
TB-06711-001_v11.5 | January 2022

Precision and Performance: Floating
Point and IEEE 754 Compliance for
NVIDIA GPUs

White paper

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | ii

Table of Contents

Chapter 1. Introduction.. 1

Chapter 2. Floating Point... 2
2.1. Formats..2

2.2. Operations and Accuracy..3

2.3. The Fused Multiply-Add (FMA)...4

Chapter 3. Dot Product: An Accuracy Example...7
3.1. Example Algorithms..7

3.2. Comparison... 9

Chapter 4. CUDA and Floating Point... 11
4.1. Compute Capability 2.0 and Above.. 11

4.2. Rounding Modes..11

4.3. Controlling Fused Multiply-add..12

4.4. Compiler Flags..13

4.5. Differences from x86.. 13

Chapter 5. Considerations for a Heterogeneous World.. 14
5.1. Mathematical Function Accuracy...14

5.2. x87 and SSE...15

5.3. Core Counts...15

5.4. Verifying GPU Results...16

Chapter 6. Concrete Recommendations..17

Appendix A. Acknowledgements.. 18

Appendix B. References... 19

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | iii

List of Figures

Figure 1. Multiply and Add Code Fragment and Output for x86 and NVIDIA Fermi GPU6

Figure 2. Serial Method to Compute Vectors Dot Product .. 8

Figure 3. FMA Method to Compute Vector Dot Product .. 8

Figure 4. The Parallel Method to Reduce Individual Elements Products into a Final Sum 9

Figure 5. Algorithms Results vs. the Correct Mathematical Dot Product9

Figure 6. Cosine Computations using the glibc Math Library ... 15

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | iv

Abstract

A number of issues related to floating point accuracy and compliance are a frequent source
of confusion on both CPUs and GPUs. The purpose of this white paper is to discuss the most
common issues related to NVIDIA GPUs and to supplement the documentation in the CUDA C+
+ Programming Guide.

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 1

Chapter 1. Introduction

Since the widespread adoption in 1985 of the IEEE Standard for Binary Floating-Point Arithmetic
(IEEE 754-1985 [1]) virtually all mainstream computing systems have implemented the
standard, including NVIDIA with the CUDA architecture. IEEE 754 standardizes how arithmetic
results should be approximated in floating point. Whenever working with inexact results,
programming decisions can affect accuracy. It is important to consider many aspects of
floating point behavior in order to achieve the highest performance with the precision required
for any specific application. This is especially true in a heterogeneous computing environment
where operations will be performed on different types of hardware.

Understanding some of the intricacies of floating point and the specifics of how NVIDIA
hardware handles floating point is obviously important to CUDA programmers striving to
implement correct numerical algorithms. In addition, users of libraries such as cuBLAS and
cuFFT will also find it informative to learn how NVIDIA handles floating point under the hood.

We review some of the basic properties of floating point calculations in Chapter 2. We also
discuss the fused multiply-add operator, which was added to the IEEE 754 standard in
2008 [2] and is built into the hardware of NVIDIA GPUs. In Chapter 3 we work through an
example of computing the dot product of two short vectors to illustrate how different choices
of implementation affect the accuracy of the final result. In Chapter 4 we describe NVIDIA
hardware versions and NVCC compiler options that affect floating point calculations. In
Chapter 5 we consider some issues regarding the comparison of CPU and GPU results.
Finally, in Chapter 6 we conclude with concrete recommendations to programmers that deal
with numeric issues relating to floating point on the GPU.

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 2

Chapter 2. Floating Point

2.1. Formats
Floating point encodings and functionality are defined in the IEEE 754 Standard [2] last revised
in 2008. Goldberg [5] gives a good introduction to floating point and many of the issues that
arise.

