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Chapter 1. Overview

This document provides an overview of NVIDIA® Tegra® memory architecture and
considerations for porting code from a discrete GPU (dGPU) attached to an x86 system to the
Tegra® integrated GPU (iGPU). It also discusses EGL interoperability.

This guide is for developers who are already familiar with programming in CUDA®, and C/C++,
and who want to develop applications for the Tegra® SoC.

Performance guidelines, best practices, terminology, and general information provided in
the CUDA C++ Programming Guide and the CUDA C++ Best Practices Guide are applicable to all
CUDA-capable GPU architectures, including Tegra® devices.

The CUDA C++ Programming Guide and the CUDA C Best Practices Guide are available at the
following web sites:

CUDA C++ Programming Guide:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

CUDA C++ Best Practices Guide:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html
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Chapter 2. Memory Management

In Tegra® devices, both the CPU (Host) and the iGPU share SoC DRAM memory. A dGPU
with separate DRAM memory can be connected to the Tegra device over PCIe or NVLink. It is
currently supported only on the NVIDIA DRIVE platform.

An overview of a dGPU-connected Tegra® memory system is shown in Figure 1.

Figure 1. dGPU-connected Tegra Memory System

In Tegra, device memory, host memory, and unified memory are allocated on the same
physical SoC DRAM. On a dGPU, device memory is allocated on the dGPU DRAM. The caching
behavior in a Tegra system is different from that of an x86 system with a dGPU. The caching
and accessing behavior of different memory types in a Tegra system is shown in Table 1.

Table 1. Characteristics of Different Memory Types in a Tegra System

Memory Type CPU iGPU Tegra-connected dGPU

Device memory Not directly accessible Cached Cached

Pageable host
memory

Cached Not directly
accessible

Not directly accessible

Pinned host
memory

Uncached where
compute capability is
less than 7.2.

Uncached Uncached
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Cached where
compute capability is
greater than or equal
to 7.2.

Unified memory Cached Cached Not supported

On Tegra, because device memory, host memory, and unified memory are allocated on the
same physical SoC DRAM, duplicate memory allocations and data transfers can be avoided.

2.1.  I/O Coherency
I/O coherency (also known as one-way coherency) is a feature with which an I/O device such as
a GPU can read the latest updates in CPU caches. It removes the need to perform CPU cache
management operations when the same physical memory is shared between CPU and GPU.
The GPU cache management operations still need to be performed because the coherency is
one way. Please note that the CUDA driver internally performs the GPU cache management
operations when managed memory or interop memory is used.

I/O coherency is supported on Tegra devices starting with Xavier SOC. Applications should
realize benefits from this HW feature without needing to make changes to the application’s
code (see point 2 below).

The following functionalities depend on I/O coherency support:

 1. cudaHostRegister()/cuMemHostRegister() is supported only on
platforms which are I/O coherent. The host register support can be
queried using the device attribute cudaDevAttrHostRegisterSupported /
CU_DEVICE_ATTRIBUTE_HOST_REGISTER_SUPPORTED.

 2. CPU cache for pinned memory allocated using
cudaMallocHost()/cuMemHostAlloc()/cuMemAllocHost() is enabled only on platforms
which are I/O coherent.

2.2.  Estimating Total Allocatable Device
Memory on an Integrated GPU Device

The cudaMemGetInfo() API returns the snapshot of free and total amount of memory
available for allocation for the GPU. The free memory could change if any other client allocate
memory.

The discrete GPU has the dedicated DRAM called VIDMEM which is separate from CPU
memory. The snapshot of free memory in discrete GPU is returned by the cudaMemGetInfo
API.

The integrated GPU, on Tegra SoC, shares the DRAM with CPU and other the Tegra engines.
The CPU can control the contents of DRAM and free DRAM memory by moving the contents of
DMAR to SWAP area or vice versa. The cudaMemGetInfo API currently does not account for
SWAP memory area. The cudaMemGetInfo API may return a smaller size than the actually

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gg49e2f8c2c0bd6fe264f2fc970912e5cd6ea4a004a336c3c95b6ff06ec6269e29
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allocatable memory since the CPU may be able to free up some DRAM region by moving
pages to the SWAP area. In order to estimate the amount of allocatable device memory, CUDA
application developers should consider following:

On Linux and Android platforms: Device allocatable memory on Linux and Android depends
mainly on the total and free sizes of swap space and main memory. The following points can
help users to estimate the total amount of device allocatable memory in various situations:

‣ Host allocated memory = Total used physical memory – Device allocated memory

‣ If (Host allocated memory < Free Swap Space) then Device allocatable memory = Total
Physical Memory – already allocated device memory

‣ If (Host allocated memory > Free Swap Space) then Device allocatable memory = Total
Physical Memory – (Host allocated memory - Free swap space)

Here,

‣ Device allocated memory is memory already allocated on the device. It can be obtained
from the NvMapMemUsed field in /proc/meminfo or from the total field of /sys/kernel/
debug/nvmap/iovmm/clients.

‣ Total used physical memory can be obtained using the free -m command. The used field
in row Mem represents this information.

‣ Total Physical memory is obtained from the MemTotal field in /proc/meminfo.

‣ Free swap space can be find by using the free -m command. The free field in the Swap
row represents this information.

‣ If the free command is not available, the same information can be obtained from /proc/
meminfo as:

‣ Total Used physical memory = MemTotal – MemFree

‣ Free swap space = SwapFree

On QNX platforms: QNX does not use swap space, hence, cudaMemGetInfo.free will be a fair
estimate of allocatable device memory as there is no swap space to move memory pages to
swap area.



CUDA for Tegra DA-06762-001_v11.7   |   5

Chapter 3. Porting Considerations

CUDA applications originally developed for dGPUs attached to x86 systems may require
modifications to perform efficiently on Tegra systems. This section describes the
considerations for porting such applications to a Tegra system, such as selecting an
appropriate memory buffer type (pinned memory, unified memory, and others) and selecting
between iGPU and dGPU, to achieve efficient performance for the application.

3.1.  Memory Selection
CUDA applications can use various kinds of memory buffers, such as device memory,
pageable host memory, pinned memory, and unified memory. Even though these memory
buffer types are allocated on the same physical device, each has different accessing and
caching behaviors, as shown in Table 1. It is important to select the most appropriate memory
buffer type for efficient application execution.

Device Memory

Use device memory for buffers whose accessibility is limited to the iGPU. For example, in an
application with multiple kernels, there may be buffers that are used only by the intermediate
kernels of the application as input or output. These buffers are accessed only by the iGPU.
Such buffers should be allocated with device memory.

Pageable Host Memory

Use pageable host memory for buffers whose accessibility is limited to the CPU.

Pinned Memory

Tegra® systems with different compute capabilities exhibit different behavior in terms of I/
O coherency. For example, Tegra® systems with compute capability greater than or equal to
7.2 are I/O coherent and others are not I/O coherent. On Tegra® systems with I/O coherency,
the CPU access time of pinned memory is as good as pageable host memory because it is
cached on the CPU. However, on Tegra® systems without I/O coherency, the CPU access time
of pinned memory is higher, because it is not cached on the CPU.

Pinned memory is recommended for small buffers because the caching effect is negligible
for such buffers and also because pinned memory does not involve any additional overhead,
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unlike Unified Memory. With no additional overhead, pinned memory is also preferable for
large buffers if the access pattern is not cache friendly on iGPU. For large buffers, when the
buffer is accessed only once on iGPU in a coalescing manner, performance on iGPU can be as
good as unified memory on iGPU.

Unified Memory

Unified memory is cached on the iGPU and the CPU. On Tegra®, using unified memory in
applications requires additional coherency and cache maintenance operations during the
kernel launch, synchronization and prefetching hint calls. This coherency maintenance
overhead is slightly higher on a Tegra® system with compute capability less than 7.2 as they
lack I/O coherency.

On Tegra® devices with I/O coherency (with a compute capability of 7.2 or greater) where
unified memory is cached on both CPU and iGPU, for large buffers which are frequently
accessed by the iGPU and the CPU and the accesses on iGPU are repetitive, unified memory
is preferable since repetitive accesses can offset the cache maintenance cost. On Tegra®

devices without I/O coherency (with a compute capability of less than 7.2), for large buffers
which are frequently accessed by the CPU and the iGPU and the accesses on iGPU are not
repetitive, unified memory is still preferable over pinned memory because pinned memory is
not cached on both CPU and iGPU. That way, the application can take advantage of unified
memory caching on the CPU.

Pinned memory or unified memory can be used to reduce the data transfer overhead between
CPU and iGPU as both memories are directly accessible from the CPU and the iGPU. In an
application, input and output buffers that must be accessible on both the host and the iGPU
can be allocated using either unified memory or pinned memory.

Note: The unified memory model requires the driver and system software to manage
coherence on the current Tegra SOC. Software managed coherence is by nature non-
deterministic and not recommended in a safe context. Zero-copy memory (pinned memory) is
preferable in these applications.

