
DG-06715-001_v11.5 | November 2021

CUDA Developer Guide for NVIDIA
Optimus Platforms

Reference Guide

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | ii

Table of Contents

Chapter 1. Introduction to Optimus... 1

Chapter 2. CUDA Applications and Optimus..2

Chapter 3. Querying for a CUDA Device.. 3
3.1. Applications without Graphics Interoperability... 3

3.2. Applications with Graphics Interoperability...5

3.3. CUDA Support with DirecX Interoperability...6

3.4. CUDA Support with OpenGL Interoperability.. 7

3.5. Control Panel Settings and Driver Updates.. 8

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 1

Chapter 1. Introduction to Optimus

NVIDIA® Optimus™ is a revolutionary technology that delivers great battery life and great
performance, in a way that simply works. It automatically and instantaneously uses the best
tool for the job – the high performance NVIDIA GPU for GPU-Compute applications, video,
and 3D games; and low power integrated graphics for applications like Office, Web surfing, or
email.

The result is long lasting battery life without sacrificing great graphics performance, delivering
an experience that is fully automatic and behind the scenes.

When the GPU can provide an increase in performance, functionality, or quality over the
IGP for an application, the NVIDIA driver will enable the GPU. When the user launches an
application, the NVIDIA driver will recognize whether the application being run can benefit
from using the GPU. If the application can benefit from running on the GPU, the GPU is
powered up from an idle state and is given all rendering calls.

Using NVIDIA’s Optimus technology, when the discrete GPU is handling all the rendering
duties, the final image output to the display is still handled by the Intel integrated graphics
processor (IGP). In effect, the IGP is only being used as a simple display controller, resulting in
a seamless, flicker-free experience with no need to reboot.

When the user closes all applications that benefit from the GPU, the discrete GPU is powered
off and the Intel IGP handles both rendering and display calls to conserve power and provide
the highest possible battery life.

The beauty of Optimus is that it leverages standard industry protocols and APIs to work. From
relying on standard Microsoft APIs when communicating with the Intel IGP driver, to utilizing
the PCI-Express bus to transfer the GPU’s output to the Intel IGP, there are no proprietary
hoops to jump through NVIDIA.

This document provides guidance to CUDA developers and explains how NVIDIA CUDA APIs
can be used to query for GPU capabilities in Optimus systems. It is strongly recommended
to follow these guidelines to ensure CUDA applications are compatible with all notebooks
featuring Optimus.

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 2

Chapter 2. CUDA Applications and
Optimus

Optimus systems all have an Intel IGP and an NVIDIA GPU. Display heads may be electrically
connected to the IGP or the GPU. When a display is connected to a GPU head, all rendering
and compute on that display happens on the NVIDIA GPU just like it would on a typical
discrete system. When the display is connected to an IGP head, the NVIDIA driver decides if
an application on that display should be rendered on the GPU or the IGP. If the driver decides
to run the application on the NVIDIA GPU, the final rendered frames are copied to the IGP’s
display pipeline for scanout. Please consult the Optimus white paper for more details on this
behavior: http://www.nvidia.com/object/optimus_technology.html.

CUDA developers should understand this scheme because it affects how applications should
query for GPU capabilities. For example, a CUDA application launched on the LVDS panel of
an Optimus notebook (which is an IGP-connected display), would see that the primary display
device is the Intel's graphic adapter – a chip not capable of running CUDA. In this case, it is
important for the application to detect the existence of a second device in the system – the
NVIDIA GPU – and then create a CUDA context on this CUDA-capable device even when it is
not the display device.

For applications that require use of Direct3D/CUDA or OpenGL/CUDA interop, there are
restrictions that developers need to be aware of when creating a Direct3D or OpenGL context
that will interoperate with CUDA. CUDA Support with DirecX Interoperability and CUDA
Support with OpenGL Interoperability in this guide discuss this topic in more detail.

http://www.nvidia.com/object/optimus_technology.html

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 3

Chapter 3. Querying for a CUDA Device

Depending on the application, there are different ways to query for a CUDA device.