The standard mandates binary floating point data be encoded on three fields: a one bit sign
field, followed by exponent bits encoding the exponent offset by a numeric bias specific to each
format, and bits encoding the significand (or fraction).

sign exponent fraction

In order to ensure consistent computations across platforms and to exchange floating
point data, IEEE 754 defines basic and interchange formats. The 32 and 64 bit basic binary
floating point formats correspond to the C data types float and double. Their corresponding
representations have the following bit lengths:

1 8 23float

1 11 52double

For numerical data representing finite values, the sign is either negative or positive, the
exponent field encodes the exponent in base 2, and the fraction field encodes the significand
without the most significant non-zero bit. For example, the value -192 equals (-1)1 x 27 x 1.5,
and can be represented as having a negative sign, an exponent of 7, and a fractional part .5.
The exponents are biased by 127 and 1023, respectively, to allow exponents to extend from
negative to positive. Hence the exponent 7 is represented by bit strings with values 134 for
float and 1030 for double. The integral part of 1. is implicit in the fraction.

Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 3

1 10000110

float

1 10000000110

.100000000000000000000000

.10000000000000000...0000000

double

Also, encodings to represent infinity and not-a-number (NaN) data are reserved. The IEEE 754
Standard [2] describes floating point encodings in full.

Given that the fraction field uses a limited number of bits, not all real numbers can be
represented exactly. For example the mathematical value of the fraction 2/3 represented in
binary is 0.10101010... which has an infinite number of bits after the binary point. The value
2/3 must be rounded first in order to be represented as a floating point number with limited
precision. The rules for rounding and the rounding modes are specified in IEEE 754. The most
frequently used is the round-to-nearest-or-even mode (abbreviated as round-to-nearest). The
value 2/3 rounded in this mode is represented in binary as:

0 01111110

float

0 01111111110

.01010101010101010101011

.01010101010101010...1010101

double

The sign is positive and the stored exponent value represents an exponent of -1.

2.2. Operations and Accuracy
The IEEE 754 standard requires support for a handful of operations. These include the
arithmetic operations add, subtract, multiply, divide, square root, fused-multiply-add,
remainder, conversion operations, scaling, sign operations, and comparisons. The results of
these operations are guaranteed to be the same for all implementations of the standard, for a
given format and rounding mode.

The rules and properties of mathematical arithmetic do not hold directly for floating point
arithmetic because of floating point's limited precision. For example, the table below shows
single precision values A, B, and C, and the mathematical exact value of their sum computed
using different associativity.

Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 4

Mathematically, (A + B) + C does equal A + (B + C).

Let rn(x) denote one rounding step on x. Performing these same computations in single
precision floating point arithmetic in round-to-nearest mode according to IEEE 754, we obtain:

For reference, the exact, mathematical results are computed as well in the table above. Not
only are the results computed according to IEEE 754 different from the exact mathematical
results, but also the results corresponding to the sum rn(rn(A + B) + C) and the sum rn(A +
rn(B + C)) are different from each other. In this case, rn(A + rn(B + C)) is closer to the correct
mathematical result than rn(rn(A + B) + C).

This example highlights that seemingly identical computations can produce different results
even if all basic operations are computed in compliance with IEEE 754.

Here, the order in which operations are executed affects the accuracy of the result. The
results are independent of the host system. These same results would be obtained using any
microprocessor, CPU or GPU, which supports single precision floating point.

2.3. The Fused Multiply-Add (FMA)
In 2008 the IEEE 754 standard was revised to include the fused multiply-add operation (FMA).
The FMA operation computes with only one rounding step. Without the FMA
operation the result would have to be computed as with two rounding steps,
one for multiply and one for add. Because the FMA uses only a single rounding step the result
is computed more accurately.

Let's consider an example to illustrate how the FMA operation works using decimal arithmetic
first for clarity. Let's compute with four digits of precision after the decimal point, or a
total of five digits of precision including the leading digit before the decimal point.

For , the correct mathematical result is . The
closest number using only four digits after the decimal point is . In

Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 5

this case which corresponds to the fused multiply-add
operation . The alternative is to compute separate multiply and add
steps. For the multiply, , so . The final result is

.

Rounding the multiply and add separately yields a result that is off by 0.00064. The
corresponding FMA computation is wrong by only 0.00004, and its result is closest to the
correct mathematical answer. The results are summarized below:

Below is another example, using binary single precision values:

In this particular case, computing as an IEEE 754 multiply followed by
an IEEE 754 add loses all bits of precision, and the computed result is 0. The alternative
of computing the FMA provides a result equal to the mathematical value. In
general, the fused-multiply-add operation generates more accurate results than computing
one multiply followed by one add. The choice of whether or not to use the fused operation
depends on whether the platform provides the operation and also on how the code is
compiled.

