
TRM-06721-001_v11.5 | November 2021

PTX Writer's Guide To Interoperability

Reference Guide

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Data Representation...2
2.1. Fundamental Types...2

2.2. Aggregates and Unions.. 3

2.3. Bit Fields... 3

2.4. Texture, Sampler, and Surface Types... 6

Chapter 3. Function Calling Sequence.. 8
3.1. Registers..8

3.2. Stack Frame.. 8

3.3. Parameter Passing... 8

Chapter 4. System Calls...10

Chapter 5. Debug Information..12
5.1. Generation of Debug Information.. 12

5.2. CUDA-Specific DWARF Definitions.. 12

Chapter 6. Example.. 14

Chapter 7. C++.. 17

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | iii

List of Figures

Figure 1. Bit Numbering .. 4

Figure 2. Bit-field Allocation .. 5

Figure 3. Boundary Alignment ... 5

Figure 4. Storage Unit Sharing .. 5

Figure 5. Union Allocation ..6

Figure 6. Unnamed Bit Fields ..6

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | iv

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 1

Chapter 1. Introduction

This document defines the Application Binary Interface (ABI) for the CUDA® architecture when
generating PTX. By following the ABI, external developers can generate compliant PTX code
that can be linked with other code.

PTX is a low-level parallel-thread-execution virtual machine and ISA (Instruction Set
Architecture). PTX can be output from multiple tools or written directly by developers. PTX is
meant to be GPU-architecture independent, so that the same code can be reused for different
GPU architectures. For more information on PTX, refer to the latest version of the PTX ISA
reference document.

There are multiple CUDA architecture families, each with their own ISA; e.g. SM 2.x is the
Fermi family, SM 3.x is the Kepler family. This document describes the high-level ABI for all
architectures. Programs conforming to an ABI are expected to be executed on the appropriate
architecture GPU, and can assume that instructions from that ISA are available.

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 2

Chapter 2. Data Representation

2.1. Fundamental Types
The below table shows the native scalar PTX types that are supported. Any PTX producer must
use these sizes and alignments in order for its PTX to be compatible with PTX generated by
other producers. PTX also supports native vector types, which are discussed in Aggregates
and Unions.

The sizes of types are defined by the host. For example, pointer size and long int size are
dictated by the hosts ABI. PTX has an .address_size directive that specifies the address size
used throughout the PTX code. The size of pointers is 32 bits on a 32-bit host or 64 bits on a
64-bit host. However, addresses of the local and shared memory spaces are always 32 bits in
size.

During separate compilation we store info about the host platform in each object file. The
linker will fail to link object files generated for incompatible host platforms.

PTX Type
Size
(bytes)

Align
(bytes) Hardware Representation

.b8 1 1 untyped byte

.b16 2 2 untyped halfword

.b32 4 4 untyped word

.b64 8 8 untyped doubleword

.s8 1 1 signed integral byte

.s16 2 2 signed integral halfword

.s32 4 4 signed integral word

.s64 8 8 signed integral doubleword

.u8 1 1 unsigned integral byte

.u16 2 2 unsigned integral halfword

.u32 4 4 unsigned integral word

.u64 8 8 unsigned integral doubleword

.f16 2 2 IEEE half precision

.f32 4 4 IEEE single precision

.f64 8 8 IEEE double precision

Data Representation

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 3

2.2. Aggregates and Unions
Beyond the scalar types, PTX also supports native-vector types of these scalar types, with both
its vector syntax and its byte-array syntax. For scalar types with a size no greater than four
bytes, vector types with 1, 2, 3, and 4 elements exist; for all other types, only 1 and 2 element
vector types exist.

All aggregates and unions can be supported in PTX with its byte-array syntax.

The following are the size-and-alignment rules for all aggregates and unions.

‣ For a non-native-vector type, an entire aggregate or union is aligned on the same
boundary as its most strictly aligned member. This rule is not followed if the alignments
are defined by the input language. For example, in OpenCL built-in vector data types have
their alignment set to the size of the built-in data type in bytes.

‣ For a native vector type -- discussed at the start of this section -- the alignment is defined
as follows. (For the definitions below, the native vector has n elements and has an element
type t.)

‣ For a vector with an odd number of elements, its alignment is the same as its member:
alignof(t).

‣ For a vector with an even number of elements, its alignment is set to number of
elements times the alignment of its member: n*alignof(t).

