
TRM-06704-001_v11.6 | March 2022

CUDA Samples

Reference Manual

CUDA Samples TRM-06704-001_v11.6 | ii

Table of Contents

Chapter 1. Release Notes.. 1
1.1. CUDA 11.6..1

1.2. CUDA 11.5..1

1.3. CUDA 11.4 Update 1... 1

1.4. CUDA 11.4..2

1.5. CUDA 11.3..2

1.6. CUDA 11.2..2

1.7. CUDA 11.1..2

1.8. CUDA 11.0..3

1.9. CUDA 10.2..4

1.10. CUDA 10.1 Update 2... 4

1.11. CUDA 10.1 Update 1... 4

1.12. CUDA 10.1..4

1.13. CUDA 10.0..5

1.14. CUDA 9.2..5

1.15. CUDA 9.0..5

1.16. CUDA 8.0..6

1.17. CUDA 7.5..7

1.18. CUDA 7.0..7

1.19. CUDA 6.5..8

1.20. CUDA 6.0..9

1.21. CUDA 5.5..9

1.22. CUDA 5.0..10

1.23. CUDA 4.2..11

1.24. CUDA 4.1..11

Chapter 2. Getting Started... 12
2.1. Getting CUDA Samples...12

Windows.. 12

Linux.. 12

2.2. Building Samples.. 12

Windows.. 12

Linux.. 13

2.3. CUDA Cross-Platform Samples...13

2.4. Using CUDA Samples to Create Your Own CUDA Projects.. 14

2.4.1. Creating CUDA Projects for Windows...14

CUDA Samples TRM-06704-001_v11.6 | iii

2.4.2. Creating CUDA Projects for Linux...14

Chapter 3. Samples Reference.. 16
3.1. Introduction Reference... 17

3.2. Utilities Reference...17

3.3. Concepts and Techniques Reference.. 17

3.4. CUDA Features Reference... 17

3.5. CUDA Libraries Reference... 17

3.6. Domain Specific Reference.. 17

3.7. Performance Reference..17

Chapter 4. Dependencies... 18
Third-Party Dependencies... 18

FreeImage... 18

Message Passing Interface..18

Only 64-Bit.. 18

DirectX... 19

DirectX 12..19

OpenGL.. 19

OpenGL ES.. 19

Vulkan.. 19

OpenMP... 19

Screen..19

X11... 20

EGL.. 20

EGLOutput... 20

EGLSync...20

NVSCI...20

NvMedia...20

CUDA Features...20

CUFFT Callback Routines.. 20

CUDA Dynamic Paralellism... 21

Multi-block Cooperative Groups..21

Multi-Device Cooperative Groups..21

CUBLAS... 21

CUDA Interprocess Communication... 21

CUFFT..21

CURAND.. 21

CUSPARSE.. 21

CUSOLVER...21

CUDA Samples TRM-06704-001_v11.6 | iv

NPP..22

NVJPEG... 22

NVRTC..22

Stream Priorities.. 22

Unified Virtual Memory.. 22

16-bit Floating Point...22

C++11 CUDA..22

Chapter 7. Frequently Asked Questions.. 23

CUDA Samples TRM-06704-001_v11.6 | 1

Chapter 1. Release Notes

This section describes the release notes for the CUDA Samples only. For the release notes for
the whole CUDA Toolkit, please see CUDA Toolkit Release Notes.

1.1. CUDA 11.6
‣ All CUDA samples are now only available on GitHub repository. They are no longer

available via CUDA toolkit.

‣ Added new folder structure for samples.

‣ Added Visual Studio 2022 support to all the samples.

1.2. CUDA 11.5
‣ All CUDA samples are now available on GitHub repository.

‣ Added 4_CUDA_Libraries/cuDLAHybridMode. Demonstrate usage of cuDLA in hybrid
mode. (available only on GitHub repository)

‣ Added 4_CUDA_Libraries/cuDLAStandaloneMode. Demonstrate usage of cuDLA in
standalone mode. (available only on GitHub repository)

‣ Added 4_CUDA_Libraries/cuDLAErrorReporting. Demonstrate DLA error detection via
CUDA. (available only on GitHub repository)

‣ Added 3_CUDA_Features/graphMemoryNodes. Demonstrates memory allocations and
frees within CUDA graphs using Graph APIs and Stream Capture APIs. (available only on
GitHub repository)

‣ Added 3_CUDA_Features/graphMemoryFootprint. Demonstrates how graph memory
nodes re-use virtual addresses and physical memory. (available only on GitHub repository)

1.3. CUDA 11.4 Update 1
‣ Added support for VS Code on linux platform.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples
https://github.com/nvidia/cuda-samples

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 2

1.4. CUDA 11.4
‣ Added 7_CUDALibraries/simpleCUBLAS_LU. Demonstrates batched matrix LU

decomposition using cuBLAS API cublas<t>getrfBatched().

‣ Updated 2_Graphics/simpleVulkan, 2_Graphics/simpleVulkanMMAP and 3_Imaging/
vulkanImageCUDA. Demonstrates use of SPIR-V shaders.

‣ Removed 7_CUDALibraries/boundSegmentsNPP.

1.5. CUDA 11.3
‣ Added 0_Simple/streamOrderedAllocationIPC. Demonstrates IPC pools of stream

ordered memory allocated using cudaMallocAsync and cudaMemPool family of APIs.

‣ Updated 2_Graphics/simpleVulkan. Demonstrates use of timeline semaphore.

‣ Updated 0_Simple/globalToShmemAsyncCopy with a partitioned cuda pipeline producer-
consumer GEMM kernel.

‣ Updated multiple samples to use pinned memory using cudaMallocHost().

1.6. CUDA 11.2
‣ FreeImage is no longer distributed with the CUDA Samples. On Windows, see the

Dependencies section for more details on how to set up FreeImage. On Linux, it is
recommended to install FreeImage with your distribution's package manager.