Figure 1 shows CUDA C++ code and output corresponding to inputs A and B and operations
from the example above. The code is executed on two different hardware platforms: an x86-
class CPU using SSE in single precision, and an NVIDIA GPU with compute capability 2.0. At
the time this paper is written (Spring 2011) there are no commercially available x86 CPUs
which offer hardware FMA. Because of this, the computed result in single precision in SSE
would be 0. NVIDIA GPUs with compute capability 2.0 do offer hardware FMAs, so the result
of executing this code will be the more accurate one by default. However, both results are
correct according to the IEEE 754 standard. The code fragment was compiled without any
special intrinsics or compiler options for either platform.

The fused multiply-add helps avoid loss of precision during subtractive cancellation.
Subtractive cancellation occurs during the addition of quantities of similar magnitude with
opposite signs. In this case many of the leading bits cancel, leaving fewer meaningful bits of
precision in the result. The fused multiply-add computes a double-width product during the
multiplication. Thus even if subtractive cancellation occurs during the addition there are still
enough valid bits remaining in the product to get a precise result with no loss of precision.

Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 6

Figure 1. Multiply and Add Code Fragment and Output for x86 and NVIDIA
Fermi GPU

union {
 float f;
 unsigned int i
} a, b;
float r;

a.i = 0x3F800001;
b.i = 0xBF800002;
r = a.f * a.f + b.f;

printf("a %.8g\n", a.f);
printf("b %.8g\n", b.f);
printf("r %.8g\n", r);

x86-64 output:

a: 1.0000001
b: -1.0000002
r: 0

NVIDIA Fermi output:

a: 1.0000001
b: -1.0000002
r: 1.4210855e-14

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 7

Chapter 3. Dot Product: An Accuracy
Example

Consider the problem of finding the dot product of two short vectors and , both with four
elements.

This operation is easy to write mathematically, but its implementation in software involves
several choices. All of the strategies we will discuss use purely IEEE 754 compliant operations.

3.1. Example Algorithms
We present three algorithms which differ in how the multiplications, additions, and possibly
fused multiply-adds are organized. These algorithms are presented in Figure 2, Figure 3, and
Figure 4. Each of the three algorithms is represented graphically. Individual operation are
shown as a circle with arrows pointing from arguments to operations.

The simplest way to compute the dot product is using a short loop as shown in Figure 2. The
multiplications and additions are done separately.

Dot Product: An Accuracy Example

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 8

Figure 2. Serial Method to Compute Vectors Dot Product
The serial method uses a simple loop with separate multiplies and adds to compute the do t product of
the vectors. The final result can be represented as ((((a1 x b1) + (a2 x b2)) + (a3 x b3)) + (a4 x b4)).

+

+

+

+

x0

a1 a2

x

x

x

a2 b2

a3 b3

a4 b4

t = 0
for i from 1 to 4

return t

p = rn (ai x bi)
t = rn (t + p)

Figure 3. FMA Method to Compute Vector Dot Product
The FMA method uses a simple loop with fused multiply-adds to compute the dot product of the vectors.
The final result can be represented as a4 x b4 = (a3 x b3 + (a2 x b2 + (a1 x b1 + 0))).

+x

+x
0

Fused multiply-adda1 b1

+x

+x

+x

a2 b2

a3 b3

a4 b4

t = 0
for i from 1 to 4

return t
t = rn (ai x bi + t)

A simple improvement to the algorithm is to use the fused multiply-add to do the multiply and
addition in one step to improve accuracy. Figure 3 shows this version.

Yet another way to compute the dot product is to use a divide-and-conquer strategy in
which we first find the dot products of the first half and the second half of the vectors, then
combine these results using addition. This is a recursive strategy; the base case is the dot
product of vectors of length 1 which is a single multiply. Figure 4 graphically illustrates this
approach. We call this algorithm the parallel algorithm because the two sub-problems can be
computed in parallel as they have no dependencies. The algorithm does not require a parallel
implementation, however; it can still be implemented with a single thread.