3.1. Applications without Graphics
Interoperability

For CUDA applications, finding the best CUDA capable device is done through the CUDA
API. The CUDA API functions cudaGetDeviceProperties (CUDA runtime API), and
cuDeviceComputeCapability (CUDA Driver API) are used. Refer to the CUDA Sample
deviceQuery or deviceQueryDrv for more details.

The next two code samples illustrate the best method of choosing a CUDA capable device with
the best performance.

// CUDA Runtime API Version
inline int cutGetMaxGflopsDeviceId()
{
 int current_device = 0, sm_per_multiproc = 0;
 int max_compute_perf = 0, max_perf_device = 0;
 int device_count = 0, best_SM_arch = 0;
 int arch_cores_sm[3] = { 1, 8, 32, 192 };
 cudaDeviceProp deviceProp;

 cudaGetDeviceCount(&device_count);

 // Find the best major SM Architecture GPU device
 while (current_device < device_count) {
 cudaGetDeviceProperties(&deviceProp, current_device);
 if (deviceProp.major > 0 && deviceProp.major < 9999) {
 best_SM_arch = max(best_SM_arch, deviceProp.major);
 }
 current_device++;
 }

 // Find the best CUDA capable GPU device
 current_device = 0;
 while(current_device < device_count) {
 cudaGetDeviceProperties(&deviceProp, current_device);
 if (deviceProp.major == 9999 && deviceProp.minor == 9999) {
 sm_per_multiproc = 1;
 } else if (deviceProp.major <= 3) {
 sm_per_multiproc = arch_cores_sm[deviceProp.major];
 } else { // Device has SM major > 3
 sm_per_multiproc = arch_cores_sm[3];
 }

Querying for a CUDA Device

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 4

 int compute_perf = deviceProp.multiProcessorCount *
 sm_per_multiproc * deviceProp.clockRate;

 if(compute_perf > max_compute_perf) {
 // If we find GPU of SM major > 3, search only these
 if (best_SM_arch > 3) {
 // If device==best_SM_arch, choose this, or else pass
 if (deviceProp.major == best_SM_arch) {
 max_compute_perf = compute_perf;
 max_perf_device = current_device;
 }
 } else {
 max_compute_perf = compute_perf;
 max_perf_device = current_device;
 }
 }
 ++current_device;
 }

 cudaGetDeviceProperties(&deviceProp, max_compute_perf_device);
 printf("\nDevice %d: \"%s\"\n", max__perf_device,
 deviceProp.name);
 printf("Compute Capability : %d.%d\n",
 deviceProp.major, deviceProp.minor);
 return max_perf_device;
}

// CUDA Driver API Version
inline int cutilDrvGetMaxGflopsDeviceId()
{
 CUdevice current_device = 0, max_perf_device = 0;
 int device_count = 0, sm_per_multiproc = 0;
 int max_compute_perf = 0, best_SM_arch = 0;
 int major = 0, minor = 0, multiProcessorCount, clockRate;
 int arch_cores_sm[3] = { 1, 8, 32, 192 };

 cuInit(0);
 cuDeviceGetCount(&device_count);
 // Find the best major SM Architecture GPU device
 while (current_device < device_count) {
 cuDeviceComputeCapability(&major, &minor, current_device));
 if (major > 0 && major < 9999) {
 best_SM_arch = MAX(best_SM_arch, major);
 }
 current_device++;
 }

 // Find the best CUDA capable GPU device
 current_device = 0;
 while(current_device < device_count) {
 cuDeviceGetAttribute(&multiProcessorCount,
 CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT,
 current_device));
 cuDeviceGetAttribute(&clockRate,
 CU_DEVICE_ATTRIBUTE_CLOCK_RATE,
 current_device));
 if (major == 9999 && minor == 9999) {
 sm_per_multiproc = 1;
 } else if (major <= 3) {
 sm_per_multiproc = arch_cores_sm[major];
 } else {
 sm_per_multiproc = arch_cores_sm[3];
 }
 int compute_perf = multiProcessorCount * sm_per_multiproc *
 clockRate;
 if(compute_perf > max_compute_perf) {
 // If we find GPU with SM major > 2, search only these