1.7. CUDA 11.1
‣ Added 2_Graphics/simpleVulkanMMAP. Demonstrates Vulkan CUDA Interop via

cuMemMap APIs where CUDA buffer is imported in vulkan.

‣ Added 7_CUDALibraries/watershedSegmentationNPP. Demonstrates how to use the
NPP watershed segmentation function.

‣ Added 7_CUDALibraries/batchedLabelMarkersAndLabelCompressionNPP.
Demonstrates how to use the NPP label markers generation and label compression
functions based on a Union Find (UF) algorithm including both single image and batched
image versions.

‣ Deprecated Visual Studio 2015 support for all Windows supported samples.

‣ Dropped Visual Studio 2012, 2013 support from all the Windows supported samples.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 3

1.8. CUDA 11.0
‣ Added 0_Simple/globalToShmemAsyncCopy. Demonstrates asynchronous copy of data

from global to shared memory using cuda pipeline. Also demonstrates arrive-wait barrier
for synchronization.

‣ Added 0_Simple/simpleAttributes. Demonstrates the stream attributes that affect L2
locality.

‣ Added 0_Simple/dmmaTensorCoreGemm. Demonstrates double precision GEMM
computation using the WMMA API for double precision employing the Tensor Cores. Also
makes use of asynchronous copy from global to shared memory using cuda pipeline which
leads to further performance gain.

‣ Added 0_Simple/bf16TensorCoreGemm. Demonstrates __nv_bfloat16 (e8m7) GEMM
computation using the WMMA API for __nv_bfloat16 employing the Tensor Cores. Also
makes use of asynchronous copy from global to shared memory using cuda pipeline which
leads to further performance gain.

‣ Added 0_Simple/tf32TensorCoreGemm. Demonstrates tf32 (e8m10) GEMM computation
using the WMMA API for tf32 employing the Tensor Cores. Also makes use of
asynchronous copy from global to shared memory using cuda pipeline which leads to
further performance gain.

‣ Added 0_Simple/simpleAWBarrier. Demonstrates the arrive wait barriers.

‣ Added warp aggregated atomic multi bucket increments kernel using labeled_partition
cooperative groups in 6_Advanced/warpAggregatedAtomicsCG which can be used on
compute capability 7.0 and above GPU architectures.

‣ Added 0_Simple/binaryPartitionCG. Demonstrates binary_partition cooperative groups
creation and usage in divergent path.

‣ Added 6_Advanced/cudaCompressibleMemory. Demonstrates compressible memory
allocation using cuMemMap API.

‣ Removed 7_CUDALibraries/nvgraph_Pagerank, 7_CUDALibraries/
nvgraph_SemiRingSpMV, 7_CUDALibraries/nvgraph_SpectralClustering,
7_CUDALibraries/nvgraph_SSSP as the NVGRAPH library is dropped from CUDA Toolkit
11.0.

‣ Added two new reduction kernels in 6_Advanced/reduction one which demonstrates
reduce_add_sync intrinstic supported on compute capability 8.0 and another which
uses cooperative_groups::reduce function which does thread_block_tile level reduction
introduced from CUDA 11.0

‣ Added windows support to 6_Advanced/c++11_cuda.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 4

1.9. CUDA 10.2
‣ Added 6_Advanced/jacobiCudaGraphs. Demonstrates Instantiated CUDA Graph Update

usage.

‣ Added 0_Simple/memMapIPCDrv. Demonstrates Inter Process Communication using
cuMemMap APIs with one process per GPU for computation.

‣ Added 0_Simple/vectorAddMMAP. Demonstrates how cuMemMap API allows the user to
specify the physical properties of their memory while retaining the contiguous nature of
their access, thus not requiring a change in their program structure.

‣ Added 0_Simple/simpleDrvRuntime. Demonstrates how CUDA Driver and Runtime APIs
can work together to load cuda fatbinary of vector add kernel.

‣ Added 0_Simple/cudaNvSci. Demonstrates CUDA-NvSciBuf/NvSciSync Interop.

1.10. CUDA 10.1 Update 2
‣ Added 3_Imaging/vulkanImageCUDA. Demonstrates how to perform Vulkan Image-CUDA

Interop.

‣ Added 7_CUDALibraries/nvJPEG_encoder. Demonstrates encoding of jpeg images using
NVJPEG Library.

‣ Added Windows support to 7_CUDALibraries/nvJPEG.

‣ Removed DirectX SDK (June 2010 or newer) installation requirement, all the DirectX-CUDA
samples now use DirectX from Windows SDK shipped with Microsoft Visual Studio 2012 or
higher

1.11. CUDA 10.1 Update 1
‣ Added 3_Imaging/NV12toBGRandResize. Demonstrates how to convert and resize NV12

frames to BGR planars frames using CUDA in batch.

‣ Added Visual Studio 2019 support to all the samples.

1.12. CUDA 10.1
‣ Added 0_Simple/immaTensorCoreGemm. Demonstrates integer GEMM computation using

the Warp Matrix Multiply and Accumulate (WMMA) API for integers employing the Tensor
Cores.

‣ Added 2_Graphics/simpleD3D12. Demonstrates Direct3D12 interoperability with CUDA.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 5

‣ Added 7_CUDALibraries/nvJPEG. Demonstrates single and batched decoding of jpeg
images using NVJPEG Library.

‣ Added 7_CUDALibraries/conjugateGradientCudaGraphs. Demonstrates conjugate
gradient solver on GPU using CUBLAS/CUSPARSE library calls captured and called using
CUDA Graph APIs.

‣ Updated 0_Simple/simpleIPC to work on Windows OS as well with TCC enabled GPUs.

1.13. CUDA 10.0
‣ Added 1_Utilities/UnifiedMemoryPerf. Demonstrates the performance comparision

of Unified Memory and other types of memory like zero copy buffers, pageable, pagelocked
memory on a single GPU.