Dot Product: An Accuracy Example

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 9

3.2. Comparison
All three algorithms for computing a dot product use IEEE 754 arithmetic and can be
implemented on any system that supports the IEEE standard. In fact, an implementation of the
serial algorithm on multiple systems will give exactly the same result. So will implementations
of the FMA or parallel algorithms. However, results computed by an implementation of the
serial algorithm may differ from those computed by an implementation of the other two
algorithms.

Figure 4. The Parallel Method to Reduce Individual Elements Products
into a Final Sum

The parallel method uses a tree to reduce all the products of individual elements into a final sum. The
final result can be represented as ((a1 x b1) + (a2 x b2)) + ((a3 x b3) + (a4 x b4)).

+

+

x

a2 b2

x

a1 b1

+

x

a4 b4

x

a3 b3

p1 = rn (a1 x b1)
p2 = rn (a2 x b2)
p3 = rn (a3 x b3)
p4 = rn (a4 x b4)
sleft = rn (p1 + p2)
sright = rn (p3 + p4)
t = rn (sleft + sright)
return t

Figure 5. Algorithms Results vs. the Correct Mathematical Dot Product
The three algorithms yield results slightly different from the correct mathematical dot product.

method result float value

exact .0559587528435... 0x3D65350158...

serial .0559588074 0x3D653510

FMA .0559587515 0x3D653501

parallel .0559587478 0x3D653500

For example, consider the vectors:

a = [1.907607, -.7862027, 1.147311, .9604002]
b = [-.9355000, -.6915108, 1.724470, -.7097529]

whose elements are randomly chosen values between -1 and 2. The accuracy of each
algorithm corresponding to these inputs is shown in Figure 5.

The main points to notice from the table are that each algorithm yields a different result,
and they are all slightly different from the correct mathematical dot product. In this example
the FMA version is the most accurate, and the parallel algorithm is more accurate than the
serial algorithm. In our experience these results are typical; fused multiply-add significantly

Dot Product: An Accuracy Example

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 10

increases the accuracy of results, and parallel tree reductions for summation are usually
much more accurate than serial summation.

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 11

Chapter 4. CUDA and Floating Point

NVIDIA has extended the capabilities of GPUs with each successive hardware generation.
Current generations of the NVIDIA architecture such as Tesla Kxx, GTX 8xx, and GTX 9xx,
support both single and double precision with IEEE 754 precision and include hardware
support for fused multiply-add in both single and double precision. In CUDA, the features
supported by the GPU are encoded in the compute capability number. The runtime library
supports a function call to determine the compute capability of a GPU at runtime; the CUDA C
++ Programming Guide also includes a table of compute capabilities for many different devices
[7].

4.1. Compute Capability 2.0 and Above
Devices with compute capability 2.0 and above support both single and double precision
IEEE 754 including fused multiply-add in both single and double precision. Operations
such as square root and division will result in the floating point value closest to the correct
mathematical result in both single and double precision, by default.

4.2. Rounding Modes
The IEEE 754 standard defines four rounding modes: round-to-nearest, round towards positive,
round towards negative, and round towards zero. CUDA supports all four modes. By default,
operations use round-to-nearest. Compiler intrinsics like the ones listed in the tables below
can be used to select other rounding modes for individual operations.

mode interpretation
rn round to nearest, ties to even

rz round towards zero

ru round towards

rd round towards

x + y addition

CUDA and Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 12

__fadd_[rn | rz | ru | rd] (x, y)

x * y

__fmul_[rn | rz | ru | rd] (x, y)

multiplication

fmaf (x, y, z)

__fmaf_[rn | rz | ru | rd] (x, y, z)

FMA

1.0f / x

__frcp_[rn | rz | ru | rd] (x)

reciprocal

x / y

__fdiv_[rn | rz | ru | rd] (x, y)

division

sqrtf(x)

