ NVJPEG_BACKEND_GPU_HYBRID has an issue when handling bit-streams which have
corruption in the scan.

‣ Deprecated Features

The following multiphase APIs have been removed:

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseOne

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseTwo

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodePhaseThree

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodeBatchedPhaseOne

‣ nvjpegStatus_t NVJPEGAPI nvjpegDecodeBatchedPhaseTwo

https://docs.nvidia.com/cuda/nvjpeg/index.html#nvjpeg-decode-jpeg

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Tables
	CUDA 11.5 Release Notes
	1.1. CUDA Toolkit Major Component Versions
	1.2. General CUDA
	1.3. CUDA Compilers
	1.4. Resolved Issues
	1.4.1. CUDA Compilers

	1.5. Deprecated Features
	1.6. Known Issues
	1.6.1. General CUDA

	CUDA Libraries
	2.1. cuBLAS Library
	2.1.1. cuBLAS: Release 11.4 Update 3
	2.1.2. cuBLAS: Release 11.4 Update 2
	2.1.3. cuBLAS: Release 11.4
	2.1.4. cuBLAS: Release 11.3 Update 1
	2.1.5. cuBLAS: Release 11.3
	2.1.6. cuBLAS: Release 11.2
	2.1.7. cuBLAS: Release 11.1 Update 1
	2.1.8. cuBLAS: Release 11.1
	2.1.9. cuBLAS: Release 11.0 Update 1
	2.1.10. cuBLAS: Release 11.0
	2.1.11. cuBLAS: Release 11.0 RC

	2.2. cuFFT Library
	2.2.1. cuFFT: Release 11.5
	2.2.2. cuFFT: Release 11.4 Update 2
	2.2.3. cuFFT: Release 11.4 Update 1
	2.2.4. cuFFT: Release 11.4
	2.2.5. cuFFT: Release 11.3
	2.2.6. cuFFT: Release 11.2 Update 2
	2.2.7. cuFFT: Release 11.2 Update 1
	2.2.8. cuFFT: Release 11.2
	2.2.9. cuFFT: Release 11.1
	2.2.10. cuFFT: Release 11.0 RC

	2.3. cuRAND Library
	2.3.1. cuRAND: Release 11.5 Update 1
	2.3.2. cuRAND: Release 11.3
	2.3.3. cuRAND: Release 11.0 Update 1
	2.3.4. cuRAND: Release 11.0
	2.3.5. cuRAND: Release 11.0 RC

	2.4. cuSOLVER Library
	2.4.1. cuSOLVER: Release 11.4
	2.4.2. cuSOLVER: Release 11.3
	2.4.3. cuSOLVER: Release 11.2 Update 2
	2.4.4. cuSOLVER: Release 11.2
	2.4.5. cuSOLVER: Release 11.1 Update 1
	2.4.6. cuSOLVER: Release 11.1
	2.4.7. cuSOLVER: Release 11.0

	2.5. cuSPARSE Library
	2.5.1. cuSPARSE: Release 11.5 Update 1
	2.5.2. cuSPARSE: Release 11.4 Update 1
	2.5.3. cuSPARSE: Release 11.4
	2.5.4. cuSPARSE: Release 11.3 Update 1
	2.5.5. cuSPARSE: Release 11.3
	2.5.6. cuSPARSE: Release 11.2 Update 2
	2.5.7. cuSPARSE: Release 11.2 Update 1
	2.5.8. cuSPARSE: Release 11.2
	2.5.9. cuSPARSE: Release 11.1 Update 1
	2.5.10. cuSPARSE: Release 11.0
	2.5.11. cuSPARSE: Release 11.0 RC

	2.6. Math Library
	2.6.1. CUDA Math: Release 11.5
	2.6.2. CUDA Math: Release 11.3
	2.6.3. CUDA Math: Release 11.1
	2.6.4. CUDA Math: Release 11.0 Update 1
	2.6.6. CUDA Math: Release 11.0 RC

	2.7. NVIDIA Performance Primitives (NPP)
	2.7.1. NPP: Release 11.5
	2.7.2. NPP: Release 11.4
	2.7.3. NPP: Release 11.3
	2.7.4. NPP: Release 11.2 Update 2
	2.7.5. NPP: Release 11.2 Update 1
	2.7.6. NPP: Release 11.0
	2.7.7. NPP: Release 11.0 RC

	2.8. nvJPEG Library
	2.8.1. nvJPEG: Release 11.5 Update 1
	2.8.2. nvJPEG: Release 11.4
	2.8.3. nvJPEG: Release 11.2 Update 1
	2.8.4. nvJPEG: Release 11.1 Update 1
	2.8.5. nvJPEG: Release 11.0 Update 1
	2.8.6. nvJPEG: Release 11.0
	2.8.7. nvJPEG: Release 11.0 RC