Evaluate the impact of unified memory overheads, pinned memory cache misses, and device
memory data transfers in applications to determine the correct memory selection.

3.2.  Pinned Memory
This section provides guidelines for porting applications that use pinned memory allocations
in x86 systems with dGPUs to Tegra®. CUDA applications developed for a dGPU attached to
x86 system use pinned memory to reduce data transfer time and to overlap data transfers with
kernel execution time. For specific information on this topic, see “Data Transfer Between Host
and Device” and “Asynchronous and Overlapping Transfers with Computation” at the following
websites.

“Data Transfer Between Host and Device”:
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https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-
between-host-and-device

“Asynchronous and Overlapping Transfers with Computation”:

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-
transfers-and-overlapping-transfers-with-computation

On Tegra® systems with no I/O coherency, repetitive access of pinned memory degrades
application performance, because pinned memory is not cached on the CPU in such systems.

A sample application is shown below in which a set of filters and operations (k1, k2, and k3)
are applied to an image. Pinned memory is allocated to reduce data transfer time on an x86
system with a dGPU, increasing the overall application speed. However, targeting a Tegra®

device with the same code causes a drastic increase in the execution time of the readImage()
function because it repeatedly accesses an uncached buffer. This increases the overall
application time. If the time taken by readImage() is significantly higher compared to kernels
execution time, it is recommended to use unified memory to reduce the readImage() time.
Otherwise, evaluate the application with pinned memory and unified memory by removing
unnecessary data transfer calls to decide best suited memory.

// Sample code for an x86 system with a discrete GPU
int main()
{
    int *h_a,*d_a,*d_b,*d_c,*d_d,*h_d;
    int height = 1024;
    int width = 1024;
    size_t sizeOfImage = width * height * sizeof(int); // 4MB image
    
    //Pinned memory allocated to reduce data transfer time
    cudaMallocHost(h_a, sizeOfImage);
    cudaMallocHost(h_d, sizeOfImage);
    
    //Allocate buffers on GPU
    cudaMalloc(&d_a, sizeOfImage);
    cudaMalloc(&d_b, sizeOfImage);
    cudaMalloc(&d_c, sizeOfImage);
    cudaMalloc(&d_d, sizeOfImage);
    
    //CPU reads Image;
    readImage(h_a); // Intialize the h_a buffer
    
    // Transfer image to GPU
    cudaMemcpy(d_a, h_a, sizeOfImage, cudaMemcpyHostToDevice);
    
    // Data transfer is fast as we used pinned memory
    // ----- CUDA Application pipeline start ----
    k1<<<..>>>(d_a,d_b) // Apply filter 1
    k2<<<..>>>(d_b,d_c)// Apply filter 2
    k3<<<..>>>(d_c,d_d)// Some operation on image data
    // ----- CUDA Application pipeline end ----
    
    // Transfer processed image to CPU
    cudaMemcpy(h_d, d_d, sizeOfImage, cudaMemcpyDeviceToHost);
    // Data transfer is fast as we used pinned memory
    
    // Use processed Image i.e h_d in later computations on CPU.
    UseImageonCPU(h_d);
}
            

https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#data-transfer-between-host-and-device
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/index.html#asynchronous-transfers-and-overlapping-transfers-with-computation
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// Porting the code on Tegra
int main()
{
    int *h_a,*d_b,*d_c,*h_d;
    int height = 1024;
    int width = 1024;
    size_t sizeOfImage = width * height * sizeof(int); // 4MB image
    
    //Unified memory allocated for input and output 
    //buffer of application pipeline
    cudaMallocManaged(h_a, sizeOfImage,cudaMemAttachHost);
    cudaMallocManaged(h_d, sizeOfImage);
    
    //Intermediate buffers not needed on CPU side. 
    //So allocate them on device memory
    cudaMalloc(&d_b, sizeOfImage);
    cudaMalloc(&d_c, sizeOfImage);
    
    //CPU reads Image;
    readImage (h_a); // Intialize the h_a buffer
    // ----- CUDA Application pipeline start ----
    // Prefetch input image data to GPU
    cudaStreamAttachMemAsync(NULL, h_a, 0, cudaMemAttachGlobal);
    k1<<<..>>>(h_a,d_b)
    k2<<<..>>>(d_b,d_c)
    k3<<<..>>>(d_c,h_d)
    // Prefetch output image data to CPU
    cudaStreamAttachMemAsync(NULL, h_d, 0, cudaMemAttachHost);
    cudaStreamSynchronize(NULL);
    // ----- CUDA Application pipeline end ----
    
    // Use processed Image i.e h_d on CPU side.
    UseImageonCPU(h_d);
} 

The cudaHostRegister() function

The cudaHostRegister() function is not supported on Tegra® devices with compute
capability less than 7.2, because those devices do not have I/O coherency. Use other
pinned memory allocation functions such as cudaMallocHost() and cudaHostAlloc() if
cudaHostRegister() is not supported on the device.

GNU Atomic operations on pinned memory

The GNU atomic operations on uncached memory is not supported on Tegra® CPU. As pinned
memory is not cached on Tegra® devices with compute capability less than 7.2, GNU atomic
operations is not supported on pinned memory.

3.3.  Effective Usage of Unified Memory on
Tegra

Using unified memory in applications requires additional coherency and cache maintenance
operations at kernel launch, synchronization, and prefetching hint calls. These operations are
performed synchronously with other GPU work which can cause unpredictable latencies in the
application.
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The performance of unified memory on Tegra® can be improved by providing data prefetching
hints. The driver can use these prefetching hints to optimize the coherence operations. To
prefetch the data, the cudaStreamAttachMemAsync() function can be used, in addition to the
techniques described in the “Coherency and Concurrency” section of the CUDA C Programming
Guide at the following link:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd

to prefetch the data. The prefetching behavior of unified memory, as triggered by the changing
states of the attachment flag, is shown in Table 2.

Table 2. Unified Memory Prefetching Behavior per Changing Attachment
Flag States

Previous Flag Current Flag Prefetching Behavior

cudaMemAttachGlobal/
cudaMemAttachSingle

cudaMemAttachHost Causes prefetch to CPU

cudaMemAttachHost cudaMemAttachGlobal/

cudaMemAttachSingle

Causes prefetch to GPU

cudaMemAttachGlobal cudaMemAttachSingle No prefetch to GPU

cudaMemAttachSingle cudaMemAttachGlobal No prefetch to GPU

The following example shows usage of cudaStreamAttachMemAsync() to prefetch data.

Note:

However, not supported on Tegra® devices are the data prefetching techniques that use
cudaMemPrefetchAsync() as described in the “Performance Tuning” section of the CUDA C++
Programming Guide at the following web site:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning

Note: There are limitations in QNX system software which prevent implementation of all UVM
optimizations. Because of this, using cudaStreamAttachMemAsync() to prefetch hints on QNX
does not benefit performance.

__global__ void matrixMul(int *p, int *q, int*r, int hp, int hq, int wp, int wq)
{
// Matrix multiplication kernel code
}
void MatrixMul(int hp, int hq, int wp, int wq)
{
    int *p,*q,*r;
    int i;
    size_t sizeP = hp*wp*sizeof(int);
    size_t sizeQ = hq*wq*sizeof(int);
    size_t sizeR = hp*wq*sizeof(int);

    //Attach buffers ‘p’ and ‘q’ to CPU and buffer ‘r’ to GPU
    cudaMallocManaged(&p, sizeP, cudaMemAttachHost);
    cudaMallocManaged(&q, sizeQ, cudaMemAttachHost);
    cudaMallocManaged(&r, sizeR);

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-coherency-hd
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-performance-tuning
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    //Intialize with random values
    randFill(p,q,hp,wp,hq,wq);

    // Prefetch p,q to GPU as they are needed in computation
    cudaStreamAttachMemAsync(NULL, p, 0, cudaMemAttachGlobal);
    cudaStreamAttachMemAsync(NULL, q, 0, cudaMemAttachGlobal);
    matrixMul<<<....>>>(p,q,r, hp,hq,wp,wq);

    // Prefetch 'r' to CPU as only 'r' is needed
    cudaStreamAttachMemAsync(NULL, r, 0, cudaMemAttachHost);
    cudaStreamSynchronize(NULL);

    // Print buffer ‘r’ values
    for(i = 0; i < hp*wq; i++)
    printf("%d ", r[i]);
} 

Note:

An additional cudaStreamSynchronize(NULL) call can be added after the matrixMul kernel
code to avoid callback threads that cause unpredictability in a cudaStreamAttachMemAsync()
call.

3.4.  GPU Selection
On a Tegra system with a dGPU, deciding whether a CUDA application runs on the iGPU or the
dGPU can have implications for the performance of the application. Some of the factors that
need to be considered while making such a decision are kernel execution time, data transfer
time, data locality, and latency. For example, to run an application on a dGPU, data must be
transferred between the SoC and the dGPU. This data transfer can be avoided if the application
runs on an iGPU.