__fsqrt_[rn | rz | ru | rd] (x)

square root

x + y

__dadd_[rn | rz | ru | rd] (x, y)

addition

x * y

__dmul_[rn | rz | ru | rd] (x, y)

multiplication

fma (x, y, z)

__fma_[rn | rz | ru | rd] (x, y, z)

FMA

1.0 / x

__drcp_[rn | rz | ru | rd] (x)

reciprocal

x / y

__ddiv_[rn | rz | ru | rd] (x, y)

division

sqrtf(x)

__dsqrt_[rn | rz | ru | rd] (x)

square root

4.3. Controlling Fused Multiply-add
In general, the fused multiply-add operation is faster and more accurate than performing
separate multiply and add operations. However, on occasion you may wish to disable
the merging of multiplies and adds into fused multiply-add instructions. To inhibit this
optimization one can write the multiplies and additions using intrinsics with explicit rounding
mode as shown in the previous tables. Operations written directly as intrinsics are guaranteed
to remain independent and will not be merged into fused multiply-add instructions. It is also
possible to disable FMA merging via a compiler flag.

CUDA and Floating Point

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 13

4.4. Compiler Flags
Compiler flags relevant to IEEE 754 operations are -ftz={true|false}, -prec-div={true|
false}, and -prec-sqrt={true|false}. These flags control single precision operations on
devices of compute capability of 2.0 or later.

mode flags

IEEE 754 mode (default) -ftz=false

-prec-div=true

-prec-sqrt=true

fast mode -ftz=true

-prec-div=false

-prec-sqrt=false

The default IEEE 754 mode means that single precision operations are correctly rounded and
support denormals, as per the IEEE 754 standard. In the fast mode denormal numbers are
flushed to zero, and the operations division and square root are not computed to the nearest
floating point value. The flags have no effect on double precision or on devices of compute
capability below 2.0.

4.5. Differences from x86
NVIDIA GPUs differ from the x86 architecture in that rounding modes are encoded within
each floating point instruction instead of dynamically using a floating point control word.
Trap handlers for floating point exceptions are not supported. On the GPU there is no status
flag to indicate when calculations have overflowed, underflowed, or have involved inexact
arithmetic. Like SSE, the precision of each GPU operation is encoded in the instruction (for x87
the precision is controlled dynamically by the floating point control word).

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 14

Chapter 5. Considerations for a
Heterogeneous World

5.1. Mathematical Function Accuracy
So far we have only considered simple math operations such as addition, multiplication,
division, and square root. These operations are simple enough that computing the best
floating point result (e.g., the closest in round-to-nearest) is reasonable. For other
mathematical operations computing the best floating point result is harder.

The problem is called the table maker's dilemma. To guarantee the correctly rounded result, it
is not generally enough to compute the function to a fixed high accuracy. There might still be
rare cases where the error in the high accuracy result affects the rounding step at the lower
accuracy.

It is possible to solve the dilemma for particular functions by doing mathematical analysis and
formal proofs [4], but most math libraries choose instead to give up the guarantee of correct
rounding. Instead they provide implementations of math functions and document bounds on
the relative error of the functions over the input range. For example, the double precision sin
function in CUDA is guaranteed to be accurate to within 2 units in the last place (ulp) of the
correctly rounded result. In other words, the difference between the computed result and
the mathematical result is at most ±2 with respect to the least significant bit position of the
fraction part of the floating point result.

For most inputs the sin function produces the correctly rounded result. Take for example the
C code sequence shown in Figure 6. We compiled the code sequence on a 64-bit x86 platform
using gcc version 4.4.3 (Ubuntu 4.3.3-4ubuntu5).

This shows that the result of computing cos(5992555.0) using a common library differs
depending on whether the code is compiled in 32-bit mode or 64-bit mode.

The consequence is that different math libraries cannot be expected to compute exactly the
same result for a given input. This applies to GPU programming as well. Functions compiled
for the GPU will use the NVIDIA CUDA math library implementation while functions compiled
for the CPU will use the host compiler math library implementation (e.g., glibc on Linux).
Because these implementations are independent and neither is guaranteed to be correctly
rounded, the results will often differ slightly.

