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Chapter 1. NVIDIA Ampere GPU
Architecture Tuning Guide

1.1.  NVIDIA Ampere GPU Architecture
The NVIDIA Ampere GPU architecture is NVIDIA's latest architecture for CUDA compute
applications. The NVIDIA Ampere GPU architecture retains and extends the same CUDA
programming model provided by previous NVIDIA GPU architectures such as Turing and Volta,
and applications that follow the best practices for those architectures should typically see
speedups on the NVIDIA A100 GPU without any code changes. This guide summarizes the ways
that an application can be fine-tuned to gain additional speedups by leveraging the NVIDIA
Ampere GPU architecture's features.1

For further details on the programming features discussed in this guide, please refer to the
CUDA C++ Programming Guide.

1.2.  CUDA Best Practices
The performance guidelines and best practices described in the CUDA C++ Programming
Guide and the CUDA C++ Best Practices Guide apply to all CUDA-capable GPU architectures.
Programmers must primarily focus on following those recommendations to achieve the best
performance.

The high-priority recommendations from those guides are as follows:

‣ Find ways to parallelize sequential code.

‣ Minimize data transfers between the host and the device.

‣ Adjust kernel launch configuration to maximize device utilization.

‣ Ensure global memory accesses are coalesced.

‣ Minimize redundant accesses to global memory whenever possible.

1 Throughout this guide, Kepler refers to devices of compute capability 3.x, Maxwell refers to devices of compute capability 5.x,
Pascal refers to device of compute capability 6.x, Volta refers to devices of compute capability 7.0, Turing refers to devices of
compute capability 7.5, and NVIDIA Ampere GPU Architecture refers to devices of compute capability 8.x

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
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‣ Avoid long sequences of diverged execution by threads within the same warp.

1.3.  Application Compatibility
Before addressing specific performance tuning issues covered in this guide, refer to the
NVIDIA Ampere GPU Architecture Compatibility Guide for CUDA Applications to ensure
that your application is compiled in a way that is compatible with the NVIDIA Ampere GPU
Architecture.

1.4.  NVIDIA Ampere GPU Architecture
Tuning

1.4.1.  Streaming Multiprocessor
The NVIDIA Ampere GPU architecture's Streaming Multiprocessor (SM) provides the following
improvements over Volta and Turing.

1.4.1.1.  Occupancy
The maximum number of concurrent warps per SM remains the same as in Volta (i.e., 64), and
other factors influencing warp occupancy are:

‣ The register file size is 64K 32-bit registers per SM.

‣ The maximum number of registers per thread is 255.

‣ The maximum number of thread blocks per SM is 32 for devices of compute capability 8.0
(i.e., A100 GPUs) and 16 for GPUs with compute capability 8.6.

‣ For devices of compute capability 8.0 (i.e., A100 GPUs) shared memory capacity per SM
is 164 KB, a 71% increase compared to V100's capacity of 96 KB. For GPUs with compute
capability 8.6, shared memory capacity per SM is 100 KB.

‣ For devices of compute capability 8.0 (i.e., A100 GPUs) the maximum shared memory per
thread block is 163 KB. For GPUs with compute capability 8.6 maximum shared memory
per thread block is 99 KB.

Overall, developers can expect similar occupancy as on Volta without changes to their
application.

1.4.1.2.  Asynchronous Data Copy from Global Memory to
Shared Memory

The NVIDIA Ampere GPU architecture adds hardware acceleration for copying data from
global memory to shared memory. These copy instructions are asynchronous, with respect to
computation and allow users to explicitly control overlap of compute with data movement from

http://docs.nvidia.com/cuda/ampere-compatibility-guide/
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/CUDA_Occupancy_Calculator.xls
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global memory into the SM. These instructions also avoid using extra registers for memory
copies and can also bypass the L1 cache. This new feature is exposed via the pipeline API
in CUDA. For more information please refer to the section on Async Copy in the CUDA C++
Programming Guide.

1.4.1.3.  Hardware Acceleration for Split Arrive/Wait
Barrier

The NVIDIA Ampere GPU architecture adds hardware acceleration for a split arrive/wait
barrier in shared memory. These barriers can be used to implement fine grained thread
controls, producer-consumer computation pipeline and divergence code patterns in CUDA.
These barriers can also be used alongside the asynchronous copy. For more information
on the Arrive/Wait Barriers refer to the Arrive/Wait Barrier section in the CUDA C++
Programming Guide.