‣ Each member is assigned to the lowest available offset with the appropriate alignment.
This may require internal padding, depending on the previous member.

‣ The size of an aggregate or union, if necessary, is increased to make it a multiple of the
alignment of the aggregate or union. This may require tail padding, depending on the last
member.

2.3. Bit Fields
C structure and union definitions may have bit fields that define integral objects with a
specified number of bits.

Bit Field Type Width w Range
signed char 1 to 8 -2w-1 to 2w-1 - 1

unsigned char 1 to 8 0 to 2w - 1

signed short 1 to 16 -2w-1 to 2w-1 - 1

unsigned short 1 to 16 0 to 2w - 1

signed int 1 to 32 -2w-1 to 2w-1 - 1

unsigned int 1 to 32 0 to 2w - 1

signed long long 1 to 64 -2w-1 to 2w-1 - 1

unsigned long long 1 to 64 0 to 2w - 1

Data Representation

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 4

Current GPUs only support little-endian memory, so the below assumes little-endian layout.

The following are rules that apply to bit fields.

‣ Plain bit fields (neither signed nor unsigned is specified) are treated as signed.

‣ When no type is provided (e.g., signed : 6 is specified), the type defaults to int.

Bit fields obey the same size and alignment rules as other structure and union members, with
the following modifications.

‣ Bit fields are allocated in memory from right to left (least to more significant) for little
endian.

‣ A bit field must entirely reside in a storage unit appropriate for its declared type. A bit field
should never cross its unit boundary.

‣ Bit fields may share a storage unit with other structure and union members, including
members that are not bit fields, as long as there is enough space within the storage unit.

‣ Unnamed bit fields do not affect the alignment of a structure or union.

‣ Zero-length bit fields force the alignment of the following member of a structure to the
next alignment boundary corresponding to the bit-field type. An unnamed, zero-length bit
field will not force the external alignment of the structure to that boundary. If an unnamed,
zero-length bit field has a stricter alignment than the external alignment, there is no
guarantee that the stricter alignment will be maintained when the structure or union gets
allocated to memory.

The following figures contain examples of bit fields. Figure 1 shows the byte offsets (upper
corners) and the bit numbers (lower corners) that are used in the examples. The remaining
figures show different bit-field examples.

Figure 1. Bit Numbering

Data Representation

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 5

Figure 2. Bit-field Allocation

Figure 3. Boundary Alignment

Figure 4. Storage Unit Sharing

Data Representation

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 6

Figure 5. Union Allocation

Figure 6. Unnamed Bit Fields

2.4. Texture, Sampler, and Surface Types
Texture, sampler and surface types are used to define references to texture and surface
memory. The CUDA architecture provides hardware and instructions to efficiently read data
from texture or surface memory as opposed to global memory.

References to textures are bound through runtime functions to device read-only regions of
memory, called a texture memory, before they can be used by a kernel. A texture reference
has several attributes e.g. normalized mode, addressing mode, and texture filtering etc. A
sampler reference can be used to sample a texture when read in a kernel. A surface reference
is used to read or write data from and to the surface memory. It also has various attributes
similar to a texture.

At the PTX level objects that access texture or surface memory are referred to as opaque
objects. Textures are expressed by either a .texref or .samplerref type and surfaces are
expressed by the .surfref type. The data of opaque objects can be accessed by specific
instructions (TEX for .texref/.samplerref and SULD/SUST for .surfref). The attributes of opaque
objects are implemented by allocating a descriptor in memory which is populated by the
driver. PTX TXQ/SUQ instructions get translated into memory reads of fields of the descriptor.

Data Representation

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 7

The internal format of the descriptor varies with each architecture and should not be relied
on by the user. The data and the attributes of an opaque object may be accessed directly if
the texture or surface reference is known at compile time or indirectly. If the reference is not
known during compile time all information required to read data and attributes is contained
in a .b64 value called the handle. The handle can be used to pass and return oqaque object
references to and from functions as well as to reference external textures, samplers and
surfaces.

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 8

Chapter 3. Function Calling Sequence

This section describes the PTX-level function calling sequence, including register usage,
stack-frame layout, and parameter passing. The PTX-level function calling sequence
describes what gets represented in PTX to enable function calls. There is an abstraction at
this level. Most of the details associated with the function calling sequence are handled at the
SASS level.