3.5.  Synchronization Mechanism
Selection

The cudaSetDeviceFlags API is used to control the synchronization behaviour of CPU
thread. Until CUDA 10.1, by default, the synchronization mechanism on iGPU uses
cudaDeviceBlockingSync flag, which blocks the CPU thread on a synchronization primitive
when waiting for the device to finish work. The cudaDeviceBlockingSync flag is suited
for platforms with power constraints. But on platforms which requires low latency,
cudaDeviceScheduleSpin flag needs to set manually. Since CUDA 10.1, for each platform,
the default synchronization flag is determined based on what is optimized for that platform.
More information about the synchronization flags is given at cudaSetDeviceFlags API
documentation.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1g130ddae663f1873258fee5a6e0808b71
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__TYPES.html#group__CUDART__TYPES_1gf01347c3dafebf07e1a0b4321a030a63
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__DEVICE.html#group__CUDART__DEVICE_1g69e73c7dda3fc05306ae7c811a690fac
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3.6.  CUDA Features Not Supported on
Tegra

All core features of CUDA are supported on Tegra platforms. The exceptions are listed below.

‣ The cudaHostRegister() function is not supported on QNX systems. This is due to the
limitations on QNX OS. It is supported in Linux systems with compute capability greater
than or equal to 7.2.

‣ System wide atomics are not supported on Tegra devices with compute capability less than
7.2.

‣ Unified memory is not supported on dGPU attached to Tegra.

‣ cudaMemPrefetchAsync() function is not supported since unified memory with
concurrent access is not yet supported on iGPU.

‣ NVIDIA management library (NVML) library is not supported on Tegra. However, as an
alternative to monitor the resource utilization, tegrastats can be used.

‣ Since CUDA 11.5, only events-sharing IPC APIs are supported on L4T and embedded
Linux Tegra devices with compute capability 7.x and higher. The memory-sharing
IPC APIs are still not supported on Tegra platforms. EGLStream, NvSci, or the
cuMemExportToShareableHandle() / cuMemImportFromShareableHandle() APIs can
be used to communicate between CUDA contexts in two processes.

‣ Remote direct memory access (RDMA) is supported only on Tegra devices running L4T or
embedded-linux.

‣ JIT compilation might require a considerable amount of CPU and bandwidth resources,
potentially interfering with other workloads in the system. Thus, JIT compilations such as
PTX-JIT and NVRTC JIT are not recommended for deterministic automotive applications
and can be bypassed completely by compiling for specific GPU targets. JIT compilation is
not supported on Tegra devices in the safe context.

‣ Multi process service (MPS) is not supported on Tegra.

‣ Peer to peer (P2P) communication calls are not supported on Tegra.

‣ The cuSOLVER library is not supported on Tegra systems running QNX.

‣ The nvGRAPH library is not supported.

More information on some of these features can be found at the following web sites:

IPC:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-
communication

NVSCI:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#interprocess-communication


Porting Considerations

CUDA for Tegra DA-06762-001_v11.7   |   12

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-
softwarcommunication-interface-interoperability-nvsci

RDMA:

https://docs.nvidia.com/cuda/gpudirect-rdma/index.html

MPS:

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

P2P:

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-
access

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
https://docs.nvidia.com/cuda/gpudirect-rdma/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#peer-to-peer-memory-access
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Chapter 4. EGL Interoperability

An interop is an efficient mechanism to share resources between two APIs. To share data with
multiple APIs, an API must implement an individual interop for each.

EGL provides interop extensions that allow it to function as a hub connecting APIs, removing
the need for multiple interops, and encapsulating the shared resource. An API must
implement these extensions to interoperate with any other API via EGL. The CUDA supported
EGL interops are EGLStream, EGLImage, and EGLSync.

EGL interop extensions allow applications to switch between APIs without the need to rewrite
code. For example, an EGLStream-based application in which NvMedia is the producer and
CUDA is the consumer can be modified to use OpenGL as the consumer without modifying the
producer code.

Note: On the DRIVE OS platform, NVSCI is provided as an alternative to EGL interoperability for
safety critical applications. Please see NVSCI for more details.

4.1.  EGLStream
EGLStream interoperability facilitates efficient transfer of a sequence of frames from one API
to another API, allowing use of multiple Tegra® engines such as CPU, GPU, ISP, and others.

Consider an application where a camera captures images continuously, shares them with
CUDA for processing, and then later renders those images using OpenGL. In this application,
the image frames are shared across NvMedia, CUDA and OpenGL. The absence of EGLStream
interoperability would require the application to include multiple interops and redundant data
transfers between APIs. EGLStream has one producer and one consumer.

EGLStream offers the following benefits:

‣ Efficient transfer of frames between a producer and a consumer.

‣ Implicit synchronization handling.

‣ Cross-process support.

‣ dGPU and iGPU support.

‣ Linux, QNX, and Android operating system support.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#nvidia-softwarcommunication-interface-interoperability-nvsci
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4.1.1.  EGLStream Flow
The EGLStream flow has the following steps:

 1. Initialize producer and consumer APIs

 2. Create an EGLStream and connect the consumer and the producer.

Note:

EGLStream is created using eglCreateStreamKHR() and destroyed using
eglDestroyStreamKHR().

The consumer should always connect to EGLStream before the producer.

For more information see the EGLStream specification at the following web site: https://
www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt

 3. Allocate memory used for EGL frames.

 4. The producer populates an EGL frame and presents it to EGLStream.

 5. The consumer acquires the frame from EGLStream and releases it back to EGLStream
after processing.

 6. The producer collects the consumer-released frame from EGLStream.

 7. The producer presents the same frame, or a new frame to EGLStream.

 8. Steps 4-7 are repeated until completion of the task, with an old frame or a new frame.

 9. The consumer and the producer disconnect from EGLStream.

 10.Deallocate the memory used for EGL frames.

 11.De-initialize the producer and consumer APIs.

EGLStream application flow is shown in Figure 2.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_stream.txt
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Figure 2. EGLStream Flow

CUDA producer and consumer functions are listed in Table 3.

Table 3. CUDA Producer and Consumer Functions

Role Functionality API

To connect a producer to
EGLStream

cuEGLStreamProducerConnect()

cudaEGLStreamProducerConnect()

To present frame to
EGLStream

cuEGLStreamProducerPresentFrame()

cudaEGLStreamProducerPresentFrame()

Obtain released frames cuEGLStreamProducerReturnFrame()

cudaEGLStreamProducerReturnFrame()

Producer

To disconnect from
EGLStream

cuEGLStreamProducerDisconnect()

cudaEGLStreamProducerDisconnect()

To connect a consumer to
EGLStream

cuEGLStreamConsumerConnect()

cuEGLStreamConsumeConnectWithFlags()

cudaEGLStreamConsumerConnect()

cudaEGLStreamConsumerConnectWithFlags()

Consumer

To acquire frame from
EGLStream

cuEGLStreamConsumerAcquireFrame()

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g5d181803d994a06f1bf9b05f52757bef
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1gbdc9664bfb17dd3fa1e0a3ca68a8cafd
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g7993b0e3802420547e3f403549be65a1
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cudaEGLStreamConsumerAcquireFrame()

To release the consumed
frame

cuEGLStreamConsumerReleaseFrame()

cudaEGLStreamConsumerReleaseFrame()

To disconnect from
EGLStream

cuEGLStreamConsumerDisconnect()

cudaEGLStreamConsumerDisconnect()

4.1.2.  CUDA as Producer
When CUDA is the producer, the supported consumers are CUDA, NvMedia and OpenGL. API
functions to be used when CUDA is the producer are listed in Table 3. Except for connecting
and disconnecting from EGLStream, all API calls are non-blocking.

The following producer side steps are shown in the example code that follows:

 1. Prepare a frame (lines 3-19).

 2. Connect the producer to EGLStream (line 21).

 3. Populate the frame and present to EGLStream (lines 23-25).

 4. Get the released frame back from EGLStream (Line 27).

 5. Disconnect the consumer after completion of the task. (Line 31).

void ProducerThread(EGLStreamKHR eglStream) {
 //Prepares frame
 cudaEglFrame* cudaEgl = (cudaEglFrame *)malloc(sizeof(cudaEglFrame));
 cudaEgl->planeDesc[0].width = WIDTH;
 cudaEgl->planeDesc[0].depth = 0;
 cudaEgl->planeDesc[0].height = HEIGHT;
 cudaEgl->planeDesc[0].numChannels = 4;
 cudaEgl->planeDesc[0].pitch = WIDTH * cudaEgl->planeDesc[0].numChannels;
 cudaEgl->frameType = cudaEglFrameTypePitch;
 cudaEgl->planeCount = 1;
 cudaEgl->eglColorFormat = cudaEglColorFormatARGB;
 cudaEgl->planeDesc[0].channelDesc.f=cudaChannelFormatKindUnsigned
 cudaEgl->planeDesc[0].channelDesc.w = 8;
 cudaEgl->planeDesc[0].channelDesc.x = 8;
 cudaEgl->planeDesc[0].channelDesc.y = 8;
 cudaEgl->planeDesc[0].channelDesc.z = 8;
 size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
 // Buffer allocated by producer
 cudaMalloc(&(cudaEgl->pPitch[0].ptr), numElem);
 //CUDA producer connects to EGLStream
 cudaEGLStreamProducerConnect(&conn, eglStream, WIDTH, HEIGHT))
 // Sets all elements in the buffer to 1
 K1<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem);
 // Present frame to EGLStream
 cudaEGLStreamProducerPresentFrame(&conn, *cudaEgl, NULL);
 
 cudaEGLStreamProducerReturnFrame(&conn, cudaEgl, eglStream);
 .
 .
 //clean up
 cudaEGLStreamProducerDisconnect(&conn);
 
 .
}  

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58
https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g3ab15cff9be3b25447714101ecda6a61
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1gb2ef252e72ad2419506f3cf305753c6a


EGL Interoperability

CUDA for Tegra DA-06762-001_v11.7   |   17

A frame is represented as a cudaEglFramestructure. The frameType parameter in
cudaEglFrame indicates the memory layout of the frame. The supported memory layouts are
CUDA Array and device pointer. Any mismatch in the width and height values of frame with the
values specified in cudaEGLStreamProducerConnect() leads to undefined behavior. In the
sample, the CUDA producer is sending a single frame, but it can send multiple frames over a
loop. CUDA cannot present more than 64 active frames to EGLStream.