‣ Added 2_Graphics/simpleVulkan. Demonstrates the Vulkan-CUDA Interop. CUDA
imports the Vulkan vertex buffer and operates on it to create sinewave, and synchronizes
with Vulkan through vulkan semaphores imported by CUDA.

‣ Added 0_Simple/simpleCudaGraphs. Demonstrates how to use CUDA Graphs through
Graphs APIs and Stream Capture APIs.

‣ Removed 3_Imaging/cudaDecodeGL, 3_Imaging/cudaDecodeD3D9 as the cuvid library is
dropped from CUDA Toolkit 10.0.

‣ Removed 6_Advanced/cdpLUDecomposition, 7_CUDALibraries/simpleDevLibCUBLAS
as the CUBLAS Device library is dropped from CUDA Toolkit 10.0.

1.14. CUDA 9.2
‣ Added 7_CUDALibraries/boundSegmentsNPP. Demonstrates nppiLabelMarkers to

generate connected region segment labels.

‣ Added 6_Advanced/conjugateGradientMultiDeviceCG. Demonstrates a conjugate
gradient solver on multiple GPUs using Multi Device Cooperative Groups, also uses Unified
Memory optimized using prefetching and usage hints.

‣ Updated 0_Simple/fp16ScalarProduct to use fp16 native operators for half2 and other
fp16 features, it also compare results of using native vs intrinsics fp16 operations.

1.15. CUDA 9.0
‣ Added 7_CUDALibraries/nvgraph_SpectralClustering. Demonstrates Spectral

Clustering using NVGRAPH Library.

‣ Added 6_Advanced/warpAggregatedAtomicsCG. Demonstrates warp aggregated atomics
using Cooperative Groups.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 6

‣ Added 6_Advanced/reductionMultiBlockCG. Demonstrates single pass reduction using
Multi Block Cooperative Groups.

‣ Added 6_Advanced/conjugateGradientMultiBlockCG. Demonstrates a conjugate
gradient solver on GPU using Multi Block Cooperative Groups.

‣ Added Cooperative Groups(CG) support to several samples notable ones to name are
6_Advanced/cdpQuadtree, 6_Advanced/cdpAdvancedQuicksort, 6_Advanced/
threadFenceReduction, 3_Imaging/dxtc, 4_Finance/MonteCarloMultiGPU,
0_Simple/matrixMul_nvrtc.

‣ Added 0_Simple/simpleCooperativeGroups. Illustrates basic usage of Cooperative
Groups within the thread block.

‣ Added 0_Simple/cudaTensorCoreGemm. Demonstrates a GEMM computation using the
Warp Matrix Multiply and Accumulate (WMMA) API introduced in CUDA 9, as well as the
new Tensor Cores introduced in the Volta chip family.

‣ Updated 0_Simple/simpleVoteIntrinsics to use newly added *_sync equivalent of the
vote intrinsics _any, _all.

‣ Updated 6_Advanced/shfl_scan to use newly added *_sync equivalent of the shfl
intrinsics.

1.16. CUDA 8.0
‣ Added 7_CUDALibraries/FilterBorderControlNPP. Demonstrates how any border

version of an NPP filtering function can be used in the most common mode (with border
control enabled), can be used to duplicate the results of the equivalent non-border version
of the NPP function, and can be used to enable and disable border control on various
source image edges depending on what portion of the source image is being used as input.

‣ Added 7_CUDALibraries/cannyEdgeDetectorNPP. Demonstrates the recommended
parameters to use with the nppiFilterCannyBorder_8u_C1R Canny Edge Detection image
filter function. This function expects a single channel 8-bit grayscale input image. You
can generate a grayscale image from a color image by first calling nppiColorToGray()
or nppiRGBToGray(). The Canny Edge Detection function combines and improves on the
techniques required to produce an edge detection image using multiple steps.

‣ Added 7_CUDALibraries/cuSolverSp_LowlevelCholesky. Demonstrates Cholesky
factorization using cuSolverSP's low level APIs.

‣ Added 7_CUDALibraries/cuSolverSp_LowlevelQR. Demonstrates QR factorization using
cuSolverSP's low level APIs.

‣ Added 7_CUDALibraries/BiCGStab. Demonstrates Bi-Conjugate Gradient Stabilized
(BiCGStab) iterative method for nonsymmetric and symmetric positive definite linear
systems using CUSPARSE and CUBLAS

‣ Added 7_CUDALibraries/nvgraph_Pagerank. Demonstrates Page Rank computation
using nvGRAPH Library.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 7

‣ Added 7_CUDALibraries/nvgraph_SemiRingSpMV. Demonstrates Semi-Ring SpMV using
nvGRAPH Library.

‣ Added 7_CUDALibraries/nvgraph_SSSP. Demonstrates Single Source Shortest
Path(SSSP) computation using nvGRAPH Library.

‣ Added 7_CUDALibraries/simpleCUBLASXT. Demonstrates simple example to use
CUBLAS-XT library.

‣ Added 6_Advanced/c++11_cuda. Demonstrates C++11 feature support in CUDA.

‣ Added 1_Utilities/topologyQuery. Demonstrates how to query the topology of a
system with multiple GPU.

‣ Added 0_Simple/fp16ScalarProduct. Demonstrates scalar product calculation of two
vectors of FP16 numbers.

‣ Added 0_Simple/systemWideAtomics. Demonstrates system wide atomic instructions on
migratable memory.

‣ Removed 0_Simple/template_runtime. Its purpose is served by 0_Simple/template.

1.17. CUDA 7.5
‣ Added 7_CUDALibraries/cuSolverDn_LinearSolver. Demonstrates how to use the

CUSOLVER library for performing dense matrix factorization using cuSolverDN's LU, QR
and Cholesky factorization functions.