PTX versions earlier than 2.0 do not conform to the ABI defined in this document, and cannot
perform ABI compatible function calls. For the calling convention to work PTX version 2.0 or
greater must be used.

3.1. Registers
At the PTX level, the registers that are specified are virtual. Register allocation occurs during
PTX-to-SASS translation. The PTX-to-SASS translation also converts parameters and return
values to physical registers or stack locations.

3.2. Stack Frame
The PTX level has no concept of the software stack. Manipulation of the stack is completely
defined at the SASS level, and gets allocated during the PTX-to-SASS translation process.

3.3. Parameter Passing
At the PTX level, all parameters and return values present in a device function use the
parameter state space (.param). The below table contains the rules for handling parameters
and return values that are defined at the source level. For each source-level type, the
corresponding PTX-level type that should be used is provided.

Source Type Size in Bits PTX Type
Integral types 8 to 32 (A) .u32 (if unsigned) or .s32 (if signed)

Integral types 64 .u64 (if unsigned) or .s64 (if signed)

Pointers (B) 32 .u32

Pointers (B) 64 .u64

Function Calling Sequence

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 9

Source Type Size in Bits PTX Type
Floating-point types (C) 32 .f32

Floating-point types (C) 64 .f64

Aggregates or unions Any size .align align .b8 name[size]

Where align is overall aggregate-
or-union alignment in bytes (D),
name is variable name associated
with aggregate or union, and size
is the aggregate-or-union size in
bytes.

Handles (E) 64 .b64 (assigned
from .texref, .sampleref, .surfref)

NOTES:

(A) Values shorter than 32-bits are sign extended or zero extended, depending on whether they
are signed or unsigned types.

(B) Unless the memory type is specified in the function declaration, all pointers passed at the
PTX level must use a generic address.

(C) 16-bit floating-point types are only used for storage. Therefore, they cannot be used for
parameters or return values.

(D) The alignment must be 1, 2, 4, 8, 16, 32, 64, or 128 bytes.

(E) The PTX built-in opaque types such as texture, sampler, and surface types are can be
passed into functions as parameters and be returned by them through 64-bit handles. The
handle contains the necessary information to access the actual data from the texture or
surface memory as well as the attributes of the object stored in its type descriptor. See section
Texture, Sampler, and Surface Types for more information on handles.

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 10

Chapter 4. System Calls

System calls are calls into the driver operating system code. In PTX they look like regular
calls, but the function definition is not given. A prototype must be provided in the PTX file, but
the implementation of the function is provided by the driver.

The prototype for the vprintf system call is:

 .extern .func (.param .s32 status) vprintf (.param t1 format, .param t2 valist)

The following are the definitions for the vprintf parameters and return value.

‣ status : The status value that is returned by vprintf.

‣ format : A pointer to the format specifier input. For 32-bit addresses, type t1 is .b32. For
64-bit addresses, type t1 is .b64.

‣ valist : A pointer to the valist input. For 32-bit addresses, type t2 is .b32. For 64-bit
addresses, type t2 is .b64.

A call to vprintf using 32-bit addresses looks like:

 cvta.global.b32 %r2, _fmt;
 st.param.b32 [param0], %r2;
 cvta.local.b32 %r3, _valist_array;
 st.param.b32 [param1], %r3;
 call.uni (_), vprintf, (param0, param1);

For this code, _fmt is the format string in global memory, and _valist_array is the valist of
arguments. Note that any pointers must be converted to generic space. The vprintf syscall is
emitted as part of the printf function defined in "stdio.h".

The prototype for the malloc system call is:

 .extern .func (.param t1 ptr) malloc (.param t2 size)

The following are the definitions for the malloc parameters and return value.

‣ ptr : The pointer to the memory that was allocated by malloc. For 32-bit addresses, type t1
is .b32. For 64-bit addresses, type t1 is .b64.

System Calls

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 11

‣ size : The size of memory needed from malloc. This size is defined by the type size_t. When
size_t is 32 bits, type t2 is .b32. When size_t is 64 bits, type t2 is .b64.

The prototype for the free system call is:

 .extern .func free (.param t1 ptr)

The following is the definition for the free parameter.

‣ ptr : The pointer to the memory that should be freed. For 32-bit addresses, type t1 is .b32.
For 64-bit addresses, type t1 is .b64.