The cudaEGLStreamProducerReturnFrame() call waits until it receives the released
frame from the consumer. Once the CUDA producer presents the first frame to EGLstream,
at least one frame is always available for consumer acquisition until the producer
disconnects. This prevents the removal of the last frame from EGLStream, which would block
cudaEGLStreamProducerReturnFrame().

Use the EGL_NV_stream_reset extension to set EGLStream attribute
EGL_SUPPORT_REUSE_NV to false to allow the last frame to be removed from EGLStream. This
allows removing or returning the last frame from EGLStream.

4.1.3.  CUDA as Consumer
When CUDA is the consumer, the supported producers are CUDA, OpenGL, NvMedia, Argus,
and Camera. API functions to be used when CUDA is the consumer are listed in Table 3.
Except for connecting and disconnecting from EGLStream, all API calls are non-blocking.

The following consumer side steps are shown in the sample code that follows:

 1. Connect consumer to EGLStream (line 5).

 2. Acquire frame from EGLStream (lines 8-10).

 3. Process the frame on consumer (line 16).

 4. Release frame back to EGLStream (line 19).

 5. Disconnect the consumer after completion of the task (line 22).

void ConsumerThread(EGLStreamKHR eglStream) {
.
.
//Connect consumer to EGLStream
cudaEGLStreamConsumerConnect(&conn, eglStream);
// consumer acquires a frame
unsigned int timeout = 16000;
cudaEGLStreamConsumerAcquireFrame(& conn, &cudaResource, eglStream, timeout);
//consumer gets a cuda object pointer
cudaGraphicsResourceGetMappedEglFrame(&cudaEgl, cudaResource, 0, 0);
size_t numElem = cudaEgl->planeDesc[0].pitch * cudaEgl->planeDesc[0].height;
.
.
int checkIfOne = 1;
// Checks if each value in the buffer is 1, if any value is not 1, it sets
 checkIfOne = 0. 
K2<<<...>>>(cudaEgl->pPitch[0].ptr, 1, numElem, checkIfOne);
.
.
cudaEGLStreamConsumerReleaseFrame(&conn, cudaResource, &eglStream);
.
.
cudaEGLStreamConsumerDisconnect(&conn);
.
}  

https://docs.nvidia.com/cuda/cuda-driver-api/group__CUDA__EGL.html#group__CUDA__EGL_1g70c84d9d01f343fc07cd632f9cfc3a06
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In the sample code, the CUDA consumer receives a single frame, but it can also receive
multiple frames over a loop. If a CUDA consumer fails to receive a new frame in the specified
time limit using cudaEGLStreamConsumerAcquireFrame(), it reacquires the previous frame
from EGLStream. The time limit is indicated by the timeout parameter.

The application can use eglQueryStreamKHR() to query for the availability of new frames
using. If the consumer uses already released frames, it results in undefined behavior. The
consumer behavior is defined only for read operations. Behavior is undefined when the
consumer writes to a frame.

If the CUDA context is destroyed while connected to EGLStream, the stream is placed in the
EGL_STREAM_STATE_DISCONNECTED_KHR state and the connection handle is invalidated.

4.1.4.  Implicit Synchronization
EGLStream provides implicit synchronization in an application. For example, in the previous
code samples, both the producer and consumer threads are running in parallel and the
K1 and K2 kernel processes access the same frame, but K2 execution in the consumer
thread is guaranteed to occur only after kernel K1 in the producer thread finishes. The
cudaEGLStreamConsumerAcquireFrame() function waits on the GPU side until K1 finishes
and ensures synchronization between producer and consumer. The variable checkIfOne is
never set to 0 inside the K2 kernel in the consumer thread.

Similarly, cudaEGLStreamProducerReturnFrame() in the producer thread is guaranteed to
get the frame only after K2 finishes and the consumer releases the frame. These non-blocking
calls allow the CPU to do other computation in between, as synchronization is taken care of on
the GPU side.

The EGLStreams_CUDA_Interop CUDA sample code shows the usage of EGLStream in detail.

4.1.5.  Data Transfer Between Producer and
Consumer

Data transfer between producer and consumer is avoided when they are present on the same
device. In a Tegra® platform that includes a dGPU however, such as is in NVIDIA DRIVE™ PX
2, the producer and consumer can be present on different devices. In that case, an additional
memory copy is required internally to move the frame between Tegra® SoC DRAM and
dGPU DRAM. EGLStream allows producer and consumer to run on any GPU without code
modification.

Note: On systems where a Tegra® device is connected to a dGPU, if a producer frame uses
CUDA array, both producer and consumer should be on the same GPU. But if a producer frame
uses CUDA device pointers, the consumer can be present on any GPU.

4.1.6.  EGLStream Pipeline
An application can use multiple EGL streams in a pipeline to pass the frames from one API to
another. For an application where NvMedia sends a frame to CUDA for computation, CUDA
sends the same frame to OpenGL for rendering after the computation.

https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__EGL.html#group__CUDART__EGL_1g83dd1bfea48c093d3f0b247754970f58
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The EGLStream pipeline is illustrated in Figure 3.

Figure 3. EGLStream Pipeline

NvMedia and CUDA connect as producer and consumer respectively to one EGLStream. CUDA
and OpenGL connect as producer and consumer respectively to another EGLStream.

Using multiple EGLStreams in pipeline fashion gives the flexibility to send frames across
multiple APIs without allocating additional memory or requiring explicit data transfers.
Sending a frame across the above EGLStream pipeline involves the following steps.

 1. NvMedia sends a frame to CUDA for processing.

 2. CUDA uses the frame for computation and sends to OpenGL for rendering.

 3. OpenGL consumes the frame and releases it back to CUDA.

 4. CUDA releases the frame back to NvMedia.

The above steps can be performed in a loop to facilitate the transfer of multiple frames in the
EGLStream pipeline.

4.2.  EGLImage
An EGLImage interop allows an EGL client API to share image data with other EGL client APIs.
For example, an application can use an EGLImage interop to share an OpenGL texture with
CUDA without allocating any additional memory. A single EGLImage object can be shared
across multiple client APIs for modification.

An EGLImage interop does not provide implicit synchronization. Applications must maintain
synchronization to avoid race conditions.

Note: An EGLImage is created using eglCreateImageKHR() and destroyed using
eglDestroyImageKHR().

For more information see the EGLImage specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt

4.2.1.  CUDA interop with EGLImage
CUDA supports interoperation with EGLImage, allowing CUDA to read or modify the data of an
EGLImage. An EGLImage can be a single or multi-planar resource. In CUDA, a single-planar
EGLImage object is represented as a CUDA array or device pointer. Similarly, a multi-planar
EGLImage object is represented as an array of device pointers or CUDA arrays. EGLImage is
supported on Tegra® devices running the Linux, QNX, or Android operating systems.

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_image_base.txt
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Use the cudaGraphicsEGLRegisterImage() API to register an EGLImage object with CUDA.
Registering an EGLImage with CUDA creates a graphics resource object. An application
can use cudaGraphicsResourceGetMappedEglFrame() to get a frame from the graphics
resource object. In CUDA, a frame is represented as a cudaEglFrame structure. The
frameType parameter in cudaEglFrame indicates if the frame is a CUDA device pointer
or a CUDA array. For a single planar graphics resource, an application can directly obtain
a device pointer or CUDA array using cudaGraphicsResourceGetMappedPointer() or
cudaGraphicsSubResourceGetMappedArray() respectively. A CUDA array can be bound to a
texture or surface reference to access inside a kernel. Also, a multi-dimensional CUDA array
can be read and written via cudaMemcpy3D().

Note: An EGLImage cannot be created from a CUDA object. The
cudaGraphicsEGLRegisterImage() function is only supported on Tegra® devices. Also,
cudaGraphicsEGLRegisterImage() expects only the ‘0’ flag as other API flags are for future
use.