‣ Added 7_CUDALibraries/cuSolverRf. Demonstrates how to use cuSolverRF, a sparse
re-factorization package of the CUSOLVER library.

‣ Added 7_CUDALibraries/cuSolverSp_LinearSolver. Demonstrates how to use
cuSolverSP which provides sparse set of routines for sparse matrix factorization.

‣ The 2_Graphics/simpleD3D9, 2_Graphics/simpleD3D9Texture, 3_Imaging/
cudaDecodeD3D9, and 5_Simulations/fluidsD3D9 samples have been modified to use
the Direct3D 9Ex API instead of the Direct3D 9 API.

‣ The 7_CUDALibraries/grabcutNPP and 7_CUDALibraries/imageSegmentationNPP
samples have been removed. These samples used the NPP graphcut APIs, which have
been deprecated in CUDA 7.5.

1.18. CUDA 7.0
‣ Removed support for Windows 32-bit builds.

‣ The Makefile x86_64=1 and ARMv7=1 options have been deprecated. Please use
TARGET_ARCH to set the targeted build architecture instead.

‣ The Makefile GCC option has been deprecated. Please use HOST_COMPILER to set the
host compiler instead.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 8

‣ The CUDA Samples are no longer shipped as prebuilt binaries on Windows. Please use VS
Solution files provided to build respective executable.

‣ Added 0_Simple/clock_nvrtc. Demonstrates how to compile clock function kernel at
runtime using libNVRTC to measure the performance of kernel accurately.

‣ Added 0_Simple/inlinePTX_nvrtc. Demonstrates compilation of CUDA kernel having
PTX embedded at runtime using libNVRTC.

‣ Added 0_Simple/matrixMul_nvrtc. Demonstrates compilation of matrix multiplication
CUDA kernel at runtime using libNVRTC.

‣ Added 0_Simple/simpleAssert_nvrtc. Demonstrates compilation of CUDA kernel
having assert() at runtime using libNVRTC.

‣ Added 0_Simple/simpleAtomicIntrinsics_nvrtc. Demonstrates compilation of CUDA
kernel performing atomic operations at runtime using libNVRTC.

‣ Added 0_Simple/simpleTemplates_nvrtc. Demonstrates compilation of templatized
dynamically allocated shared memory arrays CUDA kernel at runtime using libNVRTC.

‣ Added 0_Simple/simpleVoteIntrinsics_nvrtc. Demonstrates compilation of CUDA
kernel which uses vote intrinsics at runtime using libNVRTC.

‣ Added 0_Simple/vectorAdd_nvrtc. Demonstrates compilation of CUDA kernel
performing vector addition at runtime using libNVRTC.

‣ Added 4_Finance/binomialOptions_nvrtc. Demonstrates runtime compilation using
libNVRTC of CUDA kernel which evaluates fair call price for a given set of European
options under binomial model.

‣ Added 4_Finance/BlackScholes_nvrtc. Demonstrates runtime compilation using
libNVRTC of CUDA kernel which evaluates fair call and put prices for a given set of
European options by Black-Scholes formula.

‣ Added 4_Finance/quasirandomGenerator_nvrtc. Demonstrates runtime compilation
using libNVRTC of CUDA kernel which implements Niederreiter Quasirandom Sequence
Generator and Inverse Cumulative Normal Distribution functions for the generation of
Standard Normal Distributions.

1.19. CUDA 6.5
‣ Added 7_CUDALibraries/cuHook. Demonstrates how to build and use an intercept library

with CUDA.

‣ Added 7_CUDALibraries/simpleCUFFT_callback. Demonstrates how to compute a 1D-
convolution of a signal with a filter using a user-supplied CUFFT callback routine, rather
than a separate kernel call.

‣ Added 7_CUDALibraries/simpleCUFFT_MGPU. Demonstrates how to compute a 1D-
convolution of a signal with a filter by transforming both into frequency domain, multiplying
them together, and transforming the signal back to time domain on Multiple GPUs.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 9

‣ Added 7_CUDALibraries/simpleCUFFT_2d_MGPU. Demonstrates how to compute a 2D-
convolution of a signal with a filter by transforming both into frequency domain, multiplying
them together, and transforming the signal back to time domain on Multiple GPUs.

‣ Removed 3_Imaging/cudaEncode. Support for the CUDA Video Encoder (NVCUVENC) has
been removed.

‣ Removed 4_Finance/ExcelCUDA2007. The topic will be covered in a blog post at Parallel
Forall.

‣ Removed 4_Finance/ExcelCUDA2010. The topic will be covered in a blog post at Parallel
Forall.

‣ The 4_Finance/binomialOptions sample is now restricted to running on GPUs with SM
architecture 2.0 or greater.

‣ The 4_Finance/quasirandomGenerator sample is now restricted to running on GPUs
with SM architecture 2.0 or greater.

‣ The 7_CUDALibraries/boxFilterNPP sample now demonstrates how to use the static
NPP libraries on Linux and Mac.

‣ The 7_CUDALibraries/conjugateGradient sample now demonstrates how to use the
static CUBLAS and CUSPARSE libraries on Linux and Mac.

‣ The 7_CUDALibraries/MersenneTwisterGP11213 sample now demonstrates how to use
the static CURAND library on Linux and Mac.

1.20. CUDA 6.0
‣ New featured samples that support a new CUDA 6.0 feature called UVM-Lite

‣ Added 0_Simple/UnifiedMemoryStreams - new CUDA sample that demonstrates the use
of OpenMP and CUDA streams with Unified Memory on a single GPU.

‣ Added 1_Utilities/p2pBandwidthTestLatency - new CUDA sample that demonstrates
how measure latency between pairs of GPUs with P2P enabled and P2P disabled.

‣ Added 6_Advanced/StreamPriorities - This sample demonstrates basic use of the new
CUDA 6.0 feature stream priorities.