1.4.1.4.  Warp level support for Reduction Operations
The NVIDIA Ampere GPU architecture adds native support for warp wide reduction operations
for 32-bit signed and unsigned integer operands. The warp wide reduction operations support
arithmetic add, min, and max operations on 32-bit signed and unsigned integers and bitwise
and, or and xor operations on 32-bit unsigned integers.

For more details on the new warp wide reduction operations refer to Warp Reduce Functions
in the CUDA C++ Programming Guide.

1.4.1.5.  Improved Tensor Core Operations
The NVIDIA Ampere GPU architecture includes new Third Generation Tensor Cores that are
more powerful than the Tensor Cores used in Volta and Turing SMs. The new Tensor Cores
use a larger base matrix size and add powerful new math modes including:

‣ Support for FP64 Tensor Core, using new DMMA instructions.

‣ Support for Bfloat16 Tensor Core, through HMMA instructions. BFloat16 format is
especially effective for DL training scenarios. Bfloat16 provides 8-bit exponent i.e., same
range as FP32, 7-bit mantissa and 1 sign-bit.

‣ Support for TF32 Tensor Core, through HMMA instructions. TF32 is a new 19-bit Tensor
Core format that can be easily integrated into programs for more accurate DL training
than 16-bit HMMA formats. TF32 provides 8-bit exponent, 10-bit mantissa and 1 sign-bit.

‣ Support for bitwise AND along with bitwise XOR which was introduced in Turing, through
BMMA instructions.

The following table presents the evolution of matrix instruction sizes and supported data types
for Tensor Cores across different GPU architecture generations.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#async-copy
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#async-copy
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#aw-barrier
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#aw-barrier
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#warp-reduce-functions
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Instruction GPU
Architecture

Input Matrix
format

Output
Accumulator

format

Matrix
Instruction

Size (MxNxK)
NVIDIA Volta
Architecture FP16 FP16 / FP32 8x8x4

NVIDIA Turing
Architecture FP16 FP16 / FP32 8x8x4 / 16x8x8 /

16x8x16HMMA (16-
bit precision)

NVIDIA Ampere
Architecture FP16 / BFloat16

FP16 / FP32

(BFloat16 only
supports FP32

as accumulator)

16x8x8 / 16x8x16

NVIDIA Volta
Architecture N/A N/A N/A

NVIDIA Turing
Architecture N/A N/A N/AHMMA (19-

bit precision)

NVIDIA Ampere
Architecture TF32 (19-bits) FP32 16x8x4

NVIDIA Volta
Architecture N/A N/A N/A

NVIDIA Turing
Architecture

unsigned char/
signed char (8-

bit precision)
int32 8x8x16IMMA (Integer

MMA)

NVIDIA Ampere
Architecture

unsigned char/
signed char (8-

bit precision)
int32 8x8x16 /

16x8x16 / 16x8x32

NVIDIA Volta
Architecture N/A N/A N/A

NVIDIA Turing
Architecture

unsigned u4/
signed u4 (4-
bit precision)

int32 8x8x32IMMA (Integer
sub-byte MMA)

NVIDIA Ampere
Architecture

unsigned u4/
signed u4 (4-
bit precision)

int32 8x8x32 /
16x8x32 / 16x8x64

NVIDIA Volta
Architecture N/A N/A N/A

NVIDIA Turing
Architecture single bit int32 8x8x128BMMA

(Binary MMA)

NVIDIA Ampere
Architecture single bit int32

8x8x128 /
16x8x128 /
16x8x256

NVIDIA Volta
Architecture N/A N/A N/A

DMMA (64-
bit precision) NVIDIA Turing

Architecture N/A N/A N/A
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Instruction GPU
Architecture

Input Matrix
format

Output
Accumulator

format

Matrix
Instruction

Size (MxNxK)
NVIDIA Ampere

Architecture FP64 FP64 8x8x4

For more details on the new Tensor Core operations refer to the Warp Matrix Multiply section
in the CUDA C++ Programming Guide.