The following sample code shows EGLImage interoperability. In the code, an EGLImage object
eglImage is created using OpenGL texture. The eglImage object is mapped as a CUDA array
pArray in CUDA. The pArray array is bound to a surface object to allow modification of the
OpenGL texture in the changeTexture. The function checkBuf() checks if the texture is
updated with new values.

int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 CUarray pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Initialize the buffer
 for(int y = 0; y < HEIGHT; y++)
 {
    for(int x = 0; x < WIDTH; x++)
    {
    pSurf[(y*WIDTH + x) * 4 ] = 0; pSurf[(y*WIDTH + x) * 4 + 1] = 0;
    pSurf[(y*WIDTH + x) * 4 + 2] = 0; pSurf[(y*WIDTH + x) * 4 + 3] = 0;
    }
 }
 
 // NOP call to error-check the above glut calls
 GL_SAFE_CALL({});
 
 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));
 
 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();
 
 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
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 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);
 glFinish();
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf);
 glFinish();
 
 // Register buffer with CUDA 
cuGraphicsEGLRegisterImage(&pResource, eglImage,0);

 //Get CUDA array from graphics resource object
 cuGraphicsSubResourceGetMappedArray( &pArray, pResource, 0, 0);
 
 cuCtxSynchronize();
 
 //Create a CUDA surface object from pArray
 CUresult status = CUDA_SUCCESS;
 CUDA_RESOURCE_DESC wdsc;
 memset(&wdsc, 0, sizeof(wdsc));
 wdsc.resType = CU_RESOURCE_TYPE_ARRAY; wdsc.res.array.hArray = pArray;
 CUsurfObject writeSurface;
 cuSurfObjectCreate(&writeSurface, &wdsc);
 
 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the OpenGL texture using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(writeSurface, width, height);
 cuCtxSynchronize();
 
 CUDA_MEMCPY3D cpdesc;
 memset(&cpdesc, 0, sizeof(cpdesc));
 cpdesc.srcXInBytes = cpdesc.srcY = cpdesc.srcZ = cpdesc.srcLOD = 0;
 cpdesc.dstXInBytes = cpdesc.dstY = cpdesc.dstZ = cpdesc.dstLOD = 0;
 cpdesc.srcMemoryType = CU_MEMORYTYPE_ARRAY; cpdesc.dstMemoryType =
 CU_MEMORYTYPE_HOST;
 cpdesc.srcArray = pArray; cpdesc.dstHost = (void *)hostSurf;
 cpdesc.WidthInBytes = WIDTH * 4; cpdesc.Height = HEIGHT; cpdesc.Depth = 1;
 
 //Copy CUDA surface object values to hostSurf
 cuMemcpy3D(&cpdesc);
 
 cuCtxSynchronize();
 
 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values as
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 glFinish();
 // Check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);
 
 // Clean up CUDA
 cuGraphicsUnregisterResource(pResource);
 cuSurfObjectDestroy(writeSurface);
 .
 .
}
__global__ void changeTexture(cudaSurfaceObject_t arr, unsigned int
 width, unsigned int height){
 unsigned int x = threadIdx.x + blockIdx.x * blockDim.x;
 unsigned int y = threadIdx.y + blockIdx.y * blockDim.y;
 uchar4 data = make_uchar4(1, 2, 3, 4);
 surf2Dwrite(data, arr, x * 4, y);
}
void checkbuf(unsigned char *ref, unsigned char *hostSurf) { 
 for(int y = 0; y < height*width*4; y++){
 if (ref[y] != hostSurf[y])
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 printf("mis match at %d\n",y);
 } 
} 

Because EGLImage does not provide implicit synchronization, the above sample application
uses glFinish() and cudaThreadSynchronize() calls to achieve synchronization. Both
calls block the CPU thread. To avoid blocking the CPU thread, use EGLSync to provide
synchronization. An example using EGLImage and EGLSync is shown in the following section.

4.3.  EGLSync
EGLSync is a cross-API synchronization primitive. It allows an EGL client API to share its
synchronization object with other EGL client APIs. For example, applications can use an
EGLSync interop to share the OpenGL synchronization object with CUDA.

Note: An EGLSync object is created using eglCreateSyncKHR() and destroyed using
eglDestroySyncKHR().

For more information see the EGLSync specification at the following web site:

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt

4.3.1.  CUDA Interop with EGLSync
In an imaging application, where two clients run on a GPU and share a resource, the absence
of a cross-API GPU synchronization object forces the clients to use CPU-side synchronization
to avoid race conditions. The CUDA interop with EGLSync allows the application to exchange
synchronization objects between CUDA and other client APIs directly. This avoids the need
for CPU-side synchronization and allows CPU to complete other tasks. In CUDA, an EGLSync
object is mapped as a CUDA event.

Note: Currently CUDA interop with EGLSync is supported only on Tegra® devices.

4.3.2.  Creating EGLSync from a CUDA Event
Creating an EGLSync object from a CUDA event is shown in the following sample code. Note
that EGLSync object creation from a CUDA event should happen immediately after the CUDA
event is recorded.

EGLDisplay dpy = eglGetCurrentDisplay();
// Create CUDA event
cudaEvent_t event;
cudaStream_t *stream;
cudaEventCreate(&event);
cudaStreamCreate(&stream);
// Record the event with cuda event
cudaEventRecord(event, stream);
const EGLAttrib attribs[] = {
 EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib )event,
 EGL_NONE
};

https://www.khronos.org/registry/EGL/extensions/KHR/EGL_KHR_fence_sync.txt
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//Create EGLSync from the cuda event
eglsync = eglCreateSync(dpy, EGL_NV_CUDA_EVENT_NV, attribs);
//Wait on the sync
eglWaitSyncKHR(...);  

Note: Initialize a CUDA event before creating an EGLSync object from it to avoid undefined
behavior.

4.3.3.  Creating a CUDA Event from EGLSync
Creating a CUDA event from an EGLSync object is shown in the following sample code.

EGLSync eglsync;
EGLDisplay dpy = eglGetCurrentDisplay();
// Create an eglSync object from openGL fense sync object
eglsync = eglCreateSyncKHR(dpy, EGL_SYNC_FENCE_KHR, NULL);
cudaEvent_t event;
cudaStream_t* stream;
cudaStreamCreate(&stream);
// Create CUDA event from eglSync
cudaEventCreateFromEGLSync(&event, eglSync, cudaEventDefault);
// Wait on the cuda event. It waits on GPU till OpenGL finishes its 
// task
cudaStreamWaitEvent(stream, event, 0);  

Note: The cudaEventRecord() and cudaEventElapsedTime() functions are not supported for
events created from an EGLSync object.

The same example given in the EGLImage section is re-written below to illustrate the usage
of an EGLSync interop. In the sample code, the CPU blocking calls such as glFinish() and
cudaThreadSynchronize() are replaced with EGLSync interop calls.

int width = 256;
int height = 256;
int main()
{
 .
 .
 unsigned char *hostSurf;
 unsigned char *pSurf;
 cudaArray_t pArray;
 unsigned int bufferSize = WIDTH * HEIGHT * 4;
 pSurf= (unsigned char *)malloc(bufferSize); hostSurf = (unsigned char
 *)malloc(bufferSize);
 // Intialize the buffer
 for(int y = 0; y < bufferSize; y++)
 pSurf[y] = 0; 
 
 //Init texture
 GL_SAFE_CALL(glGenTextures(1, &tex));
 GL_SAFE_CALL(glBindTexture(GL_TEXTURE_2D, tex));
 GL_SAFE_CALL(glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, WIDTH, HEIGHT, 0, GL_RGBA,
 GL_UNSIGNED_BYTE, pSurf));
 EGLDisplay eglDisplayHandle = eglGetCurrentDisplay();
 EGLContext eglCtx = eglGetCurrentContext();
 
 cudaEvent_t cuda_event;
 cudaEventCreateWithFlags(cuda_event, cudaEventDisableTiming);
 EGLAttribKHR eglattrib[] = { EGL_CUDA_EVENT_HANDLE_NV, (EGLAttrib) cuda_event,
 EGL_NONE};
 cudaStream_t* stream;
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 cudaStreamCreateWithFlags(&stream,cudaStreamDefault);
 
 EGLSyncKHR eglsync1, eglsync2;
 cudaEvent_t egl_event;
 
 // Create the EGL_Image
 EGLint eglImgAttrs[] = { EGL_IMAGE_PRESERVED_KHR, EGL_FALSE, EGL_NONE, EGL_NONE };
 EGLImageKHR eglImage = eglCreateImageKHR(eglDisplayHandle, eglCtx,
 EGL_GL_TEXTURE_2D_KHR, (EGLClientBuffer)(intptr_t)tex, eglImgAttrs);
 
 glTexSubImage2D(GL_TEXTURE_2D, 0, 0, 0, WIDTH, HEIGHT, GL_RGBA, GL_UNSIGNED_BYTE,
 pSurf); 
 //Creates an EGLSync object from GL Sync object to track
 //finishing of copy.
 eglsync1 = eglCreateSyncKHR(eglDisplayHandle, EGL_SYNC_FENCE_KHR, NULL);
 