‣ Added 7_CUDALibraries/ConjugateGradientUM - This sample implements a conjugate
gradient solver on GPU using cuBLAS and cuSPARSE library, using Unified Memory.

1.21. CUDA 5.5
‣ Linux makefiles have been updated to generate code for the AMRv7 architecture. Only the

ARM hard-float floating point ABI is supported. Both native ARMv7 compilation and cross
compilation from x86 is supported

‣ Performance improvements in CUDA toolkit for Kepler GPUs (SM 3.0 and SM 3.5)

http://devblogs.nvidia.com/parallelforall/
http://devblogs.nvidia.com/parallelforall/
http://devblogs.nvidia.com/parallelforall/
http://devblogs.nvidia.com/parallelforall/

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 10

‣ Makefiles projects have been updated to properly find search default paths for OpenGL,
CUDA, MPI, and OpenMP libraries for all OS Platforms (Mac, Linux x86, Linux ARM).

‣ Linux and Mac project Makefiles now invoke NVCC for building and linking projects.

‣ Added 0_Simple/cppOverload - new CUDA sample that demonstrates how to use C++
overloading with CUDA.

‣ Added 6_Advanced/cdpBezierTessellation - new CUDA sample that demonstrates
an advanced method of implementing Bezier Line Tessellation using CUDA Dynamic
Parallelism. Requires compute capability 3.5 or higher.

‣ Added 7_CUDALibrariess/jpegNPP - new CUDA sample that demonstrates how to use
NPP for JPEG compression on the GPU.

‣ CUDA Samples now have better integration with Nsight Eclipse IDE.

‣ 6_Advanced/ptxjit sample now includes a new API to demonstrate PTX linking at the
driver level.

1.22. CUDA 5.0
‣ New directory structure for CUDA samples. Samples are classified accordingly

to categories: 0_Simple, 1_Utilities, 2_Graphics, 3_Imaging, 4_Finance,
5_Simulations, 6_Advanced, and 7_CUDALibraries

‣ Added 0_Simple/simpleIPC - CUDA Runtime API sample is a very basic sample that
demonstrates Inter Process Communication with one process per GPU for computation.
Requires Compute Capability 2.0 or higher and a Linux Operating System.

‣ Added 0_Simple/simpleSeparateCompilation - demonstrates a CUDA 5.0 feature, the
ability to create a GPU device static library and use it within another CUDA kernel. This
example demonstrates how to pass in a GPU device function (from the GPU device static
library) as a function pointer to be called. Requires Compute Capability 2.0 or higher.

‣ Added 2_Graphics/bindlessTexture - demonstrates use of cudaSurfaceObject,
cudaTextureObject, and MipMap support in CUDA. Requires Compute Capability 3.0 or
higher.

‣ Added 3_Imaging/stereoDisparity - demonstrates how to compute a stereo disparity
map using SIMD SAD (Sum of Absolute Difference) intrinsics. Requires Compute Capability
2.0 or higher.

‣ Added 0_Simple/cdpSimpleQuicksort - demonstrates a simple quicksort implemented
using CUDA Dynamic Parallelism. This sample requires devices with compute capability
3.5 or higher.

‣ Added 0_Simple/cdpSimplePrint - demonstrates simple printf implemented using
CUDA Dynamic Parallelism. This sample requires devices with compute capability 3.5 or
higher.

Release Notes

CUDA Samples TRM-06704-001_v11.6 | 11

‣ Added 6_Advanced/cdpLUDecomposition - demonstrates LU Decomposition
implemented using CUDA Dynamic Parallelism. This sample requires devices with
compute capability 3.5 or higher.

‣ Added 6_Advanced/cdpAdvancedQuicksort - demonstrates an advanced quicksort
implemented using CUDA Dynamic Parallelism. This sample requires devices with
compute capability 3.5 or higher.

‣ Added 6_Advanced/cdpQuadtree - demonstrates Quad Trees implemented using CUDA
Dynamic Parallelism. This sample requires devices with compute capability 3.5 or higher.

‣ Added 7_CUDALibraries/simpleDevLibCUBLAS - implements a simple cuBLAS function
calls that call GPU device API library running cuBLAS functions. cuBLAS device code
functions take advantage of CUDA Dynamic Parallelism and requires compute capability of
3.5 or higher.

1.23. CUDA 4.2
‣ Added segmentationTreeThrust - demonstrates a method to build image segmentation

trees using Thrust. This algorithm is based on Boruvka's MST algorithm.

1.24. CUDA 4.1
‣ Added MersenneTwisterGP11213 - implements Mersenne Twister GP11213, a

pseudorandom number generator using the cuRAND library.

‣ Added HSOpticalFlow - When working with image sequences or video it's often useful
to have information about objects movement. Optical flow describes apparent motion of
objects in image sequence. This sample is a Horn-Schunck method for optical flow written
using CUDA.

‣ Added volumeFiltering - demonstrates basic volume rendering and filtering using 3D
textures.

‣ Added simpleCubeMapTexture - demonstrates how to use texcubemap fetch instruction
in a CUDA C program.

‣ Added simpleAssert - demonstrates how to use GPU assert in a CUDA C program.

‣ Added grabcutNPP - CUDA implementation of Rother et al. GrabCut approach using the 8
neighborhood NPP Graphcut primitive introduced in CUDA 4.1. (C. Rother, V. Kolmogorov,
A. Blake. GrabCut: Interactive Foreground Extraction Using Iterated Graph Cuts. ACM
Transactions on Graphics (SIGGRAPH'04), 2004).

CUDA Samples TRM-06704-001_v11.6 | 12

Chapter 2. Getting Started

The CUDA Samples are an educational resource provided to teach CUDA programming
concepts. The CUDA Samples are not meant to be used for performance measurements.

For system requirements and installation instructions, please refer to the Linux Installation
Guide and the Windows Installation Guide.