Querying for a CUDA Device

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 5

 if (best_SM_arch > 2) {
 // If our device==dest_SM_arch, choose this, or else pass
 if (major == best_SM_arch) {
 max_compute_perf = compute_perf;
 max_perf_device = current_device;
 }
 } else {
 max_compute_perf = compute_perf;
 max_perf_device = current_device;
 }
 }
 ++current_device;
 }

 char name[100];
 cuDeviceGetName(name, 100, max_perf_device);
 cuDeviceComputeCapability(&major, &minor, max_perf_device);
 printf("\nDevice %d: "%s\n", max_perf_device, name);
 printf(" Compute Capability : %d.%d\n", major, minor);
 return max_perf_device;
}

3.2. Applications with Graphics
Interoperability

For CUDA applications that use the CUDA interop capability with Direct3D or OpenGL,
developers should be aware of the restrictions and requirements to ensure compatibility with
the Optimus platform. For CUDA applications that meet these descriptions:

 1. Application requires CUDA interop capability with either Direct3D or OpenGL.

 2. Application is not directly linked against cuda.lib or cudart.lib or LoadLibrary to
dynamically load the nvcuda.dll or cudart*.dll and uses GetProcAddress to retrieve
function addresses from nvcuda.dll or cudart*.dll.

A Direct3D or OpenGL context has to be created before the CUDA context. The Direct3D or
OpenGL context needs to pass this into the CUDA. See the sample calls below in red below.
Your application will need to create the graphics context first. The sample code below does not
illustrate this.

Refer to the CUDA Sample simpleD3D9 and simpleD3D9Texture for details.

// CUDA/Direct3D9 interop
// You will need to create the D3D9 context first
IDirect3DDevice9 * g_pD3D9Device; // Initialize D3D9 rendering device
// After creation, bind your D3D9 context to CUDA
cudaD3D9SetDirect3DDevice(g_pD3D9Device);

Refer to the CUDA Sample simpleD3D10 and simpleD3D10Texture for details.

// CUDA/Direct3D10 interop
// You will need to create a D3D10 context first
ID3D10Device * g_pD3D10Device; // Initialize D3D10 rendering device
// After creation, bind your D3D10 context to CUDA
cudaD3D10SetDirect3DDevice(g_pD3D10Device);

Querying for a CUDA Device

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 6

Refer to the CUDA Sample simpleD3D11Texture for details.

// CUDA/Direct3D11 interop
// You will need to first create the D3D11 context first
ID3D11Device * g_pD3D11Device; // Initialize D3D11 rendering device
// After creation, bind your D3D11 context to CUDA
cudaD3D11SetDirect3DDevice(g_pD3D11Device);

Refer to the CUDA Samples simpleGL and postProcessGL for details.

// For CUDA/OpenGL interop
// You will need to create the OpenGL Context first
// After creation, bind your D3D11 context to CUDA
cudaGLSetGLDevice(deviceID);

On an Optimus platform, this type of CUDA application will not work properly. If a Direct3D
or OpenGL graphics context is created before any CUDA API calls are used or initialized, the
Graphics context may be created on the Intel IGP. The problem here is that the Intel IGP does
not allow Graphics interoperability with CUDA running on the NVIDIA GPU. If the Graphics
context is created on the NVIDIA GPU, then everything will work.

The solution is to create an application profile in the NVIDIA Control Panel. With an application
profile, the Direct3D or OpenGL context will always be created on the NVIDIA GPU when the
application gets launched. These application profiles can be created manually through the
NVIDIA control Panel (see Control Panel Settings and Driver UpdatesSection 5 for details).
Contact NVIDIA support to have this application profile added to the drivers, so future NVIDIA
driver releases and updates will include it.

3.3. CUDA Support with DirecX
Interoperability

The following steps with code samples illustrate what is necessary to initialize your CUDA
application to interoperate with Direct3D9.

Note: An application profile may also be needed.