 //Create CUDA event object from EGLSync obejct
 cuEventCreateFromEGLSync(&egl_event, eglsync1, cudaEventDefault);
 
 //Waiting on GPU to finish GL copy
 cuStreamWaitEvent(stream, egl_event, 0);
 
 // Register buffer with CUDA 
 cudaGraphicsEGLRegisterImage(&pResource, eglImage, cudaGraphicsRegisterFlagsNone);
 //Get CUDA array from graphics resource object
 cudaGraphicsSubResourceGetMappedArray( &pArray, pResource, 0, 0);
 . 
 . 
 //Create a CUDA surface object from pArray
 struct cudaResourceDesc resDesc;
 memset(&resDesc, 0, sizeof(resDesc));
 resDesc.resType = cudaResourceTypeArray; resDesc.res.array.array = pArray;
 cudaSurfaceObject_t inputSurfObj = 0;
 cudaCreateSurfaceObject(&inputSurfObj, &resDesc);
 
 dim3 blockSize(32,32);
 dim3 gridSize(width/blockSize.x,height/blockSize.y);
 // Modifies the CUDA array using CUDA surface object
 changeTexture<<<gridSize, blockSize>>>(inputSurfObj, width, height);
 cuEventRecord(cuda_event, stream); 
 //Create EGLsync object from CUDA event cuda_event
 eglsync2 = eglCreateSync64KHR(dpy, EGL_SYNC_CUDA_EVENT_NV, eglattrib);
 //waits till kernel to finish
 eglWaitSyncKHR(eglDisplayHandle, eglsync2, 0); 
 .
 //Copy modified pArray values to hostSurf
 . 
 unsigned char* temp = (unsigned char*)(malloc(bufferSize * sizeof(unsigned char)));
 // Get the modified texture values
 GL_SAFE_CALL(glGetTexImage(GL_TEXTURE_2D, 0, GL_RGBA, GL_UNSIGNED_BYTE,
(void*)temp));
 .
 .
 // This function check if the OpenGL texture got modified values
 checkbuf(temp,hostSurf);
 
 // Clean up CUDA
 cudaGraphicsUnregisterResource(pResource);
 cudaDestroySurfaceObject(inputSurfObj);
 eglDestroySyncKHR(eglDisplayHandle, eglsync1);
 eglDestroySyncKHR(eglDisplayHandle, eglsync2);
 cudaEventDestroy(egl_event);
 cudaEventDestroy(cuda_event);
 .
 .
}  
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Chapter 5. cuDLA

DLA (Deep Learning Accelerator) is a fixed function accelerator present on the NVIDIA Tegra
SoC and is used for inference applications. The DLA HW has superior performance/W and
can natively run many of the layers in modern neural networks, thus making it an attractive
value proposition for embedded AI applications. Programming the DLA typically consists of an
offline and online step: in the offline step, an input network is parsed and compiled by the DLA
compiler into a loadable and in the online step, that loadable is executed by the DLA HW to
generate an inference result. The SW stack that is currently provided by NVIDIA to perform the
online or execution step consists of NvMediaDla and the DLA runtime/KMD. Together, these
APIs enable the user to submit a DLA task to the DLA HW for inferencing purposes. The main
functional paths are illustrated in the figure below.

Figure 4. DLA SW stack

It follows from the model above that users wishing to use GPU and DLA together in an
application would have to use interop mechanisms such as EGLStreams/NvSci to share
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buffers as well as synchronization primitives between the GPU and DLA. These interop
mechanisms usually involve many steps for each buffer that is being shared and have limited
ability to fine-tune the scheduling of tasks between the GPU and DLA. cuDLA is an extension
of the CUDA programming model that integrates DLA (Deep Learning Accelerator) with CUDA
thereby making it possible to submit DLA tasks using CUDA programming constructs such
as streams and graphs. Managing shared buffers as well as synchronizing the tasks between
GPU and DLA is transparently handled by cuDLA, freeing up the programmer to focus on the
high-level usecase.

5.1.  Developer Guide
This section describes the key principles involved in programming the DLA HW using cuDLA
APIs. The cuDLA interfaces expose mechanisms to initialize devices, manage memory and
submit DLA tasks. As such, this section discusses how the cuDLA APIs can be used for these
usecases. The detailed specification of these APIs is described in the API specification and
should be referred while writing a cuDLA application.

Since cuDLA is an extension of CUDA, it is designed to work in conjunction with CUDA APIs
that perform CUDA functions such as GPU management, context management etc. Therefore,
the current state of the application in terms of which GPU is selected and the current active
context (and its lifecycle) are all important considerations while evaluating the behavior of a
cuDLA API.

5.1.1.  Device Model
To perform any DLA operation, it is necessary that an application first create a cuDLA device
handle. The cudlaCreateDevice() API creates a logical instance of a cuDLA device wherein
the selected DLA HW instance is coupled with the current active GPU selected via CUDA. For
example, the following code snippet would create a logical instance consisting of the current
GPU (set via cudaSetDevice()) and DLA HW 0. Currently, cuDLA supports only iGPU on Tegra
and an attempt to create a device handle by setting the current GPU as a dGPU would result in
a device creation error during cudlaCreateDevice().

cudlaDevHandle devHandle;
cudlaStatus ret;
ret = cudlaCreateDevice(0, &devHandle, CUDLA_CUDA_DLA);
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Figure 5. Device model

The user can create any number of such logical instances using cudlaCreateDevice() using
any combination of GPU and DLA HW instances (subject to system resource availability):

Figure 6. Device model - multiple instances

In addition, cudlaCreateDevice() supports an alternative flag during device creation
- CUDLA_STANDALONE. This flag can be used by applications when they wish to create
a cuDLA device in standalone mode i.e without coupling it with a GPU device. All device
submissions can be accomplished using cuDLA in standalone mode as well but in this
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mode there is no support for CUDA interactions. Consequently, in what follows, two modes
of execution are considered while describing a particular API or a particular usecase: the
hybrid mode and the standalone mode. The API spec has complete details about which API is
supported in which mode.

5.1.2.  Loading and Querying Modules
The cuDLA device handle needs an appropriate loadable to be associated with it before any
DLA task submission occurs. The loadable is usually created offline using TensorRT. The
loadable has information about the number of input and output tensors as well as their
respective metadata and can be queried by the application to retrieve this information. A
typical application flow after a successful cuDLA device initialization would look like this
(interspersed with some debug logs):

DPRINTF("Device created successfully\n");
 
// Load the loadable from 'loadableData' in which the loadable binary has
// been copied from the location of the loadable - disk or otherwise.
err = cudlaModuleLoadFromMemory(devHandle, loadableData, file_size,
 &amp;moduleHandle, 0);
if (err != cudlaSuccess)
{
    // handle error
}
 
// Get tensor attributes.
uint32_t numInputTensors = 0;
uint32_t numOutputTensors = 0;
cudlaModuleAttribute attribute;
  
err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_INPUT_TENSORS,
 &amp;attribute);
if (err != cudlaSuccess)
{
    // handle error
}
numInputTensors = attribute.numInputTensors;
DPRINTF("numInputTensors = %d\n", numInputTensors);
  
err = cudlaModuleGetAttributes(moduleHandle, CUDLA_NUM_OUTPUT_TENSORS,
 &amp;attribute);
if (err != cudlaSuccess)
{
    // handle error
}
numOutputTensors = attribute.numOutputTensors;
DPRINTF("numOutputTensors = %d\n", numOutputTensors);
 
cudlaModuleTensorDescriptor* inputTensorDesc =
        (cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)
              *numInputTensors);
cudlaModuleTensorDescriptor* outputTensorDesc =
        (cudlaModuleTensorDescriptor*)malloc(sizeof(cudlaModuleTensorDescriptor)
              *numOutputTensors);
  
if ((inputTensorDesc == NULL) || (outputTensorDesc == NULL))
{
    // handle error
}
 
attribute.inputTensorDesc = inputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
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                               CUDLA_INPUT_TENSOR_DESCRIPTORS,
                               &amp;attribute);
if (err != cudlaSuccess)
{
    // handle error
}
  
attribute.outputTensorDesc = outputTensorDesc;
err = cudlaModuleGetAttributes(moduleHandle,
                               CUDLA_OUTPUT_TENSOR_DESCRIPTORS,
                               &amp;attribute);
if (err != cudlaSuccess)
{
    // handle error
}

Applications can use the retrieved tensor descriptors to setup their data buffers in terms of
size and formats. Detailed information about the contents of the tensor descriptors is present
in the API specification section under cudlaModuleGetAttributes().

5.1.3.  Memory Model
The GPU and DLA have different MMUs that manage the VA to PA conversion while performing
their respective functions. The figure below shows an example where the GMMU performs a
translation for GPU VAs and the SMMU performs a similar function for the VAs arriving from
the DLA.