The malloc and free system calls are emitted as part of the malloc and free functions defined
in "malloc.h".

In order to support assert, the PTX function call __assertfail is used whenever the assert
expression produces a false value. The prototype for the __assertfail system call is:

 .extern .func __assertfail (.param t1 message, .param t1 file, .param .b32
 line, .param t1 function, .param t2 charSize)

The following are the definitions for the __assertfail parameters.

‣ message : The pointer to the string that should be output. For 32-bit addresses, type t1
is .b32. For 64-bit addresses, type t1 is .b64.

‣ file : The pointer to the file name string associated with the assert. For 32-bit addresses,
type t1 is .b32. For 64-bit addresses, type t1 is .b64.

‣ line : The line number associated with the assert.

‣ function : The pointer to the function name string associated with the assert. For 32-bit
addresses, type t1 is .b32. For 64-bit addresses, type t1 is .b64.

‣ charSize : The size in bytes of the characters contained in the __assertfail parameter
strings. The only supported character size is 1. The character size is defined by the type
size_t. When size_t is 32 bits, type t2 is .b32. When size_t is 64 bits, type t2 is .b64.

The __assertfail system call is emitted as part of the assert macro defined in "assert.h".

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 12

Chapter 5. Debug Information

Debug information is encoded in DWARF (Debug With Arbitrary Record Format).

5.1. Generation of Debug Information
The responsibility for generating debug information is split between the PTX producer and the
PTX-to-SASS backend. The PTX producer is responsible for emitting binary DWARF into the
PTX file, using the .section and .b8-.b16-.b32-and-.b64 directives in PTX. This should contain
the .debug_info and .debug_abbrev sections, and possibly optional sections .debug_pubnames
and .debug_aranges. These sections are standard DWARF2 sections that refer to labels and
registers in the PTX.

The PTX-to-SASS backend is responsible for generating the .debug_line section from the .file
and .loc directives in the PTX file. This section maps source lines to SASS addresses. The
backend also generates the .debug_frame section.

5.2. CUDA-Specific DWARF Definitions
In order to support debugging of multiple memory segments, address class codes are
defined to reflect the memory space of variables. The address-class values are emitted as the
DW_AT_address_class attribute for all variable and parameter Debugging Information Entries.
The address class codes are defined in the below table.

Code Value Description
ADDR_code_space 1 Code storage

ADDR_reg_space 2 Register storage

ADDR_sreg_space 3 Special register storage

ADDR_const_space 4 Constant storage

ADDR_global_space 5 Global storage

ADDR_local_space 6 Local storage

ADDR_param_space 7 Parameter storage

ADDR_shared_space 8 Shared storage

ADDR_surf_space 9 Surface storage

ADDR_tex_space 10 Texture storage

Debug Information

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 13

Code Value Description
ADDR_tex_sampler_space 11 Texture sampler storage

ADDR_generic_space 12 Generic-address storage

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 14

Chapter 6. Example

The following is example PTX with debug information for implementing the following program
that makes a call:

__device__ __noinline__ int foo (int i, int j)
{
 return i+j;
}

__global__ void test (int *p)
{
 *p = foo(1, 2);
}

The resulting PTX would be something like:

.version 4.2

.target sm_20, debug

.address_size 64

 .file 1 "call_example.cu"

.visible .func (.param .b32 func_retval0) // return value
_Z3fooii(
 .param .b32 _Z3fooii_param_0, // parameter "i"
 .param .b32 _Z3fooii_param_1) // parameter "j"
{
 .reg .s32 %r<4>;
 .loc 1 1 1 // following instructions are for line 1

func_begin0:
 ld.param.u32 %r1, [_Z3fooii_param_0]; // load 1st param
 ld.param.u32 %r2, [_Z3fooii_param_1]; // load 2nd param
 .loc 1 3 1 // following instructions are for line 3
 add.s32 %r3, %r1, %r2;
 st.param.b32 [func_retval0+0], %r3; // store return value
 ret;
func_end0:
}

.visible .entry _Z4testPi(
 .param .u64 _Z4testPi_param_0) // parameter *p
{
 .reg .s32 %r<4>;
 .reg .s64 %rd<2>;
 .loc 1 6 1

func_begin1:

Example

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 15

 ld.param.u64 %rd1, [_Z4testPi_param_0]; // load *p
 mov.u32 %r1, 1;
 mov.u32 %r2, 2;
 .loc 1 8 9
 .param .b32 param0;
 st.param.b32 [param0+0], %r1; // store 1
 .param .b32 param1;
 st.param.b32 [param1+0], %r2; // store 2
 .param .b32 retval0;
 call.uni (retval0), _Z3fooii, (param0, param1); // call foo
 ld.param.b32 %r3, [retval0+0]; // get return value
 st.u32 [%rd1], %r3; // *p = return value
 .loc 1 9 2
 ret;
func_end1:
}

.section .debug_info {
 .b32 262
 .b8 2, 0
 .b32 .debug_abbrev
 .b8 8, 1, 108, 103, 101, 110, 102, 101, 58, 32, 69, 68, 71, 32, 52, 46, 57
 .b8 0, 4, 99, 97, 108, 108, 49, 46, 99, 117, 0
 .b64 0
 .b32 .debug_line // the .debug_line section will be created by ptxas from the .loc
 .b8 47, 104, 111, 109, 101, 47, 109, 109, 117, 114, 112, 104, 121, 47, 116
 .b8 101, 115, 116, 0, 2, 95, 90, 51, 102, 111, 111, 105, 105, 0, 95, 90
 .b8 51, 102, 111, 111, 105, 105, 0
 .b32 1, 1, 164
 .b8 1
 .b64 func_begin0 // start and end location of foo
 .b64 func_end0
 .b8 1, 156, 3, 105, 0
 .b32 1, 1, 164
 .b8 5, 144, 177, 228, 149, 1, 2, 3, 106, 0
 .b32 1, 1, 164
 .b8 5, 144, 178, 228, 149, 1, 2, 0, 4, 105, 110, 116, 0, 5
 .b32 4
 .b8 2, 95, 90, 52, 116, 101, 115, 116, 80, 105, 0, 95, 90, 52, 116, 101
 .b8 115, 116, 80, 105, 0
 .b32 1, 6, 253
 .b8 1
 .b64 func_begin1 // start and end location of test
 .b64 func_end1
 .b8 1, 156, 3, 112, 0
 .b32 1, 6, 259
 .b8 9, 3
 .b64 _Z4testPi_param_0
 .b8 7, 0, 5, 118, 111, 105, 100, 0, 6
 .b32 164
 .b8 12, 0
}
.section .debug_abbrev {
 .b8 1, 17, 1, 37, 8, 19, 11, 3, 8, 17, 1, 16, 6, 27, 8, 0, 0, 2, 46, 1, 135
 .b8 64, 8, 3, 8, 58, 6, 59, 6, 73, 19, 63, 12, 17, 1, 18, 1, 64, 10, 0, 0
 .b8 3, 5, 0, 3, 8, 58, 6, 59, 6, 73, 19, 2, 10, 51, 11, 0, 0, 4, 36, 0, 3
 .b8 8, 62, 11, 11, 6, 0, 0, 5, 59, 0, 3, 8, 0, 0, 6, 15, 0, 73, 19, 51, 11
 .b8 0, 0, 0
}
.section .debug_pubnames {
 .b32 41
 .b8 2, 0
 .b32 .debug_info
 .b32 262, 69

Example

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 16

 .b8 95, 90, 51, 102, 111, 111, 105, 105, 0
 .b32 174
 .b8 95, 90, 52, 116, 101, 115, 116, 80, 105, 0
 .b32 0
}

PTX Writer's Guide To Interoperability TRM-06721-001_v11.5 | 17

Chapter 7. C++

The C++ implementation for device functions follows the Itanium C++ ABI. However, not
everything in C++ is supported. In particular, the following are not supported in device code.

‣ Exceptions and try/catch blocks

‣ RTTI

‣ STL library

‣ Global constructors and destructors

‣ Virtual functions and classes across host and device (i.e., vtables cannot be used across
host and device)

There are also a few C features that are not currently supported:

‣ stdio other than printf

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2021 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	Introduction
	Data Representation
	2.1. Fundamental Types
	2.2. Aggregates and Unions
	2.3. Bit Fields
	2.4. Texture, Sampler, and Surface Types

	Function Calling Sequence
	3.1. Registers
	3.2. Stack Frame
	3.3. Parameter Passing

	System Calls
	Debug Information
	5.1. Generation of Debug Information
	5.2. CUDA-Specific DWARF Definitions

	Example
	C++