1.4.1.6.  Improved FP32 throughput
Devices of compute capability 8.6 have 2x more FP32 operations per cycle per SM than
devices of compute capability 8.0. While a binary compiled for 8.0 will run as is on 8.6, it is
recommended to compile explicitly for 8.6 to benefit from the increased FP32 throughput.

1.4.2.  Memory System

1.4.2.1.  Increased Memory Capacity and High Bandwidth
Memory

The NVIDIA A100 GPU increases the HBM2 memory capacity from 32 GB in V100 GPU to 40 GB
in A100 GPU. Along with the increased memory capacity, the bandwidth is increased by 72%,
from 900 GB/s on Volta V100 to 1550 GB/s on A100.

1.4.2.2.  Increased L2 capacity and L2 Residency Controls
The NVIDIA Ampere GPU architecture increases the capacity of the L2 cache to 40 MB in Tesla
A100, which is 7x larger than Tesla V100. Along with the increased capacity, the bandwidth of
the L2 cache to the SMs is also increased. The NVIDIA Ampere GPU architecture allows CUDA
users to control the persistence of data in L2 cache. For more information on the persistence
of data in L2 cache, refer to the section on managing L2 cache in the CUDA C++ Programming
Guide.

1.4.2.3.  Unified Shared Memory/L1/Texture Cache
The NVIDIA A100 GPU based on compute capability 8.0 increases the maximum capacity of
the combined L1 cache, texture cache and shared memory to 192 KB, 50% larger than the L1
cache in NVIDIA V100 GPU. The combined L1 cache capacity for GPUs with compute capability
8.6 is 128 KB.

In the NVIDIA Ampere GPU architecture, the portion of the L1 cache dedicated to
shared memory (known as the carveout) can be selected at runtime as in previous
architectures such as Volta, using cudaFuncSetAttribute() with the attribute
cudaFuncAttributePreferredSharedMemoryCarveout. The NVIDIA A100 GPU supports
shared memory capacity of 0, 8, 16, 32, 64, 100, 132 or 164 KB per SM. GPUs with compute
capability 8.6 support shared memory capacity of 0, 8, 16, 32, 64 or 100 KB per SM.

CUDA reserves 1 KB of shared memory per thread block. Hence, the A100 GPU enables
a single thread block to address up to 163 KB of shared memory and GPUs with compute

http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#L2_access_intro
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capability 8.6 can address up to 99 KB of shared memory in a single thread block. To maintain
architectural compatibility, static shared memory allocations remain limited to 48 KB, and an
explicit opt-in is also required to enable dynamic allocations above this limit. See the CUDA C+
+ Programming Guide for details.

Like Volta, the NVIDIA Ampere GPU architecture combines the functionality of the L1 and
texture caches into a unified L1/Texture cache which acts as a coalescing buffer for memory
accesses, gathering up the data requested by the threads of a warp prior to delivery of that
data to the warp. Another benefit of its union with shared memory, similar to Volta L1 is
improvement in terms of both latency and bandwidth.

1.4.3.  Third Generation NVLink
The third generation of NVIDIA’s high-speed NVLink interconnect is implemented in A100
GPUs, which significantly enhances multi-GPU scalability, performance, and reliability with
more links per GPU, much faster communication bandwidth, and improved error-detection
and recovery features. The third generation NVLink has the same bi-directional data rate of 50
GB/s per link, but uses half the number of signal pairs to achieve this bandwidth. Therefore,
the total number of links available is increased to twelve in A100, versus six in V100, yielding
600 GB/s bidirectional bandwidth versus 300 GB/s for V100.

NVLink operates transparently within the existing CUDA model. Transfers between NVLink-
connected endpoints are automatically routed through NVLink, rather than PCIe. The
cudaDeviceEnablePeerAccess() API call remains necessary to enable direct transfers (over
either PCIe or NVLink) between GPUs. The cudaDeviceCanAccessPeer() can be used to
determine if peer access is possible between any pair of GPUs.

In the NVIDIA Ampere GPU architecture remote NVLINK accesses go through a Link TLB
on the remote GPU. This Link TLB has a reach of 64 GB to the remote GPU's memory.
Applications with remote random accesses may want to constrain the remotely accessed
region to 64 GB for each peer GPU.

http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
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Appendix A. Revision History

Version 1.1

‣ Initial Public Release

‣ Added support for compute capability 8.6
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