Figure 7. Virtual address to physical address conversion

In hybrid mode, before a CUDA pointer can be accessed by the DLA, it is necessary that the
CUDA pointer be registered with the DLA. This registration step creates an entry in the SMMU
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and returns the corresponding VA for use in task submissions. The following code snippet
shows an example registration for a device handle created with the flag CUDLA_CUDA_DLA:

// Allocate memory on GPU.
void* buffer;
uint32_t size = 100;
 
result = cudaMalloc(&inputBufferGPU, size);
if (result != cudaSuccess)
{
    // handle error
}
 
// Register the CUDA-allocated buffers.
uint64_t* bufferRegisteredPtr = NULL;
 
err = cudlaMemRegister(devHandle,
                       (uint64_t* )inputBufferGPU,
                       size,
                       &bufferRegisteredPtr,
                       0);
if (err != cudlaSuccess)
{
    // handle error
}

In standalone mode, cuDLA functions without the underlying CUDA device. Consequently,
in this mode, the memory allocations performed by the application (which need to be
subsequently registered) need to come from outside CUDA. On Tegra systems, cuDLA
supports registration of NvSciBuf allocations via the cudlaImportExternalMemory() API as
the following code snippet shows:

// Allocate the NvSciBuf object.
NvSciBufObj inputBufObj;
sciError = NvSciBufObjAlloc(reconciledInputAttrList, &inputBufObj);
if (sciError != NvSciError_Success)
{
    // handle error
}
 
uint64_t* inputBufObjRegPtr = NULL;
 
// importing external memory
cudlaExternalMemoryHandleDesc memDesc = { 0 };
memset(&memDesc, 0, sizeof(memDesc));
memDesc.extBufObject = (void *)inputBufObj;
memDesc.size = size;
err = cudlaImportExternalMemory(devHandle, &memDesc, &inputBufObjRegPtr, 0);
if (err != cudlaSuccess)
{
   // handle error
}

5.1.4.  Task Execution and Synchronization Model
Task Execution

Submitting a DLA task for execution is similar to submitting a CUDA kernel to the GPU.
cuDLA natively supports CUDA streams and works seamlessly with the stream semantics to
ensure that all tasks intended for the DLA are executed by the DLA HW only after the previous
tasks on the stream have completed execution. This enables applications to setup complex
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processing workflows between the GPU and the DLA using familiar stream semantics without
having to manage memory coherency and execution dependencies between GPU and DLA. A
visual illustration of the execution model is shown in the following figure. DLA tasks can be
interspersed with GPU tasks in a given stream or multiple streams and cudlaSubmitTask()
handles all the memory/execution dependencies.

Figure 8. cuDLA task execution model

The submit task API needs the input and output tensors in the form of the addresses
registered with the DLA (using cudlaMemRegister()). An application can pre-register
all the required pointers with cuDLA and then use the registered pointers during
cudlaSubmitTask(). This API, in turn, ensures that the results of the previous operations on
the underlying memory corresponding to the registered pointers is visible to the DLA before it
begins execution of the current task. A typical application code consisting of CUDA and cuDLA
operations is shown in the snippet below:

DPRINTF("ALL MEMORY REGISTERED SUCCESSFULLY\n");
 
// Copy data from CPU buffers to GPU buffers.
result = cudaMemcpyAsync(inputBufferGPU, inputBuffer, inputTensorDesc[0].size,
 cudaMemcpyHostToDevice, stream);
if (result != cudaSuccess)
{
    // handle error
}
 
result = cudaMemsetAsync(outputBufferGPU, 0, outputTensorDesc[0].size, stream);
if (result != cudaSuccess)
{
    // handle error
}
     
// Enqueue a cuDLA task.
cudlaTask task;
task.moduleHandle = moduleHandle;
task.outputTensor = &outputBufferRegisteredPtr;
task.numOutputTensors = 1;
task.numInputTensors = 1;
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task.inputTensor = &inputBufferRegisteredPtr;
task.waitEvents = NULL;
task.signalEvents = NULL;
err = cudlaSubmitTask(devHandle, &task, 1, stream, 0);
if (err != cudlaSuccess)
{
    // handle error
}
DPRINTF("SUBMIT IS DONE !!!\n");
  
result = cudaMemcpyAsync(outputBuffer, outputBufferGPU, outputTensorDesc[0].size,
 cudaMemcpyDeviceToHost, stream);
if (result != cudaSuccess)
{
    // handle error
}

In standalone mode, the stream parameter in cudlaSubmitTask() must be specified as
NULL as cuDLA is operating independently of CUDA. In this case, the tasks submitted to the
DLA are executed in FIFO order.

Synchronization

Synchronization of tasks in hybrid mode does not need a different API. Since DLA tasks are
submitted to CUDA streams, it is sufficient to wait on the stream to complete its work in order
to ensure that all DLA tasks submitted on that stream are completed. In this regard DLA
task synchronization is compatible with any of the different synchronization mechanisms
available in CUDA -- Event, Stream, Device -- and the entire CUDA machinery is available for
applications to setup different flows and usecases.

In standalone mode, however, the synchronization mechanisms are different given that cuDLA
operates independently of CUDA. In this mode, the cudlaTask structure has a provision to
specify wait and signal events that cuDLA must wait on and signal respectively as part of
cudlaSubmitTask(). Each submitted task will wait for all its wait events to be signaled
before beginning execution and will provide a signal event (if one is requested for during
cudlaSubmitTask()) that the application (or any other entity) can wait on to ensure that the
submitted task has completed execution. In cuDLA 1.0, only NvSciSync fences are supported
as part of wait events. Furthermore, only NvSciSync objects can be registered and signaled as
part of signal events and the fence corresponding to the signaled event is returned as part of
cudlaSubmitTask().

Like all memory operations, the underlying backing store for the events (in this case the
NvSciSync object) must be registered with cuDLA before using it in a task submission. The
code snippet below shows an example flow where the application creates an input and output
NvSciSync object and registers them, creates fences corresponding to them, marks the
corresponding fences as wait/signal as part of cudlaSubmitTask() and then signals the input
fence and waits on the output fence.

Registering an external semaphore:

sciError = NvSciSyncObjAlloc(nvSciSyncReconciledListObj1, &syncObj1);
if (sciError != NvSciError_Success)
{
    // handle error
}
 
sciError = NvSciSyncObjAlloc(nvSciSyncReconciledListObj2, &syncObj2);
if (sciError != NvSciError_Success)
{
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    // handle error
}
 
// importing external semaphore
uint64_t* nvSciSyncObjRegPtr1 = NULL;
uint64_t* nvSciSyncObjRegPtr2 = NULL;
cudlaExternalSemaphoreHandleDesc semaMemDesc = { 0 };
memset(&semaMemDesc, 0, sizeof(semaMemDesc));
semaMemDesc.extSyncObject = syncObj1;
err = cudlaImportExternalSemaphore(devHandle,
                                   &semaMemDesc,
                                   &nvSciSyncObjRegPtr1,
                                   0);
if (err != cudlaSuccess)
{
    // handle error
}
  
memset(&semaMemDesc, 0, sizeof(semaMemDesc));
semaMemDesc.extSyncObject = syncObj2;
err = cudlaImportExternalSemaphore(devHandle,
                                   &semaMemDesc,
                                   &nvSciSyncObjRegPtr2,
                                   0);
if (err != cudlaSuccess)
{
    // handle error
}
  
DPRINTF("ALL EXTERNAL SEMAPHORES REGISTERED SUCCESSFULLY\n");

Events setup for cudlaSubmitTask():

// Wait events
NvSciSyncFence preFence = NvSciSyncFenceInitializer;
sciError = NvSciSyncObjGenerateFence(syncObj1, &preFence);
if (sciError != NvSciError_Success)
{
    // handle error
}
  
cudlaWaitEvents* waitEvents;
waitEvents = (cudlaWaitEvents *)malloc(sizeof(cudlaWaitEvents));
if (waitEvents == NULL)
{
    // handle error
}
  
waitEvents->numEvents = 1;
CudlaFence* preFences = (CudlaFence *)malloc(waitEvents->numEvents *
                                             sizeof(CudlaFence));
if (preFences == NULL)
{
    // handle error
}
  
preFences[0].fence = &preFence;
preFences[0].type = CUDLA_NVSCISYNC_FENCE;
waitEvents->preFences = preFences;
  
// Signal Events
cudlaSignalEvents* signalEvents;
signalEvents = (cudlaSignalEvents *)malloc(sizeof(cudlaSignalEvents));
if (signalEvents == NULL)
{
    // handle error
}
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signalEvents->numEvents = 1;
uint64_t** devPtrs = (uint64_t **)malloc(signalEvents->numEvents *
                                         sizeof(uint64_t *));
if (devPtrs == NULL)
{
    // handle error
}
 
devPtrs[0] = nvSciSyncObjRegPtr2;
signalEvents->devPtrs = devPtrs;
  
signalEvents->eofFences = (CudlaFence *)malloc(signalEvents->numEvents *
                                               sizeof(CudlaFence));
if (signalEvents->eofFences == NULL)
{
    // handle error
}
  