2.1. Getting CUDA Samples

Windows
On Windows, the CUDA Samples are installed using the CUDA Toolkit Windows Installer. By
default, the CUDA Samples are installed in:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\

The installation location can be changed at installation time.

Linux
On Linux, to install the CUDA Samples, the CUDA toolkit must first be installed. See the Linux
Installation Guide for more information on how to install the CUDA Toolkit.

Then the CUDA Samples can be installed by running the following command, where
<target_path> is the location where to install the samples:

$ cuda-install-samples-11.6.sh <target_path>

2.2. Building Samples

Windows
The Windows samples are built using the Visual Studio IDE. Solution files (.sln) are provided
for each supported version of Visual Studio, using the format:

*_vs<version>.sln - for Visual Studio <version>

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/
http://docs.nvidia.com/cuda/cuda-installation-guide-for-microsoft-windows/
https://developer.nvidia.com/cuda-downloads#win
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html
http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html

Getting Started

CUDA Samples TRM-06704-001_v11.6 | 13

Complete samples solution files exist at:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\

Each individual sample has its own set of solution files at:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\<sample_dir>\

To build/examine all the samples at once, the complete solution files should be used. To build/
examine a single sample, the individual sample solution files should be used.

Linux
The Linux samples are built using makefiles. To use the makefiles, change the current
directory to the sample directory you wish to build, and run make:

$ cd <sample_dir>
$ make

The samples makefiles can take advantage of certain options:

‣ TARGET_ARCH=<arch> - cross-compile targeting a specific architecture. Allowed
architectures are x86_64, armv7l, aarch64, sbsa, and ppc64le.

By default, TARGET_ARCH is set to HOST_ARCH. On a x86_64 machine, not setting
TARGET_ARCH is the equvalent of setting TARGET_ARCH=x86_64.

$ make TARGET_ARCH=x86_64
$ make TARGET_ARCH=armv7l
$ make TARGET_ARCH=aarch64
$ make TARGET_ARCH=sbsa
$ make TARGET_ARCH=ppc64le

See here for more details.

‣ dbg=1 - build with debug symbols

$ make dbg=1

‣ SMS="A B ..." - override the SM architectures for which the sample will be built, where "A
B ..." is a space-delimited list of SM architectures. For example, to generate SASS for
SM 35 and SM 50, use SMS="35 50".

$ make SMS="35 50"

‣ HOST_COMPILER=<host_compiler> - override the default g++ host compiler. See the
Linux Installation Guide for a list of supported host compilers.

$ make HOST_COMPILER=g++

2.3. CUDA Cross-Platform Samples
CUDA Samples are now located in https://github.com/nvidia/cuda-samples, which includes
instructions for obtaining, building, and running the samples.

http://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#system-requirements
https://github.com/nvidia/cuda-samples

Getting Started

CUDA Samples TRM-06704-001_v11.6 | 14

2.4. Using CUDA Samples to Create Your
Own CUDA Projects

2.4.1. Creating CUDA Projects for Windows
Creating a new CUDA Program using the CUDA Samples infrastructure is easy. We have
provided a template project that you can copy and modify to suit your needs. Just follow these
steps:

(<category> refers to one of the following folders: 0_Simple, 1_Utilities, 2_Graphics,
3_Imaging, 4_Finance, 5_Simulations, 6_Advanced, 7_CUDALibraries.)

 1. Copy the content of:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\<category>\template

to a directory of your own:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\<category>\myproject

 2. Edit the filenames of the project to suit your needs.
 3. Edit the *.sln, *.vcproj and source files.

Just search and replace all occurrences of template with myproject.
 4. Build the 64-bit, release or debug configurations using:

myproject_vs<version>.sln

 5. Run myproject.exe from the release or debug directories located in:

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v11.6\bin\win64\[release|debug]

 6. Now modify the code to perform the computation you require.
See the CUDA Programming Guide for details of programming in CUDA.

2.4.2. Creating CUDA Projects for Linux

Note: The default installation folder <SAMPLES_INSTALL_PATH> is
NVIDIA_CUDA_11.6_Samples and <category> is one of the following: 0_Simple, 1_Utilities,
2_Graphics, 3_Imaging, 4_Finance, 5_Simulations, 6_Advanced, 7_CUDALibraries.

Creating a new CUDA Program using the NVIDIA CUDA Samples infrastructure is easy. We
have provided a template project that you can copy and modify to suit your needs. Just follow
these steps:

 1. Copy the template project:

cd <SAMPLES_INSTALL_PATH>/<category>
cp -r template <myproject>

Getting Started

CUDA Samples TRM-06704-001_v11.6 | 15

cd <SAMPLES_INSTALL_PATH>/<category>

 2. Edit the filenames of the project to suit your needs:

mv template.cu myproject.cu
mv template_cpu.cpp myproject_cpu.cpp

 3. Edit the Makefile and source files.
Just search and replace all occurrences of template with myproject.

 4. Build the project as (release):

make

To build the project as (debug), use "make dbg=1":

make dbg=1

 5. Run the program:

../../bin/x86_64/linux/release/myproject

 6. Now modify the code to perform the computation you require.
See the CUDA Programming Guide for details of programming in CUDA.

CUDA Samples TRM-06704-001_v11.6 | 16

Chapter 3. Samples Reference

This document contains a complete listing of the code samples that are included with the
NVIDIA CUDA Toolkit. It describes each code sample, lists the minimum GPU specification,
and provides links to the source code and white papers if available.

The code samples are divided into the following categories:
Introduction Reference

Basic CUDA samples for beginners that illustrate key concepts with using CUDA and CUDA
runtime APIs.

Utilities Reference
Utility samples that demonstrate how to query device capabilities and measure GPU/CPU
bandwidth.

Concepts and Techniques Reference
Samples that demonstrate CUDA related concepts and common problem solving
techniques.