Considerations for a Heterogeneous World

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 15

Figure 6. Cosine Computations using the glibc Math Library
The computation of cosine using the glibc Math Library yields different results when compiled with -
m32 and -m64.

volatile float x = 5992555.0;
printf("cos(%f): %.10g\n", x, cos(x));

gcc test.c -lm -m64
cos(5992555.000000): 3.320904615e-07

gcc test.c -lm -m32
cos(5992555.000000): 3.320904692e-07

5.2. x87 and SSE
One of the unfortunate realities of C compilers is that they are often poor at preserving
IEEE 754 semantics of floating point operations [6]. This can be particularly confusing on
platforms that support x87 and SSE operations. Just like CUDA operations, SSE operations are
performed on single or double precision values, while x87 operations often use an additional
internal 80-bit precision format. Sometimes the results of a computation using x87 can
depend on whether an intermediate result was allocated to a register or stored to memory.
Values stored to memory are rounded to the declared precision (e.g., single precision for
float and double precision for double). Values kept in registers can remain in extended
precision. Also, x87 instructions will often be used by default for 32-bit compiles but SSE
instructions will be used by default for 64-bit compiles.

Because of these issues, guaranteeing a specific precision level on the CPU can sometimes
be tricky. When comparing CPU results to results computed on the GPU, it is generally
best to compare using SSE instructions. SSE instructions follow IEEE 754 for single and
doubleprecision.

On 32-bit x86 targets without SSE it can be helpful to declare variables using volatile and
force floating point values to be stored to memory (/Op in Visual Studio and -ffloat-store in
gcc). This moves results from extended precision registers into memory, where the precision
is precisely single or double precision. Alternately, the x87 control word can be updated to set
the precision to 24 or 53 bits using the assembly instruction fldcw or a compiler option such
as -mpc32 or-mpc64 in gcc.

5.3. Core Counts
As we have shown in Chapter 3, the final values computed using IEEE 754 arithmetic can
depend on implementation choices such as whether to use fused multiply-add or whether
additions are organized in series or parallel. These differences affect computation on the CPU
and on the GPU.

One way such differences can arise is from differences between the number of concurrent
threads involved in a computation. On the GPU, a common design pattern is to have all
threads in a block coordinate to do a parallel reduction on data within the block, followed
by a serial reduction of the results from each block. Changing the number of threads per

Considerations for a Heterogeneous World

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 16

block reorganizes the reduction; if the reduction is addition, then the change rearranges
parentheses in the long string of additions.

Even if the same general strategy such as parallel reduction is used on the CPU and GPU, it
is common to have widely different numbers of threads on the GPU compared to the CPU. For
example, the GPU implementation might launch blocks with 128 threads per block, while the
CPU implementation might use 4 threads in total.

5.4. Verifying GPU Results
The same inputs will give the same results for individual IEEE 754 operations to a given
precision on the CPU and GPU. As we have explained, there are many reasons why the same
sequence of operations may not be performed on the CPU and GPU. The GPU has fused
multiply-add while the CPU does not. Parallelizing algorithms may rearrange operations,
yielding different numeric results. The CPU may be computing results in a precision higher
than expected. Finally, many common mathematical functions are not required by the IEEE
754 standard to be correctly rounded so should not be expected to yield identical results
between implementations.

When porting numeric code from the CPU to the GPU of course it makes sense to use the x86
CPU results as a reference. But differences between the CPU result and GPU result must be
interpreted carefully. Differences are not automatically evidence that the result computed by
the GPU is wrong or that there is a problem on the GPU.

Computing results in a high precision and then comparing to results computed in a lower
precision can be helpful to see if the lower precision is adequate for a particular application.
However, rounding high precision results to a lower precision is not equivalent to performing
the entire computation in lower precision. This can sometimes be a problem when using
x87 and comparing results against the GPU. The results of the CPU may be computed to an
unexpectedly high extended precision for some or all of the operations. The GPU result will be
computed using single or double precision only.

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 17

Chapter 6. Concrete
Recommendations

The key points we have covered are the following:
Use the fused multiply-add operator.