 1. Create a Direct3D9 Context:

// Create the D3D object
if ((g_pD3D = Direct3DCreate9(D3D_SDK_VERSION))==NULL)
 return E_FAIL;

 2. Find the CUDA Device that is also a Direct3D device

// Find the first CUDA capable device, may also want to check
// number of cores with cudaGetDeviceProperties for the best
// CUDA capable GPU (see previous function for details)
for(g_iAdapter = 0;
 g_iAdapter < g_pD3D->GetAdapterCount();
 g_iAdapter++)
{
 D3DCAPS9 caps;
 if (FAILED(g_pD3D->GetDeviceCaps(g_iAdapter,
 D3DDEVTYPE_HAL, &caps)))

Querying for a CUDA Device

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 7

 // Adapter doesn't support Direct3D
 continue;

 D3DADAPTER_IDENTIFIER9 ident;
 int device;
 g_pD3D->GetAdapterIdentifier(g_iAdapter,
 0, &ident);
 cudaD3D9GetDevice(&device, ident.DeviceName);
 if (cudaSuccess == cudaGetLastError())
 break;
}

 3. Create the Direct3D device

// Create the D3DDevice
if (FAILED(g_pD3D->CreateDevice(g_iAdapter, D3DDEVTYPE_HAL,
 hWnd, D3DCREATE_HARDWARE_VERTEXPROCESSING,
 &g_d3dpp, &g_pD3DDevice)))
 return E_FAIL;

 4. Bind the CUDA Context to the Direct3D device:

// Now we need to bind a CUDA context to the DX9 device
cudaD3D9SetDirect3DDevice(g_pD3DDevice);

3.4. CUDA Support with OpenGL
Interoperability

The following steps with code samples illustrate what is needed to initialize your CUDA
application to interoperate with OpenGL.

Note: An application profile may also be needed.

 1. Create an OpenGL Context and OpenGL window

// Create GL context
glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGBA | GLUT_ALPHA |
 GLUT_DOUBLE | GLUT_DEPTH);
glutInitWindowSize(window_width, window_height);
glutCreateWindow("OpenGL Application");

// default initialization of the back buffer
glClearColor(0.5, 0.5, 0.5, 1.0);

 2. Create the CUDA Context and bind it to the OpenGL context

// Initialize CUDA context (ontop of the GL context)
int dev, deviceCount;
cudaGetDeviceCount(&deviceCount);
cudaDeviceProp deviceProp;
for (int i=0; i<deviceCount; i++) {
 cudaGetDeviceProperties(&deviceProp, dev));
}
cudaGLSetGLDevice(dev);

Querying for a CUDA Device

CUDA Developer Guide for NVIDIA Optimus Platforms DG-06715-001_v11.5 | 8

3.5. Control Panel Settings and Driver
Updates

This section is for developers who create custom application-specific profiles. It describes how
end users can be sure that their CUDA applications run on Optimus and how they can receive
the latest updates on drivers and application profiles.

‣ Profile updates are frequently sent to end user systems, similar to how virus definitions
work. Systems are automatically updated with new profiles in the background with no user
intervention required. Contact NVIDIA developer support to create the appropriate driver
application profiles. This will ensure that your CUDA application is compatible on Optimus
and included in these automatic updates.

‣ End users can create their own application profiles in the NVIDIA Control panel and set
when switch and not to switch to the NVIDIA GPU per application. The screenshot below
shows you where to find these application profiles.

‣ NVIDIA regularly updates the graphics drivers through the NVIDIA Verde Driver
Program. End users will be able to download drivers which include application-specific
Optimus profiles for NVIDIA-powered notebooks from: http://www.nvidia.com/object/
notebook_drivers.html

http://www.nvidia.com/object/notebook_drivers.html
http://www.nvidia.com/object/notebook_drivers.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2013-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Introduction to Optimus
	CUDA Applications and Optimus
	Querying for a CUDA Device
	3.1. Applications without Graphics Interoperability
	3.2. Applications with Graphics Interoperability
	3.3. CUDA Support with DirecX Interoperability
	3.4. CUDA Support with OpenGL Interoperability
	3.5. Control Panel Settings and Driver Updates