NvSciSyncFence eofFence = NvSciSyncFenceInitializer;
signalEvents->eofFences[0].fence = &eofFence;
signalEvents->eofFences[0].type = CUDLA_NVSCISYNC_FENCE;
  
// Enqueue a cuDLA task.
cudlaTask task;
task.moduleHandle = moduleHandle;
task.outputTensor = &outputBufObjRegPtr;
task.numOutputTensors = 1;
task.numInputTensors = 1;
task.inputTensor = &inputBufObjRegPtr;
task.waitEvents = waitEvents;
task.signalEvents = signalEvents;
err = cudlaSubmitTask(devHandle, &task, 1, NULL, 0);
if (err != cudlaSuccess)
{
    // handle error
}
DPRINTF("SUBMIT IS DONE !!!\n");

Waiting on the signal event:

// Signal wait events.
// For illustration purposes only. In practice, this signal will be done by another
// entity or driver that provides the data input for this particular submitted task.
NvSciSyncObjSignal(syncObj1);
  
// Wait for operations to finish.
// For illustration purposes only. In practice, this wait will be done by
// another entity or driver that is waiting for the output of the submitted task.
sciError = NvSciSyncFenceWait(reinterpret_cast<NvSciSyncFence*>(signalEvents-
>eofFences[0].fence),
                              nvSciCtx, -1);
if (sciError != NvSciError_Success)
{
    // handle error
}

5.1.5.  Error Reporting Model
The asynchronous nature of task execution results in two kinds of errors that can get reported
via cuDLA APIs:

‣ Synchronous errors
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‣ Asynchronous errors

Synchronous errors are those that are reported by the cuDLA APIs as part of their return code
when they are invoked in an application. Asynchronous errors are those that are detected
later compared to sequential program execution. The typical scenario here is that each task
submitted to the DLA HW executes after a particular duration of time. As a result, if there
are errors in the task execution, they cannot be reported as part of the task submission APIs.
Depending on the timing of the errors, they are reported during a subsequent cuDLA API call
or after a synchronization operation. HW execution errors reported as part of cuDLA APIs
are straightforward to handle at the application level. However, if there is a no cuDLA API
call currently executing or about to execute in the application, then the application needs to
perform extra steps to handle asynchronous errors.

In hybrid mode, DLA HW errors can get reported via CUDA synchronization operations. As
mentioned in the device model section, cuDLA logically associates DLA with a GPU for the
purposes of execution. Therefore, any DLA HW errors are propagated via CUDA to the user.
The user needs to check for DLA-specific errors from CUDA synchronization operations and
then check the cuDLA device handle for the exact error using cudlaGetLastError(). If
there are multiple cuDLA device handles in the application and each of them have submitted
some tasks to cuDLA in hybrid mode, then each and every device handle much be checked
for errors. The underlying model here is to use CUDA to detect DLA HW errors and then use
cudlaGetLastError() on the relevant handle to report the exact error. The code snippet
below shows an example:

result = cudaStreamSynchronize(stream);
if (result != cudaSuccess)
{
    DPRINTF("Error in synchronizing stream = %s\n", cudaGetErrorName(result));
 
    if (result == cudaErrorExternalDevice)
    {
        cudlaStatus hwStatus = cudlaGetLastError(devHandle);
        if (hwStatus != cudlaSuccess)
        {
            DPRINTF("Asynchronous error in HW = %u\n", hwStatus);
        }
    }
}

This error reporting model is compatible with CUDA Driver APIs as well and therefore if the
application uses CUDA Driver APIs for synchronization, similar error codes and error handling
flow is applicable.

In standalone mode, the model is similar with the exception that there is no corresponding
mechanism to detect errors as part of synchronization operations. In this mode, the only
option that an application has to wait on the submitted tasks is to wait on the NvSciSync fence
returned by the latest submission. As of this writing, NvSciSync does not support reporting
DLA HW errors and therefore an application is expected to wait for the fence and then query
cudlaGetLastError() for any errors during execution.
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5.2.  Migrating from NvMediaDla to cuDLA
NvMediaDla and cuDLA have different programming models with some degree of overlap in
the functionality exposed by the respective APIs. The following table provides a mapping from
the NvMediaDla API to the equivalent cuDLA API or functionality. This is intended to be used as
a reference when migrating an NvMediaDla app to a cuDLA app.

NvMediaDla cuDLA
NvMediaDlaGetVersion() cudlaGetVersion()

NvMediaDlaPingById() Not required as ping is done inside
cudlaCreateDevice and only upon successful
ping does device handle creation succeed.

NvMediaDlaCreate() cudlaCreateDevice()

NvMediaDlaDestroy() cudlaDestroyDevice()

NvMediaDlaGetUMDVersion() Not available

NvMediaDlaGetNumEngines() cudlaDeviceGetCount()

NvMediaDlaGetMaxOutstandingTasks() Not available

NvMediaDlaInit() cudlaCreateDevice (but specifying number of
input tasks is not available)

NvMediaDlaGetInstanceId() Not available

NvMediaDlaGetNumTasks() Not available

NvMediaDlaLoadableCreate() Not required as declaring a variable of
type cudlaModule is sufficient alongwith
cudlaModuleLoadFromMemory().

NvMediaDlaLoadableDestroy() Not required as cuDLA modules are declared as
variables of type cudlaModule.

NvMediaDlaAppendLoadable() Not required as this is done inside
cudlaModuleLoadFromMemory().

NvMediaDlaSetCurrentLoadable() Not required as this is done inside
cudlaModuleLoadFromMemory().

NvMediaDlaGetNumOfInputTensors() cudlaModuleGetAttributes()

NvMediaDlaGetInputTensorDescriptor() cudlaModuleGetAttributes()

NvMediaDlaGetNumOfOutputTensors() cudlaModuleGetAttributes()

NvMediaDlaGetOutputTensorDescriptor() cudlaModuleGetAttributes()

NvMediaDlaDataRegister() cudlaMemRegister()

NvMediaDlaDataUnregister() cudlaMemUnregister()

NvMediaDlaLoadLoadable() cudlaModuleLoadFromMemory()

NvMediaDlaRemoveLoadable() cudlaModuleUnload()

NvMediaDlaSubmit() cudlaSubmitTask()

NvMediaDlaNvSciSyncGetVersion() Not available

NvMediaDlaFillNvSciSyncAttrList() cudlaGetNvSciSyncAttributes()
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NvMediaDla cuDLA
NvMediaDlaRegisterNvSciSyncObj() cudlaImportExternalSemaphore()

NvMediaDlaUnregisterNvSciSyncObj() cudlaMemUnregister()

NvMediaDlaSetNvSciSyncObjforEOF()() Not required as cudlaTask structure has the
required capability to specify this.

NvMediaDlaInsertPreNvSciSyncFence() Not required as cudlaTask structure has the
required capability to specify this.

NvMediaDlaGetEOFNvSciSyncFence() Not required as cudlaTask structure has the
required capability to retrieve this.

5.3.  Profiling a cuDLA App
cuDLA APIs can be profiled using NVIDIA Nsight Systems. The following command can be
used to generate traces for cuDLA APIs. These traces can be viewed in Nsight.

$ nsys profile --trace nvtx -e CUDLA_NVTX_LEVEL=1 --output <file> <cudla_App>

5.4.  cuDLA Release Notes
Known Issues in cuDLA 1.0.0:

‣ In hybrid mode, cuDLA internally allocates memory with CUDA using the primary context.
As a result, before destroying/resetting a CUDA primary context, it is mandatory that all
cuDLA device initializations are destroyed.

‣ Before destroying a cuDLA device handle, it is important to ensure that all tasks submitted
previously to the device are completed. Failure to do so can lead to application crashes as
the internal memory allocations would still be in use.

‣ NvSciBuf buffer allocations made by the application must adhere to DLA alignment
constraints.

‣ It is the application's responsibility to ensure that there are no duplicate fences specified
as part of wait events while submitting tasks.

‣ In general, any synchronous or asynchronous error returned by cuDLA APIs must be
treated as a non-recoverable error. In this case, the application is expected to restart
and initialize cuDLA again in order to submit DLA tasks. The exception to this rule is
cudlaErrorMemoryRegistered which is returned by cuDLA when the application tries to
register a particular memory again without unregistering.

‣ cuDLA does not support UVM between CUDA and DLA.

‣ cuDLA does not support CUDA Graph.

‣ cuDLA does not support per-thread default stream.

‣ cuDLA does not support CNP (DLA functions cannot be used with CNP).
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‣ cuDLA does not support block linear memory.

‣ cuDLA does not support CUDA VMM APIs at the present moment.

‣ cuDLA does not support dGPU.

‣ Under certain conditions, DLA FW can hang for certain tasks. This can result in the
application hanging in both hybrid as well as standalone mode. Applications are expected
to detect these scenarios and respond accordingly.

‣ In cuDLA, only 1 event can be specified for signalling as part of cudlaSubmitTask().
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