
v11.7 | May 2022

CUDA Features Archive

User's Guide

CUDA Features Archive v11.7 | ii

Table of Contents

Chapter 1. CUDA 11.6 Features...1

CUDA Features Archive v11.7 | 1

Chapter 1. CUDA 11.6 Features

Compiler

‣ VS2022 Support

CUDA 11.6 officially supports the latest VS2022 as host compiler. A separate Nsight Visual
Studio installer 2022.1.1 must be downloaded from here. A future CUDA release will have
the Nsight Visual Studio installer with VS2022 support integrated into it.

‣ New instructions in public PTX

New instructions for bit mask creation—BMSK, and sign extension—SZEXT, are added to
the public PTX ISA. You can find documentation for these instructions in the PTX ISA guide:
BMSK and SZEXT.

‣ Unused Kernel Optimization

In CUDA 11.5, unused kernel pruning was introduced with the potential benefits of
reducing binary size and improving performance through more efficient optimizations. This
was an opt-in feature but in 11.6, this feature is enabled by default. As mentioned in the
11.5 blog, there is an opt-out flag that can be used in case it becomes necessary for debug
purposes or for other special situations.

$ nvcc -rdc=true user.cu testlib.a -o user -Xnvlink -ignore-host-info

‣ New -arch=native option

In addition to the -arch=all and -arch=all-major options added in CUDA 11.5,
NVCC introduced -arch= native in CUDA 11.5 update 1. This -arch=native option
is a convenient way for users to let NVCC determine the right target architecture to
compile the CUDA device code to based on the GPU installed on the system. This can be
particularly helpful for testing when applications are run on the same system they are
compiled in.

‣ Generate PTX from nvlink:

Using the following command line, device linker, nvlink will produce PTX as an output in
addition to CUBIN:

nvcc -dlto -dlink -ptx

Device linking by nvlink is the final stage in the CUDA compilation process. Applications
that have multiple source translation units have to be compiled in separate compilation
mode. LTO (introduced in CUDA 11.4) allowed nvlink to perform optimizations at device
link time instead of at compile time so that separately compiled applications with several

https://developer.nvidia.com/nsight-visual-studio-edition
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions-bmsk
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#integer-arithmetic-instructions-szext

CUDA 11.6 Features

CUDA Features Archive v11.7 | 2

translation units can be optimized to the same level as whole program compilations with a
single translation unit. However, without the option to output PTX, applications that cared
about forward compatibility of device code could not benefit from Link Time Optimization
or had to constrain the device code to a single source file.

With the option for nvlink that performs LTO to generate the output in PTX, customer
applications that require forward compatibility across GPU architectures can span across
multiple files and can also take advantage of Link Time Optimization.

‣ Bullseye support

NVCC compiled source code now works with the code coverage tool Bullseye. The code
coverage is only for the CPU or the host functions. Code coverage for device function is not
supported through bullseye.

‣ INT128 developer tool support

In 11.5, CUDA C++ support for 128 bit was added. In 11.6, developer tools support the
datatype as well. With the latest version of libcu++, int 128 data datype is supported by
math functions.

Notice

This document is provided for information purposes only and shall not be regarded as a warranty of a certain functionality, condition, or quality of a product. NVIDIA
Corporation (“NVIDIA”) makes no representations or warranties, expressed or implied, as to the accuracy or completeness of the information contained in this
document and assumes no responsibility for any errors contained herein. NVIDIA shall have no liability for the consequences or use of such information or for any
infringement of patents or other rights of third parties that may result from its use. This document is not a commitment to develop, release, or deliver any Material
(defined below), code, or functionality.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and any other changes to this document, at any time without notice.

Customer should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of order acknowledgement, unless otherwise agreed
in an individual sales agreement signed by authorized representatives of NVIDIA and customer (“Terms of Sale”). NVIDIA hereby expressly objects to applying any
customer general terms and conditions with regards to the purchase of the NVIDIA product referenced in this document. No contractual obligations are formed
either directly or indirectly by this document.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and other countries. Other company and product names may
be trademarks of the respective companies with which they are associated.

Copyright
© 2022-2022 NVIDIA Corporation & affiliates. All rights reserved.

NVIDIA Corporation | 2788 San Tomas Expressway, Santa Clara, CA 95051
https://www.nvidia.com

http://www.nvidia.com

	Table of Contents
	CUDA 11.6 Features