CUDA Features Reference
Samples that demonstrate CUDA Features.

CUDA Libraries Reference
Samples that demonstrate how to use CUDA platform libraries (NPP, NVJPEG, NVGRAPH
cuBLAS, cuFFT, cuSPARSE, cuSOLVER and cuRAND).

Domain Specific Reference
Samples that are specific to domain (Graphics, Finance, Image Processing).

Performance Reference
Samples that demonstrate performance optimization.

Samples Reference

CUDA Samples TRM-06704-001_v11.6 | 17

3.1. Introduction Reference

3.2. Utilities Reference

3.3. Concepts and Techniques Reference

3.4. CUDA Features Reference

3.5. CUDA Libraries Reference

3.6. Domain Specific Reference

3.7. Performance Reference

CUDA Samples TRM-06704-001_v11.6 | 18

Chapter 4. Dependencies

Some CUDA Samples rely on third-party applications and/or libraries, or features provided by
the CUDA Toolkit and Driver, to either build or execute. These dependencies are listed below.

If a sample has a dependency that is not available on the system, the sample will not be
installed. If a sample has a third-party dependency that is available on the system, but is not
installed, the sample will waive itself at build time.

Each sample's dependencies are listed in the Samples Reference section.

Third-Party Dependencies
These third-party dependencies are required by some CUDA samples. If available, these
dependencies are either installed on your system automatically, or are installable via your
system's package manager (Linux) or a third-party website.

FreeImage
FreeImage is an open source imaging library. FreeImage can usually be installed on Linux
using your distribution's package manager system. FreeImage can also be downloaded from
the FreeImage website.

To set up FreeImage on a Windows system, extract the FreeImage DLL distribution into the
7_CUDALibraries/common/ folder such that 7_CUDALibraries/common/FreeImage/Dist/
x64/ contains the .h, .dll, and .lib files.

Message Passing Interface
MPI (Message Passing Interface) is an API for communicating data between distributed
processes. A MPI compiler can be installed using your Linux distribution's package manager
system. It is also available on some online resources, such as Open MPI. On Windows, to build
and run MPI-CUDA applications one can install MS-MPI SDK.

Only 64-Bit
Some samples can only be run on a 64-bit operating system.

https://freeimage.sourceforge.io/
http://www.open-mpi.org/
https://msdn.microsoft.com/en-us/library/bb524831(v=vs.85).aspx

Dependencies

CUDA Samples TRM-06704-001_v11.6 | 19

DirectX
DirectX is a collection of APIs designed to allow development of multimedia applications on
Microsoft platforms. For Microsoft platforms, NVIDIA's CUDA Driver supports DirectX. Several
CUDA Samples for Windows demonstrates CUDA-DirectX Interoperability, for building such
samples one needs to install Microsoft Visual Studio 2012 or higher which provides Microsoft
Windows SDK for Windows 8.

DirectX 12
DirectX 12 is a collection of advanced low-level programming APIs which can reduce
driver overhead, designed to allow development of multimedia applications on Microsoft
platforms starting with Windows 10 OS onwards. For Microsoft platforms, NVIDIA's CUDA
Driver supports DirectX. Few CUDA Samples for Windows demonstrates CUDA-DirectX12
Interoperability, for building such samples one needs to install Windows 10 SDK or higher ,
with VS 2015 or VS 2017.

OpenGL
OpenGL is a graphics library used for 2D and 3D rendering. On systems which support
OpenGL, NVIDIA's OpenGL implementation is provided with the CUDA Driver.

OpenGL ES
OpenGL ES is an embedded systems graphics library used for 2D and 3D rendering. On
systems which support OpenGL ES, NVIDIA's OpenGL ES implementation is provided with the
CUDA Driver.

Vulkan
Vulkan is a low-overhead, cross-platform 3D graphics and compute API. Vulkan targets high-
performance realtime 3D graphics applications such as video games and interactive media
across all platforms. On systems which support Vulkan, NVIDIA's Vulkan implementation is
provided with the CUDA Driver. For building and running Vulkan applications one needs to
install the Vulkan SDK.

OpenMP
OpenMP is an API for multiprocessing programming. OpenMP can be installed using your
Linux distribution's package manager system. It usually comes preinstalled with GCC. It can
also be found at the OpenMP website.

Screen
Screen is a windowing system found on the QNX operating system. Screen is usually found as
part of the root filesystem.

https://developer.microsoft.com/en-us/windows/downloads/windows-10-sdk
https://www.lunarg.com/vulkan-sdk/
http://openmp.org

Dependencies

CUDA Samples TRM-06704-001_v11.6 | 20

X11
X11 is a windowing system commonly found on *-nix style operating systems. X11 can be
installed using your Linux distribution's package manager, and comes preinstalled on Mac OS
X systems.

EGL
EGL is an interface between Khronos rendering APIs (such as OpenGL, OpenGL ES or OpenVG)
and the underlying native platform windowing system.

EGLOutput
EGLOutput is a set of EGL extensions which allow EGL to render directly to the display.

EGLSync
EGLSync is a set of EGL extensions which provides sync objects that are synchronization
primitive, representing events whose completion can be tested or waited upon.

NVSCI
NvSci is a set of communication interface libraries out of which CUDA interops with NvSciBuf
and NvSciSync. NvSciBuf allows applications to allocate and exchange buffers in memory.
NvSciSync allows applications to manage synchronization objects which coordinate when
sequences of operations begin and end.

NvMedia
NvMedia provides powerful processing of multimedia data for true hardware acceleration
across NVIDIA Tegra devices. Applications leverage the NvMedia Application Programming
Interface (API) to process the image and video data.

CUDA Features
These CUDA features are needed by some CUDA samples. They are provided by either the
CUDA Toolkit or CUDA Driver. Some features may not be available on your system.