The fused multiply-add operator on the GPU has high performance and increases the
accuracy of computations. No special flags or function calls are needed to gain this benefit
in CUDA programs. Understand that a hardware fused multiply-add operation is not yet
available on the CPU, which can cause differences in numerical results.

Compare results carefully.
Even in the strict world of IEEE 754 operations, minor details such as organization of
parentheses or thread counts can affect the final result. Take this into account when doing
comparisons between implementations.

Know the capabilities of your GPU.
The numerical capabilities are encoded in the compute capability number of your GPU.
Devices of compute capability 2.0 and later are capable of single and double precision
arithmetic following the IEEE 754 standard, and have hardware units for performing fused
multiply-add in both single and double precision.

Take advantage of the CUDA math library functions.
These functions are documented in Appendix E of the CUDA C++ Programming Guide [7].
The math library includes all the math functions listed in the C99 standard [3] plus some
additional useful functions. These functions have been tuned for a reasonable compromise
between performance and accuracy.
We constantly strive to improve the quality of our math library functionality. Please let us
know about any functions that you require that we do not provide, or if the accuracy or
performance of any of our functions does not meet your needs. Leave comments in the
NVIDIA CUDA forum1 or join the Registered Developer Program2 and file a bug with your
feedback.

1 http://forums.nvidia.com/index.php?showforum=62
2 http://developer.nvidia.com/join-nvidia-registered-developer-program

http://forums.nvidia.com/index.php?showforum=62
http://developer.nvidia.com/join-nvidia-registered-developer-program
http://developer.nvidia.com/join-nvidia-registered-developer-program

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 18

Appendix A. Acknowledgements

This paper was authored by Nathan Whitehead and Alex Fit-Florea for NVIDIA Corporation.

Thanks to Ujval Kapasi, Kurt Wall, Paul Sidenblad, Massimiliano Fatica, Everett Phillips,
Norbert Juffa, and Will Ramey for their helpful comments and suggestions.

Permission to make digital or hard copies of all or part of this work for any use is granted
without fee provided that copies bear this notice and the full citation on the first page.

Precision and Performance: Floating Point and IEEE 754
Compliance for NVIDIA GPUs

TB-06711-001_v11.5 | 19

Appendix B. References

[1] ANSI/IEEE 754-1985. American National Standard - IEEE Standard for Binary Floating-Point
Arithmetic. American National Standards Institute, Inc., New York, 1985.

[2] IEEE 754-2008. IEEE 754–2008 Standard for Floating-Point Arithmetic. August 2008.

[3] ISO/IEC 9899:1999(E). Programming languages - C. American National Standards Institute, Inc.,
New York, 1999.

[4] Catherine Daramy-Loirat, David Defour, Florent de Dinechin, Matthieu Gallet, Nicolas Gast,
and Jean-Michel Muller. CR-LIBM: A library of correctly rounded elementary functions in double-
precision, February 2005.

[5] David Goldberg. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys, March 1991. Edited reprint available at: http://download.oracle.com/
docs/cd/E19957-01/806-3568/ncg_goldberg.html.

[6] David Monniaux. The pitfalls of verifying floating-point computations. ACM Transactions on
Programming Languages and Systems, May 2008.

[7] NVIDIA. CUDA C++ Programming Guide Version 10.2, 2019.

http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html
http://download.oracle.com/docs/cd/E19957-01/806-3568/ncg_goldberg.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2011-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
http://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	List of Figures
	Abstract
	Introduction
	Floating Point
	2.1. Formats
	2.2. Operations and Accuracy
	2.3. The Fused Multiply-Add (FMA)

	Dot Product: An Accuracy Example
	3.1. Example Algorithms
	3.2. Comparison

	CUDA and Floating Point
	4.1. Compute Capability 2.0 and Above
	4.2. Rounding Modes
	4.3. Controlling Fused Multiply-add
	4.4. Compiler Flags
	4.5. Differences from x86

	Considerations for a Heterogeneous World
	5.1. Mathematical Function Accuracy
	5.2. x87 and SSE
	5.3. Core Counts
	5.4. Verifying GPU Results

	Concrete Recommendations
	Acknowledgements
	References