CUFFT Callback Routines
CUFFT Callback Routines are user-supplied kernel routines that CUFFT will call when loading
or storing data. These callback routines are only available on Linux x86_64 and ppc64le
systems.

Dependencies

CUDA Samples TRM-06704-001_v11.6 | 21

CUDA Dynamic Paralellism
CDP (CUDA Dynamic Paralellism) allows kernels to be launched from threads running on the
GPU. CDP is only available on GPUs with SM architecture of 3.5 or above.

Multi-block Cooperative Groups
Multi Block Cooperative Groups(MBCG) extends Cooperative Groups and the CUDA
programming model to express inter-thread-block synchronization. MBCG is available on
GPUs with Pascal and higher architecture.

Multi-Device Cooperative Groups
Multi Device Cooperative Groups extends Cooperative Groups and the CUDA programming
model enabling thread blocks executing on multiple GPUs to cooperate and synchronize as
they execute. This feature is available on GPUs with Pascal and higher architecture.

CUBLAS
CUBLAS (CUDA Basic Linear Algebra Subroutines) is a GPU-accelerated version of the BLAS
library.

CUDA Interprocess Communication
IPC (Interprocess Communication) allows processes to share device pointers.

CUFFT
CUFFT (CUDA Fast Fourier Transform) is a GPU-accelerated FFT library.

CURAND
CURAND (CUDA Random Number Generation) is a GPU-accelerated RNG library.

CUSPARSE
CUSPARSE (CUDA Sparse Matrix) provides linear algebra subroutines used for sparse matrix
calculations.

CUSOLVER
CUSOLVER library is a high-level package based on the CUBLAS and CUSPARSE libraries.
It combines three separate libraries under a single umbrella, each of which can be used
independently or in concert with other toolkit libraries. The intent ofCUSOLVER is to provide
useful LAPACK-like features, such as common matrix factorization and triangular solve
routines for dense matrices, a sparse least-squares solver and an eigenvalue solver. In

Dependencies

CUDA Samples TRM-06704-001_v11.6 | 22

addition cuSolver provides a new refactorization library useful for solving sequences of
matrices with a shared sparsity pattern.

NPP
NPP (NVIDIA Performance Primitives) provides GPU-accelerated image, video, and signal
processing functions.

NVJPEG
NVJPEG library provides high-performance, GPU accelerated JPEG decoding functionality for
image formats commonly used in deep learning and hyperscale multimedia applications.

NVRTC
NVRTC (CUDA RunTime Compilation) is a runtime compilation library for CUDA C++.

Stream Priorities
Stream Priorities allows the creation of streams with specified priorities. Stream Priorities is
only available on GPUs with SM architecture of 3.5 or above.

Unified Virtual Memory
UVM (Unified Virtual Memory) enables memory that can be accessed by both the CPU and
GPU without explicit copying between the two. UVM is only available on Linux and Windows
systems.

16-bit Floating Point
FP16 is a 16-bit floating-point format. One bit is used for the sign, five bits for the exponent,
and ten bits for the mantissa. FP16 is only available on specific mobile platforms.

C++11 CUDA
NVCC Support of C++11 features.

https://en.wikipedia.org/wiki/C++11

CUDA Samples TRM-06704-001_v11.6 | 23

Chapter 7. Frequently Asked Questions

Answers to frequently asked questions about CUDA can be found at http://
developer.nvidia.com/cuda-faq and in the CUDA Toolkit Release Notes.

http://developer.nvidia.com/cuda-faq
http://developer.nvidia.com/cuda-faq
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2007-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	Release Notes
	1.1. CUDA 11.6
	1.2. CUDA 11.5
	1.3. CUDA 11.4 Update 1
	1.4. CUDA 11.4
	1.5. CUDA 11.3
	1.6. CUDA 11.2
	1.7. CUDA 11.1
	1.8. CUDA 11.0
	1.9. CUDA 10.2
	1.10. CUDA 10.1 Update 2
	1.11. CUDA 10.1 Update 1
	1.12. CUDA 10.1
	1.13. CUDA 10.0
	1.14. CUDA 9.2
	1.15. CUDA 9.0
	1.16. CUDA 8.0
	1.17. CUDA 7.5
	1.18. CUDA 7.0
	1.19. CUDA 6.5
	1.20. CUDA 6.0
	1.21. CUDA 5.5
	1.22. CUDA 5.0
	1.23. CUDA 4.2
	1.24. CUDA 4.1

	Getting Started
	2.1. Getting CUDA Samples
	Windows
	Linux

	2.2. Building Samples
	Windows
	Linux

	2.3. CUDA Cross-Platform Samples
	2.4. Using CUDA Samples to Create Your Own CUDA Projects
	2.4.1. Creating CUDA Projects for Windows
	2.4.2. Creating CUDA Projects for Linux

	Samples Reference
	3.1. Introduction Reference
	3.2. Utilities Reference
	3.3. Concepts and Techniques Reference
	3.4. CUDA Features Reference
	3.5. CUDA Libraries Reference
	3.6. Domain Specific Reference
	3.7. Performance Reference

	Dependencies
	Third-Party Dependencies
	FreeImage
	Message Passing Interface
	Only 64-Bit
	DirectX
	DirectX 12
	OpenGL
	OpenGL ES
	Vulkan
	OpenMP
	Screen
	X11
	EGL
	EGLOutput
	EGLSync
	NVSCI
	NvMedia

	CUDA Features
	CUFFT Callback Routines
	CUDA Dynamic Paralellism
	Multi-block Cooperative Groups
	Multi-Device Cooperative Groups
	CUBLAS
	CUDA Interprocess Communication
	CUFFT
	CURAND
	CUSPARSE
	CUSOLVER
	NPP
	NVJPEG
	NVRTC
	Stream Priorities
	Unified Virtual Memory
	16-bit Floating Point
	C++11 CUDA

	Frequently Asked Questions

